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Batch effect exerts a bigger influence on
the rat urinary metabolome and gut
microbiota than uraemia: a cautionary tale
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Abstract

Background: Rodent models are invaluable for studying biological processes in the context of whole organisms.
The reproducibility of such research is based on an assumption of metabolic similarity between experimental
animals, controlled for by breeding and housing strategies that minimise genetic and environmental variation. Here,
we set out to demonstrate the effect of experimental uraemia on the rat urinary metabolome and gut microbiome
but found instead that the effect of vendor shipment batch was larger in both areas than that of uraemia.

Results: Twenty four Wistar rats obtained from the same commercial supplier in two separate shipment batches
underwent either subtotal nephrectomy or sham procedures. All animals undergoing subtotal nephrectomy
developed an expected uraemic phenotype. The urinary metabolome was studied using 1H-NMR spectroscopy and
found to vary significantly between animals from different batches, with substantial differences in concentrations of
a broad range of substances including lactate, acetate, glucose, amino acids, amines and benzoate derivatives. In
animals from one batch, there was a complete absence of the microbiome-associated urinary metabolite hippurate,
which was present in significant concentrations in animals from the other batch. These differences were so
prominent that we would have drawn quite different conclusions about the effect of uraemia on urinary
phenotype depending on which batch of animals we had used. Corresponding differences were seen in the gut
microbiota between animals in different batches when assessed by the sequencing of 16S rRNA gene amplicons,
with higher alpha diversity and different distributions of Proteobacteria subtaxa and short-chain fatty acid producing
bacteria in the second batch compared to the first. Whilst we also demonstrated differences in both the urinary
metabolome and gut microbiota associated with uraemia, these effects were smaller in size than those associated
with shipment batch.

Conclusions: These results challenge the assumption that experimental animals obtained from the same supplier
are metabolically comparable, and provide metabolomic evidence that batch-to-batch variations in the microbiome
of experimental animals are significant confounders in an experimental study. We discuss strategies for reducing
such variability and the need for transparency in research publications about the supply of experimental animals.
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Background
The lack of reproducibility in pre-clinical animal re-
search remains a major challenge in experimental biol-
ogy [1] and is at least partially explained by variation
between animal microbiomes [2]. Animal research has
been based on the assumption that whilst experimental
animals in different facilities may have differences at
species level between their gut microbiota [3], at a popu-
lation level, in healthy laboratory animals on identical di-
ets, these diverse collections of microorganisms achieve
a shared set of basic metabolic functions—an assump-
tion supported by evidence of significant functional re-
dundancy within gut microbial communities [4].
A number of toxic molecules that accumulate in renal

failure have been shown to be produced by bacterial me-
tabolism of dietary protein in the large intestine [5, 6],
leading to an interest in the gut microbiome as a poten-
tial therapeutic target to reduce the cardiovascular mor-
bidity of patients with chronic kidney disease [7].
Based on an assumption of metabolic similarity be-

tween experimental animals, we sought to investigate
this ‘gut-kidney axis’ in a rodent model of uraemia, by
demonstrating the effect of experimental uraemia on the
urinary metabolome and gut microbiota of rats, pur-
chased from the same supplier in two separate shipment
batches for logistical reasons. We actually found that the
effect of shipment batch had a larger effect in both areas
than uraemia and that conclusions drawn about the
effect of uraemia on gut-derived metabolites would have
been radically different depending on the batch of
animals used.

Results
We obtained 24 wild-type outbred Wistar International
Genetic Standard (IGS) rats in two shipment batches, 3
weeks apart, from the same supplier (Charles Rivers,
Kent, UK). Fourteen were rendered uraemic by undergo-
ing a two-stage subtotal (five-sixth) nephrectomy (eight
from batch 1, six from batch 2), whilst 10 underwent
sham procedures (six from batch 1, four from batch 2,
Fig. 1a). There were no differences in animal husbandry
or diet between batches. At the time of sacrifice 8 weeks
later, the urinary metabolome was assessed by untar-
geted proton nuclear magnetic resonance (1H-NMR)
spectroscopy, and composition of the gut microbiota
was assessed by sequencing 16S rRNA gene amplicons.
All animals undergoing subtotal nephrectomy developed
an expected uraemic phenotype, including elevations in
serum urea and creatinine, weight loss, and polyuria
compared to sham-operated controls, and there were no
gross phenotypic differences between animals from
different batches (Fig. 1b–f; Additional file 1).
Principal component analysis (PCA) of normalised and

aligned urinary NMR spectral profiles identified that

shipment batch was responsible for the largest source of
variance in the biochemical data, seen chiefly in princi-
pal component 1, which accounted for 38% of variance.
Surgical treatment accounted for a smaller but nonethe-
less definite source of variance, with these differences
being seen chiefly in the second principal component,
which accounted for 17.7% of total variance (Fig. 2a).
Separate orthogonal projection to latent structures dis-

criminant analysis (OPLS-DA) models was constructed
to elucidate biochemical variation associated with ship-
ment batch and treatment class. The model built using
shipment batch had a stronger predictive power (Q2Y =
0.66, p = 0.001) than the model built using treatment
class (Q2Y = 0.48, p = 0.007). Discriminatory metabolites
between the two shipment batches were identified from
the OPLS-DA model (Fig. 2b), and their relative abun-
dances were calculated from integration of the relevant
regions of the aligned spectral profiles (Table 1).
Animals in batch 1 excreted significantly greater

amounts of glycine (141.5 vs 68.5 relative units, Benja-
mini-Hochberg adjusted p < 0.001), alanine (29.3 vs 18.0
units, p < 0.001) and glucose (43.9 vs 19.7 units, p =
0.006) than animals in batch 2. They also excreted
higher amounts of the potential gut bacterial products
acetate (a short-chain fatty acid, 192.2 vs 105.2 units, p =
0.003), succinate (a bacterial metabolic product of diet-
ary fibre digestion, 97.9 vs 72.6 units, p = 0.017) and lac-
tate (571.7 vs 188.3 units, p = 0.001), compared with
those in batch 2. Interestingly, hippurate was almost
completely absent from the urine of batch 1 animals but
present in urine from all animals in batch 2 (6.6 vs 34.5
units, p = 0.003). Correspondingly, benzoate, a gut
microbially derived precursor of hippurate, was lower in
the urine of batch 2 animals compared to those in batch
1 (111.0 vs 52.1 units, p < 0.001). Whilst a high degree of
between-sample variation meant the batch effect did not
reach the overall significance, on review of individual
sample NMR spectra, it became clear that many animals
had no detectable trimethylamine (TMA), a product of
bacterial protein metabolism, including almost all of
those in batch 1, whereas others (predominantly those in
batch 2) had easily detectable concentrations.
To determine whether the substantial batch variations

we had demonstrated could have led to erroneous
conclusions about the effect of uraemia on the urinary
metabolome, we built an OPLS-DA model for each ship-
ment batch separately using surgical treatment class
(subtotal nephrectomy vs sham) as the response variable.
The model built on the batch 1 profiles was not found
to be significant (Q2Y = 0.265, pQ2Y = 0.120), leading to
the potential conclusion that the urinary metabolome is
not influenced by uraemia. However, a significant pre-
dictive model was obtained using profiles from batch 2
(Q2Y = 0.543, pQ2Y = 0.049), despite small sample
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numbers, suggesting that uraemia does indeed determine
urinary phenotype.
To assess whether differences in the gut microbiota

between shipment batches and treatment classes might
underlie these trends in the metabolomic data, sequen-
cing of the V3 and V4 hypervariable regions of the
amplified 16S rRNA gene in DNA extracted from caecal
fluid was carried out. Sequence abundance data
underwent isometric log-ratio transformation to allow
compositional analysis of the different microbial
communities.
Unsupervised PCA of the compositional data

revealed that shipment batch had a larger impact on
sample clustering than did treatment class (Fig. 3a).
Consistent with this, permutational multivariate

analysis of variance (PERMANOVA) was performed
using an ADONIS analysis of a Euclidean distance
matrix and confirmed that batch had a small but sig-
nificant effect on the gut microbiome (R2 = 0.097, p =
0.001), whilst treatment class did not (R2 = 0.048, p =
0.227). This was further confirmed by showing that a
valid predictive OPLS-DA model could be built using
shipment batch as the response variable (Q2Y = 0.573,
p < 0.05), but not when using treatment class (Q2Y =
0.206, p = 0.2).
The gut microbiotas of animals differed significantly in

community structure between batches, with samples
taken from animals in batch 2 displaying higher alpha
diversity than those from animals in batch 1, across a
range of measures including the inverse Simpson (40.7

Fig. 1 Animal work. a Outline of experimental procedures. Time in weeks is shown along the top of the figure. Animals arrived in two batches, 3
weeks apart, at age 7 weeks, and after a week-long acclimatisation period, underwent a 2-stage subtotal nephrectomy or sham procedure. Eight
weeks after the second stage of this procedure, after a 24-h urine collection, they were sacrificed and samples of serum and caecal fluid
collected. b Weight at time of sacrifice (p = 0.033 for treatment, p = 0.586 for batch, by 2-way ANOVA). c 24 h urine volumes immediately before
sacrifice (p = 0.0009 for treatment, p = 0.256 for batch, by 2-way ANOVA). d Serum urea at time of sacrifice (p < 0.0001 for treatment, p = 0.392 for
batch, by 2-way ANOVA). e Serum creatinine at the time of sacrifice (p < 0.0001 for treatment, p = 0.645 for batch, by 2-way ANOVA)
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vs 58.5, p = 0.043, Fig. 3b) and Shannon indices (4.53 vs
4.81, p = 0.046, Fig. 3c). Conversely, we did not demon-
strate a difference in alpha diversity between uraemic
and control animals.

To explore these differences more closely, populations
were assessed on the basis of taxonomic assignments of
OTUs at phylum, order, class, family and genus levels.
Microbiotas in all animals were dominated by phyla

Fig. 2 Untargeted 1H-NMR spectroscopy of 24-h rat urine collections. a Score plot of unsupervised principal component analysis of normalised
and aligned NMR spectra, showing that samples separated when analysed by batch chiefly in the first principal component, which accounted for
38% of total variance, and separated when analysed by surgical treatment chiefly in the second principal component, which accounted for 17.7%
of variance. b Loading plot from an orthogonal projection to latent squares discriminant analysis (OPLS-DA) model built using shipment batch as
the response variable, back-plotted as an NMR spectrum with peak height indicating covariance with batch (downwards deflections indicate
substances more abundant in animal urine from batch 1; upwards deflections indicate substances more abundant in animal urine from batch 2).
The line is coloured according to the significance of the association, adjusted for multiple testing using the Benjamini-Hochberg method; black
indicates non-significance between groups. Peaks are labelled with the identity of the responsible substance
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Firmicutes (accounting for 83.1% of total reads) and
Bacteroidetes (14.5%), with all other phyla (Verrucomi-
crobia, Tenericutes, Proteobacteria, Actinobacteria, Sac-
charibacteria and Deferribacteres) together representing
less than 2.5% of total sequences when normalised
across samples (Fig. 3d).
Differences in the abundances of OTUs and higher

taxonomic groupings were analysed between shipment
batches and treatment classes using the Analysis of
Composition of Microbiomes (ANCOM) framework,
based on isometrically log-ratio transformed abundance
data and Benjamini-Hochberg adjustment for multiple
hypothesis testing. Differential abundances between
samples taken from animals in different shipment
batches were apparent as high as at class level, with ani-
mals in batch 2 having higher relative abundances of
Pseudomonadales in phylum Proteobacteria. No higher-
order differences were demonstrated between uraemic
and control animals.

On further analysis at OTU level, it became clear that
it was primarily the less abundant OTUs which showed
significant differences between batches, whilst OTUs dif-
fering significantly between uraemic and control animals
were generally more abundant. Thus, whilst the relative
abundance of 33/1110 OTUs (2.97% on the total)
differed significantly between shipment batches, these
represented only 3.80% of total sequences when analysed
by the abundance of each OTU. However, the six OTUs
which differed significantly between treatment classes
(0.54% of the total) accounted for 5.13% of total se-
quences when adjusted for abundance.
These six OTUs showing significant abundance dif-

ferences between uraemic and control animals were
all from the family Lachnospiraceae: five from the
NK4A136 group and one from the UCG-001 group.
All but one showed significant decreases in relative
abundance in uraemic animals, including the third
most abundant OTU overall.

Table 1 Normalised relative concentrations of selected urinary metabolites (relative units)

Substance Batch 1 Batch 2 pǂ Uraemic Control pǂ

Acetamide 28.803 28.126 0.930 24.867 34.845 0.001

Acetate 192.187 105.217 0.010 160.957 138.128 0.776

Acetoin 9.593 8.767 0.192 8.957 9.674 0.188

Alanine 29.330 18.013 0.001 23.765 24.923 0.809

Allantoin 28.996 29.158 0.967 25.391 35.508 0.054

Benzoate 110.964 52.071 < 0.001 82.269 87.564 0.809

Betaine 55.595 39.399 0.129 47.318 49.834 0.809

Citrate 119.823 112.407 0.752 126.188 99.414 0.127

Creatinine 140.283 152.104 0.642 131.066 171.189 0.027

Dimethylamine 21.667 21.548 0.967 19.390 25.504 0.054

Dimethylglycine 15.669 12.643 0.124 14.725 13.538 0.677

Formate 2.873 3.007 0.967 1.995 4.575 0.127

Glucose 43.856 19.678 0.018 34.385 30.208 0.809

Glycine 141.491 68.457 < 0.001 105.888 112.505 0.809

Hippurate 6.559 34.509 0.010 14.556 27.501 0.533

Lactate 571.659 188.265 0.005 402.362 388.686 0.922

m-Hydroxyphenylacetate 7.086 5.944 0.827 5.387 8.632 0.600

2-Oxoglutarate 167.931 182.841 0.642 183.945 158.543 0.533

Phenylacetate 13.308 8.148 0.001 10.380 11.982 0.600

Pyruvate 5.064 6.344 0.659 4.855 7.028 0.600

Succinate 97.877 72.642 0.044 85.106 88.682 0.809

Taurine 37.782 29.758 0.573 23.957 51.946 0.009

Trimethylamine 5.214 16.793 0.124 13.864 4.549 0.159

Trimethylamine N-oxide 42.391 32.387 0.253 34.013 44.547 0.267

Trigonelline − 0.013 − 0.024 0.218 − 0.023 − 0.009 0.059

Urocanate 2.764 1.001 < 0.001 2.056 1.799 0.776
ǂp values calculated using Student’s t test with Welch’s correction for unequal variances, subsequently adjusted to limit the false discovery rate to 0.15 using the
Benjamini-Hochberg procedure [8]. Values in italic are significant at this level
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Fig. 3 Next-generation sequencing of the 16S rRNA gene amplicon from caecal fluid. a Untargeted principal component analysis of log-
ratio transformed OTU abundance by sample, showing closer clustering associated with shipment batch than with treatment class. b, c
Alpha diversity, measured by the inverse Simpson index (40.7 vs 58.5, p = 0.043 by Student’s t test with Welch’s correction, b) and
Shannon index (4.53 vs 4.81, p = 0.046, c). d Relative abundances of major phyla in each sample, grouped by batch and treatment group.
There were no significant differences when analysed by batch or by treatment groups. e Taxonomic attributions of OTUs differentially
abundant when analysed by shipment batch and treatment class, assessed using the Analysis of Composition of Microbiomes (ANCOM)
framework with alpha set at 0.05 and a cutoff value of 0.6
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The 33 OTUs showing significant compositional dif-
ferences between batches were drawn from five different
phyla. In keeping with the higher alpha diversity seen in
samples from batch 2 animals, 30/33 differentially abun-
dant OTU between batches were seen in higher abun-
dances in animals from this batch. Interestingly bacterial
genera known to possess significant metabolic potential
were prominently represented amongst these differen-
tially abundant organisms, including a number of
producers of short-chain fatty acids (Roseburia, Butyrici-
coccus, Butyrivibrio and Acetomaculum) and three from
the phylum Proteobacteria.

Discussion
The rodent gut microbiome is a complex community of
several hundred different bacterial species that possess
significant metabolic potential of immense relevance to
the host organism. It has previously been demonstrated
that this community differs according to a variety of
factors including host age [9] and genetics [10, 11],
caging arrangements [9, 11, 12], bedding material and
water sterilisation technique [13] and vendor shipment
batch [10]. Xiao et al. generated a catalogue of the
mouse metagenome by sequencing faecal material from
184 mice and found that vendor was a prime determin-
ant in variation at a genetic and function level [14].
In light of these studies, we have demonstrated that

predicted batch variations in gut microbiota are associ-
ated with multiple, major variations in a range of urinary
metabolites, with the potential for significant down-
stream effects on wider areas of host phenotype. For
example, circulating hippurate has recently been sug-
gested as a biomarker for gut microbial diversity, associ-
ating with the risk of metabolic syndrome [15]; however,
our results suggest it may be totally absent in the urine
of experimental animals based on shipment batch. Like-
wise, the biological relevance of dietary amines has been
demonstrated through the association of TMA and its
metabolite trimethylamine N-oxide with cardiovascular
disease [16, 17], including in patients with chronic kid-
ney disease [18]. However, our results suggest that rats
purchased from the same supplier in different shipment
batches may metabolise dietary amines in quite different
ways, potentially questioning the generalisability of
research based on individual batches of animal subjects.
Since the diet of animals in each group was identical,

we conclude that differences in bacterial metabolic
pathways are likely to underlie these differences in the
urinary metabolome. We demonstrated batch differences
in the relative abundances of a number of bacteria that
are of known metabolic significance, including several
that are major sources of short-chain fatty acids and
associated with beneficial health outcomes [19–21], and
several from the phylum Proteobacteria that has recently

been shown to contribute significantly to functional
variation between gut metagenomes [22].
These results challenge the assumption that in healthy

organisms, different microbial communities achieve a
common set of basic metabolic functions despite vari-
ation in the individual species present [23, 24]. It can no
longer be assumed that healthy laboratory animals,
purchased from the same supplier, are metabolically
similar. The inherent microbial dissimilarity and associ-
ated metabolic differences between animals in different
batches provide a significant source of experimental
variation.
Such batch variations could easily lead to spurious

positive results. For example, a group that demonstrates
an effect in response to an experimental intervention
with a small group of animals may decide to increase the
number of animals in order to publish their findings;
they purchase new animals from the same supplier, but
fail to reproduce their earlier results because the new
additions have significantly different microbial metabolic
potential. Even worse, they may have carried out inter-
ventional procedures on one batch of animals, and then
used animals from a different batch as controls, with
exaggerated differences between groups reflecting under-
lying differences in microbiomes rather than any effect
of the experimental procedure. The alternative in each
case—to re-run the whole experiment with animals
purchased in a new, single batch—may be prohibitively
expensive, may fail to reproduce the initial results and
seems to stand against the second of the ‘Three R’s’ gov-
erning ethical use of animals in research: the reduction
of the number of animals used [25].

Conclusions
It is crucial that publishers maintain the requirement to
document fully all aspects of animal use, including pur-
chase details of the different batches of animals used in
a study if these come from a commercial supplier. Fur-
thermore, steps should be taken to reduce the amount
of variation within batches, such as by using a standar-
dised procedure for moving bedding between cages,
which has been shown to reduce intra-batch variation
[26]. Many experimental groups breed their own ani-
mals, which may reduce intra-group variation, although
potentially at the expense of generalisability with results
from other laboratories. Statistical approaches including
percentile normalisation have been suggested that would
allow pooling of data between different batches on
experimental subjects in different settings, although for
this to be successful, large numbers of control subjects
are required [27].
Finally, batch variation can be embraced as a reflection

of real-world microbial variation. For this to be successful,
it is important that researchers use unsupervised PCA

Randall et al. Microbiome           (2019) 7:127 Page 7 of 10



plots of all experimental subjects, coloured according to
batch, for quality control, using statistical methods to
measure the effect of batch variation. Documenting
whether the same observed changes were seen in animals
from all batches, or whether different batches behaved
differently, is helpful in assessing the generalisability of re-
sults, and many journals already have such requirements
in place. An experiment showing the same effect in two or
more smaller but separate batches of animals may be
more striking than an experiment showing a larger effect
size in a single animal batch.

Methods
Animal work
Animal experiments were conducted in accordance with
the UK Home Office Animals (Scientific Procedures) Act
1986, with local ethical committee approval. All animal
works were carried out at the Biological Services Unit of
Queen Mary University of London at Charterhouse Square,
and complied fully with all relevant animal welfare guidance
and legislation. The 24 male, outbred Wistar IGS rats were
obtained from Charles Rivers (Kent, UK) in two shipment
batches 3 weeks apart. All were housed in individually venti-
lated cages under 12-h light/dark cycles and were allowed
unlimited access to water and chow (RM1 diet from Special
Diet Services, Essex, UK).
After a week-long period of acclimatisation, rats under-

went a two-stage surgical procedure involving either
subtotal nephrectomy or a sham procedure. Subtotal neph-
rectomy involved exteriorisation of the left kidney with de-
capsulation and removal of the upper and lower poles and
subsequent replacement of the middle pole only, followed
by total right nephrectomy 2weeks later. Sham procedures
involved exteriorisation, decapsulation and replacement of
the left kidney, followed by the same procedure on the right
kidney 2 weeks later.
Following surgery, rats were weighed weekly. There were

up to four rats per cage, and the animals were initially
housed according to surgical intervention (subtotal nephrec-
tomy or sham) for 2 weeks after the second stage surgery,
before some were moved into mixed cages comprising both
uraemic and control animals (this was in order to assess the
role of individual cage variants, which on subsequent ana-
lysis, not presented here, was found not to be as important
in explaining the key changes in urinary metabolome or gut
microbiome as shipment batch or treatment class). There
was no co-housing between batches. Each week, the animals
were housed individually in metabolism cages to allow the
collection of a 24-h urinary specimen which was frozen at −
80 °C until the time of analysis. Rats were killed by lethal
injection of sodium thiopentone (LINK Pharmaceuticals,
Horsham, UK), and caecal fluid was expressed, stored in foil
and snap-frozen in liquid nitrogen and then at − 80 °C until
the time of analysis. Blood samples were taken by cardiac

puncture, and after centrifugation, the serum was frozen at
− 80 °C until the time of analysis.

Plasma biochemistry
Quantification of serum urea and creatinine was done by
IDEXX Bioresearch, Ludwigsberg, Germany.

NMR spectroscopy
Urine samples were randomised prior to dilution with
buffer and running on the machine to remove potential
for technical batch effects in processing and analysis,
and prepared for 1H-NMR spectroscopy as described
previously [28]. All samples were analysed on an NMR
spectrometer (Bruker) operating at 600.22MHz 1H
frequency.

Processing of NMR data
The NMR spectral profiles were digitised and
imported into Matlab (Mathworks) using in-house
scripts (Additional file 3). The raw spectra were ad-
justed for 24-h urine volumes by multiplying all NMR
absorbance values by the urine volume in millilitres.
The peaks for water and trimethylsilylpropanoic acid
(TSP) were excised from the raw NMR spectra which
were then aligned to adjust for variation in peak shift
due to pH differences. Further normalisation was
carried out using the probabilistic quotient method
between samples in order to ensure comparable base-
lines between samples (Additional file 2).
Unsupervised PCA was used to identify sources of

variation in the metabolic data. This was followed by
supervised OPLS-DA analysis using both shipment batch
and treatment class as the response variable. In-house-
developed scripts were used to perform these multivari-
ate statistical analyses. Peak integrals were calculated
from metabolite peaks identified as discriminatory from
the OPLS-DA models. Comparisons between these
integrals were used to calculate differences in relative
abundance according to shipment batch and treatment
class using Microsoft Excel, with the Student’s t test and
Welch’s correction used to assess significance. These p
values were adjusted using the Benjamini-Hochberg
method [8] and a false discovery rate of 0.15 using the q
values [29] package in R (Additional file 4).

16S rRNA gene sequencing and analyses
DNA was extracted from samples of caecal fluid using
the DNeasy PowerSoil kit from QIAGEN, used accord-
ing to the manufacturer’s instructions. All samples were
processed using the same kit, and a negative ‘kitome’
control was also included with samples [30]. DNA
diluted to 10 ng/μL (in 10mM Tris HCl pH 8.5) was
submitted to the Centre for Genomic Research at the
University of Liverpool for library preparation and
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sequencing of the V3/V4 hypervariable region of the 16S
rRNA gene. Sequence data were processed using QIIME
v1.9 [31]. Paired-end data were joined using join_paired_
ends.py, and primer sequences removed from split li-
brary files using cutadapt [32]. OTUs were picked using
99% BLAST identity using usearch; from these, a repre-
sentative set of OTUs was selected. Sequences were
aligned (PyNAST) against Silva v128 [33], and this
database was also used to assign taxonomy. Singletons,
mitochondria-, cyanobacteria- and control-associated
OTUs were removed from the OTU table, as were
OTUs unaffiliated with any taxonomic group. Data were
then rarefied to 100,000 reads to account for differences
in sequencing depth across samples and these relative
abundances were used to calculate the overall abun-
dances by phylum presented in Fig. 3d.
Raw (unrarefied) OTU abundance data were imported

into R for analyses using Phyloseq [34] (Additional files 5
and 6). A phylogenetic tree was generated using MEGA
v7.0 [35] and rooted to a random node using the R pack-
age phytools [36]. A pseudocount of 0.001 was added to
all OTU abundances to avoid calculating log-ratios
involving zeros, and then data was then made compos-
itional through isometric log-ratio transformation using
the R package philr [37]. Ordination was carried out
using the ‘ordinate’ function in Phyloseq, based on
Euclidean distances in philr space. Permutational ana-
lysis of variance (PERMANOVA) was carried out using
the ADONIS command in the R package vegan [38].
OPLS-DA models were built using the ropls package in
R [39]. Alpha diversity was assessed using Phyloseq.
Compositional analysis of the microbiota at six taxo-
nomic levels was based on isometric log-ratio transform-
ation of raw sequence abundances and adjusted for
multiple testing using the Benjamini-Hochberg method,
carried out using the ANCOM statistical framework [40]
in R, with code obtained from the author’s webpage:
https://sites.google.com/site/siddharthamandal1985/
research.

Preparation of figures
In order to achieve uniformity, most figures except those
demonstrating NMR spectral data were generated using
GraphPad Prism 7 (GraphPad Software Inc., San Diego,
California). NMR spectra and related figures were cre-
ated using Matlab (Mathworks) with in-house scripts.
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