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Abstract: This paper researches an improved scheme of Membership Function Optimisation (MFO) for fuzzy Air-fuel Ratio 
(AFR) control of Gasoline Direct Injection (GDI) engines based on Correspondence Analysis (CA). This PI-like Fuzzy Knowledge-
Based Controller (FKBC) optimised by the proposed scheme can further optimise AFR control performance while maximising 
conversion efficiency of the Three-Way Catalyst (TWC) to eliminate the exhaust emissions in real-time. Different from the 
conventional experience-based Membership Function Design (MFD) method for an FKBC, the proposed MFO scheme uses CA 
approach and can visualise the relationship between engine step gain scenarios and designed MF patterns to precisely 
determine its scalar parameters for AFR regulation of GDI engines. Within this context: 1) Specialised MFs for self-adaptive 
AFR control system of a GDI engine are designed with weight distribution. 2) Based on designed scalar parameters, the CA 
model with taxonomic dimensions is built for acquiring a customised MF to counter transient scenario changes more 
effectively. 3) The engine controller with the proposed scheme is real-time validated in a production V6 GDI engine, and its 
advantage in terms of engine transient control performance is further demonstrated by comparing with a benchmark 
controller designed based on experience. 
 

1. Introduction 

Currently, emissions of nitrogen oxides, total hydrocarbon, 

non-methane hydrocarbons, carbon monoxide and particulate 

matter are regulated for most vehicle types. To develop the 

automotive fuel economy globally, European emission 

standards VI has been proposed in 2014 as part of the EU 

framework for regulating each type approval of vehicles 

strictly [1]. Compared to the conventional non-diesel 

injection process, the gasoline is injected into the cylinder 

directly with the in-cylinder flow and fuel atomization on the 

piston surface as the gas mixture for combustion [2]. Main 

technical features of GDI engines are the ultra-thin 

combustion and direct injection, which can decrease the brake 

specific fuel consumption and intake resistance respectively 

[3]. Specifically, AFR of GDI engine can reach 40: 1 with 

lean combustion technology, the maximum up to 100: 1, 

which could enhance the robustness, transient response and 

decrease the detonation tendency emission [4].  

Advanced engine control technologies are engaged because 

of the strict emission regulations and demand for higher fuel 

economy [5]. Control has always been a part of engine design 

and it is one of the most complex problems in the application 

[6]. Generally, IC engines use model-based proportional–

integral–derivative (PID) closed-loop control system to 

maximise engine’s dynamic and economic performances at 

different working conditions [7]. Fundamental difficulties 

with PID control one is that it is a feedback control system, 

with constant parameters, and no direct knowledge of the 

process, and thus overall performance is reactive and a 

compromise. The other is model-based control systems are 

unable to revise errors of unknown calibration points [8]. 

Recently, some literature has proposed real-time simulation 

models to manage the AFR fluctuation by [9]-[11], actually, 

they cannot prove the contribution of the real engine practice 

due to much more complex operation conditions. In 2014, 

Denis V. presented a supervisory control system switching 

between two control laws to improve quality of the closed-

loop system [12]. Relatively, to construct two control laws 

need to spend huge workload on identifying engine model. In 

2016, Madan K. pointed out that a cyclic model based 

generalized predictive control of AFR for V6 GDI engines 

[13], which shows reflect the cycle-to-cycle coupling effects 

of residual gas mass.  

Actually, it is hard to predict the nonlinear relation of the 

model-based controller and the transient response 

performance is not optimistic as results.  

To overcome uncertainties to non-calibration points and to 

reduce consumptions of time and experience, researchers 

increasingly utilise fuzzy logic algorithms to optimise 

industrial issues. Riccardo B. presented a systematic MFD of 

a Fuzzy Logic Controller (FLC) to simplify decision 

procedure with multivariable in the biological system [14]. 

Christian A. demonstrated a predictive torque controller for 

an induction motor drive to replaces the minimization of a 

scalar cost function with fuzzy decision-making [15]. 

Nabipour, M. indicated using computationally-light 

algorithm to tuning fuzzy membership function for a PV-

based dynamic voltage restorer, whereas this algorithm 

complexity increases consumptions of time and experience 

and have not been able to achieve in engineering practice [16]. 

Sicre, C. purposed real-time regulation of efficient driving of 

high speed trains [17], comparing to engine systems, its 

dynamic model takes advantages of less influencing factors 

and weak disturbance. The foregoing papers only focus on 

non-transient or linear conditions, which never appear 

particularly in engine practice. Obviously, the literature is 

quite deficient that involves using fuzzy control strategy on 

the optimisation of GDI engine performance. With 

considerations of nonlinear transient circumstances, some 

papers have introduced advanced algorithms [18], [19] to 

improve vehicle performance, and [20]-[24] optimised fuzzy 

logic controllers with intelligent calibration. 

Our previous work [25]-[28] shows although GDI engines 

performance can be improved through intelligent calibration, 

their transient behaviours cannot be easily described 
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quantitatively and the adaptability of its control system needs 

to be improved. To develop robustness of the engine control 

system, so far an FLC has been introduced with direct 

methods drawing on expert knowledge to provide fuzzy set 

membership scores [9][10]. The mismatch between engine 

fuel injection and mass air flow is dominating factor to the 

spikes of AFR trajectory and the deteriorated engine 

emissions [8]. As shown in Fig. 1, the fuzzy controlled AFR 

trajectory has the lower overshooting and the shorter 

convergence time compared with the PI controlled AFR 

trajectory, which proved by [10]-[12], [27]. This paper aims 

at further improving the accuracy of AFR control in GDI 

engines during the transient scenario in order to reduce the 

emissions caused by perturbation of AFR. The proposed 

MFO scheme uses CA approach to visualise descriptive 

statistics of relations between fuzzy sets, which determines 

MF scalar parameter of an FKBC for the GDI engine AFR 

control management. The customised MF with its 

homogenization can keep trend characteristics of designed 

MFs while repairing the insensitive interval. 

The main work reported in this paper includes: 1) An 

FKBC framework is developed for self-adaptive AFR control 

system of the GDI engine. 2) Specialised MF is designed 

based on weight distribution, then the CA model with 

taxonomic dimensions is built for acquiring a customised MF 

to counter the transient scenarios changes more effectively. 3) 

Various transient circumstances encountered by different 

scenarios are considered to assess the CA-based MF pattern 

by means of studying their impact on behaviours of GDI 

engines. Therefore, a spectrum of comparisons with existing 

controllers is carried out to further demonstrate self-adaptive 

advantages of our approach.  

The remainder of the paper proceeds as follows. The FKBC 

is introduced into AFR control system in Section II; the MFO 

scheme is presented with three main parts sequentially, 

followed by MFD, the establishment of analytical model in 

Section III, whereas it declares the Rapid Control Prototyping 

(RCP) control system and experimental setup with technical 

cores; Section IV organises CA result, MF suitability 

assessment and real-time comparative outcomes; conclusions 

are eventually summarised in Section V. 

2. Description of Air-Fuel Ratio Control System  

2.1. System Architecture 

The architecture of the GDI engine considered in this study is 

given in Fig. 2. The main components include an air throttle, 

fuel injector, combustion chamber and Lambda sensor [29]. 

During working scenario changes with pedal tip-in, the air 

flow system directly influences the engine performance. The 

target AFR is used with the milligrams of air per cylinder to 

determine the desired fuel mass, which further defines the 

desired AFR for the engine based on operating state and 

sensor inputs to ensure the maximum conversion efficiency 

of the TWC. 

 
Fig. 2. The schematic architecture of a GDI engine.  

2.2. PI-like Fuzzy Knowledge-Based Air-Fuel 
Ratio Controller 

To realise the real-time AFR control model for GDI engines 

with fuzzy self-adaptive enhancement, this discrete control 

model has been promoted from Saraswati, S. [9] and Jansri, 

A. [10] as Fig. 3. AFR adjustment with a PI-like FKBC is 

determined by the required relative fuel mass compensation. 

    In the present approach, the PI system is a forward 

constraint for scaling input variables estimated from original 

engine calibration parameters. Based on the testing bench, the 

signal about actual AFR (𝐴𝐹𝑅̂) is calculated from a Lambda 

sensor. It is compared with the reference signal (𝐴𝐹𝑅𝑟𝑒𝑓) to 

generate an error signal. The nonlinear fuzzy logic approach 

has been chosen for the controller design due to highly 

nonlinear dynamics of the GDI engine. At the begin, let us 

consider a control action of a typical PI controller described 

in the frequency domain by 

 

𝑢𝑃𝐼(𝑘) =   𝐾𝑝 ∙ 𝑒 + 𝐾𝐼 ∙∑∆𝑒                   (1) 

Fig. 3. The working process for PI-like fuzzy controlled V6 Engine. 

Fig. 1. AFR transient response sample. 
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Where 𝐾𝑝  and 𝐾𝑖  are the proportional and the integral gain 

coefficients. With derivative consideration, Eq. (1) is 

transformed into an equivalent expression 

 

∆𝑢𝑃𝐼(𝑘) =   𝐾𝑝 ∙ ∆𝑒 + 𝐾𝐼 ∙ 𝑒                         (2) 

 

In this case, the rules database inputs and outputs are 

modelled as fuzzy variables. The error signal between the 

desired value of AFR (𝐴𝐹𝑅𝑟𝑒𝑓) and its actual AFR (𝐴𝐹𝑅̂) 

obtained from the feedback of GDI engine bench, which is 

taken as one of the input and is given by  

 

𝑒(𝑘) = 𝐴𝐹𝑅𝑟𝑒𝑓 − 𝐴𝐹𝑅̂                            (3) 

 

Further, change in error signal for two consecutive cycles is 

taken as other input and is given by 

 

∆𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1)                         (4) 
 

Where  𝑒(𝑘 − 1)  is error signal of the preceding cycle. 

Further, an output of the controller is the change in relative 

fuel mass ∆𝑅𝐹𝑀(𝑘) . This is used to determine required 

relative fuel mass as given by  

 

𝑅𝐹𝑀(𝑘) = 𝑅𝐹𝑀(𝑘 − 1) + ∆𝑅𝐹𝑀(𝑘)              (5) 
 

Where 𝑅𝐹𝑀(𝑘 − 1) is the relative fuel mass of the preceding 

cycle.  

The rules defined in rule base of the fuzzy logic controller 

are abstract ideas about how to achieve good control. To 

describe these ideas, inputs and output are described as 

linguistic variables. In this case, following linguistic variables 

are used: 

 

‘error’ describes 𝑒(𝑘) ∙ 𝐾𝑖  
‘change-in-error’ describes ∆𝑒(𝑘) ∙ 𝐾𝑝 and 

‘change-in-RFM’ describes ∆𝑅𝐹𝑀(𝑘) 
 

The purpose of MFs is to map precise discrete values into 

continuous fuzzy variables. The subset division of fuzzy 

variables determines the number of rules. The number of rules 

should increase with refining the rule division. The linguistic 

quantification about two-inputs of error and ∆error defined 

on universes of discourse (𝑈)  then result in a 7 × 7  rules 

base for individuals in Table 1. The size of the term set 

determines the granularity of the control action in tabular 

form as [30] considered. For instance, one of rules is 

 

If error is PM and change-in-error is NS, then 

change-in-relative fuel mass is PS. 

 

Where PM, NS and PS are fuzzy sets, defined on universes of 

discourse (domains) E, change of 𝐸̇ and 𝑈̇ respectively. The 

ternary fuzzy relation R defined as often represents this rule: 

 

𝑅 = ∫ min (𝜇𝑃𝑀(𝑒), 𝜇𝑁𝑆(𝑒̇),
𝜇𝑃𝑆(𝑢̇)

(𝑒, 𝑒̇, 𝑢̇)
)

 

𝐸×∆𝐸×∆𝑈

      (6) 

 

i.e., each triple (𝑒, 𝑒̇, 𝑢̇) has a membership degree equal to the 

minimum of 𝜇𝑃𝑀(𝑒), 𝜇𝑁𝑆(𝑒̇) and 𝜇𝑃𝑆(𝑢̇). 

In inference mechanism, the implied fuzzy sets are 

produced using the max-min composition. In defuzzification, 

these implied fuzzy sets are combined to provide a crisp value 

of controller output. The centre of gravity defuzzification 

method has been used to find out the crisp value of the output. 

According to COG defuzzification, the crisp value of output 

is given by 

 

∆𝑅𝐹𝑀𝑐𝑟𝑖𝑠𝑝 =
∑ 𝑏𝑖 ∫𝜇𝑐𝑜𝑛𝑠𝑒𝑞,𝑖𝑖

∑ ∫𝜇𝑐𝑜𝑛𝑠𝑒𝑞,𝑖𝑖
                    (7)  

Where 𝑏𝑖  denote the centre of gravity of the MF of the 

consequent of rule 𝑖 . Further, ∫𝑢𝑐𝑜𝑛𝑠𝑒𝑞,𝑖  denotes the area 

under the MF 𝑢𝑐𝑜𝑛𝑠𝑒𝑞,𝑖. 

 

Table 1 Rule base for 7 × 7 fuzzy logic controller 

error ∆error 

NB NM NS ZE PS PM PB 

NB NB NB NB NM NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NM NS ZE PS PM 

ZE NM NM NS ZE PS PM PM 

PS NM NS ZE PS PM PM PB 

PM NS ZE PS PM PM PB PB 

PB ZE PS PM PM PB PB PB 

 

In this control system, the PI system as a forward constraint 

reference scale the size of fuzzy inputs with error and ∆error, 

technical engineers need not spend much time on the 

calibration. Specifically, for non-calibrate points, PI-like 

fuzzy control systems can revise errors of unknown 

calibration points adaptively comparing with PI control 

systems [31]. 

3. Membership Function Optimisation Scheme 

Basically, the MF shape is rarely considered in FLC 

framework construction for engineering applications, which 

is often defined as a typical MF pattern. Here, we propose an 

improved MFO scheme and it uses CA approach to determine 

MF scalar parameters of an FKBC for AFR management, in 

which descriptive statistics of relations between fuzzy sets 

can be visualised conveniently. In Fig. 4, the proposed 

scheme consists of three main modules: 1) the case starts with 

to design specialised MF based on weight distribution for the 

FKBC in the AFR control system. 2) Then designed MF 

scalar parameters as statistical variables are introduced with 

engine step gain scenario variables into the CA model, then 

they are weighted by output results of the FKBC model with 

each combination of MF pattern and step gain scenario. 3) 

Through individual assessment, the best MF can be 

determined then the fuzzy AFR controller with the optimised 

MF is validated in a production V6 GDI engine with RCP 

technology. 
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3.1. Membership Function Design 

In general, typical MF patterns contain Triangular, Gaussian, 

Bell-shaped, Polynomial and Trapezoidal, which are not 

enough satisfied to constraint AFR over the different transient 

change of working operation point. As pointed out by [32], 

Trapezoidal-shaped MF with higher simplicity is considered 

to implant into the non-linearity of the controller as the 

research reference. A function of a vector x and depends on 

four scalar parameters a, b, c, and d, as given by 

 

𝑓𝑝,𝑞(𝑥; 𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟 , 𝑑𝑟) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝑎𝑟
𝑏𝑟 − 𝑎𝑟

, 1,
𝑑𝑟 − 𝑥

𝑑𝑟 − 𝑐𝑟
) , 0) 

(8) 
Where the parameters 𝑃 = [1,2,3]  is the 𝑝 th level of top 

width, 𝑄 = [1,2,3]  is the 𝑞 th level of bottom width, 𝑅 =
[−3,−2,… ,2,3] is the rth fuzzy set of one MF pattern. 𝑎 and 

𝑑 locate the "feet" of the trapezoid and the parameters 𝑏 and 

𝑐 locate the "shoulders." By the way, 𝑏 = 𝑐, the MF curve 

switches to a triangular one. In this case, output MF pattern is 

considered as standard Triangular type like Fig. 5(a). 

Fig. 4. The flow chart of MFO scheme. 

 

Fig. 5. (a)-(c) Designed MF patterns with narrow/medium/wide top length and narrow bottom length; (d)-(f) with 

narrow/medium/wide top length and medium bottom length; (g)-(i) with narrow/medium/wide top length and wide bottom 

length. 
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At the beginning, the unified linguistic quantification of 

MFD is considered as the prerequisite to build the CA model. 

Based on the equal weight distribution principle, the MF 

profile 𝑓𝑝,𝑞 is classified from top and bottom horizon scalar 

parameters, which can be described by 

 

{
 
 
 

 
 
 𝑎𝑟 =

1

3
𝑟 −

1

3

𝑏𝑟 =
1

3
𝑟 −

1

15
(𝑝 − 1)

𝑐𝑟 =
1

3
𝑟 +

1

15
(𝑝 − 1)

𝑑𝑟 =
1

3
𝑟 +

1

3

                             (9) 

 

When 𝑟 = −3,−2,−1, the scalar parameter 𝑑𝑟  is replaced 

by 

𝑑𝑟 =
1

3
𝑟 +

1

3
+
1

6
(𝑞 − 1)(|𝑟| − 1)                (10) 

 

When 𝑟 = 1,2,3, the scalar parameter 𝑎𝑟  is replaced by 

 

𝑎𝑟 =
1

3
𝑟 −

1

3
−
1

6
(𝑞 − 1)(𝑟 − 1)                (11) 

 

According to the above equation, 3×3 MF combinations is 

generated with classified scalar parameters as Fig. 5. In all 

cases, the number of crisp space windows is 𝑆 =  6 + 1 and 

overlapping functional pieces always add up to 1 to remain 

within a 7 rules context. Top-bottom length combinations of 

MFs are named “narrow,” “medium,” and “wide” as well as 

labelled symbols on the CA main planes.  

3.2. Correspondence Analysis 

The CA as a priori versus exploratory method is used to 

investigate the distinction between a priori and exploratory 

approaches to data analysis. It takes advantage on analysing 

two non-interval-level variables with three categories, in 

which CA has been applied for weight method assessment by 

[33]. Based on discrete variables of step gain and MF pattern, 

the structure of CA is formatted to visualise the relation 

between step gain scenarios and MF pattern. Through 

individual assessment, the MF scalar parameters with its 

homogenization can be determined to improve AFR control 

performance.  

A. Data Preparation and Normalisation 

Based on CA model adaptation conditions, scenarios of 

throttle opening gains and MF pattern variables are 

normalised and coded, whereas the dataset thus obtained is 

organized as a row of table 𝑌𝐴𝑖×𝑗 with 𝑖 = 9 rows and 𝑗 = 4 

columns, the yielded table is called 𝑌𝐴9×4 . To define 

dominant species, the dominance index is weighted by 

defuzzification result within [0,1] . Then, an initial 8% 

throttle opening with 2%, 4%, 6% and 8% gains is used as 

references to separately measure signal values of error and 

∆error in the FKBC model. Then signal values of error and 

∆ error input different FIS with 9 MF patterns. After 

defuzzification process, outputs of different MF patterns are 

extracted respectively as dominance index in Table 2. 

    In nine rows, the representative pattern then named 9 

species of MF pattern variables as Narrow-Narrow, Narrow-

Medium, Narrow-Wide, Medium-Narrow, Medium-Medium, 

Medium-Wide, Wide-Narrow, Wide-Medium, Wide-Wide. 

In four columns, there are four levels of throttle opening step 

including 2%, 4%, 6% and 8% as scenario variables. 

B. Definition of Suitability Assessment Standard 

The CA is a multivariate extension of weighted averaging 

ordination to elucidate the relations between MF pattern 

combinatory and step gains of throttle opening. In this case, 

the assessment model applied the squared distance of the 𝑗th 

row profile from the origin to define MF suitability, which is 

[34] 

 

𝑑𝐼
2(𝑖, 0) = ∑ 𝑓𝑖𝑚

2

𝑀∗

𝑚=1

                             (12) 

Where the larger the distance of the 𝑖th row profile in the 𝑀∗ 

dimensional correspondence plot from the origin, the larger 

the weighted discrepancy between the profile of the 𝑖th row 

category to the average profile of the column categories. 

3.3. Testing and Validation Setup 

This study is based on Jaguar V6 GDI engine with 3-litre 

capacity and variable valve timing. The engine test bench and 

physical specifications as shown in Fig. 6 and Table 3.  

 

Table 2 Contingency table for membership value analysis 

Step Gain Membership Function Pattern 

N-N N-M N-W M-N M-M M-W W-N W-M W-W 

2% 0.309 0.309 0.322 0.308 0.308 0.319 0.308 0.308 0.319 

4% 0.526 0.529 0.557 0.519 0.522 0.550 0.514 0.518 0.545 

6% 0.665 0.702 0.715 0.664 0.707 0.717 0.665 0.710 0.718 

8% 0.871 0.880 0.884 0.877 0.884 0.886 0.881 0.886 0.888 
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Fig. 6. Engine test bench: Jaguar V6-3.0 L GDI engine. 

 

Table 3 Jaguar V6 GDI Engine physical parameters 

Parameters Value Units 

Bore 84.5 mm 

Stroke 89 mm 

Displacement 2995 cc 

Rod length 154 mm 

Maximum power 340 PS 

Maximum torque 450 Nm 

 

In RCP control system, there are three main parts involve to 

the PC control group, RCP modules and external dynamic 

control system as Fig. 7 shown. The PI-like FKBC model 

with connection ports of the engine was built by SIMULINK 

as an original input for INTECRIO. INCA-EIP additional 

software can be realised on the application of the ES910 

module INCA design model characterises.  

In this case, ES910 mask ∆RFM(k)  signal of ECU then 

directly sends the bypass signal to the engine test bench 

through external rapid prototyping. Moreover, there are some 

signals (e.g. AFR signal) which cannot be collected from 

sensors on ECU, the ES930 Multi-I/O Module offers several 

digital and analogy input and output channels for signal 

recording and output. Then ES930 interchange digital data 

with the ES910 through daisy chain, in which the AFR signal 

as the feedback input to the improved Fuzzy AFR controller 

in the PC terminal. Finally, the optimised control signal skips 

the ECU's jurisdiction and directly control the GDI engine 

through ES910. A dyno and AC motor with controllers as 

engine dynamic control systems mechanically connect with 

the engine through the crankshaft. 

4. Results and Discussion 

4.1. Stating Combinatory in the Membership Value 
Analysis 

The CA output analysis is presented cautiously with large 

summarises as Fig. 8 shown. It is worth noting that the sum 

of the two relative inertias that are linked to the two main axes 

is 0.612+0.384=99.6%. This fact explains that there are two 

dimensions carrying almost entire original information after 

dimension reduction.  

    Here, we add a reference frame through the origin 𝑂(0, 0) 
and mark critical points of step gains in blue and MF patterns 

in green to analysis as target groups in Fig. 8(a). The direction 

of black dotted arrows represents that, with increases of top 

length, the FIS response at 6-8% step gains become more 

sensitivity. Then, we link every two of three critical points to 

establish the orange polygon area. Outside MF patterns are 

always farther from one or more step gain points relatively, 

which means defuzzification results of these points are 

smaller than those of inside points. Meanwhile, these pieces 

of evidence clearly explain these outside MF patterns are over 

gentle or aggressive to response step gains of working 

operation leading to higher overshooting or slow convergence 

in AFR regulation. Obviously, N-M combination has the 

more accurate adjustment so that its homogenization can keep 

trend characteristics of designed MFs while repairing 

insensitive intervals.  

Fig. 7. The development bench diagram of control strategies. 



7 

 

4.2. Membership Function Suitability Assessment 

In Table 4, the shortest squared distance from the origin is 

Narrow-Medium combinatory at 265.7, which means this 

customised MF profile has the smallest weighted discrepancy 

to the average profile of throttle opening step gains. It can 

take an advantage of maximising ∆RFM compensation on 

AFR control system, especially for stabilising fluctuation 

caused by transient changes in working scenarios. At last, the 

CA-based MF pattern with 𝑗 = 1, 𝑘 = 2 is drawn in Fig 9. 

The sensitivity of CA-based MF is compared with two typical 

MF patterns [28] including Triangular as ‘N-N’ and 

Trapezoidal-shaped as ‘W-N’. They have the same identical 

base positions and symmetrical geometry, in which their 

associated fuzzy control lift surface with 25 × 25 mesh can 

demonstrate their gradient changes under different inputs as 

shown in Fig. 10. The sensitivity of the CA-based MF to the 

intermediate [−0.5, 0.5]  square area of inputs is clearly 

higher than that of others.  

 
Fig. 9. The profile of CA-based MF. 

4.3. Real-time Engine Performance 

In this study, all experiments are conducted online for testing 

different existing controllers under the experimental 

environment with 1500 r/min engine speed fixed by engine 

Fig. 10. Fuzzy control lift surface. 

Fig. 8. CA outputs in the case of the dataset with column (MF pattern) and row (step gain) points, (a) Target group analysis 

(b) ordination diagram of MF patterns. 

Table 4 The squared distance of MF patterns 

MF N-N N-M N-W M-N M-M M-W W-N W-M W-W 

𝑑𝐼
2 1714.0 265.7 2304.0 1892.3 1310.4 1169.6 2323.2 2294.4 723.6 
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dynamic control systems, 8% initial throttle opening and 40% 

initial relative fuel mass coefficient. Four transient step 

scenarios with 2%, 4%, 6% and 8% are applied through 

INCA-EIP in real-time that need to test 4×4=16 times in total. 

Fig. 11 gives real-time performance comparisons of AFR 

stabilisation with existing PI and fuzzy controller [9], [10] 

over different throttle opening gains.  
    In Fig. 11(a), it can be seen that PI control system has 

cross-oscillation and severe convergence hysteresis at 𝜏𝑃𝐼 =
1.058s with two peaks in this tracking process. Relatively, 

FLC system avoids overshoot and a large slope cross- 

oscillation in the process to track 𝑅𝐹𝑀(𝑡)  reference. Fig. 

11(b) shows the comparison results of the AFR regulation at 

8-12% throttle opening gain, which are the AFR response 

curves managed by four methods respectively. Due to the 

increase of step gains, AFR control performances have 

varying degrees of deterioration in overshooting and 

convergence time. Compared to PI controller performance, 

the FKBC optimised by CA-based MFO reduces 3.2% in 

overshooting and 27.0% in convergence time. Fig. 11(c) 

mainly illustrates the advent of the fourth peak in the PI 

policy leads to a significant increase in convergence time at 

𝜏𝑃𝐼 = 1.875s . From the trend comparison, all curves are 

adhering to 8-12% step gain features and Triangular MF 

continues to deteriorate. In Fig. 11(d), the FKBC optimised 

by CA-based MFO still restricts overshooting and 

convergence time within 𝐸𝑀𝐹𝐷 = 1.159 and 𝜏𝑀𝐹𝐷 = 1.464s. 
It has the absolute advantage to control the AFR for reducing 

exhaust emissions with the high efficiency of TWC. 

    Here, the integral of the absolute magnitude of error (ITAE) 

index is introduced that takes advantages of producing 

smaller overshoots and oscillations [35]. The ITAE criterion 

is defined as 

𝐼 = ∑ |𝑒|
∞

0
                                  (13) 

 

Performance comparisons of the AFR regulation for GDI 

engines by using the PI-like FKBC with existing MFs and 

conventional PI lookup table are summarised in Table 5 with 

overshooting, convergence time and ITAE.  

5. Conclusions 

This paper proposes an improved MFO scheme for intelligent 

fuzzy AFR control of GDI engines with adaptive 

enhancement, which is validated on a production V6 GDI 

engine. Conclusions drawn from the research are summarised 

as follows: 

1) According to the CA-based MFO, the customised 

MF has the more efficient adjustment in with its 

homogenization can keep trend characteristics of 

designed MFs while repairing the insensitive 

interval. 

2) A comparison is performed with a commonly PI 

controller at the absence of PI-like fuzzy control 

policy. The FKBC optimised by CA-based MFO 

outperforms the PI controller, in term of both ITAE 

and convergence time. At 8-10% step gain, the fuzzy 

logic strategy at most decreases ITAE and 

convergence time by 50.0% and 52.2% respectively. 

3) A comparative study with existing typical MF in the 

FLC indicates that, at 8-16% step gain, the CA-

based one reduces overshooting by 6.9% and 

convergence time by 24.8% comparing to triangular 

MF; It is worth mentioning that the FKBC optimised 

by CA-based MFO can reduce ITAE up to 82% with 

8-16% step gain compared to typical MFs. 

Fig. 11. The transient responses of AFR under different throttle opening gains. 

(a) 8-10% (b) 8-12% 

(d) 8-16% (c) 8-14% 
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