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Abstract — Avian diversity has long been used as a surrogate 

for overall diversity. In forest ecosystems, it has been assumed 

that vegetation structure, composition and condition have a 

significant impact on avian diversity. Today, these features can 

be assessed via remote sensing. This study examined how 

structure metrics from lidar data and narrowband indices from 

hyperspectral data relate with avian diversity. This was assessed 

in four deciduous-dominated woods with differing age and 

structure set in an agricultural matrix in eastern England. The 

woods were delineated into cells within which metrics of avian 

diversity and remote sensing based predictors were calculated. 

Best subset regression was used to obtain best lidar models, 

hyperspectral models and finally, the best models combining 

variables from both datasets. The aims were not only to examine 

the drivers of avian diversity, but to assess the capabilities of the 

two remote sensing techniques for the task. The amount of 

understorey vegetation was the best single predictor, followed by 

Foliage Height Diversity, reflectance at 830 nm, Anthocyanin 

Reflectance Index 1 and Vogelmann Red Edge Index 2. This 

showed the significance of the full vertical profile of vegetation, 

the condition of the upper canopy, and potentially tree species 

composition. The results thus agree with the role that vegetation 

structure, condition and floristics are assumed to have for 

diversity. However, the inclusion of hyperspectral data resulted 

in such minor improvements to models that its collection for 

these purposes should be assessed critically. 

 
Index Terms — diversity, forest, structure, floristics, lidar, 

hyperspectral, ALS, bird, habitat   

I. INTRODUCTION 

N recent research, remote sensing and ecology have, to a 

large extent, become inseparable. Studies assessing 

behavior and habitat use of wildlife or the status of wildlife 
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habitats have been conducted with various remote sensing 

techniques in growing numbers [1-4]. While the topics of 

these studies range from individual species and habitats to 

global issues, the backbone is always in linking the 

descriptions of the habitat provided by remote sensing to the 

ecological question in hand. The extent to which this is 

successful is then partly dependent on the capabilities of the 

chosen remote sensing method. 

 A topic where remote sensing has been widely utilized is 

the assessment of plant and animal diversity. From the 

kingdom of Animalia, birds have been the most widely 

examined group of species in this context due to widely 

existing, long-term monitoring programs and because their 

diversity is known to correlate with overall biodiversity [5-6]. 

Based on this, it has been taken that remote sensing methods 

should be able to capture and describe whatever in the habitat 

drives avian diversity. To this end, many papers have noted 

the importance of three-dimensional vegetation structure as a 

determinant of avian diversity [7-11]. However, it has also 

been noted that a second powerful driver of avian diversity 

relates to the floristic characteristics of the habitat [12-14]. 

Both of these features can be accurately assessed with remote 

sensing, and in the past this has been done most often with 

airborne laser scanning [15] and multi- or hyperspectral 

imaging [16]. 

 The usefulness of lidar in ecological studies is well 

established and has been reviewed focusing on habitat 

assessment [3], animal ecology [4], and biodiversity [17]. A 

key aspect is the capability of lidar to describe the three-

dimensional structure of vegetation in the layer under the top 

canopy [18-20]. Recent publications, have reported positive 

relationships between lidar-based metrics of understorey 

vegetation, in particular, and avian diversity and occurrence 

[21-23].  

For assessing the floristic component of a habitat (dominant 

tree, shrub and grass species, etc.), multi- and hyperspectral 

data analyses are the dominant remote sensing methods. Their 

usefulness in vegetation studies relates to their capability to 

address biophysical characteristics of vegetation, such as Leaf 

Area Index, chlorophyll content, water content and 

concentration of nutrients in leaves, to name a few [16]. In 

forest contexts, hyperspectral data have been used to 

discriminate tree species from one another [24-25], to estimate 

canopy reflectance [26], nutrient content [27], chlorophyll 
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content [28] and moisture [29]. These features, in turn, 

translate themselves into descriptions about the composition 

and health of the canopy and therefore about its quality as a 

habitat. 

 Comparative studies between lidar and multispectral 

remote sensing methods in assessing avian diversity have been 

conducted [30-33]. These have found that lidar based forest 

structure measures were better at explaining variation in avian 

diversity. However, we are not aware of studies assessing 

wildlife or avian diversity with hyperspectral data, or 

comparing its performance against the most widely used 

method for assessing the structural component of vegetation, 

i.e. lidar.  

In this paper we integrate airborne lidar and hyperspectral 

data with data of avian diversity. The aims are to compare the 

capabilities of both datasets in identifying the drivers of 

diversity, and to gain insight about which features of 

vegetation structure, condition and potentially composition 

(when estimated from remote sensing sources) are most 

important for determining avian diversity. 

II. MATERIALS 

A. Study area 

The study area comprised four woods located in 

Cambridgeshire, eastern England, a landscape dominated by 

intensive arable agriculture (52°25'13.5" N, 0°12'34.0" W). 

The four woods were: Riddy Wood (9.4 ha), Lady’s Wood 

(8.4 ha), Raveley Wood (7.2 ha) and Gamsey Wood (4.9 ha) 

(Figure 1). 

The four woods are broadly similar in plant species 

composition, the dominant tree species being Common Ash 

(Fraxinus excelsior), English Oak (Quercus robur), Field 

Maple (Acer campestre) and elm (Ulmus spp.). The elm tends 

to occur in discrete patches within each wood while the other 

three species are well mixed. The main shrub species are 

Common Hazel (Corylus avellana), hawthorns (Crataegus 

spp.) and Blackthorn (Prunus spinosa); they are well mixed 

and common throughout the woods, reaching heights from one 

to five metres. The top-canopies are dense and their height 

varies between 16 – 25 metres, being the smallest in Lady’s. 

Detailed structure of the woods’ vertical height profile is 

presented in figure 3 in [23].  

B. Bird data collection 

Each wood was visited four times from late March to the 

beginning  of July in 2014. Visits started shortly after dawn 

and avoided weather conditions likely to depress bird activity 

(i.e. rain and strong winds). Birds were recorded using a spot 

mapping technique based on the method used in the Common 

Birds Census of the British Trust for Ornithology [34]. Each 

wood was searched systematically using a route designed to 

encounter all breeding territories and the surveys were done by 

expert bird ecologists. 

All birds seen or heard were recorded on a map of the wood 

and the locations were later digitized. Individuals were 

recorded only once and in cases where the same bird was 

suspected to be observed twice, the second observation was 

omitted. A complete list of the species included in the analysis 

and the number of observations across the four field visits in 

2014 is given in Table I. 

C. Remote sensing data 

Hyperspectral and lidar data were both collected on June 1st 

2014 (leaf-on conditions) during a single flight using a fixed-

wing aeroplane flown at an altitude of 1600 m above ground 

level (agl). 

 The lidar sensor onboard the aircraft was a Leica ALS50-II 

that scanned the area with a field of view of 20 degrees, a 

pulse repetition frequency of 143.7 MHz and a pulse footprint 

on the ground of ca. 35 cm. The nominal sampling density in 

the data was 1.9 pulses per m
2
, but due to overlapping flight 

TABLE I 

LIST OF BIRD SPECIES INCLUDED IN THE ANALYSIS 

Species Latin name 
Number of 

observations 

Blackbird Turdus merula 75 
Blackcap Sylvia atricapilla 75 

Blue tit Cyanistes caeruleus 239 

Bullfinch Pyrrhula pyrrhula 27 
Chaffinch Fringilla coelebs 104 

Chiffchaff Phylloscopus collybita 39 

Crow Corvus corone 11 

Coal tit Periparus ater 40 

Dunnock Prunella modularis 20 

Goldfinch Carduelis carduelis 16 
Garden warbler Sylvia borin 5 

Great tit Parus major 147 
Great-spotted 

woodpecker 
Dendrocopos major 38 

Green 
woodpecker 

Picus viridis 22 

Jay Garrulus glandarius 11 

Lesser 
whitethroat 

Sylvia curruca 2 

Long-tailed tit Aegithalos caudatus 54 

Magpie Pica pica 17 
Marsh tit Poecile palustris 23 

Nuthatch Sitta europaea 3 

Robin Erithacus rubecula 127 
Song thrush Turdus philomelos 9 

Stock dove Columba oenas 37 

Treecreeper Certhia familiaris 82 
Whitethroat Sylvia communis 6 

Wren Troglodytes troglodytes 160 

Yellowhammer Emberiza citrinella 4 

TOTAL  1393 
   

   
   

   

 
Fig 1. The study area displayed over a lidar-based canopy height model. 
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lines the average density in the study woods was 2.7 pulses 

per m
2
. The ALS50-II device captures a maximum of four 

return echoes for one emitted laser pulse with an approximate 

minimum vertical discrimination distance of 3.5 m between 

the echoes. All of the echo categories were used in this study. 

The lidar echoes were classified into ground or vegetation hits 

following the method of [35], as implemented in LAStools 

software. Next, a raster Digital Terrain Model (DTM) with a 

1 m spatial resolution was interpolated from the classified 

ground hits using inverse distance weighted interpolation 

(IDW). This DTM was then subtracted from the elevation 

values (z-coordinates) of all the lidar returns to scale them to 

above ground height. 

 Hyperspectral data were collected with Specim’s Aisa Fenix 

sensor. The Fenix collects data from 620 spectral bands across 

wavelengths between 380 nm and 2500 nm. The spectral 

resolution is 3.5 nm between the wavelengths 380 nm and 

950 nm and 12.5 nm between 970 nm and 2500 nm. The 

sensor has a swath of 284 pixels and a field of view of 32 

degrees. The flying altitude of 1600 m resulted in a swath 

width of 928 m and a spatial resolution of 2 m. The 

hyperspectral data were processed by Plymouth Marine 

Laboratory with tools from their Airborne Processing Library 

[36]. The processing was done individually for each flight 

line. First, gain and offset values were used to perform 

radiometric calibration, which converted the 12-bit digital 

number values to radiance. After this, a mask file was created 

to omit bad pixels. Secondly, the resulting data were geo-

corrected and re-projected into the local coordinate system 

(British National Grid) after which atmospheric correction was 

performed using the ATCOR-4 software [37]. The woods of 

the study area were covered by two flight lines so that Riddy 

Wood, Gamsey Wood and Raveley Wood were fully within 

one flight line, and Lady´s Wood was covered by a second 

flight line. 

III. METHODS 

A. Calculating the metrics of avian diversity and vegetation 

characteristics 

For analysis purposes, the four woods were divided into ca. 

30 m x 30 m cells. Altogether, there were 333 of these cells. 

Next, the bird data and remote sensing data were extracted for 

these cells. All birds observed inside a cell, were used to 

calculate the bird diversity indices for that specific cell. The 

number of birds per cell ranged from 0 to 28, with 293 cells 

being populated.  

Next, the same was done with the remote sensing data. 

Lidar echoes inside each cell were used to obtain cell-specific 

metrics describing the three-dimensional structure of the cell’s 

vegetation (Table II). These metrics held information about 

the quantity and distribution of vegetation across the woods’ 

height profiles, and have been shown to be useful in assessing 

wildlife habitat use and diversity in previous studies [3, 21, 22, 

38]. Foliage Height Diversity (FHD) was calculated according 

to the formula introduced by [7]: 

 

𝐹𝐻𝐷 =  − ∑ 𝑝𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖)        (1) 

 

where 𝑝𝑖  is the proportion of lidar returns in zone i. The FHD 

was derived by binning the lidar returns into five zones 

according to their height: 0.50–4.00 m, 4.01–8.00 m, 8.01–

12.00 m, 12.01–16.00 m, 16.01–20.00 m, and >20 m. The 

division created six nearly equal height classes in terms of 

how the proportion of vegetation was spread throughout the 

vertical profile of the woods. The height profiles of the four 

woods are illustrated in detail in figure 3 of [23]. 

Hyperspectral data were similarly used to calculate cell-

specific indices related to attributes of the forest canopy 

function, such as stress, water-, carotenoid-, anthocyanin- and 

chlorophyll content, as well as the amount of leaf biomass 

(Table II). In addition, reflectance at 830 nm and 980 nm was 

included, as previous work in the study area had shown these 

to be the most sensitive spectral regions for determining tree 

species [18].  

The remote sensing variables were expected to translate into 

meaningful information about, for example, availability of 

food or shelter for the bird species in question (based on their 

TABLE II 
REMOTE SENSING METRICS USED IN THE STUDY. FOR EACH NARROWBAND 

INDEX, THE CALCULATED VALUES INCLUDED THE MINIMUM, MAXIMUM AND 

MEAN VALUE AT THE AREA OF EACH CELL. 

Dataset Variable Description 

Lidar p_veg Proportion of vegetation hits  > 0.5 m. For 
example a p_veg value of 0.5 means that 50% 

of the echoes in this cell came from 

vegetation. 

 p_shrub2/4/

5/6/8 

Percentage of lidar returns between 0.5 and 

2/4/5/6 or 8 metres. A p_shrub6 value of 0.6 

means that 60% of the returns from this cell 
came from between 0.5 and 6 metres. 

 p_canopy2/

4/5/6/8/15 

Percentage of lidar returns above 2/4/5/6/8 or 

15 metres. A p_canopy8 value of 0.6 means 
that 60% of the returns from this cell were 

from above 8 metres. 

 MaxH Maximum height of the echoes in a cell. 
 AvgH Average height of the echoes in a cell. 

 StdH Height standard deviation of echoes in a cell 

 FHD Foliage Height Diversity (see Equation 1) 

Hyper-

spectral 
RSR Reduced Simple Ratio 

 NDVI Normalized Difference Vegetation Index 

 RENDVI Red Edge Enhanced NDVI 

 VOG1 Vogelmann Red Edge Index 1 

 VOG2 Vogelmann Red Edge Index 2 

 CRI1 Carotenoid Reflectance Index 1 

 CRI2 Carotenoid Reflectance Index 2 

 ARI1 Anthocyanin Reflectance Index 1 

 ARI2 Anthocyanin Reflectance Index 2 

 WI Water Index 

 MCARI 
Modified Chlorophyll Absorption Reflectance 

Index 

 PRI Photochemical Reflectance Index 

 SIPI Structure Insensitive Pigment Index 

 PSRI Plant Senescence Reflectance Index 

 MSI Moisture Stress Index 

 
r830* 

r980* 

Reflectance at 830 nm  

Reflectance at 980 nm  

*The reflectance at these bands has been useful in separating the dominant 
tree species of the study area from one another (Hill and Broughton 2010) 
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known ecology), health of the canopy, (e.g. senescence, leaf 

water and nutrient content), or the dominant tree species.  

 The remote sensing based metrics of habitat structure 

were then assessed against well-known metrics of diversity: 

the Simpson index, Shannon index, and species richness 

(number of different bird species), which were also calculated 

at the cell level. The indices were calculated from all the bird 

observations within each cell with these formulae: 

 

Shannon index = - ∑ 𝑝𝑖 ∗ 𝑙𝑛(𝑝𝑖)𝑠
𝑖=1       (2) 

 

Simpson index = -  
∑ 𝑛𝑖(𝑛𝑖−1)𝑠

𝑖=1

𝑁(𝑁−1)
       (3) 

 

 For the Shannon index, 𝑝𝑖  represents the proportion of 

species i in relation to total number of birds observed in this 

cell and ln is a natural logarithm. For the Simpson index, i is 

an individual species and n is the total number of observations 

of species i in this cell, while N is the total number of bird 

observations in this cell. Both indices were chosen because 

they have been used widely in the context of estimating 

diversity, and because they ultimately differ in their 

interpretations: Simpson’s index represents the probability that 

two randomly chosen individuals belong to different species, 

while Shannon’s index represents the uncertainty in predicting 

the species for an observation; in a highly diverse community 

the uncertainty is higher than in a community dominated by 

only a few species [39]. From now on, the indices are referred 

to as Shannon and Simpson. Formulae used for deriving the 

spectral indices, as well as their sources, are presented in 

Table III.  

 

B. Modeling relationships between avian diversity and 

vegetation characteristics 

The relationships between bird diversity and the remote 

sensing metrics were examined with best subset regression. 

First, the best models with one to six predictor variables were 

identified separately for lidar (LidarModels) and hyperspectral 

(HyperModels) data. This resulted in six lidar models and six 

hyperspectral models: i.e. the best lidar model with one 

variable, with two variables, etc.  The purpose of this 

analysis was to gain insight into which lidar and hyperspectral 

variables best relate with bird diversity. After this, the best 

LidarModel and the best HyperModel were selected from the 

six available options based on their AIC score [49]. 

Next, the best lidar and hyperspectral predictors (i.e. the 

ones that appeared most often in the models stated above) 

were combined to attain the best combination models 

(CombiModels) with, again, one to six variables. The purpose 

here was to gain insight into what component of the vegetation 

drives diversity more: foliage characteristics (hyperspectral) or 

structure (lidar). Finally, these six models were also compared 

against one another, based on their AIC score, to obtain the 

single best CombiModel. 

The variable selection for each model was done 

exhaustively pending that multi-collinear and non-significant 

variables were not allowed, which means that for example, a 

lidar model with six predictors was not created if the sixth 

added variable was non-significant or correlated strongly with 

the other variables already present in the model. In comparing 

the models based on the AIC, a model with more variables 

was only rated as ‘better’ if it reduced the AIC by at least two 

[50]. All the analysis was done in R [51] with the packages 

leaps [52] and lmfor [53], where functions from the latter were 

used to examine and confirm that there was no significant 

non-normality or heteroscedasticity in the model residuals. 

The relationships between the best individual predictor 

variables and the metrics of avian diversity were also 

examined visually using the packages ggplot [54] and cowplot 

[55]. 

IV. RESULTS 

A. Lidar metrics and avian diversity 

The lidar metrics most often chosen in the models related to 

the amount of understorey vegetation between ground and 

eight metres (p_shrub8) and the distribution of the vegetation 

across the full vertical profile of the woods (FHD). These 

features were positively related to bird diversity, and the 

results were highly consistent between the different metrics. 

The variable p_shrub8 correlated positively with all the 

diversity indices, with r = 0.39 for SpeciesN, 0.34 for Shannon 

and 0.19 for Simpson. The variable was also always a 

significant predictor (p < 0.05) of all the diversity metrics. 

Table IV shows the results from the best subset regression 

carried out with lidar predictors, while Table V shows the best 

LidarModels for each diversity metric as rated by AIC score. 

The linear relationships that the two best lidar-based 

predictors, FHD and p_shrub8, had with the number of bird 

species is illustrated in Figure 2. As the results between the 

different diversity metrics were consistent, only SpeciesN is 

shown for reference 

 

 

 

TABLE III 

FORMULAE USED TO CALCULATE THE SPECTRAL INDICES OF TABLE II. R 

REFERS TO THE REFLECTANCE AT THE GIVEN BAND (NM) 

Index Formula Reference 

NDVI (r800 – r670) / (r800 + r670) [40] 

RENDVI (r705 - r750) / (r705 + r750) [41] 

RSR 
(r800 / r670) * ((r1610max – r1610) / 
(r1610max – r1610min)) 

[42] 

VOG1 r740 / r720 [43] 

VOG2 (r734 - r747) / (r715 + r726) [43] 
CRI1 (1 / r510) - (1 / r550) [44] 

CRI2 (1 / r510) - (1 / r700) [44] 

ARI1 (1 / r550) - (1 / r700) [45] 
ARI2 r800 * ARI_1 [45] 

WI r900 / r970 [29] 

MCARI 
[((r700 - r670) - (0.2 * (r700 - r550))] * 
(r700 / r670) 

[28] 

PRI (r531 - r570) / (r531 + r570) [46] 

SIPI (r800 - r445) / (r800 + r680) [46] 
PSRI (r680 – r500)  / r750 [47] 

MSI r1600 / r820 [48] 

   

   

   
   

   

   
   

   
   

   

Page 7 of 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

JSTARS-2018-00674 5 

 

 

 

B. Hyperspectral metrics and avian diversity 

The two hyperspectral predictors identified most commonly as 

the best predictors of avian diversity were Vogelmann’s Red 

Edge Index 2 (VOG2) and reflectance at wavelength 830 nm 

(r830). Other indices that served as good predictors were Red-

edge Enhanced NDVI (RENDVI), Plant Senescence 

Reflectance Index (PSRI), Anthocyanin Reflectance Index 1 

(ARI1), Water Index (WI) and Structure Insensitive Pigment 

Index (SIPI) (Table VI). Out of the hyperspectral metrics, the 

best relationships with the diversity metrics were achieved by 

VOG2_max, with r = 0.21 for SpeciesN, 0.16 for Shannon and 

0.03 for Simpson (n = 333, p < 0.05 in all cases). After the best 

subset regression and AIC comparison, it was only 

VOG2_max and r830_max that remained in the final 

HyperModels (Table VII) for all the metrics of avian diversity. 

The maximum values of both VOG2 and r830 had positive 

relationships with avian diversity. The values of VOG2 are 

sensitive to the combined effects of the canopy’s leaf area, 

water content and chlorophyll concentration: the higher the 

values, the better the canopy’s state, and the more it may offer 

for birds. Figure 3 shows the linear relationship between the 

best predictors and SpeciesN. 

 

 

C. Combined hyperspectral and lidar metrics and avian 

diversity 

When the best predictors were combined, the single dominant 

metric in predicting avian diversity was the lidar variable 

p_shrub8, followed by FHD, p_veg and p_canopy15. With 

hyperspectral data, the best predictors were r830_max, 

ARI1_min and VOG2_max. The models, depending on the 

TABLE IV 

THE RESULTS FROM BEST SUBSET REGRESSION WHERE BIRD DIVERSITY 

METRICS WERE MODELLED WITH LIDAR PREDICTORS (LIDARMODELS). THE 

SUBSET NUMBER INDICATES THE NUMBER OF VARIABLES ALLOWED, AND THE 

VARIABLES LISTED FOR THAT MODEL WERE SELECTED AS THE MOST 

POWERFUL PREDICTORS BASED ON EXHAUSTIVE SEARCH. ALL PREDICTORS 

ARE SIGNIFICANT AT P < 0.05. THE AIC VALUE OF THE FINAL MODEL IS 

UNDERLINED AND IN BOLD. 

Index 
Sub-

set Formula Model AIC 

Simpson 1 p_shrub8 358.54 

 2 p_shrub8 + FHD 354.33 

 3 p_shrub8 + FHD + H_AVG 355.92 

 4 
p_veg + p_canopy15 + FHD + 

H_AVG 
357.43 

Shannon 1 p_shrub8 619.96 

 2 p_shrub8 + FHD 612.25 

 3 FHD +  p_veg + p_canopy5 611.12 

SpeciesN 1 p_shrub8 1427.85 

 2 p_shrub8 + FHD 1427.87 
 3 FHD + p_veg + p_canopy5 1429.95 

 4 
p_shrub8 + FHD + p_veg + 

p_canopy5 
1432.03 

    

    
    

    

    

    

    

TABLE VI 

THE RESULTS FROM BEST SUBSET REGRESSION WHERE BIRD DIVERSITY 

METRICS WERE MODELLED WITH HYPERSPECTRAL PREDICTORS 

(HYPERMODELS). THE SUBSET NUMBER INDICATES THE NUMBER OF 

VARIABLES ALLOWED, AND THE VARIABLES LISTED FOR THAT MODEL WERE 

SELECTED AS THE MOST POWERFUL PREDICTORS BASED ON EXHAUSTIVE 

SEARCH. ALL PREDICTORS ARE SIGNIFICANT AT P < 0.05. THE AIC VALUE OF 

THE FINAL MODEL IS UNDERLINED AND IN BOLD.  

Index 
Sub-
set Formula 

Model 
AIC 

Simpson 1 r830_max 355.18 

Shannon 1 VOG2_max 662.45 

 2 VOG2_max + r830_max 658.50 

 3 VOG2_max + r830_max + ARI1_min 657.93 

 4 
WI_avg + PSRI_avg + RENDVI_min + 

r830_max 656.81 

 5 
VOG2_max + VOG1_min + 

RENDVI_min +  r830_max + ARI1_min 657.76 

 6 
VOG2_max + SIPI_min + 
RENDVI_min + r830_max + ARI1_min 

+ WI_max 658.23 

SpeciesN 1 VOG2_max 1468.51 

 2 VOG2_max + r830_max 1461.57 

 3 VOG2_max + r830_max + ARI1_min 1461.15 

 4 
r830_max + PSRI_avg + RENDVI_min 

+ WI_avg 
1459.80 

 5 
r830_max + RENDVI_min + WI_avg + 

VOG2_max + ARI1_min 
1461.30 

 6 
r830_max + RENDVI_min + WI_avg + 
VOG2_max + ARI1_min + 

SIPI_min 

1459.76 

    

    

    

    

    

 
Fig 2. Linear relationships between species richness (SpeciesN) and the two 
best lidar-based predictors, the amount of understorey between ground and 

eight metres (p_shrub8, r = 0.39, p < 0.001) and the diversity of how 

vegetation is spread across the forest’s full height profile (FHD). The black 
line illustrates the line of best fit and the grey polygons depict the standard 

errors. FHD alone did not correlate with the response (r = 0.01, p = 0.002), but 

its inclusion in the models with p_shrub8 always resulted in lower AIC. 
 

TABLE V 

THE BEST LIDARMODELS FOR EACH DIVERSITY METRIC BASED ON BEST 

SUBSET REGRESSION WITH ONE TO SIX ALLOWED PREDICTOR VARIABLES. 

 Simpson Shannon SpeciesN 

variable Estimate 
Std. 
error 

Estimate 
Std. 
error 

Estimate 
Std. 
error 

Intercept 0.003 0.16 -0.25 0.25 1.51 0.21 

p_shrub8 0.51 0.12 1.32 0.19 4.80  0.61 
FHD  0.38 0.12 0.57 0.18 ---  … 

       
       

       

       

       

TABLE VII 

THE BEST  HYPERMODELS FOR EACH DIVERSITY METRIC BASED ON BEST 

SUBSET REGRESSION WITH ONE TO SIX ALLOWED PREDICTOR VARIABLES. 

 Simpson Shannon  SpeciesN  

Variable Estimate 
Std. 

error 
Estimate 

Std. 

error 
Estimate 

Std. 

error 

Intercept 0.39 0.12 1.20 0.34 4.86 1.12 
r830_max 0.0004 0.0002 0.001 0.0003 0.0004 0.0001 

VOG2_max --- --- 6.53 1.99 29.04 6.67 
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response variable, differed in how many variables they 

allowed when selecting the best model. For the Simpson 

index, the best model included four lidar variables with no 

hyperspectral variables. For the Shannon index and species 

richness (SpeciesN), the best models were combinations of 

both lidar and hyperspectral variables. Table VIII shows the 

full results from the best subset regression, while Table IX 

shows the best CombiModels for each diversity metric as rated 

by AIC score. 

V. DISCUSSION 

This study focused on comparing hyperspectral-based 

metrics of foliage characteristics and lidar-based metrics of 

forest structure in explaining avian diversity. All the data were 

collected during the same summer and at a phenological stage 

where any stress induced by pests, drought, etc. would be 

visible and thus detectable from hyperspectral data. In 

addition, at this stage it was expected that issues in canopy 

condition caused by drought, for instance, would also be seen 

in the bird’s habitat use.  

Of published papers assessing avian diversity and the issue 

of floristics vs vegetation structure, Müller et al. [31] found 

lidar-derived metrics of vegetation structure (canopy height, 

density of mid- and understorey layers) to be dominant over 

metrics of plant species composition (field-based estimates of 

cover/abundance of different plant and tree species). Contrary 

to this, Rotenberry [14] found that field-measured variables of 

floristics (plant taxonomic composition) explained more than 

half (55 %) of the variation in bird community composition, 

while measures of vegetation structure explained significantly 

less (35 %). Vegetation structure in that study was field-

measured and accounted for vertical density of the vegetation 

as well as an index of overall horizontal spatial heterogeneity. 

However, White et al. [57] suggested that the role of both 

factors (floristics and structure) is dependent on the spatial 

scale of the analyses. Similarly, Landi et al. [58] and Hewson 

et al. [12] found that both floristics and vegetation structure 

were significant in explaining bird community composition. 

One key factor that may be important in the strength of the 

relationships between birds and canopy characteristics could 

be the degree of contrast within the data. For example, there 

may be clear differences between conifer and broadleaved 

trees but much less between different species of broadleaf or 

conifer. Most prior studies comparing bird occurrence or 

diversity with floristics have concentrated on tree species 

identity or composition. In our study, we have used 

hyperspectral variables that have previously been linked with 

tree health or species separation, but we have not directly 

attributed these variables to specific ecological measures 

within the study sites. Bird/habitat relationships may also be 

influenced by bird population sizes at the time of the study; for 

example, when numbers are high, habitat discrimination may 

be less apparent. 

 

 

TABLE VIII 

THE RESULTS FROM BEST SUBSET REGRESSION WHERE BIRD DIVERSITY METRICS 

WERE MODELLED WITH LIDAR- AND HYPERSPECTRAL BASED PREDICTORS 

(COMBIMODELS). THE SUBSET NUMBER INDICATES THE NUMBER OF VARIABLES 

ALLOWED, AND THE VARIABLES LISTED FOR THAT MODEL WERE SELECTED AS 

THE MOST POWERFUL PREDICTORS BASED ON EXHAUSTIVE SEARCH. ALL 

PREDICTORS ARE SIGNIFICANT AT P < 0.05. THE AIC VALUE OF THE FINAL 

MODEL IS UNDERLINED AND IN BOLD. 

Index 
Sub-

set Formula 
Model 

AIC 

Simpson 1 p_shrub8 347.11 
 2 p_shrub8 + FHD 339.10 

 3 p_shrub8 + FHD + H_AVG 336.88 

 4 p_veg + p_canopy15 + FHD + H_AVG 334.58 

 5 
H_AVG + p_veg + p_canopy15 + ARI1_max 

+ CRI1_avg 
333.98 

Shannon 1 p_shrub8 619.96 
 2 p_shrub8 + r830_max 608.77 

 3 p_shrub8 + r830_max + ARI1_min 604.34 

 4 p_shrub8 + FHD + r830_max + ARI1_min 600.06 

SpeciesN 1 p_shrub8 1416.43 

 2 p_shrub8 + r830_max 1400.92 

 3 p_shrub8 + r830_max + ARI1_min 1397.23 

 4 
p_shrub8 + r830_max + ARI1_min + 
VOG2_max 

1394.38 

 5 
p_veg + p_canopy5 + r830_max + ARI1_min 

+ VOG2_max 
1392.19 

    

    
    

    

    

 
Fig 3. Linear relationships between species richness (SpciesN) and the two best 

hyperspectral-based predictors, Vogelmann’s Red Edge Index 2 (VOG2_max, 

r=0.21, p < 0.001) and the reflectance at wavelength 830 nm. (r=0.17, p < 
0.001)The black line illustrates the line of best fit and the grey polygons depict 

the standard errors. 

 

TABLE IX 
THE BEST COMBIMODELS OF AVIAN DIVERSITY BASED ON BEST SUBSET REGRESSION WITH ONE TO SIX PREDICTOR VARIABLES. ALL VARIABLES ARE SIGNIFICANT AT P < 

0.05 

SpeciesN Simpson Shannon 

Variable Estimate Std. error Variable Estimate Std. error Std. error Estimate Std. error 

Intercept -0.93 1.31 Intercept -0.051 0.201 Intercept -1.330 0.374 

p_veg 11.24 1.91 H_AVG -0.112 0.022 p_shrub8 1.430 0.186 

p_canopy5 -9.96 1.33 p_veg 1.430 0.333 FHD4 0.462 0.185 

VOG2_max 22.03 7.61 p_canopy15 1.065 0.258 r830_max 0.000 0.000 

r830_max 0.00 0.00 FHD4 0.252 0.121 ARI1_min 574.10 209.90 

ARI1_min 2341.00 714.70       
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In this study, the variables of vegetation structure that best 

explained avian diversity, FHD and p_shrub8, are similar to 

those noted elsewhere to be useful when assessing wildlife 

habitats or questions related to diversity. In previous work, 

Clawges et al. [30] noted positive relationships between lidar-

based FHD and bird species diversity, while Rechsteiner et al. 

[37] found lidar-based estimates of average vegetation height, 

shrub density and canopy height to improve conservation 

planning for Hazel grouse (Bonasa bonasa), specifically at the 

local scale where fine-grained features of habitat structure 

mattered the most. Similarly, Melin et al. [22] showed lidar-

based estimates of understorey density to be the most 

significant predictors of brood occurrence for three different 

grouse species in boreal forests. Flashpohler et al. [59] found 

that floristic and structural variables both affected bird 

occurrence significantly, although canopy height was the 

single best variable. Additionally they emphasized that the 

structure of the understorey layer is also a significant 

determinant of habitat quality, but one that is difficult to 

measure in the field; a task for which lidar has proven very 

useful. 

The canopy foliage variables that were deemed significant 

here have been noted as useful in assessing the condition or 

health of forests [60,61], yet have not been fully exploited in 

studies assessing wildlife habitats or diversity. The most 

important hyperspectral metrics were related to the properties 

of the canopy, such as moisture and chlorophyll content, the 

amount of leaf biomass (VOG2_max [43]), and leaf stress 

(ARI1_min [62]). These, in turn, translate into ecologically 

meaningful attributes: e.g. compared to a stressed and dry 

canopy, a healthier one with dense leaf layers would offer the 

birds more resources such as seeds, flowers, insects and places 

for nesting. The other significant variable with positive 

relationships with avian diversity (r830) has been noted as  

useful in separating the dominant tree species from one 

another in this geographical area [24].  

Overall, the relationships achieved in this study between 

individual metrics and diversity were moderate, yet in line 

with past studies. Müller et al. [31] used Mantel tests between 

matrices of bird species composition and variables of forest 

structure and floristics. Depending on the variable, they 

achieved correlations between 0.11 and 0.44 (the strongest 

correlations being with structural variables). In their 

fragmented study area, Flashpohler et al. [59] found bird 

species richness to increase in relation to patch size and tree 

volume in the patch (significant correlations between 0.06 and 

0.86). This suggests that while shrub cover, for instance, has a 

significant role as a determinant for avian diversity, no single 

variable can explain all the variation. Indeed, despite 

individual lidar metrics, p_shrub8 and FHD, outperforming 

the hyperspectral metrics, the best models of avian diversity in 

terms of species richness (SpeciesN) and Shannon index were 

the CombiModels. Only when predicting Simpson index was 

the best model composed of lidar-based predictors alone. As 

the foliage characteristics recorded by hyperspectral indices 

are likely to vary with tree species, this supports the views that 

both forest structure and floristics play a role in supporting 

avian diversity [57-58, 63-64]. 

Carter and Knapp [56] suggested that there is unrealized 

potential in what remote sensing could provide for 

biodiversity conservation, which they attributed to a potential 

mismatch between what the conservation community needs 

and what the remote sensing community has produced so far. 

Results from this and other studies show that a number of 

different remote sensing technologies can provide valuable 

ways of studying forest ecology. However, lidar has more 

potential in providing conservationists and wildlife managers 

with the information that can be translated into conservation 

action. Lidar data describe the physical structure of the habitat, 

for example the importance of a dense understorey layer, 

which can be manipulated by habitat management [37]. The 

situation is also improved by the facts that a time-lag between 

the acquisition of field ecology data and lidar data is not a 

fundamental source of error for conservation planning [65-66], 

and lidar data coverage is increasing continuously due to 

national or regional scanning campaigns in many parts of the 

world [67]. 

 In conclusion, the two data types examined (lidar and 

hyperspectral) provide different information about the drivers 

of avian diversity. For the three measures of bird diversity 

assessed here (Shannon, Simpson and SpeciesN) the best fit 

models contained both lidar and hyperspectral derived 

measures. However, while both information sources are valid 

and worth utilizing when available, it was notable that for all 

three bird diversity measures the lidar only models out-

performed the hyperspectral only models and the inclusion of 

hyperspectral data resulted in only minor improvements over 

the models created using lidar data only. Therefore, while 

there may be other contexts (e.g. detection of disease) in 

which hyperspectral data are more important, both data types 

(lidar and hyperspectral) are not necessarily needed for the 

assessment of diversity, with lidar frequently being more 

readily available and accessible. 
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