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Abstract  

Perception involves integration of multiple dimensions that often serve overlapping, redundant 

functions, e.g. pitch, duration, and amplitude in speech. Individuals tend to prioritize these 

dimensions differently (stable, individualized perceptual ‘strategies’) but the reason for this 

has remained unclear. Here we show that perceptual strategies relate to perceptual abilities. In 

a speech cue weighting experiment (trial N = 990), we first demonstrate that individuals with 

a severe deficit for pitch perception (congenital amusics; N=11) categorize linguistic stimuli 

similarly to controls (N=11) when the main distinguishing cue is duration, which they perceive 

normally. In contrast, in a prosodic task where pitch cues are the main distinguishing factor, 

we show that amusics place less importance on pitch and instead rely more on duration cues—

even when pitch differences in the stimuli were large enough for amusics to discern. In a second 

experiment testing musical and prosodic phrase interpretation (N=16 amusics; 15 controls), we 

found that relying on duration allowed amusics to overcome their pitch deficits to perceive 

speech and music successfully. We conclude that auditory signals, because of their redundant 

nature, are robust to impairments for specific dimensions, and that optimal speech and music 

perception strategies depend not only on invariant acoustic dimensions (the physical signal), 

but on perceptual dimensions whose precision varies across individuals. Computational 

models of speech perception (indeed, all types of perception involving redundant cues e.g. 

vision and touch) should therefore aim to account for the precision of perceptual dimensions 

and characterize individuals as well as groups. 

Keywords: speech, music, amusia, pitch, duration, prosody 
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Introduction  

Perception as categorization 

Perception often involves integrating cues from multiple sources and arriving at a categorical 

interpretation. For instance, in visual speech (seeing a face while hearing speech), cues from 

the face and voice are integrated to arrive at categorical percepts (McGurk & MacDonald, 

1976). Cues are also integrated within a single sensory domain: when perceiving speech and 

music, individuals classify what they hear, mapping continuous spectral and temporal variation 

onto linguistic units, and tonal/rhythmic variation onto musical units. This process occurs at 

and among multiple putative levels simultaneously, as smaller units such as phonemes, 

syllables, and words are combined into larger structures such as phrases, clauses and sentences 

(Bentrovato, Devescovi, D'Amico, Wicha, & Bates, 2003; Elman, 2009; Lerdahl & Jackendoff, 

1985; McMurray, Aslin, Tanenhaus, Spivey, & Subik, 2008; Utman, Blumstein, & Burton, 

2000). Similarly for vision, visual features from (e.g.) the eyes and mouth are integrated to 

arrive at emotional categories (Du et al., 2014). 

The cues that indicate a category can be subtle, and are often distorted or degraded by 

noise in the environment. In the case of speech perception, which requires precise and rapid 

detection of acoustic cues (Holt & Lotto, 2008), one might think that biologically-based 

difficulties with auditory perception would also be a significant barrier. Individuals differ 

widely on many dissociable auditory skills, such as the degree of temporal and spectral 

resolution they can perceive (Kidd, Watson, & Gygi, 2007). However, it would seem that these 

difficulties have little effect on the overall success of speech perception: decades of research 

have consistently found that non-verbal auditory skills either do not correlate—or only weakly 

correlate—with speech perception ability in normal-hearing adults, and factor analyses 

consistently separate verbal and non-verbal sound perception into separate factors  (Karlin, 

1942; Kidd et al., 2007; Stankov & Horn, 1980; Surprenant & Watson, 2001; Watson & Kidd, 

2002; Watson, Jensen, Foyle, Leek, & Goldgar, 1982).  

Even an extreme deficit in a single aspect of perception can leave overall perception 

unimpaired.  Individuals with congenital amusia (a disorder of pitch perception discussed in 

more detail below) do not report problems understanding spoken language (F. Liu, Patel, 

Fourcin, & Stewart, 2010).  How can an individual both be severely impaired in one aspect of  

perception and yet still perceive successfully? The answer may lie in the nature of evolved 
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communicative systems, which have specific properties that make them robust to perturbation. 

Two such properties are redundancy, the presence of multiple identical structures, such as 

repetitions of the same note sequence in birdsong, and degeneracy (Price & Friston, 2002; 

Hebets et al., 2016), which refers to the presence of multiple different features that perform the 

same overlapping function, such as a smile conveyed by cues from both the shape of the mouth 

and the eyes (Del Giudice & Colle, 2007).   

In speech, multiple redundant cues within the acoustic signal often perform the same 

linguistic function (see next section). It has been theorized that this property of speech could 

make it robust to any isolated perceptual deficit (Patel, 2014), as well as environmental noise 

(Winter, 2014), but to our knowledge this has not been demonstrated empirically.  Indeed, this 

principle may also apply to other forms of perception. In music, for example, individuals with 

weak perceptual ability for one dimension may rely on some other dimension (or combination 

of other dimensions) to understand musical structure. Itegration of redundant cues from 

multiple senses, such as vision and touch (Helbig & Ernst, 2007) may also depend on the 

reliability of those particular senses. For the purposes of this article we will refer to the 

phenomenon by which multiple cues index the same category feature as ‘redundancy’ 

(although biological systems theorists would call this ‘degeneracy’), and N.B. there are 

compensatory strategies besides redundancy/degeneracy that may assist with perceptual 

impairments as well, such as those involving ‘top-down’ predictive processes (e.g. Ganong, 

1980; Aydelott et al., 2012; Wicha et al., 2004). 

Structural redundancy in speech and music 

We have mentioned that speech is a highly redundant signal wherein a linguistic category may 

be conveyed by many acoustic cues. Indeed, the distinction between voiced and unvoiced 

consonants (for example ‘rapid’ versus ‘rabid’ ), for example,  is conveyed by as many as 16 

different cues (Lisker, 2016), the most prominent of these being voice onset time (VOT, i.e., 

the time lapsed prior to voicing onset) and fundamental frequency or pitch of the voice 

(abbreviated as F0) (Haggard, Ambler, & Callow, 1970; Lisker, 1957; Massaro & Cohen, 

1976). Redundancy is a widespread feature of speech that occurs across multiple time scales 

and applies to many different linguistic features. These include syllable stress (‘PREsent’ 

versus ‘preSENT’), which is conveyed by increases in syllabic amplitude, duration, and F0 

(Fear, Cutler, & Butterfield, 1995; Mattys, 2000), linguistic focus (‘it was HER’ versus ‘it 

WAS her’) conveyed by increases in word duration and greater F0 variation (Breen, 
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Fedorenko, Wagner, & Gibson, 2010; Chrabaszcz, Winn, Lin, & Idsardi, 2014), and phrase 

structure (‘No dogs are here’ versus ‘No, dogs are here’) conveyed by F0 variation and 

increased duration for the syllable just before the phrase boundary (de Pijper & Sanderman, 

1994; Streeter, 1978). Music shows similar redundancies. For instance, the boundaries of 

musical phrases - the smallest group of related adjacent units in music - are characterized by 

changes in pitch (a shift from low to high or high to low) and timing (a shift toward longer note 

durations; Palmer & Krumhansl, 1987). 

How do individuals integrate redundant information across different dimensions? Prior 

research on speech perception focusing on the “average individual” or “average listener” (as 

aggregated over the behavior of groups of participants) has indicated that the multiple 

dimensions contributing to speech categorization are not perceptually equivalent (Breen et al., 

2010; Haggard et al., 1970; R. Liu & Holt, 2015; Massaro & Cohen, 1976; McMurray & 

Jongman, 2011). That is to say, some acoustic dimensions more reliably and robustly signal 

speech category membership, and therefore carry relatively more perceptual weight (“primary” 

dimensions) whereas other dimensions are somewhat less diagnostic and carry relatively less 

perceptual weight (“secondary” dimensions). For example, when making perceptual decisions 

about voiced and unvoiced consonant-vowels in clear speech (‘rapid’ versus ‘rabid’), VOT of 

the initial consonant is primary, while F0 of the following vowel is secondary (Haggard et al., 

1970; Massaro & Cohen, 1976; 1977). Conversely, for linguistic focus such as emphasis on a 

particular word in a sentence, F0 is primary while word duration is secondary (Breen et al., 

2010).  

However, a major issue with this approach is that seeking to characterize an ‘average 

individual’ assumes that all listeners are able to use perceptual dimensions equally, which may 

not be the case. What if individuals use different strategies that depend on the constraints they 

are placed under? Indeed, perceptual strategies have been demonstrated to be malleable (for 

review see Holt, Tierney, Guerra, Laffere, & Dick, 2018). For example, when speech is 

presented in masking noise, VOT (a durational cue) is harder to detect, making F0 a more 

reliable cue to which consonant was spoken. This leads to a corresponding shift in cue weights: 

in noise,  participants downweight VOT cues and upweight F0 cues (Holt et al., 2018; Winn, 

Chatterjee, & Idsardi, 2013). Furthermore, dimensional weights also change when the co-

occurrence statistics of different dimensions are changed, as in a foreign accent. When VOT 

and F0 cues are presented in a manner contrary to their usual covariation in English (Idemaru 
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& Holt, 2011; R. Liu & Holt, 2015), listeners down-weight reliance on the secondary (F0) 

dimension because it is no longer informative (Idemaru & Holt, 2011; 2014). In addition, 

experimentally increasing the variability of a given acoustic dimension (thereby making it less 

reliable) also leads to down-weighting of that dimension (Holt & Lotto, 2006) and 

categorization training with feedback also can lead to changes in dimensional weights (Francis, 

Baldwin, & Nusbaum, 2000; Francis, Kaganovich, & Driscoll-Huber, 2008; S.-J. Lim & Holt, 

2011). Overall, these results suggest that listeners continuously monitor and assess the evolving 

relationships among acoustic dimensions and speech categories, and adjust perceptual weights 

of acoustic dimensions accordingly (Holt et al., 2018; Holt & Lotto, 2006; Toscano & 

McMurray, 2010; Massaro & Cohen, 1993; see Prince, 2014b for an example from the music 

domain). Given that systematically changing specific aspects of the physical signal (i.e. 

acoustics) to make them more or less reliable can affect cue weights, it follows that differences 

in reliability resulting from an individual’s own uniquely-developed perceptual system might 

result in different weighting strategies. 

Individual differences in dimensional weighting in perceptual categorization 

Large individual differences (Yu & Zellou, 2019) in perceptual weighting have been 

reported across a variety of phonetic contrasts, including lexical tone in Mandarin 

(Chandrasekaran, Sampath, & Wong, 2010),  place of articulation (Hazan & Rosen, 1991), stop 

consonant length (Idemaru, Holt, & Seltman, 2012), and vowels (Kim, Clayards, & Goad, 

2018). However, these differences tend to be stable rather than random, having been found to 

be similar across testing sessions (Idemaru et al., 2012; Kim et al., 2018; Kong & Edwards, 

2016).  These and many other studies have established that typically developed individuals use 

different (but consistent!) strategies when perceiving speech—some place much more weight 

upon certain sources of evidence than others—even when listeners share the same linguistic 

background.  

What is poorly understood is the underlying cause of these differences. Considered in 

the context of the large individual differences in auditory perception reviewed above, an ideal 

strategy for one individual may be sub-optimal for another due to differences in the reliability 

of perception for different dimensions. We hypothesize that is an important factor driving these 

individualized and stable perceptual strategies—variability in the relative precision of different 

perceptual dimensions across individuals. Applying this hypothesis to an extreme case, 

individuals with a severe perceptual deficit specific for a particular auditory dimension may 
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learn, over time, that this dimension is not useful for them, and perceptually weight it less in 

categorization—even in cases when changes in that dimension are easily perceptible. They 

instead may strategically down-weight cues that are (for them) unreliable, an alternative route 

to effective perceptual categorization. Here we tested this hypothesis by investigating a 

population with a severe domain-general perceptual deficit for pitch: participants with 

congenital amusia. 

 

Speech perception in amusia 

Congenital amusia provides an ideal test case for examining the consequences of deficits in the 

perception of a single dimension on perceptual weighting strategies. Amusia is a disorder 

affecting around 1.5% of the population (Peretz & Vuvan, 2017), which is characterized by 

problems detecting small changes in pitch (Hyde & Peretz, 2004; Vuvan, Nunes-Silva, & 

Peretz, 2015) with otherwise normal cognitive and perceptual skills. This impaired pitch 

perception (possibly caused by reduced conscious access to pitch information, i.e. ‘pitch 

agnosia’; Omigie & Stewart, 2011; Peretz, Brattico, Jarvenpaa, & Tervaniemi, 2009; Tillmann, 

Lalitte, Albouy, Caclin, & Bigand, 2016) leads to deficits in musical abilities such as singing 

and melody recognition (Ayotte, Peretz, & Hyde, 2002; Dalla Bella, Giguère, & Peretz, 2009) 

as well as linguistic abilities such as statement/question judgments and perception of tone-

language speech in background noise, in controlled laboratory settings (Ayotte et al., 2002; 

Hutchins, Gosselin, & Peretz, 2010; Jiang, Hamm, Lim, Kirk, & Yang, 2010; Nan, Sun, & 

Peretz, 2010; Patel, Foxton, & Griffiths, 2005; Patel, Wong, Foxton, Lochy, & Peretz, 2008; 

Peretz et al., 2002; Vuvan et al., 2015). Asking amusics about their experiences with language, 

however, reveals a paradox: only 7% of amusics report problems with speech perception in 

everyday life (F. Liu, Patel, Fourcin, & Stewart, 2010). How is it that amusics show problems 

with speech perception in the laboratory but self-report being unaffected in ecologically valid 

settings? One possibility is that amusics compensate for their poor pitch fidelity by relying on 

other, redundant, acoustic cues in the speech signal. If so, this would mean that computational 

models of speech—and indeed vision, touch, and music perception, etc.—should aim to predict 

the behavior of individuals as well as groups. This can be carried out by including terms that 

reflect the precision (or inversely, noise) relating to perceptual dimensions, in addition to the 

physical input. 
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Experiment 1 

In Experiment 1, we used amusia as a test case to examine whether impairment along a single 

perceptual dimension leads to a shift in how different sources of information are weighted in 

perceptual categorization. Two groups of participants (individuals with amusia and controls) 

categorized stimuli drawn from  two-dimensional acoustic spaces that varied in the extent to 

which fundamental frequency of the voice (referred to as F0, a strong indicator of vocal pitch), 

as well as durational information, pointed toward one of two linguistic interpretations. In a 

phonetic paradigm, stimuli differed in the identity of a word-initial consonant (“beer” vs “pier”) 

whereas in a prosodic paradigm, stimuli differed in the location of linguistic focus (“STUDY 

music” vs “study MUSIC”). Crucially, the “primary” acoustic dimension for the phonetic 

experiment was durational in nature, but the primary dimension for the prosody paradigm was 

F0 – the dimension that amusics hear with less fidelity. We hypothesized that if an individual's 

perception of a primary dimension is unimpaired, they should have no need to shift reliance to 

other, redundant perceptual dimensions because the primary dimension provides a robust signal 

to category identity  (Holt et al., 2018; Schertz, Cho, Lotto, & Warner, 2015a; Wu & Holt, 

2018). However, if perception of a primary dimension is indeed impaired, listeners may 

strategically down-weight it in favor of a secondary dimension for which perception is not 

impaired.  

Experiment 1 tested the hypothesis that the extent to which individuals rely on 

particular acoustic dimensions in perceiving speech can be predicted by the relative 

informativeness of the dimensions (i.e. which one is primary) and the presence or absence of a 

perceptual deficit for that dimension.  Participants assigned tokens of spoken language to 

linguistic categories based on a phonetic contrast for which the primary cue was related to 

duration (for which no participant had a perceptual deficit). We used two stimulus sets -- a 

phonetic and a prosodic  set -- which fully crossed F0 and duration parameters. Phonetic 

perception was assessed using synthesized speech sounds differing in voicing (/b/ versus /p/), 

which can be conveyed via differences in voice onset time (VOT; a duration-related cue) and 

fundamental frequency of the following vowel (F0; a pitch-related cue). As described above, 

for most listeners, VOT is the primary (dominant) dimension for in /b/-/p/ categorization, while 

F0 is secondary (Haggard et al., 1970). We predict that performance on this task should 

therefore not differ between groups; none of the participants were impaired in perceiving the 

primary dimension, and could therefore rely upon it.  
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The same participants also completed a similar task that examined a prosodic contrast 

for which the primary dimension was, instead, F0 (related to pitch, for which amusics have a 

deficit) and duration was secondary. Here, categorization of prosodic focus was primarily 

conveyed via pitch accents (carried by F0) and, to a lesser extent, durational lengthening (Breen 

et al., 2010). That is, F0 (the dimension amusics are impaired at perceiving) was the primary 

dimension, and the duration dimension was secondary. Thus, we predict that they will 

perceptually weight F0 less than control participants even across F0 differences that are easily 

perceptible for amusic participants, based on their pitch discrimination thresholds. This would 

indicate that any group differences in perceptual cue weighting between amusics and controls 

reflect differences in categorization strategy rather than simply an inability to detect the cues. 

Both stimulus sets fully sampled an acoustic space created by sampling the orthogonal 

duration and F0 dimensions with equal probability. Participants therefore heard some stimuli 

that clearly belonged to one category or the other, and other stimuli that were perceptually 

ambiguous. This allowed us to measure the perceptual weight of the F0 and duration 

dimensions separately for the phonetic and prosodic paradigms of the experiment (Holt & 

Lotto, 2006), for both the amusic and control groups. Critically, we confirmed with 

psychophysical testing that F0 differences among our stimuli were large enough to be 

perceptible even to amusic participants. This ensured amusics could potentially use F0 

information in the task.  

Methods 

Participants 

Sixteen amusics (10 F, age = 60.2 +- 9.4) and 15 controls (10 F, age = 61.3 +- 10.4) were 

recruited from the UK and were native British English speakers with the exception of one 

amusic whose native language was Finnish but acquired English at age 10. (This participant 

was excluded from the Linguistic Phrase and Focus Test analyses of Experiment 2).  

Audiometric thresholds were measured at left and right ears at octaves between 500 and 8000 

for all control participants and all but one amusic participant; the two groups did not differ on 

hearing thresholds (t(28) = 1.33, p = 0.2). Experiment 1’s sample consisted of 11 amusics (6 

F, age = 59.3) and 11 controls (8 F, age = 60.4) because, as it was run online, fewer participants 

had the equipment necessary to take part. All participants gave informed consent and ethical 

approval was obtained from the ethics committee for the Department of Psychological 
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Sciences, Birkbeck, University of London. Participants were compensated £10 per hour of 

participation. Amusia status was obtained using the Montreal Battery for the Evaluation of 

Amusia (MBEA), in which participants heard pairs of short melodic phrases and rhythms 

across 5 subtests -- Contour, Scale, Interval, Rhythm, Meter, and Musical Memory -- and 

judged whether each pair were identical or different. Participants with a composite score 

(summing the Scale, Contour and Interval tests scores) of 65 or less were classified as amusic 

(Peretz, Champod, & Hyde, 2003). Most of the amusic participants (15) were recruited and had 

their amusia status confirmed previously by the Music, Mind and Brain group at Goldsmiths 

University of London, and one was recruited online through circulation of an MBEA scale test 

that was administered through a web browser. No participant in either group had more than 5 

years of musical training (amusic mean years 0.75; control mean years 1.35).  

Phonetic Cue Weighting 

Each phonetic block consisted of repetitions of a single word, spoken by a female American 

English speaker, that varied from “beer” (IPA: /bɪɹ/) to “pier” (IPA: /pɪɹ/) along two orthogonal 

acoustic dimensions. Praat 5.0 (Boersma, 2002) was used to alter original recordings of the 

words “beer” and “pier” such that the voice onset time (VOT) ranged from -5 ms to 15 ms in 

5 ms increments.  The F0 onset frequency of the vowel was manipulated manually in Praat 

such that it varied from 200 to 320 in 30 Hz increments. The F0 remained at this frequency for 

80 ms, after which it decreased linearly to 180 Hz over the following 150 ms. Consistent with 

the distributional regularities of English, shorter VOT and lower initial F0 sounded more like 

/b/ while longer VOT and higher initial F0 sounded like /p/ (Idemaru & Holt, 2011). A full 

description of the stimulus creation methods can be found in Idemaru & Holt (2011). Each of 

the 5 F0 levels was fully crossed with each of the 5 VOT (duration) levels to make 25 stimuli. 

The stimulus set can be found in the online materials. 

To ensure that the intervals along the F0 dimension were large enough for amusics to 

detect, we measured the median F0 of the vowel following the initial stop consonant for each 

of the five levels of F0. The vowel F0 for the five levels was 200, 230, 260, 290, and 320 Hz, 

with a mean difference between adjacent F0 levels of 2 semitones. This exceeded the largest 

pitch discrimination threshold across all participants, which was less than 1.5 semitones (see 

Experiment 2). 

Prosodic Cue Weighting 
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Linguistic focus materials were constructed from combinations of two phrases, “Dave 

likes to STUDY music” or “Dave likes to study MUSIC” (stress indicated in uppercase). These 

phrases were spoken by an actor who read two compound sentences with an intervening 

conjunction, e.g. “Dave likes to STUDY music, but he doesn’t like to PLAY music” and “Dave 

likes to study MUSIC, but he doesn’t like to study HISTORY”. The actor was asked to place 

contrastive accents to emphasize the capitalized words. These recordings were then cropped, 

leaving only the initial phrases listed above. Using STRAIGHT software (Kawahara & Irino, 

2005), the two versions were manually time aligned. This was done by marking corresponding 

anchor points in the two sound files. (N.B. time-alignment does not result in output morphs 

being of the same durational length.) 

We then produced a set of 49 different stimuli by varying the extent to which F0 and 

durational information supported one versus the other focus interpretation. We then adjusted 

the ‘morphing level’ for the temporal and F0 dimensions in order to synthesize intermediate 

versions of this spoken sentence. The value of morphing level can be interpreted as the relative 

contribution of one recording relative to another for a given auditory dimension. For instance, 

if a recording was synthesized with an F0 morphing level of 0%, and a temporal morphing 

level of 100%, that would mean that the F0 contour for the synthesized speech came entirely 

from the “STUDY music” recording, while the temporal duration information came entirely 

from the “study MUSIC” recording. If both the F0 and temporal morphing levels were set to 

50%, that would mean that the F0 and durational aspects of the synthesized recording would 

reflect the midpoint, with F0 and duration information being halfway between both of the 

‘endpoint’ recordings.  For both phonetic and prosodic stimulus sets, loudness did not vary 

across stimuli as only F0 and duration were manipulated.  

In the present experiment, the duration and F0 information disambiguating the 'focused' 

word varied from 0% to 100% morphing levels for F0 and for duration, in 17% increments 

(0%, 17%, 33%, 50%, 67%, 83%, 100%).  Because the dimensions were fully crossed, some 

combinations of F0 and duration cued an interpretation jointly, others conflicted, and tokens 

near the center of the space were more perceptually ambiguous (Fig. 1). Examples of the stimuli 

are provided in online materials. 

To ensure that the intervals along the F0 dimension were large enough that amusics 

would be capable of detecting them, we measured the median fundamental frequency (F0) of 

the words “study” and “music” in Praat (Boersma, 2002) (averaged across the entire word) for 
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each of the seven levels of F0 morphing, then calculated the difference in F0 in semitones 

between the two words for each level. The differences in F0 between “study” and “music”, 

measured at the first vowel, at each of the seven F0 levels (negative values reflecting higher 

F0 on “music” than “study”) were -8.5, -5.0, -2.1 0.6, 3.4 5.7, and 8.1 semitones. The difference 

in F0 between adjacent levels was always greater than 2 semitones. Since amusics are capable 

of detecting changes of 2 semitones and greater just as well as control participants (Hyde & 

Peretz, 2004; Mignault Goulet, Moreau, Robitaille, & Peretz, 2012; Moreau, Jolicœur, & 

Peretz, 2013; Peretz, Brattico, & Tervaniemi, 2005), and given that all of our participants had 

pitch discrimination thresholds of less than 1.5 semitones (see Experiment 2), we assume that 

the amusic participants in this study were capable of detecting the difference between stimuli 

varying along the F0 dimension. As a result, this paradigm is appropriate for investigating 

whether amusics perceptually weight potentially informative F0 information in phonetic and 

prosodic categorization.  
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Figure 1: Schematic depiction of Phonetic and Prosodic stimulus spaces.  In each stimulus 

set, a different linguistic interpretation was cued, to varying degrees, by the F0 contour and the 

duration of elements. Sometimes F0 and duration were indicative of the same interpretation, 

(upper right and bottom left corners) and other times the cues conflicted (upper left and bottom 

right). For the phonetic stimuli, 5 levels of an initial F0 excursion of the vowel (a pitch-related 

cue) and 5 levels of voice onset time (a duration cue) were crossed to create a phonetic stimulus 

space (Idemaru & Holt, 2011). For prosodic stimuli, 7 morphing levels of F0 and 7 of duration 

between “STUDY music” and “study MUSIC” were varied independently to create the 

stimulus space. 
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Procedure  

Pitch and Duration Thresholds  

For all participants (Experiments 1 and 2, see below), pitch difference and duration difference 

thresholds were obtained in the laboratory with Maximum Likelihood Procedure (MLP; Grassi 

& Soranzo, 2009), an adaptive thresholding procedure based on the maximum likelihood 

method. Participants completed 3 blocks of 30 trials for both the 'pitch' and 'duration' threshold 

tests. On each trial participants heard 3 complex tones in a 3 alternative forced choice (3AFC) 

design. All complex tones comprised a fundamental frequency plus 3 harmonics, with 10ms 

onset and offset cosine gates. For the pitch test, participants heard 3 complex tones that were 

270 ms in duration. Two of these had an F0 of 330 Hz and one had a slightly higher F0 (with 

F0 difference adaptively determined via the MLP procedure). The order of presentation of the 

higher-F0 tone was randomized (first, second or third position). Participants indicated the 

temporal position of the higher tone by pressing keys 1, 2, or 3 on a keyboard.  

For the duration test, participants heard 3 complex tones (F0 = 330 Hz). Two of these 

were 270 ms in duration and one was slightly longer, with the longer tone appearing randomly 

in any position and participants indicating its position by pressing, 1, 2 or 3 on the keyboard. 

The threshold was calculated as the pitch or duration value that led to correct responses on 

80.9% of trials on a block-by-block basis. For both the duration and pitch threshold tests, the 

median threshold value across the 3 blocks was extracted for statistical analysis.  

Speech-in-noise threshold 

Participants’ ability to perceive speech in the presence of background noise was also assessed; 

this skill is known to be impaired in tone-language speaking amusics (F. Liu, Jiang, Wang, Xu, 

& Patel, 2015) but has not been examined in speakers of non-tonal languages, who may rely 

more on duration cues when perceiving speech-in-noise (Lu & Cooke, 2009). Participants 

completed a speech-in-noise test, adapted from Boebinger (2015).  On each trial, a participant 

was presented with a short sentence from the Bamford-Kowal-Bench (BKB) corpus (Bench, 

Kowal, & Bamford, 1979) spoken by a female talker in the presence of competing background 

voices (multi-talker babble). Maskers were presented at a constant level (0 dB) across trials 

while the loudness of the target voice was varied. Participants verbally repeated what they 

heard to the experimenter, so far as they were able. The experimenter had a predetermined list 

of three key words for each sentence and scored each trial by indicating how many of the 3 key 
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words the participant had spoken on each trial (for a score of 0, 1, 2, or 3). The test adapted the 

signal-to-noise level using a one up, one down staircase procedure. The target level was varied 

first with an 8-dB step. The step reduced to 6-dB after the first reversal, 4-dB after the second 

reversal, and 2-dB after the third reversal. The procedure ended after 6 reversals at the smallest 

step size and the outcome measure was reported as the mean SNR level visited at the smallest 

step size.  

Cue-weighting 

The experiment began with instructions to listen to each item and classify whether the initial 

consonant was “B” or “P” (for the phonetic task) or whether the emphasis resembled “STUDY 

music” or “study MUSIC” (prosodic task). Participants heard one example of “beer”, “pier”, 

“study MUSIC” and “STUDY music” during the instruction portion of the experiment. 

Responses were made by clicking a mouse to indicate one of two buttons positioned near the 

center of the screen (“B”/”STUDY music” on left; “P”/”study MUSIC” on right). Each 

phonetic block contained 50 trials (2 measurements at each of the 25 combinations of F0 and 

duration). Each focus block contained 49 trials (1 measurement at each of the 49 F0 and 

duration combinations). Each participant completed 20 blocks in total: 10 phonetic blocks (500 

trials total, 20 repetitions of each stimulus in the phonetic acoustic space) and 10 prosodic 

blocks (490 trials total, 10 repetitions of each stimulus in the prosodic acoustic space). Blocks 

alternated between phonetic and prosodic tasks, with short breaks interspersed. The order of 

trials in each block was randomized. The entire experiment lasted approximately 60 minutes. 

Participants completed the experiment online, at home in a quiet room alone, using either 

headphones (5 amusics, 7 controls) or external speakers (6 amusics, 4 controls). Two 

participants did not have computers with sufficient sound capability and were therefore tested 

in a laboratory at Birkbeck College. For all participants, testing was conducted via the Gorilla 

web experiment platform (www.gorilla.sc/about) (Anwyl-Irvine, Massonnié, Flitton, Kirkham, 

& Evershed, 2018). 

Statistical analysis  

Data were analyzed with R (R Core Team 2018). Cue weights were calculated by constructing 

a multiple logistic regression for each participant (separately for phonetic and prosodic 

paradigms) with F0 and Duration as factors (on integer scales from 1-5 for the phonetic task 

and 1-7 for the prosodic task, according to the number of stimulus increments). The coefficients 
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estimated from these models were then normalized such that the F0 and Duration weights 

summed to one to indicate the relative perceptual weight of each acoustic dimension in 

categorization responses (Holt & Lotto, 2006; Idemaru et al., 2012).  A large coefficient for F0 

relative to Duration indicated that the F0 factor explained more variance in participants’ 

categorization judgments than the Duration factor. To test for group effects, the Cue Weights 

for F0 and Duration were extracted for each participant and subjected to an independent-

samples t-test, separately for phonetic and prosodic tasks. Because the distributions of pitch 

thresholds were non-normal, the relationships between pitch and duration thresholds and cue 

weights were tested with Kendall’s Tau-b.  

Results 

Pitch, Duration and Speech-In-Noise Thresholds 

Among the subset of participants who took part in Experiment 1, amusic participants, 

compared to controls, had significantly higher pitch thresholds (Wilcoxon Rank Sum W = 107, 

p=.002), but similar duration (W=50, p=.51) and speech-in-noise thresholds (W = 78.5, p=.25). 

The pattern held across all participants: amusics as a group had higher pitch thresholds than 

controls (W = 29, p < 0.001), but did not differ from controls in tone duration discrimination 

(W = 129, p = 0.74) or speech-in-noise threshold (W = 155.5, p = 0.17;  Fig. 2). For the amusic 

group, all pitch discrimination thresholds were below 1.5 semitones, assuring that our 

manipulation of the F0 dimension in 2-semitone steps in the cue weighting paradigms would 

be perceptible even to amusic participants. 
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Figure 2: Thresholds for detecting pitch changes, duration changes, and for speech-in-noise.  
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Phonetic Cue Weighting 

The normalized cue weights for the amusic and control groups were compared with t-tests 

because normalizing the F0 and duration cue weights relative to each other (so they sum to 1) 

causes them to be non-independent, and therefore a Group X CueType interaction test was 

inappropriate. Recall that duration (VOT) was expected to be the primary cue for the phonetic 

task. Accordingly, the magnitude of the pitch and duration weights did not differ between 

groups (Fig. 3A; group effects T(20)= 1.58, p = 0.13). Although the mean responses between 

amusics and controls (Fig. 4B) did not differ, the results of the independent-samples t-test of 

perceptual cue weights across groups across each of the 25 stimuli are presented in Fig. 4B for 

illustrative comparison. Here, again, categorization performance across groups was similar for 

each stimulus in the acoustic space. No group differences were detected even at a very lenient 

(uncorrected for multiple comparisons) threshold of p < 0.05.  

Finally, we calculated a standard score reflecting participants’ relative ability to 

discriminate pitch and duration in complex tones based on their perceptual thresholds, and 

tested whether this metric was related to participants’ relative perceptual weightings in the 

phonetics task. To obtain a standard score, each participant’s pitch and duration threshold were 

subtracted from the standard F0 (for pitch, 330 Hz) or standard duration (270 ms) used in the 

psychophysics test, then divided by the standard deviations of these distributions across 

participants. The standard scores for pitch and duration were then combined with an asymmetry 

ratio [(Pitch – Duration) / (Pitch + Duration)] such that higher values indicated finer pitch than 

duration thresholds and lower values indicated the reverse. The relative ability to discriminate 

tone pitch versus duration did not correlate with perceptual weight of F0 in phonetic 

categorization (Kendall Tau-b r=-0.12, p=.45; Fig. 5A).  

Prosodic Cue Weighting 

In the prosodic cue weighting task, for which F0 was the primary cue, the results were 

strikingly different. The relative F0 perceptual weights were higher in controls than amusics, 

whereas duration weights were higher for amusics than controls (both group comparisons T(20) 

= 3.81, p=.001, Fig. 3B). This suggests that amusics, who do not process pitch reliably in 

general, indeed perceptually weighted duration over F0. As mentioned above, an interaction 

test on the normalized (relative) cue weights is inappropriate because they sum to 1 (e.g. if a 

participant’s pitch weight were 0, his or her duration weight would necessarily be 1); however, 
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we note that an ANOVA on the raw cue weights (before normalization) further confirmed this 

pattern (interaction of CueType [pitch vs duration] X Group [Amusic vs Control], F(1,40) = 

10.45, p = 0.002, ηp
2 = 0.21).   

To provide a finer-grained understanding of each group’s weighting, Figure 4A plots 

mean responses for each group across each of the 49 stimuli depicted schematically in Figure 

1. As in the phonetic cue weighting task, we compared these matrices cell-by-cell (two-sample 

T-tests Controls>Amusic, FDR-corrected, Fig. 4B). Unlike in the phonetic task for which 

Control and Amusic participants performed similarly, many group differences emerged in the 

prosodic categorization task, where controls relied relatively more on pitch versus duration 

compared to amusics.  All (multiple-comparisons-corrected) significant differences were in the 

top half of the matrix, where F0 cued an emphasis on “MUSIC”. Most (12 out of 16) of these 

significant group differences occurred in the 16 stimuli of the upper-left quadrant, where 

emphasis was placed on “STUDY” by duration cues, and “MUSIC” by F0 cues. In this 

ambiguous quadrant of the stimulus space, where F0 and duration signaled differing 

interpretations, amusics relied on the duration cues to make their response more often than did 

controls.   

Across both the amusic and control groups, participants with finer pitch than duration 

discrimination thresholds tended to have higher F0 (than duration) cue weights (Kendall Tau-

b r=0.43, p=.005; Fig. 5B). 

Finally, we confirmed statistically the greater group differences in perceptual 

weightings in the Prosody task compared to the Phonetic task (interaction of Group X 

Experiment predicting normalized F0 cue weights, F(1,40) = 4.44, p=.04, ηp
2 = 0.10).   
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Figure 3: Comparison of F0 and duration cue weights for phonetic and prosodic 

perception. A) Phonetic Cue Weighting. Mean perceptual weights plotted by group and 

condition (left). Mean categorization response plotted at each level of F0, collapsed over 
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duration; and each level of duration collapsed over F0. B) Prosodic Cue Weighting. 

Analogous plots for the prosodic categorization. Bars indicate standard error of the mean.  
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Figure 4: When F0 and duration cues conflict, amusics rely on duration when 

categorizing prosody. A) Heatmaps indicate proportion of trials categorized as “study 

MUSIC” (for the prosody portion, panel A) or “pier” (phonetics portion, panel B), for the 

Control and Amusic groups. B) Group difference (Control – Amusic) heatmaps displaying T-

statistics. When duration and F0 conflicted in the prosody task (duration indicated emphasis 

on STUDY, but F0 indicated emphasis on MUSIC; upper-left quadrant of stimulus space), 

amusic participants chose the duration-based response more often than controls. Teal outlines 

indicate significant group differences (corrected for multiple comparisons). Uncorrected 

results (p<.05) are indicated with green outlines. 

 

 

Figure 5: Correlation between perceptual discrimination and perceptual cue weight. The 

figures plot relative pitch versus duration thresholds as a function of the relative perceptual 

weight of F0 in phonetic (A) and prosodic (B) judgments. The correlation shown is Kendall’s 

Tau-b. Loess curves are plotted to indicate direction of trends. A. In the phonetic task, for 

which F0 is a secondary perceptual dimension, there was no significant correlation between 

perceptual thresholds and normalized perceptual weight of F0. B. In the prosodic task, for 

which F0 is the primary perceptual dimension, individuals with finer pitch discrimination 

thresholds tended to rely more on F0 in prosodic focus judgements, even though the F0 

differences in the prosodic task were large enough to be perceptible by all participants.   

 

Discussion 
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In two categorization tasks, participants with amusia and control participants categorized 

stimuli varying across F0 and duration dimensions according to a phonetic distinction and a 

prosodic distinction.  The phonetic and prosodic categorization tasks varied in the extent to 

which category membership was cued by information from the F0 dimension versus the 

duration dimension. For the phonetic distinction, duration had been established by prior 

literature to be the primary dimension (Haggard et al., 1970; Massaro & Cohen, 1976; 1977), 

while for the prosodic distinction, F0 was known to be primary (Chrabaszcz, Winn, Lin, & 

Idsardi, 2014). We found that when duration was the primary dimension (in the phonetics task), 

the amusic and control groups categorized similarly, each relying predominantly on duration 

(VOT) to signal category membership. However, when F0 was primary (in the prosody task), 

classification behavior differed between the groups: controls classified ambiguous stimuli (for 

the most part) according to the primary dimension (F0), as predicted by prior research (Breen 

et al., 2010) whereas amusics tended to classify the very same stimuli instead according to 

duration. Crucially, this difference could not be explained by the amusic participants being 

simply unable to hear the F0 cues, because (1) sensitivity to the F0 dimension was observed in 

both the phonetic and prosodic task and (2) the differences in F0 across stimulus levels in each 

task were large enough to be above-threshold and clearly perceptible to the amusics. Indeed, 

they were well above amusics’ independently-measured pitch thresholds.  

 Many prior studies have reported large individual differences in dimensional weighting 

during speech perception across a variety of different contexts, including Mandarin tone 

perception (Chandrasekaran et al., 1010), place of articulation (Hazan & Rosen, 1991), stop 

consonant length (Idemaru et al., 2012), vowel contrasts (Kim et al., 2018), and voicing 

(Schertz et al., 2015; Kong & Edwards, 2016).  Here, we provide evidence that individual 

differences in dimensional weighting do not solely reflect measurement noise, but instead can 

indicate stable listening strategies: amusic individuals focus on the dimensions which they are 

best able to process and down-weight the dimensions which they have historically found less 

useful. This finding suggests, more generally, that differences in dimensional weighting may 

reflect weighting of perceptual evidence by precision, i.e. inverse variance (Feldman & Friston 

2010). In other words, an ideal strategy for one listener may be sub-optimal for another due to 

individual differences in the precision of auditory perception. Thus, we suggest that the 

computational problem which must be solved during speech perception differs across listeners, 

because each listener experiences a unique set of constraints. 
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Amusics’ adoption of this specialized perceptual strategy could help explain why 

amusics do not generally report difficulty with speech in everyday life (F. Liu et al., 2010), 

despite displaying deficits when tested on speech perception tasks requiring the use of F0 

information. Indeed, we further found that psychophysical thresholds across all participants, 

controls and amusics, correlated with the relative weighting of F0 versus durational 

information in the prosodic task, confirming a link between the precision of perception along 

a given primary dimension and the extent to which listeners weight that dimension in 

perceptual categorization. This relationship between perceptual acuity and categorization 

strategies could extend to other perceptual domains as well, such as identification of 

characteristics of environmental sounds (Lutfi & Liu, 2007).  

Amusic and control groups overlapped in pitch discrimination thresholds, which may 

initially seem surprising, given that the amusic participants were defined as having severe 

difficulties with pitch perception. However, amusia is not defined solely on the basis of poor 

pitch discrimination, but on the basis of performance on batteries of music perception, 

specifically on tests of comparing melodic sequences. Performance on melodic sequence tasks 

can be driven by difficulties with low-level encoding of pitch, but could also be driven by 

difficulties with other aspects of pitch processing, including pitch memory, perception of 

higher-level pitch structures such as tonal relationships, etc. In this manuscript, due to testing 

time constraints, we evaluated pitch versus duration perception abilities using relatively simple 

psychophysical tests rather than comprehensive batteries. In practice, however, we suggest that 

cue weighting is fundamentally driven by a range of pitch-related and duration-related skills, 

which include but are not limited to low-level encoding and discrimination. 

The results of Experiment 1 revealed that amusics weight F0 cues relatively less than 

duration cues, compared to controls. This was true for the prosodic task where F0 was typically 

the primary dimension, but not true for the phonetic task, where duration is typically primary. 

This suggests that listeners will only change cue weighting in response to perceptual difficulties 

if the dimension they have difficulty processing is the primary cue for a given linguistic feature. 

An alternative explanation, however, is that these findings may reflect a specific amusic deficit 

for integration of pitch information across longer time frames, rather than a simple encoding 

deficit. Indeed, in the prosody paradigm, F0 information unfolded over time in the order of 

seconds, whereas in the phonetic paradigm the F0 excursion was over milliseconds. Future 

work could distinguish between these two explanations (primary vs secondary cue; long vs. 



26 

INDIVIDUALIZED PERCEPTION STRATEGIES  

short time scale) by examining cue weighting in amusics and controls for perception of a 

prosodic feature for which duration is a dominant cue, such as lexical stress (Mattys, 2000). 

Overall, these results indicate that the manner in which auditory dimensions map to 

linguistically-relevant categories differs across listeners, and that these individual differences 

in perceptual weighting reflect, at least in part, variability in how well listeners can perceive 

auditory dimensions. A particular dimension, for example, may be primary for one listener but 

secondary for another, leading to differing categorization strategies for the same stimuli across 

different listeners.   

Experiment 2 

While Experiment 1 focused only on speech perception, redundancy in acoustic signals ought 

to aid with perception of music as well.  In Experiment 2 we examined whether cue redundancy 

in more naturalistic stimuli from speech, as well as music, leads to robustness in the face of 

perceptual deficits. In other words, we tested whether the perceptual strategy employed by 

amusics in Experiment 1—where amusics rely less on pitch information when it is a primary 

cue, focusing instead on other sources of information about speech—can be successful enough 

to lead to perceptual categorization performance equivalent to that of control participants.  

Although amusia is canonically a problem with using pitch information to perceive 

music, there are temporal cues to certain musical structures (such as the beginnings and ends 

of phrases (Palmer & Krumhansl, 1987) that could theoretically enable amusics to compensate 

for poor pitch perception and successfully track musical features. To examine this possibility, 

first, in a music perception test, participants categorized phrases as complete or incomplete 

when they could rely on pitch alone, duration alone, or both dimensions simultaneously.  If so, 

we predict that amusics should be able to detect musical phrases when durational cues are 

present, but not when only pitch cues are present. 

Second, we investigated whether temporal dimensions in speech provide sufficient 

information for amusics to compensate for poor pitch perception, enabling categorization of 

prosodic information at a level similar to that of controls. We tested this with two linguistic 

prosody tasks, one for which pitch/F0 is generally the main distinguishing cue and one where 

durational cues are primary. In both tasks we measured the extent to which participants could 

use F0 and duration dimensions to make categorical decisions about whether words had 

linguistic focus (or ‘emphasis'; e.g. 'Mary likes to READ books, but she doesn’t like to WRITE 
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them.') or whether phrase boundaries were present or absent ('After John runs [phrase 

boundary], the race is over’). To do this, we manipulated stimuli such that participants needed 

to rely on the F0 dimension alone, the duration dimension alone, or could use both. Across 

both speech and music perception, we predict that if there is sufficient information in durational 

patterns for the extraction of structural features--that is, if pitch and duration are fully 

redundant--then amusics should perform similarly to controls in both the duration-only and 

combined F0 and duration conditions for both music and speech perception, and that amusics’ 

performance should be improved by the presence of redundant cues 

Methods 

Participants 

All 31 recruited participants took part in Experiment 2. For description of participants see 

Experiment 1.  

Procedure 

This experiment was performed in a quiet laboratory at Birkbeck using headphones. The 

Linguistic Phrase Test was run first (~20 minutes), followed by the Musical Phrase Test (~20 

minutes), then the Focus Test (~30 minutes). 

Musical Phrase Perception Test 

Stimuli 

The stimuli consisted of 150 musical phrases taken from a corpus of folk songs (Schaffrath & 

Park, 1995). Musical phrases were synthesized as a sequence of six harmonic complex tones 

with 10ms cosine onset and offset ramps. Stimuli were created in three conditions that 

manipulated the acoustic dimensions available to listeners. In the Combined condition, the 

musical phrase contained both pitch and duration information (as typical naturalistic melodies 

do). Fifty stimuli were selected from the database for this condition only, and fifty additional 

stimuli were selected for each of two additional conditions. In the Pitch condition, the pitch of 

the melody was preserved (as in the original version) but the durations were set to be 

isochronous and equal to the mean duration of the notes in the original melody. This is because 

although isochronous can be perceived as rhythmic (Brochard et al., 2003), isochronous  

durations do not provide durational cues to musical phrase boundaries. In the Duration 
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condition, the original note durations were preserved but the pitch of the notes was made to be 

monotone at a pitch of 220 Hz.  In an additional manipulation, half of the stimuli presented in 

each condition formed a complete musical phrase with the notes in an unmodified sequential 

order - these could be perceived as a Complete musical phrase. The other half were made to 

sound Incomplete by presenting a concatenation of the second half of the musical phase and 

the first half of the next musical phrase in the song.  The order of the notes within the two 

halves was preserved. Thus, the resulting Incomplete stimuli contained a musical phrase 

boundary that occurred in the middle of the sequence, rather than at the end.  

Procedure 

On each trial, a musical note sequence was presented to the participant through headphones. 

After the sound finished playing, a response bar appeared on the screen which was 

approximately 10 cm in width. Participants were tasked with deciding how complete each 

musical phrase sounded by clicking with their mouse on the response bar. (A continuous 

measure of completeness was used to avoid potential ceiling/floor effects due to bias on the 

part of individual listeners to hear phrases as complete or incomplete.) The word “Incomplete” 

was shown on the left side of the response bar, and the word “Complete” was shown on the 

right. Participants could click anywhere within the bar to indicate how complete they thought 

the phrase had sounded (Fig. 6). The next stimulus was played immediately after a response. 

Participants judged 3 blocks of 50 trials each, with a short break in between. As the study was 

aimed at understanding individual differences, the block order was always the same, with all 

the trials in a condition presented in a single block, in the same order (Combined Cues, then 

Duration Only, then Pitch Only). Within a block, half of the trials were Complete, and half 

Incomplete. The main outcome measure was the raw rating difference between Complete and 

Incomplete trials for each condition. Trials were blocked by condition because the three 

conditions for the Musical Phrase test were saliently different, and so fully randomizing trials 

could have led to substantial task-switching costs on a trial-wise basis. 
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Figure 6. Schematic of trial structure for the Musical Phrase Test. Participants heard either 

a complete musical phrase or a musical sequence that straddled the boundary in between two 

musical phrases. They then indicated how complete they thought the phrase sounded by 

clicking with a mouse at a point along a response bar. 
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Linguistic focus perception task 

Stimuli 

The stimuli consisted of 47 compound sentences with an intervening conjunction created 

specifically for this study. Each of the sentences was read with emphasis to create had two 

versions: “early focus”, where emphasis occurred early in the sentence and served to contrast 

with a similar word later in the sentence (e.g., “Mary likes to READ books, but she doesn’t 

like to WRITE them,” focus indicated by upper-case letters), and “late focus”, where the focus 

occurred slightly later in the sentence (e.g., “Mary likes to read BOOKS, but she doesn’t like 

to read MAGAZINES,” focus indicated by upper-case letters).  (See Fig 7A,B; Supplementary 

Material Section 1). 

We recorded these sentences (44.1 kHz, 32-bit) using a Rode NT1-A condenser 

microphone as they were spoken by an actor who placed contrastive accents to emphasize the 

capitalized words. Recordings of both versions of the sentence were obtained and cropped to 

the identical portions (underlined above). We used the standard STRAIGHT (Kawahara & 

Irino, 2005) morphing pipeline, which involves decomposing the signal of the two recordings 

into 3 parts: first, the F0 structure was extracted from voiced segments of each of the two 

utterances; next, aperiodic aspects of the signal (such as obstruents) were identified and 

analyzed; then, the filter characteristics of the signal (similar to the power spectrum) were 

calculated. Finally, the two “morphing substrates” (speech from each recording decomposed 

into these component parts) were manually time aligned by marking corresponding anchor 

points in both recordings, such as the occurrence of salient phonemes, so that morphs reflect 

the temporal characteristics of the two initial recordings, to varying degrees. Once time-

aligned, morphs can be created by varying the degree to which each morphing substrate 

contributes information about F0, aperiodicity, filter, and duration. The relative contribution of 

each morphing substrate is given as the morphing level, on a scale from 0% to 100%, with 50% 

indicating equal contribution from each of the two individual recordings. For our study, we 

only manipulated the F0 and durational characteristics of the morphs, and left the other aspects 

set to the midpoint, such that each recording contributed equally. We then produced 6 different 

kinds of morphs by varying the amount of pitch-related (F0) and duration information either 

independently or simultaneously. For F0 only stimuli pairs, the late and early focus sentences 

differed only in F0 excursions. The temporal morphing level between the two versions was 

held at 50% while the F0 was set to include 75% of the early focus version or 75% of the late 
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focus version recording. This resulted in two new ‘recordings’ that differed in F0 excursions, 

but were otherwise identical in terms of duration, amplitude and spectral quality.  For duration 

only stimuli, we created two more morphs that held the F0 morphing proportion at 50% while 

the duration proportion was set to either 75% early focus or 75% late focus. The output differed 

only in duration, and were identical in terms of F0, amplitude and spectral quality. Finally, we 

made “naturalistic” stimuli where both F0 and duration information contained 75% of one 

morph or the other, and thus F0 and duration simultaneously cued either an early or late focus 

reading. Across pairs of stimuli, the mean largest difference in F0 between ‘early’ and ‘late’ 

focus was 8.1 semitones. All files were saved and subsequently presented at a sampling rate 

44.1 kHz with 16-bit quantization.   

 

Figure 7. Pitch and duration correlates of emphatic accents and phrase boundaries. 

Spectrograms of stimuli used in the experiment (time on horizontal axis, frequency on vertical 

axis, and amplitude in grayscale), with linguistic features cued simultaneously by F0 and 

duration (the “Combined” condition). Blue line indicates F0 contour. Width of orange and 

green boxes indicate duration of the words within the box. A) Emphatic accent places focus on 

“read”. Completion of the sentence appears to the right. B) Emphatic accent places focus on 

“books”; sentence completion is at right. C) A phrase boundary occurs after “runs”. D) A 

phrase boundary occurs after “race”. Syntactic trees are indicated at right to illustrate the 

structure conveyed by acoustics of the stimuli. 
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Procedure 

Stimuli were presented with Psychtoolbox in Matlab. Participants saw sentences presented 

visually on the screen one at a time, which were either early or late focus (see paradigm 

schematic in Fig 7A,B and Fig 8A). The emphasized words appeared in all upper-case letters, 

as in the examples above. Participants had 4 seconds to read the sentence to themselves silently 

and imagine how it should sound if someone spoke it aloud. Following this, participants heard 

the first part of the sentence spoken aloud in two different ways, one that cued an early focus 

reading and another that cued late focus. Participants were instructed to listen and decide which 

of the two readings contained emphasis placed on the same word as in the text sentence. After 

the recordings finished, participants responded by pressing “1” or “2” on the keyboard to 

indicate if they thought the first version or second version was spoken in a way that better 

matched the on-screen version of the sentence. The correct choice was cued either by F0 or 

duration exclusively, or both together. The serial order of the sound file presentation was 

randomized (uniquely for each participant). The stimuli were divided into 3 lists (47 trials each) 

and counterbalanced such that each stimulus appeared once in each condition (F0, duration, 

and both). For 23 of the stimuli, two of the presentations were early focus, and one was late 

focus; for the remaining stimuli, two presentations were late focus and one was early. The trials 

were presented in the same order for every participant. The entire task lasted approximately 30 

minutes. 
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Figure 8: Example trial structure for the linguistic focus test (A) and the linguistic phrase 

test (B). First, a single sentence was presented visually, and the participants read it to 

themselves. Next, two auditory versions of the first part of the sentence were played 

sequentially, only one of which matched the focus pattern of the visually presented sentence. 

Participants then indicated which auditory version matched the onscreen version with a button 

press.  
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Linguistic phrase perception test 

Stimuli 

The stimuli consisted of 42 short sentences with a subordinate clause appearing before a main 

clause (see Figure 7C, D). About half of these came from a published study (Kjelgaard & Speer, 

1999) and the rest were created for this test (see Supplemental Material Section 2). The 

sentences appeared in two conditions: an “early closure” condition, for which the subordinate 

clause’s verb was used intransitively, and the following noun was the subject of a new clause 

(“After John runs, the race is over”) ; and “late closure”, where the verb was transitive and took 

the following noun as its object, causing the phrase boundary to occur slightly later in the 

sentence (“After John runs the race, it’s over”). Both versions of the sentence were lexically 

identical from the start of the sentence until the end of the second noun.  

A native Standard Southern British English-speaking male (trained as an actor; the 

same voice model as for the focus task) recorded early and late closure versions of the sentences 

in his own standard Southern English dialect. The recordings were cropped such that only the 

lexically identical portions of the two versions remained, and silent pauses after phrase breaks 

were excised. The same morphing proportions were used as in the focus task – with early or 

late closure cued by 75% morphs biased with pitch, duration or both combined.  As was done 

with the linguistic focus task, the stimuli were crossed with condition (F0, duration, and both) 

and early vs. late closure and divided into three counterbalanced lists. Across pairs of stimuli, 

the mean largest difference in F0 between ‘early’ and ‘late’ closure was 6.4 semitones. 

Procedure 

The procedure for the Linguistic Phrase test was similar to that of the Linguistic Focus Test. 

Participants saw sentences presented visually on the screen one at a time, which were either 

early or late closure, as indicated by the grammar of the sentence and a comma placed after the 

first clause (Figure 8B). They then had two seconds to read the sentence to themselves silently 

and imagine how it should sound if someone spoke it aloud. Following this period, participants 

heard the first part of the sentence (which was identical in the early and late closure versions) 

spoken aloud, in two different ways, one that cued an early closure reading and another that 

cued late closure. The grammatical difference between the two spoken utterances on each trial 
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was cued by either F0 differences, duration differences, or both F0 and duration differences. 

Participants completed three blocks of 42 trials.  Stimuli were counterbalanced such that each 

stimulus appeared once in each condition, and half the of presentations were early close and 

half were late close. The trials were presented in the same order for every participant. The task 

was performed in a lab at Birkbeck and lasted approximately 25 minutes.   

Psychophysics 

As described in Experiment 1, thresholds for pitch and duration discrimination, and ability to 

hear speech in noise, were measured using the MLP toolbox (Grassi & Soranzo, 2009).  

Statistical analysis  

Data were analyzed with R. For the musical phrase, linguistic focus and linguistic phrase tests, 

linear mixed effects models were estimated using lme4, with Group (Amusic or Control), 

Condition (Pitch, Duration or Combined) and their interaction entered as fixed effects, and 

Item and Participant as random intercepts. P-values for these effects were calculated with 

likelihood ratio tests of the full model against a null model without the variable in question. 

Comparisons of predicted marginal means were performed with lsmeans.  

The dependent variable for the Musical Phrase Test was calculated by identifying the 

raw response value between -50 and 50 (for each trial) based on the position along the response 

bar on which the participant clicked, with -50 corresponding to responses on the extreme end 

of the Incomplete side of the scale. The sign of the data point for Incomplete trials was then 

inverted so that more positive scores always indicated correct performance and greater scores 

indicated more accurate categorization of musical phrases. 

The dependent variable that was entered into the model for the Focus and Linguistic 

Phrase tests was whether each response was CORRECT or INCORRECT. Because the 

dependent variable was binary, we used the generalized linear mixed models (glmm) function 

in the lmer package to estimate mixed effects logistic regressions, and we report odds ratios as 

a measure of effect size.   

Results 

Musical phrase perception 
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To recap, the musical phrase perception test (Fig. 6) tested participants’ ability to perceive the 

extent to which a series of notes resembled a complete musical phrase, with acoustic 

dimensions of F0, duration, or their combination available to support the judgment. The 

availability of acoustic dimensions affected participants' accuracy in identifying complete 

versus incomplete phrases. Accuracy was highest when both cues were present, lowest when 

only the F0 dimension was present, and intermediate when only the duration dimension was 

present (main effect of Condition χ2(4) = 15.6, p = .004, see Supplementary Table S1 for 

pairwise statistics). Compared to controls, amusics were overall less accurate (main effect of 

Group χ2(3) = 10.25, p = 0.017) and also differentially affected by which dimensions were 

present (Group x Condition interaction χ2(2) = 8.6, p = 0.013). FDR-corrected pairwise tests 

showed that when only the pitch-relevant F0 dimension was available, the average amusic's 

performance was significantly lower than controls (t(119.93) = 2.86, p=.022; Table S1). By 

contrast, when amusics could rely on duration alone, or both pitch and duration together (as in 

the Combined condition, where cues were present as in naturalistic melodies), amusics and 

controls did not differ significantly.  

Linguistic Focus Test 

The linguistic focus test (schematic Fig. 8A) measured participants’ ability to detect where a 

contrastive accent was placed in a sentence, based on only one type of acoustic dimension (F0 

or Duration) or both combined (as in natural speech).  As shown in Fig. 9B and Table S2, 

overall both groups performed best when they heard F0 and duration cues together, worst when 

only duration cues were present, and in between when there were only F0 cues (main effect of 

Condition χ2(4) = 168.4, p < 0.001). This suggests that both groups benefited from redundant 

information, and that F0 was more useful for detecting focus than duration, in line with results 

from Experiment 1. On the whole, controls performed more accurately than amusics (main 

effect of Group χ2(3) = 14.63, p = 0.002). However, the two groups were differentially affected 

by whether F0 or duration cues were present in the stimuli (interaction of Group X Condition 

χ2(2) = 12.05, p = 0.002). When relying on duration alone, amusics performed similarly to 

controls, but when they needed to rely on F0 they performed significantly less accurately (Odds 

Ratio = 2.00, Z=2.39, p=.019; Table S2). This disadvantage held where F0 was the sole cue, 

as well as in the Combined F0+duration cue condition. This result stands in contrast to that in 

the musical phrase test, where performance in the combined (pitch+duration) condition did not 

differ between groups.  
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Linguistic Phrase Test 

The Linguistic Phrase Perception Test (schematic Fig 8B) measured participants’ ability to 

detect phrase boundaries in speech which are cued by F0 only, duration only, or both F0 and 

duration. Cue type affected performance across groups (main effect of Condition χ2(4) = 83.06, 

p < 0.001). Participants performed least accurately when they had to rely on F0 cues alone, 

better when they relied on duration alone, and most accurately when both F0 and duration were 

present together (see Fig. 9C and Table S3).  This is consistent with prior evidence suggesting 

that duration is a more reliable cue for the detection of phrase boundaries than pitch (Streeter, 

1978). As in the Focus test, redundant cues benefitted both groups, but in contrast to the pattern 

in the Focus Test, duration was a more reliable cue to linguistic phrase boundary perception 

than pitch. 

Amusics did not differ significantly from controls in overall accuracy (main effect of 

Group χ2(3) = 2.69, p = 0.44) nor was the groups' performance significantly differently affected 

by which acoustic cues were present (interaction of Group X Condition χ2(2) =  2.33, p = 0.31). 

Because we had hypothesized a priori that amusics would rely more on duration than F0 (and 

that controls would show similar performance across the two conditions), we conducted 

pairwise contrasts to test this prediction.  Amusics did indeed show significantly greater 

accuracy with duration than with F0 cues (Odds Ratio = 1.63, Z=3.56, p=.001; Table S3), 

whereas controls did not. (For completeness, all other (post-hoc) pairwise comparisons are also 

reported).  

Correlations between Psychophysical Thresholds and Musical Phrase, Linguistic Phrase, 

and Linguistic Focus Tests 

We examined the relationship between basic auditory processing and the perception of prosody 

and music by testing whether individuals’ thresholds for detection of pitch change and duration 

change were correlated with performance scores on any of the conditions of our three main 

tasks. Pitch psychophysics thresholds were correlated with performance on the Focus Test 

when both pitch and duration cues were present (rt = -0.31, p=.026) or when pitch alone was a 

cue (rt = -0.3, p=.029).  Pitch thresholds were also correlated with Musical Phrase Test 

performance when pitch cues were the sole cue to phrase endings (rt = -0.29, p=.023).  No 

significant correlations emerged for duration or speech in noise. Scatter plots are shown in the 

Supplementary Figures S1-S3. 



38 

INDIVIDUALIZED PERCEPTION STRATEGIES  

  

 

 

Figure 9. Results of the Linguistic Focus, Linguistic Phrase and Musical Phrase tests. 

Error bars show standard error of the mean and horizontal lines indicate significant pairwise 

contrasts (FDR-corrected) mentioned in results. 
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Discussion 

Music and speech carry information across multiple acoustic dimensions, with distinct 

dimensions often providing redundant information to support perceptual decisions. We tested 

whether this multidimensional redundancy makes music and speech robust to individual 

differences in perceptual abilities. We found that amusics perceived both speech and music 

well when they could rely on a redundant, unimpaired channel (duration), either on its own, or 

together with F0 or pitch. Furthermore, for musical and linguistic phrase perception, amusics 

were able to achieve equivalent performance to control participants when boundaries were 

redundantly cued by F0/pitch and duration. Thus, redundancy in the production of 

communicative signals makes possible robust message transmission in the face of individual 

differences in auditory perception. Indeed, in the two linguistic tasks, performance in the 

Combined cue condition was greater than either of the single cue conditions, suggesting that 

typically developed individuals also benefit from speech’s built-in redundancies.  

Musical aptitude is often measured with tests that target specific domains like 

perception of melody or rhythm (Gordon, 2002; Wallentin, Nielsen, Friis-Olivarius, Vuust, & 

Vuust, 2010).  This is, however, unlike actual music listening in the real world. Naturally 

produced musical structures, such as musical phrases, are often conveyed by simultaneous (i.e. 

redundant) cues (Palmer & Krumhansl, 1987). Here, we find no evidence that amusics’ 

intuitions about musical phrase structure are impaired as long as durational cues are present. 

While amusics may not fully appreciate aspects of music that relate to pitch, we show that they 

can parse musical structures when another relevant cue is available. Future work should 

investigate whether this spared musical perception in amusics extends to other musical features 

which are communicated by redundant cues, such as musical beat perception (Hannon, Snyder, 

Eerola, & Krumhansl, 2004). 

The literature has shown inconsistent findings regarding whether pitch and duration are 

perceived independently or interactively during music perception and cognition. Palmer & 

Krumhansl (1987), for example, found that duration and pitch cues carry equal weights in 

musical phrase perception, without additional benefits from being able to combine the two, 

while Prince (2014) found that rhythm and melodic contour were independent predictors of 

melodic similarity judgments, with no interactions between the two. On the other hand, Boltz 

1989a and 1989b found an interaction between temporal accent and effects of tonality on 

perception of resolution at the end of melodies, while Prince (2011) and Prince & Loo (2017) 
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found asymmetric interactions between pitch and time: pitch characteristics influenced 

temporal goodness judgments and expectancy ratings, but temporal characteristics did not 

influence pitch goodness judgments and expectancy ratings. Our findings support a mixture of 

independent and interactive accounts of pitch and time processing in music perception. In our 

control participants, we found that performance was similar in single-cue and dual-cue 

conditions, while the amusic participants demonstrated a gain from redundancy. Thus, the 

extent to which these two dimensions are processed interactively may depend on participants’ 

skill at processing each dimension, which may, in turn, help determine the dimensions’ relative 

salience. For example, we would predict that influence of pitch characteristics on temporal 

ratings would be lessened or nonexistent in amusics. 

One possible outcome was that amusics would show superior duration processing that 

they had developed to compensate for their pitch deficit. The data here do not support this. The 

amusics showed similar - and not significantly more accurate - duration perception ability 

compared to controls across the music and language tests, as well as similar psychophysical 

duration discrimination thresholds. The present data suggest that rather than developing 

exceptional duration processing ability, all that may be necessary to achieve normal speech 

perception is a re-weighting in perception to emphasize dimensions for which perception is 

more accurate. 

We have primarily interpreted group differences in performance on these musical and 

prosodic categorization tests as reflecting relative weighting of different perceptual 

dimensions. Another possible interpretation of our results, however, is that they reflect 

differences in participants’ internal models of how phrase boundaries and linguistic focus 

should be produced. That is, upon reading the visual stimulus, participants may have been 

internally generating an estimate of what that stimulus would sound like, and then comparing 

that motor/auditory simulation to the subsequent auditory input. On the other hand, inasmuch 

as speech perception in general may always involve a component of motor imagery (i.e. the 

motor theory of speech, Liberman & Mattingly 1985), these perceptual and internal motor 

model interpretations may not be as different as they initially appear. Moreover, reports of 

preserved pitch production in amusia (Loui, Guenther, Mathys, & Schlaug, 2008) argue against 

an account of our results which primarily references group differences in models of motor 

production of prosodic features. 

General Discussion 
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There is a remarkable diversity in the use and weighting of perceptual dimensions in speech 

and music in the typical population (Chandrasekaran et al., 2010; Hazan & Rosen, 1991; 

Idemaru et al., 2012; Kim et al., 2018; Kong & Edwards, 2016; Schertz, Cho, Lotto, & Warner, 

2015b). How do such stable individual differences arise, and how do communication systems 

facilitate robust information transmission despite this variability? We hypothesized that when 

two perceptual dimensions convey the same communicative content, the relative ease with 

which an individual listener can extract information from those dimensions would bias the 

relative weighting of these dimensions.  We tested this with an 'experiment of nature'—people 

with congenital difficulties in processing pitch, but not duration—and asked whether such a 

specific perceptual starting state might bias these listeners away from using their unreliable 

dimension (pitch) and toward another that is processed more reliably (duration cues) during 

perceptual categorization. We also asked whether such biases would be specific to cases in 

which the unreliable dimension (pitch) tends to be the primary cue— for instance in prosodic 

emphasis— or if it would extend to cases in which it was a secondary cue (e.g., categorization 

of onset syllable voicing).  Finally, we examined whether the existence of redundant cues in 

speech and music (i.e., the presence of both durational and pitch cues) makes possible relatively 

robust transmission of message-level information, despite profound individual differences in 

perceptual acuity. 

We first asked the question of whether one’s relative ability to perceive certain auditory 

dimensions is indeed linked to perceptual weightings of those dimensions in speech perception. 

In the case of prosodic emphasis, typical listeners tend to rely mainly on F0, but people with 

pitch perception difficulties tended to rely less on F0.  When F0 and duration cues conflicted, 

amusic participants generally categorized stimuli according to duration cues, whereas the 

control group tended to categorize the very same stimuli according to F0 cues. For onset 

syllable voicing (phonetic categorization, for which F0 is typically a secondary dimension), on 

the other hand, there were no significant differences between people with pitch perception 

difficulties and control participants. Importantly, the F0 frequency range used to convey 

information across both of these tasks was considerably greater than the pitch discrimination 

thresholds of each participant. Thus, although the participants with pitch perception difficulties 

could have used pitch perception for prosodic categorization, they may have learned over time 

that pitch cues conveyed by F0 contours were less useful for them compared to 

temporal/durational cues. In other words, reweighting away from use of F0 cues may reflect 

increased salience of information that is better perceived. These results, therefore, do not 
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support additive models of perception, but are in accordance with the fuzzy logical model of 

perception (Massaro & Cohen 1993), which suggests that unambiguous sources of information 

are upweighted when other sources of information are ambiguous, and predictive coding theory 

(Feldman & Friston 2010), which suggests that evidence is weighted in accordance with its 

precision (inverse variance). 

Our results have implications for theoretical models of speech and music perception. In 

the past, theoretical models of speech perception have been constructed to model the behavior 

of ideal participants, approximated in practice by averages of group performance (Toscano & 

McMurray, 2010). Similarly, prior empirical investigations of how cues are integrated during 

speech and music perception have attempted to determine, across participants, which 

dimensions are weighted more strongly than others, with the implicit assumption being that 

dimensional weighting strategies primarily reflect the distribution of cues associated with the 

existence of certain phonetic, prosodic, and musical structures. For linguistic focus, for 

example, pitch has been described as the primary cue, while word duration has been described 

as a secondary cue providing supplementary information (Breen et al., 2010). Our data, on the 

other hand, suggest that dimensional weighting strategies reflect a combination of the statistical 

characteristics of the input and the unique combination of perceptual strengths and weaknesses 

possessed by an individual. In other words, even if an acoustic dimension such as pitch is 

statistically a more reliable cue to a linguistic or musical feature, nevertheless for some listeners 

the optimal strategy may not be to rely heavily on pitch cues—because those pitch cues must 

pass through the filter of an individual’s perceptual system, which may process pitch and 

duration more or less reliably than one another. As such, we suggest that theoretical models for 

how acoustic dimensions are integrated in speech and music perception as well as future 

empirical research on this topic should take into account perceptual fidelity at the individual 

level in addition to acoustical factors at the signal level. 

Next, we asked whether the redundant information conveyed by pitch/F0 and duration 

is sufficient to enable reliable message transmission via prosody despite severe perceptual 

deficits. In a follow-up experiment, we found that although participants with pitch perception 

difficulties struggled to decode musical and prosodic information when conveyed only via 

spectral cues (pitch for music, F0 for voices), they performed equivalently to control 

participants when durational cues were added. Thus, the existence of redundant cues to 

structure in speech and music ensures that these systems are robust even to extreme perceptual 
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deficits. Because of the redundancy built into speech and music, people with specific and even 

severe auditory deficits can perceive structure nonetheless. 

To keep the experimental design simple, we only examined two auditory dimensions –

pitch changes conveyed through F0, where we suspected our groups would show a difference, 

and duration, where we believed they would not. Outside the laboratory there are other cues 

that individuals could take advantage of, such as vowel quality, which is also associated with 

phrase boundaries, and pitch accents (Sluijter & van Heuven, 1996; Streeter, 1978). Accents 

also carry visual correlates, such as head movements, beat gestures, and eyebrow raises (e.g. 

Beskow, Granström, Conference, 2006, 2006; Flecha-García, 2010; Krahmer & Swerts, 2007), 

which individuals may also be able to use to compensate for their pitch impairment in 

audiovisual speech perception. Moreover, top-down processes such as the use of lexical 

knowledge can also help disambiguate unclear speech (Connine & Clifton, 1987; Ganong, 

1980) and talker identity cues from the visual modality help listeners to disambiguate acoustic-

phonetic cues (Zhang & Holt, 2018). Individuals may be able to modify the extent to which 

they make use of any or all of these different sources of information in response to their 

idiosyncratic set of strengths and weaknesses. For example, individuals with widespread 

auditory processing problems may rely more heavily on top-down lexical information, or visual 

cues. 

Our participants were all adults, and so could take advantage of decades of experience 

in perceiving speech. One open question is the length of time necessary for developing 

perceptual categorization strategies. Although correlations between auditory perception 

thresholds and speech perception are generally weak or nonexistent in adults listening to their 

native language, stronger correlations have been reported in young children (Bavin, Grayden, 

Scott, & Stefanakis, 2010; Boets, Wouters, van Wieringen, De Smedt, & Ghesquière, 2008) 

and adults in the initial stages of learning a foreign language (Chandrasekaran, Kraus, & Wong, 

2012; Kachlicka, Saito, & Tierney, 2019), suggesting that robust perceptual strategies take time 

to develop. Auditory processing may, therefore, be a bottleneck for speech perception in the 

initial stages of acquiring a language, at which time listeners have not yet developed stable 

adult-like perceptual weights across acoustic dimensions (Idemaru & Holt, 2013; Mayo & 

Turk, 2004). In later stages of language acquisition, correlations between auditory processing 

and speech perception may dissipate due to increased perceptual redundancy as perceptual 

strategies mature, although language delays due to earlier problems with speech may persist 
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(Rosen, 2003; Ramus et al., 2013). This hypothesis could be tested by examining the 

relationship between cue weighting and auditory processing in children. Prior work has shown 

that compared to adults, children place more emphasis on primary cues to phonetic contrasts 

and less emphasis on secondary cues (Idemaru & Holt, 2013). If what makes a cue “primary” 

versus “secondary” is its relative salience, then children may initially focus on the cue they can 

best process, ignoring other sources of evidence. 

That individuals can compensate for perceptual impairments through greater reliance 

on higher-fidelity auditory dimensions, along with evidence that perceptual weighting 

strategies can be altered through training (Francis et al., 2008; Lim & Holt, 2011; Wu et al., 

2016, suggests that it may be possible to ameliorate speech perception deficits via the 

development of targeted auditory processing training batteries. In particular, participants could 

be trained to rely more heavily on the attributes which they can more easily track. For example, 

participants with temporal perception deficits could be trained to focus on pitch-based cues to 

syntactic and phonological structure. 

The extent to which individual differences in dimensional weighting are stable across 

tasks and individuals remains an open question. As discussed above, amusics rely less on F0 

in prosodic but not phonetic categorization, suggesting that in some cases dimensional 

weighting can vary. Future work could examine whether amusics also rely less on pitch 

information when detecting musical structure. The boundaries of musical phrases, for example, 

are conveyed by pitch and durational changes similar to those found at the boundaries of 

linguistic phrases, including phrase-final lengthening and changes in pitch (Tierney, Russo, & 

Patel, 2011). Accordingly, typical listeners listen for both pitch and durational cues when 

judging the completeness of a musical phrase (Jusczyk & Krumhansl, 1993; Palmer & 

Krumhansl, 1987). Similarly, the location of musical beats can be conveyed by lengthening of 

the note on which the beat falls and/or a change in melodic contour (Ellis & Jones, 2009; 

Hannon et al., 2004; Prince, 2014). We predict that individual differences in dimensional 

salience (such as decreased pitch salience in amusia) extend across tasks and lead to measurable 

differences in perceptual strategies during beat and musical phrase perception.  

Prior work has shown that relative weighting of pitch versus time cues can be modified 

by the presence of tonal and rhythmic structure (Prince, Schmuckler, & Thompson, 2009; 

Prince & Rice 2018), suggesting that dimensional salience is not set in stone, but can be 

modified in response to cues to the relative usefulness of different sources of information. This 
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suggests that dimensional weighting based on perceptual variance may not be limited to slow, 

long-term effects. Listeners may also dynamically alter their musical dimensional weighting in 

response to short-term changes in cue distribution, as has been shown for perception of 

phonetic features such as voice onset time (Holt & Lotto, 2006). 

Our finding that amusics can minimize the impact of their perceptual impairment by 

focusing on preserved cues suggests that other populations may be able to take advantage of a 

similar strategy. Individuals with autism (O’Connor, 2012), ADHD (Riccio, Hynd, Cohen, 

Hall, & Molt, 1994), and beat deafness (Phillips-Silver et al., 2011), for example, have been 

reported to display impaired temporal but not pitch perception. Our model population was able 

to integrate pitch and duration together to perform the tasks, and this strategy may limit the 

impact of impaired auditory perception in some of these populations. Other groups, however, 

might find this strategy less successful; for instance, individuals with autism have difficulty 

integrating information across multiple senses (Marco, Hinkley, Hill, & Nagarajan, 2011).   

In conclusion, our results showcase how widespread competency can hide individual 

differences in how individuals perceive the world. Perception can, on the surface, appear to be 

seamless and universal, with most people appearing to arrive at the same interpretations from 

the same information. This, however, can mask the true diversity of human experience.   

Contributions 

K.J., F.D., and A.T.T. developed the study concept. All authors contributed to the design. K.J. 

performed testing, data collection, data analysis and drafted the manuscript. F.D., A.T.T. and 

L.H. provided critical revisions. All authors approved the final version of the manuscript for 

submission. 

Acknowledgments 

We thank Stuart Rosen, Marcus Pearce, Laura Staum-Casasanto, Alex Martin, Aniruddh Patel, 

Clare Press and Lauren Stewart for helpful comments and discussion. We also thank all our 

participants. The work was funded by a Wellcome Trust Seed Award #109719/Z/15/Z to 

A.T.T., a Reg and Molly Buck Award from SEMPRE to K.J., and a Leverhulme Trust Early 

Career Fellowship to K.J. 

Data Availability 



46 

INDIVIDUALIZED PERCEPTION STRATEGIES  

The data that support the findings of this study are available in the Birkbeck data repository, 

BiRD. 

Author Note 

A previous version of this work appeared on the website bioRxiv. 

References  

Anwyl-Irvine, A., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. (2018). Gorillas in 

our Midst: Gorilla.sc, a new web-based Experiment Builder, 1–19. 

http://doi.org/10.1101/438242 

Aydelott, J., Baer-Henney, D., Trzaskowski, M., Leech, R., & Dick, F. (2012). Sentence 

comprehension in competing speech: Dichotic sentence-word priming reveals 

hemispheric differences in auditory semantic processing. Language and Cognitive 

Processes, 27(7-8), 1108–1144. http://doi.org/10.1080/01690965.2011.589735 

Ayotte, J., Peretz, I., & Hyde, K. (2002). Congenital amusia: A group study of adults afflicted 

with a music‐specific disorder. Brain, 125, 238–251. http://doi.org/10.1093/brain/awf028 

Bavin, E. L., Grayden, D. B., Scott, K., & Stefanakis, T. (2010). Testing auditory processing 

skills and their associations with language in 4—5-year-olds. Language and Speech, 53, 

31–47. http://doi.org/10.1177/0023830909349151 

Bench, J., Kowal, Å., & Bamford, J. (1979). The BKB (Bamford-Kowal-Bench) Sentence 

lists for partially-hearing children, 13, 108–112. 

http://doi.org/10.3109/03005367909078884 

Bentrovato, S., Devescovi, A., D'Amico, S., Wicha, N., & Bates, E. (2003). The effect of 

grammatical gender and semantic context on lexical access in Italian using a timed word-

naming paradigm. Journal of Psycholinguistic Research, 32, 417–430. 

http://doi.org/10.1023/A:1024899513147 

Beskow, J., Granström, B., House, D., 2006. (2006). Visual correlates to prominence in 

several expressive modes. Ninth International Conference on Spoken Language 

Processing. 

Boebinger, D., Evans, S., Rosen, S., Lima, C. F., Manly, T., & Scott, S. K. (2015). Musicians 

and non-musicians are equally adept at perceiving masked speech. The Journal of the 

Acoustical Society of America, 137, 378–387. http://doi.org/10.1121/1.4904537 

Boersma, P. (2002). Praat: a system for doing phonetics by computer. Glot International, 5. 

Boets, B., Wouters, J., van Wieringen, A., De Smedt, B., & Ghesquière, P. (2008). Modelling 

relations between sensory processing, speech perception, orthographic and phonological 

ability, and literacy achievement. Brain and Language, 106, 29–40. 

http://doi.org/10.1016/j.bandl.2007.12.004 

Boltz, M.G. (1989a). Perceiving the end: Effects of tonal relationships on melodic 

completion. Journal of Experimental Psychology: Human Perception and Performance, 

15, 749-761. doi: 10.1037/0096-1523.15.4.749  

Boltz, M.G. (1989b). Rhythm and good endings - effects of temporal structure on tonality 

judgments. Perception & Psychophysics, 46, 9-17. doi: 10.3758/BF03208069  

Breen, M., Fedorenko, E., Wagner, M., & Gibson, E. (2010). Acoustic correlates of 

information structure. Language and Cognitive Processes, 25, 1044–1098. 

http://doi.org/10.1080/01690965.2010.504378 

Brochard, R., Abecasis, D., Potter, D., Ragot, R., & Drake, C. (2003). The “ticktock” of our 

http://doi.org/10.1101/438242
http://doi.org/10.1101/438242
http://doi.org/10.1016/j.bandl.2007.12.004
http://doi.org/10.1016/j.bandl.2007.12.004
http://doi.org/10.1080/01690965.2010.504378
http://doi.org/10.1080/01690965.2010.504378


47 

INDIVIDUALIZED PERCEPTION STRATEGIES  

internal clock: Direct brain evidence of subjective accents in isochronous sequences. 

Psychological Science, 14, 362-366. 

Chandrasekaran, B., Kraus, N., & Wong, P. C. M. (2012). Human inferior colliculus activity 

relates to individual differences in spoken language learning. J Neurophysiol. 

http://doi.org/10.1152/jn.00923.2011 

Chandrasekaran, B., Sampath, P. D., & Wong, P. C. M. (2010). Individual variability in cue-

weighting and lexical tone learning. The Journal of the Acoustical Society of America, 

128, 456–465. http://doi.org/10.1121/1.3445785 

Chrabaszcz, A., Winn, M., Lin, C. Y., & Idsardi, W. J. (2014). Acoustic cues to perception of 

word stress by English, Mandarin, and Russian speakers. Journal of Speech, Language, 

and Hearing Research, 57, 1468–1479. http://doi.org/10.1044/2014_JSLHR-L-13-0279 

Connine, C. M., & Clifton, C. (1987). Interactive use of lexical information in speech 

perception. Journal of Experimental Psychology: Human Perception and Performance, 

13, 291–299. http://doi.org/10.1037//0096-1523.13.2.291 

Dalla Bella, S., Giguère, J.-F., & Peretz, I. (2009). Singing in congenital amusia. The Journal 

of the Acoustical Society of America, 126, 414–424. http://doi.org/10.1121/1.3132504 

de Pijper, J. R., & Sanderman, A. A. (1994). On the perceptual strength of prosodic 

boundaries and its relation to suprasegmental cues. The Journal of the Acoustical Society 

of America, 96, 2037–2047. http://doi.org/10.1121/1.410145 

Del Giudice, M., & Colle, L. (2007). Differences between children and adults in the 

recognition of enjoyment smiles. Developmental psychology, 43(3), 796. 

Du, S., Tao, Y., & Martinez, A. M. (2014). Compound facial expressions of emotion. 

Proceedings of the National Academy of Sciences, 111(15), E1454-E1462. 

Ellis, R. J., & Jones, M. R. (2009). The role of accent salience and joint accent structure in 

meter perception. Journal of Experimental Psychology: Human Perception and 

Performance, 35, 264–280. http://doi.org/10.1037/a0013482 

Elman, J. L. (2009). On the meaning of words and dinosaur Bones: Lexical knowledge 

without a lexicon. Cognitive Science, 33, 547–582. http://doi.org/10.1111/j.1551-

6709.2009.01023.x 

Fear, B. D., Cutler, A., & Butterfield, S. (1995). The strong/weak syllable distinction in 

English. The Journal of the Acoustical Society of America, 97, 1893–1904. 

http://doi.org/10.1121/1.412063 

Flecha-García, M. L. (2010). Eyebrow raises in dialogue and their relation to discourse 

structure, utterance function and pitch accents in English. Speech Communication, 52, 

542–554. http://doi.org/10.1016/j.specom.2009.12.003 

Francis, A. L., Baldwin, K., & Nusbaum, H. C. (2000). Effects of training on attention to 

acoustic cues. Perception & Psychophysics, 62, 1668–1680. 

http://doi.org/10.3758/BF03212164 

Francis, A. L., Kaganovich, N., & Driscoll-Huber, C. (2008). Cue-specific effects of 

categorization training on the relative weighting of acoustic cues to consonant voicing in 

English. The Journal of the Acoustical Society of America, 124, 1234–1251. 

http://doi.org/10.1121/1.2945161 

Ganong, W. F. (1980). Phonetic categorization in auditory word perception. Journal of 

Experimental Psychology: Human Perception and Performance, 6, 110–125. 

http://doi.org/10.1037//0096-1523.6.1.110 

Gordon, E. E. (2002). Primary measures of music audiation. 

Grassi, M., & Soranzo, A. (2009). MLP: A MATLAB toolbox for rapid and reliable auditory 

threshold estimation. Behavior Research Methods, 41, 20–28. 

http://doi.org/10.3758/BRM.41.1.20 

Haggard, M., Ambler, S., & Callow, M. (1970). Pitch as a voicing cue. The Journal of the 

http://doi.org/10.1121/1.410145
http://doi.org/10.1121/1.410145


48 

INDIVIDUALIZED PERCEPTION STRATEGIES  

Acoustical Society of America, 47(2B), 613–617. http://doi.org/10.1121/1.1911936 

Hannon, E. E., Snyder, J. S., Eerola, T., & Krumhansl, C. L. (2004). The role of melodic and 

temporal cues in perceiving musical meter. Journal of Experimental Psychology: Human 

Perception and Performance, 30, 956–974. http://doi.org/10.1037/0096-1523.30.5.956 

Hazan, V., & Rosen, S. (1991). Individual variability in the perception of cues to place 

contrasts in initial stops. Perception & Psychophysics, 49, 187–200. 

http://doi.org/10.3758/BF03205038 

Hebets, E. A., Barron, A. B., Balakrishnan, C. N., Hauber, M. E., Mason, P. H., & Hoke, K. 

L. (2016). A systems approach to animal communication. Proceedings of the Royal 

Society B: Biological Sciences, 283, 20152889. http://doi.org/10.1098/rspb.2015.2889 

Helbig, H. B., & Ernst, M. O. (2007). Optimal integration of shape information from vision 

and touch. Experimental brain research, 179(4), 595-606. 

Holt, L. L., & Lotto, A. J. (2006). Cue weighting in auditory categorization: Implications for 

first and second language acquisition. The Journal of the Acoustical Society of America, 

119(5), 3059–3071. http://doi.org/10.1121/1.2188377 

Holt, L. L., & Lotto, A. J. (2008). Speech perception within an auditory cognitive science 

framework. Current Directions in Psychological Science, 17, 42–46. 

http://doi.org/10.1111/j.1467-8721.2008.00545.x 

Holt, L. L., Tierney, A. T., Guerra, G., Laffere, A., & Dick, F. (2018). Dimension-selective 

attention as a possible driver of dynamic, context-dependent re-weighting in speech 

processing. Hearing Research, 366, 50–64. http://doi.org/10.1016/j.heares.2018.06.014 

Hutchins, S., Gosselin, N., & Peretz, I. (2010). Identification of changes along a continuum 

of speech intonation is impaired in congenital amusia. Frontiers in Psychology, 1. 

http://doi.org/10.3389/fpsyg.2010.00236 

Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological 

Science, 15, 356–360. http://doi.org/10.1111/j.0956-7976.2004.00683.x 

Idemaru, K., & Holt, L. L. (2011). Word recognition reflects dimension-based statistical 

learning. Journal of Experimental Psychology: Human Perception and Performance, 37, 

1939–1956. http://doi.org/10.1037/a0025641 

Idemaru, K., & Holt, L. L. (2014). Specificity of dimension-based statistical learning in word 

recognition. Journal of Experimental Psychology: Human Perception and Performance, 

40, 1009–1021. http://doi.org/10.1037/a0035269 

Idemaru, K., Holt, L. L., & Seltman, H. (2012). Individual differences in cue weights are 

stable across time: The case of Japanese stop lengths. The Journal of the Acoustical 

Society of America, 132, 3950–3964. http://doi.org/10.1121/1.4765076 

Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2010). Processing melodic 

contour and speech intonation in congenital amusics with Mandarin Chinese. 

Neuropsychologia, 48, 2630–2639. 

http://doi.org/10.1016/j.neuropsychologia.2010.05.009 

Jusczyk, P. W., & Krumhansl, C. L. (1993). Pitch and rhythmic patterns affecting infants' 

sensitivity to musical phrase structure. Journal of Experimental Psychology: Human 

Perception and Performance, 19, 627–640. http://doi.org/10.1037/0096-1523.19.3.627 

Karlin, J. E. (1942). A factorial study of auditory function. Psychometrika, 7, 251–279. 

http://doi.org/10.1007/BF02288628 

Kawahara, H., & Irino, T. (2005). Underlying principles of a high-quality speech 

manipulation system STRAIGHT and its application to speech segregation. In Speech 

Separation by Humans and Machines (pp. 167–180). Boston: Kluwer Academic 

Publishers. http://doi.org/10.1007/0-387-22794-6_11 

Kidd, G. R., Watson, C. S., & Gygi, B. (2007). Individual differences in auditory abilities. 

The Journal of the Acoustical Society of America, 122, 418–435. 

http://doi.org/10.3758/BF03205038
http://doi.org/10.3758/BF03205038
http://doi.org/10.1098/rspb.2015.2889
http://doi.org/10.1098/rspb.2015.2889


49 

INDIVIDUALIZED PERCEPTION STRATEGIES  

http://doi.org/10.1121/1.2743154 

Kim, D., Clayards, M., & Goad, H. (2018). A longitudinal study of individual differences in 

the acquisition of new vowel contrasts. Journal of Phonetics, 67, 1–20. 

http://doi.org/10.1016/j.wocn.2017.11.003 

Kjelgaard, M. M., & Speer, S. R. (1999). Prosodic facilitation and interference in the 

resolution of temporary syntactic closure ambiguity. Journal of Memory and Language, 

40, 153–194. http://doi.org/10.1006/jmla.1998.2620 

Kong, E. J., & Edwards, J. (2016). Individual differences in categorical perception of speech: 

Cue weighting and executive function. Journal of Phonetics, 59, 40–57. 

http://doi.org/10.1016/j.wocn.2016.08.006 

Krahmer, E., & Swerts, M. (2007). The effects of visual beats on prosodic prominence: 

Acoustic analyses, auditory perception and visual perception. Journal of Memory and 

Language, 57, 396–414. http://doi.org/10.1016/j.jml.2007.06.005 

Lerdahl, F., & Jackendoff, R. (1985). A generative theory of tonal music. MIT Press. 

Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. 

Cognition, 21, 1–36. http://doi.org/10.1016/0010-0277(85)90021-6 

Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). 

Perception of the Speech Code. Psychological Review, 74, 431–461. 

Lim, S.-J., & Holt, L. L. (2011). Learning foreign sounds in an alien world: Videogame 

training improves non-native speech categorization. Cognitive Science, 35(7), 1390–

1405. http://doi.org/10.1111/j.1551-6709.2011.01192.x 

Lisker, L. (1957). Closure duration and the intervocalic voiced-voiceless distinction in 

English. Language, 33, 42. http://doi.org/10.2307/410949 

Lisker, L. (2016). “Voicing” in English: A catalogue of acoustic features signaling /b/ versus 

/p/ in trochees. Language and Speech, 29(1), 3–11. 

http://doi.org/10.1177/002383098602900102 

Liu, F., Jiang, C., Wang, B., Xu, Y., & Patel, A. D. (2015). A music perception disorder 

(congenital amusia) influences speech comprehension. Neuropsychologia, 66, 111–118. 

http://doi.org/10.1016/j.neuropsychologia.2014.11.001 

Liu, F., Patel, A. D., Fourcin, A., & Stewart, L. (2010). Intonation processing in congenital 

amusia: discrimination, identification and imitation. Brain, 133, 1682–1693. 

http://doi.org/10.1093/brain/awq089 

Liu, R., & Holt, L. L. (2015). Dimension-based statistical learning of vowels. Journal of 

Experimental Psychology: Human Perception and Performance, 41, 1783–1798. 

http://doi.org/10.1037/xhp0000092 

Lu, Y., & Cooke, M. (2009). The contribution of changes in F0 and spectral tilt to increased 

intelligibility of speech produced in noise. Speech Communication, 51, 1253–1262. 

http://doi.org/10.1016/j.specom.2009.07.002 

Lutfi, R. A., & Liu, C.-J. (2007). Individual differences in source identification from 

synthesized impact sounds. The Journal of the Acoustical Society of America, 122, 1017–

1028. http://doi.org/10.1121/1.2751269 

Marco, E. J., Hinkley, L. B. N., Hill, S. S., & Nagarajan, S. S. (2011). Sensory Processing in 

Autism: A Review of Neurophysiologic Findings. Pediatric Research, 69, 48R–54R. 

http://doi.org/10.1203/PDR.0b013e3182130c54 

Massaro, D. W., & Cohen, M. M. (1976). The contribution of fundamental frequency and 

voice onset time to the /zi/‐/si/ distinction. The Journal of the Acoustical Society of 

America, 60, 704–717. http://doi.org/10.1121/1.381143 

Massaro, D. W., & Cohen, M. M. (1977). Voice onset time and fundamental frequency as 

cues to the /zi/-/si/ distinction. Perception & Psychophysics, 22, 373–382. 

http://doi.org/10.3758/BF03199703 

http://doi.org/10.3758/BF03199703
http://doi.org/10.3758/BF03199703


50 

INDIVIDUALIZED PERCEPTION STRATEGIES  

Massaro, D.W., & Cohen, M.M. (1993). The paradigm and the fuzzy logical model of 

perception are alive and well. Journal of Experimental Psychology: General, 122, 115-

124. doi: 10.1037/0096-3445.122.1.115  

Mattys, S. L. (2000). The perception of primary and secondary stress in English. Perception 

& Psychophysics, 62, 253–265. http://doi.org/10.3758/BF03205547 

McMurray, B., & Jongman, A. (2011). What information is necessary for speech 

categorization? Harnessing variability in the speech signal by integrating cues computed 

relative to expectations. Psychological Review, 118, 219–246. 

http://doi.org/10.1037/a0022325 

McMurray, B., Aslin, R. N., Tanenhaus, M. K., Spivey, M. J., & Subik, D. (2008). Gradient 

sensitivity to within-category variation in words and syllables. Journal of Experimental 

Psychology: Human Perception and Performance, 34, 1609–1631. 

http://doi.org/10.1037/a0011747 

Mignault Goulet, G., Moreau, P., Robitaille, N., & Peretz, I. (2012). Congenital Amusia 

Persists in the Developing Brain after Daily Music Listening. PLoS ONE, 7, e36860. 

http://doi.org/10.1371/journal.pone.0036860 

Moreau, P., Jolicœur, P., & Peretz, I. (2013). Pitch discrimination without awareness in 

congenital amusia: Evidence from event-related potentials. Brain and Cognition, 81, 

337–344. http://doi.org/10.1016/j.bandc.2013.01.004 

Nan, Y., Sun, Y., & Peretz, I. (2010). Congenital amusia in speakers of a tone language: 

association with lexical tone agnosia. Brain, 133, 2635–2642. 

http://doi.org/10.1093/brain/awq178 

O’Connor, K. (2012). Auditory processing in autism spectrum disorder: A review. 

Neuroscience and Biobehavioral Reviews, 36, 836–854. 

http://doi.org/10.1016/j.neubiorev.2011.11.008 

Omigie, D., & Stewart, L. (2011). Preserved statistical learning of tonal and linguistic 

material in congenital amusia. Frontiers in Psychology, 2, 109. 

Palmer, C., & Krumhansl, C. L. (1987). Independent temporal and pitch structures in 

determination of musical phrases. Journal of Experimental Psychology: Human 

Perception and Performance, 13, 116–126. http://doi.org/10.1037//0096-1523.13.1.116 

Patel, A. D. (2014). Can nonlinguistic musical training change the way the brain processes 

speech? The expanded OPERA hypothesis. Hearing Research, 308, 98–108. 

http://doi.org/10.1016/j.heares.2013.08.011 

Patel, A. D., Foxton, J. M., & Griffiths, T. D. (2005). Musically tone-deaf individuals have 

difficulty discriminating intonation contours extracted from speech. Brain and Cognition, 

59(3), 310–313. http://doi.org/10.1016/j.bandc.2004.10.003 

Patel, A. D., Wong, M., Foxton, J., Lochy, A., & Peretz, I. (2008). Speech intonation 

perception deficits in musical tone deafness (congenital amusia). Music Perception: an 

Interdisciplinary Journal, 25, 357–368. http://doi.org/10.1525/mp.2008.25.4.357 

Peretz, I., & Vuvan, D. T. (2017). Prevalence of congenital amusia. European Journal of 

Human Genetics, 25, 625–630. http://doi.org/10.1038/ejhg.2017.15 

Peretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Neuron, P. A., Penhune, V. B., & Jutras, B. 

(2002). Congenital amusia: a disorder of fine-grained pitch discrimination. Neuron, 33, 

185–191. http://doi.org/10.1016/S0896-6273(01)00580-3 

Peretz, I., Brattico, E., & Tervaniemi, M. (2005). Abnormal electrical brain responses to pitch 

in congenital amusia. Annals of Neurology, 58, 478–482. 

http://doi.org/10.1002/ana.20606 

Peretz, I., Champod, A. S., & Hyde, K. (2003). Varieties of musical disorders. Annals of the 

New York Academy of Sciences, 999, 58–75. http://doi.org/10.1196/annals.1284.006 

Peretz, I., Brattico, E., Järvenpää, M., & Tervaniemi, M. (2009). The amusic brain: in tune, 

http://doi.org/10.1016/j.neubiorev.2011.11.008
http://doi.org/10.1016/j.neubiorev.2011.11.008
http://doi.org/10.1196/annals.1284.006
http://doi.org/10.1196/annals.1284.006


51 

INDIVIDUALIZED PERCEPTION STRATEGIES  

out of key, and unaware. Brain, 132, 1277-1286. 

Phillips-Silver, J., Toiviainen, P., Gosselin, N., & Peretz, I. (2013). Amusic does not mean 

unmusical: Beat perception and synchronization ability despite pitch deafness. Cognitive 

neuropsychology, 30(5), 311-331. 

Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., & 

Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. 

Neuropsychologia, 49, 961–969 http://doi.org/10.1016/j.neuropsychologia.2011.02.002 

Price, C. J., & Friston, K. J. (2002). Degeneracy and cognitive anatomy. Trends in Cognitive 

Sciences, 6, 416–421. http://doi.org/10.1016/S1364-6613(02)01976-9 

Prince, J.B. (2011). The integration of stimulus dimensions in the perception of music. 

Quarterly Journal of Experimental Psychology, 64, 2125-2152. doi: 

10.1080/17470218.2011.573080  

Prince, J.B. (2014b). Pitch structure, but not selective attention, affects accent weightings in 

metrical grouping. Journal of Experimental Psychology: Human Perception and 

Performance, 40, 2073-2090. doi: 10.1037/a0037730 

Prince, J.B., & Loo, L.-M. (2017). Surface and structural effects of pitch and time on global 

melodic expectancies. Psychological Research/Psychologische Forschung, 81, 255-270. 

doi: 10.1007/s00426-015-0737-y 

Prince, J.B., & Rice, T. (2018). Regularity and dimensional salience in temporal grouping. 

Journal of Experimental Psychology: Human Perception and Performance, 44, 1356-

1367. doi: 10.1037/xhp0000542 

Prince, J.B., Schmuckler, M.A., & Thompson, W.F. (2009). The effect of task and pitch 

structure on pitch-time interactions in music. Memory & Cognition, 37, 368-381. doi: 

10.3758/MC.37.3.368 

Ramus, F., Marshall, C. R., Rosen, S., & van der Lely, H. K. J. (2013). Phonological deficits 

in specific language impairment and developmental dyslexia: towards a multidimensional 

model. Brain, 136, 630–645. http://doi.org/10.1093/brain/aws356 

Riccio, C. A., Hynd, G. W., Cohen, M. J., Hall, J., & Molt, L. (1994). Comorbidity of central 

auditory processing disorder and attention-deficit hyperactivity disorder. Journal of the 

American Academy of Child & Adolescent Psychiatry, 33, 849–857. 

http://doi.org/10.1097/00004583-199407000-00011 

Rosen, S. (2003). Auditory processing in dyslexia and specific language impairment: is there 

a deficit? What is its nature? Does it explain anything? Journal of Phonetics, 31, 509–

527. http://doi.org/10.1016/S0095-4470(03)00046-9 

Schaffrath, H., & Park, D. H. M. (1995). The Essen folksong collection in kern 

format.[computer database] (http://essen.themefinder.org/) . 

Schertz, J., Cho, T., Lotto, A., & Warner, N. (2015a). Individual differences in perceptual 

adaptability of foreign sound categories. Attention, Perception, & Psychophysics, 78, 

355–367. http://doi.org/10.3758/s13414-015-0987-1 

Schertz, J., Cho, T., Lotto, A., & Warner, N. (2015b). Individual differences in phonetic cue 

use in production and perception of a non-native sound contrast. Journal of Phonetics, 

52, 183–204. http://doi.org/10.1016/j.wocn.2015.07.003 

Sluijter, A. M. C., & van Heuven, V. J. (1996). Acoustic correlates of linguistic stress and 

accent in Dutch and American English (Vol. 2, pp. 630–633). Presented at the 

Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP 

'96, IEEE. http://doi.org/10.1109/ICSLP.1996.607440 

Stankov, L., & Horn, J. L. (1980). Human abilities revealed through auditory tests. Journal of 

Educational Psychology, 72, 21–44. http://doi.org/10.1037/0022-0663.72.1.21 

Streeter, L. A. (1978). Acoustic determinants of phrase boundary perception. The Journal of 

the Acoustical Society of America, 64, 1582–1592. http://doi.org/10.1121/1.382142 

http://doi.org/10.1016/j.neuropsychologia.2011.02.002
http://doi.org/10.1016/j.neuropsychologia.2011.02.002
http://doi.org/10.1097/00004583-199407000-00011
http://doi.org/10.1097/00004583-199407000-00011


52 

INDIVIDUALIZED PERCEPTION STRATEGIES  

Surprenant, A. M., & Watson, C. S. (2001). Individual differences in the processing of 

speech and nonspeech sounds by normal-hearing listeners. The Journal of the Acoustical 

Society of America, 110, 2085–2095. http://doi.org/10.1121/1.1404973 

Tierney, A. T., Russo, F. A., & Patel, A. D. (2011). The motor origins of human and avian 

song structure. Proceedings of the National Academy of Sciences, 108, 15510–15515. 

http://doi.org/10.1073/pnas.1103882108 

Tillmann, B., Lalitte, P., Albouy, P., Caclin, A., & Bigand, E. (2016). Discrimination of tonal 

and atonal music in congenital amusia: The advantage of implicit tasks. 

Neuropsychologia, 85, 10-18. 

Toscano, J. C., & McMurray, B. (2010). Cue integration with categories: Weighting acoustic 

cues in speech using unsupervised learning and distributional statistics. Cognitive 

Science, 34, 434–464. http://doi.org/10.1111/j.1551-6709.2009.01077.x 

Utman, J. A., Blumstein, S. E., & Burton, M. W. (2000). Effects of subphonetic and syllable 

structure variation on word recognition. Perception & Psychophysics, 62, 1297–1311. 

http://doi.org/10.3758/BF03212131 

Vuvan, D. T., Nunes-Silva, M., & Peretz, I. (2015). Meta-analytic evidence for the non-

modularity of pitch processing in congenital amusia. Cortex, 69, 186–200. 

http://doi.org/10.1016/j.cortex.2015.05.002 

Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The 

Musical Ear Test, a new reliable test for measuring musical competence. Learning and 

Individual Differences, 20, 188–196. http://doi.org/10.1016/j.lindif.2010.02.004 

Watson, C. S., & Kidd, G. R. (2002). On the lack of association between basic auditory 

abilities, speech processing, and other cognitive skills. Seminars in Hearing, 23, 083–

094. http://doi.org/10.1055/s-2002-24978 

Watson, C. S., Jensen, J. K., Foyle, D. C., Leek, M. R., & Goldgar, D. E. (1982). 

Performance of 146 normal adult listeners on a battery of auditory discrimination tests. 

The Journal of the Acoustical Society of America, 71, S73–S73. 

http://doi.org/10.1121/1.2019533 

Wicha, N. Y. Y., Moreno, E. M., & Kutas, M. (2004). Anticipating Words and Their Gender: 

An Event-related Brain Potential Study of Semantic Integration, Gender Expectancy, and 

Gender Agreement in Spanish Sentence Reading. Journal of Cognitive Neuroscience, 

16(7), 1272–1288. http://doi.org/10.1016/S0010-9452(08)70260-0 

Winn, M. B., Chatterjee, M., & Idsardi, W. J. (2013). Roles of voice onset time and F0 in 

stop consonant voicing perception: Effects of masking noise and low-pass filtering. 

Journal of Speech, Language, and Hearing Research, 56, 1097–1107. 

http://doi.org/10.1044/1092-4388(2012/12-0086) 

Winter, B. (2014). Spoken language achieves robustness and evolvability by exploiting 

degeneracy and neutrality. BioEssays, 36, 960–967. 

http://doi.org/10.1002/bies.201400028 

Wu, Y. C., & Holt, L. L. (2018). Phonetic category activation drives dimension-based 

adaptive tuning in speech perception. Proceedings of the Cognitive Science Society. 

Yu, A., & Zellou, G. (2019). Individual Differences in Language Processing: Phonology. 

Annual Review of Linguistics, 5, 6.1–6.20. http://doi.org/10.1146/annurev-linguistics-

011516-033815 

 

http://doi.org/10.1073/pnas.1103882108
http://doi.org/10.1073/pnas.1103882108
http://doi.org/10.1121/1.2019533
http://doi.org/10.1121/1.2019533

