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Abstract
Rationale Insular cortex supports the representation of motivational feelings through the integration of interoceptive information
concerning bodily physiology. Compromised insular integrity is implicated in alcohol and drug use disorders. Alcohol-associated
insular dysfunction may arise through aberrant glutamatergic neurotransmission associated with selective neuronal death and
atrophy.
Objective In a sample of alcohol users, we combined magnetic resonance spectroscopy (MRS) with voxel and surface-based
morphometry (VBM, SBM) to test the hypothesis that the neurochemical and structural properties of the insula relate to alcohol
use.
Methods Twenty-three healthy individuals were characterized by measures of alcohol use and subjective craving. Right mid-
insula glutamate/glutamine (Glx) and total N-acetylaspartate/N-acetyl-aspartylglutamate (TNAA) concentrations were measured
using MRS. Right insular structure was quantified using VBM and SBM parameters. We tested for predictive associations
between these neuroimaging and behavioral/psychometric measures using Bayesian statistics.
Results Reduced insular Glx concentration was associated with increased alcohol compulsions and, to a lesser extent, with
greater alcohol use severity. Anecdotal evidence for a negative relationship between alcohol use severity and levels of insular
gyrification was also observed.
Conclusions This study is, to date, the first characterization of the neurochemical and morphological integrity of insular cortex in
alcohol users. Our data seem to reveal a negative relationship between alcohol use and the neurochemical and structural integrity
of the insula, a critical substrate for motivational behavior. These neurobiological characteristics might contribute to loss of
control toward compulsive drinking with prolonged and excessive alcohol use.
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resonance spectroscopy . Alcohol use . Voxel/surface-based
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Abbreviations
AUD Alcohol use disorders
AUDIT Alcohol use disorders identification test
Glx Glutamate/glutamine
MRS Magnetic resonance spectroscopy
NMDA N-methyl-D-aspartate
OCDS Obsessive compulsive drinking scale
ROI Region of interest
SBM Surface-based morphometry
VBM Voxel-based morphometry
TIV Total intracranial volume
TNAA Total N-acetylaspartate/N-acetyl-aspartylglutamate
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Introduction

The insular cortex is implicated in the neurocircuitry of addic-
tion: Interoceptive components of drug seeking (notably crav-
ing states) are proposed to originate within the insula (Craig
2002; Gray and Critchley 2007; Naqvi et al. 2007).
Correspondingly, impairments in interoceptive bodily sensation
are reported in drug-dependent users, including alcohol-
dependent users (Ates Çöl et al. 2016; Sönmez et al. 2016),
methamphetamine users (Stewart et al. 2014), adolescent can-
nabis users (Berk et al. 2015), and people with internet gaming
disorder (Zhang et al. 2016). The interconnectivity between
mid-insular cortex and striatal regions is implicated in the inte-
gration and expression of hedonic experience and behavior
(Chikama et al. 1997; Menon and Levitin 2005; Craig 2009,
2010). Moreover, conscious access to bodily sensations has
been shown to be dependent on the right insular cortex (Craig
2002, 2009, 2010; Critchley et al. 2004). Correspondingly,
damage to insular cortex can change addictive behaviors
(Naqvi et al. 2014). For example, insular lesions reduce nicotine
craving in smokers and attenuate the occurrence of distorted
cognitive appraisals that compel betting in individuals with
gambling disorder (Clark et al. 2014; Abdolahi et al. 2015).
Insular volume is preferentially reduced in alcohol use disorder,
in the context of more diffuse gray matter shrinkage (Yang et al.
2016), and the volume and thickness of anterior insular cortex
are negatively correlated to impulsivity and compulsions in
alcohol-dependent individuals (Grodin et al. 2017). Major ce-
rebral white matter tracts are also compromised in heavy
drinkers, disrupting interregional connectivity in a way that
predicts an enhanced functional reactivity of insular cortex to
alcohol cues. Thus, structural changes may underpin exagger-
ated sensitivity to cues regulating alcohol consumption
(Monnig et al. 2014). Individuals with alcohol dependence also
show a reduction in functional interactions between insular cor-
tex and prefrontal regions during emotional processing, indicat-
ing a generalized dysregulation of motivational and affective
processes (O’Daly et al. 2012).

In alcohol use disorders, functional brain abnormalities
may be attributable to changes at the neurochemical level.
Alcohol interacts with glutamatergic neurotransmission, sup-
pressing excitatory synaptic signaling, particularly through
inhibition of N-methyl-D-aspartate (NMDA) receptors
(Lovinger et al. 1989). This impacts synaptic plasticity by
reducing long-term potentiation (Stephens et al. 2005). In
compensation, the number and sensitivity of NMDA receptors
increase proportionally to the amount and frequency of alco-
hol intake (Trujillo and Akil 1995). A sharp reduction or ces-
sation of alcohol consumption can induce rebound neuronal
hyperexcitability, leading to excitotoxicity and neuronal death
(atrophy; Tsai et al. 1995). In rats, ethanol increases glutamate
concentration within striatal reward circuitry (Roberto et al.
2004; Ding et al. 2012).

In humans, it is possible to quantify neurochemicals in vivo,
including glutamate, using magnetic resonance spectroscopy
(MRS). However, in the literature, the impact of alcohol use on
glutamate concentration seems to be mixed—potentially region-
specific. On one hand, in alcohol-dependent patients, glutamate
concentration is increased within the left dorsolateral prefrontal
cortex following detoxification and correlates with rated intensi-
ty of alcohol craving (Frye et al. 2016). In addition, increased
glutamate levels are observed in the anterior cingulate cortex of
patients in acute alcohol withdrawal (Hermann et al. 2012).
Moreover, the combined concentration of glutamate and gluta-
mine (Glx) correlates positively with compulsions to drink alco-
hol, measured by the Obsessive and Compulsive Drinking Scale
(Anton et al. 1995), within cerebral structures widely intercon-
nected with the insula such as the ventral striatum and anterior
cingulate cortex (Bauer et al. 2013).

On the other hand, lower concentrations of glutamate and
N-acetylaspartate (NAA) within anterior cingulate cortex are
observed in the early stages of stopping drinking; these con-
centrations seem to normalize after 5 weeks of abstinence
(Mon et al. 2012). Similarly, glutamate and NAA concentra-
tions within anterior cingulate cortex are negatively associated
with recent heavy drinking in individuals with alcohol depen-
dence (Prisciandaro et al. 2016, 2018). Finally, lower gluta-
mate concentration within neighboring prefrontal white matter
predicts loss of control and severity of alcohol dependence in
heavy drinkers (Ende et al. 2013).

Together, these observations motivate the current study, in
which we tested the prediction that even the Blight social^
drinking of alcohol impacts the neurochemical and morpholog-
ical (structural) integrity of insular cortex and related regions.

Present study

Neurochemical imaging (MRS) studies of alcohol use disor-
ders have focused on prefrontal or striatal reward-related
areas. However, increasing evidence implicates insular cortex
in specific aspects of drug seeking (notably hedonic informa-
tion processing and craving states) (Chikama et al. 1997;
Menon and Levitin 2005; Gray and Critchley 2007). Also,
given the lateralization of the remapping of interoceptive sig-
nals at the insular level and its relationship with consciousness
of such signals as well as the interconnectivity between mid-
insular cortex and striatal regions (Chikama et al. 1997; Craig
2002, 2009, 2010; Menon and Levitin 2005), we focused our
investigations on the right middle insular cortex. Therefore,
combining MRS with behavioral and psychometric ratings,
we explored the relationship between alcohol-related mea-
sures (i.e., severity, using the Alcohol Use Disorders
Identification Test), craving, and compulsion (using the
Obsessive Compulsive Drinking Scale) and right middle in-
sular cortex neurochemistry (glutamate/glutamine and TNAA
metabolite concentrations) in alcohol users.
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We were also interested in associations between alcohol-
related measures, insular neurochemistry, and insular mor-
phology (volume and surface gyrification). Indeed, gluta-
matergic increases can lead to excitotoxicity which might it-
self lead to neuronal death and potential atrophy (Lovinger
et al. 1989; Tsai et al. 1995). Furthermore, majority of studies
exploring alcohol-related changes in the brain structure vol-
ume have used voxel-based morphometry (VBM). However,
morphology of brain structure can also be measured using a
different technique such as surface-based morphometry
(SBM), which measures cortical folding and is proposed to
be able to capture more subtle gray matter changes (Hutton
et al. 2009; Kelly et al. 2013). For example, an extensive
literature is exploring the relationship between cortical folding
(i.e., gyrification) and prenatal alcohol exposure in children
and adolescents (De Guio et al. 2014; Kuhn et al. 2016;
Hendrickson et al. 2017. 2018). However, to our knowledge,
gyrification has not been quantified in adult alcohol users.
Therefore, a novel aspect of this research is the combination
of MRS, VBM, and SBM to clarify the neurochemical and
structural integrity of insular cortex in relation to alcohol use.

First, we expected that alcohol-related psychometric mea-
sures would all be positively related. Then, based on previous
reports (Yang et al. 2016), we also predicted that insular gray
matter volume and cortical gyrification index would correlate
negatively with these alcohol use measures. Furthermore, based
on the evidence of alcohol-induced glutamatergic excitotoxicity
and due to neuronal death (Lovinger et al. 1989; Tsai et al.
1995), we hypothesized that basal insular glutamate plus gluta-
mine concentration would be lower in individuals with higher
scores on alcohol use measures, as a consequence of reduced
neuronal density impacting on synaptic vesicles and glutamate-
glutamine storage. Finally, we also explored if alcohol-related
metabolites changes (e.g., glutamate-glutamine reduction) will
be predicted by structural measures (e.g., gray matter reduc-
tion), suggesting an insular atrophy in alcohol users.

Here, MRS data were measured within a three-session with-
in-subject experimental protocol that also tested for functional
effects of a hormone, intranasal oxytocin, on interoceptive pro-
cesses in alcohol users. Therewas no predicted effect of oxytocin
administration on spectroscopic data (MRS glutamate/glutamine
concentration). Evidence for a (nul) effect of oxytocin on metab-
olites was tested explicitly (see the BMaterials and methods^
section and Supplementary Information for more details).

Material and methods

Participants

Thirty-two male volunteers (mean age 25.1 yrs.; range 18–
36 yrs) took part in the experiment. Participants were recruited
via advertisements placed around the University of Sussex

and Brighton and Sussex Medical School. All participants
were healthy individuals. During the screening, participants
were directly asked if they had any history or received any
diagnosis of psychiatric or neurological diseases or if they
were taking medication. Participants were also directly asked
if they had any history or received any diagnosis of alcohol or
drug use disorders. To be recruited, participants had to drink at
least one unit (8 g) of alcohol byweek. The average number of
years in education was 16.9 yrs. (SD = 2.6). All participants
gave written informed consent and were compensated £7 per
hour for their time. The study was reviewed and approved by
the BSMS Research Governance and Ethics committee.

Procedure

The study was conducted at the Clinical Imaging Science
Centre in Brighton, UK. Demographic, psychometric, and
spectroscopic data were measured within a three-session with-
in-subject experimental protocol that also tested for functional
effects of a hormone, intranasal oxytocin, on interoceptive pro-
cesses in alcohol users. Given the natural menstrual fluctuation
of endogenous oxytocin in women, we decided to only recruit
men to simplify the within-subject design procedure (e.g.,
women would need to be tested on the same day of their men-
strual cycle). Demographic and trait psychometric data were
measured during the baseline session (the first session which
was not involving drug). Spectroscopic data were acquired at
the end of the third (and last) session which was following the
baseline session by maximum of 7 days. Each session was
separated by a maximum of 2 days. Spectroscopic scan was
acquired 1 h and 10 min after the drug administration. Given
the short half-life of plasma oxytocin (3 to 6 min, Fabian et al.
1969), there was no predicted effect of oxytocin administration
on spectroscopic data (MRS glutamate/glutamine concentra-
tion). Consistent with previous observations (Aoki et al.
2015), no evidence for an effect of oxytocin on metabolites
was shown when tested for explicitly (see Supplementary
Information for more details Table S1). Moreover, prior to each
session, participants were breathalyzed and a urinary sample
was collected to test for drug use. The urinary drug test was
undertaken to confirm the absence of drug use and to exclude
drug use disorder. The alcohol test was undertaken to ensure
that participants abstained before the sessions. In the case of
positive results, the participant would be excluded. No partici-
pants were excluded.

Questionnaires

Alcohol use disorders identification test

The alcohol use disorders identification test AUDIT (Babor
et al. 2001) is a 10-item screening tool developed by theWorld
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Health Organization (WHO) to assess severity of alcohol use
(e.g., alcohol consumption, drinking behaviors, and alcohol-
related problems). Each question is scored from 0 to 4, with
higher numbers indicating a greater level of risk for having or
developing an alcohol use disorder.

Obsessive-compulsive drinking scale

The Obsessive Compulsive Drinking Scale OCDS (Anton
et al. 1995) is a 14-item scale measuring the obsessive and
compulsive aspects of craving (e.g., drinking-related thoughts,
urges to drink, and the ability to resist those thoughts and
urges). The scores of Bobsessions^ and Bcompulsive
drinking^ subscales were calculated using published method-
ology (Anton et al. 1995).

Magnetic resonance imaging and spectroscopy data
acquisition

Magnetic resonance imaging (MRI) and 1H-MRS were per-
formed using a 1.5 Tesla Siemens Magnetom Avanto MRI
scanner with an enhanced 32-channel phased-array head coil,
tuned to 63.6 MHz. A whole-brain, high-resolution T1-
weighted 3D structural image was obtained using a
magnetization-prepared gradient-echo sequence, consisting
of 192 contiguous axial slices (TR = 2730 ms, Echo Time
(TE) = 3.57 ms, flip angle = 7°, matrix = 256 × 256, field of
view (FoV) = 256x256mm, 1.0 mm isotropic voxel size,
GRAPPA acceleration factor = 2; acquisition time = 5 min
58 s). The T1-weighted image was used as an anatomical
reference for each participant.

Using these images, a single 1H-MRS voxel was positioned
in the right mid-insula of each participant (Fig. 1). A point-
resolved spectroscopy sequence (TR = 2 s, TE = 40 ms, voxel
size = 10 × 15 × 25 mm, averages = 128, flip angle = 90°; ac-
quisition time = 4 min 24 s) was collected using a short TE of

40 ms to minimize T2 losses while removing interfering mac-
romolecular resonances (Jang et al. 2005). A shim box of the
size of the voxel was used and manual shimming was per-
formed to minimize linewidth. An unsuppressed water se-
quence for use as a concentration reference was collected with
four averages and other identical parameters.

MRI and MRS data analyses

The T1-weighted structural MR images were segmented into
gray matter (GM), white matter (WM), and cerebrospinal liq-
uid (CSF) using Statistical Parametric Mapping 12 (SPM12;
Wellcome Department of Imaging Neuroscience, University
College London, UK). To calculate the tissue content of the
MRS spectroscopic voxel, a binary mask of the region in each
participant was created and registered to the segmented T1-
weighted structural images. The proportion of each tissue type
(tissue fractions) was calculated for the spectroscopic voxel
(i.e., volume of interest) by summing the Bstructural^ voxels
of each tissue type and dividing by the total number of
Bstructural^ voxels within the volume of interest (see
Supplementary Information Table S2 for details on voxel
tissue content). Metabolite concentrations were then calculat-
ed and corrected (partial volume, T1, and T2 relaxation) using
Gasparovic’s methods (Gasparovic et al. 2006).

Raw time-domain 1H-MRS data in the spectral dimension
were analyzed using TARQUIN Version 4.3.5 (Wilson et al.
2011) using the unsuppressed water scan as concentration
reference. The quality of the model fit was verified manually.
After visual inspection, any spectrum presenting one of the
following characteristics was rejected from the analyses: (1)
presence of obvious spectral artifacts; (2) large baseline dis-
tortion; (3) a Cramer-Rao lower bound (CRLB) of the fit to the
peak of interest greater than 20%. Based on these criteria,
spectra of seven participants were discarded (four participants
for large baseline distortion and CRLB > 20%; two
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placement in the right mid-insula, and c example of fitted spectrum (Glx: glutamate and glutamine; NAA: N-acetylaspartate)
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participants for presence of obvious spectral artifacts; and one
for large baseline distortion, presence of obvious spectral ar-
tifacts, and CRLB > 20%).

Metabolite concentrations in molality units of mmol/kg of
tissue water were computed for total glutamate plus glutamine
(Glx) and total N-acetylaspartate plus N-acetyl-
aspartylglutamate (TNAA). Despite technical and methodo-
logical advances, the separation of glutamate from glutamine
spectral peaks is constrained by homogeneity of the magnetic
field at 1.5 Tesla. Moreover, we computed the correlation
coefficient C between derived N-acetylaspartate and N-
acetyl-aspartylglutamate (|C| = 0.756). Since the absolute val-
ue of the correlation coefficient between the two metabolites
|C| was high (> 0.5), then the two metabolites cannot be con-
sidered sufficiently uncorrelated to permit separation (Near
2014). Thus, the sum of the two metabolite concentrations
(TNAA) was reported.

Voxel and surface-based morphometry

Voxel and surface-based morphometry (VBM, SBM) were
used to identify focal differences in brain tissue composition
and structure, to account for anatomical interindividual differ-
ences (Ashburner and Friston 2000; Dahnke et al. 2013).
VBM and SBM were performed using the Computational
Anatomy Toolbox (CAT 12 r1165, http://dbm.neuro.uni-
jena.de/cat/).

T1-weighted structural images were realigned to the
Anterior Commissure-Posterior Commissure. Image pre-
processing followed established (default) settings in accor-
dance with details described in the manual of CAT 12 toolbox
(http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf). In
brief, T1-weighted 3-D images were co-registered to MNI
space. Tissue probability maps derived from 452 healthy
adults were used in affine registration and affine regulariza-
tion, referencing ICBM space template-European brains. The
affine processing parameter was set as default (Brough^).
Medium strength correction for inhomogeneity was applied.
Images were segmented into cerebrospinal fluid (CSF), gray
matter (GM), and white matter (WM) using the BAdaptive
Maximum A Posterior^ technique. Mean estimates of gray
matter volume (prior to normalization) were extracted for
our region of interest (ROI): right insular cortex. The ROI
was defined referencing the Neuromorphometrics Inc. atlas
provided within CAT 12 under academic subscription (http://
neuromorphometrics.com/). Gray matter volume from the
anterior and posterior parts of the insular cortex was
averaged to give a single composite measure of insular gray
matter volume.

Global gyrification index was estimated during the tissue
segmentation step (Luders et al. 2006). Local cortical
gyrification index was computed within CAT12 using a
high-resolution parametric mesh-based approach. This

approach allows estimation of the mean curvature of the brain
at different spatial scales. Large positive values (expressed in
degrees) for local maxima correspond to gyri. Large negative
values for local minima correspond to sulci. Values are then
converted to positive values by step incorporating the absolute
mean curvature. Finally, the data are smoothed using a
surface-based heat kernel filter of 25 mm resulting in reveal-
ing higher values for areas with pronounced gyrification.

Mean estimates of gyrification index were extracted (prior
to normalization) for our ROI, the right insula. For each par-
ticipant, ROI was labeled using the Desikan-Killiany Atlas
which is included in CAT 12 (Desikan et al. 2006). Analyses
were undertaken to determine the extent to which any spec-
troscopic concentration might relate to a reduction in insular
structure. Finally, the intracranial volume (TIV) was comput-
ed for each participant using the CAT12 toolbox.

Statistical analyses

We conducted all of our analyses with the statistical software
JASP, Version 0.8.6. Data were checked for potential bivariate
outliers, using the function bagplot from the package
Baplpack^ (Rousseeuw et al. 1999) in R Version 3.5.2. Two
outliers were identified and removed from the analyses.
Normality of distributions was tested, given that the obsession
OCDS subscale score was not normally distributed, non-
parametric correlations were run.

In this present work, we tested all our hypotheses by cal-
culating Bayesian and traditional correlation and linear regres-
sion tests. Along with frequentist statistics, we calculated the
corresponding Bayes factor (BF) which was used as the basis
of decision-making in respect of the compared hypotheses. A
BF above 3 shows compelling evidence toward the alternative
hypothesis (i.e., correlation; with 1 < BF < 3 = anecdotal evi-
dence; with 3 < BF < 10 = moderate evidence; BF > 10 =
strong evidence), whereas a BF below 1/3 provides substantial
evidence toward the null hypothesis (i.e., there is no correla-
tion; with 1/3 < BF < 1 = anecdotal evidence; with 1/10 < BF
< 1/3 = moderate evidence; BF < 1/10 = strong evidence).
Thus, a BF between 3 and 1/3 implies there is not enough
evidence in either direction to make a firm conclusion
(Jeffreys 1961; Lee and Wagenmakers 2013). Contrary to tra-
ditional statistical methods, BFs do not need to be corrected
for multiple comparisons, when all evidence relevant to the
theory under assay is taken into account (Gelman et al. 2012;
Dienes 2016). For each test, we also reported effect size
(Cohen’s f ^2; Cohen 1988).

In line with the prediction that all alcohol-related psycho-
metric measures are positively related, we applied one-tailed
non-parametric correlations (Kendall’s tau correlation coeffi-
cient; Kendall 1938) to test the putative positive relationship
between the psychometric measures. Bayes factors (BF+o)
were computed: as indicated by the subscript, the null
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hypothesis specified the absence of any association between
the measures whereas the alternative hypothesis specified that
the correlation is positive. To model the prior distribution of
the alternative hypothesis, we chose the default prior of
Kendall’s τ, which is a non-uniform distribution on τ pro-
duced from a uniform distribution on Pearson’s ρ by paramet-
ric yoking (van Doorn et al. 2018). The applied prior distribu-
tion of the alternative hypothesis assumes that high effect sizes
are slightly less likely to be found as low effect sizes.

As we hypothesized that insular glutamate plus glutamine
concentration would be lower in individuals with higher
scores on alcohol use measures; one-tailed non-parametric
correlations were again used to test the negative relationship
between psychometric measures and metabolite concentra-
tions. Bayes factors were computed (BF-o): as indicated by
the subscript, the null hypothesis specified the absence of
correlation whereas the alternative hypothesis specified that
the correlation is negative. Again, we employed the default
prior distribution of Kendall’s τ for the analyses (van Doorn
et al. 2018). We did not correct for TIV or age as metabolite
concentrations were already corrected for the VOI tissue
content.

We performed Bayesian regression analyses including
model selection and test of regression slopes against zero.
We applied the default settings of JASP to define the prior
distributions of the compared models (Rouder and Morey
2012). Linear regressions, controlling for TIV, and age, were
used to test relationships between insular (ROI) volumetric/
surface parameters, metabolite concentrations, and psycho-
metric measures. The outcome and age as well as TIV, as
control variables were entered in the null model. The outcome,
age, and TIV, as control variables, and the predictor of interest
were entered in the main model. For each model tested, we
reported the BF testing for the comparison between the null
and the main model. The null hypothesis was characterized by
the absence of an effect of the predictor of interest on the
outcome. The alternative hypothesis was characterized by
the presence of an effect of the predictor of interest on the
outcome. In addition to the BF, we reported effect size mea-
sures of the main model, such as R-squared and Cohen’s f ^2
(Cohen 1988).Moreover, we reported the p value of themodel
comparison procedure as well as the p value of the slope of
interest (i.e., whether the effect of psychometric measure on
the outcome is different from zero).

Results

Sample description

Twenty-three participants were included in the analyses. All
means, standard deviations, and correlations with psychomet-
ric measures were computed (Table 1). Twenty-two percent of

the sample (n = 5) scored between 0 and 7 on the AUDIT,
suggesting absence or low level of alcohol-related problems.
Thirty-nine percent of the sample (n = 9) scored between 8
and 15, suggesting a medium level of alcohol-related prob-
lems. Finally, 39 % of the sample (n = 9) scored above or
equal to 16 on the AUDIT, suggesting a high level of
alcohol-related problems.

Strong evidence for the alternative hypothesis was ob-
served by multiple tests: AUDIT scores were positively cor-
related with alcohol compulsion (compulsion subscale of the
OCDS; τ = − 0.551, BF+o = 326.7, p < 0.001) and alcohol ob-
session (obsession subscale of the OCDS; τ = − 0.459, BF+
o = 46.36, p = 0.003, see Table 1).

Voxel and surface-based morphometry—ROI
analyses of right insula

We computed linear regression to predict structural parameters
based on alcohol-related measures, while controlling for TIV
and age.Means and standard deviations of graymatter volume
and gyrification index, as well as, regression linear model’s R-
squared, Bayes factor, Cohen’s f ^2, as well as uncorrected
p values of the model and of the slope were computed
(Table 2).

Results of the linear regression predicting gyrification in-
dex fromAUDITscores, controlling for TIV, and age, showed
anecdotal evidence for the alternative hypothesis: decreased
gyrification index within the right insula were predicted by
alcohol use severity (AUDIT) scores (Fig. 2: Model R2 =
0.463, BF = 1.922, Cohen’s f 2 = 0.225; p = 0.007; effect of
AUDIT: β = − 0.371, SE = 0.027, t = − 2.07, p = 0.052). The
other five tests investigating the relationship between gray
matter volume and psychometric measures as well as between
gyrification and other psychometric measures showed anec-
dotal evidence for the null hypothesis (see Table 2).

Insular magnetic resonance spectroscopy

All means, standard deviations, and correlations between me-
tabolites and psychometric measures were computed
(Table 3). Substantial evidence for the alternative hypothesis
was observed: Glx concentration correlated negatively with
the compulsion subscale of OCDS (Fig. 3.A: τ = − 0.383,
BF-0 = 11.916, p = 0.006).

Anecdotal evidence for the alternative hypothesis was ob-
served for the negative correlation between Glx concentration
with AUDIT score (Fig. 3.B: τ = − 0.271, BF-0 = 2.453, p =
0.038) and with the obsession subscale of OCDS (τ = −0.270,
BF-0 = 2.408, p = 0.048). We also observed substantial evi-
dence for the absence of a correlation between TNAA con-
centration and the two subscales of the OCDS (compulsion:
τ = − 0.057, BF-0 = 0.141, p = 0.645; obsession: τ = − 0.151,
BF-0 = 0.203, p = 0.824). The test probing the relationship
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between TNAA metabolite concentration and AUDIT mea-
sures showed anecdotal evidence toward the null hypothesis
(see Table 3).

Relationship between MRS and SBM/VBM data

We tested if we could predict the Glx concentration from the
gyrification index and gray matter volume while controlling
for TIV and age. We observed anecdotal evidence for the
alternative hypothesis (3 > BF > 1). However, more data are
needed to confirm that Glx concentration relates positively to
the insular gyrification index (R2 = 0.112, BF = 1.176,
Cohen’s f 2 = 0.12, p = 0.511, effect of gyrification β = 0.39,
SE = 0.4, t = 1.83, p = 0.156). Anecdotal evidence toward the
null hypothesis was observed (1/3 < BF < 1) for a non-
relationship between Glx concentration and insular gray

matter volume (R2 = 0.040, BF = 0.712, Cohen’s f 2 = 0.03,
p = 0.852, effect of gray matter volume β = − 0.25, SE =
1.823, t = 0.773, p = 0.449). However, as indicated by the
Bayes factor, more data are needed to confirm or refute this
finding.

Discussion

In the present study, we tested the relationship between
alcohol-related psychometric measures (alcohol use severity,
alcohol compulsion), insular neurochemical (glutamate-gluta-
mine), and structural (volume and surface gyrification) integ-
rity by combining MRS, VBM, and SBM. First, we observed
that alcohol compulsion was associated with a reliable reduc-
tion in insular glutamate-glutamine concentration. With less

Table 2 Means and standard
deviations of insular gray matter
volume and gyrification index, as
well as, regression linear model’s
R-squared, Bayes factor, effect
size, and uncorrected p value of
the model and of the slope. For all
tests, the null hypothesis was
characterized by the absence of an
effect of the predictor of interest
on the outcome

Gray matter volume Gyrification index

AUDIT R2 0.533 0.463

BF 0.452 1.922

Cohen’s f2 0.034 0.225

Model p value 0.002 0.007

Slope p value 0.430 0.052

OCDS compulsion subscale R2 0.530 0.349

BF 0.430 0.480

Cohen’s f2 0.028 0.011

Model p value 0.002 0.039

Slope p value 0.480 0.651

OCDS obsession subscale R2 0.525 0.386

BF 0.398 0.726

Cohen’s f2 0.017 0.072

Model p value 0.002 0.023

Slope p value 0.576 0.257

Mean 3.78 26.04

SD 0.31 1.12

Support for substantial and anecdotal evidence as well as p value < 0.05 are represented in italics

Table 1 Means, standard deviations, one-tailed non-parametric coefficient correlations, Bayes Factors, and uncorrected p values for psychometric
measures. For all tests, the alternative hypothesis specifies that the correlation is positive (BF + 0)

OCDS compulsion subscale OCDS obsession subscale AUDIT

OCDS obsession subscale Kendall’s tau 0.401 –

BF+0 16.00 –

p value 0.008 –

AUDIT Kendall’s tau 0.551 0.459 –

BF+0 326.70 46.36 –

p value < 0.001 0.003 –

Mean 8.04 3.04 13.65

SD 4.40 2.72 7.58

Support for substantial and anecdotal evidence as well as p value < 0.05 are represented in italics
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confidence, we observed that alcohol use severity was associ-
ated with reduced insular glutamate-glutamine concentration.
Next, we found that alcohol use severity was associated with a
reduction in insular gyrification. Despite their suprathreshold
significance, Bayes factors for these effects indicate the need
for more substantive validation.

Our initial finding was that lower combined glutamate-
glutamine (Glx) concentration within the mid-insular cortex
reflects an increased experience of alcohol-related compul-
sions; metabolites concentration reduction might underpin
the compulsive facet of alcohol use. While we acknowledge
the limitations of dissecting the Glx peak of nuclear magnetic
resonance spectra acquired at 1.5 Tesla into glutamate and
glutamine, in light of previous literature, we postulate that this
effect might be explained by a meaningful association be-
tween glutamate concentration and alcohol use–related mea-
sures. The meaning of a chronic elevation/reduction of
glutamate-glutamine or glutamate concentration currently re-
mains unknown, one can nevertheless infer that something has

changed in the glutamatergic system. Our data, and this pos-
tulation, extend similar published observations. Indeed, in
heavy drinkers, a decrease in glutamate within frontal white
matter tracts (connecting insular and cingulate cortices) pre-
dicts a subjective loss of control and shift to alcohol depen-
dency (Ende et al. 2013). Perturbed integrity of these white
matter tracts may also account for decrements in functional con-
nectivity between insula and prefrontal/cingulate cortices, which
can compromise motivational regulation in people with alcohol
use disorders (O’Daly et al. 2012). Our findings are also in line
with the obsessive-compulsive disorder (OCD) research literature.
An MRS study noted decreased glutamate concentration in right
thalamus of patients suffering from OCD: here, glutamate con-
centration negatively correlates with the patients’ compulsion
scores (Zhu et al. 2015). While the latter study did not measure
glutamate within insular cortex, nevertheless insular cortices are
reciprocally connected to thalami (Mufson and Mesulam 1984;
Craig 2002). Interestingly, evidence suggests that repetitive
Transcranial Magnetic Stimulation (rTMS) increases glutamater-
gic neurotransmission (Michael et al. 2003; Yue et al. 2009;
Croarkin et al. 2016) and can enhance neurogenesis in animals
(Ueyama et al. 2011; Zhang et al. 2014). Such rTMS can also
engender increases in cortical thickness in depressed patients
(Boes et al. 2018). One could postulate that neurostimulation
targeting insular cortices might attenuate alcohol compulsions,
via regulation of insular glutamatergic neurotransmission and
the promotion of neurotrophic insular gray matter volume
recovery.

An interesting finding indicated, albeit with a need for confir-
mation, was that lower combined glutamate-glutamine (Glx)
concentration within the mid-insular cortex reflects the severity
of alcohol use. Alcohol intake and acute alcohol withdrawal are
typically associated with an increased glutamatergic neurotrans-
mission and potential excitotoxity leading to neuronal death
(Lovinger et al. 1989; Tsai et al. 1995; Hwa et al. 2017).
However, glutamate concentration also may depend upon indi-
vidual differences in drinking patterns (Ding et al. 2012), includ-
ing the consequences of binge drinking episodes. Thus, our find-
ings may reflect the impact of recent heavy drinking within a
subset of our participants. Indeed, the number of heavy drinking

Table 3 Means, standard deviations, one-tailed non-parametric coefficient correlations, Bayes Factors, and uncorrected p values for psychometric
measures. For all tests, the alternative hypothesis specifies that the correlation is negative (BF-0)

OCDS compulsion subscale OCDS obsession subscale AUDIT Mean SD

Glutamate + glutamine (Glx) Kendall’s tau − 0.383 − 0.270 − 0.271 11.17 1.76

BF-0 11.916 2.408 2.453

p value 0.006 0.048 0.038

TNAA Kendall’s tau 0.057 0.151 − 0.142 5.62 0.51

BF-0 0.141 0.203 0.674

p value 0.645 0.824 0.176

Support for substantial and anecdotal evidence as well as p value < 0.05 are represented in italics

Fig. 2 Regression between predicted surface parameters and
psychometric measures. Negative relationship between right insula
gyrification index and AUDIT scores (controlled for age and
intracranial volume). Data were checked to exclude two outliers
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episodes over a fortnight correlates with decreased glutamate
concentration within the anterior cingulate cortex (Prisciandaro
et al. 2016, 2018; Cheng et al. 2018).

There is converging evidence for insular cortex dysfunction in
drug craving and addiction (Naqvi and Bechara 2010; May et al.
2013; Migliorini et al. 2013; Dinur-Klein et al. 2014; Berk et al.
2015; Senatorov et al. 2015). However, the majority of neuro-
chemical studies of alcohol use focus on the disruptive effect of
alcohol within the ventral striatum/nucleus accumbens, where
mesolimbic dopamine activity signals unpredicted reward.
Despite the role of insula in normal and dysfunctional motiva-
tional experience, there is a paucity of studies that specifically test
the neurochemical integrity of the insular cortex in relation to
alcohol use. One study reported no neurochemical differences
within insular cortex of young alcohol-dependent patients, yet
an increased glutamate-to-creatine ratio within the anterior cin-
gulate cortex (Lee et al. 2007). Another study examining how
glutamate and glutamine levels relate to pain processing also
measured alcohol consumption in social drinkers, but again did
not find any significant associations (Zunhammer et al. 2016). Of
technical importance, the majority of the previously mentioned
MRS studies used creatine concentration as an external reference
for glutamate concentration. However, this is likely to be prob-
lematic as the stability of creatine concentration in alcohol use
disorders and recreational use is questionable (Mon et al. 2012;
Tunc-Skarka et al. 2015).

Notwithstanding, our findings may also indicate a potential
perturbation of the glutamate-glutamine metabolic cycle associat-
ed with alcohol use, as already suggested in alcohol-dependent
patients (Thoma et al. 2011). This disruption is, putatively, a neu-
robiological risk factor for alcohol use disorders, rather than an
incidental consequence of alcohol drinking. In this context, ab-
normalities in the glutamate/glutamine metabolic cycle within
anterior cingulate cortex correlate with higher impulsivity in
youths with a family history of alcoholism (Cohen-Gilbert et al.
2015). However, within the present study, given the lowmagnetic

field, glutamate and glutamine concentrations are not confidently
differentiable in our study. Nevertheless, our findings indicate the
potential presence of alcohol-related glutamate/glutamine reduc-
tion within the right insula, which may underlie a pathogenetic
vicious cycle of alcohol craving and further drinking.

Our second main findings indicate anecdotal evidence to-
ward a negative relationship between the gyrification of the
right insular cortex and alcohol drinking severity, confirming a
priori predictions. To our knowledge, the present study is the
first study to quantify such a relationship between insular
gyrification with respect to alcohol use. Insular atrophy is com-
monly reported in alcohol-dependent individuals (Yang et al.
2016) and might account within our sample for part of the
relationship between increased alcohol use severity and a reduc-
tion in gyrification (through gray matter loss). Notwithstanding,
given the established relationship between prenatal alcohol ex-
posure, reduced cortical folding, and higher risk to develop
alcohol use disorders later in life (De Guio et al. 2014; Kuhn
et al. 2016; Hendrickson et al. 2017, 2018); one cannot exclude
the fact that our observations might reflect a predisposition to,
rather than an effect of, alcohol consumption. Longitudinal
studies are needed to disentangle this point. In addition, we
observed no specific relationship between alcohol-related mea-
sures and overall gray matter volume of the insular cortex. This
finding suggests that surface-based morphometry parameters
might be a more sensitive measure of early alcohol-associated
decline in structural gray matter organization than voxel-based
morphometry estimates, as already suggested by two previous
studies (Hutton et al. 2009; Kelly et al. 2013).

In our study, we also tested whether insular metabolite
concentration was predicted by insular gyrification, suggest-
ing subtle atrophy. Indeed, glutamatergic increases can lead to
excitotoxicity and neuronal death (Lovinger et al. 1989; Tsai
et al. 1995). It is, therefore, possible that the observed reduc-
tion in insular glutamate-glutamine concentration is a result of
reduced number of cells (e.g., neural death consequent upon

Fig. 3 Non-parametric
correlations between metabolites
concentrations and psychometric
measures. a Negative correlation
between insular Glx
concentration and compulsion
subscale of the OCDS, and b
negative correlation between
insular Glx concentration and
alcohol use severity indexed by
AUDIT scores. Data were
checked for potential outliers
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alcohol-related glutamatergic excitotoxicity), indexed here as
subtle changes in insular gyrification. Unfortunately, our an-
ecdotal evidence was insufficient to support this theory; future
studies combiningMRS and structural measures are needed to
explore this point.

Nevertheless, our findings seem to indicate a combined
disruption of right insular neurochemistry and structure,
which seem to be associated with alcohol craving and alcohol
use. The insular cortex processes afferent interoceptive sig-
nals, which are a likely basis to craving states (Critchley
et al. 2004; Naqvi et al. 2007). Indeed, the disruption of inter-
oceptive processes in alcohol-dependent individuals correlates
positively with subjective craving ratings (Ates Çöl et al.
2016; Sönmez et al. 2016) and, more generally, impaired pro-
cessing of bodily sensation is linked to insular cortex dysfunc-
tion in drug use disorders (Stewart et al. 2014). Recently, we
observed effects compatible with an impairment in switching
attention between interoceptive and exteroceptive signals in
heavy drinkers (Betka et al. 2018). A similar impairment is
documented in patients suffering from OCD (Stern et al.
2017). This is consistent with the important role that insular
cortex plays in salience attribution (Seeley et al. 2007,
Sridharan et al. 2008, Menon and Uddin 2010). Hence, re-
duced structural and neurochemical insular integrity might
partly explain such impairment. However, it would be helpful
to pursue neuroimaging studies to define functional neural
correlates of pure visceral interoception (independently of oth-
er sources of bodily sensations, notably cutaneous touch or
proprioceptive sensations of muscular effort) and the capacity
to switch attention between salient interoception/
exteroception cues, both in individuals with alcohol use dis-
orders and those with non-clinical patterns of alcohol use.

Limitations

The results of the present study should be considered in light
of several constraints. First, we recognize that further infor-
mation concerning aspects of alcohol consumption may have
provided further mechanistic insight into pathoaetiological
processes; including knowledge of starting age of alcohol in-
take, frequency, and precise quantity alcohol intake over dif-
ferent stages of the lifespan. Moreover, we did not formally
elicit family histories of alcohol use disorder, which also im-
pacts neurochemical ratio and morphological brain integrity
(Cohen-Gilbert et al. 2015). A detailed alcohol consumption
history for the preceding 2 weeks before neuroimaging may
have excluded more acute factors underlying differences in
neurochemical levels, as recent heavy drinking episodes can
perturb glutamatergic neurotransmission (Prisciandaro et al.
2016, 2018). Also, although we controlled for alcohol and
drug abstinence before the study, our findings might have
been further enhanced by additionally controlling for tobacco
smoking habits: Alcohol-dependent individuals who smoke

show reduced N-acetylaspartate cerebral concentration when
compared to alcohol-dependent non-smokers (Durazzo et al.
2013). In this regard, a strict screening for drug use or drug
history should be added to protocols of future studies as many
substances have long-term effects on glutamate brain level. In
addition, a recognized technical limitation was the magnetic
strength of the MRI scanner for neurochemical discrimination
using MRS. A higher field strength can enable more direct,
separate quantification of GABA, glutamate, and glutamine
concentrations. Also, a greater magnetic field would increase
the signal/noise ratio, which would have been beneficial given
the relatively small voxel size (10 × 15 × 25 mm) necessary to
derive neurochemical concentrations from insula. Bayes fac-
tors indicating anecdotal evidence for a number of effects
highlight the need for a larger group size. Lastly, our sample
was exclusively composed of males; therefore, further studies
should verify the generalization of our findings in females.

Conclusion

We quantified the neurochemical and morphological integrity
of the insular cortex in alcohol users. Together, our data provide
evidence for disruption of insular glutamate-glutamine concen-
tration and a modulation of brain surface parameters by alcohol
use. These changes may underpin a loss of control over alcohol
and a shift toward compulsive drinking. Further (longitudinal)
studies should explore the evolution of interoceptive processes
in relation to the integrity of insular cortex through different
developmental stages of alcohol and drug disorders.
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