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ABSTRACT 
Combustion condition monitoring is essential in a 

power plant for maintaining stable operations and 
operational safety. Therefore it is crucial to develop an 
intelligent combustion monitoring system. Existing 
traditional methods not only need a large quantity of 
labeled data but also require rebuilding monitoring 
model for new conditions. Aiming these problems, the 
present study proposes a novel approach combining 
denoising auto-encoder (DAE) and generative adversarial 
network (GAN) to monitor combustion condition. By 
using the learning mechanism of the GAN, the robust 
feature extraction ability of DAE as a generator is 
improved. These features are then fed into the Gaussian 
process classifier (GPC) for condition identification. 
Especially, newly occurring conditions can be correctly 
classified by simply training the GPC, rather than training 
from scratch. Experiments performed on a gaseous 
combustor indicate that the proposed approach can 
extract representative features accurately and achieve 
high performance in combustion condition monitoring 
with the accuracy of 98.5% for original conditions and 
97.8% for the new conditions. 
 
Keywords: Combustion condition monitoring, 
Generative adversarial network, Gaussian process 
classifier 

1. INTRODUCTION 
Combustion condition monitoring is an essential part 

of advanced combustion control, which is helpful for 
detecting abnormal combustion state. Whereas the 
abnormal combustion state reduces combustion 
efficiency and increases pollutant emissions (e.g., NOx, 
SO2). So it is of great attention to develop an intelligent 

combustion condition monitoring tool. A great deal of 
efforts has been devoted to develop combustion 
condition monitoring systems [1]. Among them, soft-
computing technology combined with flame imaging and 
image processing technology has been attracted and 
received considerable attention for both laboratory and 
industrial applications. In general, there are two main 
stages in combustion condition monitoring based on 
imaging and soft computing, i.e. feature extraction and 
then condition monitoring.  

Feature extraction is the most important step, which 
has been studied extensively. For instance, Sun et al. [2] 
analyzed the HSI (Hue, Saturation, Intensity) 
characteristic parameters of heavy oil-fired images. 
These essential features are further analyzed and utilized 
in the stage of process monitoring. Bai et al. [3] built a 
kernel support vector machine (SVM) classifier based on 
the principal component analysis (PCA) features. From 
these studies, it can be concluded that the essential 
features of the combustion state are the key to achieve 
satisfactory monitoring performance. However, most of 
the traditional methods have two main deficiencies such 
as (i) feature extraction process requires prior knowledge 
of image processing as well as comprehensive 
knowledge of the specific problem (ii) most of the 
algorithms provide poor performance which cannot 
meet the requirement of the power plant operators.   

Clearly, it is desirable to develop an intelligent 
combustion monitoring tool that can utilize flame images 
to learn effective and robust features. Recently, deep 
learning neural network has received considerable 
attention in the application of combustion study [4]. 
For example, Wang et al. [5] established a convolutional 
neural network (CNN) framework to identify the 
combustion state of the power plant furnace. However, 
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an obvious problem with the deep learning network is 
that a large quantity of labeled data is needed, which is 
difficult to acquire. 

This paper presents a novel combustion condition 
monitoring approach based on deep learning networks.  
A combined denoising auto-encoder and generative 
adversarial network (DAE-GAN) is developed to extract 
the flame representative features. A Gaussian process 
classifier (GPC) is used to perform intelligent condition 
monitoring after supervised training with a few items of 
available labeled data. In this approach, a massive 
amount of easily accessible unlabeled flame images are 
utilized to learn useful and robust features. Only a few 
items of labeled images are needed, which is an 
advantage in a practical application. In addition, after 
simply retraining trained GPC, new conditions can be 
correctly classified by the proposed approach. 

2. METHODOLOGY 

2.1 Overall strategy 

The technical strategy of the proposed approach is 
shown in Fig. 1, which consists of feature extraction and 
condition monitoring. It includes the following main 
steps.  

Step 1: The flame images are collected by a high-
speed CCD camera under different operation conditions. 
These images are resized into the same size and 
normalized to the set the value between 0 and 1. 

Step 2: Build DAE-GAN and initialize parameters. The 
feature learning network (DAE-GAN) is established. 

Step 3: The generator and the discriminator of the 
DAE-GAN are iteratively optimized by the adversarial 
machine learning mechanism for the unlabeled images. 
This is the unsupervised feature learning process. 

Step 4: In the supervised learning process, the 
features of the labeled images are extracted by the 
trained DAE-GAN, and then used to train the GPC. 

Step 5: Combustion condition monitoring with the 
trained GPC. 

Step 6: As new conditions may occur, the trained GPC 
can be further trained with a few labelled images of the 
new conditions. The further trained GPC can monitor the 
combustion conditions including the new ones. 

 
Fig 1 Overall strategy of combustion condition monitoring 

2.2 Feature extraction 

The auto-encoder (AE) is a symmetrical neural 
network, which is composed of encoder and decoder [6]. 
The input sample is mapped to the encode vector 
through the encoder, and the encoding vector is 
remapped to the output sample through the decoder. By 
minimizing the reconstruction error between the input 
sample and the output sample, the representative 
encodes vector is obtained. However, the basic AE 
cannot guarantee strong learning ability as it can lead to 
the obvious solution that simply copies the input [7]. 

The denoising auto-encoder (DAE) integrates 
denoising code into the AE that aims to extract useful 
information [8]. The input sample of the DAE is corrupted 
by noise. The decoder reconstructs the encode vector to 
obtain sample free of noise. 

 
Fig 2 The structure of the designed DAE-GAN 
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In this study, the GAN is applied to further improve 
the expressive capacity of the DAE. The structure of the 
designed DAE-GAN is shown in Fig. 2, which includes a 
generator and a discriminator. The input sample 𝑥  is 
corrupted into 𝑥̃  by the white Gaussian noise with a 
certain signal-to-noise ratio (SNR). The encoder maps the 
𝑥̃ to the encode vector ℎ, and the decoder maps the 
hidden units ℎ to a reconstruction 𝑧. In each training 
step of the DAE-GAN, the generator produces some fake 
samples from the DAE, and the discriminator is trained 
by generated fake samples mixed with a few true 
examples. Then the generator is rewarded for generating 
examples to fool the discriminator. The generator and 
discriminator continuously confront each other and 
optimize themselves until the Nash equilibrium is 
reached [9]. Finally, the DAE can well generate new 
samples which could cheat discriminator, so as to 
capture the potential distribution of the original samples.  

2.3 Condition monitoring 

In this study, the GPC is established for the 
condition classification based on the features of the 
labeled image. The Gaussian process is a stochastic 
process that involves the generalization of the Gaussian 
probability distribution to functions. Under certain cases, 
Gaussian processes can be considered equivalent to 
large neural networks. The details can be found in [10].  

3. DATA COLLECTION AND DESCRIPTION 

3.1 Data description 

Experiments are carried out on the laboratory-scale 
combustor. The flame images are acquired by the high-
speed monochrome camera with resolution up to 
260*384 pixels at 1000 frame s-1. As listed in Table 1, the 
total dataset includes seven conditions of different air 
flow (AF) and fuel flow (FF) ratios. For each condition, 
4000 images are collected. 

 
Table 1. Combustion conditions in the total dataset. 

Dataset Condition 
FF 

(ml/min) 
AF 

(m3/min) 
Number 
of image 

Dataset 
A 

1 500 0.5 4000 

2 500 1 4000 

3 500 1.5 4000 

4 500 2 4000 

5 500 2.5 4000 

Dataset 
B 

6 400 0.5 4000 

7 400 1.8 4000 

The total dataset is divided into two parts: dataset A 
with five conditions as the original condition and dataset 
B with all the remaining two conditions as the new 
condition. 80% of dataset A is selected to form the 
dataset A1, and the remaining 20% to form the dataset 
A2. Then, 92% of the dataset A1 is chosen as the dataset 
A3, while the remaining 8% as dataset A4. Similarly, 80% 
of dataset B is selected to form the dataset B1, and the 
remaining 20% to form the dataset B2. Then, 8% labeled 
data of dataset B1 is selected to form the dataset B3. Fig. 
3 illustrates the structure of the dataset.  

 
Fig 3 Structure of the dataset 

3.2 Training process 

The unsupervised DAE-GAN training is performed 
based on the dataset A3 without labeled information. 
Note that the dataset A3 is destroyed by white Gaussian 
noise before being used with the SNR of 24 dB, which is 
obtained via cross-validation with other values. All the 
weights of the DAE-GAN are initialized with a Gaussian 
distribution with a standard deviation of 0.02. The 
supervised GPC training is performed on the labeled 
samples of the dataset A4. The retraining dataset is 
formed by dataset A4 and dataset B3. 

4. RESULTS AND DISCUSSION 

4.1 Results 

The dataset A2 is used for model testing, including 
the original five conditions. The test trial is repeated 10 
times with the same epoch of 80. As shown in Fig. 4, all 
the testing accuracy of five conditions is over 97.2% with 
an average of 98.5%. The results demonstrate the 
effectiveness of the proposed method for combustion 
condition monitoring with a large amount of unlabeled 
data and a few items of labeled data. In addition, Fig. 4 
also shows that the testing accuracy of seven conditions 
composed of dataset A2 and dataset B2 is above 96.8% 
with an average of 97.8%. It can be inferred that the 
proposed method is able to monitor new conditions by 
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simply retraining the GPC, instead of training from 
scratch. 
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Fig 4 Overview of the testing accuracy 

4.2 Discussion 

The robustness of the proposed approach is also 
verified with different noise levels. The dataset A3 is 
corrupted by different levels of white Gaussian noise 
with the SNR from 30 to 6 dB with a step size of 6. For 
each level of noise, 10 trials are carried out and the 
averaged result is listed in Table 2. The testing accuracy 
of five conditions and seven conditions are represented 
by R1 and R2 accordingly. The results show that the 
testing accuracies with the SNR of 30 and 24 dB are 
almost the same as those with no noise. With the 
increase in the noise level, the accuracy decreases 
gradually. Overall, this approach has a good anti-noise 
ability, which is useful for noisy data that usually capture 
in a harsh environment.  

The performance of the GPC is studied compared 
with other neural network classifiers, i.e., random forest 
(RF), Linear SVM, and Kernel SVM. The testing results are 
summarized in Table 3. The comparison results show 
that the GPC provides high accuracy, which outperforms 
traditional classifiers.  

The proposed approach is useful where the 
availability of labeled data is quite limited. It is important 
to investigate the robustness of the method on the 
different ratio of labeled data to unlabeled data. 
Therefore, further study is carried out by changing the 
fraction of dataset A4 that is used for GPC training from 
1 to 10% with a step size of 1. The effect of the 
proportion of dataset B3 to dataset B1 on the testing 
accuracy of seven conditions is also studied. Fig. 5 shows 
the result of the average accuracy for 10 trials. The 
results indicate that the accuracy rises rapidly with the 
fraction of labeled data increasing from 1 to 6%. It is seen 
that even with 4% of labeled data, the accuracy is above 
96%, which shows that the features learned from 

unlabeled data are representative. With further increase 
of labeled data, the accuracy tends to increase slightly 
and became stable. The result shows that the proposed 
approach achieves satisfactory accuracy and excellent 
identification ability of new conditions even with very 
few items of labeled data. 
 
Table 2. Testing accuracy under different SNRs. 

SNR (dB) 
No 

noise 
30 24 18 12 6 

R1 (%) 98.5 98.2 97.6 88.2 76.5 76.3 

R2 (%) 97.8 97.1 96.9 83.9 70.9 74.7 

 
Table 3. Testing accuracy under different classifiers. 

Classifiers 
Proposed 
approach 

RF 
Linear 
SVM 

Kernel 
SVM 

R1 (%) 98.5 92.6 96.1 97.2 

R2 (%) 97.8 90.3 95.8 96.2 
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Fig 5 Effect of portion of labeled data 

4.3 Visualization of learned features 

In order to demonstrate that the proposed approach 
is able to learn effective features and distinguish the 
representative features automatically, the features 
learned by the DAE-GAN is visualized via a technique ‘‘t-
SNE” [11]. The t-SNE is an effective data visualization 
technique for high-dimensional data. In this study, the 
dimensionality reduction technique ‘‘t-SNE” is used to 
convert the 16-dimensional features to a two-
dimensional map. The resulting maps of the new testing 
dataset consisting of dataset A2 and dataset B2 is shown 
in Fig. 6. It can be seen that the DAE-GAN features of 
different conditions are separated well. More details can 
be included in the final paper. 
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Fig 6 Visualization of learned features 

5. CONCLUSIONS 
This paper presents an intelligent approach for 

combustion condition monitoring based on DAE-GAN 
and GPC. This approach overcomes the typical 
drawbacks of the traditional methods. The DAE-GAN can 
automatically extract robust features from a massive 
quantity of unlabeled data. Only a small amount of 
labeled data is needed to train the GPC for condition 
identification. In addition, the proposed approach is able 
to recognize newly occurring conditions by simply 
retraining the GPC with a few items of new condition 
labeled data. The robustness of the proposed approach 
was evaluated by corrupting the original images with 
different levels of noise. Compared with the traditional 
classifiers, the proposed GPC is able to provide better 
accuracy for identifying the combustion conditions. 
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