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A recently proposed phase-space boundary integral model for the stochastic propagation of 

ray densities is presented and, for the first time, explicit connections between this model 

and parametric uncertainties arising in the underlying physical model are derived. In par- 

ticular, an asymptotic analysis for a weak noise perturbation of the propagation speed is 

used to derive expressions for the probability distribution of the phase-space boundary co- 

ordinates after transport along uncertain, and in general curved, ray trajectories. Further- 

more, models are presented for incorporating geometric uncertainties in terms of both the 

location of an edge within a polygonal domain, as well as small scale geometric fluctua- 

tions giving rise to rough boundary reflections. Uncertain source terms are also considered 

in the form of stochastically distributed point sources and uncertain boundary data. A se- 

ries of numerical experiments is then performed to illustrate these uncertainty models in 

two-dimensional convex polygonal domains. 
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1. Introduction 

Modelling ray propagation in uncertain domains � ⊂ R 

d , through uncertain media or resulting from uncertain source

terms is important for a wealth of applications in high-frequency wave modelling; application areas include optics, acoustics,

seismology, structural mechanics and electromagnetics. In this paper we consider stochastically smoothed transfer operators

[1–4] as the foundation of a model to describe these uncertainties. These operators can be applied to describe the stochastic

evolution of a density along a non-interacting particle (or ray) trajectory flow, where both the arrival location of the particle

and its boundary reflections are uncertain. The corresponding deterministic particle flow with specular boundary reflections

is typically used to describe the mean behaviour of the stochastic particle evolution and in the case d = 2 considered here,

these deterministic flow problems are often termed dynamical billiards [5] . 

Stochastic transfer operator models arise when considering the evolution of a probability density distribution ρ in phase-

space R 

2 d under the action of a stochastic dynamical system of the form [6] 

d X = V (X )d t + σd W, (1)
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where σ > 0 and W is a 2 d -dimensional Wiener process. The solutions X are time-dependent random variables such that 

Prob (X (t) ∈ A ) = 

∫ 
A 

ρ(Y, t) d Y. 

The density ρ may then be characterized by the Fokker–Planck equation 

∂ρ

∂t 
+ ∇ · (V ρ) = 

σ 2 

2 

�ρ, (2) 

provided that the vector field V is sufficiently smooth. The solution of this equation may be represented using the following

Wiener integral [7] , sometimes known as the Fokker–Planck operator [3] 

L 

t [ ρ](X ) = 

1 

(2 πσ 2 δt) d 

∫ 
R 2 d 

exp 

(
−

∫ t 

0 

[ ˙ X (τ ) − V (X (τ ))] 2 

2 σ 2 
d τ

)
ρ(X, 0) d X (t) (3) 

in the limit where the time increment δt → 0. We sidestep the proper definition of ˙ X and the formal limit as δt → 0 here

since we will soon abandon the above continuous dynamical system form of the model for a reformulation in terms of

discrete flow maps, and consequently neither issue will be of concern. 

Since the late nineties, stochastic transfer operators have predominantly been studied using periodic orbit techniques

[1,8–11] . More recently, higher dimensional flows [3] and the estimation of stationary distributions [12] have also been

considered. The discretisation of (deterministic) transfer operator based models for the evolution of phase-space densities

has traditionally been performed using the Ulam method [13] , whereby a cellular subdivision of phase-space is applied and

local approximations of the cell-to-cell transition rates are then calculated. However, it was some years later until these

methods were applied specifically to stochastic transfer operators, for example Refs. [6,14] . More recent work has focussed

on perturbation theory for the evaluation of long-time observables [15] and to quantify uncertainties [16] . The present work

continues along this direction by considering perturbation techniques for the modelling of parametric uncertainties in the

weak noise regime. 

In this work we restrict our attention to the case when V describes a Hamiltonian system and denote the associated

Hamiltonian H . In particular, we consider stationary solutions ρ∞ 

of the Fokker–Planck equation: 

{ ρ∞ 

, H} = 

σ 2 

2 

�ρ∞ 

. (4) 

This model includes approximations to frequency domain high-frequency wave problems as a notable special case [17] . We

note that (4) provides a tractable model for the stationary problem in bounded domains [17] , since it circumvents the need

to directly evaluate the long-time dynamics in terms of multiple reflections of rays (potentially leading an exponentially

increasing number of trajectories to track); methods whereby trajectories (or swarms of trajectories) are directly tracked

through phase-space are usually termed ray tracing [18] . The incorporation of uncertainties in ray tracing models has previ-

ously been considered for modelling high intensity focussed ultrasound [19] and rough surface reflections [20] in acoustics,

for modelling electromagnetic high-frequency wave problems using a polynomial chaos approach [21] and for modelling

current driven plasma waves using a combined ray tracing and Fokker–Planck model [22] . 

Long-time stochastic dynamics in high-frequency wave problems may also be considered in terms of non-parametric un-

certainty models; this type of model can even be applied without any knowledge relating to the specific nature of the un-

certainties present in the system. Statistical Energy Analysis (SEA) is perhaps the most well-known approach of this type for

modelling high-frequency noise and vibrations, see for example Refs. [23] and [24] . To construct an SEA model, one divides

a structure into a set of subsystems and then ergodicity of the underlying ray dynamics as well as quasi-equilibrium condi-

tions are postulated. The advantage is that one obtains a simplified and relatively small linear system to solve, based only

on coupling constants between subsystems. However, the particular sub-division of the structure is critical to the validity

of the underlying assumptions, which are often hard to verify. We note that more sophisticated non-parametric uncertainty

models have also been developed using random matrix theory to gain improved statistical models for applications in both

vibro-acoustics [25] and electromagnetics [26] . 

In what follows, we concentrate on stochastic ray-based models for linear wave problems that incorporate uncertainties

in the ray dynamics via stochastic evolution operators. In particular, we consider a reformulation of the Fokker–Planck

operator (3) for evolving a discrete map ϕ and replace σ by a vector σ prescribing different rates of diffusion in position

and momentum space. The iterates of the map ϕ are equivalent to a discrete time sampling of the trajectory flow X ( t ) at

times when X is located on the boundary of a bounded domain � ⊂ R 

2 . In this study we derive, for the first time, the

explicit connections between the above described stochastic evolution operator model for the propagation of a ray density

via uncertain ray dynamics and small parametric uncertainties in various aspects of the physical model, including the source

location, the geometry, the surface roughness and the propagation speed. Most significantly, in the latter case we give a

detailed asymptotic analysis to describe the distribution of the phase-space coordinate on the boundary of � after transport

through an uncertain material or substance within �. 

The paper is structured as follows: in Section 2 we will outline a boundary integral model for the stochastic evolution of

phase-space densities through bounded domains � ⊂ R 

2 . In Section 3 we will then detail the incorporation of specific model

uncertainties using the framework presented in Section 2 . In particular, we will consider weak noise material parametric
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Fig. 1. Ray trajectories given by a noisy boundary map inside a convex polygon � = ABCDEF . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uncertainties in Section 3.1 , geometric uncertainties in Section 3.2 and uncertain source terms in Section 3.3 . The numerical

implementation of the boundary integral model from Section 2 will be described in Section 4.1 , before presenting a series

of numerical examples in Section 4.2 , in order to illustrate the uncertainty models from Section 3 . 

2. A stochastic boundary integral model for propagating densities 

In this section we present an overview of the problem set-up, for more details see Ref. [27] . Consider a Hamiltonian

system governed by 

ˆ H (r , p ) = c(r ) | p | ≡ 1 , 

which describes trajectories propagating at speed c between reflections at the boundary � = ∂�; these trajectories are

simply straight line paths when c is a constant. The phase-space coordinates ( r, p ) denote the position r ∈ � ⊂ R 

2 and the

momentum or slowness vector p ∈ R 

2 , respectively. Furthermore, we denote the Birkhoff coordinates on the boundary � as

X = (s, p) . Here, the first coordinate s is an arc-length coordinate for the position on � and the second, p = c −1 sin (θ ) , is

the tangential component of the slowness p at the point s . The angle θ ∈ (−π/ 2 , π/ 2) is formed between the normal vector

to � and the trajectory leaving the boundary at the point s . For simplicity, we limit our discussion to convex polygonal

domains � in order to avoid the additional complexities involved in implementing visibility functions or curved boundary

segments. 

A reformulation of the Fokker–Planck operator (3) for propagating a phase-space density ρ through � from a starting

point s ′ ∈ �, until reaching another point s ∈ �, is given as follows [4,27] 

L σρ(X ) = 

∫ 
Q 

f σ (X − ϕ(X 

′ )) ρ(X 

′ ) d X 

′ . (5)

The integral in Eq. (5) is over the boundary phase-space Q = � × (−c −1 , c −1 ) and ϕ: Q → Q denotes the (deterministic)

boundary map mentioned above, which may be written in component form as 

ϕ(X 

′ ) = (ϕ s (X 

′ ) , ϕ p (X 

′ )) . (6)

Here X ′ = (s ′ , p ′ ) ∈ Q and the map ϕ therefore corresponds to a translation from s ′ to ϕs ( X 

′ ), together with a rotation equiv-

alent to a specular reflection at ϕs ( X 

′ ) (denoted ϕp ( X 

′ )) as shown in Fig. 1 . The function f σ appearing in (5) is a probability

density function (PDF) satisfying ∫ 
Q 

f σ (X − ϕ(X 

′ )) d X = 1 , (7)

where σ is a parameter set related to the spread of the distribution. 

The PDF f σ may be chosen according to the requirements of a given application and will be discussed further in the next

section. However, note that the boundary map ϕ has finite range (in both variables) and so it is natural to consider only PDFs

with finite support. This differs from the models based on the Fokker–Planck operator (3) described in the introduction. The

density evolution described by the operator (5) corresponds to a stochastic boundary map ϕ σ (X ′ ) = ϕ(X ′ ) + X ε with additive

noise X ε = (s ε , p ε ) where the random variables ( s ε , p ε) are drawn from the PDF f σ . Rearranging to obtain the deterministic

boundary map ϕ(X ′ ) = X − X ε for given ϕ σ (X ′ ) = X ∈ Q, then the domain of f σ (that is, the admissible values of X ε) should

be restricted so that the values X − X ε are within the range of ϕ. We denote the support of f σ by (X −, X + ) for X ± = (s ±, p ±) .

A relatively straightforward calculation then gives p ± = ± c −1 − ϕ p (X ′ ) . 
The stationary density ρ∞ 

is defined by the Neumann series 

ρ∞ 

= 

∞ ∑ 

j=0 

( L σ ) 
( j) ρ0 , (8)
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Fig. 2. Parametric uncertainties illustrated on a rectangular domain showing (a) uncertain geometry, (b) uncertain source terms and (c) uncertain material 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the sum to infinity includes contributions from arbitrarily many reflections. In particular, the superscript ( j ) denotes

the j th iteration of the operator L σ acting on an initial boundary density ρ0 , and each iterate corresponds to a reflection

from or transmission through �. The series (8) will only converge if energy losses have been included in the model. These

losses could arise, for example, from structural damping or from reflections at partially absorbing boundaries. In this work

we introduce a damping term of the form exp (−μd(s, s ′ )) , which corresponds to a structural damping model with damping

coefficient μ≥ 0 and where d ( s, s ′ ) is the Euclidean distance between the trajectory endpoints s ′ and s on �. Provided that

the Neumann series (8) converges, then we obtain a second-kind Fredholm boundary integral equation [4,27] 

(I − L σ ) ρ∞ 

= ρ0 (9) 

for ρ∞ 

. 

Once the stationary boundary density ρ∞ 

has been calculated using Eq. (9) , it may then be projected into the interior of

� to give the corresponding interior stationary density ρ�. For a constant speed of propagation c, ρ� may be evaluated at

a point r ∈ � as (see for example Ref. [17] ) 

ρ�(r ) = 

1 

c 2 

∫ 
�

cos (ϑ(r s , r )) exp (−μ| r − r s | ) 
| r − r s | ρ∞ 

( s, p) d s. (10) 

Here, r s represents the Cartesian coordinates corresponding to s ∈ � and ϑ( r s , r ) is the angle between the trajectory direction

vector r − r s and the normal vector to � at s . 

3. Uncertainty modelling 

In this section we model three distinct sources of uncertainty, as illustrated in Fig. 2 , within the stochastic boundary

integral operator framework introduced above. In particular, we explain how the PDF f σ can be chosen in order to model

different types of uncertainty arising in a particular application. 

3.1. Uncertain material parameters 

In this work we consider a simple model where the material inside the domain � is characterised by a single parameter

c , the propagation speed. However, we note that such a model includes within it the potential to model a wide range of pa-

rameter uncertainties upon which c depends for different applications, for example, temperature, density, Young’s modulus

and so on. In this section we perform an asymptotic analysis to predict the distribution of trajectories arising from a small

uncertainty in c of the form 

c( r ) = c 0 + ε · c̄ ( r ) . (11) 

Here r = (r x , r y ) T is the trajectory position, c 0 > 0 is the mean propagation speed and | ε| � c 0 , ε = (εx , εy ) T , where εx , εy ∼
N (0 , σ 2 

c ) are normally distributed random variables with mean 0 and variance σ 2 
c . The normal distribution is a popular

choice for modelling noise and is appropriate here under the assumptions that c is equally likely to be either greater or less

than c 0 and is more likely to be in the vicinity of c 0 than further away [28] . However, we note that the subsequent asymp-

totic analysis is not limited to the normal distribution, rather it is limited to a weak noise perturbation about the mean. The

vector valued function c̄ : � → R 

2 is assumed to define a continuously differentiable (in both variables) perturbation of the

propagation speed in the bounded domain �. We note that our methods allow for fairly general choices of c̄ , but also that

the coefficients of the asymptotic series will depend on this choice and so one should consider whether it will adversely

affect their convergence. 

3.1.1. Asymptotic approximation of the trajectory deformation 

The stochastic perturbation in c (11) means that instead of straight-line trajectories, the Hamiltonian 

ˆ H = c| p | = 1 here

describes curved propagation paths in general, which are governed by the dynamical system 

˙ r = c( r ) 2 p , 



J. Bajars and D.J. Chappell / Commun Nonlinear Sci Numer Simulat 80 (2020) 104973 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c( r ) ̇ p = −∇c( r ) , (12)

with initial conditions r (0) = r 0 and p (0) = p 0 /c 0 for | p 0 | = 1 . We seek a solution of (12) with propagation speed given by

(11) in the form of the asymptotic expansions: 

r (t) = r 0 + c 0 p 0 t + R̄ (t) ε + . . . , 

p (t) = 

1 

c 0 
p 0 + P̄ (t) ε + . . . , (13)

where R̄ : R + → R 

2 ×2 and P̄ : R + → R 

2 ×2 are unknown matrix perturbation functions. In general, we consider the asymptotic

expansions (13) up to first order in ε only, that is, we are seeking only the first order correction to the straight-line trajectory

solution when ε = 0 . We will see later that this is sufficient to derive closed form expressions for the PDFs for the each of

the boundary phase-space trajectory coordinates when using a model based on the normal distribution. It may be necessary

to include higher order terms for other choices of distribution. Combining (13) with the expression for the propagation speed

(11) and substituting into the system (12) leads to the following system of matrix differential equations for the perturbation

functions R̄ and P̄ : 

˙ R̄ (t) = 2 p 0 � c̄ ( r 0 + c 0 p 0 t) + c 2 0 ̄P (t) , 

c 0 
˙ P̄ (t) = −∇ ̄c ( r 0 + c 0 p 0 t) , (14)

where � denotes the Kronecker product. Since the second equation is independent of R̄ (t) , the solution to the system

(14) can be calculated directly from the integrals 

R̄ (t) = 

∫ t 

0 

(
2 p 0 � c̄ ( r 0 + c 0 p 0 τ ) + c 2 0 ̄P (τ ) 

)
d τ, 

P̄ (t) = − 1 

c 0 

∫ t 

0 

∇ ̄c ( r 0 + c 0 p 0 τ ) d τ. (15)

3.1.2. Verification of the asymptotic approximation 

For simplicity, we will consider the case when the perturbation function c̄ (r ) is linear and set 

c( r ) = c 0 + ε · ( r − r 0 ) . (16)

We note that the asymptotic analysis described above holds more generally, but this special case proves useful as a test case

since the asymptotic approximation (13) simplifies to 

r (t) = r 0 + c 0 p 0 t + 

c 0 
2 

(2( p 0 � p 0 ) − I) εt 2 + 

c 0 
12 

(
εT ˜ R x ε, εT ˜ R y ε

)T 
t 3 + . . . , 

p (t) = 

1 

c 0 
p 0 −

1 

c 0 
εt + 

1 

4 c 0 

(
εT ˜ P x ε, εT ˜ P y ε

)T 
t 2 + . . . , (17)

where we have also included second order terms for the purposes of analysis in Section 3.1.3 . The perturbation matrices are

given by 

˜ R x = 

(
−10 p x 0 + 12 p 3 x 0 − 3 p y 0 + 12 p 2 x 0 p y 0 

−3 p y 0 + 12 p 2 x 0 p y 0 − 4 p x 0 + 12 p x 0 p 
2 
y 0 

)
, 

˜ R y = 

(
−4 p y 0 + 12 p 2 x 0 p y 0 − 3 p x 0 + 12 p x 0 p 

2 
y 0 

−3 p x 0 + 12 p x 0 p 
2 
y 0 − 10 p y 0 + 12 p 3 y 0 

)
, 

˜ P x = 

(
2 p x 0 p y 0 
p y 0 0 

)
and 

˜ P y = 

(
0 p x 0 

p x 0 2 p y 0 

)
, 

where p x 0 and p y 0 refer to the entries of the initial unit momentum vector p 0 = (p x 0 , p y 0 ) 
T . In addition, we note that

the choice of a linear perturbation (16) leads to rotational invariance of the solution. One can see this by considering ˆ r =
R φr , where R φ is the standard rotation matrix giving an anti-clockwise rotation through the angle φ in two-dimensional

Euclidean space. It is straightforward to show that c( r + r 0 ) = c 0 + ε · r = c 0 + ̂  ε · ˆ r , with c given by (16) . Since in this case

we also have that ∇c = ε, then it follows that the dynamical system (12) is invariant under the action of R φ . 

An exact solution to the dynamical system (12) with linear propagation speed (16) can also be derived in the special case

when ε := εx = εy . This analytical solution is detailed in Appendix A ; we use it here to verify our asymptotic approximation

(17) as shown in Fig. 3 . The plot shows trajectories computed for three different values of ε with c 0 = 1 and the initial

conditions r 0 = 0 and p 0 = (1 , 0) T . The solutions are computed until the trajectory intersects the line r x = 1 . The plot shows

good agreement between the analytical and (first and second order) asymptotic solutions. As expected, the match is better

for the second order asymptotic approximation, for smaller choices of ε or if shorter trajectories are considered. 
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Fig. 3. Comparison between analytical (dashed), first order asymptotic (solid) and second order asymptotic (dotted) trajectory solutions r = (r x , r y ) of the 

system (12) for a linear propagation speed function (16) with different values of ε = (εx , εy ) such that εx = εy = ε. Initial conditions and parameter values: 

r 0 = 0 , p 0 = (1 , 0) T and c 0 = 1 . 

 

 

 

 

 

 

 

 

 

 

 

3.1.3. Statistics of the noisy boundary flow map 

We now consider the statistical properties of the trajectories governed by the asymptotic solution (17) when εx , εy ∼
N (0 , σ 2 

c ) , again noting that other probability distributions could be used to model the weak additive noise. In particular,

we study the distribution of arrival positions at a straight-line receiving boundary as a probability distribution whose mean

corresponds to the straight line trajectory produced when εx = εy = 0 . The consequence of the rotational invariance de-

scribed above is that the distribution of arrival positions depends only on the direction of the initial unit momentum vector

p 0 relative to the orientation of the receiving boundary, rather than depending on each of these independently. We therefore

restrict to studying the distribution of arrival positions on a boundary line parallel to the y-axis given by r x = L, with L > 0

a constant, for different values of the initial unit momentum vector p 0 and a fixed initial position r 0 = 0 . We will consider

the dependence of the distribution of r y ( t ) on the probability distribution from which ε is sampled at the time t = t ∗ where

r x (t ∗) = L . 

Let us take p 0 = ( cos (θ ′ ) , sin (θ ′ )) T , where θ ′ ∈ (−π/ 2 , π/ 2) is the angle between the normal vector ((1, 0) T in our

example) and the trajectory, evaluated at its initial point. Then we consider the asymptotic solution (17) and note that

fixing r x (t ∗) = L leads to the following equation for the arrival time t ∗: 

L = c 0 cos (θ ′ ) t ∗ + 

c 0 
2 

(
cos (2 θ ′ ) εx + sin (2 θ ′ ) εy 

)
t ∗2 + 

c 0 
6 

(
(−5 cos (θ ′ ) + 6 cos 3 (θ ′ )) ε2 

x 

+ (12 cos 2 (θ ′ ) sin (θ ′ ) − 3 sin (θ ′ )) εx εy + (6 cos (θ ′ ) sin 

2 (θ ′ ) − 2 cos (θ ′ )) ε2 
y 

)
t ∗3 + . . . 

To find t ∗ we consider the asymptotic expansion 

t ∗ = t 0 + t x εx + t y εy + t xx ε
2 
x + t xy εx εy + t yy ε

2 
y + . . . (18)

and find that the expansion coefficients are 

t 0 = 

L 

c 0 
sec (θ ′ ) , t x = − L 2 

2 c 2 
0 

cos (2 θ ′ ) sec 3 (θ ′ ) , t y = −L 2 

c 2 
0 

tan (θ ′ ) sec (θ ′ ) , 

t xx = 

L 3 

6 c 3 
0 

(6 cos 4 (θ ′ ) − 7 cos 2 (θ ′ ) + 3) sec 5 (θ ′ ) , 

t xy = 

L 3 

2 c 3 
0 

tan (θ ′ )(4 cos 2 (θ ′ ) − 3) sec 3 (θ ′ ) , 

t yy = − L 3 

3 c 3 
0 

(3 cos 2 (θ ′ ) − 4) sec 3 (θ ′ ) . 

The solution r y may then be computed at t = t ∗ using (17) as follows 

r y ( ε, θ ′ ) = L tan ( θ ′ ) + 

L 2 

2 c 0 
tan (θ ′ ) sec 2 (θ ′ ) εx − L 2 

2 c 0 
sec 2 (θ ′ ) εy 

+ 

L 3 

2 c 2 
0 

tan 

3 (θ ′ ) sec 2 (θ ′ ) ε2 
x −

L 3 

c 2 
0 

tan 

2 (θ ′ ) sec 2 (θ ′ ) εx εy 

+ 

L 3 

2 c 2 
0 

tan (θ ′ ) sec 2 (θ ′ ) ε2 
y + . . . , (19) 

where r y = L tan (θ ′ ) corresponds to a straight line trajectory. Notice that 
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Fig. 4. Comparison between the numerically computed (bar), sampled (dashed) and predicted Gaussian (solid) PDFs of the r y coordinate when r x = 1 , with 

c 0 = 1 . The three columns indicate the results for three different initial directions θ ′ ∈ {0, π /8, π /4}. The two rows show the effect of changing the variance 

σ 2 
c ∈ { 0 . 01 , 0 . 001 } on the distribution of r y values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r y ( ε, 0) = − L 2 

2 c 0 
εy + . . . , (20)

meaning that the dominant perturbation is independent of both εx and the second order terms when θ ′ = 0 . 

As | θ ′ | → π /2, the solution for r y grows without bound (as would be expected) and this growth is faster in the higher

order terms. For the leading order terms to dominate the expansion (19) , we need to assume that the growth close to | θ ′ | =
π/ 2 is slower than the decay provided by increasing powers of εx and εy . For example, a suitable set of requirements for

neglecting the second order terms are that | εx | � c 0 cot 2 (θ ′ ) / (2 L ) and | εy | � c 0 | cot (θ ′ ) | / (2 L ) , which become increasingly

strong as | θ ′ | → π /2. Under these assumptions we are able to neglect higher order terms and, as a consequence, conclude

that r y ( ε, θ ′ ) samples a normal distribution with mean μy = L tan (θ ′ ) and variance 

σ 2 
y = 

L 4 

4 c 2 
0 

sec 6 (θ ′ ) σ 2 
c . (21)

Here we have used the well-known result for the variance of a linear combination of two independent normally distributed

random variables to obtain a closed form expression for σ 2 
y . This would not extend more generally to alternative probabil-

ity distribution models for the material parameter noise (not least because usually one must specify more than simply the

mean and variance to obtain the PDF), however, and one would instead need to perform a Monte-Carlo sampling of the

formula (19) to estimate the PDF for r y . Note that a calculation of this type using the normal distribution is shown in the

dashed curves of Fig. 4 . For alternative choices of probability distribution the PDF for r y would, in general, only be known

numerically, but this would not pose any major issues in terms of its implementation within the boundary integral frame-

work outlined in Section 2 . Note that for large values of | θ ′ | or σ c , the above described requirements on ε are less likely

to be satisfied, and the higher order terms may have a significant effect on the probability density function. Nevertheless,

we have derived an asymptotic model for ray propagation through uncertain media that is valid in the weak noise limit as

σ c → 0. 

Fig. 4 demonstrates the accuracy of the asymptotic expansion (19) for two choices of the variance σ 2 
c = 0 . 01 and σ 2 

c =
0 . 001 , and three choices of the angle θ ′ = 0 , π/ 8 and π /4. We fix c 0 = 1 and the r x coordinate of the arrival position to be

r x = L = 1 . The histograms in Fig. 4 indicate the PDFs given by Monte Carlo simulations of the system (12) , which are solved

numerically using the fourth order Runge–Kutta method with a sufficiently small time-step to ensure that | r x − 1 | < 10 −4 .

The results are shown for a sample of one million εx and εy values. The solid line indicates a Gaussian PDF with variance

(21) . Note that the mean value has been nominally rescaled to zero in all cases. The dashed lines indicate the distribution

of the r y values calculated using the asymptotic expansion (19) , truncated after the second order terms explicitly stated in

(19) , and using a sample of 10 million values of εx and εy . Fig. 4 shows that for larger values of θ ′ , these higher order

corrections to the Gaussian distribution are necessary to represent the distribution of r y values unless the variance σ 2 
c is

sufficiently small. The sampled PDF in the top right plot of Fig. 4 suddenly cuts off to the left side of the distribution close

to r y = −0 . 25 . For the given parameter values, the asymptotic expansion (19) up to the second order minus the mean value
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Fig. 5. Comparison between the numerically computed (bar), sampled (dashed) and predicted Gaussian (solid) PDFs for the tangential slowness p , with 

c 0 = 1 , L = 1 and σ 2 
c = 0 . 01 . The three distinct results from left to right are for three different initial angles θ ′ ∈ {0, π /8, π /4}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L is 

r y ( ε, π/ 4) = (εx − εy ) + (εx − εy ) 
2 . 

Note that as a function of the variable εx − εy , r y ( ε, π/ 4) has a global minimum of −0 . 25 , which explains the location of

the cut off in the top right plot of Fig. 4 . Therefore, to improve the accuracy of the sampled distribution in this case requires

one to consider even higher order terms in the asymptotic approximation (19) . 

In addition to the analysis above for the arrival position, Fig. 3 also implies that the specular reflection angles θ at

the receiver edges, and hence the tangential slowness p = c −1 sin (θ ) will vary due to the curved trajectories. Using the

asymptotic approximation (17) at t = t ∗ (18) we find 

p = 

1 

c 0 
sin (θ ′ ) − L 

c 2 
0 

sec (θ ′ ) εy + 

L 2 

2 c 3 
0 

(3 cos 2 (θ ′ ) − 1) sec 3 (θ ′ ) εx εy 

+ 

3 L 2 

2 c 3 
0 

tan ( θ ′ ) sec (θ ′ ) ε2 
y + . . . (22) 

up to quadratic order. Note that from simple geometric considerations, the mean reflective angle is equal to θ ′ and the

mean tangential slowness is c −1 
0 

sin (θ ′ ) . Neglecting all higher order terms, then the tangential slowness p at the receiver

edge, that is at time t ∗, samples a normal distribution with mean μ∗
p = c −1 

0 
sin (θ ′ ) and variance 

σ ∗2 
p = 

L 2 

c 4 
0 

sec 2 (θ ′ ) σ 2 
c . (23) 

Here, we have again obtained a closed form expression for σ ∗2 
p that does not extend more generally to alternative probability

distribution models for the material parameter noise. In this case, one would obtain an asymptotic estimate of the PDF for

p numerically by performing a Monte-Carlo sampling of the formula (22) . Such a calculation for the normal distribution is

shown in the dashed curves of Fig. 5 . 

We investigate the accuracy of the asymptotic approximation (22) of the tangential slowness for the example above in

Fig. 5 . We fix the variance σ 2 
c = 0 . 01 and consider three choices of θ ′ . Fig. 5 contains the results of all three experiments

with θ ′ = 0 for the peak to the left, θ ′ = π/ 8 for the central peak and θ ′ = π/ 4 for the peak to the right. The histograms

indicate the PDFs given by Monte Carlo simulations of the system (12) using the same sample of one million εx and εy 

values as for the histograms in Fig. 4 , whereas the solid lines indicate a Gaussian PDF with variance (23) . The dashed

lines indicate the distributions of the p values calculated using the asymptotic expansion (22) , truncated after the second

order terms explicitly stated in (22) using the same sample of 10 million εx and εy values as in Fig. 4 . The results in

Fig. 5 follow a similar pattern to the results shown in Fig. 4 , that is, for larger values of θ ′ the higher order corrections to

the normal distribution in (22) are necessary to represent the distribution of p to reasonable accuracy (unless the variance

σ 2 
c is sufficiently small). 

The analysis presented above can also be extended to consider stochastic variations in the trajectory length. To linear

order in εx and εy , the trajectory length l is given by 

l = 

∫ t ∗

0 

| ̇ r (t) | d t = L sec (θ ′ ) + 

L 2 

2 c 0 
tan 

2 (θ ′ ) sec (θ ′ ) εx − L 2 

2 c 0 
tan (θ ′ ) sec (θ ′ ) εy + . . . . 

However, for reasons of simplicity, the trajectory length dependent dissipation term exp (−μd(s, s ′ )) described at the end of

Section 2 will only be applied with d ( s, s ′ ) equal to the Euclidean distance between s ′ and s as before. 
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3.1.4. Practical implementation algorithm 

In the previous section we demonstrated that in the limit of small σ c , then the arrival positions of the trajectories and

the tangential momenta at the receiver edge are normally distributed with variances σ 2 
y (21) and σ ∗2 

p (23) , respectively.

This model can therefore be implemented approximately within the boundary integral operator formulation of Section 2 by

choosing the PDF f σ to be an uncorrelated bivariate truncated normal distribution 

f σ
(
X ε ; X 

−, X 

+ ) = f σs 

(
s ε ; s −, s + 

)
f σp 

(
p ε ; p −, p + 

)
:= 

⎛ 

⎝ 

χ( s ε; s −, s + ) exp 

(
− s 2 ε 

2 σ 2 
s 

)
√ 

2 πσs ψ σs ( s 
−, s + ) 

⎞ 

⎠ 

⎛ 

⎝ 

χ( p ε; p −, p + ) exp 

(
− p 2 ε 

2 σ 2 
p 

)
√ 

2 πσp ψ σp ( p 
−, p + ) 

⎞ 

⎠ (24)

with σ = (σs , σp ) chosen such that σs = σy and σp = σ ∗
p . Here χ restricts f σ to (X −, X + ) via 

χ(s ε ; s −, s + ) = H(s + − s ε ) − H(s − − s ε ) , 

where H is the Heaviside step function. The functions ψ σs and ψ σp normalise the PDF so that it satisfies (7) and are given

by 

ψ σs 
(s −, s + ) = 

1 

2 

(
erf 

(
s + √ 

2 σs 

)
− erf 

(
s −√ 

2 σs 

))
, (25)

with ψ σp defined analogously. A deterministic model with specular reflections is retrieved in the limit σ s → 0 and σ p → 0,

whereby f σ becomes a two-dimensional Dirac delta distribution. Extending the asymptotic analysis of the previous section to

more general PDF models of the material parameter noise would lead to f σs and f σp being generated numerically at discrete

points via Monte-Carlo sampling, and then some form of interpolation between these sample points would be necessary to

calculate f σ for general noise values X ε . 

Unfortunately, in the form presented in Section 3.1.3 , the approach and analysis do not automatically extend to more

general propagation speeds (11) , or to the convex polygonal domains considered in Section 2 . However, if we assume that

the arrival position and tangential momentum approximately sample normal distributions, then we can derive an efficient

and practical method for computing the parameters σ s and σ p with any given propagation speed (11) , which we detail

below. As before, the extension to alternative probability distributions will also be possible leading to numerically sampled,

rather than closed form PDFs in general. 

We will apply our method on closed convex polygonal domains where the receiver edges are of finite length. The spatial

support of f σ , denoted earlier as (s −, s + ) , will be limited to the target edge of the deterministic map ϕ as depicted in Fig. 1 ,

in order to improve the tractability of the approach. We note that this is also the same boundary integral model considered

in Ref. [27] . Let the receiver edge on a convex polygon � have endpoints with position vectors a = (a x , a y ) and b = (b x , b y ) .

Then the edge obeys the straight-line equation 

(b x − a x ) y = (b y − a y ) x + (b x a y − a x b y ) , 

which we write more concisely in the form αy = βx + γ . We need to find the parameters σ s and σ p for each receiver

coordinate X = (s, p) on this edge. We trace back along the deterministic flow map ϕ to find the starting position s ′ and

corresponding tangential slowness p ′ , that is, X ′ = (s ′ , p ′ ) . From X 

′ we can find the initial trajectory position r 0 = (r x 0 , r y 0 ) 
T 

and the unit momentum vector p 0 = (p x 0 , p y 0 ) 
T . Given r 0 and p 0 , the ray trajectory can be approximated by the asymptotic

expansion (13) for any propagation speed (11) . To proceed further we need to find the arrival time t ∗ of these trajectories at

the edge given by αy = βx + γ and compute the integrals (15) . To make this tractable, we consider the asymptotic expansion

for the arrival time (18) up to first order, i.e. 

t ∗ = t 0 + t x εx + t y εy + . . . , (26)

where t x , t y are unknown expansion coefficients and 

t 0 = 

βr x 0 − αr y 0 − γ

c 0 (βp x 0 − αp y 0 ) 

is the arrival time corresponding to the deterministic straight-line trajectory. It can be shown that to the zeroth order

(sufficient when considering the (truncated) Gaussian PDF), the matrix perturbation functions (13) at the arrival time t = t ∗

are 

R̄ (t ∗) = R̄ (t 0 ) + . . . = 

∫ t 0 

0 

(
2 p 0 � c̄ ( r 0 + c 0 p 0 τ ) + c 2 0 ̄P (τ ) 

)
d τ + . . . , 

P̄ (t ∗) = P̄ (t 0 ) + . . . = − 1 

c 0 

∫ t 0 

0 

∇ ̄c ( r 0 + c 0 p 0 τ ) d τ + . . . (27)

To find the perturbation coefficients t x and t y , we impose that the asymptotic trajectory (13) crosses the receiver edge

where αy = βx + γ at the arrival time t ∗ (26) and thus (
t x 
t y 

)
= 

c −1 
0 

αp y 0 − βp x 0 
R̄ (t 0 ) 

T 

(
β

−α

)
. (28)
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Then at time t = t ∗ we find that 

r (t ∗) = r 0 + c 0 p 0 t 
∗ + R̄ (t ∗) ε + . . . 

= r 0 + c 0 p 0 t 0 + c 0 p 0 (t x , t y ) ε + R̄ (t 0 ) ε + . . . . 

Using the expression (28) for ( t x , t y ) and introducing the mean arrival position r d = r 0 + c 0 p 0 t 0 then leads to 

r (t ∗) = r d + 

1 

αp y 0 − βp x 0 
p 0 (β, −α) ̄R (t 0 ) ε + R̄ (t 0 ) ε + . . . 

= r d + 

1 

αp y 0 − βp x 0 

(
αp y 0 −αp x 0 
βp y 0 −βp x 0 

)
R̄ (t 0 ) ε + . . . 

= r d + A ̄R (t 0 ) ε + . . . . (29) 

To find σ s from (29) , we find a rotation matrix � such that after rotation all positions r (t ∗) are on the line parallel to the

y -axis, that is 

�r (t ∗) = �r d + �A ̄R (t 0 ) ε + . . . . (30) 

Denoting B = �A ̄R (t 0 ) , then from the y -component we find that 

σ 2 
s = ( B 

2 
2 , 1 + B 

2 
2 , 2 ) σ

2 
c . (31) 

Notice that σ 2 
s depends on the sum of the squares of the entries of B . We may estimate this sum using the Frobenius

norm: 

‖ B ‖ 

2 
F = ‖ �A ̄R (t 0 ) ‖ 

2 
F ≤ ‖ �‖ 

2 
F ‖ A ‖ 

2 
F ‖ ̄R (t 0 ) ‖ 

2 
F ≤ 2 ‖ A ‖ 

2 
F ‖ ̄R (t 0 ) ‖ 

2 
F , 

where 

‖ A ‖ 

2 
F = 

α2 + β2 

(α sin (θ ′ ) − β cos (θ ′ )) 2 , 

and p 0 = ( cos (θ ′ ) , sin (θ ′ )) T as before. The Frobenius norm of the matrix A therefore becomes unbounded at values of θ ′ 
where the mean reflective angle at the receiver edge approaches ±π /2. The Frobenius norm of the matrix R̄ (t 0 ) will depend

on the parameter values for a given example, including the propagation speed (11) . In the case of alternative PDF models

for the material parameter noise we would obtain a numerical estimate of the PDF for the arrival position via a Monte-Carlo

sampling of the formula (30) . 

To find the parameter σ p for the tangential slowness, we use the formula (27) to obtain 

p (t ∗) = 

1 

c 0 
p 0 + P̄ (t ∗) ε + . . . = 

1 

c 0 
p 0 + P̄ ( t 0 ) ε + . . . . 

Considering the tangential component of p , we find that 

p = 

p 0 · v 
c 0 

+ ( ̄P (t 0 ) ε) · v + . . . , (32) 

and thus we obtain 

σ 2 
p = 

∣∣P̄ (t 0 ) 
T v 

∣∣2 
σ 2 

c , (33) 

where v is the normalized direction vector of the receiver edge. As before, to extend to alternative PDF models for the

material parameter noise we would apply a Monte-Carlo sampling of the formula (32) leading to a numerical estimate of

the PDF for p . 

The method to find the parameters σ s (31) and σ p (33) described above may be applied to any convex polygonal domain

with propagation speed (11) . We will adopt this approach for performing numerical examples with an uncertain propagation

speed c in Section 4.1 . 

3.2. Uncertain geometry 

In this section we consider geometric uncertainties in two respects. Firstly, we model the case when the position of an

entire region of the boundary � is uncertain. For example, if the measured length of a rectangular plate was subject to error,

which can be modelled probabilistically. Secondly, we consider small scale uncertain fluctuations of the geometry leading to

rough edge reflections. 
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3.2.1. Positional uncertainties 

The position of a boundary edge of � receiving a propagated trajectory may be considered as uncertain. We consider the

relatively simple case where the edge is parallel to the mean edge position and follows a normal distribution ε⊥ ∼ N (0 , σ 2 
⊥ ) ,

ε‖ ∼ N (0 , σ 2 ‖ ) , where ε⊥ and ε‖ denote the displacement from the mean edge position in the directions perpendicular and

tangential to the edge, respectively. These modelling assumptions are for the purposes of permitting some initial analytic

progress in the derivation of the uncertainty model, but are not restrictions on the applicability of the approach in general.

Extensions to less restrictive assumptions on the geometry and alternative PDFs for the perturbation about the mean are

topics for further work in this area. We note that, as before, normal distributions are an appropriate choice here under the

assumptions of symmetry about the mean and that the edge position is more likely to be close to the mean than far away. 

Assuming that the length of the edge is fixed, then it is relatively straightforward to derive (from geometrical considera-

tions) that the boundary position arclength parametrisation s is given by 

s = s̄ + ε⊥ tan (θ ) − ε‖ . (34)

Here s̄ denotes the boundary position arclength parametrisation of the mean boundary edge and as before, θ denotes the

angle of the ray after specular reflection at the uncertain boundary, measured with respect to the surface normal vector at

the arrival position. Hence the deviation of the boundary edge coordinate about the mean s̄ is normally distributed with

variance σ 2 
⊥ tan 

2 (θ ) + σ 2 ‖ , again using standard properties of linear combinations of normally distributed random variables.

This model can therefore be approximated within the stochastic transfer operator framework introduced in Section 2 with

the truncated normal distribution PDF (24) and setting σ 2 
s = σ 2 

⊥ tan 

2 (θ ) + σ 2 ‖ . This leads to an approximation that is valid

as σ⊥ , σ ‖ → 0, since then the truncated normal distributions more closely approximate normal distributions. As in the

previous section, a straightforward method for extending the above analysis beyond normally distributed noise would be to

apply Monte-Carlo sampling in the formula (34) and approximate the PDF for the boundary edge coordinate numerically. 

3.2.2. Directional uncertainties 

The PDF (24) , or any appropriate alternative, may be applied to model stochastic rough boundary reflections according

to the choice of parameter σ p . For convex polygonal domains, we may compute the spatial integral in (5) analytically (see

Section 4.1 ) and the result is bounded for σs = 0 . This type of geometric uncertainty can therefore be modelled by taking

σs = 0 and considering the influence of the parameter σ p alone. The limiting cases of small and large σ p are well understood

and the transition from infinitesimally small to infinitely large σ p corresponds to the transition from specular to Lambertian

reflections at the boundary. We note that the property of interpolating between specular and Lambertian reflections is

common within rough surface reflection models for geometrical optics, such as the well-known Phong reflection model

[29] . In the case of infinitesimally small σ p the correspondence is reasonably clear since in the limit σ p → 0, the term

f σp (p ε ; p −, p + ) from the PDF (24) tends to δ(p − ϕ p (X ′ )) , where the tangential slowness component of the deterministic

boundary map ϕp corresponds to a specular reflection as before. In the limit σ p → ∞ , then f σp (p ε ; p −, p + ) → c/ 2 and thus

one obtains a uniform distribution in p . We note that this corresponds to a Lambertian (cosine) distribution in the reflection

angle since a change of variables from p to θ gives ∫ c −1 

−c −1 

c 

2 

d p = 

∫ π/ 2 

−π/ 2 

cos (θ ) 

2 

d θ = 1 . (35)

We will investigate this reflection behaviour numerically in the Section 4.2 . 

3.3. Uncertain sources 

In this section we discuss the source boundary densities ρ0 used to drive the system (9) . In the case of a high-frequency

wave problem, the source boundary density may be derived from the source or boundary conditions prescribed in the

underlying wave problem. We first consider an excitation from a point source with an uncertain location. The acoustic

energy density ρ0 on the boundary � arising from a velocity potential point source of angular frequency ω located at

r ∗
0 

= (x ∗
0 
, y ∗

0 
) ∈ � and is given by [30] 

ρ0 (s, p; r ∗0 ) = 

ωρ f cos (ϑ(r s , r 
∗
0 )) exp (−μ| r s − r ∗0 | ) δ(p − p ∗0 ) 

8 π | r s − r ∗
0 
| . (36)

Here ρ f is the density of the fluid medium, μ is the damping coefficient as before and ϑ(r s , r 
∗
0 
) is the negative of the angle

between the direction vector r ∗
0 

− r s and the interior normal vector at s . In addition, p ∗
0 

= sin (ϑ(r s , r 
∗
0 
)) /c is the tangential

slowness of the trajectory arriving at s ∈ � from the source point r ∗0 ∈ � and r s gives the Cartesian coordinates of the point

s ∈ � as before. 

In order to generalise the deterministic point source described above to a stochastic one, we consider a disc D R with

centre r ∗0 and radius R chosen such that D R ⊂�. We then replace the source point with a truncated normal distribution

inside D R , where the probability decreases as the radial distance from r ∗
0 

increases from r = 0 towards r = R . Explicitly, we

obtain 

ρ0 (s, p; D R ) = 

∫ 2 π

0 

∫ R 

0 

ωρ f cos (ϑ(r s , r 0 )) exp (−μ| r s − r 0 | − r 2 / (2 σ 2 
0 )) δ(p − p 0 ) 

16 π2 σ 2 (1 − exp (−R 

2 / (2 σ 2 ))) | r s − r 0 | r d r d φ, (37)

0 0 
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Fig. 6. A domain � with boundary � divided into elements. The collocation points for the spatial variable s are represented by dots at the element 

midpoints. The collocation points for the tangential slowness p are represented by the arrows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ( r, φ) are polar coordinates in D R that govern the location of the source point r 0 = (x 0 , y 0 ) = (x ∗
0 

+ r cos φ, y ∗
0 

+ r sin φ) .

Also, σ 0 is the standard deviation of the underlying normal distribution before truncation/scaling and p 0 = sin (ϑ(r s , r 0 )) /c.

In addition, we may incorporate uncertain (or rough) boundary reflections in Eq. (37) By replacing the delta distribution

δ(p − p 0 ) with a truncated Gaussian distribution of the form 

exp 

(
−(p − p 0 ) 

2 / (2 σ 2 
p ) 

)
√ 

2 πσp ψ σp 
(−c −1 − p 0 , c −1 − p 0 ) 

, (38) 

which tends to δ(p − p 0 ) in the limit as σ p → 0. Similarly, the effect of uncertain boundary arrival positions from a given

source point may be included via an additional integral over the boundary � and multiplying the integrand by the PDF of a

truncated normal distribution in the spatial variable s . 

Alternatively we may consider source terms arising from uncertain boundary conditions. An example of such source term

was proposed in Ref. [4] and takes the form 

ρ0 (s, p) = 

exp 

(
−p 2 / (2 σ 2 

b 
) 
)
χ(s ;�0 ) √ 

2 πσ 2 
b 

erf 
(
1 / ( 

√ 

2 σb c) 
) , (39) 

where χ is a cut-off function restricting the support of ρ0 to a subset of the boundary �0 ⊆�. Again our model is based on a

truncated normal distribution, where the underlying normal distribution before truncation/scaling has mean 0 and standard

deviation σ b . For small σ b , (39) describes a unit boundary density dominated by its mean tangential slowness p = 0 , that

is, propagating parallel to the normal vector. If we instead consider large σ b , then (39) describes Lambertian propagation

(uniformly distributed in p ). This type of source term was applied on a subset �0 of � in Ref. [4] and a homogeneous

boundary condition was imposed over the remaining part of �. Note that in this section we have again based our models

on the truncated normal distribution due to its convenient property of interpolating between a deterministic model and a

uniform distribution in different parameter limits, but alternatives would be relatively straightforward to implement here. 

4. Implementation and numerical results 

In this section we describe the discretisation of the phase-space boundary integral model introduced in Section 2 . We

then consider three numerical examples illustrating the model uncertainties introduced in Section 3 . 

4.1. Discretisation 

In this section we summarise the collocation discretisation of Eq. (9) originally proposed in Ref. [27] . For illustration

purposes we consider a single polygonal domain, such as the one depicted in Fig. 6 . The spatial variable s is discretised using

a piecewise constant boundary element basis approximation, which has the advantage that the spatial integral appearing in

L σ (5) is simplified to the extent where it can be evaluated analytically. A collocation method using a (globally supported)

basis of scaled Legendre polynomials φl ( p ), l = 1 , . . . , N + 1 , is employed to discretise with respect to the tangential slowness

p . We note that this combination is a good choice for problems where the solution has a low degree of regularity in a

relatively complex spatial domain compared to a smoother dependence on p in the simple interval domain (−c −1 , c −1 ) . In

the latter case, orthogonal polynomials are a popular choice for due to their spectral convergence for smooth functions [31] .

The energy density ρ∞ 

( X ) may therefore be approximated on the boundary phase-space Q in the form 

ρ∞ 

(X ) ≈
n ∑ 

j=1 

N+1 ∑ 

l=1 

ρ j,l b j (s ) φl (p) , (40) 

where 

b j (s ) = 

{
1 if s ∈ I j , 
0 otherwise, 
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and I j , j = 1 , 2 , . . . , n denotes the sub-intervals for the arclength coordinate s ∈ � corresponding to a set of n boundary

elements. The goal is to determine the coefficients ρ j,l for j = 1 , 2 , . . . , n and l = 1 , 2 , . . . , N + 1 . 

Substituting the approximation (40) into (5) for ρ∞ 

, we obtain 

L σρ∞ 

(X ) ≈
n ∑ 

j=1 

N+1 ∑ 

l=1 

ρ j,l 

∫ 
Q 

f σ (X − ϕ(X 

′ )) b j (s ′ ) φl (p ′ ) d X 

′ 

= 

n ∑ 

j=1 

N+1 ∑ 

l=1 

ρ j,l 

∫ c −1 

−c −1 

φl (p ′ ) 
[∫ 

I j 

f σ (X − ϕ(X 

′ )) d s ′ 
]

d p ′ . 

Applying the PDF f σ chosen in (24) the yields 

L σρ∞ 

(X ) ≈
n ∑ 

j=1 

N+1 ∑ 

l=1 

ρ j,l 

∫ c −1 

−c −1 

φl (p ′ ) f σp 
(p ε ) 

[∫ 
I j 

f σs 
(s ε ) d s ′ 

]
d p ′ 

= 

n ∑ 

j=1 

N+1 ∑ 

l=1 

ρ j,l 

∫ c −1 

−c −1 

φl (p ′ ) f σp 
(p ε ) 

[ 

−1 

2 ψ σs 
(s −, s + ) 

erf 

(
s − ϕ s (X 

′ ) √ 

2 σs 

)∣∣∣∣
s ′ max (p ′ ) 

s ′ 
min 

(p ′ ) 

] 

d p ′ , (41)

where, in the second line, we have evaluated the spatial integral explicitly as a function of p ′ , and ϕs ( X 

′ ) is the spatial

component of ϕ( X 

′ ) defined in Eq. (6) . Note that the notation s ′ 
min 

and s ′ max has been introduced since the limits will not, in

general, correspond to the endpoints of I j when the pre-image ϕ 

−1 of a vertex of � intersects I j (for a given p ′ ). An analytic

(but non-elegant) solution also exists for the spatial integral in the case of an additional damping factor exp (−μd(s, s ′ )) ,
with notation as in Section 2 , where the result is a product of the error and exponential functions. 

Let the spatial collocation points be denoted s i , i = 1 , . . . , n, and choose them to be the mid-points of the corresponding

boundary elements as depicted in Fig. 6 . In the direction variable, we choose the Chebyshev points 

p k = c −1 cos 

(
2 k − 1 

2(N + 1) 
π

)
, k = 1 , . . . , N + 1 , 

for the collocation points, leading to an equi-spaced set of collocation directions 

θk = 

π

2 

− 2 k − 1 

2(N + 1) 
π. 

The full discretization of the stochastic transfer operator (5) is therefore given by (L σρ∞ 

)(s i , p k ) ≈ L ρ, where the vector 

ρ = [ ρ1 , 1 ρ1 , 2 · · ·ρ1 ,N+1 ρ2 , 1 · · ·ρn,N+1 ] 
T 

and the matrix L has entries 

L (i,k ) , ( j,l) = c −1 

∫ π/ 2 

−π/ 2 

φl (p ′ (θ ′ )) f σp 
(p ε (p k , X 

′ )) S j μ(s i , X 

′ ) cos (θ ′ ) dθ ′ , (42)

with p ε (p k , X 
′ ) = p k − ϕ p (X ′ ) for i, j = 1 , . . . , n and k, l = 1 , . . . , N + 1 . Here, we have applied the change of variables θ ′ =

sin 

−1 (cp ′ ) and introduced the notation S 
j 
μ for the analytic solution of the spatial integral with damping factor μ over the

j th boundary element. Note that whilst the PDF f σ becomes unbounded as σ s → 0, the spatial integral S 
j 
μ is well defined

in this limit. The integral appearing in Eq. (42) will be computed numerically using adaptive Clenshaw-Curtis quadrature as

detailed in Ref. [27] . The main advantage of this choice is that one obtains a spectrally convergent quadrature rule provided

that the integral has been subdivided into a sum of several integrals, each with a smooth integrand. This is a consequence

of the fact that the function S 
j 
μ is smooth except at a finite number of discrete points, see Ref. [27] for further details. 

Once the stochastic transfer operator (5) has been discretised as detailed above, the integral Eq. (9) may then be written

in discrete form as the linear system 

( K − L ) ρ = K ρ0 . (43)

Here K is the interpolation matrix for the collocation projection whereby 

K ρ = [ ρ∞ 

(s 1 , p 1 ) ρ∞ 

(s 1 , p 2 ) · · ·ρ∞ 

(s 1 , p N+1 ) ρ∞ 

(s 2 , p 1 ) · · ·ρ∞ 

(s n , p N+1 )] T . 

Due to the local nature of the spatial basis functions, K will be a block sparse matrix made up of n non-zero blocks along the

diagonal with entries { φl (p k ) } k,l=1 , ... ,N+1 . In the next section we employ the above described collocation based discretisation

strategies to perform numerical experiments which illustrate the model uncertainties introduced in Section 3 . 

4.2. Numerical results 

In this section we study three numerical examples to illustrate the uncertainty models presented in Section 3 . We note

that the verification of both the boundary integral model introduced in Section 2 and its discretisation via the collocation
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approach detailed in Section 4.1 have been presented in Ref. [27] , including a comparison with exact and reference numerical

solutions and a systematic convergence study. One typically observes linear convergence as the boundary element mesh

size h is decreased and spectral convergence as the order of the Legendre polynomial basis in the momentum variable

is increased. The verification and convergence properties are not the focus of the present study and hence they are not

considered further here. In what follows, we therefore only perform simulations with the discretisation parameters fixed

where the solutions have converged sufficiently so that doubling the number of collocation points in both variables provides

a visually identical solution. We fix the number of collocation points to be N = 128 in the direction variable p and the

damping coefficient μ = 1 . We introduce a new parameter �, which indicates the length of the shortest edge of the polygon

�. In the following examples we take the average length of the boundary elements to be h = �/ 6 . 

In the first example we will consider a convex polygon A 

′ B ′ C ′ D 

′ with vertices A 

′ = (0 , 0) , B ′ = (0 . 75 , −0 . 25) , C ′ =
(0 . 75 , 0 . 5) and D 

′ = (0 , 0 . 25) and thus � = 0 . 25 . In the remaining two examples we will consider the polygon ABCDEF

illustrated in Fig. 1 with vertices A = (0 , 0) , B = (0 . 65 , 0) , C = (0 . 75 , 0 . 1) , D = (0 . 7 , 0 . 35) , E = (0 . 2 , 0 . 35) and F = (0 , 0 . 2)

with � = 0 . 1 
√ 

2 . Taking h = �/ 6 then leads to a total of n = 62 boundary elements on the first polygon A 

′ B ′ C ′ D 

′ and n = 75

boundary elements on the polygon ABCDEF . In addition, the arc-length parameter s for both polygonal boundaries runs an-

ticlockwise starting at the vertex A 

′ = A = (0 , 0) . 

We first consider the modelling of uncertain material parameters as described in Section 3.1 . In particular, we consider

an uncertain propagation speed of the form (11) inside the polygon A 

′ B ′ C ′ D 

′ , given by c( r ) = 1 + ε · r , that is we take c 0 = 1

and c̄ ( r ) = r . The parameters σ s and σ p are computed for each pair of spatial and directional collocation points as a pre-

processing step using the formulæ (31) and (33) , respectively. Recall that the σ s and σ p values depend on σ c , and tend

to zero when σ c → 0. In Fig. 7 we show the results of four computations, each with a different σ c value in the range

from 0.01 to 1. For σc = 0 . 01 , we illustrate a close to deterministic solution and for larger σ c values we demonstrate the

effects of increased uncertainty in the propagation speed c . Note that with large values of σ c the asymptotic analysis of

Section 3.1 becomes invalid and f σ (24) describes propagation to all admissible positions (i.e. a particular target edge, see

Fig. 1 ) and tangential momenta with equal probability as shown in Fig. 8 . 

To obtain the results shown in Figs. 7 and 8 , we prescribe an uncertain boundary source (39) along the edge �0 = D 

′ A 

′ 
with c = c 0 = 1 and σb = 0 . 01 . In the left column of Fig. 7 we illustrate the polygon A 

′ B ′ C ′ D 

′ and along the boundaries we

plot ˜ ρ∞ 

, which is the integral over the tangential slowness p of the boundary density ρ∞ 

, that is, 

˜ ρ∞ 

(s ) = 

∫ 1 

−1 

ρ∞ 

(s, p) d p = 

n ∑ 

j=1 

N+1 ∑ 

l=1 

ρ j,l b j (s ) 

∫ 1 

−1 

φl (p) d p = 2 

n ∑ 

j=1 

ρ j, 1 b j (s ) . 

In the right column of Fig. 7 we plot the stationary boundary density minus the initial boundary density, that is, ρ∞ 

(s, p) −
ρ0 (s, p) . The contribution of the initial density has been removed to better illustrate the fine details of the indirect, or

reverberant, part of the solution (the part not emanating directly from the source term) that would otherwise be suppressed

in the plot due to the damping. 

The case σb = σc = 0 . 01 is shown in the top row of Fig. 7 and illustrates an approximately deterministic solution. Here,

the behaviour is dominated by rays that travel parallel to the x -axis from the initial density ρ0 on the left edge D 

′ A 

′ , and

reflect specularly upon reaching the edge B ′ C ′ to then travel back parallel to the x -axis and so on. The remaining rows of

Fig. 7 show the effects of increasing uncertainty in the propagation speed c . As σ c is increased, the uncertainty in the arrival

position on the edge B ′ C ′ increases as demonstrated by spreading of the energy across the edge B ′ C ′ in the left column of

Fig. 7 . Since the rays will not necessarily travel in straight lines, then the uncertainty in the tangential slowness p also

consequently increases as shown in the right column of Fig. 7 , where the boundary density spreads across all values of

p . If we continue increasing σ c further, then we observe propagation to all positions on a particular receiver edge and all

tangential momenta with equal probability. Fig. 8 illustrates this point and shows the results of simulations for σc = 10 and

σc = 100 . We recall that the influence of the initial density ρ0 has been removed from the plot and hence the largest values

of 

ρ∞ 

− ρ0 = 

∞ ∑ 

j=1 

(L σ ) ( j) ρ0 (44) 

are observed on the target edge of L σρ0 (that is, edge B ′ C ′ ) and arise from the j = 1 term in the sum (44) . This is due to

the fact that the damping term exp (−d(s, s ′ )) , where d is the Euclidean distance from s ′ to s as before, has a stronger effect

as j is increased because the damping losses accumulate through successive iterates of L σ in the later contributions ( j > 1)

to the sum (44) . 

We now consider the modelling of geometric uncertainties as described in Section 3.2.1 . We perform numerical simu-

lations for the polygon ABCDEF shown in Fig. 1 with constant propagation speed c = 1 and fix σp = 0 . 01 . A deterministic

source point (36) placed at (0.15,0.1) is used to excite the system for different values of σ⊥ and σ ‖ . Recall that the parame-

ters σ⊥ and σ ‖ control the level of uncertainty in the boundary geometry and for convenience we will restrict to the case

σ⊥ = σ‖ . 
The left column of Fig. 9 shows the natural logarithm of the stationary interior density ρ� (10) inside the polygon

ABCDEF for σ⊥ = σ‖ = 0 . 01 (top row), 0.1 (middle row) and 1 (bottom row). The right column shows the corresponding

result after removing the direct contribution from the (point) source density ρ in order to more clearly show the behaviour
0 
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Fig. 7. Uncertain propagation speed simulations with four different values of the propagation speed variance σ 2 
c . Left: the stationary boundary density ρ∞ 

integrated with respect to the tangential slowness p . Right: stationary boundary density minus the initial density (ρ∞ − ρ0 )(s, p) , where the white dashed 

lines indicate the vertices of the polygon A ′ B ′ C ′ D ′ . Parameter values: c 0 = 1 , c̄ ( r ) = r , σb = 0 . 01 , μ = 1 , h = 1 / 24 and N = 128 . 

 

 

 

of the indirect/reverberant field. The simulation with σ⊥ = σ‖ = 0 . 01 is an approximate representation of the deterministic

solution, which is evident from the strongly directive ray paths with specular reflections. As the σ⊥ and σ ‖ values increase,

the interior density distribution becomes smoother while retaining a similar background structure, but with the more rapidly

varying fluctuations removed. 
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Fig. 8. Uncertain propagation speed simulations with σc = 10 and σc = 100 . Stationary boundary density minus the initial density (ρ∞ − ρ0 )(s, p) , where 

the white dashed lines indicate the vertices of the polygon A ′ B ′ C ′ D ′ . Parameter values: c 0 = 1 , c̄ ( r ) = r , σb = 0 . 01 , μ = 1 , h = 1 / 24 and N = 128 . 

Fig. 9. Uncertain geometry simulation for different values of σ⊥ = σ‖ . The plots show the logarithm of the stationary interior density including the direct 

source contribution (left) and the reverberant field without the direct source contribution (right). The point source located at (0.15,0.1) is indicated by a 

black dot. Parameter values: c = 1 , σ0 = 0 , σp = 0 . 01 , μ = 1 , h = 

√ 

2 / 60 and N = 128 . 

 

 

 

 

 

 

 

 

 

 

In the final numerical example we combine the modelling of rough surface reflections, as discussed in Section 3.2.2 ,

together with the modelling of uncertain point sources (37) as described in Section 3.3 . We consider the polygon ABCDEF as

above, with a mean point source location r ∗
0 

= (0 . 15 , 0 . 1) , see Section 3.3 . We set σs = 0 , meaning that the ray propagation

with respect to the position variable s is treated deterministically. We consider a range of values for the parameter σ p 

in order to consider different reflection models from approximately deterministic specular-type reflections to rough surface

Lambertian reflections. The uncertainty in the source position is controlled by the parameter σ 0 . Recall from Section 3.3 that

we consider a disc D R ⊂� with centre r ∗0 and radius R over which we model an uncertain location of the source point. In

the example here we take R = 0 . 05 . 

Fig. 10 shows the numerical results for the interior density ρ� for four combinations of σ p and σ 0 . The top-left sub-

plot shows the case when σp = σ0 = 0 . 01 , which indicates a close to deterministic model for the location of the source

point with approximately specular reflections. The bottom-right sub-plot shows the case when σp = σ0 = 10 , which indicates

rough surface Lambertian reflections and a randomly located source point within the disc D R . The other sub-plots show the

two other different possible combinations of these parameter values. 
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Fig. 10. Uncertain source point and rough boundary reflection simulation for four pairs of σ p and σ 0 values. The plot shows the logarithm of the stationary 

interior density with mean source point position (0.15,0.1) indicated by a black dot and the boundary of the uncertain source region D R indicated by a black 

circle. Parameter values: c = 1 , σs = 0 , R = 0 . 05 , μ = 1 , h = 

√ 

2 / 60 and N = 128 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the left column of Fig. 10 one can clearly notice the effect of an approximately deterministic location for the source

point with a sharp peak at r ∗0 = (0 . 15 , 0 . 1) . This is similar to the behaviour observed in the left column of Fig. 9 , where the

simulations were performed with a deterministic point source. On the contrary, the right plots of Fig. 10 demonstrate results

with a highly uncertain source point location within the disc D R . It is evident that the source is equally spread across the

whole disc D R . The top row of Fig. 10 shows results with approximately specular reflections at the boundaries due to taking

σp = 0 . 01 . The top-left plot of Fig. 10 shows a strongly directive density distribution owing to the near deterministic nature

of the source location and the approximately specular reflections. The behaviour is similar to that shown in the top-left

plot of Fig. 9 . An increase in the uncertainty of the source point location reduces this strong directivity and smoothes out

the density distribution as can be observed in the top-right plot of Fig. 10 . The lower two sub-plots of Fig. 10 are indistin-

guishable away from the source region D R . Comparing the upper and lower rows of Fig. 10 shows that an approximately

Lambertian reflection leads to less energy being transported to the right side of the domain due to the early reflections of

the source density at the left side of the domain no longer being channelled to the right, but instead spreading more evenly

throughout the polygon. 

5. Conclusions 

The modelling of parametric uncertainties within a boundary integral operator framework for transporting ray densities

in finite two-dimensional domains has been discussed. In particular, we have derived explicit expressions for modelling

a normally distributed stochastic perturbation of the propagation speed in the weak noise regime. In addition, we have

described how the methodology may be extended to alternative models for the material parameter noise, whereby the un-

certainty model would not be explicitly derived, but would instead be based on a numerically interpolated PDF. We have

also considered the modelling of geometric uncertainties in terms of both the location of an edge within a polygonal do-

main, and rough boundary reflections due to small scale geometric fluctuations. Uncertain source terms were also described,

including stochastically distributed point sources and uncertain boundary data. Finally, we detailed the discretisation pro-

cedures employed, and then applied them to perform illustrative numerical examples for each of the uncertainty models

described above. The results for an uncertain speed of propagation demonstrated the increasing likliehood of curved trajec-

tory paths as the variance of the stochastic perturbation in the speed is increased, and a corresponding spreading of the

tangential slowness. In addition, the results for both an uncertain boundary location and an uncertain source point location

exhibit a smoothing effect on the interior density distribution. Finally, the incorporation of rough boundary reflections leads

to a more diffusive solution for the interior density distribution resulting in a faster decay of the density across the domain

due to an absence of directive ray transport. 
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Appendix A. Nonlinear trajectories arising from a linear perturbation of the propagation speed 

In this appendix we detail an analytical solution of the dynamical system (12) with a linear propagation speed (16) for

the special case when ε := εx = εy . Note that analytical solutions for a number of choices of propagation speed, including

https://doi.org/10.13039/501100000266
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linear, can be found in Ref. [18] . For the case of a linear propagation speed (16) and with ε := εx = εy , then the system

(12) reduces to 

˙ r = c( r ) 2 p , 

c( r ) ̇ p = −ε1 , (A.1) 

where 1 is a vector of ones. To solve the system analytically we make use of the fact that (16) and (A.1) can be combined

to give 

d 

d t 
(c( r ) p ) = ε( ( 1 · c( r ) p ) c( r ) p − 1 ) , (A.2) 

which motivates the introduction of a new unknown q = c( r ) p . Hence rescaling time via τ = εt leads to a new equation 

d 

d τ
q = ( 1 · q ) q − 1 . (A.3) 

We now rewrite the system (A.1) with respect to the variables q + and q − defined by (
q + 

q −

)
:= 

(
1 1 

1 −1 

)
q = A q . (A.4) 

In these new variables, the system (A.3) can be expressed as 

d q + 

d τ
= q + 2 − 2 and 

d q −

d τ
= q + q −, (A.5) 

which is separable and can be solved analytically. For brevity we consider the case when the initial condition in the mo-

mentum variable is given by p 0 = (1 , 0) T , however we note that the system (A.1) is rotationally invariant and so this choice

is made without loss of generality. This gives the initial conditions for the system (A.5) as q + (0) = q −(0) = 1 and eventually

we arrive at a solution for q = A 

−1 (q + , q −) T = A (q + / 2 , q −/ 2) T given by 

q (t) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(
e 

√ 

2 εt + 1 

)(
(4 − 3 

√ 

2 )e 
√ 

2 εt + 

√ 

2 

)
(6 − 4 

√ 

2 )e 2 
√ 

2 εt + 2 (
e 

√ 

2 εt − 1 

)(
(4 − 3 

√ 

2 )e 
√ 

2 εt −
√ 

2 

)
(6 − 4 

√ 

2 )e 2 
√ 

2 εt + 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (A.6) 

The trajectory position coordinate r (t) may then be determined from q since ˙ r = c( r ) q . We can now solve this dynamical

system using similar techniques by setting (r + , r −) T = A r , (r + 
0 

, r −
0 
) T = A r 0 and then solving the transformed system 

˙ r + = (c 0 + ε(r + − r + 0 )) q 
+ , 

˙ r − = (c 0 + ε(r + − r + 0 )) q 
−. (A.7) 

For brevity of notation, but without loss of generality, we give only the solution with the initial condition r 0 = 0 : 

r x (t) = 

c 0 (e 
√ 

2 εt − 1)(29 

√ 

2 + 41 + (7 + 5 

√ 

2 )(e 
√ 

2 εt + e 2 
√ 

2 εt ) + (1 + 

√ 

2 )e 3 
√ 

2 εt ) 

ε(58 + 41 

√ 

2 + (14 

√ 

2 + 20)e 2 
√ 

2 εt + (2 + 

√ 

2 )e 4 
√ 

2 εt ) 
, 

r y (t) = − c 0 (e 
√ 

2 εt − 1) 
2 
(12 

√ 

2 + 17 + (2 

√ 

2 + 3)e 2 
√ 

2 εt ) 

ε(58 + 41 

√ 

2 + (14 

√ 

2 + 20)e 2 
√ 

2 εt + (2 + 

√ 

2 )e 4 
√ 

2 εt ) 
. (A.8) 

Considering Taylor expansions of the exponential terms in (A.8) close to ε = 0 , one can show that the solution converges to

straight line trajectories given by r x (t) = c 0 t and r y (t) = 0 as ε → 0. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.cnsns.2019.104973 . 
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