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Abstract: Chemoresistance is a major problem in cancer therapy as cancer cells develop mechanisms
that counteract the effect of chemotherapeutic compounds, leading to relapse and the development of
more aggressive cancers that contribute to poor prognosis and survival rates of treated patients. Cancer
stem cells (CSCs) play a key role in this event. Apart from their slow proliferative property, CSCs have
developed a range of cellular processes that involve drug efflux, drug enzymatic inactivation and
other mechanisms. In addition, the microenvironment where CSCs evolve (CSC niche), effectively
contributes to their role in cancer initiation, progression and chemoresistance. In the CSC niche,
immune cells, mesenchymal stem cells (MSCs), endothelial cells and cancer associated fibroblasts
(CAFs) contribute to the maintenance of CSC malignancy via the secretion of factors that promote
cancer progression and resistance to chemotherapy. Due to these factors that hinder successful cancer
therapies, CSCs are a subject of intense research that aims at better understanding of CSC behaviour
and at developing efficient targeting therapies. In this review, we provide an overview of cancer stem
cells, their role in cancer initiation, progression and chemoresistance, and discuss the progress that
has been made in the development of CSC targeted therapies.
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1. Introduction

In 2018, the World Health Organization (WHO) asserted that cancer is responsible for the death of
9.6 million people worldwide [1]. The data also suggest that despite the availability of different drugs,
their efficacy requires further improvement with a focus on cancer complexity. In this intricate system,
cancer stem cells play a crucial role, as they mediate chemoresistance and cancer recurrence. It is now
clear that cancer stem cells (CSCs) represent a small population of cancer cells within a tumour and that
they have typical characteristics related to stem cells. Like their stem cell counterparts, CSCs possess
‘stemness’ properties which are reflected in their capacity to self-renew and to generate differentiated
cells that contribute to tumour heterogeneity. CSCs appear to be generated from mutations affecting
adult stem cells that are at the source of organogenesis and tissue homeostasis [2–4]. Although
debates about their origin persist, there is an urgent and continuous need to better understand the
function of CSCs in cancer initiation and progression and, more importantly, develop CSC-specific
targeting strategies.

Chemotherapy induces apoptosis by damaging DNA and/or inhibiting mitotic division. However,
this therapeutic option is valid for highly dividing cancer cells and therefore has the potential to “miss
out” slow dividing cells, leading to cancer relapse and recurrence in treated patients. Unfortunately,
follow up chemotherapy that attempted to destroy refractory cancers cells has been mostly unsuccessful
and was associated with a decrease in survival rates of treated cancer patients [5,6]. Due to their slow
rate of division, CSCs mediate chemoresistance and recurrence following chemotherapy; however,
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additional mechanisms that confer CSCs a survival advantage include the expression of the ATP-binding
cassette (ABC) transporters, a higher expression of aldehyde dehydrogenases (ALDHs), an increased
resistance to apoptosis, and a timely activation of the DNA damage sensor and repair machinery [7].
Other mechanisms, that are not discussed in this review, involve epigenetic factors that play a role in
regulating gene expression at the transcriptional or post-transcriptional levels [8,9]. All these properties
and their clinical implications point to the importance of investigating and targeting CSCs.

It is well known that the microenvironment or niche is essential for stemness maintenance, and
this also applies to CSCs where cell-cell interactions within the niche are required for CSCs’ role
in cancer initiation and progression [10]. The CSC niche is a complex environment that contains
different types of cells, such as cancer-associated fibroblasts (CAFs), endothelial and immune cells,
and mesenchymal stem cells (MSCs). These cells communicate through secreted growth factors and
cytokines to promote tumorigenesis, angiogenesis, invasion and metastasis. The microenvironment
of CSCs also contributes to CSCs’ resistance to drugs and other cancer therapies, which promotes
cancer recurrence [11]. Several therapeutic strategies have been developed to target CSCs with the
aim of preventing cancer recurrence. Although progress has been made through the development
of targeting strategies, their therapeutic efficacy remains insufficient due to the absence of specific
targetable biomarkers. In this review, we provide an overview of CSCs, their role in cancer initiation
and progression, and discuss the targeting strategies that are being developed to target these highly
aggressive cancer cells.

2. Cancer Stem Cells

“Omnis cellula e cellula” (“every cell stem from another cell”), with those words Rudolf Virchow,
a German pathologist, gave the base of the cellular pathology. He had already postulated that the
disease is due to changes happening in normal cells and that a tumour originates from immature
cells [12,13]. However, the term cancer stem cell was coined by Sajiro Makino through the identification
of a subpopulation of cells that were resistant to chemotherapy and with genetic characteristics
that were different from the Bulk [13]. It was through studies carried out using the in vitro colony
formation assay that Makino theory could be confirmed, and that suggested that a tumour could have
originated from cells that had characteristics attributable to stem cells [14]. Further confirmation of
Virchow’s idea came later from experiments using acute myeloid leukaemia (AML) cells that led to
the identification of a population of cells with a stem-like phenotype [15]. The authors identified a
population of CD34+CD38− AML stem cells that were capable of initiating AML in severe combined
immune-deficient (SCID) mice. Although using a different set of markers, populations of CSCs
were also found in other types of cancerous tissues, which confirmed their existence within other
types of tumours and the role that they play in cancer initiation and progression [16–35]. Two main
hypotheses have been proposed to explain how CSCs are originated within a tissue: the stochastic
and the hierarchical models [36,37]. The stochastic model supports the hypothesis that any cell
subjected to a specific set of somatic mutations could lead to the acquisition of self-renewal and
differentiation properties that could contribute to tumour heterogeneity. On the other hand, the
hierarchical model proposes that somatic mutations target specifically stem and progenitor cells that
are hierarchically organized, resulting in the generation of self-renewing cancer stem and progenitor
cells that produce differentiated progenies and recreate heterogenous tumours [38]. In summary, CSCs
are populations of cancer cells that have the stem cell properties of self-renewal and ability to generate
differentiated progenies.

3. Cancer Stemness, Therapy Resistance and Cancer Recurrence

A major challenge in cancer therapy is associated with chemoresistance and recurrence following
chemotherapy [2,39]. In most cases, this resistance is associated with the presence, within tumours,
of aggressive cancer cell populations that developed mechanisms of chemoresistance responsible
for unsuccessful therapies and leading to decreased survival rates of treated cancer patients
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(Figure 1A) [7,10]. Several cancer studies identified these aggressive cancer populations as cancer
stem cells (CSCs) (Table 1) [15,16,40–46]. CSC-mediated chemoresistance relies on several cellular
mechanisms that include lower proliferation rates and the ability to intracellularly and enzymatically
inactivate chemotherapeutic compounds (Figure 1B) [7].
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Figure 1. Schematic representation of cancer stem cells (CSCs) and their role in chemoresistance.
(A) Chemotherapy destroys most of the highly proliferative cancer cells. CSCs are less affected by
chemotherapy and can re-initiate cancer and promote cancer progression. (B) CSCs possess several
mechanisms that counteract the effect of chemotherapeutic compounds such as the ATP family of
transporters, higher expression of the pro-survival factor BCL2 (B-cell lymphoma 2), higher expression
of the detoxifying enzymes aldehyde dehydrogenases (ALDHs), a more efficient DNA damage response
and a slower rate of cell division or dormancy.

Table 1. Cell surface markers (solid tumours) that are used for the identification and isolation of CSCs.

Tumour Biomarkers References

Breast cancer CD44+/CD24−/low/ALDH+ [16]

Prostate cancer CD44+/a2b1+/ALDH+ [34]

Melanoma
ABCB5+ [17]
CD20+ [18]

CD271+

Glioblastoma CD133+ [20]

Colon cancer

CD133+/CD44+/ALDH+ [21]
EpCAM+/CD44+/CD166+ [22]

CD44+/CD24+ [23]
CD133+/CD24+ [24]

Lung cancer

CD133+

CD44+

ALDH+ [35,47]
CD117+

Gastric cancer

CD133+

CD44+/CD24+ [25]
CD90+ [26]

CD44+/CD54+

Head and neck cancer
CD44+/ALDH+ [27]
CD44+/CD66-

Ovarian cancer

CD133+ [28]
CD44+

ALDH+

CD117+

Pancreatic cancer CD133+/CD44+/CD24+/ESA+ [29]

Liver cancer

CD133+/CD44+ [30]
CD90+ [31]

EpCAM+ [32]
CD13+ [33]
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3.1. Low Proliferation Rate

Chemotherapy targets highly proliferative cells through DNA damage and inhibition of mitotic
division; however, its action is limited when it applies to slow and non-dividing cancer cells such as
CSCs [48–51]. Indeed, several studies have shown that CSCs, from different tissue origin, could resist
the effect of a wide range of drugs such as doxorubicin, temozolomide, cisplatin, paclitaxel, etoposide
and methotrexate [52]. Hence, following chemotherapy, which destroys the bulk of the tumour, CSCs
remain on-site and can re-initiate tumorigenic and metastatic processes. Hence, developing therapies
that target dormant or slow dividing cells is essential to prevent recurrent cancers.

3.2. Expression of ATP-Binding Cassette (ABC) Transporters

This large superfamily of membrane proteins functions in the transmembrane transport of
various substrates by converting energy obtained from ATP hydrolysis [53]. Although the type
of ABC transporters varies from one type of cancer to another, CSCs express high levels of these
transporters, which contributes to an increased transport of chemotherapeutic compounds out of
the cells, contributing therefore to CSC chemoresistance. Some ABC transporters are involved
in the transport of a large number of drugs, while others transport only a few. For instance,
the ABCC1 (ATP-binding cassette transporter C1) transporter also known as MRP1 (Multi Drug
Resistance Protein 1), expressed by CSCs in glioblastoma, is involved in the efflux of a variety of
therapeutic compounds including methotrexate, edatrexate, ZD1694, doxorubicin, daunorubicin,
epirubicin, idarubicin, etoposide, vincristine, vinblastine, paclitaxel, irinotecan, SN-38, flutamide
and hydroxyflutamide [54–56]. ABCB1 (ATP-binding cassette transporter B1), also known as MDR1
(Multidrug Resistance Protein 1), expressed by CSCs found in ovaries and breast cancers, acute
myeloid leukaemia (AML), glioblastoma and renal cell carcinoma, provides drug multi-resistance
to anthracyclines actinomycin D, colchicine, etoposide, teniposide, methotrexate, mitomycin C,
mitoxantrone, paclitaxel, docetaxel, vincristine and vinblastine [57–60]. Other ABC transporters
have a limited drug transport capacity, such as ABCA1 (ATP-binding cassette transporter A1),
which is expressed by serous ovarian CSCs and which transports cisplatin [59]. In summary, ABCs
are drug specific transporters that may require combination therapies that use inhibitors for the
different transporters.

3.3. Increased Expression of Aldehyde Dehydrogenases (ALDHs)

This superfamily of enzymes is crucial for the detoxification of endogenous and exogenous
aldehyde substrates by catalysing the oxidation of aldehydes to carboxylic acids [61–63]. They are
highly expressed in CSCs from different types of cancers and their elevated levels of expression
correlate with worse prognosis in cancer patients [64–66]. Although the mechanisms by which they
promote CSC chemoresistance is not well known, this activity may involve their role in retinoic acid,
reactive oxygen species and reactive aldehyde metabolisms [63]. The expression and activity of these
enzymes have been used, together with other biomarkers, for the identification of CSCs in different
types of cancers. For instance, breast cancer stem cells are identified using specific antibodies for CD44
(cluster of differentiation 44) and CD24 (cluster of differentiation 24), and an ADELFLUOR assay to
detect ALDH activity. CD44+/CD24−/ALDH+ populations have been shown to possess characteristics
of stem cells such as self-renewal, high proliferative potential, clonogenicity and multipotency [67–70].
In summary, ALDHs are associated with CSCs-mediated chemoresistance; however, their mechanisms
of action are not well known. Thus, determining their modes of action will certainly help develop
better targeting of these enzymes to prevent chemoresistance.

3.4. Resistance to Apoptosis

CCSs have been shown to resist apoptosis mediated by the intrinsic or mitochondria-dependent
death pathway, and by the extrinsic cell death receptors pathway [71]. For instance, human glioma and
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leukaemia CSCs express lower levels of Fas and Fas ligand (Fas-L) resulting in resistance to extrinsic
receptor-mediated cell death [72–77]. CSCs have also been shown to express higher levels of apoptotic
inhibitors. The cellular Fas-associated death domain-like IL-1β-converting enzyme (FLICE)-inhibitory
protein (c-FLIP) is highly expressed in leukaemia stem cells, and breast and glioblastoma CSCs [78–80].
C-FLIP averts apoptosis by preventing the formation of DISC (death-inducing signaling complex)
and consequent activation of the caspase cascade via its interaction with FADD (Fas-associated death
domain), caspase-8 or 10 and DR5 (Death receptor 5) [81,82]. Beside the extrinsic apoptotic pathway,
the pro-survival protein Bcl-2 that is involved in the mitochondria-dependent death pathway, via its
inhibitory interactions with the proapoptotic Bax (Bcl-2-associated x) and Bak (Bcl-2 antagonist killer),
was found overexpressed in leukaemia, glioma and glioblastoma stem cells [83–85]. In summary,
the inactivation of intrinsic and extrinsic cell death pathways ensures a selective survival advantage
for CSCs.

3.5. DNA Repair Response

Another survival advantage in stressful conditions is related to CSCs’ capacity to timely activate
the DNA damage sensor and repair machinery [86]. This process involves DNA repair pathways that
include the nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR),
direct repair, and the double-strand break (DSB) recombinational repair. Evidence of CSCs’ resistance
to radiotherapy was provided by a study that demonstrated the capacity of glioblastoma stem cells to
efficiently activate the ATM serine/threonine kinase (ATM) and the DNA damage checkpoint protein
kinase (Chk1) in response to ionising radiations [87]. Another study established the capacity of
non-small cell lung cancer (NSCLC) stem cells to resist treatment with chemotherapeutic drugs by
activating the Chk1 [88]. Mammosphere cells from the MCF-7 breast cancer cell line have been shown to
have lower reactive oxygen species and a more active DNA single-strand break repair (SSBR) pathway,
potentially associated to a higher level of expression of the key SSBR protein, human AP endonuclease
1 (Ape1) [89]. In conclusion, the enhanced DNA damage repair exhibited by CSCs appears to protect
them from chemotherapy and radiotherapy-mediated apoptosis and adds another layer of protection
to their survival capacities. Therefore, a better understanding of the mechanisms involved in DNA
repair response will significantly contribute to improved therapy response and clinical outcome of
patients treated with radiotherapy and DNA-targeting chemotherapies.

4. CSC Microenvironment

Stem cell niches represent areas of tissue that provide specific microenvironments, which maintain
and promote CSCs’ capacity to self-renew and to generate differentiated progenies [90]. The concept of
stem cell niche was first formulated by Schofield who demonstrated that successful transplants could
only be successful if harvested from the bone marrow [91,92]. He also proposed that the stem cell
niche is required for determining stem cell fate, as the behaviour of stem cells is influenced by their
association with other cells within the niche. This concept was validated by other groups studying
different tissues from invertebrate and vertebrate models [93,94]. This concept is applicable to cancer
stem cells where the interaction with these niches is necessary for the maintenance of CSC populations.
The CSC microenvironment is a highly heterogeneous complex comprised of cells such as stromal
cells, immune cells and epithelial cells, and a network of extracellular macromolecules which provides
support for the cells within the extracellular matrix (EC) (Figure 2) [95–97]. The cells found in the niche
promote the growth, maintenance and differentiation of cancer stem cells. Currently, cancer therapies
have been less successful as most of these drugs target the Bulk population of cancer cells, leaving
cancer stem cell populations unaffected [98,99]. Therefore, understanding the relationship between
CSCs and their microenvironment could help develop more efficient strategies to eliminate CSCs.
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Figure 2. Schematic representation of the CSC microenvironment (CSC niche). The complex CSC
niche contains several cell types including mesenchymal stem cells (MSCs), endothelial cells, cancer
associated fibroblasts (CAFs) and immune cells (tumour associated macrophages (TAMs), regulatory
T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and T-helper cells (Th17)). These cells
secrete different cytokines and growth factors that promote tumourigenesis, tumour progression
and immunosuppression.

4.1. Cancer-Associated Fibroblasts (CAFs)

Although CAFs provide a mechanical supportive role for CSCs via enhanced production of
fibrillary collagen, these cells also secrete the cytokine CXCL12 (C-X-C motif chemokine ligand 12)
and growth factors such as the hepatocyte growth factor (HGF), the vascular endothelial growth
factor (VEGF) and the platelet-derived growth factor (PDGF), which significantly contribute to
CSCs’ increased proliferation, invasion and metastasis [97,100,101]. CAFs are also involved in
cellular heterogenicity through secreted TGFβ1 (transforming growth factor beta 1), which promotes
CSC related epithelial-mesenchymal transition (EMT), an early step of the invasive and metastatic
process [102].

4.2. Immune Cells

Several immune cells contribute to the chronic inflammatory status of the CSC microenvironment,
which enhances tumour proliferation, invasion and metastasis [103]. For instance, tumour-associated
macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) secrete transforming growth
factor beta (TGF-β), which contributes to EMT, invasion and metastasis [104–107]. In addition, immune
cells within the microenvironment enhance tumour evasion via a variety of mechanisms. TAMs, via
secreted TGFβ, recruit Tregs within the niche and contribute to immunosuppression. In a similar
fashion, MDSCs, which secrete growth factors such as TGFβ, and cytokines recruit T helper 17 cells to
promote their immunosuppressive activity [108]. Although we provide a very brief description here of
the role of immune cells within the tumour microenvironment, a deeper discussion of their roles in
this context is beyond the scope of the review.

4.3. Mesenchymal Stem Cells (MSCs)

MSCs are multipotent stromal cells that can differentiate into various cell types such as osteocytes,
adipocytes and chondrocytes. These cells can migrate to chronic inflammatory sites such as cancer,
where they contribute to metastasis by secreting TGFβ which promotes EMT [109]. An involvement in
the colonisation process of secondary cancer sites has also been reported for metastatic breast, prostate
and lung cancers [110–113]. MSCs have been shown to promote gastric cancer proliferation and
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angiogenesis via the secretion of VEGF, macrophage inflammatory protein-2 (MIP-2), TGF-β1, and the
pro-inflammatory cytokines interleukin IL-6 and IL-8 [114]. Finally, MSCs may originate CAFs, which
further contribute to CSC microenvironment cell heterogenicity and its metastatic potential [115–117].

4.4. Endothelial Cells

Angiogenesis is key for the CSC microenvironment as it delivers nutrients for CSC metabolism
that are necessary for their self-renewal, and invasive and metastatic abilities. Through tumour
vessels, immune cells such as T regulatory cells (Tregs) are recruited in situ and contribute to immune
suppression [118]. Endothelial cells, together with perivascular cells, are the building blocks of vessels,
and are stimulated by angiogenic factors such as the vascular endothelial growth factor (VEGF) and
within a hypoxic environment such as cancer. This results in increased tumour vasculature and
enhanced tumour growth and metastasis [119]. Additionally, tumour endothelial cells have been
shown to secrete cytokines such as IL-3, granulocyte-CSF, granulocyte-macrophage-CSF (GM-CSF),
IL-1, IL-6, VEGF-A, and bFGF, which promote and maintain CSC self-renewal and CSC-mediated
progression [120,121].

5. Cancer Stemness, EMT and Tumour Progression

The main interest in investigating CSCs is related to their capacity to resist chemotherapy and
radiotherapy, which results in cancer recurrence that is extremely difficult to overcome using currently
available therapies. CSCs can re-initiate the tumorigenic process by generating a new tumour via their
self-renewal and generation of differentiated cancer progenies. Another important property is their
high invasive and metastatic potential, which involves a cellular process named EMT. Epithelial cells are
connected to each other via lateral cell-cell junctions that include desmosomes, adherens junctions, tight
junctions and gap junctions. During EMT, epithelial cells begin to trans-differentiate and start losing
their lateral junctions and express molecules associated with the mesenchymal phenotype, resulting in
the generation of mesenchymal cells [122]. These later play an essential role in the invasion process of
adjacent tissues and distant organs via metastasis. The cytokine TGFβ, which is secreted in the CSC
microenvironment by MSCs, CAFs and immune cells such as TAMs and MDSCs, plays an essential
role in EMT-mediated CSC invasion [123]. TGF-β binding to its receptors results in the activation
of the SMAD (small and mothers against decapentaplegic) proteins that translocate to the nucleus
and activate target genes involved in EMT such as SNAIL, bHLH and ZEB factors [124,125]. These
pro-EMT factors promote the expression of mesenchymal proteins such as N-cadherin, fibronectin and
metalloproteinases (MMPs) [123]. Beside the TGFβ signalling, other signalling pathways, such as the
WNT (wingless-related integration site), Notch (neurogenic locus notch homolog) and Hedgehog (HH)
pathways, also participate in EMT. WNT signalling promotes EMT by stabilising β-catenin through
the inhibition of glycogen synthase kinase-3β (GSK3β), resulting in β-catenin translocation to the
nucleus and activation of the transcription factors lymphoid enhancer-binding factor 1 (LEF) and T cell
factor (TCF), thus promoting a gene expression programme that favours EMT [126]. SHH signalling
increases SNAIL1 expression in epithelial cancers leading to increased EMT and invasion [127]. Notch
signalling may promote EMT through the Notch intracellular domain that directly activates SNAIL2
expression [128]. Finally, a crosstalk between TGFβ, WNT, Notch, Hedgehog (HH) and other signalling
pathways such as RTK (receptor tyrosine kinase) signalling pathways may take place to promote EMT
and invasion within the tumour microenvironment [129–131]. In summary, several pathways are
involved in regulating EMT, and their targeting may require combination therapies that are directed
against different components of this complex network, and with limited toxic effects.

6. CSC Metabolism

Cells require energy to perform their own processes of growth, division and survival. This need is
met by the glycolysis metabolic pathway that converts glucose into pyruvate, two energy molecules of
ATP and one of NADH (nicotinamide adenine dinucleotide hydrogen) [132]. The pyruvate is later
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transported in the mitochondria where it is converted into Acetyl-coA. The coenzyme produces the
energy molecules NADH and FADH2 (flavin adenine dinucleotide hydrogen 2) through the Krebs
cycle, which is also called the tricarboxylic acid cycle. The hydrogen ions that are used for the electron
transport chain via the process of oxidative phosphorylation (OXPHOS) generate 36 molecules of
ATPs. CSCs have been shown to have higher glycolytic metabolism when compared to normal and
cancer cells. This difference could be due to higher expression of glycolytic enzymes such as GLUT1
(glucose transporter 1), HK-1 (Hexokinase-1) and PDK-1 (Pyruvate Dehydrogenase Kinase 1), and a
higher consumption of glucose [132–134]. However, several studies challenged the concept of CSCs’
preferential reliance on the glycolytic metabolism pathway for energy production. These studies
suggested that OXPHOS is more likely to be the main source of ATP due to increased mitochondrial ROS
(reactive oxygen species), higher rates of oxygen consumption, and overall increase in mitochondrial
function [135–141]. Overall, these opposing results could be explained by heterogenous differences in
tissue origins, metabolic phenotypes and CSC adaptivity to environmental changes [142]. Therefore,
until there is a better understanding of CSC metabolisms, developing targeted therapies remains a
future therapeutic possibility.

7. Targeting Strategies of CSCs

CSCs are identified and isolated using cell markers whose expression create tissue-specific
signatures. While some markers are commonly expressed by different types of cancer, others are tissue
specific (Table 1). In this part, we provide an overview of the different approaches that were clinically
employed to target CSCs and the results, so far, of past and ongoing clinical trials (Table 2).

Table 2. Clinically tested strategies that were employed to target CSCs. Two main therapies were used:
monoclonal antibodies therapies and dendritic cells-based vaccines.

Target Tumour Type Therapy Clinical
Trial/Reports Results

CD133
Advanced

cholangiosarcoma
Cocktail CD133 CAR-T

and CART-EGFR
NCT02541370

(Phase I and II) Toxicity

Glioblastoma multiforme ICT-121 DC vaccine NCT02049489
(Phase I) Not published

CD44 Refractory
Acute Myeloid Leukemia

Monoclonal antibody
(RG7356) 146 Limited clinical activity

EpCAM

Metastatic colorectal
cancer

Edrecolomab
(Monoclonal antibody) 151 Limited response

150 Not statistically
significant

3622W94 (Monoclonal
antibody) 152 Toxicity

ING-1 (Monoclonal
antibody) Toxicity

Adecatumumab
(Monoclonal antibody) 153

Favourable response in
patients with highest

expression

Various types of tumours EPCAM-targeted
CAR-T cells

NCT02729493
(N/A) Ongoing

NCT02725125
(N/A) Ongoing

NCT02915445
(Phase I) Ongoing

NCT03013712
(Phase I and II) Ongoing
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Table 2. Cont.

Target Tumour Type Therapy Clinical
Trial/Reports Results

CD47

Various solid tumours
and

hematological
malignancies

Hu5F9-G4 (Monoclonal
antibody)

NCT02216409
(Phase I)

Not statistically
significant

NCT02678338
(Phase I) Not published

Combination Hu5F9-G4
and Cetuximab

NCT02953782
(Phase I and II) Ongoing

Combination Hu5F9-G4
and Retuximab

NCT02953509
(Phase I and II) Ongoing

CC-90002 (Monoclonal
antibody)

NCT02641002
(Phase I) Ongoing

Combination CC-90002
and Retuximab

NCT02367196
(Phase I) Ongoing

Autogenic glioma
stem-like

cells
(A2B5+)

Glioblastoma multiforme Dendritic cell-based
vaccine

NCT01567202
(Phase II) Ongoing

7.1. Targeting Cell Surface Biomarkers of CSCs

7.1.1. CD133

CD133 (cluster of differentiation 133 or human prominin-1), a marker that was first identified on the
cell surface of CD34+ hematopoietic stem cells [143], has also been used to isolate populations of CSCs
from glioblastoma, prostate, pancreas, ovarian, colon, lung and liver cancer (Table 1). The therapeutic
targeting potential of CD133 was evaluated for advanced cholangiosarcoma, in a phase 2 clinical trial
(NCT02541370) (CCA), and using an immunotherapeutic approach based on CAR-T cells (chimeric
antigen receptor T cells) that were transduced with the anti-CD133 (CD133 CAR-T) and anti-EGFR
(epidermal growth factor receptor) (CART-EGFR). Although the authors suggested that CART cocktail
immunotherapy (CD133 CART and CART-EGFR) may be feasible for the treatment of CCA and
other solid malignancies, resolving limitations that are associated with toxicities would need further
investigation (Table 2) [144].

7.1.2. CD44

CD44 is a cell surface adhesion receptor that is expressed by several types of cancers. The function
of CD44 in growth and migration is dependent on its interaction with different ligands such as
hyaluronic acid (HA), osteopontin (OPN), collagens and metalloproteases (MMPs) [145]. Targeting
strategies for CD44 have led to the development of an antibody-based therapy that was clinically tested
in a phase I study and on patients with refractory AML (acute myeloic leukeamia). The therapy using
the humanised monoclonal antibody RG7356 resulted in limited clinical activity; however, the study
validates the safety of the clinical use of the drug and suggests testing a combination therapy with
other available drugs such as cytarabine (Table 2) [146].

7.1.3. EpCAM

The epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that is expressed
by most human carcinomas [147]. The first EpCAM monoclonal antibody (edrecolomab) was tested
in patients with metastatic colorectal cancer or in adjuvant settings and had a limited response in a
defined number of patients with metastatic disease [148,149]. Unfortunately, subsequent larger studies
could not confirm edrecolomab’s clinical activity in the adjuvant setting [150,151]. Other antibodies
that were developed such as 3622W94 and ING-1 were discontinued in clinical trials due to poor
tolerability (Table 2) [152]. Adecatumumab, a recombinant human IgG1 monoclonal, that was clinically
tested in patients with metastatic breast cancer, resulted in a more favourable response in patients with
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higher expression of EpCAM compared to patients who had lower expression on their cell surface
(Table 2) [153].

7.1.4. CD47

The integrin associated protein (IAP) or CD47 (cluster of differentiation 47) was first identified as
a β3 integrin interacting partner and was later found to interact with trombospondin-1 (TSP-1) and
signal regulatory protein-alpha (SIRPα). Through these interactions, CD47 is involved in the regulation
of various cellular functions such as cell migration, axon extension, cytokine production and T cell
activation [154–158]. CD47 is overexpressed in most cancer types and was shown to promote cancer
cell invasion and metastasis [159–167]. Two monoclonal antibodies have been developed to directly
target CD47 in different types of cancer and were clinically tested as monotherapy or in combination
with other monoclonal antibodies such as cetuximab and rituximab (Table 2) [168–171]. The first
humanised anti-CD47 monoclonal antibody, Hu5F9-G4, was administered to patients with various
solid tumours in a phase I clinical trial (NCT02216409). The trial aimed at optimising the dosage,
the pharmacodynamic and the pharmacokinetic of the administered antibody. Although promising,
the results were not statistically significant, and another clinical trial was performed with results
not yet available (NCT02678338). The other monoclonal anti-CD47 monoclonal antibody CC-90002
was administered to patients with leukemia and myeloid and acute myelodysplastic syndromes
in a phase I clinical trial, and the results are not yet published (NCT02641002). Both Hu5F9-G4
and CC-90002 are being clinically tested in combination therapies with the anti-EGFR antibody
(cetuximab) or the anti-CD20 (cluster of differentiation 20) monoclonal antibody for the treatment of
solid and haematological malignancies, and the trials are still ongoing (NCT02953782, NCT02953509,
NCT02367196) (Table 2).

7.2. Dendritic Cell-Based Vaccines

Dendritic cells (DCs) are antigen presenting cells that initiate and maintain immune responses
through their essential function in anti-cancer immunity [172]. DCs present cancer antigens
to effector T-cells, which leads to the targeting and eradication of cancer cells. They can also
stimulate immunological memories that control cancer recurrence. These properties favour use in
the development of dendritic cell-based immunotherapies [172,173]. Several dendritic cell-based
vaccines have been tested in patients with glioblastoma multiforme in phase I and II clinical trials
(Table 2). A phase I clinical trial study of a dendritic cell vaccine for newly diagnosed or recurrent
glioblastoma patients resulted in adverse events and treatment-related toxicities (NCT02010606). This
study used patients own immune-stimulating dendritic cells, which were isolated and treated to
promote an immune response against cancer stem cells and injected under the skin in a series of
vaccinations. Another phase I study investigated the use of CD133 peptides for a dendritic cell-based
vaccine (ICT-121 DC vaccine), which was clinically tested in patients with glioblastoma multiforme
(NCT02049489). In this study CD133 peptides were used to load DCs that were injected in patients to
elicit an immune response. So far, the results of this study have not been published. An ongoing phase
II study investigates the efficacy of autologous dendritic cells (DCs) that were loaded with autogeneic
glioma stem-like cells (A2B5+) and were administered as a vaccination in adults with glioblastoma
multiforme (primary or secondary) (NCT01567202). Finally, EPCAM-targeted CAR-T cells have been
generated using genetically modified T cells that express a chimeric antigen receptor (CAR), and that
bind to tumour cells expressing the EPCAM protein on the cell surface [174]. These CAR-Ts are being
clinically tested in patients and for different types of solid tumours (NCT02729493, NCT02725125,
NCT02915445 and NCT03013712).

8. Conclusions

Although progress has been made in developing cancer therapies that target CSCs, the specificity
of the targeted antigens remains a challenge. Most of the therapies are directed against biomarkers
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that are not specifically expressed by CSCs and that are also found in normal cells within the body.
This has unfortunate effects on increasing toxicity in treated patients. For instance, therapies that
target CD133 resulted in adverse events and treatment-related toxicities in glioblastoma patients
who were treated with a CD133-specific dendritic vaccine (NCT02010606). However, other ongoing
therapies such as the ones combining two monoclonal antibodies or using EPCAM as a target
may lead to better therapies. Making the data of the clinical trials available to the scientific and
clinical communities will certainly help in sharing information for the development of more efficient
targeting therapies (NCT02678338, NCT02641002, NCT02729493, NCT02725125, NCT02915445 and
NCT03013712). Although cancer bi-therapies are certainly a better choice, further studies are required
to identify more specific targets with a much lower toxicity when tested in clinical trials. Large scale
analysis of tumour samples from different patients and cohorts using genomics, proteomics and
data mining approaches (Bioinformatics) could lead to the identification of CSC-specific genes or
antigen signatures that will allow the development of more efficient CSC targeted therapies with lower
associated toxicities for treated patients. Furthermore, these approaches could also provide patient
specific signatures that will allow a personalised therapy and reduced cost and toxicity.

Another aspect that has not been discussed in this review, is the role of epigenetics in regulating
the role of CSCs in cancer initiation and progression. Non-coding RNAs such as microRNAs (miRNAs)
and long non-coding RNAs (lncRNAs) function by regulating the expression of several CSC-specific
genes. Other epigenetic regulators involve histone acetyl transferases (HATs) and histone deacetylases,
which also play important roles in maintaining CSC stemness and differentiation [175,176]. Therefore,
developing therapies, such as gene targeting, nanoparticles-based therapies, and HDAC inhibitors
could also constitute a potential way forward for targeting CSCs.

In summary, whether using drugs, immunotherapies or gene therapies, the specificity of the
targets is key for a successful eradication of CSCs and cancer recurrence.
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