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2 Analysis to Support Crisis Management
3 Daniela Pohl , Abdelhamid Bouchachia , Senior Member, IEEE,

4 and Hermann Hellwagner, Senior Member, IEEE

5 Abstract—People use social media (SM) to describe and discuss different situations they are involved in, like crises. It is therefore

6 worthwhile to exploit SM contents to support crisis management, in particular by revealing useful and unknown information about the

7 crises in real-time. Hence, we propose a novel active online multiple-prototype classifier, called AOMPC. It identifies relevant data

8 related to a crisis. AOMPC is an online learning algorithm that operates on data streams and which is equipped with active learning

9 mechanisms to actively query the label of ambiguous unlabeled data. The number of queries is controlled by a fixed budget strategy.

10 Typically, AOMPC accommodates partly labeled data streams. AOMPC was evaluated using two types of data: (1) synthetic data and

11 (2) SM data from Twitter related to two crises, Colorado Floods and Australia Bushfires. To provide a thorough evaluation, a whole set

12 of known metrics was used to study the quality of the results. Moreover, a sensitivity analysis was conducted to show the effect of

13 AOMPC’s parameters on the accuracy of the results. A comparative study of AOMPC against other available online learning algorithms

14 was performed. The experiments showed very good behavior of AOMPC for dealing with evolving, partly-labeled data streams.

15 Index Terms—Online learning, multiple prototype classification, active learning, social media, crisis management

Ç

16 1 INTRODUCTION

17 THE primary task of crisis management is to identify spe-
18 cific actions that need to be carried out before (preven-
19 tion, preparedness), during (response), and after (recovery
20 and mitigation) a crisis occurred [27]. In order to execute
21 these tasks efficiently, it is helpful to use data from various
22 sources including the public as witnesses of emergency
23 events. Such data would enable emergency operations cen-
24 ters to act and organize the rescue and response. In recent
25 years, a number of research studies [48] have investigated the
26 use of social media as a source of information for efficient cri-
27 sis management. A selection of such studies, among others,
28 encompasses Norway Attacks [46], Minneapolis Bridge Col-
29 lapse [34], California Wildfire [62], Colorado Floods [17], and
30 Australia Bushfires [21], [22]. The extensive use of SMby peo-
31 ple forces (re)thinking the public engagement in crisis man-
32 agement regarding the new available technologies and
33 resulting opportunities [13].
34 Our previous work on SM in emergency response focused
35 on offline and online clustering of SM messages. The offline
36 clustering approach [49] was applied to identify sub-events
37 (specific hotspots) from SMdata of a crisis for an after-the-fact

38analysis. Online clustering [47] was used to identify sub-
39events that evolve over time in a dynamic way. In particular,
40online feature selection mechanisms were devised as well, so
41that SM data streams can be accommodated continuously
42and incrementally.
43It is interesting to note that people from emergency
44departments (e.g., police forces) already use SM to gather,
45monitor, and to disseminate information to inform the public
46[20]. Hence, we propose a learning algorithm, AOMPC, that
47relies on active learning to accommodate the user’s feedback
48upon querying the item being processed. Since AOMPC is a
49classifier, the query is related to labeling that item.
50The primary goal in using user-generated contents of SM
51is to discriminate valuable information from irrelevant one.
52We propose classification as the discrimination method. The
53classifier plays the role of a filtering machinery. With the
54help of the user, it recognizes the important SM items (e.g.,
55tweets), that are related to the event of interest. The selected
56items are used as cues to identify sub-events. Note that an
57event is the crisis as such, while sub-events are the topics com-
58monly discussed (i.e., hotspots like flooding, collapsing of
59bridges, etc. in a specific area of a city) during a crisis. These
60sub-events can be identified by aggregating the messages
61posted on SM networks describing the same specific
62topic [47], [50].
63We propose a Learning Vector Quantization (LVQ)-like
64approach based on multiple prototype classification. The
65classifier operates online to deal with the evolving stream of
66data. The algorithm, named active online multiple prototype clas-
67sifier (AOMPC), uses unlabeled and labeled data which are
68tagged through active learning. Data items which fall into
69ambiguous regions are selected for labeling by the user. The
70number of queries is controlled by a budget. The requested
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71 items help to direct the AOMPC classifier to a better discrimi-
72 natory capability. While AOMPC can be applied to any
73 streaming data, herewe consider in particular SMdata.
74 The contributions of this paper are as follows:

75 � An original online learning algorithm, AOMPC, is
76 proposed to handle data streams in an efficient way.
77 It is a multi-prototype LVQ-like algorithm inspired
78 by our previous work [8], [9].
79 � As part of AOMPC, an active learning strategy is
80 introduced to guide AOMPC towards accurate classi-
81 fication, and in this paper towards sub-event detec-
82 tion. Such a strategy makes use of budget and
83 uncertainty notions to decidewhen andwhat to label.
84 � AOMPC is evaluated on different data: synthetic
85 datasets (synthetic numerical data, generated micro-
86 blogs, which are geo-tagged) and real-world datasets
87 collected from Twitter related to two crises, Colo-
88 rado Floods in 2013 and Australia Bushfires in 2013.
89 The choice and the use of all these datasets was moti-
90 vated by their diversity. That allows to thoroughly
91 evaluate AOMPC because these datasets have differ-
92 ent characteristics.
93 � A sensitivity analysis based on the different AOMPC
94 parameters and datasets is carried out.
95 � A comparison of AOMPC against well-known online
96 algorithms is conducted and discussed.
97 The paper has the following structure. Section 2 presents
98 the related work covering streaming and SM analysis.
99 Section 3 introduces the classification algorithm and

100 describes the processing steps, including the active learning
101 facets. Section 4 discusses the empirical evaluation of
102 AOMPC after describing the datasets used. Section 5 con-
103 cludes the paper.

104 2 RELATED WORK

105 The problem addressed in this paper is related to several
106 topics: multiple prototype and LearningVector Quantization
107 (LVQ) classification, online learning for classification, active
108 learning with budget planning, and social media analysis
109 (i.e., natural language processing). A short overview of these
110 topics is presented in the following.

111 2.1 Multiple Prototype Classification and LVQ
112 Classification

113 A prototype-based classification approach operates on data
114 items mapped to a vector representation (e.g., vector space
115 model for text data). Data points are classified via proto-
116 types considering similarity measures. Prototypes are
117 adapted based on items related/similar to them.
118 A Rocchio classifier [36] is an example of a single
119 prototype-based classifier. It distinguishes between two clas-
120 ses, e.g., “relevant” and “irrelevant”. In real world-scenarios,
121 due to the nature of the data, it is often not possible to describe
122 the data with a single prototype-based classifier. Multiple
123 prototype classifiers (i.e., several prototypes) are needed.
124 Self organizing maps (SOM) introduced by Kohonen [31]
125 are an unsupervised version of prototype-based classifica-
126 tion, also known as LVQ. In this case, prototypes are initial-
127 ized (e.g., randomized) and adapted. SOM was also used

128for SM analysis in the context of crisis management to iden-
129tify important hotspots [49].
130LVQ has been applied to several areas, e.g., robotics, pat-
131tern recognition, image processing, text classification etc.
132[19], [31], [60]. LVQ - in the context of similarity representa-
133tion, rather then vector-based representation - is analyzed by
134Hammer et al. [24]. Mokbel et al. [39] describe an approach
135to learn metrics for different LVQ classification tasks. They
136suggest a metric adaptation strategy to automatically adapt
137metric parameters.
138Bezdek et al. [6] review several offline multiple prototype
139classifiers, e.g., LVQ, fuzzy LVQ, and the deterministic Dog-
140Rabbit (DR) model. The latter limits the movement of proto-
141types and is similar to our approach. However, in contrast
142to our approach, DR uses offline adaptation of the learning
143rate. The time-based learning rate of our algorithm consid-
144ers concept drift (i.e., changes of the incoming data) directly
145during the update of the prototypes.
146In contrast to the previous approaches, Bouchachia [8]
147proposes an incremental supervised LVQ-like competitive
148algorithm that operates online. It consists of two stages. In
149the first stage (learning stage), the notions of winner rein-
150forcement and rival repulsion are applied to update the
151weights of the prototypes. In the second stage (control stage),
152two mechanisms, staleness and dispersion are used to get rid
153of dead and redundant prototypes. A summary of different
154prototype based learning approaches can be found in
155Biehl et al. [7].
156In this study, we deal with online real-time classification
157and we propose a multi-prototype quantization algorithm,
158where the winning prototype is adapted based on the input.
159In particular, the algorithm relies on online learning and
160active learning.

1612.2 Online Learning and Active Learning (with
162Budget Planning)

163Online learning receives data items in a continuous sequence
164and processes them once to classify them accordingly [64].
165Bouchachia and Vanaret [10], [11] use Growing Gaussian
166Mixture Models for online classification. Compared to the
167algorithm proposed in this work, there is a difference in
168adapting the learning rate and representing the prototypes.
169Reuter et al. [53] use multiple prototypes representing
170an event. New incoming items are assigned to the most
171similar events (by using an offline-trained SVM) or otherwise
172new events are created.
173Another important topic in streaming analysis is active
174learning to improve results of classificationwith an amount of
175labeled data actively asked by the system [55]. Ienco et al. [28]
176use a pre-clustering step to identify relevant items to be
177labeled by the user. In Smailovi�c et al. [57] active learning is
178used to improve the sentiment analysis of incoming tweets as
179an indicator for stock movements. Hao et al. [26] design two
180active learning algorithms (Active Exponentially Weighted
181Average Forecaster and Active Greedy Forecaster) which
182includes feedback of experts for labeling. The approach con-
183siders confidence of labels from the classifier compared to a
184set of experts. Hao et al. [25] also introduce online active learn-
185ing considering second order information, e.g., based on
186covariance matrix. Ma et al. [35] combine decision trees with
187active learning. This approach improves the learning step
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188 for decision trees. Bouguelia et al. [12] use instance weighting
189 for active online learning. They consider the weight that
190 must be changed to cause the classifier changing its predic-
191 tion. If only a small change in weight changes the original
192 classification, then the classifier is highest uncertain about
193 the item. Mohamad et al. [38] introduce an active learning
194 algorithm for data streams with concept evolution. In addi-
195 tion, they suggest a bi-criteria active learning algorithm by
196 including both label uncertainty and density of the underlying
197 distribution [37].
198 Monzafari et al. [40] study different batch-based active
199 learning approaches and define two uncertainty strategies to
200 query labels from crowdsourcing platforms. In addition, the
201 authors also define a budget or goal constraint to limit label-
202 ing. �Zliobait _e et al. [63] use active learning combined with
203 streaming data. They suggest several processingmechanisms
204 to identify uncertainty regions especially for handling data
205 drifts. It is also important to minimize the number of queries,
206 asking an expert for labels. �Zliobait _e et al. [63] include amov-
207 ing average over the incoming items and the amount of
208 already labeled items to estimate the budget. We adopted
209 thismechanism together with the uncertainty strategies.
210 Based on categorization of active learning approaches
211 by Settles et al. [55], our implementation is classified as a
212 stream-based selective sampling approach, considering dif-
213 ferent strategies to request instances for labeling. In addition,
214 we use an online feature selection approach described later.

215 2.3 Social Media Analysis for Crisis Management

216 Recent research studies SM from several technical perspec-
217 tives. Due to space limitations, we describe existing SM analy-
218 sis frameworks mostly in the context of crisis management,
219 although there are several frameworks in other contexts, e.g.,
220 Twitterbeat [56] and HarVis [2]. Backfried et al. [3] describe
221 an analysis approach based on visual analytics for combining
222 information from different sources with a specific focus on
223 multilingual issues. Vieweg and Hodges [29], [61] describe
224 the Artificial Intelligence for Disaster Response (AIDR) plat-
225 form, where persons annotate incoming tweets (similar to
226 Amazon Mechanical Turk). The tweets are then used to train
227 classifiers to identify more relevant tweets. AIDR allows to
228 classify incoming tweets based on different information cate-
229 gories, e.g., damage report, casualties, advises, etc. Chen
230 et al. [15] analyse tweets related to Flu to identify topics for
231 predicting the Flu-peak.Neppalli et al. [41] perform sentiment
232 analysis based on social media related to Hurricane Sandy.
233 The work shows that sentiment of users is related to the dis-
234 tance of the Hurricane to the users. Twitcident described by
235 Abel et al. [1] is a framework to search and filter Twitter mes-
236 sages through specific profiles (e.g., keywords). Terpstra et al.
237 [59] show the usage of Twitcident in crisis management.
238 Tweak-the-Tweet introduced by Starbird et al. [58] defines a
239 grammar which can be easily integrated in tweets and there-
240 fore automatically parsed. Also, TEDAS described by Li et al.
241 [33] is a system to detect high-level events (e.g., all car acci-
242 dents in a certain time period) using spatial and temporal
243 information. Yin et al. [65], [66] design a situational awareness
244 platform for SM. Tweets are analyzed based on bursty key-
245 words to identify emergent incidents. Ragini et al. [51] com-
246 bine several techniques to identify people in danger. They

247examined rule based classification and several machine learn-
248ing approaches, like SVM, for hybrid classification.
249Additional information on social media analysis in dif-
250ferent crises can be found in Reuter and Kaufhold [52]. Due
251to the importance of SM, it is our aim to support emergency
252management when using the content of SM platforms.
253Currently, there are systems with crowd-sourcing platform
254characteristics, but no procedure (like active learning) is
255available to directly involve emergency management per-
256sonnel in filtering relevant information.

2573 ACTIVE ONLINE MULTIPLE PROTOTYPE

258CLASSIFIER (AOMPC)

259Due to the fact that SMdata is noisy, it is important to identify
260relevant SM items for the crisis situation at hand. The idea is
261to find an algorithm that performs this classification and also
262handles ambiguous items in a reasonable way. Ambiguous
263denotes items where a clear classification is not possible
264based on the current knowledge of the classifier. The knowl-
265edge should be gained by asking an expert for feedback. The
266algorithm should be highly self-dependent, by asking the
267expert only labels for a limited number of items. Therefore,
268we propose an original approach that combines different
269aspects - such as online learning and active learning - to build
270a hybrid classifier, AOMPC. AOMPC learns from both,
271labeled and unlabeled data, in a continuous and evolving
272way. In this context, AOMPC is designed to distinguish
273between relevant and irrelevant SMdata related to a crisis sit-
274uation in order to identify the needs of individuals affected
275by the crisis. AOMPC relies on active learning. It implies the
276intervention of a user in some situations to enhance its effec-
277tiveness in terms of identifying relevant data and the related
278event in the SM stream of data (see Fig. 1). The user is asked
279to label an item if there is a high uncertainty about the classifi-
280cation as to whether it is relevant or irrelevant. The classifier
281assigns then the item (be it actively labeled or unlabeled) to
282the closest cluster or uses it to create a new cluster. A cluster -
283in this case - represents either relevant (i.e., specific informa-
284tion about the crisis of interest) or irrelevant information (i.e.,
285not related to the crisis). The process flow and the steps of
286AOMPC are shown in Fig. 1.
287AOPMC is described in Algorithm 1. The used sym-
288bols are defined in Table 1. CT and LTU are updated in
289batch-mode due to the feature selection method used (see
290Section 3.3 for details). The algorithm could also be used in
291item-wise mode.
292The general idea of this algorithm is that the longer a pro-
293totype is stale (not updated), the slower it should move to a
294new position. The learning rate a is a function of the last time
295the prototype was a winner (i.e., a can be seen as a forgetting
296factor). The winning prototype is computed based on the
297learning rate (steps 5-6). If there is an uncertainty dete-
298cted (see Section 3.2) and enough budget is available (see
299Section 3.1), the label is queried (steps 7-11). Otherwise (e.g.,
300not enough budget) the winning prototype defines the label
301(step 16). When a prototype wins the competition among all
302other neighboring prototypes based on the queried label, it is
303updated to move in the direction of the new incoming item
304(steps 17-20). In case the new input comes with new features,
305the prototype’s feature vector is extended to cover those new
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306 textual features (see step 20). In general, AOMPC is capable
307 of accommodating new features. In the case of textual input,
308 like in this study, the evolution of the vocabulary over time is
309 captured. When no prototype is sufficiently close to the new
310 item (step 22), a new prototype is created to accommodate
311 that item (steps 26-28).
312 Algorithm 1 relies on the computation of the distance
313 between the input and the existing prototypes (e.g., Euclid-
314 ean distance in Algorithm 2). Because the SM items usually

315consist of a textual description (c.f., tweets), we apply the
316Jaccard coefficient [36] as a text-based distance (dist text)
317(see Algorithm 2, steps 2-3). If the social media items consist
318of two parts, the body of the message and the geo-location
319that indicates where the message was issued in terms of
320coordinates, then we apply a combined distance measure
321ðdist textþ dist geoÞ=2. Specifically, dist text refers to the
322Jaccard coefficient, while dist geo is the Haversine distance
323[5], [54] described in Algorithm 2, steps 4-7. The coordinates
324are expressed in terms of latitude and longitude.
325Moreover steps 4-12 of Algorithm 1 are related to the
326active learning part. The algorithm starts by checking
327whether the new input item lies in the uncertainty region
328between the relevant and irrelevant prototypes and whether
329there is enough budget for labeling this item. More details
330follow in the next section.

3313.1 Definition of Budget

332The idea of active learning is to ask for user feedback instead
333of labeling the incoming data item automatically. To limit
334the number of interventions of the user, a so called budget, is
335defined. Budget can be understood as the maximum number
336of queries to the user. We adapt the method presented in [63]
337to implement active learning in the context of onlinemultiple
338prototype classification. In step 7 of Algorithm 1, the method
339within_budget() checks if enough budget is available for que-
340rying the user. The consumed budget after k items, bk is
341defined in [63] as follows:

TABLE 1
List of Symbols Used

Variable Description

x Input (one item) received by the data streamX with
btCT batches

V Set of currently known prototypes
a A parameter used in Algorithm 1 to compute the

staleness of a prototype. It is given as: a ¼ e
�log2
b , where b

is the half-life span, denoted hereafter as ð1=2Þ-life-span,
described in [30] that refers to the amount of time
required for a quantity to fall to half its value as
measured at the beginning of the time period.

I Set of indices i indicating the prototypes vi

dist Appropriate distance measure; see Algorithm 2
UT Threshold used to identify uncertainty
CT Current time
LTU Last time the prototype was updated (i.e., the winner)
S List of nearest prototypes in ascending order to the

current input x
label Labels are: relevant, irrelevant, and unknown

Fig. 1. Processing steps.
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uk ¼ uk�1�þ labelingk; � ¼ ðw� 1Þ=w; bk ¼ uk

w
; (3)

343343

344 where uk estimates the amount of labels already queried by
345 the system in the last w steps. The windoww acts as memory
346 [63] (e.g., last 100 item steps) described by �. Hence, �
347 describes the fraction of including value uk�1. labelingk
348 updates uk based on the requested label (i.e., labelingk ¼ 0 if
349 no label was queried and labelingk ¼ 1 if there was a label
350 requested) for the current item k.

351 Algorithm 1: Steps of AOMPC

352 Input: Data streamX
353 Output: List of prototypes V
354 1: CT=1; LTU=CT;
355 2: Let CT and LTU indicate the current time and the last time
356 a prototype was updated respectively
357 3: for batch btCT ofX do
358 4: for incoming input x of btCT do
359 5: Compute distance ’i between x and all prototypes vi,
360 i ¼ 1 � � � jV j ¼ I, as follows:

if ðinactionðviÞ > 0Þ ’i ¼ inactionðviÞ � distðvi;xÞ
else ’i ¼ distðvi;xÞ endif

such that inactionðviÞ ¼ 1� aðCT�vi :LTUÞ
(1)

362362

363

364 6: Compute list of nearest prototypes S based on sorted
365 index I such that
366 S ¼ createSortedListðI; ðx; yÞÞ : ð’x � ’yÞ
367 7: check = uncertainty(x) and within_budget();
368 8: if check = true then
369 9: Query the label of x
370 10: else
371 11: x:label ¼ unknown
372 12: end if
373 13: if S 6¼ fg then
374 14: Let j be the index of the closest prototype: j ¼ Sð1Þ
375 15: if x:label ¼ unknown then
376 16: Assign the data item to vj

377 17: else
378 18: if x:label ¼ vj:label then
379 19: Reinforcevj with x using only the common features:
380 vj ¼ vj þ aCT�LTU ðx� vjÞ
381 20: Add the non-common features of x to vj:
382 vj:feature ¼ aCT�LTU ðx.featureÞ
383 21: else
384 22: Go to line 26
385 23: end if
386 24: end if
387 25: else
388 26: Initialize a new prototype: vnew=x
389 27: vnew:label ¼ x:label; vnew:LTU ¼ CT
390 28: V ¼ V [ fvnewg
391 29: end if
392 30: end for
393 31: Update winning clusters in btCT with LTU ¼ CT
394 32: CT = CT + 1;
395 33: end for

396 An upper bound B is defined describing the maximum
397 number of requested labels. B is the fraction of data from
398 window w that can be labeled (i.e., B ¼ 0:2 are 20 percent).

399At each step, one input is processed. Thewithin_budget() pro-
400cedure in Algorithm 1 checks if enough budget is available
401(i.e., bk < B). If so, the algorithm queries the label of the
402ambiguous input.

403Algorithm 2: distðv;xÞ
404Input: Prototype v , input x
405Output: Distance of (v,x)
4061: if the input is a social media item then
4072: Compute the textual distance (Jaccard) as follows:

dist text ¼1� jaccard; where:

jaccard ¼jA \Bj=jA [Bj; 409409

410

4113: distance ¼ dist text;
4124: if the input is a composed social media item then
4135: Compute the geo-location distance as follows:

dist geo ¼1�Hðv:geo co;x:geo coÞ=p
where:

Hðx1;x2Þ ¼2 � atan2ð
ffiffiffi
f

p
;

ffiffiffiffiffiffiffiffiffiffiffi
1� f

p
Þ

f ¼sin2ðDlat
2

Þ þ cosðx1:latÞ�

cosðx2:latÞ � sin2ðDlon
2

Þ
Dlat ¼x2:lat� x1:lat;

Dlon ¼x2:lon� x1:lon 415415

416

4176: distance ¼ ðdist geoþ dist textÞ=2;
4187: end if
4198: else
4209: Note: the input is no social media item
42110: Compute the Euclidean distance as follows:

dist Euclideanðv;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

ðvi � xiÞ2
vuut (2)

423423

424

42511: end if

4263.2 Which Data Items to Query?

427In active learning, before querying the label, one has to
428decide which data points to query. Obviously one has to find
429those points, for which the classifier is not confident about
430the assignment decision (see Algorithm 1, step 7). In this
431paper, we use a simple mechanism based on the neighboring
432prototype proximity and labels. An input x is queried if its
433two most closest prototypes, vi and vj with distances ’i and
434’j, respectively, and where i ¼ Sð1Þ and j ¼ Sð2Þ, have dif-
435ferent labels. Eq. (4) below formalizes the test which is called
436simple conflicting neighborhood (SCN) hereafter.

uncertaintyðxÞ ¼
1 if ðjSj < 2Þ or

ðj’i � ’jj < UT and
vi:label 6¼ vj:labelÞ

0 otherwise

8>><
>>:

: (4)

438438

439

440However, to make the selection more constrained, a sec-
441ond variant is introduced. In fact, it is worthwhile to look at
442the border area of the inter-class uncertainty regions, where
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443 the labels are very important/useful. This border area could
444 be used to track concept drift.
445 Eq. (5) shows the constraint by multiplying the threshold
446 UT by a random number m that has a uniform distribution
447 in unit interval [0,1] (m � Uð0; 1Þ) [63]. This variant is called
448 controlled variable conflicting neighborhood (CVCN).

uncertaintyðxÞ ¼

1 if ðjSj < 2Þ or
ðj’i � ’jj < ðUT �mÞ

and vi:label 6¼ vj:label
where m � Uð0; 1ÞÞ

0 otherwise

8>>>><
>>>>:

: (5)

450450

451

452 Moreover, the thresholdUT can be continuously updated,
453 as proposed in [63], according to the following rule:

uncertaintyðxÞ ¼
1 if ðjSj < 2Þ or

ðj’i � ’jj < UT and
vi:label 6¼ vj:labelÞ

0 otherwise

8>><
>>:

UT ¼ UT þ ð�1Þuncertainty � step

8>>>><
>>>>:

; (6)

455455

456 where step is set to 0.01 as suggested in [63]. We name this
457 variant dynamic conflicting neighborhood (DCN). In the given
458 equation it is combined with the SCN strategy. Addition-
459 ally, we combined it with the CVCN strategy given above.
460 As a baseline for comparison, we implement a random
461 version (see Eq. (7)). We name this variant random conflicting
462 neighborhood (RCN).

uncertaintyðxÞ ¼

1 if ðjSj < 2Þ or
ðj’i � ’jj < r

and vi:label 6¼ vj:label
where r � Uð0; 1Þ is a
random variable)

0 otherwise

8>>>>>><
>>>>>>:

: (7)

464464

465

466 We also implemented another version, called Random
467 (R) that assumes a fixed uncertainty given by UT as shown
468 in Eq. (8).

uncertaintyðxÞ ¼

1 if ðjSj < 2Þ or
ðr < UT Þ

where r � Uð0; 1Þ is a
random variable)

0 otherwise

8>>>><
>>>>:

: (8)

470470

471 We ignore an absolute pure random version r < B, because
472 it would increase the number of queries drastically com-
473 pared to the other uncertainty variants.

474 3.3 Dynamic Representation of Social Media Stream

475 The SM items considered in our work are textual documents
476 and therefore their representation will rely on the standard tf-
477 idf [36], [47]. The pre-processing step pointed out in Fig. 1, as
478 part of the workflow,makes use of feature extractionwhich is
479 sufficiently discussed in our previous work [47]. This step
480 also includes the identification of word synonymy using
481 WordNet [47]. Similar words (e.g., ”car” and ”automobile”)
482 are reduced to one root word. In this case, a document is rep-
483 resented as a bag-of-words. However, because social media

484documents arrive online and are processed as batches, tf-idf
485should be adapted to meet the streaming requirement [47].
486Basically, the importance of a word is measured based on the
487number of incoming documents containing that word. Thus,
488the evolution of a term’s importance should be reflected in the
489formulation of tf-idf. Here, we use a factor that scales tf-idf so
490that the importance increases and decreases according to the
491term’s presence in the incoming batches

scaled tf idft;d ¼ importancet;t � tft;d � idft: (9)
493493

494The importance factor importancet;t of term t is calculated
495over batches (windows) marked by time t. The length of the
496batch is defined by the user (e.g., 30 minutes). It depends on
497the nature of the crisis. Slow evolution of the crisis may
498require longer windows, while fast evolution requires short
499windows. Terms with low importance value are removed
500from the index. For instance, if importance < 0.2, then
50180 percent of the term’s importance is lost. The importance
502of a term is computed as follows:

importancet;t ¼ gt;t=g maxt; (10)
504504

505where gt;t is the weight of term t obtained at time t. The
506weight gt;t is refreshed based on intermediate sampling
507intervals (i.e., sub-batches, like every 10 minutes). g maxt is
508the maximum weight the term t reached. gt;t is expressed as
509follows:

gt;t ¼ ð1� gÞ � ut;t þ g � gt;t�1 if ut;t > gt;t�1

ð1� dÞ � ut;t þ d � gt;t�1 otherwise

�
;

(11) 511511

512where ut;t describes the incoming SM items containing t till
513time t and gt;t�1 is the weight of term t of the previous sam-
514pling interval t � 1. Case 1 of Eq. (11) shows how fast terms
515are learned (i.e., a smaller g corresponds to faster increase of
516importance). Case 2 of Eq. (11) shows how fast terms should
517be forgotten (i.e., a higher d corresponds to slower forgetting
518or decrease of importance). The values g and d are empiri-
519cally set by the user. We suggest that g < d so that terms are
520learned faster, compared to forgetting them again.

5214 EVALUATION

522In the following we present the experimental setting includ-
523ing the datasets and the metrics we used. We then describe
524the experiments and their outcomes.

5254.1 Synthetic Datasets

526To evaluate AOMPC,we use two synthetic datasets. The first
527one is a 2-dimensional numerical dataset and the second one
528is a collection of SMmessages artificially generated by a tool.
529These datasets allow to observe the behavior of the algo-
530rithm, especially because it simulates data drift. The artificial
531SM data is used to evaluate the online classifier on geo-
532tagged textual data which is close to the real-world data.
533The simple 2-dimensional synthetic dataset is based on
534Gaussian data (GD). GD consists of 4 batches (see Fig. 2)
535which are sequentially presented to AOMPC. Each batch
536consists of 200 points, generated by two Gaussians which
537actually represent two clusters. The upper clusters (100
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538 points each), denoted as ’x’, are assumed “irrelevant”, while
539 the lower clusters, denoted as ’o’, are assumed “relevant”.
540 Batch-4 given in Fig. 2 contains a virtual or temporary drift
541 caused by abrupt changes of the feature values [23].
542 The geo-tagged text collection, synthetic social media dataset
543 (SSMD), was generated using a tool1 we originally developed
544 for integrating SM into emergency exercises (i.e., training of
545 first responders). We generated microblogs using a data gen-
546 eration tool we developed and which is based on a set of pre-
547 defined text snippets that describe sub-events like “vehicles
548 and garbage dumps on fire”, “police attacked by rioters”,
549 and ”shop on fire nearby” (see Fig. 3a). The randomly gener-
550 ated data follows the timeline of the UK riots (see [4])
551 described as an XML file (see Fig. 3b). This way we generate
552 data which describes incidents close to what happened in
553 reality. The XML file covers the different phases and particu-
554 larly the sub-events of the UK riots which are marked as rele-
555 vant or irrelevant using a tag (relevant) to provide the ground
556 truth for the experiments. Irrelevant sub-events in the data
557 are represented by real-world tweets collected from Twitter
558 in relation to a given location (e.g., London), while relevant
559 sub-events are based on the text snippets. On the other hand,
560 additional data, in the form of textual annotations, was col-
561 lected from Flickr and YouTube and was labeled based on
562 the real-world sub-events of the riots (see [49]).
563 In total, we used a collection of 1227 messages, mostly
564 covering London districts. The data collected over 28 hours
565 (’2011-08-06 19:44:00’ to ’2011-08-07 23:44:00’) covers seve-
566 ral calm periods during the riots. The data is split into
567 30-minutes batches to observe the behavior of AOMPC. The
568 number of messages relevant to the riots is 312, with 116 dis-
569 tinct text messages. Furthermore, there are 915 irrelevant
570 messages with 789 distinct messages. In all, the dataset con-
571 tains approximately 322 repetitions of text messages. Repeti-
572 tion refers to messages that are very similar and correspond
573 to retweets.

5744.2 Real-World Datasets

575The CrisisLexT26 collection [42] was recently made avail-
576able to the community. It consists of Twitter data related to
57726 crises around the world. Each crisis is described by 1,000
578items which were randomly selected and labeled through a
579crowdsourcing platform. The class labels of the items were
580assigned by the majority of three crowdsourcing workers.
581Four categories are available: related to the crisis and informa-
582tive, related to the crisis - but not informative, not related and not
583applicable. In our case, we have considered items relevant
584only when they are labeled as related to the crisis and informa-
585tive. Otherwise, they are considered irrelevant.
586We selected two datasets from the CrisisLexT26 collec-
587tion: Colorado Floods (CF) and Australia Bushfires (AB)
588which are dated but not geo-tagged. CF data is from the
589period ’2013-09-12 07:00:00’ - ’2013-09-29 10:00:00’. The data
590is somewhat imbalanced, the number of relevant items is
591larger than that of the irrelevant ones. CF data consists of 751
592relevant items and 224 irrelevant items and approximately
593189 repetitions. Considering the number of relevant and
594irrelevant items of SSMD, CF has an opposite, but very simi-
595lar, distribution. AB data is from the period ’2013-10-17
59605:00:00’ - ’2013-10-29 12:30:00’. It consists of 645 relevant,
597408 irrelevant items and approximately 385 retweets.

5984.3 Evaluation Measures

599Because AOMPC combines clustering and classification, we
600developed a combined performance measure, called com-
601bined quality measure (CQM), to evaluate the algorithms. It is
602defined as follows:

CQM ¼
�
0:3 �

PjBtj
i¼1 vmi

jBtj
�

þ
�
0:5 �

PjBtj
i¼1ð1� eri=100Þ

jBtj
�

þ ½0:2 � ð1� ðQ=#itemsÞÞ�:

(12)

604604

605It refers to two other known measures, namely the vali-
606dity measure (VM) and the error-rate (ER) measure (see
607AppendixA for details, which can be found on the Computer
608Society Digital Library at http://doi.ieeecomputersociety.
609org/10.1109/TKDE.2019.2906173). CQM contains VM as a
610cluster evaluation measure and ER as classification specific
611measure. A high VM value indicates a good clustering,
612whereas a high value of (1-ER) unveils satisfactory labelling.
613The technical details of VM and ER are given in Appendix A,
614available in the online supplemental material. In terms of
615active learning budgetB, the number of queries (Q) has been
616taken into account. In Eq. (12), Bt is the set of batches
617(Bt ¼ fbt1; . . . ; btjBtjg) and vmi and eri are the values of VM
618and ER for batch bti respectively. #items is the number of
619items. As shown in Eq. (12), themeasures areweighted based
620on their importance. ER is weighted with a factor of 0.5 due
621to its high importance, followed by VM with weight 0.3.
622Finally, the number of queries is weighted with 0.2. In con-
623clusion high values of CQM indicate high quality of cluster-
624ing and classification.

Fig. 2. GD dataset to simulate the stream appearing in the order batch-1,
batch-2, batch-3, and batch-4.

1. http://www.bridgeproject.eu/content/
bridge_information_intelligence_flyer.pdf, [Accessed: August 2014]
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625 4.4 Experiments and Results

626 We conducted extensive analysis. In particular, we did a sen-
627 sitivity analysis to observe the effect of the algorithm’s param-
628 eters: a, b, the threshold UT (see Algorithm 1 and Table 1),
629 and the budgetB (see Section 3.1). In this section, we describe
630 the outcome of the experiments on the datasets using different
631 settings as shown in Table 2. We focus on the performance of
632 the different uncertainty strategies using CQM. The a-setting
633 represents the fixed and variable a settings.
634 Gaussian Dataset (GD). Considering the most sensitive
635 parameters, namely B and a (see Appendix B, available in
636 the online supplemental material), the effect of active learn-
637 ing methods is illustrated in Fig. 4. The other parameters B
638 and UT are discussed in Appendix B, available in the online
639 supplemental material. In general it can be seen that the
640 uncertainty strategy R yields the lowestCQM value and that
641 RCN tends to query more often, since the pure random
642 threshold r varies between 0 and 1 (see Section 3.2). For
643 example, SCN has a query ratio of 0.14 and RCN a ratio of 0.2
644 to achieve a similar ER value (SCN with ER=1.250 and RCN

645with ER=1.370). On average, SCN variants show the most
646stable results, while the CVCN variants slightly increase
647CQM for small values of B (i.e., B � 0:2), because they focus
648on concept drift near to the uncertainty boundary.
649Synthetic Social Media Dataset (SSMD). The active learning
650strategies (SCN, CVCN, SCN with DCN and CVCN with
651DCN) given in Fig. 5 show that they outperform the random
652method R. Again, RCN shows good performance due to the
653higher variety of the threshold. For CVCN with DCN 0.22
654queries and RCN 0.24 queries out of B ¼ 0:3 are requested,
655reaching an ER of 7.3225 and 7.4984, respectively. A high
656value of B increases the overall quality of the results inde-
657pendently of the method (i.e., more labeled data is available
658to build the classification model). The CVCN options per-
659forms best for high values of B for the different a settings. In
660general, the active learning options SCN with DCN and
661CVCN with DCN perform best. This might indicate that con-
662cept drift appears along the uncertainty region border as
663those “with DCN”methods vary the border by changing UT .
664This behavior is expected, since data varies in a small range,
665i.e., geo-data within London area with similar incidents
666(damages caused by riots).
667Colorado Floods (CF). Fig. 6 illustrates the outcome of
668AOMPC on the CF data for the different active learning
669strategies.
670The results of CF indicate good performance for the fixed
671a values and especially for a low budgetB. The results corre-
672sponding to variable a are better than those obtained with
673fixed a. Note that higher a leads to fast update of the
674AOMPC prototypes and that variable a requires less queries
675(see Table 5). Based on the Levenshtein distance (ldis) ([32],
676for calculating similarity between character strings), there
677exist 105 items with similar text (i.e., ldis � 0:2) in CF, which
678is a quite small number. This also indicates that the length of
679the repeating text fragments are very small (105 versus 189
680repetitions of text). Therefore, the small number of similar
681items for this long period of the crisis and the performance
682related to the variable awith a fast adaptation are an indica-
683tion that there are drifts in CF not near the inter-class border
684as defined byUT .
685Australian Bushfires (AB).AOMPC’s results on AB are illus-
686trated in Fig. 7. The variable a shows nearly the same

Fig. 3. Data generation tool.

TABLE 2
Evaluation Parameters

Parameter Values/Instances

B B ¼ 0:1; 0:2; . . .0:5with w ¼ 100
UT 0:1; 0:2; 0:3
b 1; 2; 3; 4
fixed a 0.01 and 0.03

variable a
a ¼ e

�logð3Þ
b as ð1=3Þ-life-span

a ¼ e
�logð2Þ

b as ð1=2Þ-life-span
a ¼ e

logð2=3Þ
b as ð2=3Þ-life-span

a ¼ e
logð7=8Þ

b as ð7=8Þ-life-span
Active Learning Method SCN, CVCN, SCN with DCN,

CVCNwith DCN, R, and RCN

a-setting #1 equals to 0.01 (fixed aÞ
a-setting #2 equals to 0.03 (fixed aÞ
a-setting #3 equals to ð1=3Þ-life-span (var. a)
a-setting #4 equals to ð1=2Þ-life-span (var. a)
a-setting #5 equals to ð2=3Þ-life-span (var. a)
a-setting #6 equals to ð7=8Þ-life-span (var. a)
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687 performance, but this time it is worse compared to the values
688 obtained on CF. The AB dataset has a high amount of similar
689 items, which is 582 (items with ldis � 0:2). This high amount
690 of similar items is an indicator that changes in data are more
691 common around the boundary, because similar vocabulary
692 within the items is used. AOMPC shows the best performance
693 with a fixed a value for all budget settings. Due to the high
694 similarity between items combined with conflicting labels,
695 it is more difficult to distinguish between relevant and irrele-
696 vant items. Consider the following example, which shows
697 the same tweet, but labeled differently [42] (Related-and-
698 informative andNot-related):

699 � Wed Oct 16 17:12:46 +0000 2013: ”RT @Xxxxx: A
700 dog has risked its life to save a litter of newborn

701kittens from a house fire in Melbourne, Australia
702http://t.co/Gz..”,Eyewitness,Affected individuals,
703Related and informative
704� Wed Oct 16 17:13:57 +0000 2013: ”RT @Xxxxx: A dog
705has risked its life to save a litter of newborn kittens
706from a house fire in Melbourne, Australia http://t.
707co/Gz...”,Not labeled,Not labeled,Not related
708AB is an interesting dataset for testing the algorithms
709under various conditions. Fixed a provides much better
710quality on AB compared to other a-settings as shown in
711Fig. 7.
712Considering Figs. 7 and 6, we can conclude a fixed learn-
713ing rate of a and “with DCN” active learning strategies pro-
714duce good performance for both CF and AB, especially, for
715low values of B.

Fig. 4. Results of the different active learning methods using the Gaussian data (GD) and the CQMmeasure.

Fig. 5. Results of the different active learning methods using the synthetic social media dataset (SSMD) and the CQMmeasure.
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716 4.5 Comparative Studies: AOMPC versus Others

717 Beside the experiments with different datasets and parame-
718 ters, we compareAOMPC against the unsupervised k-means
719 algorithm that operates without labels and against a set of
720 supervised online algorithms that require full labeling. This
721 choice should help assess AOMPC against the extreme ends
722 of the labeling spectrum:

723 � k-means: Given the online setting, the algorithm is
724 run on batches of the data, setting the number of clus-
725 ters to 10. For the real-world datasets (CF and AB) k-
726 means has been initialized with 5 clusters, because
727 there are fewer items per batch compared to the other
728 datasets. For each batch bti 2 Bt of the data stream,
729 the final centers obtained from the previous batch
730 serve to initialize the centers of the current batch.

731� Discriminative Online (Good?) Matlab Algorithms
732(DOGMA) [43]: The following algorithms are consid-
733ered: PA-I [16], RBP and Perceptron [14], Projectron
734[45], Projectron++ [45], Forgetron (Kernel-Based Per-
735ceptron) [18], and Online Independent Support Vec-
736tor Machines (OISVM) [44]. Because these algorithms
737are fully supervised, they are trained on all labeled
738data that is allowed by the budgetB.
739Running k-means on the different datasets produces the
740results shown in Table 3. CQM is calculated considering that
741k-means requires no queries (Q ¼ 0). Items of a cluster are
742assigned the label of the majority. This assignment is per-
743formed after each batch and it is the base for computing the
744quality measures. It can be seen that for SSMD, k-means pro-
745duces lower CQM compared to those of GD. This is also true
746in the case of AOMPC. Considering Figs. 4 and 5, it can be

Fig. 6. Results of the different active learning methods using the Colorado Floods dataset (CF) and the CQMmeasure.

Fig. 7. Results of the different active learning methods using the Australia Bushfires dataset (AB) and the CQMmeasure.
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748 means in Table 3 with the results of AOMPC in Table 5, the
749 AOMPC values represent a good performance: AOMPC pro-
750 cesses each data point only once and then discards it, whereas
751 k-means uses all data points for computation. Clearly, the
752 CQM values in Table 3 for CF and AB are very high, caused
753 by low values of ER. For CF and AB, we used the same batch
754 size (i.e., every 30minutes) as for the generated SSMDdataset.
755 More often, only a handful items are contained in the individ-
756 ual batches. Due to the small number of items per batch, it is
757 not possible that relevant and irrelevant items are highly
758 mixed within the created clusters of each batch. Hence,
759 assignments are clear/unambigious.
760 The results of DOGMA algorithms related to the datasets
761 are displayed in Table 4 for the best and worst cases. Details
762 on the remaining algorithms can be found in Appendix C,
763 available in the online supplemental material. Note that the
764 DOGMA algorithms operate with the maximum amount of
765 labels given by the budget. Hence, the training data is as
766 large as the maximum number of items allowed by the bud-
767 get. The CQM value is calculated such that Q ¼ B �#items.
768 The evaluation measures are computed based on each batch
769 for comparison. DOGMA algorithms are trained based on
770 randomly selected items from the dataset in advance. To
771 ensure a fair comparison of DOGMA algorithms against
772 AOMPC, we applied a 10-cross-validation strategy. The
773 results in Table 4 show that in the case of GD, most of the
774 DOGMA algorithms produce lower CQM compared to
775 AOMPC results, which are illustrated in Fig. 4. It is an indica-
776 tion that the DOGMA algorithms are inefficient when deal-
777 ing with changes in data, like the one artificially introduced
778 in batch-4 of GD (see Fig. 2 of Section 4.1). In case of SSMD,
779 CQM values obtained by most of the DOGMA algorithms
780 (see Table 4) look similar to those values corresponding to
781 the best active learning method of AOMPC (see Fig. 5 “with
782 DCN” active learning methods). OISVM and PA-I produce
783 the best performance on SSMD. In all, AOMPC performs
784 well for on-the-fly querying. The DOGMA results related to
785 CF and AB are also given in Table 4. Considering CQM as
786 representative measure, DOGMA produced similar results
787 to those produced byAOMPC shown in Figs. 6 and 7.
788 In a nutshell, AOMPC shows good performance com-
789 pared to DOGMA, although the selection of items to query
790 is performed on-the-fly. In addition, DOGMA algorithms
791 use fully labeled data, while AOMPC uses only a subset of
792 labeled data whose size is upper bounded by the budget.

793 4.6 Discussion and Future Work

794 The advantage of AOMPC compared to the other algorithms
795 is the continuous processing of data streams and incremental
796 update of knowledge, where the existing prototypes act as

797memory for the future. Here forgetting of outdated knowl-
798edge is controlled by a, which also depends on the budget.
799Learning serves to adapt and/or create clusters in a continu-
800ous way. The algorithm queries labels on-the-fly for continu-
801ously updating the classification model. In summary, it can
802be said that budget B and threshold UT are related to each
803other. Increasing their values increases the quality of the
804algorithm. B has also an influence on the number of clusters
805that are created (i.e., the more often the user is asked, the
806more hints for new clusters are given).
807The advantage of our algorithm compared to the others
808is the transferred knowledge from one batch to the next cre-
809ating a continuous view on the arriving data. The already
810known prototypes act as memory (i.e., forgetting is based
811on a and learning is based on the new creation of clusters,
812see Algorithm 1).
813In terms of performance, Table 5 shows the best results of
814AOMPC for different budget values using the CQM mea-
815sure. For GD, the variable learning rate a and the fixed a rate

TABLE 3
K-means: Avg. Results for GD, SSMD, CF, and AB

Q VM ER CQM

GD 0 0.8270 2.8750 0.9337
SSMD 0 0.8143 4.7216 0.9207
CF 0 0.9608 0.9235 0.9836
AB 0 0.9477 1.3056 0.9778

TABLE 4
Best and worst CQM of DOGMA Algorithms

(GD, SSMD, CF, AB)

Q B VM ER CQM

GD

Forgetron 80 0.1 0.3029 32.5500 0.6081
OISVM 80 0.1 0.8084 3.2625 0.9062
RBP 160 0.2 0.3188 31.9500 0.5959

OISVM 160 0.2 0.8217 2.9000 0.8920
Forgetron 240 0.3 0.4100 25.3625 0.6362
OISVM 240 0.3 0.8153 3.0250 0.8695
RBP 320 0.4 0.2099 38.6750 0.4896

OISVM 320 0.4 0.8180 2.9750 0.8505
RBP 400 0.5 0.4811 20.9000 0.6398

OISVM 400 0.5 0.8157 3.0250 0.8296

SSMD

PA-I 123 0.1 0.7228 5.4406 0.8696
Projectron++ 123 0.1 0.4202 11.5303 0.7484
Projectron++ 246 0.2 0.4105 10.5367 0.7305

OISVM 246 0.2 0.8427 10.1921 0.8619
PA-I 369 0.3 0.7636 2.2302 0.8579

Forgetron 369 0.3 0.5593 9.7172 0.7592
RBP 492 0.4 0.5025 9.0046 0.7257

OISVM 492 0.4 0.8834 5.0767 0.8596
PA-I 615 0.5 0.8647 1.2505 0.8532
RBP 615 0.5 0.6244 5.3916 0.7604

CF

PA-I 98 0.1 0.7631 17.5100 0.8214
Projectron++ 98 0.1 0.7137 28.4213 0.7520

PA-I 196 0.2 0.7728 15.9354 0.8122
RBP 196 0.2 0.7141 23.7132 0.7557
PA-I 294 0.3 0.8039 13.8672 0.8118

Forgetron 294 0.3 0.7180 29.8722 0.7060
PA-I 392 0.4 0.8222 12.7396 0.8030

Forgetron 392 0.4 0.7117 28.5864 0.6906
PA-I 490 0.5 0.8405 11.3371 0.7955

Forgetron 490 0.5 0.7353 24.1613 0.6998

AB

PA-I 106 0.1 0.6791 22.9801 0.7688
Projectron++ 106 0.1 0.6440 32.6142 0.7101

PA-I 212 0.2 0.7094 20.9924 0.7678
Forgetron 212 0.2 0.6643 29.6821 0.7109

PA-I 318 0.3 0.7428 17.6217 0.7747
RBP 318 0.3 0.6707 27.3168 0.7046
PA-I 424 0.4 0.7751 16.0927 0.7721

Forgetron 424 0.4 0.6870 24.4803 0.7037
Forgetron 530 0.5 0.7086 22.5930 0.6996
OISVM 530 0.5 0.8087 13.6702 0.7743
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816 in the case of SSMD showgood performance. For CF, the var-
817 iable learning rate seems to be more suitable considering the
818 number of queries. AOMPC produces good results on AB
819 using a fixed learning rate. The reason is that the data items
820 are very similar and that changeswithin the textual data hap-
821 pen slowly and near the boundary. Finally, comparing the
822 active learning strategies (“DCN” options), we can notice
823 that very good performance is achieved especially for SSMD
824 and CF. The quality of clustering increases even for low val-
825 ues ofB.
826 Overall, AOMPC shows a quite good performance (see
827 Tables 4, 3, and 5), despite the fact that it operates online and
828 handles labeling just-in-time. Moreover, AOMPC was run
829 on batches just for the sake of feature selection (see Section
830 3.3). AOMPC can run in purely point-based online mode
831 (i.e., item-by-item) as well. In the future, we plan to extend
832 this algorithm by deleting clusters when they lose their
833 importance. This could also be done for features in order to
834 obtain an evolving feature space. We also plan to implement
835 a variable budget strategy so that, for instance, the number
836 of queries (i.e., budget) is bigger for cold-start and gets
837 reduced afterward, depending on the uncertainty and the
838 performance of the algorithm. Finally, it would be interesting
839 to identify drift, without defining a threshold, but by consid-
840 ering the general case, where classes are non-contiguous.

841 5 CONCLUSION

842 This paper presents a streaming analysis framework for dis-
843 tinguishing between relevant and irrelevant data items. It
844 integrates the user into the learning process by considering
845 the active learning mechanism. We evaluated the framework
846 for different datasets, with different parameters and active
847 learning strategies. We considered synthetic datasets to
848 understand the behavior of the algorithm and real-world

849social media datasets related to crises. We compared the pro-
850posed algorithm, AOMPC, against many existing algorithms
851to illustrate the good performance under different parameter
852settings. As explained in Section 4.6, the algorithm can be
853extended to overcome many issues, for instance by consider-
854ing: dynamic budget, dynamic deletion of stale clusters, and
855generalization to handle non-contiguous class distribution.
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