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Abstract—The paper discusses our practical experience and theoretical results of investigating the 

impact of consistency on latency in distributed fault tolerant systems built over the Internet and 

clouds. We introduce a time-probabilistic failure model of distributed systems that employ the 

service-oriented paradigm for defining cooperation with clients over the Internet and clouds. The 

trade-offs between consistency, availability and latency are examined, as well as the role of the 

application timeout as the main determinant in the interplay between system availability and 

responsiveness. The model introduced heavily relies on collecting and analysing a large amount of 

data representing the probabilistic behaviour of such systems. The paper presents experimental 

results of measuring the response time in a distributed service-oriented system whose replicas are 

deployed at different Amazon EC2 location domains. These results clearly show that improvements 

in system consistency increase system latency, which is in line with the qualitative implication of the 

well-known CAP theorem. The paper proposes a set of novel mathematical models that are based on 

statistical analysis of collected data and enable quantified response time prediction depending on the 

timeout setup and on the level of consistency provided by the replicated system. 

Keywords—service-oriented systems, internet computing, cloud computing, distributed 

applications, fault tolerance, modelling techniques, trade-off, availability, latency, consistency  

1. INTRODUCTION 

Internet and cloud computing has become an industrial trend, indispensable in dealing with 

enormous data growth. It is now widely used in different market niches, including critical 

infrastructures and business-critical systems. Failures of such applications can affect people’s 

lives and businesses. For example, Amazon’s S3 cloud storage widespread outage on February 

28, 2017 knocked numerous web services offline and costed S&P 500 companies at least $150 

million, and U.S. financial-service companies $160 million in lost revenue [1]. A spate of recent 

service outages of the Amazon, Google, MS Azure, Dropbox and other cloud platforms1,2,3 

highlights the risks involved when companies rely on Internet computing and cloud resources 

in their mission-critical applications. Thus, ensuring dependability of Internet computing and 

of the whole spectrum of related technologies (web services, SOA, clouds, Big Data, etc.) is a 

must, as well as a challenge. The recent microservice architectural style [2] offers greater 

interoperability and reduces the overall cost of system design and composition but introduces 

additional operational complexity, increases system latency and its variation due to inter-service 

                                                           

1 https://www.analyticsindiamag.com/cloud-outages-that-shook-the-tech-world-2018/ 
2 https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2018 
3 https://www.theregister.co.uk/2017/03/01/aws_s3_outage/ 
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rather than in-process calls and also presents reliability issues similar to SOA and web services 

but on a larger scale.  

Although the Internet and cloud computing technologies have been significantly improved 

recently, we believe that they have not yet revealed their full potential. In particular, it is still in 

its infancy when it comes to ensuring dependability of large-scale dynamically composed 

service-oriented systems involving multiple independent services and providers. Dependability 

enhancing technologies will thus be essential in supporting mission- and business-critical 

applications intended for personal use or to be used by enterprises, governments or defence. 

There is significant research devoted to dependability and performance of Internet 

computing, clouds and SOA (e.g. [3, 4, 5]). Recent related works, such as [6, 7, 8, 9], have 

introduced several approaches to incorporating fault tolerance techniques (including N-modular 

redundancy, voting, backward and forward error recovery and replication techniques) into 

clouds and web service architectures. Important research has been done in fault analysis, 

evaluation and experimental measurements of dependability and performance of service-

oriented systems, e.g. [10, 11, 12]. However, coming from dispersed areas, this work addresses 

individual issues but has not so far advanced them in combination or offered general solutions. 

Often, researchers use simple and hence unrealistic failure models or fail to take into account 

the interdependency between availability and performance that is in the very nature of such 

distributed interacting systems. For instance, basic fault tolerance solutions such as N-modular, 

hot- and cold-spare redundancy usually assume a synchronous communication between 

replicas, which means that every message is delivered within a known fixed amount of time 

[13]. This is a reasonable simplification for the local area systems whose components are 

compactly located, for instance, within a single data centre. This assumption does not appear to 

be relevant, however, for the wide area systems, in which replicas are deployed over the Internet 

and their updates cannot be propagated immediately, making it difficult to guarantee 

consistency. 

To be more efficient, fault tolerance techniques incorporated into Internet and cloud 

computing applications should distinguish between evident failures of different types, such as 

application exceptions, communication errors and timeouts, and should be capable of 

minimizing the probability of non-evident application errors. In addition, the Internet and, more 

generally, the wide area networked systems are characterized by a high level of uncertainty, 

which makes it hard to guarantee that a client will receive a response from the service within a 

finite time. It has been previously shown that there is a significant uncertainty of response time 

and other timeliness parameters in service-oriented systems invoked over the Internet [14, 15]. 

This uncertainty significantly affects QoS capability of distributed applications. Experimental 

studies [15, 16] show that the response time of web services can very often be as high as 10 or 

even 20 times the average value. Moreover, sometimes client applications wait for a response 

from a service for hours instead of reporting an exception or resending a request. Therefore, the 

right timeout setting is key to improving performance of many distributed systems, including web 

services. 

Besides, other research [17, 18] and our previous studies show that failures are a regular 

occurrence on the Internet, in clouds and scale-out data centre networks. When developers 

apply replication and other fault tolerance techniques in the Internet- and cloud-based systems, 

they need to understand the time overheads and be concerned about delays and their uncertainty. 
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In this paper we put forward an advanced failure model for distributed systems and Internet 

computing applications, taking into account the time-probabilistic relation between different 

failure modes, and propose analytical models that assess the average servicing and waiting 

times under certain timeout settings.  

Secondly, we examine, both in experimental and theoretical terms, how different fault 

tolerance solutions [19] implemented over the Internet affect system latency depending on the 

replication factor and the level of consistency provided.  

The paper applies the time-probabilistic failure model, proposed in our earlier work [20] to 

the CAP conjecture. It discusses trade-offs between consistency, availability and latency taking 

into account timeout settings. Although these relations have been identified by the CAP theorem 

in qualitative terms [21, 22], it is still necessary to quantify how different fault tolerance 

techniques affect system latency depending on the consistency level. Even when the response 

times of replicas are known, it is not possible to accurately predict latency of the whole 

replicated system. Hence, the ultimate goal of the paper is to provide developers of distributed 

fault-tolerant systems with the mathematical models and practical guidance allowing them to 

predict latency of such systems taking into account timeout settings and the required 

consistency level. The proposed models will help them to trade-off between consistency, 

availability and latency during system design and operation. In our work we combine 

experimental measurement of replicas response time with the probabilistic theory and analytical 

modelling of system latency which makes it possible to predict its dependability and 

performance depending on the chosen consistency level and timeout setup.   

The rest of the paper is organized as following. In Sections 2 and 3 we discuss the uncertainty 

challenge inherent to distributed service-oriented systems and introduce a time-probabilistic 

failure model which captures the interplay between system dependability and performance 

characteristics. Section 4 discusses the impact of the CAP theorem on design principles of 

modern distributed fault-tolerant systems and examines trade-offs between system consistency, 

availability and latency. In Section 5 we summarise the results of experimental response time 

measurements for a testbed fault-tolerant system supporting different consistency levels whose 

replicas are distributed over clouds. The probabilistic models introduced in Section 6 define the 

quantitative relation between the system response time and the required consistency level. In 

Section 7 we evaluate the accuracy of the proposed analytical models by comparing their results 

with our experimental data. Section 8 investigates how system response time changes with 

increasing number of generic replicas. Finally, conclusions and practical lessons learnt are 

summarised in Sections 9 and 10. 

2 THE UNCERTAINTY CHALLENGE 

Internet computing mainly relies on service oriented architectural model where web services 

(WSs) play a role of major building blocks, often provided by third parties. By their very nature 

such web services are black boxes, as neither their source code, nor their complete specification, 

nor information about their deployment environments are available; the only known 

information about them is their interfaces. Moreover, their dependability is not completely 

known and they may not provide sufficient quality of service. As a result, it is often safe to treat 

third party WSs as “dirty” boxes, assuming that they always have bugs, do not fit enough, have 

poor specification and documentation. WSs are heterogeneous, as they might be developed 
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following different standards, fault assumptions, and different conventions and may use 

different technologies. 

Service-oriented systems are built as overlay networks over the Internet. As a result, their 

dependable construction and composition are complicated by the fact that, due to a lack of 

quality and predictability, the Internet is a poor communication medium. Service-oriented 

systems can be vulnerable to internal faults from various sources and casual external problems 

such as communication failures, routing errors and network traffic congestion. Therefore, the 

performance of such systems is characterised by high instability, i.e. it can vary over a wide 

range in a random and unpredictable manner [14].  

The inability of the web services involved to guarantee a certain response time and 

performance and the instability of the communication medium can cause timing failures, when 

the response time or the timing of service delivery (i.e. the time during which information is 

delivered over the network to the service interface) exceeds the time that would be required in 

order for the system function to be executed. A timing failure may take the form of an early or 

late response, depending on whether the service is delivered too early or too late [19].  

In the case of complex workflows incorporating many different web services, some users 

may be provided with a correct service, whereas others may have to deal with incorrect services 

of various types due to timing errors. These errors may occur in any of a number of system 

components depending on the relative position of a particular user and a particular web service 

in the Internet, as well as on the instability points which emerge during the execution. Thus, 

timing errors can become a major cause of inconsistent failures usually referred to, after [23], 

as the Byzantine failures. Providing remote services, data storage and computing resources is 

an important element of modern IT and Internet computing. However, significant uncertainty 

exists regarding service-oriented systems invoked over the Internet [16]. In this work we use 

the general synthetic term uncertainty to refer to the unknown, unstable, unpredictable, 

changeable characteristics and behaviour of web services and SOA, exacerbated by running 

these services over the Internet and clouds.  

Understanding uncertainty arising in SOA is crucial for choosing the right recovery 

techniques, setting timeouts, and adopting system architecture and its behaviour to a changing 

environment such as the Internet and SOA. This uncertainty exhibits itself through 

unpredictable worst-case response times, unknown service dependability, and the difficulty of 

diagnosing the root cause of failures. Uncertainty is one of the main challenges to building 

dependable distributed systems of Internet-scale. This uncertainty is a threat in much the same 

way that faults, errors, and failures are [19]. Here, we examine that threat and discuss ways to 

deal with it. We particularly focus on using timeouts as part of fault- and intrusion-tolerance 

techniques. 

Uncertainty has three important consequences. First, it makes it difficult to assess a service’s 

availability and performance and hence to choose that service over others for its trustworthiness. 

Second, it complicates the application of fault- and intrusion-tolerance techniques because too 

much data is missing to make good decisions and exploit dependability mechanisms’ features. 

Finally, it makes it difficult to predict the performance, cost, and other non-functional 

characteristics when you apply such techniques over the Internet. Clearly, building fast, 

dependable Internet applications on a large scale is impossible without addressing these issues. 
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Our recent studies and a series of experiments [14, 16] showed that the uncertainty in large-

scale distributed systems can be effectively mitigated by employing a probabilistic approach. 

This work defines services response times using probability density functions (pdf) instead of 

using their average values. The pdf specifies the relative likelihood for the response time to take 

on a given value, that is much more informative than response time average or the worst case 

value. It allows us to estimate a probability that the system response time is less than the 

specified value or to define confidence intervals. The probability density function can be 

chosen/estimated by statistical processing of response time measurement results. The 

corresponding technique is described in [16]. 

3 TIME-PROBABILISTIC FAILURE MODEL 

Web services and service-oriented systems as any other complex software may contain faults 

which may manifest themselves in operation. To every request, the web service might return 

either a correct response – that is, succeed – or an erroneous response or exception—that is, 

fail. Web services failure behaviour is characterised by the probability of failure on demand 

(pfd). This probability can be statistically measured by a client as a ratio between r failures 

observed in n demands [24]. It can vary between the environments and the contexts (operational 

profiles) in which a web service is used.  

The various factors, which affect the pfd may be unknown with certainty, thus the value of 

pfd may be uncertain as well. This uncertainty can be captured by a probability density series 

or probability distribution, built by aggregating usage experience of different clients. A user-

collaborative mechanism, aggregating data from multiple clients, was proposed in [25].  

Thus, the response returned to the client by a remote service may be of several types: 

1. Correct result. 

2. Evident error – an error that needs no special means to be detected. It concerns exception 

messages of different types reported to the client and notifying about denial of the requested 

service for some reason. 

3. Non-evident (hidden) error – an error that can be detected only by using a multiversioning 

at the application level (e.g. diversity of web services used). 

However, the distributed nature of the service-oriented architectural model does not 

guarantee that the client receives a response from the web service within the finite time. If this 

happens we face so-called timing failures when the response is received too late or is not 

received at all. Thus, the known dependability definition [19] should be extended for SOA as 

the “ability to deliver service within the expected time that can justifiably be trusted”.  

In the Figure 1 we adopt the failure model introduced by Avizienis, et al. in [19] to the 

distributed nature of service-oriented systems and, more general, Internet computing. The 

model distinguishes between the two main failure domains: (i) timing failures when the duration 

of the response delivered to the client exceeds the specified waiting time – the application 

timeout (i.e. the service is delivered too late), and (ii) content failures when the content (value) 

of the response delivered to the client deviates from implementing the system function.  

Probabilities pok, phe and pex are conditional probabilities. They are conditioned on the 

arrival of some response within the timeout. Probabilities pex and phe refer to failure modes 
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that in the Avizienis’s classification 

correspond to the detectability 

viewpoint, where they are 

classified as: signaled and 

unsignaled failures, respectively.  

In our failure model we use the 

following assumptions: 

– probabilities of all servicing 

outcomes (pok, phe, pex, pto) form 

a set of collectively exhaustive 

events; 

– system response time is a 

random variable with the known 

probability density function ft(t) 

and certain parameters specified 

based on the result of statistical analysis of measured results; 

– time during which a client waits for the response is limited by the timeout parameter; 

– probabilities of the correct, evident and non-evident incorrect servicing (pok, pex and phe) 

do not depend on the time of the response delivery to the client. 

The justification of the assumptions and a detailed discussion of model properties can be 

found in [20]. 

The interdependency between probabilities of different servicing outcomes is shown in 

Fig. 2. Changing of timeout value causes changing the probability of timeout and, hence 

changing (redistribution) values of pok, phe, pex and pto as long as the sum of all probabilities 

must be equal to one. Hence, they are functions of a timeout setting:  

𝑝𝑜𝑘(timeout) = 𝑝𝑜𝑘∞ ∙ ∫ 𝑓𝑡(𝑡)𝑑𝑡
timeout

0

 (1) 

𝑝ℎ𝑒(timeout) = 𝑝ℎ𝑒∞ ∙ ∫ 𝑓𝑡(𝑡)𝑑𝑡
time-ou𝑡

0

 (2) 

𝑝𝑒𝑥(timeout) = 𝑝𝑒𝑥∞ ∙ ∫ 𝑓𝑡(𝑡)𝑑𝑡
timeout

0

 (3) 

where pok, pex, phe are the ‘eventual’ probabilities of getting a correct, evident and non-evident 

erroneous results assuming the infinite waiting time, i.e. when timeout . 

The timeliness related unavailability of a system can be estimated as the probability of the 

client receiving a response after the specified application timeout: 

 

𝑝𝑡𝑜(timeout) = ∫ 𝑓𝑡(𝑡)𝑑𝑡
∞ 

timeout

 (4) 

 

Fig. 1. Service failure modes 
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Besides, we introduce the 

following two measures 

estimating system latency: 

Tav_srv – the average 

servicing time and Tav_wait – 

the average waiting time. The 

expectation of ft(t) truncated 

from the right by a timeout is 

the average response time of 

those invocations in which the 

client receives a response of 

any type before the specified 

timeout (i.e. the average 

servicing time): 

𝑇𝑎𝑣𝑔_𝑠𝑟𝑣(timeout) =
∫ 𝑡 ∙ 𝑓𝑡(𝑡)𝑑𝑡

timeout

0

𝐹𝑡(timeout)
 (5) 

where 𝐹𝑡(timeout) = ∫ 𝑓𝑡(𝑡)𝑑𝑡
timeout

0
 is the cumulative distribution function of a response 

time. 

The average waiting time Tavg_wait estimated for all invocations, including those when a 

timeout is triggered, is the sum of Tavg_srv under the specified timeout and a product of the 

timeout value and the probability of timeout:  

 

𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡(timeout) = ∫ 𝑡 ∙ 𝑓𝑡(𝑡)𝑑𝑡

timeout

0

+ timeout ∙ (1 − 𝐹𝑡(timeout)) (6) 

It can be seen that Tav_srv and Tav_wait are becoming equal when the timeout increases to 

infinity. But in all practical settings Tav_srv is less than Tav_wait. This is because the waiting 

time for those invocations for which a timeout is triggered is equal to the timeout value. So, the 

weight of a tail of ft(t) truncated by the timeout is concentrated at the truncation border which 

increases the average waiting time Tav_wait.  

Using these equations, systems engineers can trade-off between maximizing the service 

availability and minimizing its latency. Besides, these equations can help to choose appropriate 

application timeouts, which are the main error detection mechanism here. To be applicable in 

practice the proposed models have to be concretized using the explicitly defined probability 

density function. For instance, if system response time is approximated by the exponential 

distribution 𝑓𝑡(t) = 𝜇 ∙ 𝑒−𝜇∙t (where µ is the rate parameter which is inversely proportional to 

the mean), the trade-offs between latency, availability and timeout will be identified as 

following: 

 

 

 

 

Fig. 2. Time-probabilistic failure model: the trade-off between 

availability and latency depending on timeout setup 
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𝑝𝑡𝑜(timeout) = 𝑒−𝜇∙timeout   =>   𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝑝𝑡𝑜) = −
ln(𝑝𝑡𝑜)

𝜇
; 

𝑇𝑎𝑣𝑔𝑠𝑟𝑣(timeout) = −
𝑒−𝜇∙timeout + 𝜇 ∙ timeout∙𝑒−𝜇∙timeout − 1

𝜇 ∙ (1 − 𝑒−𝜇∙timeout)
, 

𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡(timeout) = −
𝑒−𝜇∙timeout−1

𝜇
 => 

=> 𝑇𝑎𝑣𝑔_𝑠𝑟𝑣(𝑝𝑡𝑜) = −
𝑝𝑡𝑜 ∙ ln(𝑝𝑡𝑜) − 𝑝𝑡𝑜 + 1

𝜇 ∙ (𝑝𝑡𝑜 − 1)
, 

 𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡(𝑝𝑡𝑜) = −
𝑝𝑡𝑜 − 1

𝜇
, 

𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡) = −
ln(1 − 𝜇 ∙ 𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡)

𝜇
, 

𝑝𝑡𝑜(𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡) = 1 − 𝜇 ∙ 𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡. 

 

The numerical example of solving the trade-offs and estimating the probabilities of different 

types of failures and system latency Tav_srv and Tav_wait depending on timeout settings can 

be found in [20]. In our work timeout links system availability and latency. It can also be used 

as part of failure recovery techniques to trigger the restart or retry in software systems [26].  

4 TRADE-OFFS BETWEEN CONSISTENCY, AVAILABILITY AND LATENCY IN FAULT-

TOLERANT INTERNET COMPUTING 

The CAP conjecture [21], which first appeared in 1998-1999, defines a trade-off between 

system availability, consistency and partition tolerance, stating that only two of the three 

properties can be preserved in distributed replicated systems at the same time. Gilbert and 

Lynch [22] view the CAP theorem as a particular case of a more general trade-off between 

consistency and availability in unreliable distributed systems which assume that updates are 

eventually propagated. System partitioning, availability and latency are tightly connected. A 

replicated fault-tolerant system becomes partitioned when one of its parts does not respond due 

to arbitrary message loss, delay or replica failure, resulting in a timeout.  

System availability can be interpreted as a probability that each client request eventually 

receives a response. In many real systems, however, a response that is too late (i.e. beyond the 

application timeout) is treated as a failure. High latency is an undesirable effect for many 

interactive web applications. In [27] the authors showed that if a response time increases by as 

little as 100 ms, it dramatically reduces the probability of the customer continuing to use the 

system. Failure to receive responses from some of the replicas within the specified timeout causes 

partitioning of the replicated system. Thus, partitioning can be considered as a bound on the 

replica’s response time [28]. A slow network connection, a slow-responding replica or the wrong 

timeout settings can lead to an erroneous decision that the system has become partitioned. When 

the system detects a partition, it has to decide whether to return a possibly inconsistent response 

to a client or to send an exception message in reply, which undermines system availability. 

The designers of the distributed fault-tolerant systems cannot prevent partitions which 

happen due to network failures, message losses, hacker attacks and components crashes and, 

hence, have to choose between availability and consistency. One of these two properties has to 
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be sacrificed. If system developers decide to forfeit consistency they can also improve the 

system response time by returning the fastest response to the client without waiting for other 

replica responses until the timeout, though this would increase the probability of providing 

inconsistent results. Besides, timeout settings are also important. If the timeout is lower than 

the typical response time, a system is likely to enter the partition mode more often [20].  

It is important to remember that none of these three properties is binary. For example, modern 

distributed database systems, e.g. Cassandra [29], can provide a discrete set of different 

consistency levels for each particular read or write request. The response time can theoretically 

vary between zero and infinity, although in practice it ranges between a minimal affordable 

time higher than zero and the application timeout. Availability varies between 0% and 100% as 

usual.  

The architects of modern distributed database management systems and large-scale web 

applications such as Facebook, Twitter, etc. often decide to relax consistency requirements by 

introducing asynchronous data updates in order to achieve higher system availability and allow 

a quick response. Yet the most promising approach is to balance these properties. For instance, 

the Cassandra NoSQL database introduces a tunable replication factor and an adjustable 

consistency model so that a customer can choose a particular level of consistency to fit with the 

desired system latency. 

The CAP theorem helps the developers to understand the system trade-offs between 

consistency and availability/latency [30]. Yet even though this theorem strongly suggests that 

better consistency undermines system availability and latency, developers do not have 

quantitative models to help them to estimate the system response time for the chosen 

consistency level and to achieve a precise trade-off between them. Our interpretation of the 

CAP theorem and the trade-offs resulting from the CAP is depicted in Fig. 3.  

The application timeout can be considered as a bound between system availability and 

performance (in term of latency or response time) [31]. Thus, system designers should be able 

to set up timeouts according to the desired system response time, also keeping in mind the 

choice between consistency and availability. We represent the response time as a random 

variable which possible values and their associated probabilities can be described by a discrete 

or continuous distribution function.  

Knowing this function, the system 

designer can predict the average system 

latency or estimate a probability of 

getting response by the specified 

timeout. In turn, for the distributed 

replicated system this function is 

determined by distribution functions of 

replicas response times and depends on 

the total number of replicas and the 

consistency level, provided by a system. 

In the following sections we discuss our 

practical experience in measuring 

latency of fault-tolerant distributed 

systems depending on the number of 

 

Fig. 3. The CAP trade-offs model 
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replicas and provided consistency level. We also introduce analytical models defining 

distribution functions of system response time and predicting system latency. 

5 EXPERIMENTAL INVESTIGATION OF THE CONSISTENCY IMPACT ON RESPONSE TIME 

5.1 Testbed Fault-Tolerant Distributed System 

To investigate the CAP impact on fault-tolerant distributed systems we developed a testbed 

service-oriented system composed of a number of replicated web services. Modern distributed 

systems and services like Amazon S3, Amazon EMR, Facebook Haystack, DynamoDB, 

Apache Hadoop, etc. replicate data to at least three servers. The wide-area cooperative storage 

file system analysed in [32] maintains 6 replicas for each file block. In [33] the authors 

examined the replication degree customization for high availability when a number of replicas 

ranges from 1 to 6. Thus, in our experiments we ranged a number of replicas from 1 to 7 to 

cover the most common replication setups. 

A testbed web service was 

written in Java and its replicas 

uploaded to Amazon Elastic 

Beanstalk and were deployed 

in the seven different location 

domains: US West (Oregon), 

South America (Sao Paulo), 

Asia Pacific (Tokyo), EU 

West (Ireland), Asia Pacific 

(Singapore), US East 

(Virginia) and US West (N. 

California). Each WS replica 

performs a heavy-

computational arithmetic algorithm implementing the Gregory–Leibniz series to calculate the 

mathematical constant Pi and returns the result to the driver. The driver is responsible for 

invoking each of the replicated web services, waiting for the web services to complete their 

execution and return response, and, finally, applying a particular fault tolerance scheme with a 

certain replication factor (see Fig. 4). 

In our study we investigated the three basic fault tolerance patterns for web services [34] 

corresponding to different consistency levels (ONE, ALL, QUORUM). When we refer to 

consistency here we use the concept of tunable/eventual data consistency [30, 35] that has been 

recently introduced in the NoSQL and Big Data technologies (e.g. MongoDB, Cassandra, etc.) 

extending the standard consistency model and quorum-based protocols [36] traditionally 

adopted in distributed systems. In all cases the driver simultaneously forwards client’s request 

to all replicated web services. The consistency level determines the number of replicas which 

must return a response to the driver before it sends an adjudicated result to the client application: 

 ONE (hot-spare redundancy) – when the FASTEST response is received the driver 

forwards it to the client. This is the weakest consistency level though it guarantees 

the minimal latency; 

 ALL (N-modular redundancy) – the driver must wait until ALL replicas return their 

responses.  

 

Fig. 4. 3-replicated fault-tolerant service-oriented system 

 

Client Driver
WS 

Replica_1

WS 
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WS 

Replica_3

par
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Invoke 
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In this case the response time is constrained by the slowest replica though the 

strongest consistency is provided; 

 QUORUM – the driver must wait for the responses from a QUORUM of replica web 

services. It provides a compromise between the ONE and ALL options trading off 

latency versus consistency. The quorum is calculated as: 

(amount_of_replicas / 2) + 1, rounded down to an integer value.  

The driver also 

implements a timeout 

mechanism aimed to protect 

clients from endless waiting 

in case of network or web-

services failures or cloud 

outages. The driver was 

implemented as part of the 

Java client software. The 

client software was run at a 

host in the Newcastle 

University (UK) corporate 

network. It invoked replica 

web services several 

thousand times in a loop 

using the driver as a proxy. 

 

5.2 Response Time Measurement 

For the particular client’s request we measured the response time of the each web service replica 

and also times when the driver produces responses corresponding to different consistency 

levels. The delay induced by the driver itself was negligible in our experiments. 

Tables 1 and 2 summarize basic statistical characteristics of the measured data. Fig. 5 clearly 

confirms the general CAP implications that increasing consistency worsens system latency and 

vice versa. In addition, increasing the replication factor decreases the latency of a system 

providing the weakest consistency level ONE and worsens it if a system provides the strongest 

consistency level ALL. Though, the particular latency losses or gains are quite irregular and 

very much depend on response time of system replicas.  

TABLE 1. REPLICA RESPONSE TIME STATISTICS 

Replica  

ID 

Replica  

Location 

Response Time, ms 

min. avg. max. std.dev. 

Replica1: US West (Oregon) 2324 2428 2821 60 

Replica2: South America (SaoPaulo) 2164 2434 3371 228 

Replica3: Asia Pacific (Tokyo) 2344 2588 5573 522 

Replica4: EU West (Ireland) 1513 2226 10831 1103 

Replica5: Asia Pacific (Singapore) 2010 2189 5078 300 

Replica6: US East (Virginia) 1816 2252 10931 1095 

Replica7: US West (N. California) 2271 2415 5377 306 

 

Fig. 5. The average response time of n-replicated fault-tolerant 

service-oriented system 
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TABLE 2.  SYSTEM RESPONSE TIME STATISTICS 

System replication  

factor n 

Consistency  

Level 

Response Time, ms 

min. avg. max. std.dev 

3 (Replicas 1-3) ONE 2164 2342 2509 80 

QUORUM 2324 2449 2830 72 

ALL 2386 2660 5573 529 

4 (Replicas 1-4) ONE 1513 1993 2404 183 

QUORUM 2324 2454 2830 74 

ALL 2386 2878 10831 1079 

5 (Replicas 1-5) ONE 1513 1970 2367 155 

QUORUM 2164 2354 2509 77 

ALL 2386 2904 10831 1100 

6 (Replicas 1-6) ONE 1513 1917 2159 117 

QUORUM 2164 2364 2520 80 

ALL 2386 3113 10931 1422 

7 (Replicas 1-7) ONE 1513 1917 2159 117 

QUORUM 2164 2339 2509 66 

ALL 2386 3140 10931 1438 

 

In the rest of this Section we analyse in details the data related to the 3-replicated system 

configuration. As we mentioned earlier, replication factor equal to 3 is the most typical setup 

for many  modern distributed computing systems and Internet services. For instance, Amazon 

S3 by default replicates user data to three data centres, each separated by large distances across 

an AWS Region [37]. This follows from the well-known 3-2-1 rule adopted for Cloud backup 

[38]. 

The measurement results obtained for the first 100 invocations are presented in Figs. 6 and 

7. Probability density series (pds) of system and replicas response times are depicted in Figs. 8 

and 9. In Fig. 9 we also depict theoretically obtained pds of system response time as proposed 

further in Section 6.2. 

 

 
Fig. 6. Response time of different web service replicas for the 3-replicated system setup 
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Fig. 7. System response time corresponding to different consistency levels for  

the 3-replicated system setup 

 

 

 

 

 

 
Fig. 8. Probability histograms (pds) of 

replicas response times. 

Fig. 9. Probability histograms (pds) of system 

response time for different consistency levels, 

estimated experimentally and using models (9), 

(10) and (11). 
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As expected, when the system is configured to provide consistency level ONE, its latency is 

on average lower than the average response time of the fastest replica. When the system 

provides consistency level ALL, the average system latency is larger than the average response 

time of the slowest replica. System latency associated with consistency level QUORUM is in 

the middle. However, our main observation is that it is hardly possible to make an accurate 

prediction of the average system latency corresponding to a certain consistency level when only 

the common statistical measures of replicas response time (i.e. the minimal, maximal and 

average estimates and standard deviation) are known. 

This finding resulting from the massive statistical data gathered during our current and 

previous (e.g. [14, 16]) experiments is in line with the work of other researches [15, 39]. It 

shows that it is extremely difficult to predict the timing characteristics of various types of wide-

area distributed systems, including fault-tolerant SOAs, distributed databases and file systems 

(e.g. Cassandra, GFS, HDFS), parallel processing systems (e.g. Hadoop Map-Reduce).  

The dynamic and changing nature of timing characteristics of such systems can be better 

captured by employing probability density functions. In the next section we propose a 

probabilistic modelling approach that addresses this problem. It relies on using continuous and 

discrete probability density functions (pdf) of replica response times to predict system latency 

at different consistency levels. 

 

6 PROBABILISTIC MODELS OF SYSTEM RESPONSE TIME FOR DIFFERENT CONSISTENCY 

LEVELS 

6.1  Deduction of Probability Density Function of System Response Time 

In the section we propose a set of probabilistic models that allow us to build a combined 

probability density function of system response time by taking into account the required 

consistency level and incorporating response time probability density functions for each replica. 

Once we get the combined probability density function of system response time we can predict 

system latency using (5) and (6). 

When the system is configured to provide consistency level ALL, the probability of returning 

response at time t is equal to the probability that one of the replicas returns its response exactly 

at time t, i.e. g1(t) while two other replicas return their responses not later than t (by time t), i.e. 

∫ 𝑔2(𝑡)
𝑡

0
= 𝐺2(𝑡) and ∫ 𝑔3(𝑡) = 𝐺3(𝑡)

𝑡

0
. 

So far, as we have three replicas, all three possible combinations have to be accounted. As a 

result, the probability density function of the system response time for consistency level ALL 

can be defined as following: 

 

𝑓𝐴𝐿𝐿(𝑡) = 𝑔1(𝑡)𝐺2(𝑡)𝐺3(𝑡) + 𝑔2(𝑡)𝐺1(𝑡)𝐺3(𝑡) + 𝑔3(𝑡)𝐺1(𝑡)𝐺2(𝑡) (7) 

 

where g1(t), g2(t) and g3(t) – are response time probability density functions of the first, 

second and third replicas respectively; G1(t), G2(t) and G3(t) – are response time cumulative 

distribution functions of the first, second and third replicas respectively. 

When the system is configured to provide consistency level ONE, the probability of returning 

a response to the client at time t is equal to the probability that if only one of the replicas (e.g. 
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the first one) returns its response exactly at time t, i.e. g1(t), while two other replicas return their 

responses at the same time or later on, i.e. ∫ 𝑔2(𝑡) = 1 −
∞

𝑡
𝐺2(𝑡) and ∫ 𝑔3(𝑡)

∞

𝑡
= 1 − 𝐺3(𝑡). 

Keeping in mind three possible combinations we can deduce the probability density function 

of the system response time for consistency level ALL as: 

 

𝑓𝑂𝑁𝐸(𝑡) = 𝑔1(𝑡)(1 − 𝐺2(𝑡))(1 − 𝐺3(𝑡)) + 

                + 𝑔2(𝑡)(1 − 𝐺1(𝑡))(1 − 𝐺3(𝑡)) + 

                + 𝑔3(𝑡)(1 − 𝐺1(𝑡))(1 − 𝐺2(𝑡)) 

(8) 

 

Deducing the response time probability density function for the QUORUM consistency level 

is based on a combination of the previous two cases. The probability of returning response to 

the client at time t is equal to the probability that one of the replicas returns its response exactly 

at time t; one of the two remained replicas returns its response by time t and another one responds 

at time t or later on. Taking into account all possible combinations the probability density function 

of the system response time for consistency level QUORUM can be deduced as: 

 

𝑓𝑄𝑈𝑂𝑅𝑈𝑀(𝑡) = (𝑔1(𝑡)𝐺2(𝑡) + 𝑔2(𝑡)𝐺1(𝑡))(1 − 𝐺3(𝑡)) + 

                       + (𝑔1(𝑡)𝐺3(𝑡) + 𝑔3(𝑡)𝐺1(𝑡))(1 − 𝐺2(𝑡)) + 

                       + (𝑔2(𝑡)𝐺3(𝑡) + 𝑔3(𝑡)𝐺2(𝑡))(1 − 𝐺1(𝑡)) 

(9) 

 

Using similar reasoning it is possible to deduce response time probability density functions 

of a system composed of n replicas: 

𝑓𝐴𝐿𝐿 
𝑛 (𝑡) = ∑ (

𝑔𝑖(𝑡)

𝐺𝑖(𝑡)
∙ ∏ 𝐺𝑗(𝑡)

𝑛

𝑗=1

)

𝑛

𝑖=1

 (10) 

𝑓𝑂𝑁𝐸 
𝑛 (𝑡) = ∑ (

𝑔𝑖(𝑡)

1 − 𝐺𝑖(𝑡)
∙ ∏ (1 − 𝐺𝑗(𝑡))

𝑛

𝑗=1

)

𝑛

𝑖=1

 (11) 

 

It is difficult to build a general form of the probability density function of the system response 

time for consistency level QUORUM. However, the general reasoning is as following. The 

composed probability density function should be presented as a sum of m items, where m is a 

number of k-combinations of n (k is a number of replicas constituting a quorum). Each of the 

m items is a product of two factors. The first one defines the probability that a particular 

combination of k replicas returns responses by time t. Another factor defines the probability 

that the remaining (n–k) replicas return their responses after t. 

6.2  Using Discrete Form of Probability Density Functions 

Probability density function is a useful means of probabilistic uncertainty representation. Its 

continuous form allows calculating the probability of getting response from a system by any 

given time, as it was demonstrated in the previous work [40].  
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Though, finding theoretical distributions of replicas and system response times, as described 

in [16], includes non trivial statistical checks and mathematical transformations. Existing 

mathematical tools (e.g. Matlab, R, MathCAD, etc.) help to simplify this calculation even 

though they are costly and too ‘heavy’ to be used for run-time optimization. Besides, sometimes 

known theoretical distributions cannot approximate measured data with an adequate accuracy.  

Replacing continuous probability density function with its discrete form (i.e. the probability 

density series, pds) is important for practical application of the proposed models. The 

probability distribution series of response time is a list of probabilities associated with each of 

the defined time intervals. The more time intervals are defined and the narrower they are, the 

closer approximation is provided.  

Using reasoning similar to that in Section 6.1, we can define the discrete probability density 

functions of the response time for the three-replicated system depending on the chosen 

consistency level – see (12), (13) and (14).  

 

1. 𝑃𝐴𝐿𝐿[𝑖] = 𝑝1[𝑖] ∑ 𝑝2[𝑗]𝑖
𝑗=1 ∑ 𝑝3[𝑗]𝑖

𝑗=1 + 𝑝2[𝑖] ∑ 𝑝1[𝑘]𝑖−1
𝑘=0 ∑ 𝑝3[𝑗]𝑖

𝑗=1 +

𝑝3[𝑖] ∑ 𝑝1[𝑘]𝑖−1
𝑘=0 ∑ 𝑝2[𝑘]𝑖−1

𝑘=0 , 
(12) 

2. 𝑃𝑂𝑁𝐸[𝑖] = 𝑝1[𝑖] ∙ ∑ 𝑝2[𝑗] ∙𝑛+1
𝑗=𝑖 ∑ 𝑝3[𝑗]𝑛+1

𝑗=𝑖 + 𝑝2[𝑖] ∑ 𝑝1[𝑘]𝑛+1
𝑘=𝑖+1 ∑ 𝑝3[𝑗]𝑛+1

𝑗=𝑖 +

𝑝3[𝑖] ∑ 𝑝1[𝑘]𝑛+1
𝑘=𝑖+1 ∑ 𝑝2[𝑘]𝑛+1

𝑘=𝑖+1 , 
(13) 

3. 𝑃𝑄𝑈𝑂𝑅𝑈𝑀[𝑖] = ((𝑝1[𝑖] ∙ ∑ 𝑝2[𝑗]𝑖−1
𝑗=0 + 𝑝2[𝑖] ∙ ∑ 𝑝1[𝑗]𝑖−1

𝑗=0 ) ∙ ∑ 𝑝3[𝑗]𝑛+1
𝑘=𝑖+1 + 𝑝1[𝑖]𝑝2[𝑖]) + 

4.                     + ((𝑝1[𝑖] ∙ ∑ 𝑝3[𝑗]𝑖−1
𝑗=0 + 𝑝3[𝑖] ∙ ∑ 𝑝1[𝑗]𝑖−1

𝑗=0 ) ∙ ∑ 𝑝2[𝑗]𝑛+1
𝑘=𝑖+1 + 𝑝1[𝑖]𝑝3[𝑖]) + 

5.                     + ((𝑝2[𝑖] ∙ ∑ 𝑝3[𝑗]𝑖−1
𝑗=0 + 𝑝3[𝑖] ∙ ∑ 𝑝2[𝑗]𝑖−1

𝑗=0 ) ∙ ∑ 𝑝1[𝑗]𝑛+1
𝑘=𝑖+1 + 𝑝2[𝑖]𝑝3[𝑖]) − 

                      − 2𝑝1[𝑖]𝑝2[𝑖]𝑝3[𝑖],   𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 1. . 𝑛;  𝑝𝑥[0] = 0; 𝑝𝑥[𝑛 + 1] = 0 

(14) 

Fig. 9 shows a significant 

closeness between experimentally 

measured pds and theoretical pds 

obtained with the help of the 

proposed models. 

Probability density series can be 

directly estimated from the 

experimentally measured response 

time [41]. A possible Java 

implementation of finding replicas 

pds at run time is shown in Fig. 10. 

There we define such variables:  

rt – is the measured replica 

response time for the current 

invocation [ms]; 

n – is the total number of the 

defined time intervals;  

rt = getReplicaResponseTime(); 

m++; 

if (rt < leftbound) { 

   // rt is in interval [0..leftbound] 

   num[1]++;   

} else if (rt>rightbound) { 

   // rt is in interval [rightbound..infinity] 

   num[n]++;   

} else { 

   i = rt / delta – leftbound / delta + 2; 

   num[i]++;   

} 

// estimation of discrete pdf of response time 

for (i=1; i<=n; i++) { 

   p[i] = num[i]/m;  

} 

Fig. 10. Practical estimation of replica response time pds 

using run-time measures 
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leftbound, rightbound – are boundaries, defining the first time interval [0..leftbound] and the 

last one [rightbound..];  

num[i] – is the number of rt measures fallen in ith time interval, i1..n; 

p[i] – is the estimated probability of rt being in ith time interval, i1..n; 

delta – is the interval width [ms]; 

m – is the total number of rt measures. 

7 MODELS VERIFICATION 

In this section we check the validity and accuracy of the proposed models by comparing their 

prediction with the experimental data presented in Section 5. This check includes the following 

four steps: 

 finding out theoretical distributions that accurately approximate the measured replica 

response times; 

 applying the proposed mathematical models (7), (8) and (9) to deduce probability 

density functions of the system response time for different consistency levels; 

 estimating the average replica and system response times using the theoretical 

probability density functions; 

 comparing the theoretical and experimental values of the average replica and system 

response times. 

7.1  Finding Theoretical Distribution Laws of Replica Response Times 

The accuracy of theoretical modelling depends a lot on the adequacy of the distribution 

functions selected to approximate replicas response time. A guidance of finding theoretical 

distribution laws approximating replica response times can be found in [16]. It is based on 

performing a series of hypotheses checks [42]. The techniques of hypothesis testing consist of 

the two basic procedures. First, the values of distribution parameters are estimated by analysing 

an experimental sample. Second, the null hypothesis that experimental data has a particular 

distribution with certain parameters should be tested. 

To perform hypothesis testing itself we used the kstest function: 

[h,p]=kstest(t,cdf), conducting the Kolmogorov-Smirnov test to compare the 

distribution of t with the hypothesized distribution defined by cdf. The null hypothesis for the 

Kolmogorov-Smirnov test is that t has a distribution defined by cdf. The alternative hypothesis 

is that x does not have that distribution. Result h is equal to ‘1’ if we can reject the hypothesis, 

or ‘0’ if we cannot. The function also returns the p-value which is the probability that x does not 

contradict the null hypothesis. We reject the hypothesis if the test is significant at the 5% level (if 

p-value is less than 0.05).  

The p-value returned by kstest was used to estimate the goodness-of-fit of the hypothesis. 

As a result of hypothesis testing we found out that the Weibull distribution fits well the response 

time of the first (Oregon) and the third (Tokyo) replicas. The response time of the second replica 

(Sao Paulo) can be accurately approximated by the Gamma distribution.When the commonly 

used probability density functions like Weibull or Gamma are not able to approximate the 

experimental data with the sufficient accuracy, the distribution fitting for heavy-tailed delays 

in the Internet can be done using more sophisticated Phase-type distribution [43].  
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7.2  Deducing Probability Density Functions of System Response Time 

MathCAD has been used to deduce theoretical distributions of system response times for 

different consistency levels. It also allows to estimate the average system latency and to plot 

probability density functions. The MathCAD worksheet is shown in Fig. 11. It includes seven 

modelling steps. 

At the 1st step we define abscissa axis t and its dimension in milliseconds. Secondly, we set 

up parameters of replicas response time distribution functions estimated in Matlab and also their 

shifts on the abscissa axis (i.e. minimal response time values). 

At the 3rd and 4th steps the replica response time probability density functions g1(t), g2(t), 

g3(t) and the corresponding cumulative distribution functions G1(t), G2(t), G3(t) are defined 

using MathCAD library functions dweibull and dgamma. 

At the 5th step we define probability density functions of the system response time 

corresponding to different consistency levels by combining replicas probability density 

functions pdf and cumulative distribution functions cdf according to (7), (8) and (9). Probability 

density functions of replicas and system response times are shown in Figs. 12 and 13. The bulk of 

the values of probability density function fALL(t) is shifted to the right on the abscissa axis as it was 

expected. The shapes of the fONE(t) and fQUORUM(t) probability density functions are also in line with 

the reasonable expectations and experimentally obtained probability density series (see Fig. 9). It is 

worth noting that the fONE(t) showed ’camel’ humped because of a considerably high influence of 

the second (the fastest) replica which pdf g2(t) is shifted significantly to the left on the time axis as 

compared to g1(t) and g3(t). 

Finally, at steps 6 and 7 we estimate the average system and replicas response time by 

integrating their theoretical probability density functions. 

 

 

Fig. 11. The MathCAD worksheet 
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Fig. 12. Probability density functions of replicas 

response times 

 
Fig. 13. Probability density functions of system 

response time for different consistency levels 

 

7.3  Accuracy of Mathematical Modelling 

Table 3 shows the deviation between the average values of 3-replicated system and replicas 

response time calculated for real data (see Tables 1 and 2) and by means of the obtained 

probability density functions. These results suggest that the proposed modelling techniques of 

timing characteristics are sound. To be certain that not only the average value can be accurately 

predicted we compare theoretical system probability density functions (see Fig. 13) and 

practically obtained probability density series (Fig. 9). 

With this purpose we estimated experimental and theoretical probabilities that system latency 

at different consistency levels is less than the specified time. The results of this comparison, 

presented in [40] (see Table 3), show a close approximation of the experimental data by the 

proposed analytical models, especially for consistency levels ONE and QUORUM. The 

probabilistic model of the system response time for consistency level ALL gives slightly 

optimistic prediction, though the average deviation from the experimental data is only 2.7% in 

case of using pds and 3.5% if pdf is used which is considerably low. 

 
TABLE 3. ACCURACY OF MATHEMATICAL MODELLING  
Replica1  

(Oregon) 

Replica2  

(Sao Paulo) 

Replica3  

(Tokyo) 

System consistency  

ONE QUORUM ALL 

Approximating theoretical distributions and their parameters  
Weibull Gamma Weibull 

   

alpha 113.3578 1.5952 176.8796 
   

beta 2.3041 164.1599 1.7467 
   

x-shift 2324 2164 2344 
   

Average response time estimation, ms 

Measured 2428 2434 2588 2342 2449 2660 

Modelled with pdf 2424 2426 2502 2341 2444 2567 

   deviation  0.18% 0.34% 3.32% 0.03%  0.19% 3.51% 

Modelled with pds 2427 2430 2517 2339 2446 2589 

   deviation   0.06% 0.17% 2.76% 0.03% 0.12% 2.69% 
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8 MODELLING SYSTEMS WITH MULTIPLE REPLICAS  

Sometimes, different replicas can have similar timing characteristics so that their response times 

can be approximated by the same distribution function. This can happen, for instance, if 

multiple replicas are deployed in the same public or private data centre and run on similar 

hardware with the standard operating environment. For these generic replicas equations (10) and 

(11) can be simplified as following: 

𝑓𝐴𝐿𝐿 
𝑛 (𝑡) = 𝑛 ∙ 𝑔(𝑡) ∙ 𝐺(𝑡)𝑛−1, (15) 

𝑓𝑂𝑁𝐸 
𝑛 (𝑡) = 𝑛 ∙ 𝑔(𝑡) ∙ (1 − 𝐺(𝑡))

𝑛−1
. (16) 

 

Besides, it becomes possible to define a probability density function of the system response 

time for consistency level QUORUM: 

 

𝑓𝑄𝑈𝑅𝑈𝑀 
𝑛 (𝑡) = 𝑘 ∙ 𝐶𝑛

𝑛−𝑘 ∙ 𝑔(𝑡) ∙ 𝐺(𝑡)𝑘−1 ∙ (1 − 𝐺(𝑡))
𝑛−𝑘

, where 𝑘 = ⌊
𝑛

2
+ 1⌋. (17) 

 

The results of this comparison (see Table 4) show a close approximation of the experimental 

data by the proposed analytical models, especially for the consistency levels ONE and 

QUORUM. In turn, the cumulative distribution functions of system response time for different 

consistency levels can be explicitly defined as: 

 

𝐹𝐴𝐿𝐿 
𝑛 (𝑡) = 𝐺(𝑡)𝑛, (18) 

𝐹𝑂𝑁𝐸 
𝑛 (𝑡) = (1 − (1 − 𝐺(𝑡))

𝑛
), (19) 

𝐹𝑄𝑈𝑂𝑅𝑈𝑀 
𝑛 (𝑡) = ∑ 𝐺(𝑡)𝑘 ∙ (1 − 𝐺(𝑡))

𝑛−𝑘
𝑛

𝑘=⌊
𝑛
2

+1⌋

. (20) 

Note that the derived models for system response time are similar to those estimating 

reliability of series, parallel and majority voting systems [44]. In the rest of this Section we 

demonstrate the applicability of the proposed models for predicting latency of systems with 

multiple replicas and estimating the optimal replication factor. As a generic replica for our 

simulation, we selected Replica2 deployed in South America (Sao Paulo), whose response time 

is characterised by the largest uncertainty of the three investigated in Section 7. It was shown 

that the response time of Replica2 can be approximated by the Gamma distribution: 

 

𝑔𝑅𝑒𝑝𝑙𝑖𝑐𝑎2 (𝑡) =
1

164.1599
∙ 𝑑𝑔𝑎𝑚𝑚𝑎 (

𝑡−2164

64.1599
, 1.5952). (21) 

 

Using MathCAD to substitute (21) into (15)–(17) we are able to derive system response time 

pdf for different consistency levels depending on the number of replicas.  

Table 4 presents estimated values of system average response time and its standard deviation. 

As shown in Fig. 14, the QUORUM setup demonstrates convergent oscillations of the average 
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system response time around the average replica response time. At the same time the average 

system response time increases considerably if a system is configured to provide the strongest 

consistency.  

The standard deviation of system response time gradually decreases for the ONE and 

QUORUM consistency levels. For the ALL consistency level, the standard deviation increases 

at the beginning and reaches its maximal value when the replication factor becomes equal 10. 

After that its value gradually decreases.  

 
TABLE 4. AVERAGE SYSTEM RESPONSE TIME  

Replication 

factor 

Average response time, ms Standard deviation, ms 

ALL ONE QUORUM ALL ONE QUORUM 

1 2425.87 2425.87 2425.87 207.34 207.34 207.34 

2 2534.21 2317.56 2534.21 221.45 116.13 221.45 

3 2602.62 2277.70 2397.35 226.09 83.88 129.71 

4 2652.48 2256.49 2452.76 228.13 66.99 135.51 

5 2692.06 2242.70 2388.89 229.22 56.45 101.41 

6 2723.40 2233.22 2426.17 229.83 49.19 104.71 

7 2752.03 2226.19 2384.74 230.14 43.83 85.90 

8 2776.04 2220.72 2412.95 230.33 39.72 88.10 

9 2797.33 2216.45 2382.50 230.43 36.43 75.81 

10 2816.40 2212.94 2405.04 230.48 33.74 77.42 

11 2833.71 2209.95 2380.78 230.48 31.49 68.58 

12 2849.56 2207.42 2399.77 230.47 29.58 69.83 

13 2864.15 2205.15 2379.01 230.42 27.94 63.10 

14 2877.67 2203.14 2395.84 230.40 26.50 64.09 

15 2890.46 2201.49 2378.60 230.33 25.24 58.76 

16 2902.07 2200.16 2392.83 230.26 24.12 59.55 

17 2913.18 2198.97 2377.91 230.23 23.12 55.17 

18 2923.68 2197.85 2390.74 230.16 22.22 55.86 

19 2932.72 2196.98 2378.02 230.09 21.42 52.18 

20 2942.71 2196.07 2388.80 230.05 20.69 52.77 

 

Taking into account the Central 

Limit Theorem we can assume that 

if there is a further increase in the 

number of replicas, the average 

response time of the system which 

provides the strongest consistency 

becomes normally distributed 

regardless of the replicas 

distributions (see Fig. 15). At the 

same time, if a system is 

configured to provide the weakest 

consistency, its response time 

demonstrates a tendency to 

become a deterministic variable 

that approaches the minimal observed value of replicas response time (see Fig. 16).  

 

Fig. 14. Response time dependency on a number  

of generic replicas 
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Probabilistic models can help in estimating the optimal replication factor in distributed 

systems. If a system has to provide strong consistency, the maximal acceptable number of 

replicas which still guarantees that the system response time does not exceed a certain value 

with the required probability Preq can be calculated using (18) as follows: 

 

𝑛𝐴𝐿𝐿 = ⌊log𝐺(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑡𝑖𝑚𝑒) 𝑃𝑟𝑒𝑞⌋. (22)  

 

For systems that do not have consistency constraints, the minimal number of replicas required 

to reduce the response time to a certain value with the required probability Preq can be derived 

from (19): 

𝑛𝑂𝑁𝐸 = ⌈log1−𝐺(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑡𝑖𝑚𝑒)(1 − 𝑃𝑟𝑒𝑞)⌉. (23) 

 

To apply these techniques the system engineer should first define the desired system response 

time and the required probability of getting the response by this time Preq. Secondly, the 

probability that a generic replica returns the response by that time, i.e. G(response_time), has 

to be estimated using known pdf or cdf. Finally, after applying the corresponding equation, the 

obtained value (e.g. number of replicas) has to be rounded up to the integer value for the 

consistency level ONE or down for the consistency level ALL. 

 

 
Fig. 15. Probability density functions of system 

response time for consistency level ALL and 

different replication factors (3, 5, 7) 

 
Fig. 16. Probability density functions of system 

response time for consistency level ONE and 

different replication factors (3, 5, 7) 
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A set of the proposed time-probabilistic models provides a crucial support for predicting 

dependability and timing characteristics of globally-distributed fault-tolerant systems. The 
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1. Finding the continuous theoretical distributions of replica response times using either the 

technique, proposed in [16], or a practical estimation of response time probability density 

series (see Fig. 10) which is a discrete form of pdf. 

2. Deducing the probability density function/series of the system response time by using the 

analytical models proposed in Section 6. At this step users and system providers are able 

to trade-off system latency versus consistency by making use of models (7)–(14). 

3. Estimating system availability (probability of getting response from a system until the 

specified timeout) and timing characteristics  by making use of the deduced pdf/pds of 

the system response time and models (5) and (6). The proposed models allow users and 

system providers to trade-off system availability versus latency by the optimal timeout 

setup. 

The uniqueness of the proposed approach is that it allows predicting system latency, 

availability and consistency during system design and trading-off these characteristics at run-

time. Besides, models (22) and (23) will help to calculate the optimal number of replicas to 

meet timing constraints. 

10   CONCLUSION AND DISCUSSION 

When employing fault-tolerance techniques over the Internet and clouds, engineers need to deal 

with delays, their uncertainty, timeouts, adjudication of asynchronous replies from replicas, and 

other issues specific to global distributed systems. The overall aim of this work is to introduce 

a time-probabilistic failure model and to study the impact of consistency on system latency in 

fault tolerant Internet computing. The proposed failure model and mathematical equations can 

help in choosing the right application timeouts which are the fundamental part of all distributed 

fault tolerance mechanisms working over the Internet and used as the main error detection 

mechanism here. With the help of the proposed models software developers can solve a trade-

off problem between maximizing the probability of a correct servicing and minimizing the 

latency of a distributed system. 

Our experimental results clearly show that improving system consistency makes system 

latency worse. This finding confirms one of the generally accepted qualitative implications of 

the CAP theorem [21, 22]. However, so far system developers have not had any mathematical 

tools to help them to accurately predict the response time of large-scale replicated systems.  

While estimating the system worst-case execution time remains common practice for many 

applications (e.g. embedded computer systems, server fault-tolerance solutions, like 

STRATUS, etc.), this is no longer a viable solution for the wide-area service-oriented systems 

in which components can be distributed all over the Internet.  

In our previous works [14, 16] we demonstrated that extreme unpredictable delays exceeding 

the value of ten average response times can happen in such systems quite often. In this paper 

we have proposed a set of novel analytical models providing a quantitative basis for the system 

response time prediction depending on the timeout settings and the consistency level provided 

for (or requested by) clients. The models allow us to derive the probability density function of 

the system response time which corresponds to a particular consistency level by incorporating 

the probability density functions of the replica response times. The validity of the proposed 

models has been verified against the experimental data reported in Section 7. It has been 

demonstrated that the proposed models ensure a significant level of accuracy in the system 



24  

average response time prediction, especially in case of ONE and QUORUM consistency levels. 

The proposed models provide a mathematical basis for predicting latency of distributed fault and 

intrusion tolerance techniques operating over the Internet and clouds. The models take into 

account the probabilistic uncertainty of replicas’ response time and the required consistency level.  

The practical application of our work is in allowing practitioners to predict performance of 

service-oriented systems, and in offering them a crucial support in setting up the optimal 

timeout and replication factor and in understanding the trade-off between system consistency 

and latency. Trading off system latency against availability and consistency requires the 

knowledge of probability density functions that accurately approximate replicas’ response time. 

These probabilistic characteristics, which can be obtained by testing or during the trial, will 

need to be corrected at run-time or at tune-time to improve prediction accuracy.  

We have demonstrated that it is possible to use both continuous and discrete forms of 

response time probability density functions to accurately predict system latency (i.e. average 

response time). Although a continuous pdf allows calculating a confidence probability of 

getting response from a system by any given time, using discrete probability density series is 

easier in practice. It does not require complex calculations or the use of the third party tools like 

Matlab and MathCAD, which is important for run-time optimisation. 

The proposed models could be also applied in the context of edge and fog computing [45] 

where the client interacts over time with multiple replicas located in different data centers, 

either as a result of application partitioning, or client mobility. Besides, they will help 

developers of distributed data storages to quantify how different consistency settings affect the 

system latency. Understanding this trade-off is also a key for the effective usage of modern 

NoSQL solutions [35].  

Large-scale distributed systems composed out of a significant number of Internet services 

and their replicas (‘particles’ of this ‘infinite’ Internet ‘universe’) has strong resemblance with 

the theoretical Quantum Physics fundamentals of the atomic-level universe, including the 

Heisenberg uncertainty principle [46]. Introduced in 1927 the principle states that the more 

precisely the position of a particle is determined, the less precisely its momentum can be known, 

and vice versa.  

The analogy between the latency/consistency probabilistic space of replicated distributed 

services and the atomic particle position/momentum continuum, includes a similar calculus of 

response times (vs electron position/momentum) based on temporal probability distributions 

and a similar view on the intrinsic uncertainty between the latency of client requests and 

distributed system consistency (vs the known Heisenberg's uncertainty principle).  

This paper discusses a framework which shows that systems’ latency and consistency cannot 

be simultaneously and accurately determined due to the uncertainty of highly distributed 

replicated systems. Table 2 reports our experimental results which show that the weakest 

consistency setting ONE causes the lowest response time on average which is characterised by 

low uncertainty (i.e. a standard deviation of the response time). Vice versa, the strongest 

consistency setting ALL causes the highest latency and the largest uncertainty. This relation 

becomes stronger with the increase of a number of replicas used. 

Thus, by following the above analogy, our experimental and theoretical results demonstrate 

that the more certain data are (i.e. the higher level of consistency is chosen which reduces the 
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probability of reading stale data), the less certain the latency of a replicated system is (i.e. the 

higher its variance is) and vice versa.  

Ultimately, we believe this work could pave a way to studying the similarities between the 

intrinsic processes happening in ubiquitous massive-scale Internet computing systems and the 

Nuclear Physics, where a large number of experiments is typically necessary to uncover new 

phenomena and to understand the foundational theories. 
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