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ABSTRACT 

Research Question: Conflicting data exists on the utility of mitochondrial DNA 

(mtDNA) level quantitation as a predictor of blastocyst implantation in the IVF clinic.  
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Here, we determined whether blastocysts with highly elevated mitochondrial DNA 

(mtDNA) levels can result in healthy pregnancies and births, and whether 

mitochondrial functional output might be a readout of cell stress in the embryo.  

 

Design: We determined mtDNA levels in 109 blastocysts used in clinical transfers 

into 100 patients, noting their clinical outcomes. In a separate set of embryos, we 

quantified mitochondrial function in a model of embryo stress, aneuploidy. 

Measurement of mtDNA levels made use of surplus material from the preimplantation 

genetic testing (PGT-A) process, and followed recently proposed unifying guidelines 

for mtDNA quantitation.  

 

Results: Unusually high mtDNA levels did not preclude blastocyst implantation and 

healthy births. Analysis of 109 blastocysts showed a statistically insignificant 

(P=0.231) difference between mtDNA levels in implanted (n=55) versus non-

implanted (n=54) blastocysts. We could not detect obvious differences in degree of 

mitochondrial functional output in a model of embryo stress. 

 

Conclusions: Measurement of mtDNA copy number might not provide any 

advantage to embryo prioritization and could lead to de-selection of blastocysts that 

would result in healthy pregnancies and births. Furthermore, the quantitation of 

mitochondrial functional output in a model of cellular stress might suggest that 

mitochondria are not clear targets for biomarker identification as it relates to 
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blastocyst viability. Any suggested link between mtDNA levels, mitochondria, or their 

output with blastocyst transfer outcome requires further validation. 

 

 

KEY MESSAGE 

Blastocysts containing highly elevated mtDNA levels can result in healthy 

pregnancies and births when selected for clinical transfer.   

 

KEYWORDS  

mitochondria, mtDNA, implantation, biomarker, blastocyst 

 

INTRODUCTION 

In vitro fertilization (IVF) has made it possible for many patients experiencing infertility 

to achieve pregnancy, but in spite of tremendous advances since its inception 40 

years ago, the process remains relatively inefficient (Niederberger et al., 2018). On 

average, only 37.1% of embryo transfers result in implantation at IVF programs 

based in the USA according to the Society for Assisted Reproductive Technology 

(SART). Efforts to increase the likelihood of implantation and establishment of a 

healthy pregnancy include the identification of a biomarker predictive of viability. An 

ideal biomarker is a parameter that shows variability in the general embryo 

population that, when measured, provides a significant degree of predictive power of 

an embryo’s chances to implant. Embryo metabolism has long been linked to viability 

and embryo health (Gardner and Leese, 1987; Gardner and Wale, 2013). Using 
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metabolism to rank embryos within a patient’s cohort could effectively increase the 

chances of success with fewest possible attempts (Gardner et al., 2011).  

Mitochondria not only contribute significantly to the energy production for 

many cellular processes in the form of adenosine triphosphate (ATP), they also 

regulate apoptosis, calcium signalling, management of reactive oxygen species, 

pyruvate and citric acid cycle, heme and steroid synthesis, and hormonal signalling 

(Harvey, 2019). Each human cell may contain a wide range in the number of 

mitochondrial organelles and each mitochondrion can contain numerous copies of 

mitochondrial DNA (mtDNA) (Lima et al., 2018). MtDNA is a circular molecule 

comprising 16.6 kb encoding 37 genes necessary for mitochondrial function. Due to 

its multicopy nature, mtDNA has typically been quantified on a per cell basis. That 

value is an assessment of ‘mtDNA levels’ that can be compared between any 

discreet populations of cells, such as individual human embryos or cellular biopsies 

thereof. It is nevertheless important to note that the value of mtDNA levels does not 

necessarily reflect the actual number of mitochondria. 

 Four recent studies stemming from two separate groups reported that 

trophectoderm (TE) biopsies from blastocysts that successfully implanted showed 

lower mtDNA levels on average, compared to blastocysts that did not implant after 

transfer (Diez-Juan et al., 2015; Fragouli et al., 2017; Fragouli et al., 2015; 

Ravichandran et al., 2017). Interestingly, those studies also described a threshold of 

mtDNA levels that, when surpassed, always resulted in implantation failure. The 

authors proposed that elevated mtDNA levels could be a feature of blastocysts 

experiencing energetic stress. It was hypothesized that stressed embryonic cells 
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would promote mtDNA replication in a concerted effort to increase rates of cellular 

respiration and ATP production to meet increased energetic demands. Fragouli and 

colleagues suggested coupling this model to the the Quiet Embryo Hypothesis, which 

predicts that under ideal conditions an embryo experiences a calm metabolism 

(Leese, 2002). However, all data for the Quiet Embryo Hypothesis were collected 

under conditions of oxidative stress (20% oxygen), and consequently this hypothesis 

has been shown to be invalid for embryos cultured in physiological oxygen 

concentrations (5%) (Gardner and Wale, 2013). 

The interest generated by such reports encouraged numerous groups to 

explore the matter of mtDNA levels in their respective clinics. An independent study 

found no statistically significant correlation between mtDNA levels and implantation 

potential in blastocysts (Victor et al., 2017). Those findings were also confirmed in a 

subsequent report analysing double embryo transfers (Treff et al., 2017), which 

revealed that blastocysts with lower mtDNA levels were just as likely to implant than 

their paired counterparts with higher mtDNA levels. Subsequently, a further two 

published studies failed to observe any statistically significant predictive power of 

mtDNA levels in regard to implantation in human blastocysts (Klimczak et al., 2018; 

Shang et al., 2018). 

Several opinions have been expressed attempting to explain the disparate 

results (Barnes et al., 2017; Humaidan et al., 2018; Viotti et al., 2017; Wells et al., 

2017). Recently, a Views and Reviews piece focused on the possibility that technical 

variability in methods of mtDNA quantitation might be the reason for discrepancies, 

proposing guidelines to promote uniformity and reducing chance of error (Wells, 
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2017). Those were: I) avoiding the use of Next Generation Sequencing platforms with 

low coverage of the mtDNA genome, II) using polymerase chain reaction (qPCR) 

targeting a mitochondrial region and a multicopy nuclear region for correct 

normalization to prevent allele-drop-out issues during analysis, and III) excluding 

samples of DNA material that may have degraded due to long-term frozen storage 

(Wells, 2017). 

Consequently, we adhered to the proposed guidelines of mtDNA quantitation 

when analysing mtDNA levels in a set of blastocysts used for transfer. In doing so, it 

was possible to test whether technical variations in mtDNA quantitation were 

responsible for conflicting reports regarding the usefulness of mtDNA levels as a 

biomarker for implantation. The clinical outcomes of all tested blastocysts through 

implantation, pregnancy, and birth were followed, and further it was established 

whether mitochondrial function in blastocysts correlated with cellular stress. 

MATERIALS AND METHODS 

Patients and Embryos 

Embryos derived from patients seeking infertility treatment at a private IVF center 

were generated by intracytoplasmic sperm injection (ICSI) and cultured to the 

blastocyst stage under 5% oxygen, using standard techniques, as previously 

described (Victor et al., 2017). Blastocysts were evaluated with the Gardner system 

(Gardner and Schoolcraft, 1999) and subjected to a 5-10 cell TE biopsy and vitrified 

until further use. Preimplantation genetic testing for aneuploidy (PGT-A) was 

performed in-house utilizing the VeriSeq kit (Illumina) following the manufacturer’s 

protocol. Samples were sequenced on a MiSeq system (Illumina). Blastocysts 
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classified as euploid were selected for transfer, and the presence of a gestational sac 

observed by endovaginal ultrasound at 3-5 weeks after transfer was considered 

evidence of implantation. The imaging experiments were performed on 

supernumerary embryos donated to research by informed consent.  

This study was approved by the Zouves Foundation IRB (OHRP IRB00011505, 

Protocol #0003). 

  

mtDNA Quantitation  

During the PGT-A process, isolated DNA from individual TE biopsies was multiplied 

by whole genome amplification (WGA) and subsequently sequenced. Surplus WGA 

material from each sample was used to determine mtDNA levels by qPCR on a 

QuantStudio 3 instrument (Thermo Fisher). A 1:10 dilution of WGA product in water 

was vortexed for 30-60 seconds followed by heating to 95°C for 10 minutes in order 

to inactivate any residual WGA polymerase activity. Two microliters were used in a 

Taqman Fast Advanced Master Mix reaction (Thermo Fisher), with each reaction run 

in technical triplicates. Each reaction plate contained an equilibrator sample, used for 

global normalization across the entire experiment. 

A mitochondrial locus was quantified with a commercially available Taqman 

assay for the mitochondrial ND6 gene (Hs02596879_g1), which had been previously 

thoroughly validated in the context of blastocyst TE biopsies (Treff et al., 2017; Victor 

et al., 2017). A multicopy nuclear DNA sequence was quantified using a previously 

described, custom-made Taqman assay targeting the Ya5 subfamily of Alu repeats 

(Nicklas and Buel, 2006; Treff et al., 2011), which is present in at least 2473 copies in 
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the human genome. Details for the Alu-Ya5 assay were: forward primer 

gaccatcccggctaaaacg, reverse primer cgggttcacgccattctc, and probe 

ccccgtctctactaaa. 

ND6 and Alu-Ya5 assays yielded a cycle threshold (Ct) value, which was used 

to determine the normalized mtDNA level for any sample as follows:  

2-(CtND6-CtAlu). Hence, the final value for mtDNA level is a ‘per cell’ measure. 

 

Fluorescent Staining of Whole Blastocysts  

Supernumerary thawed blastocysts were allowed to equilibrate in an incubator for 24 

h, after which media was replaced with fresh media containing 250 nM of MitoTracker 

Deep Red FM (Thermo Fisher #M22426). After 30 min in the incubator, blastocysts 

were processed for immunofluorescence following a previously described protocol 

(Victor et al., 2018), using the primary antibodies (abs) mouse anti-human GATA3 

monoclonal ab (Thermo Fisher #MA1-028) and rabbit anti-human OCT4A 

monoclonal ab (Cell Signaling #2890) followed by the secondary abs goat anti-rabbit 

IgG AlexaFluor488 (Thermo Fisher A11008) and goat anti-mouse IgG AlexaFluor546 

(Thermo Fisher A11030). Subsequently, blastocysts were exposed to nuclear stain 

(Hoechst 33342, Thermo Fisher H3570) and imaged.  

 

Imaging and Computational Quantitation of Mitochondrial Function  

Stained blastocysts were placed in glass bottom dishes (MatTek P35G-1.5-20-C) in 

small drops of stain buffer overlaid with mineral oil (Sigma M5904), and imaged with 

a LSM 780 Confocal microscope (Zeiss). Image files in the .lsm format were 
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uploaded into the software package Imaris 8.4.1 (Bitplane). Fluorescent channels 

were individually quantified in a blinded fashion computationally for each blastocyst 

using uniform parameters for all samples, employing background subtraction for 

normalization.  

 

Statistics  

Analysis and graph preparation was done in Prism 6 (GraphPad). In Fig. 2A, 

differences between groups were assessed by unpaired, two-tailed Student’s t test 

with Welch’s correction. In Fig. 3C, differences were assessed by one-way ANOVA. 

For all analyses, significance was defined when P < 0.05. 

 

RESULTS 

Quantifying mtDNA in Blastocysts 

To conform to the recently suggested guidelines for mtDNA quantitation in TE 

biopsies of human embryos (Wells, 2017), we used qPCR on TE-derived surplus 

WGA material stored at -80C for less than 2 months without any freeze-thaw cycles. 

The qPCR targeted a region in the mtDNA sequence (ND6) and a multicopy region in 

the nuclear DNA (Alu-Ya5), using the latter as a reference to normalize for technical 

variability in the WGA run and number of cells in collected biopsy. To validate the 

assays, we performed 10-fold dilution series of a WGA sample from a TE biopsy of a 

euploid embryo to determine the following qPCR reaction efficiencies: 97.7% for ND6 

and 97.1% for Alu-Ya5 (Fig. 1).  
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MtDNA Levels Have No Predictive Power Relating to Implantation  

Average levels of mtDNA were not statistically different between the set of euploid 

blastocysts that achieved implantation and those that did not (P=0.231).  

 (Fig. 2A). The majority of blastocysts had mtDNA levels within a range of substantial 

overlap between implanted and not implanted groups. Both groups also contained 

outliers that could be regarded as having elevated mtDNA levels. In the implanted 

group, there were three blastocysts with mtDNA levels just above one standard 

deviation of the mean, and two blastocysts with considerably higher mtDNA levels 

(together, those five blastocysts are labeled #1-5 in Figure 2A and Table 1).  

 

Blastocysts With Elevated mtDNA Levels Can Result In Healthy Pregnancies 

and Births  

 

The transfers of blastocysts #1-5 resulted in normal pregnancies and live births. 

Blastocyst #1 was particularly noteworthy for its disproportionately high mtDNA levels 

(~4x the group average). It was also the blastocyst with highest mtDNA levels within 

its respective patient cohort (Figure 1B), which means that it would not have been 

chosen for transfer had mtDNA levels been used for de-deselection of embryos for 

transfer. It had good overall morphology at the time of TE biopsy (4AA) and after a 

vitrification-thaw cycle, immediately before transfer (5AA) (Figure 1C).  

All five babies resulting from this group of blastocysts with elevated mtDNA 

levels passed a routine neonate physical examination and were normal for a series of 
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screened conditions by blood test, including various metabolic disorders (for a list of 

the 63 tested conditions see Table 2).  

 

Cellular Stress Associated with Aneuploidy Does Not Necessarily Lead To 

Increased Mitochondrial Activity in Blastocysts 

We investigated the biological mechanism proposed by other groups explaining why 

elevated mtDNA levels and implantation failure might be correlated. It postulated that 

mtDNA levels might increase as part of a compensatory mechanism employed by 

embryonic cells when experiencing energetic stress (Diez-Juan et al., 2015; Fragouli 

et al., 2015). MtDNA levels might therefore be a corollary of a larger program that 

increases mitochondrial organelle number, as well as mitochondrial functional output. 

Accordingly, mitochondrial activity should be a more direct readout of the proposed 

embryo stress, and could be a potentially better biomarker of viability.  

 To test this possibility, we exposed blastocysts to MitoTracker Deep Red 

(MTDR) (Fig. 3A and B, Video 1). This fluorescent dye is associated with active 

mitochondria and its accumulation is dependent upon inner mitochondrial membrane 

potential, which increases with cellular respiration. Quantitation of MTDR fluorescent 

signal is therefore an indirect indicator of mitochondrial activity (Hallap et al., 2005; 

Kanno et al., 2016; Kodiha et al., 2015). In addition, on the same blastocysts we 

performed immunofluorescence with antibodies targeting a TE marker (GATA3) and 

an ICM marker (OCT4) to be able to differentiate mitochondrial function in the two 

cell lineages (Fig. 3B). 
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To model the impact of cell stress, we analyzed mitochondrial function in 

blastocysts that had different classifications after PGT-A testing. Aneuploidy is known 

to be associated with global increases in cellular trauma including metabolic, 

proteotoxic, replicative, and mitotic cell stress (Sheltzer, 2013; Stingele et al., 2012; 

Zhu et al., 2018). Accordingly, euploid blastocysts were expected to exhibit the least 

cellular stress, followed by mosaic blastocysts, then by blastocysts with aneuploidy 

affecting a single chromosome, and lastly by blastocysts with aneuploidy affecting 

multiple chromosomes, which would have the most cellular aberrations.  

 On average, mitochondrial activity per cell in the TE was considerably higher 

than in the ICM, in agreement with previously reported data (Van Blerkom, 2011). 

Nonetheless, we noted no statistically significant difference regarding mitochondrial 

activity per cell when comparing the different blastocysts groups (P=0.958 in the TE, 

P=0.946 in the ICM) (Figure 3C). 

DISCUSSION 

Biomarkers predictive of implantation are urgently needed to reduce time to 

pregnancy and to help establish healthy pregnancies in IVF (Ferrick et al., 2019; 

Gardner et al., 2015). Here we tested whether mtDNA levels possessed prognostic 

qualities regarding blastocyst transfer outcome in our clinic, abiding to suggested 

guidelines of mtDNA quantitation (Wells, 2017). We found no association between 

mtDNA levels and blastocyst viability, and we report for the first time that blastocysts 

with extremely high mtDNA copy number are consistent with viable implantation, 

normal pregnancy, and birth. Using a unified system of mtDNA quantitation, we 

exclude the possibility that technical differences were responsible for reported 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 13 

discrepancies between our findings and those previously describing a prognostic 

value of mtDNA levels in blastocysts (Diez-Juan et al., 2015; Fragouli et al., 2017; 

Fragouli et al., 2015; Ravichandran et al., 2017; Victor et al., 2017). 

 One scenario that reconciles the conflicting reports is a laboratory-selective 

association between mtDNA levels and implantation. In fact, it has been reported that 

the incidence of blastocyst with elevated mtDNA levels varies widely amongst IVF 

centers (Ravichandran et al., 2017). Out of 35 clinics participating in that study, 

roughly half did not produce an appreciable percentage of blastocysts with high 

mtDNA levels, although it must be noted that for some centers the analyzed sample 

size was small. In the remaining centers, incidences of blastocysts with elevated 

mtDNA levels ranged from 1% to 27%. Of blastocysts analyzed in this study, three 

out of 109 (2.8%) could be considered as containing highly elevated mtDNA levels 

(two implanted, one did not), and yet mtDNA quantitation was not valuable in 

predicting implantation in our setting. 

 One can only speculate why those three embryos contained highly elevated 

mtDNA levels. Under normal circumstances, no new mtDNA replication occurs 

between zygote and blastocyst stage, such that the initial set mtDNA molecules 

becomes split between dividing cells and progressively diluted amongst cells of the 

developing embryo (Cecchino et al., 2018; St John et al., 2010). Therefore, if a cell 

fails to undergo one or more cell divisions, it will tend to retain its mtDNA content. It is 

possible that for the three blastocysts yielding highly elevated mtDNA levels the 

collected biopsy happened to contain a region of the TE that had undergone fewer 

cell divisions, resulting in concentrated mtDNA content compared to other TE 
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regions. The blastocyst with the highest mtDNA levels, which contained fourfold the 

content compared to the group average, could be explained if the sampled TE cells 

had skipped two cell divisions compared to other TE regions of that blastocyst. What 

might have caused attenuated cell division in that part of the TE is another question, 

although to the best of our knowledge there is no clear evidence suggesting that all 

TE regions proliferate at equal rates under normal conditions. For example, TE cells 

adjacent to the section of the zona pellucida making contact with the dish during 

culture might experience distinct cell proliferation dynamics.  

Alternatively, it has been shown in several mammalian species that once the 

blastocyst stage is reached, replication of mtDNA begins specifically in the TE while 

the ICM continues to reduce its mtDNA copy number (St John et al., 2010; Van 

Blerkom, 2011). Whether mtDNA replication occurs uniformly across TE cells or in a 

localized fashion is not well studied, and might be affected by the cell cycle stage of 

each individual TE cell. A spurt of mtDNA replication in a sampled region would result 

in high mtDNA levels being quantified for the entire corresponding embryo. 

MtDNA levels have been proposed to be a surrogate measure of mitochondrial 

function, which was presumed to increase in blastocysts experiencing stress (Diez-

Juan et al., 2015; Fragouli et al., 2015). Nonetheless, a direct relationship between 

mtDNA levels and mitochondrial function in the blastocysts has not been documented 

(Van Blerkom, 2004). To shed light on this matter, mitochondrial function in 

blastocysts euploid and aneuploid blastocysts were analysed. Even though the data 

suggest that ploidy does not affect mitochondrial function in blastocysts, it is possible 

that anueploidy is not representative of the type of stress that might elicit 
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mitochondrial activation in blastocysts, such as for example changes in oxygen 

concentration (Gardner and Harvey, 2015). The state of aneuploidy (the model tested 

here) can elicit increases in various types of cell stress (metabolic, proteotoxic, 

replication, and mitotic) (Zhu et al., 2018), but it is possible that only a specific sub-

type of energetic stress prompts mitochondrial activation, and consequently shifts in 

mtDNA levels. What is more, the trigger might depend on a specific threshold of that 

stress factor. Future studies need to test whether lab-induced variance of parameters 

including oxygen concentration, medium composition, pH, and/or temperature affect 

mitochondrial function and/or content in human embryos. This in turn could help to 

explain the observation that different centers generate vastly different incidences of 

blastocysts with highly elevated mtDNA levels (Ravichandran et al., 2017), a 

phenomenon for which the underlying biological basis remains unknown. We surmise 

that for the time being, the suggested rationale linking increased mtDNA levels to 

stress remains purely speculative.  

CONCLUSIONS 

 

Based upon the results of this study that conforms to proposed guidelines of mtDNA 

quantitation, mtDNA levels were not predictive of implantation potential. Importantly, 

blastocysts with disproportionally elevated mtDNA levels resulted in healthy 

pregnancies and births. The functional output of mitochondria is not significantly 

elevated in a model of embryo stress, refuting the previously suggested model that 

links stress and mtDNA. We conclude that mtDNA copy number is not a universal 
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biomarker of implantation. Future studies are needed to investigate in which cases 

mtDNA quantitation may be useful. 
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VIDEO LEGENDS 

Supplemental Video 1. Video of confocal microscopy-imaged embryo after 

immunofluorescence staining, displaying quantitation method. This 

representative sample was classified as euploid with PGT-A. Note that the image 

analysis software detects the concrete number (count) of nuclei (blue), ICM cells 

(white), TE cells (red). MTDR signal (green) is quantified as fluorescent signal 

intensity (arbitrary units - AU) within a ‘mask’ generated by the software.  
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Figure 1.  

Technical validation of qPCR assays used in this study to quantify mtDNA 

levels per cell.  

Graphs depict regression curves of serial dilution experiments. 
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Figure 2.  

MtDNA levels are not predictive of implantation in the analyzed cohort.  

 

(A) Comparison of mtDNA levels between blastocysts that implanted 

and those that did not. Each data point represents the mtDNA levels 

of one blastocyst.  

 

(B) Plotted mtDNA levels of all euploid blastocysts from patient who 

generated blastocyst #1 in (A). 

 

(C) Images of blastocyst #1 in (A), immediately before collection of a TE 

biopsy and vitrification (left image), and before transfer (right 

image).   
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Figure 3.  

Quantitation of mitochondrial activity in blastocysts. 

 

(A) High resolution image of TE cells after exposure to Hoechst nuclear 

stain and MTDR, displaying fluorescent MTDR signal in 

characteristic punctate distribution around nuclei. Scale bar = 10μm 

  

(B) Left column shows representative immunofluorescent images of a 

whole hatching blastocyst. Right column shows method of 

computational detection and quantitation. Note that the image 

analysis software detects the concrete number (count) of nuclei, 

ICM cells, and TE cells. The software generates a ‘mask’ of the 

MTDR signal, and quantifies the fluorescence within. The yellow 

number at the bottom right corner of panels indicates the computed 

value for the corresponding image. Scale bar = 30μm 

 

(C) Scatter dot plots depicting quantitation of MTDR fluorescence 

(readout of mitochondrial function) in blastocysts. Each symbol 

represents one blastocyst. Lines indicate mean with standard 

deviation. Sample size of each blastocyst group is n=4 Euploids, 

n=4 Mosaics, n=8 Single Aneuploids (aneuploidy affecting a single 

chromosome), n=7 Multiple Aneuploids (with aneuploidy affecting 

multiple chromosomes). *, P < 0.05; N.S. (not significant), P ≥ 0.05. 
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Table 1. List of implanted euploid blastocysts with highest mtDNA levels. 
 

Embryo 
Number 

Gardner 
System 

Biopsy 
Day 

PGT-A 
Result 

mtDNA 
Level 

mtDNA Level 
Compared to 
Group Mean 

Implantation Birth 

#1 4AA D5 Normal 0.02899 4.70x Yes Yes 

#2 5BB D6 Normal 0.01635 2.65x Yes Yes 

#3 5BB D6 Normal 0.01291 2.09x Yes Yes 

#4 3AB D5 Normal 0.01208 1.96x Yes Yes 

#5 5BC D6 Normal 0.01164 1.89x Yes Yes 
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Table 2. Conditions tested in newborns resulting from transfers of blastocysts 
with elevated mtDNA levels.  
 

Category Condition 
Amino Acid 
Disorders 

Argininemia (ARG) 

Argininosuccinic Aciduria (ASA) 

Benign Hyperphenylalaninemia (H-PHE) 

Biopterin Defect in Cofactor Biosynthesis (BIOPT-BS) 

Biopterin Defect in Cofactor Regeneration (BIOPT-REG) 

Carbamoyl Phosphate Synthetase I Deficiency (CPS) 

Citrullinemia, Type I (CIT) 

Citrullinemia, Type II (CIT II) 

Classic Phenylketonuria (PKU) 

Homocystinuria (HCY) 

Hypermethioninemia (MET) 

Hyperornithine with Gyrate Deficiency (Hyper ORN) 

Maple Syrup Urine Disease (MSUD) 

Ornithine Transcarbamylase Deficiency (OTC) 

Prolinemia (PRO) 

Tyrosinemia, Type I (TYR I) 

Tyrosinemia, Type II (TYR II) 

Tyrosinemia, Type III (TYR III) 

Endocrine 
Disorders 

Congenital Adrenal Hyperplasia (CAH) 

Primary Congenital Hypothyroidism (CH) 

Fatty Acid 
Oxidation Disorders 

Carnitine Acylcarnitine Translocase Deficiency (CACT) 

Carnitine Palmitoyltransferase I Deficiency (CPT-IA) 

Carnitine Palmitoyltransferase Type II Deficiency (CPT-II) 

Carnitine Uptake Defect (CUD) 

Glutaric Acidemia, Type II (GA-2) 

Long-Chain L-3 Hydroxyacyl-CoA Dehydrogenase Deficiency (LCHAD) 
Medium-Chain Acyl-CoA Dehydrogenase Deficiency (MCAD) 

Medium/Short-Chain L-3 Hydroxyacyl-CoA Dehydrogenase Deficiency (M/SCHAD) 
Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD) 

Trifunctional Protein Deficiency (TFP) 

Very Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD) 

Hemoglobin 
Disorders 

Hemoglobinopathies (Var Hb) 

S, Beta-Thalassemia (Hb S/ßTh) 

S, C Disease (Hb S/C) 

Sickle Cell Anemia (Hb SS) 

Lysosomal Storage 
Disorders 

Mucopolysaccharidosis Type-I (MPS I) 

Pompe (POMPE) 

Organic Acid 
Conditions 

2-Methyl-3-Hydroxybutyric Acidemia (2M3HBA) 

2-Methylbutyrylglycinuria (2MBG) 

3-Hydroxy-3-Methylglutaric Aciduria (HMG) 
3-Methylcrotonyl-CoA Carboxylase Deficiency (3-MCC) 

3-Methylglutaconic Aciduria (3MGA) 

Beta-Ketothiolase Deficiency (BKT) 

Ethylmalonic Encephalopathy (EME) 

Glutaric Acidemia, Type I (GA-1) 

Holocarboxylase Synthetase Deficiency (MCD) 

Isobutyrylglycinuria (IBG) 

Isovaleric Acidemia (IVA) 
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Malonic Acidemia (MAL) 
Methylmalonic Acidemia (Cobalamin Disorders) (Cbl A,B) 

Methylmalonic Acidemia (Methymalonyl-CoA Mutase Deficiency) (MUT) 

Methylmalonic Acidemia with Homocystinuria (Cbl C, D, F) 

Propionic Acidemia (PROP) 

Other Disorders Adrenoleukodystrophy (ALD) 

Biotinidase Deficiency (BIOT) 

Classic Galactosemia (GALT) 

Critical Congenital Heart Disease (CCHD) 

Cystic Fibrosis (CF) 

Formiminoglutamic Acidemia (FIGLU) 

Hearing loss (HEAR) 

Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome (HHH) 

Severe Combined Immunodeficiency (SCID) 
T-cell Related Lymphocyte Deficiencies 

 
 

 

 

 


