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Inspired by problems in gauge field theory, this thesis is concernedwith various
aspects of infinite-dimensional differential geometry.
In the first part, a local normal form theorem for smooth equivariant maps

between tame Fréchet manifolds is established. Moreover, an elliptic version of
this theorem is obtained. The proof these normal form results is inspired by
the Lyapunov–Schmidt reduction for dynamical systems and by the Kuranishi
method for moduli spaces, and uses a slice theorem for Fréchet manifolds as
the main technical tool. As a consequence of this equivariant normal form
theorem, the abstract moduli space obtained by factorizing a level set of the
equivariant map with respect to the group action carries the structure of a
Kuranishi space, i.e., such moduli spaces are locally modeled on the quotient
by a compact group of the zero set of a smooth map.

In the second part of the thesis, the theory of singular symplectic reduction
is developed in the infinite-dimensional Fréchet setting. By refining the above
construction, a normal form for momentum maps similar to the classical
Marle–Guillemin–Sternberg normal form is established. Analogous to the
reasoning in finite dimensions, this normal form result is then used to show
that the reduced phase space decomposes into smooth manifolds each carrying
a natural symplectic structure.

Finally, the singular symplectic reduction scheme is further investigated in the
situation where the original phase space is an infinite-dimensional cotangent
bundle. The fibered structure of the cotangent bundle yields a refinement of
the usual orbit-momentum type strata into so-called seams. Using a suitable
normal form theorem, it is shown that these seams are manifolds. Taking
the harmonic oscillator as an example, the influence of the singular seams on
dynamics is illustrated.

The general results stated above are applied to various gauge theory models.
The moduli spaces of anti-self-dual connections in four dimensions and of
Yang–Mills connections in two dimensions is studied. Moreover, the stratified
structure of the reduced phase space of the Yang–Mills–Higgs theory is
investigated in a Hamiltonian formulation after a (3 + 1)-splitting.
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Von Problemen der Eichfeldtheorie inspiriert, beschäftigt sich diese Arbeit mit
verschiedenen Aspekten der unendlich-dimensionalen Differentialgeometrie.

Im ersten Teil wird ein Satz über die Normalform von glatten äquivari-
anten Abbildungen zwischen zahmen Fréchet-Mannigfaltigkeiten aufgestellt.
Ergänzend wird eine elliptische Version dieses Theorems bewiesen. Der Be-
weis dieser Normalformsätze greift die Lyapunov–Schmidt-Reduktion für
dynamische Systeme und die Kuranishi-Methode für Modulräume unter Ver-
wendung eines Scheibensatzes für Fréchet-Mannigfaltigkeiten als technisches
Hauptwerkzeug auf. Als Konsequenz dieses äquivarianten Normalformsatzes
trägt der abstrakte Modulraum, der als Quotient einer Niveaufläche der äquiv-
arianten Abbildung bezüglich der Gruppenwirkung entsteht, die Struktur
eines Kuranishi-Raums.

Im zweiten Teil der Arbeit wird die Theorie der singulären symplektischen
Reduktion im unendlich-dimensionalen Fréchet-Kontext entwickelt. Durch
Verfeinern der obigen Konstruktion erhält man eine Normalform für Impuls-
abbildungen ähnlich der klassischen Marle–Guillemin–Sternberg-Normalform.
Dieses Normalformergebnis wird verwendet um zu zeigen, dass sich der re-
duzierte Phasenraum in glatte symplektische Mannigfaltigkeiten zerlegen lässt.
Anschließendwird das singuläre symplektische Reduktionsschema für den Fall,
dass der ursprüngliche Phasenraum ein unendlich-dimensionales Kotangential-
bündel ist, untersucht. Die kanonische Faserstruktur des Kotangentialbündels
ergibt eine Verfeinerung der üblichen Orbit-Impuls-Strata in sogenannte Seams.
Mit Hilfe eines geeigneten Normalformsatzes wird nachgewiesen, dass diese
Seams Mannigfaltigkeiten sind. Den Einfluss der einzelnen Seams auf die
Dynamik veranschaulicht das Beispiel des harmonischen Oszillators.

Diese allgemeinen Ergebnisse werden auf verschiedene Modelle der Eichthe-
orie angewendet. So werden die Modulräume von anti-selbstdualen Zusam-
menhängen in vier Dimensionen und von Yang–Mills-Zusammenhängen in
zwei Dimensionen analysiert. Weiterführendwird die stratifizierte Struktur des
reduzierten Phasenraums der Yang–Mills–Higgs-Theorie in der Hamiltonschen
(3+1)-Formulierung untersucht.
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1Introduction

Nonlinear partial differential equations play an essential role in theoretical
physics as well as in pure mathematics. In geometry, such equations share
the common theme of having solutions that are sensitive to the topology and
geometry of the underlyingmanifold. Already in the eighties, it was recognized
that the same applies in reverse, that is, one can use differential-geometric
equations to deduce some astounding topological and geometrical properties
of manifolds. These insights have been accompanied by a shift in perspective:
instead of studying the solutions themselves, the geometric structure of the
space of solutions has increasingly become the subject of interest and has
moved into the focus of mathematicians and physicists alike. In particular,
topological and inherently non-perturbative aspects of the physical system are
often manifested in the geometry of the solution space.
There is another general feature: the equations arising in geometry and

physics frequently have large symmetry groups. For example, the Yang–Mills
equation is invariant under the group of gauge transformations and Einstein’s
equation is invariant under the group of diffeomorphisms. In this situation,
the right object of interest is the moduli space of solutions obtained by taking
the quotient of the space of solutions by the action of the symmetry group.
Thus, for applications in both geometry and physics, a deep understanding
of the local structure of this quotient is essential. Of particular importance
is the formation of singularities due to objects having a non-trivial stabilizer
under the symmetry group action. Although relying on similar techniques,
the analysis of these fundamental features so far only happened on a case by
case basis for each moduli space separately.
In the first part of this thesis, we provide a general framework that gives a unified

approach to these differential-geometric moduli spaces. Specifically, we establish a
convenient normal form for a large class of non-linear differential equations
with symmetries. Furthermore, we show that the corresponding moduli space
of solutions can be endowed with the structure of a Kuranishi space, which
roughly speaking means that it can be locally identified with the quotient of the
zero set of a smoothmap by the linear action of a compact group. Our approach
is inspired by the ideas that underlie the Lyapunov–Schmidt reduction for
dynamical systems and the Kuranishi method for moduli spaces in differential
geometry. The results are phrased in terms of equivariant maps between
infinite-dimensional manifolds endowed with actions of infinite-dimensional
Lie groups.

As another advantage, the developed methods make it possible to investigate
additional features of the moduli space under consideration. For example,
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it is known that some differential equations, like the constraint equations in
Yang–Mills theory or general relativity, are tightly connected to the symmetry
of the model and can often be recast in terms of the corresponding Noether
current. The appropriate setting to study these phenomena is provided by the
Hamiltonian framework formulated in the language of infinite-dimensional
symplectic manifolds.
As a blueprint for developing this approach, we use the well-established

finite-dimensional theory for classical particle mechanics. In this setting, the
phase space is described by a finite-dimensional symplectic manifold and the
symmetry of the system is encoded in a symplectic action of the symmetry
group. The corresponding conserved quantities are captured in themomentum
map. Following the classical result of Marsden, Weinstein and Meyer, the
momentum map can be used to eliminate a number of variables and thereby
pass to the reduced phase space, in which the symmetries are divided out.
This elimination process is called symplectic reduction, see [MW74; SL91]. In
finite dimensions, the equivariant Darboux theorem yields a convenient normal
form for the original Hamiltonian system and thereby provides a fundamental
tool to analyze the local structure of the reduced phase space. This analysis
shows that the reduced phase space is a symplectic manifold again if the
action of the symmetry group is free. However, in the situation where the
action is not free, the reduced space has conic singularities and it is thus a
stratified space with each stratum being a symplectic manifold. Starting in the
early nineties [ER90], various case studies in finite dimensions have shown
that these singularities have an influence on the properties of the quantum
theory, see [RS17, Chapter 8] for a detailed discussion. In particular, they may
carry information about the spectrum of the Hamiltonian, see [HRS09]. These
studies show that information about the singular structure of the reduced
phase space are an indispensable prerequisite for a deeper understanding of
the corresponding quantum theory.

In the second part of this thesis, we develop the theory of singular symplectic reduction
in an infinite-dimensional setting. This allows us to study the aforementioned
moduli spaces and their additional features, which are derived from the
symplectic structure. When passing to the infinite-dimensional setting, a
simple counterexample by Marsden [Mar72] shows that the Darboux theorem
fails spectacularly for weakly symplectic Banach manifolds. Thus, in order to
establish an infinite-dimensional version of the symplectic reduction theorem,
we pursue a different strategy, which is in sharp contrast to the usual proof
in finite dimensions. Our derivation of this reduction theorem is based on
the observation that it is not essential to bring the symplectic structure into
a normal form. Instead, our focus will be primarily on momentum maps;
using the symplectic structure only as a secondary tool. By refining and
adapting the techniques developed in the first part of the thesis, we construct
a normal form for equivariant momentum maps in the spirit of the classical



1. Introduction 3

Marle–Guillemin–Sternberg normal form. With the help of this normal form,
we then prove a singular symplectic reduction theorem including the analysis
of the stratification into symplectic manifolds. Finally, the reduction scheme is
applied to the symmetry reduction of various gauge theory models.
The symmetry reduction for gauge field theory is part of an ambitious

program to rigorously develop quantum field theories. While perturbative
methods in quantum field theory yield a satisfactory description of high
energy processes in particle physics, many low energy processes are dominated
by non-perturbative effects and, so far, have eluded a rigorous theoretical
explanation. Many attempts to develop a mathematically rigorous, non-
perturbative quantum gauge theory are inspired by the general approach
of constructive quantum field theory. In its classical version, this approach
is based on the Euclidean path integral concept. We refer to [tHo05; JW]
for status reports on the case of Yang–Mills theory. A different option is
provided by the Hamiltonian formalism, see [BDI74; KS75; KR02; KR05;
GR17]. The fundamental problem when dealing with Yang–Mills theory
is the elimination of the unphysical gauge degrees of freedom. Within the
Hamiltonian framework, this is accomplished via symplectic reduction. In
both the path integral and the Hamiltonian approach, one usually analyzes
a corresponding lattice approximation of the model as an intermediate step.
The issues of the path integral approach now reappear as problems related
to taking the continuum limit of vanishing lattice spacing. Concerning the
Hamiltonian point of view, one may think of another strategy: instead of using
a lattice approximation, one can study the classical continuum gauge theory as
an infinite-dimensional Hamiltonian system with a gauge symmetry, reduce
the symmetry and, then, pass to the quantum world by extending methods
from geometric quantization to infinite-dimensional systems. The results of
this thesis contribute to this approach by developing a rigorous reduction
scheme and thereby clarify the structure of the reduced phase space on the
classical level. The final and admittedly hardest step for constructing the
corresponding quantum field theory is to quantize the reduced system, which
is clearly outside the scope of this thesis.

In field theory and global analysis, the maps under consideration are usually
given by partial differential operators between spaces of sections and thus
they give rise to smooth maps between appropriate Sobolev completions. On
the other hand, the symmetry action often involves compositions of maps
and thus fails to be differentiable as a map between spaces of sections of a
given Sobolev class. For example, the group of diffeomorphisms of a fixed
Sobolev regularity is a Banach manifold as well as a topological group but
not a Lie group, because the group operation is not differentiable. When
working with smooth sections these problems disappear and the group of
smooth diffeomorphisms is a bona fide Lie group modeled on a Fréchet space.
In order to include these important examples, we assume throughout the thesis
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that all infinite-dimensional manifolds are modeled on Fréchet or even more
general locally convex spaces. The approach via Fréchet spaces has also the
advantage that certain geometric arguments are simpler, because one does
not have to deal with issues originating in the low regularity of the geometric
objects under study. We note that the polyfold framework recently proposed
by Hofer, Wysocki, and Zehnder [HWZ17b] offers another approach to these
issues of differentiability. We comment further on the relation of the polyfold
theory to our Fréchet approach in Remarks 3.2.2 (iii) and A.1.4 (i) below.

The main results of this dissertation are as follows.

Chapter 2. Normal Forms of Maps This chapter lays the foundation for the
study of equivariant normal forms of maps. We begin by considering the
linear setting and determine under which conditions a continuous linear map
between locally convex spaces factorizes through a topological isomorphism.
We say that an operator is regular if it admits such a factorization. As we will
demonstrate, an operator is regular if and only if it possesses a generalized
inverse. For Fredholm operators, the existence of a generalized inverse is
tightly connected to the existence of a parametrix. This implies, in particular,
that Fredholm operators are regular. As a preparation for the non-linear case,
we extend the discussion of regularity to families of linear maps depending
continuously on a parameter and to chain complexes. Most results concerning
regular operators are well-established in the Banach setting but their extension
to more general locally convex spaces represents original work.
Next, we discuss the local behavior of a smooth map between locally convex
manifolds. Unifying the concepts of immersion, submersion and subimmersion
in one framework, the notion of a normal form of a non-linearmap is introduced.
Using versions of the Inverse Function Theorem, we establish Theorems 2.2.6,
2.2.9, 2.2.10, 2.2.13 and 2.2.14 which show that a given map can be brought
into such a normal form in various functional-analytic settings under suitable
conditions. These normal form theorems provide a unified approach to the
immersion theorem, the level set theorem and the constant rank theorem in
the setting of locally convex manifolds and tame Fréchet manifolds.

Chapter 3. Moduli Spaces Based on this preparation, we introduce the con-
cept of an equivariant normal form and provide suitable conditions which
ensure that an equivariant map can be brought into such a normal form (see
Theorem 3.1.6 and its variants). Besides the normal form results of Chapter 2,
the main technical tool is a version of the slice theorem for Fréchet manifolds
as proved in [DR18c]. Then, we investigate the local structure of the moduli
space obtained by taking the quotient of a level set of the equivariant map by
the group action. Under the assumption that the map can be brought into a
normal form, we show that the corresponding moduli space can be endowed
with the structure of a Kuranishi space, which roughly speaking means that it
can be locally identified with the quotient of the zero set of a smooth map with
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respect to the linear action of a compact group. Moreover, we find additional
conditions on the normal form which ensure that the moduli space is stratified
by orbit types. Finally, to show the utility of this novel framework, we apply the
general theory to the example of the moduli space of anti-self-dual Yang–Mills
connections.

Chapter 4. Singular Symplectic Reduction In this chapter, we generalize the
well-known results concerning singular symplectic reduction to our infinite-
dimensional setting. We begin by discussing some algebraic results of linear
symplectic geometry needed for the symmetry reduction scheme. As a funda-
mental tool to handle weakly symplectic forms, we introduce and study a class
of topologies associated to the symplectic form.
Next, we discuss symplectic manifolds and momentum maps in our infinite-
dimensional setting. Based on our joint work with T. Ratiu [DR] on actions of
diffeomorphism groups, we introduce the notion of a group-valuedmomentum
map which unifies several other notions of generalized momentum maps. The
group structure of the target allows to encode discrete topological information;
a feature that is especially relevant to the action of geometric automorphism
groups, which are sensitive to the topology of the spaces they live on. Using the
results of Chapter 3 about normal forms of equivariant maps as a foundation,
we establish a refined normal form result for momentum maps in the spirit of
the classical Marle–Guillemin–Sternberg normal form.
This important technical tool then serves as the basis for our infinite-dimensional
version of the Singular Symplectic Reduction Theorem (see Theorem 4.3.5).
As in finite dimensions, it states that the reduced phase space, obtained by
factorizing a level set of the momentum map with respect to the symmetry
group, decomposes into smooth manifolds each carrying a natural symplectic
structure. If a suitable approximation property holds, then this decomposition
of the reduced phase space is a stratification. Moreover, the dynamics of the
system reduces to the quotient and restricts to a Hamiltonian dynamics on each
symplectic stratum. To our knowledge, these results concerning the normal
form of a momentum map as well as the structure of singular symplectic
quotients are new even for (weakly) symplectic Banach manifolds.
Finally, we apply these general results to the example of symplectic reduction
in the context of the Yang–Mills equation over a Riemannian surface. This is
based on joint work with J. Huebschmann [DH18].

Chapter 5. Singular Cotangent Bundle Reduction In most applications in
physics, the phase space is a cotangent bundle over the configuration space of
the system. In finite dimensions, Perlmutter, Rodriguez-Olmos, and Sousa-Dias
[PRS07] have shown that the fibered structure of the cotangent bundle yields a
refinement of the usual orbit-momentum type strata into so-called seams. The
principal seam is symplectomorphic to a cotangent bundle while the singular
seams are coisotropic submanifolds of the corresponding symplectic stratum.
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In the first part of this chapter, we extend these results concerning singular
symplectic reduction of cotangent bundles, including the analysis of the
secondary stratification into seams, to the case of infinite-dimensional Fréchet
manifolds (see Theorem 5.4.8). The proof relies on the construction of a suitable
normal form formomentummaps of lifted actions, forwhichwe directly exploit
the additional structure of the cotangent bundle. As a by-product, our theory
provides a much simpler approach to singular cotangent bundle reduction in
the finite-dimensional setting. The possible significance of the seams for the
dynamics of the system is demonstrated by analyzing the finite-dimensional
example of the harmonic oscillator.
In the second part of the chapter, we apply our general theory to the singu-
lar cotangent bundle reduction of Yang–Mills–Higgs theory. The Singular
Symplectic Reduction Theorem implies that the reduced phase space of the
theory is a stratified symplectic space. We study this stratification in more
detail and find that an inclusion of the singular strata leads to a refinement of
what is called the resolution of the Gauß constraint in the physics literature.
Finally, we further analyze the secondary stratification in the concrete example
of the Higgs sector of the Glashow–Weinberg–Salam model. In this context,
we find that the configuration space has only two orbit types. The singular
stratum is characterized by the remarkable physical property of the absence of
W-bosons, i.e., the Z-boson is the only non-trivial intermediate vector boson
on the singular stratum. We then discuss the stratification of the phase space.
The secondary stratification turns out to be similar to that of the harmonic
oscillator in the sense that there are only three strata: two cotangent bundles
which are glued together by one seam. The non-generic cotangent bundle is
the phase space of a sub-theory consisting of electrodynamics described by a
photon, the theory of a massive vector boson described by the Z-boson and
the theory of a self-interacting real scalar field described by the Higgs boson.
The seam is characterized by the condition that the W-boson field vanishes
but its conjugate momentum is non-trivial. In contrast, all intermediate vector
bosons of the model are present on the generic cotangent bundle. Finally,
we study the structure of the strata of the reduced phase space in terms of
gauge invariant quantities for the theory on S3. By implementing unitary
and Coulomb gauge fixing in a geometric fashion using momentum maps,
we show that the singular structure of the reduced phase space is encoded
in a finite-dimensional U(1)-Lie group action. The results of this chapter are
published in a slightly extended form in [DR18b].

Our results concerning equivariant normal forms and singular symplectic
reduction in infinite dimensions open many interesting avenues for further
research, some of which are described in Chapter 6.
In the appendix, we summarize without proofs the relevant background

material. Appendix A outlines the calculus of infinite-dimensional manifolds
with a primary focus on the Inverse Function Theorem as well as Lie group
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actions. In Appendix B, we give an overview of the theory of dual pairs, which
forms the basis for our discussion of linear symplectic geometry in Section 4.1.
For the convenience of the reader, a list of mathematical symbols1 is included
at the end of the thesis.

1 In the electronic version of this thesis, many mathematical symbols in the text are supplied
with a hyperlink pointing to the corresponding entry in the list of symbols.



2Normal Forms of Maps

2.1 Normal form of a linear map

In this section, we are concerned with the normal form of continuous linear
maps between locally convex spaces. Recall that every m × n matrix T with
rank r can be written in the form

T � P
(
0 0
0 1r×r

)
Q , (2.1.1)

where P and Q are invertible m × m and n × n matrices, respectively. As we
will see, a similar factorization is possible for continuous linear maps between
locally convex spaces, which are relatively open and whose kernel and image
are closed complemented subspaces. We call such operators regular. In the
finite-dimensional context, it is well-known that the factorization (2.1.1) can
be used to construct a so-called generalized inverse of T. Guided by this
construction, we will show that every regular operator between locally convex
spaces possesses a generalized inverse. With a view towards applications,
we give a brief overview of the theory of Fredholm operators and of elliptic
operators in the locally convex framework and, in particular, show that these
operators are regular. Finally, as a preparation for the non-linear case, we extend
the discussion of regularity to families of linear maps depending continuously
on a parameter and to chain complexes. Most results of this section are well-
established in the Banach setting, but their extension to more general locally
convex spaces represents original work (if not otherwise indicated).

2.1.1 Regular operators and generalized inverses

Let X and Y be locally convex vector spaces and let T : X → Y be a continuous
linearmap. Assume that the kernel and the image ofT are closed complemented
subspaces. Thus, there exist topological decompositions1

X � Ker T ⊕ Coim T, Y � Coker T ⊕ Im T, (2.1.2)

1 Let X and Y be closed subspaces of a locally convex space Z such that X ∩ Y � {0}. If the
linear map X ×Y→ Z given by (x , y) 7→ x + y is a topological isomorphism, then we say that
Z is the topological direct sum of X and Y, and write Z � X ⊕ Y. Depending on the context,
we then write elements of Z either as a pair (x , y) or as a sum x + y with x ∈ X and y ∈ Y.
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where Coim T and Coker T are closed subspaces1 of X and Y, respectively.
Then, T factorizes as

X Y,

Coim T Im T

T

T̂

(2.1.3)

where T̂ : Coim T → Im T is a continuous linear bĳection. The induced
operator2 T̂ is called the core of T. Recall that a continuous linear map
T : X→ Y is called relatively open if it is open as a map T : X→ Im T. In other
words, the image under T of every open subset of X is open in the relative
topology of Im T. Thus, a continuous bĳection is relatively open if and only if
it is a topological isomorphism. In particular, T is relatively open if and only if
its core T̂ is a topological isomorphism.

Definition 2.1.1 A continuous linear map T : X → Y between locally convex
spaces is called regular if T is relatively open and Ker T as well as Im T are
closed complemented subspaces of X and Y, respectively. ♦

Thus, the core T̂ : Coim T → Im T of a regular operator T : X → Y is a
topological isomorphism. Moreover, the above discussion shows that every
regular operator T can be written in a form similar to (2.1.1):

T � P
(
0 0
0 T̂

)
Q , (2.1.4)

where Q : X → Ker T ⊕ Coim T and P : Coker T ⊕ Im T → Y are the natural
isomorphisms determined by the decompositions (2.1.2). For this reason, we
also say that a regular operator can be brought into a normal form.

Lemma 2.1.2 Let T : X → Y be a continuous linear map between locally convex
spaces X and Y.

(i) Assume that X and Y are Fréchet spaces. Then, T is regular if and only if Ker T
as well as Im T are closed complemented subspaces.

(ii) If Im T is finite-dimensional, then T is regular. This is the case, in particular,
when X or Y are finite-dimensional. ♦

1 In general, the coimage and cokernel are defined asCoim T � X/Ker T andCoker T � Y/Im T,
respectively. There exists, of course, no canonical realization of these quotient spaces as
subspaces of X and Y. Nonetheless, the choice of complements A and B of Ker T and Im T,
respectively, leads to the identifications Coim T ' A and Coker T ' B. It is in this sense and
with a slight abuse of notation that we view Coim T and Coker T as subspaces of X and
Y, respectively. The reader should keep in mind that these subspaces are not canonically
associated to T.

2 We use the word “operator” interchangeably with “continuous linear map”.
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Proof. The first claim follows directly from the open mapping theorem [Tre67,
Theorem 17.1], which states that an operator between Fréchet spaces is relatively
open if and only if its image is closed.
Suppose now that Im T is finite-dimensional. Then, by [Köt83, Proposi-

tion 20.5.5], Im T is closed and has a topological complement. Moreover, Ker T
has finite codimension in X and hence is topologically complemented according
to [Köt83, Proposition 15.8.2]. The core of T is a continuous linear bĳection
between finite-dimensional spaces and hence is a topological isomorphism.
Thus, T is regular. �

The core T̂ of a regular operator T has a continuous inverse. Hence, it is
natural to expect that T itself can be inverted in a certain sense. This is in fact
the case, as we will see below, and the right notion turns out to be that of a
generalized inverse.

Definition 2.1.3 Let T : X → Y be a continuous linear map between locally
convex spaces. A continuous linear map S : Y → X satisfying

T ◦ S ◦ T � T (2.1.5)

is called a generalized inverse of T. If, additionally,

S ◦ T ◦ S � S (2.1.6)

holds, then S is referred to as a reflexive generalized inverse. ♦

In finite dimensions, generalized inverses were first studied by Rao [Rao62]
and have since become a valuable tool to find solutions to singular systems
of linear equations. In general, a (reflexive) generalized inverse is not unique
unless further conditions are imposed. For example, in the context of Hilbert
spaces, it is convenient to require a certain hermiticity condition, which leads
to the notion of a pseudoinverse independently introduced by Moore [Moo20]
and Penrose [Pen55].

The following relationship between regularity and generalized inverses can
be found (in parts) in [Har87, Theorem 3.8.2] for maps between normed spaces,
but the proof can be generalized to maps between arbitrary locally convex
spaces without much effort.

Proposition 2.1.4 For a continuous linear map T : X → Y between locally convex
spaces the following are equivalent:

(i) T is regular.

(ii) There exist topological decompositions X � Ker T⊕Coim T and Y � Coker T⊕
Im T such that the core T̂ : Coim T → Im T of T is a topological isomorphism.

(iii) There exists a generalized inverse of T.
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(iv) There exists a reflexive generalized inverse of T. ♦

Proof. The equivalence of statements (i) and (ii) has been discussed above. We
will establish the following implications: (ii)→ (iv)→ (iii)→ (i).

First, assume that we have topological decompositions X � Ker T ⊕ Coim T
and Y � Coker T ⊕ Im T such that the induced map T̂ : Coim T → Im T is a
topological isomorphism. The continuous linear map S : Y → X defined by
S � T̂−1 ◦ prIm T satisfies

T ◦ S � T̂ ◦ T̂−1 ◦ prIm T � prIm T , (2.1.7a)
S ◦ T � T̂−1 ◦ T̂ ◦ prCoim T � prCoim T , (2.1.7b)

where prA denotes the projection onto the subspace A. Hence, by composing
with T and S, respectively, we obtain

T ◦ S ◦ T � prIm T ◦ T � T, (2.1.8a)
S ◦ T ◦ S � prCoim T ◦ S � S. (2.1.8b)

Thus, S is a reflexive generalized inverse.
The existence of a reflexive generalized inverse clearly implies the existence

of a generalized inverse.
Now, let S be generalized inverse of T. The identity T ◦ S ◦T � T implies that

T◦S and S◦T are projections. Obviously,Ker T ⊆ Ker(S◦T). We claim that both
kernels actually coincide. Indeed, for x ∈ Ker(S◦T)wehaveTx � T◦(S◦T)x � 0,
because S is a generalized inverse. Similarly, Tx � (T ◦ S)(Tx) for x ∈ X implies
Im(T ◦ S) � Im T. Hence, Ker T and Im T are images of continuous projections
and thus they are closed and topologically complemented according to [Köt83,
Proposition 15.8.1]. As above, denote the complements by Coim T and Coker T,
respectively. It remains to show that T̂ : Coim T → Im T has a continuous
inverse. Let Ŝ ..� prCoim T ◦ S� Im T : Im T → Coim T. Using S ◦ T � prCoim T
and T ◦ S � prIm T , it is straightforward to see that Ŝ is inverse to T̂. This
establishes the last remaining implication in the above chain and so completes
the proof. �

We note in passing that the equivalence of (iii) and (iv) in the previous
proposition can be established more directly. Indeed, given a generalized
inverse S of T, the operator S ◦ T ◦ S is a reflexive generalized inverse of T.

Example 2.1.5 (Exterior differential) Let M be a compact finite-dimensional
manifold without boundary. Endow the space Ωk(M) of differential k-forms
on M with its natural Fréchet topology. By Hodge theory, every Riemannian
metric on M yields the topological decompositions

Ωk(M) � Ker d ⊕ Im d∗, Ωk+1(M) � Ker d∗ ⊕ Im d, (2.1.9)
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where d∗ denotes the codifferential. Thus, the exterior differential d: Ωk(M) →
Ωk+1(M) is a regular operator with Coim d � Im d∗ and Coker d � Ker d∗.
Moreover, a straightforward calculation shows that the operator

d∗ ◦ 4−1 ◦ prIm d : Ωk+1(M) → Ωk(M) (2.1.10)

is a reflexive generalized inverse of d. Here, the Laplace operator 4 is viewed
as a topological automorphism of Im d. ♦
Originally, generalized inverses were introduced to solve singular matrix

equations. In the same spirit, generalized inverses in the locally convex setting
can be used to solve singular boundary value problems. In this context, a
generalized inverse is often called a generalized Green’s operator. We limit
ourselves here to providing a simple example that illustrates the main idea and
refer the reader to [BG03; BS04] for further details.

Example 2.1.6 Following [KRR11, Section 4], let us consider the following
boundary value problem:

u′′ � f , (2.1.11a)
u′(1) � 0 � u′(0) (2.1.11b)

where u , f ∈ C∞([0, 1]). It is clear that this problem is solvable only if f satisfies
the constraint

∫ 1
0 f (y)dy � 0. Moreover, the solution is unique only up to a

translation by a constant. Thus, to have a unique solution, the boundary value
problem (2.1.11) needs to be supplemented by further conditions, say u(1) � 0
and

∫ 1
0 f (y)dy � 0. In order tomake the connectionwith the operator-theoretic

setting, let X ⊆ C∞([0, 1]) be the closed subspace of functions u satisfying the
boundary constraints u′(1) � 0 � u′(0), set Y � C∞([0, 1]) and let T : X → Y
be the continuous operator sending u to u′′. Then, u is a smooth solution of
the boundary value problem (2.1.11) if and only if Tu � f . As just noted, T is
neither injective nor surjective. Define the operator S : Y → X by

S( f )(x) � x

x∫
0

f (y)dy −
x∫

0

y f (y)dy − 1
2(x

2
+ 1)

1∫
0

f (y)dy +

1∫
0

y f (y)dy

(2.1.12)
for x ∈ [0, 1]. A straightforward calculation shows that S is a reflexive general-
ized inverse of T. Note that we have

S ◦ T(u)(x) � u(x) − u(1), (2.1.13a)

T ◦ S( f )(x) � f (x) −
1∫

0

f (y)dy. (2.1.13b)
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Hence, the additional conditions on u and f , which ensured that the supple-
mented boundary value problem had a unique solution, are encoded using the
generalized inverse in terms of the projection maps S ◦ T and T ◦ S. ♦
Proposition 2.1.4 gives a characterization of regular operators which is

internal in the sense that it focuses on subspaces and the factorization of the
operator. Following ideas of [SZ07], we now give an external characterization.
The first result we establish towards this goal is the following construction of a
generalized inverse as a part of a proper inverse of an extended operator, cf.
[SZ07, Proposition 2.1].

Lemma 2.1.7 Let T : X → Y, T+ : Z+→ Y, T− : X → Z− and T+− : Z+→ Z− be
continuous linear maps between locally convex spaces such that the operator(

T T+

T− T+−

)
: X ⊕ Z+→ Y ⊕ Z− (2.1.14)

is invertible with a continuous inverse of the form(
S S−

S+ 0

)
, (2.1.15)

where S : Y→ X, S− : Z−→ X and S+ : Y→ Z+ are continuous linear maps. Then,
S is a generalized inverse of T and the following identities hold:

S− ◦ T− � prKer T , T+ ◦ S+
� prCoker T . (2.1.16)

Moreover, S is a reflexive generalized inverse of T if and only if one of the following
equivalent conditions is satisfied:

(i) prKer T ◦ S � 0,

(ii) S�Coker T � 0,

(iii) S− ◦ T+− ◦ S+ � 0. ♦

Proof. We clearly have(
S S−

S+ 0

)
◦

(
T T+

T− T+−

)
�

(
S ◦ T + S− ◦ T− S ◦ T+ + S− ◦ T+−

S+ ◦ T S+ ◦ T+

)
, (2.1.17a)(

T T+

T− T+−

)
◦

(
S S−

S+ 0

)
�

(
T ◦ S + T+ ◦ S+ T ◦ S−

T− ◦ S + T+− ◦ S+ T− ◦ S−

)
. (2.1.17b)

Since
(

T T+

T− T+−
)
and

( S S−
S+ 0

)
are inverse, these equations define various relations

between the involved operators. For example, we read off that T ◦ S− � 0 and
hence

T � T ◦ S ◦ T + T ◦ S− ◦ T− � T ◦ S ◦ T. (2.1.18)
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Thus, S is a generalized inverse ofT. Moreover, S+◦T+ � idZ+ andT−◦S− � idZ−

imply that T+ ◦ S+ and S− ◦ T− are projections. The relations (2.1.16) follow
from

prIm T � T ◦ S � idY − T+ ◦ S+, (2.1.19a)
prCoim T � S ◦ T � idX − S− ◦ T−. (2.1.19b)

Finally, we find
S ◦ T ◦ S + prKer T ◦ S � S (2.1.20)

and

prKer T ◦ S � S− ◦T− ◦ S � −S− ◦T+− ◦ S+
� S ◦T+ ◦ S+

� S ◦prCoker T . (2.1.21)

These identities imply that S is a reflexive generalized inverse if and only if one,
and thus all, of the above conditions are fulfilled. �

Lemma 2.1.7 suggests that the existence of a generalized inverse is tightly
connected to the invertibility of an extended operator. In fact, we have the
following characterization.

Proposition 2.1.8 Let T : X→ Y be a continuous linear map between locally convex
spaces. A continuous linear map S : Y → X is a generalized inverse of T if and only
if there exist locally convex spaces Z± and continuous linear maps T+ : Z+ → Y,
T− : X → Z− and T+− : Z+→ Z− such that(

T T+

T− T+−

)−1

�

(
S S−

S+ 0

)
, (2.1.22)

where S− : Z−→ X and S+ : Y → Z+ are continuous linear maps. Moreover, S is a
reflexive generalized inverse of T if and only if we can choose T+− � 0. ♦

Proof. Suppose that S : Y → X is a generalized inverse of T. Then, by Propo-
sition 2.1.4, we have topological decompositions X � Ker T ⊕ Coim T and
Y � Coker T ⊕ Im T. Set Z+ � Coker T and Z− � Ker T. Let T+ : Z+ → Y,
S− : Z−→ X and T− : X→ Z−, S+ : Y→ Z+ be the natural injections and projec-
tions, respectively. Set T+− � −prKer T ◦ S�Coker T . A straightforward calculation
using T ◦ S � prIm T , S ◦ T � prCoim T and (2.1.17) shows that (2.1.22) holds. If,
in addition, S is a reflexive generalized inverse, then S � S ◦ T ◦ S � S ◦ prIm T
implies S ◦ prCoker T � 0 and so T+− � 0. The converse direction has already
been established in Lemma 2.1.7. �

An important class of examples of regular operators is given by Fredholm
operators. Fredholm operators are usually studied as maps between Banach
spaces (or Hilbert spaces) but most results extend to the locally convex setting.
Here, we only give a brief account of the general theory of Fredholm operators
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between locally convex spaces and refer the reader to [Sch56; Sch59] for more
details.

Definition 2.1.9 A continuous linear map T : X → Y between locally convex
spaces is called a Fredholm operator if T is relatively open, the kernel of T is a
finite-dimensional subspace of X, and the image of T is a finite-codimensional
closed subspace of Y. The index ind T of a Fredholm operator T is defined by

ind T � dim Ker T − dim Coker T. (2.1.23)
♦

Since finite-dimensional subspaces and finite-codimensional closed sub-
spaces of a locally convex space are always topologically complemented
according to [Köt83, Propositions 15.8.2 and 20.5.5], every Fredholm operator
is regular.

As in the Banach setting, Fredholm operators are invertible modulo compact
operators. A continuous linear map K : X→ Y between locally convex spaces is
called compact if there exists a neighborhood U of 0 in X such that the closure of
K(U) is a compact subset of Y. We refer to [Edw65, Chapter 9] for the theory of
compact operators in the locally convex setting. According to [Sch56, Satz 12],
a continuous linear map T : X → Y between locally convex spaces is Fredholm
if and only if there exists a continuous linear operator S : Y → X such that

S ◦ T � idX − K1, (2.1.24a)
T ◦ S � idY − K2 (2.1.24b)

holds for compact operators K1 : X → X and K2 : Y → Y. The operator S is
called a parametrix of T. Every generalized inverse S of a Fredholm operator T
is a parametrix, because we have

idX − S ◦ T � Ker T, (2.1.25a)
idY − T ◦ S � Coim T, (2.1.25b)

and finite-rank operators are compact as a consequence of the Bolzano–
Weierstrass Theorem.

2.1.2 Uniform regularity of operator families

As a preparation for the non-linear case, we extend the discussion of regularity
to families of linear maps depending continuously on a parameter. Consider
the following setup. Let X and Y be locally convex spaces, and let P be an
open neighborhood of 0 in some locally convex space. A continuous map
T : P × X → Y is called a continuous family of linear maps if, for all p ∈ P, the
induced map Tp ≡ T(p , ·) : X → Y is linear.
Recall that an operator T : X → Y is regular if Ker T and Im T are closed
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complemented subspaces and the core T̂ � prIm T ◦ T�Coim T is a topological
isomorphism. This formulation suggests the following generalization of the
notion of regularity to operator families.

Definition 2.1.10 A continuous family T : P × X → Y of linear maps is called
uniformly regular (at 0) if there exist topological decompositions

X � Ker T0 ⊕ Coim T0, Y � Coker T0 ⊕ Im T0, (2.1.26)

and, for every p ∈ P, the map T̃p � prIm T0 ◦ (Tp)�Coim T0 : Coim T0 → Im T0 is
a topological isomorphism such that the inverses form a continuous family
P × Im T0 → Coim T0. ♦

Note that, in particular, T0 is a regular operator. If the space of invertiblemaps
is open in the space of all continuous linear maps, then, for every continuous
family T : P × X → Y with T0 being regular, one can shrink P to pass to a
uniformly regular family. However, this openness property fails when one
leaves the Banach realm as the following example demonstrates.

Example 2.1.11 Let X � C∞([0, 1],R) and consider the continuous family
L : R × X → X of linear differential operators defined by

Lr(g)(x) � g − rx g′ (2.1.27)

for r ∈ R, g ∈ X and x ∈ [0, 1]. Clearly, L0 is the identity operator on X. On
the other hand, for every n ∈ N, the operator L1/n annihilates the function
gn(x) � xn . Hence, Lr fails to be injective for arbitrarily small r and so L is not
uniformly regular. Note that if we try to formulate this problem in Banach
spaces and view Lr as an operator from C1([0, 1]) to C0([0, 1]), then L0 is only
the inclusion of a dense subspace. ♦
It is clear from the definition that the property of uniform regularity of a

continuous family is invariant under reparametrization. For ease of reference,
let us record this.

Lemma 2.1.12 Let T : P ×X→ Y be a continuous uniformly regular family of linear
maps and let Q be an open neighborhood of 0 in some locally convex space. For every
continuous map L : Q → P with L(0) � 0, the induced family

T ◦ (L × idX) : Q × X → Y (2.1.28)

is uniformly regular (at 0). ♦
Let T : P × X → Y be a continuous family of relatively open linear maps.

If Ker Tp � Ker T0 and Im Tp � Im T0 hold for all p ∈ P, then T̃p is clearly a
topological isomorphism. Hence, in this case, the family T is uniformly regular.
In the converse direction, uniform regularity implies a semi-continuity property
of the kernel and the image.
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Proposition 2.1.13 Let T : P × X → Y be a continuous family of linear maps. If T
is uniformly regular, then the following holds:

(i) The kernel of T is upper semi-continuous at 0 in the sense that Ker Tp ⊆ Ker T0
for all p ∈ P.

(ii) The image of T is lower semi-continuous at 0 in the sense that Im Tp ⊇ Im T0
for all p ∈ P. ♦

Proof. The inclusions Ker Tp ⊆ Ker T0 and Im Tp ⊇ Im T0 need to be valid,
because otherwise T̃p � prIm T0 ◦ (Tp)�Coim T0 cannot be an isomorphism from
Coim T0 to Im T0. �

Similar semi-continuity properties are well-known to hold for families of
Fredholm operators between Banach spaces, see e.g. [Hör07, Corollary 19.1.6].
Before we come to the uniform regularity of Fredholm operators, it is con-
venient to establish a characterization of uniform regularity analogous to
Proposition 2.1.8. We need the following basic result concerning the invertibil-
ity of block matrices in terms of the Schur complement (whose proof is an easy
exercise left to the reader, cf. [SZ07, Lemma 3.1]).

Lemma 2.1.14 Let A11 : X1 → Y1, A12 : X2 → Y1, A21 : X1 → Y2 and A22 : X2 →
Y2 be continuous linear maps between locally convex spaces such that(

A11 A12
A21 A22

)−1

�

(
B11 B12
B21 B22

)
(2.1.29)

for continuous linear maps Bi j for i , j � 1, 2. If B22 is a topological isomorphism, then
so is A11 and the inverse is given by

A−1
11 � B11 − B12B−1

22 B21. (2.1.30)
♦

With this preparation at hand, we can give the following characterization of
uniformly regular operator families analogous to Proposition 2.1.8.

Proposition 2.1.15 Let T : P ×X→ Y be a continuous family of linear maps. Then,
the following are equivalent:

(i) T is uniformly regular.

(ii) There exist locally convex spaces Z±, continuous linear maps T+ : Z+ → Y
and T− : X → Z−, and continuous families of linear maps S : P × Y → X,
S− : P × Z− → X, S+ : P × Y → Z+ and S−+ : P × Z− → Z+ with S−+0 � 0
such that (

Tp T+

T− 0

)−1

�

(
Sp S−p
S+

p S−+p

)
, (2.1.31)
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holds for all p ∈ P and such that the operators

Γp ≡
(
prKer T0 ◦ (Sp)�Coker T0 prKer T0 ◦ S−p
(S+

p )�Coker T0 S−+p

)
: Coker T0⊕Z−→ Ker T0⊕Z+

(2.1.32)
are invertible for all p ∈ P and their inverses form a continuous family. ♦

Proof. First, suppose that T is a uniformly regular family of linear maps. Then,
by definition, we have topological decompositions X � Ker T0 ⊕ Coim T0,
Y � Coker T0 ⊕ Im T0 and, for every p ∈ P, the map

T̃p � prIm T0 ◦ (Tp)�Coim T0 : Coim T0 → Im T0 (2.1.33)

is a topological isomorphism. Set Z+ � Coker T0 and Z− � Ker T0, and let
T+ : Z+ → Y and T− : X → Z− be the canonical inclusion and projection,
respectively. Moreover, set Sp

..� T̃−1
p ◦prIm T0 : Y→ X anddefine S−+p : Z−→ Z+

by

S−+p � prCoker T0 ◦ (Tp ◦ T̃−1
p ◦ prIm T0 − idY) ◦ Tp ◦ prKer T0 . (2.1.34)

Finally, define S±p by

S+
p � prCoker T0 ◦ (idY − Tp ◦ Sp) : Y → Z+, (2.1.35a)

S−p � (idX − Sp ◦ Tp)�Ker T0 : Z−→ X. (2.1.35b)

Since, bydefinition, T̃−1 is a continuous familyP×Im T0→ Coim T0, the families
S, S±, S−+ defined above are continuous. Furthermore, a direct calculation
yields

Tp ◦ Sp � prIm T0 + prCoker T0 ◦ Tp ◦ T̃−1
p ◦ prIm T0 , (2.1.36a)

Sp ◦ Tp � prCoim T0 + T̃−1
p ◦ prIm T0 ◦ (Tp)�Ker T0 . (2.1.36b)

Hence, we obtain
Tp ◦ Sp ◦ Tp � Tp + S−+p . (2.1.37)

Using the identities (2.1.36) and (2.1.37), it is straightforward to check that(
Tp T+

T− 0

)−1

�

(
Sp S−p
S+

p S−+p

)
(2.1.38)

holds for every p ∈ P. Moreover, for Γp , we find here

Γp �

(
prKer T0 ◦ (Sp)�Coker T0 prKer T0 ◦ S−p
(S+

p )�Coker T0 S−+p

)
�

(
0 idKer T0

idCoker T0 S−+p

)
, (2.1.39)
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which is clearly invertible with continuous inverse

Γ−1
p �

( −S−+p idCoker T0
idKer T0 0

)
. (2.1.40)

Conversely, let T±, S, S± and S−+ satisfying the assumptions of the second
point above. Since S−+0 � 0, Proposition 2.1.8 implies that S0 is a reflexive
generalized inverse of T0. Hence, by Proposition 2.1.4, there exist topological
decompositions X � Ker T0 ⊕ Coim T0 and Y � Coker T0 ⊕ Im T0. It remains
to show that T̃p � prIm T0 ◦ (Tp)�Coim T0 is a topological isomorphism and that
the inverses form a continuous family. For this purpose, we write all operators
in block form with respect to the decompositions X � Coim T0 ⊕ Ker T0 and
Y � Im T0 ⊕ Coker T0 (note the non-standard order of the summands). Using
this convention, the identity (2.1.31) becomes:

©«
T̃p prIm T0 ◦ (Tp)�Ker T0 prIm T0 ◦ T+

prCoker T0 ◦ (Tp)�Coim T0 prCoker T0 ◦ (Tp)�Ker T0 prCoker T0 ◦ T+

(T−)�Coim T0 (T−)�Ker T0 0

ª®¬
−1

�

©«
prCoim T0 ◦ (Sp)� Im T0 prCoim T0 ◦ (Sp)�Coker T0 prCoim T0 ◦ S−p
prKer T0 ◦ (Sp)� Im T0 prKer T0 ◦ (Sp)�Coker T0 prKer T0 ◦ S−p
(S+

p )� Im T0 (S+
p )�Coker T0 S−+p

ª®¬ ,
(2.1.41)

which should be read as an operator from Im T0 ⊕ Coker T0 ⊕ Z− to Coim T0 ⊕
Ker T0 ⊕ Z+. Note that the lower right corner of the right-hand side coincides
with the operator Γp . Since Γp is invertible, Lemma 2.1.14 shows that T̃p is
invertible, too. Moreover, the inverse is given by

T̃−1
p � prCoim T0(Sp)� Im T0

−
(
prCoim T0 ◦ (Sp)�Coker T0

prCoim T0 ◦ S−p

)
Γ−1

p

(
prKer T0 ◦ (Sp)� Im T0

(S+
p )� Im T0

) (2.1.42)

and thus forms a continuous familyP×Im T0→ Coim T0. Hence,T is uniformly
regular. �

Remark 2.1.16 Note that the relations (2.1.36) contain additional terms in
contrast to the simpler form (2.1.7). These additional terms imply that, for
p , 0, Sp is not a generalized inverse of Tp but that instead (2.1.37) hold. One
can use this identity as a starting point to formalize the notion of a generalized
inverse of an operator family. Since we do not need this in the remainder, we
do not explore it further here. ♦

If T0 is a Fredholm operator, then Proposition 2.1.15 takes a slightly simpler
form.
Corollary 2.1.17 Let T : P × X → Y be a continuous family of linear maps such
that T0 is a Fredholm operator. Then, T is uniformly regular if and only if there
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exist finite-dimensional spaces Z± and continuous linear maps T+ : Z+ → Y and
T− : X → Z− such that, after possibly shrinking P,(

Tp T+

T− 0

)−1

�

(
Sp S−p
S+

p S−+p

)
(2.1.43)

holds for all p ∈ P, where S : P × Y → X, S− : P × Z−→ X, S+ : P × Y → Z+ and
S−+ : P × Z−→ Z+ are continuous families of linear maps with S−+0 � 0. ♦

Proof. If T is uniformly regular, then the proof of Proposition 2.1.15 shows
that one can choose Z+ � Coker T0 and Z− � Ker T0. Both spaces are finite-
dimensional, because T0 is a Fredholm operator. This establishes one direction.

Conversely, let T±, S, S±, S−+ be given as stated above. By Proposition 2.1.15,
it suffices to show that the operator

Γp �

(
prKer T0 ◦ (Sp)�Coker T0 prKer T0 ◦ S−p
(S+

p )�Coker T0 S−+p

)
: Coker T0 ⊕ Z−→ Ker T0 ⊕ Z+

(2.1.44)
is invertible and that the inverses form a continuous family. Since S−+0 � 0,
Lemma 2.1.7 implies that S0 is a reflexive generalized inverse of T0 and,
moreover, that S−0 ◦T− � prKer T0 andT+◦S+

0 � prCoker T0 hold. A straightforward
calculation using these identities shows that we have

Γ0 �

(
0 prKer T0 ◦ S−0

(S+

0 )�Coker T0 0

)
, (2.1.45)

and
Γ−1

0 �

(
0 prCoker T0 ◦ T+

(T−)�Ker T0 0

)
. (2.1.46)

Since, for every p ∈ P, Γp is an operator between finite-dimensional space
and Γ0 is invertible, we can shrink P in such a way that Γp is invertible for all
p ∈ P and that the inverses form a continuous family. Thus, Proposition 2.1.15
implies that T is uniformly regular. �

Proposition 2.1.18 Let T : P × X → Y be a continuous family of linear maps such
that T0 is a Fredholm operator. If T is uniformly regular, then Tp is a Fredholm operator
and ind Tp � ind T0 for all p ∈ P. ♦

Proof. By Corollary 2.1.17, there exist finite-dimensional spaces Z± and contin-
uous linear maps T+ : Z+→ Y and T− : X → Z− such that(

Tp T+

T− 0

)
(2.1.47)
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is invertible for all p ∈ P. This is only possible if Ker Tp and Coker Tp are finite-
dimensional so that Tp has to be Fredholm. Moreover, using the invariance of
the index under finite-rank perturbations, we have

0 � ind
(
Tp T+

T− 0

)
� ind Tp + dim Z+ − dim Z− � ind Tp − ind T0, (2.1.48)

which establishes the formula for the index. �

Remark 2.1.19 (Uniform regularity in the tame Fréchet category) In the
previous two sections, we considered the general setting of continuous linear
maps between locally convex spaces. It is clear that similar results hold
in the tame Fréchet category if the word “tame” is inserted in the right
places (see Appendix A.1 for a brief overview of the main concepts of tame
Fréchet spaces). Since uniform regularity in the Fréchet setting will play a
major role later, let us spell out some of the details. Let X and Y be tame
Fréchet spaces and let T : P × X → Y be a tame smooth family of linear maps.
Then, T is called uniformly tame regular if there exist tame decompositions1
X � Ker T0 ⊕ Coim T0 and Y � Coker T0 ⊕ Im T0, and, for every p ∈ P, the map
T̃p � prIm T0 ◦ (Tp)�Coim T0 : Coim T0 → Im T0 is a tame isomorphism such that
the inverses form a tame smooth family P × Im T0 → Coim T0. ♦

2.1.3 Families of elliptic operators

We now discuss an important class of families of Fredholm operators which
are uniformly regular.

For this purpose, let E→M and F→M be finite-dimensional vector bundles
over a compact manifold M without boundary. Endow the spaces E and F of
smooth sections of E and F, respectively, with the compact-open C∞-topology.
With respect to this topology, these section spaces are tame Fréchet spaces, see
[Ham82, Theorem II.2.3.1]. A linear partial differential operator L : E → F of
degree r assigns to every section φ of E a section L(φ) of F in such a manner
that L(φ) depends only on the derivatives of φ of degree r or less. Hence, L
factors through the jet bundle JrE as follows:

L : E Γ∞(JrE) F ,
jr f∗ (2.1.49)

where jr denotes the r-th jet prolongation and f∗ is the push-forward by some
verticalmorphismof vector bundles f : JrE→ F. We refer to f as the coefficients
of L. Conversely, every vertical vector bundle morphism f : JrE→ F induces a

1 Let Z be a tame Fréchet space and assume that Z is the topological direct sum of closed
subspaces X and Y. We say that the sum Z � X ⊕ Y is tame if the map X × Y → Z given by
(x , y) 7→ x + y is a tame isomorphism.
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differential operator L f : E → F of degree r and with coefficients f . To each
differential operator L f of degree r, we associate the principal symbol σ f by,
roughly speaking, replacing each partial derivative in the highest order term
by a variable in the cotangent bundle of M. The principal symbol σ f is a
homogeneous polynomial of degree r on T∗M with values in the bundle L(E, F),
whose fiber over m ∈ M consists of linear maps Em → Fm . Equivalently, we
may view σ f as a vector bundle map ?

τ∗E → ?
τ∗F over the cotangent bundle

?
τ : T∗M → M. A differential operator L f with coefficients f is called elliptic
if its symbol is invertible; that is, for each nonzero p ∈ T∗M, the bundle map
σ f (p , . . . , p) ∈ L(E, F) is invertible. It is a standard result in elliptic theory that
every elliptic differential operator is a Fredholm operator between appropriate
Sobolev spaces. Exactly the same arguments also show that an elliptic operator
is Fredholm as an operator between spaces of smooth sections. Indeed, every
elliptic operator L f can be inverted up to smoothing operators (see, e.g., [Wel07,
Theorem IV.4.4]). That is, there exists a pseudo-differential operator S : F → E

such that

S ◦ L f � idE − K1, (2.1.50a)
L f ◦ S � idF − K2 (2.1.50b)

holds for smoothing operators K1 : E → E and K2 : F → F . On compact
manifolds, every smoothing operator is a compact operator [Wel07, Propo-
sition IV.4.5] and thus S is a parametrix. In particular, L f is a Fredholm
operator.
The parameterization of a partial differential operator by their coefficients

yields a tame smooth family

L : Γ∞
(
L(JrE, F)

)
× E → F , ( f , φ) 7→ L f (φ) (2.1.51)

of linear operators. Let f0 ∈ Γ∞
(
L(JrE, F)

)
be such that L f0 is an elliptic

differential operator. By [Ham82, Theorem II.3.3.3], there exist an open
neighborhood U of f0 in Γ∞

(
L(JrE, F)

)
, finite-dimensional vector spaces Z± and

continuous linear maps L+ : Z+→ Y and L− : X → Z− such that(
L f L+

L− 0

)
: E × Z+→ F × Z− (2.1.52)

is invertible for all f ∈ U . Moreover, the inverses form a tame smooth family
U × F × Z− → E × Z+ of linear operators. Hence, by Corollary 2.1.17, L�U is
uniformly tame regular at f0. We have thus proved the following.

Theorem 2.1.20 The tame smooth family L defined in (2.1.51) is uniformly tame
regular in a neighborhood U of every f0 ∈ Γ∞

(
L(JrE, F)

)
for which L f0 is an elliptic

differential operator. ♦
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Example 2.1.21 (Covariant exterior differential) Let P → M be a finite-
dimensional principal G-bundle over a compact manifold M. The space
C(P) of connections on P is an affine tame Fréchet space. Let E be a finite-
dimensional vector space that is endowed with a representation of G and let
E � P ×G E be the associated vector bundle. For a connection A ∈ C(P), denote
the covariant exterior differential on differential k-forms with values in E by
dA : Ωk(M, E) → Ωk+1(M, E). The same type of arguments as in Example 2.1.5
show that on 0-forms dA : Ω0(M, E) → Ω1(M, E) is a regular operator. In
particular, we have topological decompositions1

Ω0(M, E) � Ker dA ⊕ Im d∗A , Ω1(M, E) � Ker d∗A ⊕ Im dA , (2.1.53)

where d∗A denotes the codifferential, cf. [RS17, Theorem 6.1.9]. Now, consider
the continuous family

T : C(P) ×Ω0(M, E) → Ω1(M, E), (A, α) 7→ dAα (2.1.54)

of linear operators. We claim that T is uniformly regular at every A0 ∈ C(P).
To see this, let us introduce the so-called Faddeev–Popov operator (cf. [RS17,
eq. (8.4.8)])

4AA0
� d∗A0

◦ dA : Ω0(M, E) → Ω0(M, E) (2.1.55)

for A ∈ C(P). Note that, for A � A0, the operator 4A0A0 coincides with the
covariant Laplacian d∗A0

dA0
on 0-forms and thus is an elliptic operator. Clearly,

Ker4A0A0 � Ker dA0 and Im4A0A0 � Im d∗A0
. By Theorem 2.1.20, the family4AA0

is uniformly tame regular at A � A0. Thus, there exists an open neighborhood
U of A0 in C(P) such that

LAA0 � prIm d∗A0
◦

(
4AA0

)
� Im d∗A0

�
(
d∗A0
◦ dA

)
� Im d∗A0

(2.1.56)

is an automorphism of Im d∗A0
⊆ Ω0(M, E) for all A ∈ U . Now a straightforward

calculation shows that(
L−1

AA0
◦ d∗A0

)
� Im dA0

: Ω1(M, E) ⊇ Im dA0 → Im d∗A0
⊆ Ω0(M, E) (2.1.57)

is a continuous inverse of T̃A � prIm dA0
◦ (dA)� Im d∗A0

for all A ∈ U . Hence, T is
uniformly regular at A0. ♦

2.1.4 Elliptic complexes

In this section, the notion of regularity and uniform regularity will be extended
to linear chain complexes. The main focus lies on elliptic complexes. The

1 Similar decompositions do not hold for higher k-forms, because d2
A does not need to vanish.



2. Normal Forms of Maps 24

presentation is inspired to a large extend by [AB67], where elliptic complexes
are studied in the language of Fréchet spaces. The results concerning uniform
regularity of elliptic complexes are original work.
Let X0,X1, . . . ,XN be a sequence of locally convex vector spaces and let

Ti : Xi → Xi+1 be a sequence of continuous linear maps. We adopt the
convention that the sequence is extended to all i ∈ Z by setting Xi � {0} and
Ti � 0 for i < 0 or i > N . We call the pair (Xi , Ti) a chain and shall write it also
in the following form:

· · · Xi Xi+1 · · · .Ti (2.1.58)

A chain (Xi , Ti) is called a chain complex if Ti+1 ◦ Ti � 0 for all i ∈ Z.
Remark 2.1.22 Every continuous linear map T : X → Y can be viewed as a
chain complex

0 X Y 0.T (2.1.59)

The reader may find it instructive to check that all concepts we are about to
introduce for complexes boil down to the corresponding notions for the linear
map T. ♦
Recall that a continuous linear map T : X → Y is regular if its kernel and

image are closed complemented subspaces and T factors trough a topological
isomorphism. The following notion provides a natural generalization to chain
complexes.
Definition 2.1.23 A chain complex (Xi , Ti) of locally convex spaces is called
regular if the following holds for every i ∈ Z:

(i) The subspace Im Ti−1 is closed in Xi and there exist closed subspaces Hi
and Coim Ti of Xi such that

Xi � Im Ti−1 ⊕ Coim Ti ⊕ Hi (2.1.60)

is a topological isomorphism.

(ii) The map Ti factors as

Xi Xi+1 ,

Coim Ti Im Ti

Ti

T̂i

(2.1.61)

where T̂i : Coim Ti → Im Ti is a topological isomorphism.
If additionally, for every i ∈ Z, Xi is a tame Fréchet space, Ti is a tame linear
map, the decomposition (2.1.60) of Xi is tame and T̂i is a tame isomorphism,
then we say that the chain complex (Xi , Ti) is tame regular. ♦
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By definition, for a regular chain complex (Xi , Ti), we have

Ker Ti � Im Ti−1 ⊕ Hi , (2.1.62)

which justifies the notion Coim Ti for the subspace complementary to Im Ti−1 ⊕
Hi . Moreover, the subspaces Hi are clearly identified with the homology groups,
that is,

Hi ' Ker Ti/Im Ti−1. (2.1.63)

A regular chain complex (Xi , Ti) is called a Fredholm complex if all homology
groups Hi are finite-dimensional. In this case, the Euler characteristic of (Xi , Ti)
is defined as the alternating sum of its Betti numbers:

χ(Xi , Ti) �
∑
i∈Z
(−1)i dim Hi . (2.1.64)

Recall that a linear map is a Fredholm operator if and only if there exists a
continuous parametrix. Generalizing this characterization, a chain complex
(Xi , Ti) is a regular Fredholm chain complex if and only if there exists a sequence
of continuous linear maps Si : Xi+1 → Xi such that

Ti−1 ◦ Si−1 + Si ◦ Ti � idXi − Ki (2.1.65)

holds for compact operators Ki : Xi → Xi , cf. [AB67, Proposition 6.5]1. The
sequence (Si) is called a parametrix of the chain complex (Xi , Ti).
Similarly to the case of Fredholm maps, elliptic complexes constitute an

important class of examples of Fredholm complexes. Consider the following
setup. Let E0, E1, . . . , EN be a sequence of finite-dimensional vector bundles
over a compact manifold M and let Ei be the Fréchet space of smooth sections
of Ei . Let Li : Ei → Ei+1 be a sequence of differential operators satisfying
Li+1 ◦ Li � 0. The chain complex (Ei , Li) is called elliptic if the sequence of
principal symbols

· · · ?
τ∗Ei

?
τ∗Ei+1 · · ·σ(Li) (2.1.66)

is exact outside of the zero section of the cotangent bundle ?
τ : T∗M → M. By

[AB67, Proposition 6.1], every elliptic chain complex possesses a continuous
parametrix (Si). The construction of (Si) in [AB67] crucially involves the
parametrix of an elliptic operator. Thus, [Ham82, Theorem II.3.3.3] implies that
the operators Si are tame. Hence, we obtain the following.

Proposition 2.1.24 Every elliptic chain complex is a tame regular Fredholm chain
complex. ♦
1 [AB67, Proposition 6.5] is formulated for elliptic complexes but only the parametrix is used in
the proof.
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As a preparation for the non-linear case, wewill now study chains depending
on parameters. The following example shows that a deformation of a chain
complex is in general not a complex.

Example 2.1.25 We continue with the setting and notation of Example 2.1.21.
Thus, let P → M be a principal G-bundle and let E � P ×G E be an associated
vector bundle. Every connection A ∈ C(P) induces via the covariant exterior
differential dA a chain

· · · Ωi(M, E) Ωi+1(M, E) · · · .dA (2.1.67)

Let FA be the curvature of A and let ∧. denote the wedge product relative
to the Lie algebra action g × E → E. Since we have d2

Aα � FA ∧. α for every
α ∈ Ωi(M, E), the chain (Ωi(M, E), dA) is a complex ifA is flat (or, more generally,
if the curvature of A takes values in the kernel of the action g→ L(E, E)). Of
course, not every connection A in a neighborhood of a flat connection A0 is flat.
Accordingly, the deformation (Ωi(M, E), dA) of the complex (Ωi(M, E), dA0) is
in general not a complex. ♦

Thus, let us consider the following general setup. Let P be an open neighbor-
hood of 0 in some locally convex space, let Xi be a sequence of locally convex
vector spaces and let Ti : P × Xi → Xi+1 be a sequence of continuous families
of linear maps such that (Xi , Ti ,0) is a complex. We say that (P,Xi , Ti) is a
continuous family of chains.

Definition 2.1.26 A continuous family of chains (P,Xi , Ti) is called uniformly
regular (at 0) if (Xi , Ti ,0) is a regular chain complex with

Xi � Im Ti−1,0 ⊕ Coim Ti ,0 ⊕ Hi (2.1.68)

and if, for every i ∈ Z and p ∈ P, the map

T̃i ,p � prIm Ti ,0 ◦ (Ti ,p)�Coim Ti ,0 : Coim Ti ,0 → Im Ti ,0 (2.1.69)

is a topological isomorphism such that the inverses form a continuous family
P × Im T0 → Coim T0.

If X and Y are tame Fréchet spaces, the complex (Xi , Ti ,0) is tame regular and
T̃i ,p is a tame isomorphism such that the inverses form a tame smooth family,
then (P,Xi , Ti) is called uniformly tame regular. ♦

The notion of a uniformly regular chain is a direct generalization of Defi-
nition 2.1.10. For the applications we have in mind, the following equivalent
characterization turns out to be more convenient.

Proposition 2.1.27 A continuous family of chains (P,Xi , Ti) is uniformly regular if
and only if, for every i ∈ Z, the subspace Im Ti−1,0 of Xi is closed and topologically
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complemented, say Xi � Im Ti−1,0 ⊕ Coker Ti−1,0, and the continuous family p 7→
(Ti ,p)�Coker Ti−1,0 of linear maps is uniformly regular. ♦

Proof. The claim is a simple consequence of the observation that the image of
(Ti ,0)�Coker Ti−1,0 coincides with the image of Ti ,0 and that

Hi ' Ker (Ti ,0)�Coker Ti−1,0 (2.1.70)

holds, because Ti ,0 is a complex. �

Roughly speaking, a family of chains (P,Xi , Ti) is uniformly regular if each
family Ti of linear maps is uniformly regular after factoring-out the image of
the direct predecessor Ti−1,0.

Let us now turn to deformations of elliptic complexes. Let E0, E1, . . . , EN be a
sequence of finite-dimensional vector bundles over a compact manifold M and
let Ei be the tame Fréchet space of smooth sections of Ei . Moreover, let P be an
open neighborhood of 0 in some tame Fréchet space and let Li : P × Ei → Ei+1
be a sequence of differential operators parametrized by points of P. We
assume that, for every i ∈ Z, the parameterization factors through the space of
coefficients as follows

P × Ei Γ∞
(
L(Jri Ei , Ei+1)

)
× Ei Ei+1,

L̂i × idEi (2.1.71)

where L̂i : P 7→ Γ∞
(
L(Jri Ei , Ei+1)

)
is a tame smooth map and the second map

was defined in (2.1.51). For simplicity, let us assume that the degree ri of the
differential operator Li ,p : Ei → Ei+1 is the same for all p ∈ P and i ∈ Z. We will
refer to this setting by saying that (P, Ei , Li) is a tame family of chains of differential
operators.

As ageneralizationofTheorem2.1.20,wehave the following result concerning
deformations of elliptic complexes.

Theorem 2.1.28 Let (P, Ei , Li) be a tame family of chains of differential operators.
If (Ei , Li ,0) is an elliptic complex, then (P, Ei , Li) is uniformly tame regular (after
possibly shrinking P). ♦

Proof. Our proof follows closely the proof of [AB67, Proposition 6.1], where a
parametrix of an elliptic complex is constructed by reducing the problem to the
construction of a parametrix of an elliptic operator. Similarly, wewill reduce the
question of the uniform tame regularity of the chain to the uniform regularity
of a family of differential operators, for which we can employ Theorem 2.1.20.
For this purpose, fix a Riemannian metric on M and a fiber Riemannian

metric on every vector bundle Ei . These data define a natural L2-inner product
on Ei . By partial integration, we see that the adjoints L∗i ,p : Ei+1 → Ei of Li ,p

with respect these inner products yield a tame family of chains of differential
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operators. For every i ∈ Z, define the tame family 4i : P × Ei → Ei by

4i ,p � L∗i ,0 ◦ Li ,p + Li−1,p ◦ L∗i−1,0. (2.1.72)

Clearly, 4i is a family of differential operator of order 2r. Moreover, 4i ,0 is
an elliptic operator, because (Ei , Li ,0) is an elliptic complex by assumption.
Thus, Theorem 2.1.20 implies that the family 4i is uniformly tame regular. In
particular, 4i ,0 is regular and self-adjoint so thatwe get the following topological
decomposition

Ei � Ker4i ,0 ⊕ Im4i ,0 . (2.1.73)

Moreover, 4̃i ,p � prIm4i ,0 ◦ (4i ,p)� Im4i ,0 is a tame automorphism of Im4i ,0 for
every p ∈ P (after possibly shrinking P) in such a way that the inverses form a
tame smooth family. Using the decomposition (2.1.73) and a standard argument
from linear algebra, we conclude that the images of Li−1,0 and L∗i ,0 are closed
and fit into the topological decomposition

Ei � Im Li−1,0 ⊕ Im L∗i ,0 ⊕ Hi , (2.1.74)

where Hi ≡ Ker4i ,0 � Ker Li ,0 ∩ Ker L∗i−1,0. It remains to show that, for every
i ∈ Z and p ∈ P, the operator

L̃i ,p � prIm Li ,0 ◦ (Li ,p)� Im L∗i ,0 : Im L∗i ,0 → Im Li ,0 (2.1.75)

has a tame inverse. For this purpose, consider the tame smooth family Gi
defined by

Gi ,p � L∗i ,0 ◦ (4̃
−1
i+1,p)� Im Li ,0 : Im Li ,0 → Im L∗i ,0 . (2.1.76)

Using the decomposition (2.1.74), we obtain

L̃i ,p ◦ Gi ,p � prIm Li ,0 ◦ Li ,p ◦ L∗i ,0 ◦ (4
−1
i+1,p)� Im Li ,0

� prIm Li ,0 ◦
(
Li ,p ◦ L∗i ,0 + L∗i+1,p ◦ Li+1,p

)
◦ (4̃−1

i+1,p)� Im Li ,0

� prIm Li ,0 ◦ 4−1
i+1,p ◦ (4̃

−1
i+1,p)� Im Li ,0

� idIm Li ,0 .

(2.1.77)

Similarly, the commutation identity

4̃i ,p ◦ (L∗i ,0)� Im4i ,0 � L∗i ,0 ◦ Li ,p ◦ L∗i ,0 � L∗i ,0 ◦ 4̃i+1,p (2.1.78)
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implies

Gi ,p ◦ L̃i ,p � L∗i ,0 ◦ 4̃
−1
i+1,p ◦ prIm Li ,0 ◦ (Li ,p)� Im L∗i ,0

� 4̃−1
i ,p ◦ L∗i ,0 ◦ (Li ,p)� Im L∗i ,0

� 4̃−1
i ,p ◦ (4̃i ,p)� Im L∗i ,0

� idIm L∗i ,0 .

(2.1.79)

Thus, Gi is a tame smooth family of inverses of L̃i . This completes the proof
that (P, Ei , Li) is uniformly tame regular. �

Example 2.1.29 Recall the setting of Example 2.1.21 and consider the chain

· · · Ωi(M, E) Ωi+1(M, E) · · ·dA (2.1.80)

induced by the covariant derivative of the connection A ∈ C(P). As noted
in Example 2.1.25, this chain is an elliptic complex if A is a flat connection.
Thus, Theorem 2.1.28 entails that the family of chains

(
C(P),Ωk(M, E), dA

)
is

uniformly tame regular in a neighborhood of every flat connection A0 ∈ C(P).
In this context, the operator defined in (2.1.72) takes the form

4A0A � d∗A0
dA + d∗A dA0

: Ωk(M, E) → Ωk(M, E) (2.1.81)

for A ∈ C(P). Note that 4A0A is a natural extension of the Faddeev–Popov
operator to forms of higher degree. An operator similar to 4A0A played a central
role in [DH18, p. 405] for the study of the curvaturemap F : C(P) →Ω2(M,AdP)
near a flat connection. We will take up this example again in Section 4.4. ♦

2.2 Normal form of a non-linear map

In this section, we study the local behavior of a smoothmap f : M→ N between
manifolds. In particular, we introduce the concept of a normal form and find
suitable conditions that ensure that f can be brought into such a normal form.
In the linear setting, we have seen that every (regular) operator factorizes

through a linear isomorphism. Thus, one expects that every non-linear map
can be represented locally by a linear isomorphism up to some higher order
error term.

Definition 2.2.1 An abstract normal form consists of a tuple (X,Y, f̂ , fsing),
where

(i) X andY are locally convex vector spaceswith topological decompositions1
X � Ker⊕Coim and Y � Coker⊕ Im,

1 In these decompositions, Ker, Coim, etc. denote abstract spaces. Below, we will identify them
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(ii) f̂ : Coim→ Im is a linear topological isomorphism,

(iii) fsing : X ⊇ U→ Coker is a smoothmap defined on an open neighborhood
U of 0 in X such that fsing(0, x2) � 0 holds for all x2 ∈ U ∩Coim and such
that the derivative T(0,0) fsing : X → Coker of fsing at (0, 0) vanishes. ♦

Given an abstract normal form (X,Y, f̂ , fsing), let

fNF � f̂ + fsing : X ⊇ U → Y. (2.2.1)

Note that the 0-level set of fNF is given by

f −1
NF(0) � {(x1, 0) ∈ X : fsing(x1, 0) � 0}. (2.2.2)

Since T(0,0) fsing � 0, the level set f −1
NF(0) is in general not a smooth manifold Its

singular structure is completely determined by fsing. For this reason, we refer
to fsing as the singular part of fNF.
The predominant theme of this section is the systematic reduction of a

smooth map between manifolds to an abstract normal form by a convenient
choice of coordinates. This idea is formalized in the following.

Definition 2.2.2 We say that a smooth map f : M → N between manifolds
can be brought into the normal form (X,Y, f̂ , fsing) at the point m ∈ M if there
exist charts1 κ : M ⊇ U′→ U ⊆ X at m and ρ : N ⊇ V′→ V ⊆ Y at f (m) such
that f (U′) ⊆ V′ and

ρ ◦ f�U′ � fNF ◦ κ (2.2.3)

hold. ♦
Assume that the smooth map f : M → N can be brought into a normal form
(X,Y, f̂ , fsing) in a neighborhood of m using diffeomorphisms κ : U′→ U and
ρ : V′ → V . Since κ is a diffeomorphism, Tmκ : Tm M → X is a topological
isomorphism. Similarly, T f (m)ρ identifies T f (m)N with Y. Under these iden-
tifications, the abstract spaces Ker and Im in the decomposition of X and Y
coincide with the kernel and the image of Tm f , respectively, because T0 fNF � f̂
holds and f̂ : Coim→ Im is an isomorphism.

In certain cases, a normal form amounts to a linearization of the map under
consideration. We say that a smooth map f : M → N is a submersion at m ∈ M
if it is equivalent to a linear projection in a neighborhood of m. Similarly, f is
called an injection at m if it is equivalent to a linear injection in a neighborhood
of m. More generally, f is a subimmersion at m if it is equivalent to a linear map
in a neighborhood of m.

with the kernel, coimage, etc. of the tangent map Tm f , respectively.
1 Throughout this work, we follow the convention that a chart κ : M ⊇ U′→ U ⊆ X at a point

m ∈ M satisfies κ(m) � 0. Moreover, in this notation, U′ and U are understood to be open
neighborhoods of m in M and of 0 in X, respectively.
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Proposition 2.2.3 Let f : M → N be a smooth map. Assume that f can be brought
into a normal form in a neighborhood U′ of m ∈ M. Then, the following holds:

(i) (Submersion) f is a submersion at m if and only if Tm f is surjective.

(ii) (Immersion) f is an immersion at m if and only if Tm f is injective.

(iii) (Constant rank) f is a subimmersion at m if, for all p ∈ U′, Tp f is a finite-rank
operator1 satisfying rk Tp f � rk Tm f . ♦

Proof. Let (X,Y, f̂ , fsing) be a normal form of f at m. Since the claims are of local
nature, it is sufficient to consider the normal form fNF � f̂ + fsing : X ⊇ U → Y
of f . For simplicity, we continue writing f for fNF. If T0 f is surjective, then
Coker is trivial and hence fsing � 0. Similarly, if T0 f is injective, then Coim � X
and thus fsing(0, x2) � 0 for all x2 ∈ U ∩ Coim implies fsing � 0. The converse
direction is clear.
Suppose now that Tx f is a finite-rank operator and that rk Tx f � rk T0 f

holds for all x ∈ U. We have

Tx f (v1, v2) �
(
Tx fsing(v1, v2), f̂ (v2)

)
∈ Coker⊕ Im � Y (2.2.4)

for all x ∈ U, v1 ∈ Ker and v2 ∈ Coim. Since rk Tx f � rk T0 f � dim Im, we
conclude that T(x1 ,x2) fsing(v1, 0) � 0 holds for all (x1, x2) ∈ U and v1 ∈ Ker.
Hence, fsing(x1, x2) does not depend on x1 and so

fsing(x1, x2) � fsing(0, x2) � 0. (2.2.5)

In other words, f is locally represented by the linear map f̂ and thus it is a
subimmersion. �

Remark 2.2.4 It is straightforward to verify that the pull-back of a submanifold
along a submersion is a submanifold, see [Glö15, Theorem C]. In particular, the
level set f −1(µ) of a smooth map f : M → N corresponding to the value µ ∈ N
is a submanifold of M if f is a submersion at every m ∈ f −1(µ). Moreover,
if f : M → N is an immersion and a topological embedding, then f (M) is a
submanifold of N and f yields a diffeomorphism of M onto f (M), see [Glö15,
Lemma I.13]. ♦

The upshot of Proposition 2.2.3 is that, for any normal form theorem, one
obtains a corresponding version of the submersion, regular value, immersion
and constant rank theorem. A normal form theorem thus unifies these fundamental
theorems under one umbrella.

1 The statement generalizes to maps whose derivatives have a constant but not necessarily
finite-dimensional image, cf. [MRA02, Theorem 2.5.15] for a Banach version.
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Remark 2.2.5 (Finite-dimensional reduction and Sard–Smale theorem) Let
f : M → N be a smooth map which can be brought into the normal form
(X,Y, f̂ , fsing) at m ∈ M. Denote µ � f (m). In terms of the normal form, the
level set f −1(µ) in a neighborhood of m is given by (cf. (2.2.2))

{(x1, 0) ∈ X : x1 ∈ Ker, fsing(x1, 0) � 0}. (2.2.6)

Hence, all singularities of f −1(µ) that might arise are encoded in the map

fsing(·, 0) : Ker→ Coker . (2.2.7)

If Tm f is a Fredholm operator, then Ker and Coker are finite-dimensional
spaces. Thus, in this case, the study of the singular structure of f −1(µ) is
reduced to a question in finite dimensions. Exploiting this reduction to finite
dimensions, we maymimic the usual proof of the Sard–Smale theorem [Sma65]
to obtain a version of this theorem for Fredholm maps between locally convex
manifolds. We leave the details to the reader. ♦

The aim of the remainder of the section is to find suitable conditions on the
derivative of f : M → N which ensure that f can be brought into a normal
form.

2.2.1 Banach version

To illustrate the main idea and to somewhat reduce the functional analytic
complexity, we first restrict attention to the Banach setting.

Theorem 2.2.6 (Normal form — Banach version) Let f : M → N be a smooth
map between Banach manifolds and let m ∈ M. If Tm f : Tm M→ T f (m)N is a regular
operator, then f can be brought into a normal form around m. In particular, every
smooth map between finite-dimensional manifolds can be brought into a normal form
around every point. ♦

Proof. Since the claim is of local nature, we can use charts κ̃ : M ⊇ U′→ U ⊆ X
at m and ρ̃ : N ⊇ V′→ V ⊆ Y at f (m) to replace f by its local representative
f : X ⊇ U → Y. To economize on notation, we abbreviate T ≡ T0 f : X → Y.
Since T is regular by assumption, there exist topological decompositions X �

Ker T⊕Coim T andY � Coker T⊕Im T. Moreover, the core T̂ : Coim T→ Im T
of T is a topological isomorphism.

Define the smooth map ψ : X ⊇ U → X by

ψ(x1, x2) �
(
x1, T̂−1 ◦ prIm T ◦ f (x1, x2)

)
, (2.2.8)

with x1 ∈ Ker T and x2 ∈ Coim T. Note thatψ(0) � 0. SinceT0ψ � idX , it follows
from the Inverse Function TheoremA.1.1 thatwe can shrinkU in such away that
ψ(U) is an open neighborhood of 0 in X and ψ : U→ ψ(U) is a diffeomorphism.
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By possibly shrinking V , we may assume that V ∩ Im T ⊆ T̂ ◦ ψ(U ∩ Coim T).
Define the smooth map φ : Y ⊇ V → Y by

φ(y1, y2) �
(
y1 + prCoker T ◦ f ◦ ψ−1(0, T̂−1 y2), y2

)
(2.2.9)

with y1 ∈ Coker T and y2 ∈ Im T. A moment’s reflection convinces us that
φ(0) � 0 and T0φ � idY hold. Thus, the Inverse Function TheoremA.1.1 implies
that we can shrink V such that φ(V) is an open neighborhood of 0 in Y and
φ : V → φ(V) is a diffeomorphism. By possibly shrinking U, we may assume
f (U) ⊆ V and f (U) ⊆ φ(V).
Set f̂ � T̂ : Coim T → Im T and define the smooth map fsing : X ⊇ ψ(U) →

Coker by

fsing ◦ ψ(x1, x2) � prCoker T
(

f (x1, x2) − f ◦ ψ−1 (0, T̂−1 ◦ prIm T ◦ f (x1, x2)
) )
.

(2.2.10)
A straightforward computation shows that the following diagram commutes:

X ⊇ U φ(V) ⊆ Y

X ⊇ ψ(U) V ⊆ Y.

ψ

f

f̂+ fsing

φ (2.2.11)

Thus, in the charts κ � ψ ◦ κ̃ and ρ � φ−1 ◦ ρ̃, the map f coincides with
fNF � f̂ + fsing. Finally, let us verify the asserted properties of the singular part
fsing. We clearly have T0 fsing � 0. Moreover, for all x2 ∈ U ∩ Coim T, we get

fsing ◦ ψ(0, x2) � prCoker T
(

f (0, x2) − f ◦ ψ−1(0, T̂−1 ◦ prIm T ◦ f (0, x2))
)

� prCoker T
(

f (0, x2) − f ◦ ψ−1 ◦ ψ(0, x2)
)

� 0.
(2.2.12)

From ψ(0, x2) ∈ Coim T it follows that f (0, x′2) � 0 holds for all x′2 ∈ ψ(U) ∩
Coim T. �

Remarks 2.2.7
(i) A weaker version of this normal form theorem can be found in [MD92,

Theorem 5.1.8; MRA02, Theorem 2.5.14]. There, the chart on N is not
modified and hence the additional property fsing(0, ·) � 0 of the singular
part is not deduced. Note that this property was crucial in the proof of
Proposition 2.2.3 (ii) to show that a smooth map with injective differential
is an immersion.

(ii) The first part of the proof of Theorem 2.2.6 is inspired by the Lyapunov–
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Schmidt reduction procedure. To establish the link, let us give a brief
outline of this procedure, mostly ignoring the peculiarities of the infinite-
dimensional setting, see e.g. [Cha05, Section 1.3] for a textbook treatment.
Given Banach spaces X and Y, and a smooth map f : X ⊇ U → Y defined
on an open neighborhood U of 0 in X with f (0) � 0, we are interested in
solutions of the non-linear equation

f (x) � 0 (2.2.13)

near the solution x � 0. The Lyapunov–Schmidt scheme consists of the
following steps:
(i) SplitX andY into direct sumsX � Ker T⊕Coim T andY � Coker T⊕

Im T, where T � T0 f : X → Y as above. The equation (2.2.13) is
then equivalent to the system

prCoker T ◦ f (x1, x2) � 0,
prIm T ◦ f (x1, x2) � 0,

(2.2.14)

with x1 ∈ Ker T and x2 ∈ Coim T.
(ii) The Implicit Function Theorem shows that, after possibly shrinking

U, the second equation in (2.2.14) has for each x1 ∈ U ∩ Ker T a
unique solution x2(x1) ∈ U ∩ Coim T.

(iii) Substituting this solution of the second equation in the first equation
of (2.2.14) yields the reduced equation

prCoker T ◦ f (x1, x2(x1)) � 0. (2.2.15)

for the unknown x1 ∈ U ∩ Ker T.
In this way, the non-linear equation (2.2.13) is reduced to the non-linear
equation (2.2.15), which often happens to be a set of finitely many
equations for a finite number of unknowns. When comparing this
reduction scheme with our construction of the chart deformation ψ in
the proof of Theorem 2.2.6, the only conceptual difference is our usage of
the Inverse Function Theorem in place of the Implicit Function Theorem
employed in the Lyapunov–Schmidt procedure. Both methods rely
fundamentally on the fact that the map prIm T ◦ f : X ⊇ U → Im T has a
surjective derivative at 0. In our language, the reduced equation (2.2.15)
takes the form

fsing(x1, 0) � 0 (2.2.16)

for x1 ∈ U ∩ Ker T.
Similar ideas are also used in the study of deformations of geometric
objects, see e.g. [Kur65] concerning deformations of complex structures
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and [Don83, Section II.2; Tau82, Section 6] in the gauge theoretic setting;
see also [DK97, Section 4.2.5]. In this context, the counterpart of the local
diffeomorphism ψ is usually referred to as the Kuranishi map.

(iii) In the setting of Theorem 2.2.6, additionally assume that f is equivariant
with respect to actions of a compact Lie group G on M and N. If there
exist charts κ̃ : M ⊇ U′ → U ⊆ X at m and ρ̃ : N ⊇ V′ → V ⊆ Y at
f (m) which are G-equivariant with respect to linear actions of G on X
and Y, respectively, then the chart deformations ψ and φ introduced in
the proof of Theorem 2.2.6 are G-equivariant. To see this, consider the
topological decompositions X � Ker T ⊕Coim T and Y � Coker T ⊕ Im T,
where T � T0 f , as above. Since G is compact and T is G-equivariant,
the complements Coim T and Coker T can be chosen to be G-invariant
according to Lemma A.2.5. Therefore, the map ψ defined in (2.2.8) is a
composition of G-equivariant maps and hence is G-equivariant. The map
φ defined in (2.2.9) and the singular part fsing are G-equivariant, too, for
similar reasons. We will refer to this situation by saying that f can be
brought into a normal form in a G-equivariant way. ♦

By Proposition 2.2.3 (ii), we get a corresponding normal form theorem for
immersions. Note that in our construction of the normal form the chart on the
domain is always deformed, which is in contrast to the classical immersion
theorem (e.g., [MRA02, Theorem 2.5.12]). Hence, the constructed submanifold
charts differ from the usual ones. This difference is illustrated by the following
simple example.

Example 2.2.8 Consider the embedding f : R→ R2, ϑ 7→ (cos ϑ, sin ϑ) of the
circle in R2. According to the construction in the proof of Theorem 2.2.6, the
normal form of f near ϑ � 0 is given as follows. We have X � R � Coim and

Y � R2
� R

(
1
0

)
︸︷︷︸
Coker

⊕ R
(
0
1

)
︸︷︷︸

Im

. (2.2.17)

Moreover, the chart deformations defined in (2.2.8) and (2.2.9) here take the
form

ψ(ϑ) � sin ϑ (2.2.18)

and
φ(y1, y2) �

(
y1 +

√
1 − y2

2 , y2

)
. (2.2.19)
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sin ϑ
ϑ

Figure 2.1: Illustration of the submanifold charts φ (blue) and Φ (green).

A direct inspection shows that the following diagram commutes:

ϑ (cos ϑ, sin ϑ)

sin ϑ (0, sin ϑ),

f

ψ

f̂

φ (2.2.20)

where f̂ is the inclusion of R in R2 as the second component. In contrast,
the chart on R2 constructed in the usual immersion theorem [MRA02, Theo-
rem 2.5.12] is given by

Φ(y1, y2) � f (y2) + (y1, 0) � (y1 + cos y2, sin y2) (2.2.21)

and fits into the following commutative diagram:

ϑ (cos ϑ, sin ϑ)

ϑ (0, ϑ).

f

id
f̂

Φ (2.2.22)

Hence, the normal form f̂ coincides in both constructions but the submanifold
charts constructed are different. In our approach, the point on the circle is
characterized by its second component, while in the usual construction the
point is determined by the angle of rotation (see Figure 2.1). ♦

In the following, we give generalizations of the Banach normal form theorem
to different analytic settings. Beyond the Banach context, the classical Banach
Inverse Function Theorem used in the proof of Theorem 2.2.6 has to be replaced
by a different version. We will use Glöckner’s Inverse Function Theorem for
maps between Banach spaces with parameters in a locally convex space and
the Nash–Moser Theorem in the tame Fréchet setting. Extrapolating from
these cases, it will become clear that analogous normal form theorems can be
obtained based on other Inverse Function Theorems. The reader may consult
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Appendix A.1 for an overview of different versions of the Inverse Function
Theorem and related background material.

2.2.2 Banach target or domain

Let us start with the following generalization of Theorem 2.2.6 to more general
domains.

Theorem 2.2.9 (Normal form— Banach target) Let f : M→ N be a smooth map
between manifolds, where N is a Banach manifold. If, for some m ∈ M, the differential
Tm f : Tm M→ T f (m)N is a regular operator, then f can be brought into a normal form
at m. In particular, every smooth map f : M → N with finite-dimensional target N
can be brought into a normal form at every point. ♦

Proof. The proof of Theorem 2.2.6 carries over word by word except for the part
where the Inverse Function Theorem was used to show that the map ψ defined
in (2.2.8) is a local diffeomorphism. The idea is to replace the classical Inverse
Function Theorem A.1.1 by the more advanced Theorem A.1.2 due to [Glö06].
For this purpose, we continue to work in the setting and notation of the proof
of Theorem 2.2.6. Define the smooth map ψ̄ : X ⊇ U → Coim T by

ψ̄(x1, x2) � T̂−1 ◦ prIm T ◦ f (x1, x2). (2.2.23)

The partial derivative of ψ̄ at 0 with respect to the second component is given
by T2

0ψ̄ � idCoim T . Since T̂ : Coim T → Im T is an isomorphism, Coim T is a
Banach space. Hence, considering x1 ∈ Ker as a parameter, the Inverse Function
Theorem A.1.2 shows that the map

ψ
(
x1, x2

)
�

(
x1, ψ̄(x1, x2)

)
(2.2.24)

is a local diffeomorphism. The rest of the proof of Theorem 2.2.6 goes through
without modification andwe thus conclude that f can be brought into a normal
form.

For the second part of the claim, recall from Lemma 2.1.2 (ii) that every linear
continuous map with finite-dimensional target is a regular operator. �

In combination with Proposition 2.2.3, we recover the submersion theorem
and the constant rank theorem [Glö15, Theorem A and F] for maps with values
in a finite-dimensional manifold as a special case of Theorem 2.2.9.
We also have the following version of the normal form theorem where not

the target but the domain is a Banach manifold.

Theorem 2.2.10 (Normal form — Banach domain) Let f : M → N be a smooth
map between manifolds. Assume that M is a Banach manifold. If, for some m ∈ M,
the differential Tm f : TmM → T f (m)N is a regular operator, then f can be brought
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into a normal form around m. In particular, every smooth map f : M → N with M
being finite-dimensional can be brought into a normal form around every point. ♦

Proof. The proof proceeds in complete analogy to the one of Theorem 2.2.9
with the modification that Glöckner’s Inverse Function Theorem A.1.2 has to be
applied on the domain and not on the target. Details are left to the reader. �

In conjunction with Proposition 2.2.3 (ii), we recover the immersion theorem
[Glö15, Theorem H] for maps from a Banach manifold into a locally convex
manifold.

2.2.3 Nash–Moser version

We now establish a normal form theorem in the tame Fréchet category. For
the convenience of the reader, the main notions of the tame category are
briefly summarized in Appendix A.1. One of the major complications of the
Nash–Moser Inverse Function Theorem is that the derivative has to be invertible
at a point and in its neighborhood. This additional condition is due to the
fact that the subset of invertible operators is no longer open in the space of all
linear continuous operators. In Section 2.1.2, we have introduced the notion of
uniform regularity to address a similar problem related to the lack of openness.
The following results hints at uniform regularity playing a major role in the
context of normal forms (in fact, it was the main inspiration for this notion).

Proposition 2.2.11 For every normal form (X,Y, f̂ , fsing), the family Tx fNF : X →
Y of linear maps parametrized by x ∈ U is uniformly regular at 0. ♦

Proof. First note that T0 fNF � f̂ , because T0 fsing � 0. Thus, T0 fNF is a regular op-
erator. With respect to thedecompositionsX � Ker⊕Coim andY � Coker⊕ Im,
the derivative of fNF is given in block form as

Tx fNF �

(
(Tx fsing)�Ker (Tx fsing)�Coim

0 f̂

)
. (2.2.25)

Thus, the map prIm ◦ (Tx fNF)�Coim coincides with the isomorphism f̂ , which
confirms that Tx fNF is uniformly regular at 0. �

In order to generalize the notion of uniform regularity to the setting of
manifolds, consider a morphism T : E→ F of vector bundles over a manifold
M. We will denote the induced operator on the fibers by Tm : Em → Fm for
every m ∈ M. Suppose that E and F are trivialized over an open subset U ⊆ M,
that is, we are given vector bundle isomorphism E�U → U×E and F�U → U×F,
where E and F are locally convex spaces. With respect to these trivializations,
we view Tm for m ∈ U as an operator E→ F and accordingly identify T with a
family T�U : U × E→ F of linear maps.
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Definition 2.2.12 Amorphism T : E→ F of vector bundles over M is called
uniformly regular at m ∈ M if there exist local trivializations of E and F on an
open neighborhood U of m such that the induced family T�U : U × E→ F of
linear maps is uniformly regular at 0 in the sense of Definition 2.1.10. Similarly,
a tame morphism T : E → F between tame Fréchet vector bundles is called
uniformly tame regular at m, if there exist tame local trivializations such that the
induced family T�U : U × E→ F is uniformly tame regular at 0. ♦

Phrased in this language, Proposition 2.2.11 entails that the derivative of
f : M → N, viewed as a vector bundle map T f : TM → f ∗TN over M, is
uniformly regular at m ∈ M if f can be brought into a normal form at m. The
following theorem shows that, in the tame category, uniform regularity of the
derivative is also a sufficient condition for the existence of a normal form.

Theorem 2.2.13 (Normal form — Tame Fréchet) Let f : M → N be a tame
smooth map between tame Fréchet manifolds and let m ∈ M. If T f : TM → f ∗TN is
uniformly tame regular at m, then f can be brought into a normal form at m. ♦

Proof. The proof follows the same line of arguments as in the proof of Theo-
rem 2.2.6 except that we will use the Nash–Moser Theorem A.1.3 to show that
the chart deformations (2.2.8) and (2.2.9) are local diffeomorphisms. Continu-
ing in the notation of the proof of Theorem 2.2.6, abbreviate Tx ≡ Tx f : X → Y
for every x ∈ U. The assumption of uniform tame regularity of T f implies that
the family T : U × X → Y is uniform tame regular at 0.

The derivative at x ∈ U of the map ψ defined in (2.2.8) evaluates to

Txψ �

(
idKer T0 0

T̂−1
0 ◦ prIm T0 ◦ (Tx)�Ker T0 T̂−1

0 ◦ T̃x

)
, (2.2.26)

where T̃x � prIm T0 ◦ (Tx)�Coim T0 : Coim T0→ Im T0. Since T is uniformly tame
regular, T̃x is invertible for all x ∈ U and the inverses form a tame smooth
family. Hence, Txψ has a tame smooth family of inverses given by(

Txψ
)−1

�

(
idKer T0 0

−T̃−1
x ◦ prIm T0 ◦ (Tx)�Ker T0 T̃−1

x ◦ T̂0

)
. (2.2.27)

Thus, we can apply the Nash–Moser TheoremA.1.3 to conclude that ψ is a local
diffeomorphism at 0. For the map φ defined in (2.2.9) things are somewhat
simpler. Indeed, using (2.2.27), the derivative of φ can be written in block form
as

Ty1 ,y2φ �

(
idCoker T0 prCoker T0 ◦ Tx ◦ T̃−1

x
0 idIm T0

)
, (2.2.28)

where x � ψ−1 (0, T̂−1(y2)
)
. A direct calculation verifies that Ty1 ,y2φ is invertible
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with inverse given by(
Ty1 ,y2φ

)−1
�

(
idCoker T0 −prCoker T0 ◦ Tx ◦ T̃−1

x
0 idIm T0

)
. (2.2.29)

Hence, the inverses
(
Ty1 ,y2φ

)−1 parametrized by (y1, y2) ∈ V form a tame
smooth family. Therefore, the Nash–Moser Theorem A.1.3 implies that φ is
a local diffeomorphism. The remainder of the proof of Theorem 2.2.6 goes
through without modification. �

2.2.4 Elliptic version

In problems coming from geometry and physics, one is usually interested in
differential operators between spaces of geometric objects. Let E → M and
F → M be finite-dimensional fiber bundles over the compact manifold M.
Denote the space of smooth sections of E and F by E and F , respectively. By
[Ham82, Theorem II.2.3.1], the spaces E and F are tame Fréchet manifolds.
Following [Pal68, Definition 15.3], we call amap L : E→ F anon-linear differential
operator of degree r if it can be factored as the composition

L : E Γ∞(JrE) F ,
jr f∗ (2.2.30)

where jr denotes the r-th jet prolongation and f : JrE→ F is a verticalmorphism
of fiber bundles. As for linear differential operators, we write L f for the
differential operator induced by the bundle morphism f : JrE → F. Every
non-linear differential operator L : E → F is a tame smooth map according to
[Ham82, Corollary II.2.2.7].
Let us describe the non-linear differential operator L f in local coordinates.

For this purpose, choose local coordinates (x1, . . . , xn) on an open subset U
of M and (y1, . . . , ym) along the fibers of E over U. We then have natural
coordinates yαj along the fibers of JrE over U, with α being a multi-index,
defined by

yαj (j
rφ) �

∂|α |φ j

∂ αxi
≡ ∂αφ j , (2.2.31)

where φ j denotes the local section φ expressed in the coordinates (xi , y j).
Moreover, choose fiber coordinates (v1, . . . , vq) in F over U. With respect to
these coordinates, the bundle morphism f : JrE→ F is written as

vk ◦ f � fk(xi , y j , yαj ), (2.2.32)

where 1 ≤ k ≤ q. Then, the local expression of the non-linear differential
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operator L f is (
L f (φ)

)
k(xi) � fk

(
xi , φ j(xi), ∂αφ j(xi)

)
. (2.2.33)

As one would expect, the linearization of a non-linear differential operator
is a linear differential operator. To see this, recall that TφE ' Γ∞(φ∗VE) for all
φ ∈ E , where VE denotes the subbundle of TE consisting of vectors tangent
to the fibers. By [Pal68, Theorem 17.1], there exist a natural isomorphism of
(jrφ)∗V(JrE) and Jr(φ∗VE) such that the following diagram commutes

Γ∞(φ∗VE) Γ∞((jrφ)∗V(JrE))

Γ∞(φ∗VE) Γ∞(Jr(φ∗VE)).
id

Tφ jr

'
jr

(2.2.34)

The chain rule implies that the linearization TφL f of the non-linear differential
operator L f thus factors as the composition

TφL f : Γ∞(φ∗VE) Γ∞(Jr(φ∗VE))

Γ∞((jrφ)∗V(JrE)) Γ∞((L f (φ))∗VF),

jr

'
(V f )∗

(2.2.35)

where V f : V(JrE) → f ∗VF denotes the vertical derivative of f . Hence, TφL f
is a linear differential operator with coefficients V f . In terms of the local
coordinates introduced above, we obtain using the chain rule the following
expression for the linearized operator:(

TφL f (σ)
)

k(xi) �
∑

j

∂ fk

∂y j

(
xi , φ j(xi), ∂αφ j(xi)

)
· σ j(xi)

+

∑
j,α

∂ fk

∂yαj

(
xi , φ j(xi), ∂αφ j(xi)

)
·
∂|α |σ j

∂ αx j
(xi)

(2.2.36)

for σ ∈ Γ∞(φ∗VE), see [Pal68, Theorem 17.6].
We say that L f is elliptic if the linear differential operator TφL f is elliptic for

all φ ∈ E . In Theorem 2.1.20, we have seen that a family of elliptic operators
is uniformly tame regular. Hence, ellipticity provides an important class of
examples for which the Normal Form Theorem 2.2.13 holds.

Theorem 2.2.14 (Normal form — Elliptic version) Let E → M and F → M
be finite-dimensional fiber bundles over the compact manifold M. Every non-linear
elliptic differential operator L f : E → F can be brought into a normal form at every
φ ∈ E . ♦
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Proof. According to Theorem 2.2.13, we have to show that the bundle map
TL f : TE → (L f )∗TF is uniformly tame regular at φ ∈ E . Using tubular
neighborhoods of Imφ ⊆ E and Im L f (φ) ⊆ F, it suffices to consider the case
where E and F are vector bundles. In this linear setting, the vertical tangent
bundle of JrE is identified with V(JrE) ' JrE ×M JrE. Accordingly, the vertical
derivative of f is identified with a map V f : JrE ×M JrE → F and we have to
show that the tame smooth family

Tϕ : E → F , σ 7→ V f (jrϕ, jrσ) (2.2.37)

of linear maps parametrized by ϕ ∈ E is uniformly tame regular at ϕ � φ. For
this purpose, note that the associated map T : E × E → F factorizes as the
composition of the tame smooth map E 3 ϕ 7→ (V f )∗(jrϕ, ·) ∈ Γ∞(L(JrE, F))
and the family of differential operators

Γ∞(L(JrE, F)) × E → F , (Λ, σ) 7→ Λ(jrσ). (2.2.38)

By assumption, the differential operator with coefficients Λ � (V f )∗(jrφ, ·) is
elliptic. Thus, Lemma 2.1.12 and Theorem 2.1.20 imply that the family Tϕ is
uniformly tame regular at ϕ � φ. �

In applications, one sometimes encounters geometric spaces which are not
realized as spaces of sections of fiber bundles, but whose linearization is still
modeled on spaces of sections of vector bundles. A prime example is the
Fréchet Lie group of diffeomorphisms of a compact manifold whose Lie algebra
is the space of vector fields. In order to include such examples, we follow
[Sub84, p. 57] and introduce the following subclass of Fréchet manifolds.

Definition 2.2.15 A tame Fréchet manifold M is said to be geometric if it is
locally modeled on the space of smooth sections of some vector bundle over a
compact manifold.

A tame smooth map f : M → N is called geometric if for every point m ∈ M
there exist vector bundles E and F over the same compact manifold, and
local trivializations (TM)�U ' U × Γ∞(E) and ( f ∗TN)�U ' U × Γ∞(F) in a
neighborhood U of m such that in this trivialization the derivative T f : TM →
f ∗TN factorizes as the composition of a tame smooth map U → Γ∞(L(JrE, F))
and the family of differential operators

Γ∞(L(JrE, F)) × Γ∞(E) → Γ∞(F), (Λ, σ) 7→ Λ(jrσ). (2.2.39)

The notions of a geometric vector bundle and a geometric vector bundle
morphism are defined in a similar way. ♦

Roughly speaking, a tame smooth map f : M → N is geometric if its lin-
earization at a point m ∈ M is a linear differential operator whose coefficients
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depend tamely on m. As we have seen in the proof of Theorem 2.2.14, every
non-linear differential operator is a geometric map.
A slight reformulation of the proof of Theorem 2.2.14 gives the following

slightly more general normal form theorem.

Theorem 2.2.16 (Normal form — Elliptic) Let f : M → N be a geometric map be-
tween geometric Fréchet manifolds. If Tm f : Tm M→ T f (m)N is an elliptic differential
operator for some m ∈ M, then f can be brought into a normal form at m. ♦



3Moduli Spaces

In abstract terms, a moduli space is a space whose points parametrize iso-
morphism classes of geometric objects. Usually, one is mainly interested in
a subclass of geometric objects satisfying an additional condition, which is
often phrased in the form of a partial differential equation. This interest in
moduli spaces stems from the fact that a better understanding of the geometric
structure of the moduli space yields a deeper insight into the geometry of
the objects and their deformations. Moreover, moduli spaces of solutions of
geometric partial differential equations often reflect the intrinsic features of the
underlying base manifold and thus can be used as a tool to extract topological
invariants, which leads to striking geometric applications.
In the following, we will consider moduli spaces fitting into the following

general setup. Let f : M → N be an equivariant map between G-manifolds.
For every µ ∈ N , let Mµ ≡ f −1(µ) be the µ-level set of f and set

M̌µ ≡ f −1(µ)/Gµ , (3.0.1)

where Gµ is the stabilizer subgroup of µ under the G-action on N. In the
context of a moduli problem, M is the space of geometric objects, the equation
f (m) � µ describes the additional properties of these objects one is interested
in, and the G-action implements the notion of equivalence. Thus, M̌µ can be
viewed as an abstract moduli space. In order to highlight the comprehensive
and flexible nature of this general setting, let us briefly outline how some
well-known moduli spaces fit into it.

Projective space : Let f : Cn+1 → R be given by f (z) � |z |2. Clearly, f is
equivariant with respect to the natural action of U(1) by rotation on Cn+1

and the trivial action on R. We recover the complex projective space CPn

as the associated moduli space

f −1(1)/U(1) � S2n+1/U(1), (3.0.2)

whose points parametrize complex lines trough the origin in Cn+1.

Gauge theory : Consider a finite-dimensional principal G-bundle P over the
compact manifold Σ. Let f : C(P) → Ω2(Σ,AdP) be the map which
assigns to a connection A ∈ C(P) on P its curvature FA. The map f is
equivariant with respect to the natural actions of the group Gau(P) of
gauge transformations of P. The associated moduli space

f −1(0)/Gau(P) (3.0.3)
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is the moduli space of flat connections on P. This space, and the related
moduli space of (central) Yang–Mills connections, has been extensively
studied by Atiyah and Bott [AB83]. We will take up the discussion of this
example in Section 4.4.
A similar setup yields the moduli space of anti-self-dual Yang–Mills
connections, which will be the subject of Section 3.4. Moreover, the space
of solutions of the Cauchy problem for the Yang–Mills–Higgs equation in
(3 + 1)-dimensions will be studied in detail in Section 5.6.

Pseudo-holomorphic curves : Let (M, ω) be a finite-dimensional symplectic
manifold endowed with a compatible almost complex structure J. For
every compact Riemann surface (Σ, j) with complex structure j, consider
the Cauchy–Riemann operator

∂̄j, J u �
1
2(Tu + J ◦ Tu ◦ j), (3.0.4)

where u : Σ → M is a smooth map. In order to realize ∂̄j, J as a map
between infinite-dimensional manifolds, let us introduce the Fréchet
vector bundle E → C∞(Σ,M)whose fiber over u ∈ C∞(Σ,M) is the space
Ω0,1(Σ, u∗TM) of smooth ( j, J)-antilinear 1-forms on Σ with values in
u∗TM. The Cauchy–Riemann operator yields a smooth section f of E by
setting f (u) � ∂̄j, J u. Note that f is equivariant with respect to the natural
reparametrization actions of the group Diff j(Σ) of diffeomorphisms of Σ
preserving j. The associated moduli space

f −1(0)/Diff j(Σ) (3.0.5)

is the moduli space of pseudo-holomorphic curves1. We refer to [MS99]
for further information.

These examples show that the moduli space M̌µ � f −1(µ)/Gµ may have a
complicated geometry. In the simplest case, when µ is a regular value of f
and Gµ acts freely, the space M̌µ is a smooth manifold. This is what happens,
for example, for the projective space. However, in other examples, f is not
a submersion and the Gµ-action is not free. Thus, the moduli space has
singularities in these cases.

In this chapter, we will develop a framework to study the singular geometry
of general moduli spaces of the form M̌µ � f −1(µ)/Gµ. For this purpose, we
first introduce the concept of an equivariant normal form and give suitable
conditions which ensure that an equivariant map can be brought into such a
normal form. In Sections 3.2 and 3.3, we will investigate the local structure of
the moduli space M̌µ � f −1(µ)/Gµ under the assumption that f can be brought
1 Depending on the context, one usually restricts attention to simple or stable maps u in a given
homology class.



3. Moduli Spaces 46

into a normal form. In this case, M̌µ can be locally identified with the quotient
of the zero set of a smooth map by the linear action of a compact group, i.e. it
has the structure of a Kuranishi space. We also find additional conditions on
the normal form which ensure that M̌µ is stratified by orbit types. Finally, in
Section 3.4, we apply the general theory to the example of the moduli space of
anti-self-dual Yang–Mills connections.

3.1 Normal form of an equivariant map

In this section, we study the local properties of a smooth equivariant map.
Consider the following setup. Let G be a locally convex Lie group and let M
and N be locally convex G-manifolds. We refer the reader to Appendix A.2
for relevant background material and for our conventions regarding Lie group
actions in infinite dimensions. Let f : M → N be a smooth equivariant map.
Choose a point m ∈ M and denote its image under f by µ � f (m) ∈ N. We
assume throughout this section that the stabilizer subgroup Gµ of µ under the
G-action on N is a Lie subgroup of G and that the induced Gµ-action on M is
proper.

Let us start by describing the general idea of how to construct an equivariant
normal form of f . Recall that a slice provides a normal form for the G-action in
a neighborhood of a given orbit (see Appendix A.2 for background information
concerning slices and tubular neighborhoods). Thus, it naturally comes to
mind as a tool to study equivariant maps. An initial idea would be to split-off
the G-action with the help of slices S and R for the G-action at the points
m ∈ M and µ ∈ N , respectively. Every point p ∈ M in a slice neighborhood of
m is of the form p � g · s with g ∈ G and s ∈ S. Moreover, by G-equivariance,
we have f (p) � g · f (s). If the slices satisfy f (S) ⊆ R, then the part of f that
does not come from the group action is captured in the map f R

S � f�S : S→ R
between the slices (see Figure 3.1). For the reduced map f R

S , we can use the
normal form results of Section 2.2 to arrive at an equivariant normal form for f .
In the finite-dimensional setting, a similar strategy has been used in [PW17,
Proposition 2.6] to establish an equivariant submersion theorem for maps that
are equivariant with respect to the action of a compact group.
However, the assumptions concerning the slices S and R are too restrictive

for the applications we are interested in. To illustrate the shortcomings, for the
moment, we restrict attention to the case when f is an equivariant momentum
map J : M → g∗ for a symplectic G-action on a finite-dimensional symplectic
manifold (M, ω). For non-compact groups G, the coadjoint action is never
proper and thus we cannot expect it to admit a slice. Indeed, [GLS96, Point 5
in Section 2.3.1] gives a examples where the infinitesimal orbit g . µ has not
even an Gµ-invariant complement. Therefore, if we want to include symplectic
quotients by non-compact groups, we cannot assume that the G-action on the
target N has a slice R.
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As a solution, one may try to reduce this approach to its well-functioning
elements and only use a slice for the G-action on M while leaving the action on
N untouched. In the context of symplectic reduction, this idea is at the heart
of the proof of the Marle–Guillemin–Sternberg normal form of an equivariant
momentum map. In this case, the slice is constructed using an equivariant
version of Darboux’s theorem. However, a close inspection of the proof of
the singular symplectic reduction theorem reveals that the Marle–Guillemin–
Sternberg form is actually not the most convenient normal form for the study
of the geometry of momentum map level sets. In the end, the problem arises
from using a slice for the G-action but taking the quotient with respect to
the subgroup Gµ. This asymmetry was counterbalanced in the proof of the
reduction theorem [OR03, Proposition 8.1.2] by deforming the momentum
map J using a local diffeomorphism of g∗. Instead of changing coordinates on
the target, we will take a different approach and use a slice on M for the action
of Gµ instead of G. This has also the advantage that Gµ is often considerably
smaller than G and, thus, a slice for the subgroup action is easier to construct.

Finally, the symplectic setting is special in that the action of G on g∗ is linear.
When moving beyond the momentummap example, the G-action on the target
N is usually non-linear. Moreover, we cannot use a slice to control it as we
have explained above. On the other hand, the subgroup Gm is compact as
the stabilizer of a proper action and its action on N leaves µ invariant due to
G-equivariance of f . Hence, we can at least hope to linearize the induced action
of Gm around the fixed point µ. In summary, we will work with a Gµ-slice S
on M and with a Gm-slice on N , and then bring the restriction of f to the slice
S in a normal form using the results of Section 2.2.

Remark 3.1.1 The main reason why slices are helpful for the study of local
properties of equivariant maps is the basic observation that an equivariant
map is locally completely determined by its restriction to the slice. Indeed, the
restriction of a G-equivariant map f : M→ N to a G-slice S at the point m ∈ M

M

NS R

m µ

s f (s)p f (p)

G · m
G · µ

f

Figure 3.1: Illustration of the idea to capture the part of f that does not come from
the group action in a map f R

S : S→ R between the slices S and R. If the slices satisfy
f (S) ⊆ R, then every p ∈ M in a slice neighborhood of m can be written as p � g · s
with g ∈ G and s ∈ S such that f (p) � g · f (s)with f (s) ∈ R.
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is a Gm-equivariant map f�S : S→ N . Conversely, every Gm-equivariant map
g : S→ N extends uniquely to G-equivariant map gext : G · S→ N defined on
the open neighborhood G · S of the orbit G · m. Restriction and extension are
obviously compatible in the sense that ( f�S)ext � f�G·S holds. ♦

3.1.1 General normal form theorem

Using the strategy outlined above, we will show that a wide class of equivariant
maps can be brought into the following equivariant normal form.

Definition 3.1.2 An abstract equivariant normal form is a tuple (H,X,Y, f̂ , fsing)
consisting of:

(i) a compact Lie group H,

(ii) locally convex vector spaces X and Y which are endowed with linear
H-actions and which admit topological H-invariant decompositions

X � Ker⊕Coim and Y � Coker⊕ Im, (3.1.1)

(iii) an H-equivariant linear topological isomorphism f̂ : Coim→ Im,

(iv) a smooth H-equivariant map fsing : X ⊇ U 7→ Coker defined in a H-
invariant open neighborhood U of 0 such that fsing(0, x2) � 0 for all
x2 ∈ U ∩ Coim and T0 fsing � 0. ♦

For an equivariant normal form (H,X,Y, f̂ , fsing) and a Lie group Gµ with
H ⊆ Gµ, define the smooth map fNF : Gµ ×H U → Gµ ×H Y by

fNF
(
[g , x1, x2]

)
�

[
g , f̂ (x2) + fsing(x1, x2)

]
(3.1.2)

for g ∈ Gµ, x1 ∈ U ∩ Ker and x2 ∈ U ∩ Coim.
Similar to the non-equivariant case studied in Section 2.2, the main theme is

to reduce an equivariant map to an appropriate abstract equivariant normal
form. In this context, a slice for the Gµ-action on M plays a fundamental
role. Recall from Appendix A.2, that a Gµ-slice at m ∈ M is a Gm-invariant
submanifold S of M which is transverse to the orbit Gµ ·m and which possesses
a few further properties, see Definition A.2.2. In particular, the natural fibration
Gµ → Gµ/Gm is a locally trivial principal bundle and it admits a local section
χ : Gµ/Gm ⊇ U → Gµ defined on an open neighborhood U of the identity
coset [e] in such a way that the map

χS : U × S→ M, ([g], s) 7→ χ([g]) · s (3.1.3)

is a diffeomorphism onto an open neighborhood V ⊆ M of m, i.e. the slice
yields convenient product coordinates in a neighborhood of m. For every
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Gµ-slice S at m, the tube map

χT : Gµ ×Gm S→ M, [g , s] 7→ g · s (3.1.4)

is a Gµ-equivariant diffeomorphism onto an open, Gµ-invariant neighborhood
of Gµ · m in M, see Proposition A.2.3.

Definition 3.1.3 Let M be a G-manifold and let f : M → N be a smooth
G-equivariant map. Choose µ ∈ N and assume that the stabilizer Gµ is a Lie
subgroup1 of G. We say that f can be brought into the equivariant normal form
(H,X,Y, f̂ , fsing) at m ∈ f −1(µ) if H � Gm and there exist

(i) a linear slice S at m for the Gµ-action,

(ii) a Gm-equivariant diffeomorphism ιS : X ⊇ U → S ⊆ M and

(iii) a Gm-equivariant chart ρ : N ⊇ V′→ V ⊆ Y at µ with f (S) ⊆ V′

such that the following diagram commutes:

M N

Gµ ×Gm X ⊇ Gµ ×Gm U Gµ ×Gm V ⊆ Gµ ×Gm Y,

f

fNF

χT ◦ (idGµ×ιS) ρT (3.1.5)

where χT : Gµ ×Gm S → M is the tube diffeomorphism associated to S and
ρT : Gµ ×Gm V → N is defined by ρT([g , y]) � g · ρ−1(y). ♦

We usually suppress the slice isomorphism ιS and then view fNF as a map
defined on Gµ ×Gm S.

For the notion of an equivariant normal form, the linear action of the stabilizer
Gm on X and Y plays an important role. In finite dimensions, a classical result
by Bochner [Boc45, Theorem 1] entails that every action of a compact group
can be linearized near a fixed point. Here, under a linearization of the G-action
on the manifold M at a fixed point m we understand a G-invariant open
neighborhood U of m in M, a chart κ : M ⊇ U → X at m and a linear G-action
on X such that κ is G-equivariant. We have the following generalization of
Bochner’s theorem to the action of a compact Lie group on a Banach manifold.

Proposition 3.1.4 (Bochner’s Linearization Theorem) Every action of a compact
Lie group G on a Banach manifold M can be linearized at a fixed point. ♦

1 It is not known, even for Banach Lie group actions, whether the stabilizer is always a Lie
subgroup, see [Nee06, Problem IX.3.b].
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Proof. We closely follow the proof in the finite-dimensional setting, see e.g.
[DK99, Theorem 2.2.1].

Let m ∈ M be a fixed point of the G-action on M. Choose an arbitrary chart
κ̃ : M ⊇ Ũ → Ṽ ⊆ X at m. Since the action is continuous and since m is a fixed
point, for each g ∈ G there exist open neighborhoods Wg of g in G and Ug of
m in M such that Wg · Ug ⊆ Ũ. As G is compact it can be covered by finitely
many such open sets Wgi . Then, U ..� G ·

(⋂
gi

Ugi

)
is an open G-invariant

neighborhood of m contained in Ũ.
Since m is a fixed point, the linearization TmΥg : Tm M → Tm M of the action
Υg : M → M of g ∈ G endows Tm M with a linear G-action, which we carry
over to X using the isomorphism Tm κ̃ : Tm M → X. Define the map κ : U → X
as the average

κ(m′) ..�
∫
G

a−1 · κ̃(a · m′)da (3.1.6)

for m′ ∈ U, where da is the normalized Haar measure on G. The integral exist,
because G is compact and X is complete. A standard calculation shows that
κ intertwines the G-action on U and the linear action on X. Moreover, for all
v ∈ Tm M we have

Tmκ(v) �
∫
G

a−1 · Ta·m κ̃(a . v)da � Tm κ̃(v) (3.1.7)

since m is a fixed point. Thus, by the Inverse Function Theorem, κ is a local
diffeomorphism. �

Remark 3.1.5 The proof of Proposition 3.1.4 generalizes to arbitrary locally
convex manifolds modeled on Mackey complete spaces except for the last
argument, which uses the Inverse Function Theorem. We refrain from stating
the tame Fréchet version, because the application of the Nash–Moser inverse
function needs the existence of a chart κ̃ at m with the equivariance property

Ta·m′ κ̃(a . X) � a · Tm′ κ̃(X) (3.1.8)

not only at the point m′ � m but for m′ ranging over a neighborhood of m.
Finding such a chart is almost as hard as directly guessing a chart in which the
action is linear. Despite the fact that these problems concerning the Inverse
Function Theorem prevent a generalization of Bochner’s Theorem beyond
Banach manifolds, it is often possible to find a linearization at a fixed point by
direct means, e.g. by constructing the required chart by hand. ♦

After this little excursus about linearization of actions at fixed points, we
come back to the main theme of an equivariant normal form.
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Theorem 3.1.6 (Equivariant normal form — General) Let f : M → N be an
equivariant map between Fréchet G-manifolds. Let m ∈ M and µ � f (m). Assume
that the following conditions hold:

(i) The stabilizer subgroup Gµ of µ is a Lie subgroup of G.

(ii) The induced Gµ-action on M is proper and admits a slice S at m.

(iii) The induced Gm-action on N can be linearized at µ.

(iv) The restriction fS ≡ f�S : S→ N of f to S can be brought into a normal form
at m in a Gm-equivariant way in the sense of Definition 2.2.1 and Remark 2.2.7
(iii).

Then, f can be brought into an equivariant normal form at m. ♦

Proof. The proof will proceed in a number of steps.

Step 1: Slice on M for the Gµ-action Let S be a slice at m for the induced Gµ-
action on M. Recall fromPropositionA.2.3 that the tubemap χT : Gµ×Gm S→M
defined by χT([g , s]) � g · s is a Gµ-equivariant diffeomorphism onto an open
neighborhood of Gµ · m in M. By G-equivariance of f , the following diagram
commutes:

M N

Gµ ×Gm S N,

f

fχ
χT id (3.1.9)

where the smooth map fχ is defined by fχ([g , s]) � g · f (s) for g ∈ Gµ and
s ∈ S. Thus, the map f decomposes into the Gµ-action and the restriction
fS � f�S : S→ N of f to the slice. Note that fS is Gm-equivariant.

Step 2: Linearization of the Gm-action on N at µ By assumption, the
Gm-action on N can be linearized at µ. That is, there exist a Gm-invariant
open neighborhood V′ of µ in N, a chart ρ : N ⊇ V′ → Y and a linear Gm-
action on Y such that ρ is Gm-equivariant. Set V � ρ(V′) ⊆ X and define
ρT : Gµ ×Gm V → N by ρT([g , y]) � g · ρ−1(y). By possibly shrinking S, we may
assume that f (S) ⊆ V′. Due to Gm-equivariance of fS and ρ, we can define
fχρ : Gµ ×Gm S→ Gµ ×Gm V by fχρ([g , s]) � [g , ρ ◦ fS(s)] for g ∈ Gµ and s ∈ S.
Then, the following diagram commutes:

Gµ ×Gm S N

Gµ ×Gm S Gµ ×Gm V.

fχ

id
fχρ

ρT (3.1.10)
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Abbreviate fSρ � ρ◦ fS : S→ Y so that fχρ([g , s]) � [g , fSρ(s)]. At this point, we
have completely split-off the Gµ-action and reduced the problem to constructing
a normal form of the map fSρ. Note that fSρ is equivariant with respect to linear
actions of the compact Lie group Gm , which is a considerable simplification of
the general situation we started with.

Step 3: Bringing fSρ into a normal form By Theorem A.2.4, we may regard
S as a Gm-equivariant open neighborhood of 0 in some Fréchet space X. By
possibly shrinking S, we may assume that fSρ takes values in an open Gm-
invariant neighborhood W of 0 in Y. Since, by assumption, fS can be brought
into a normal form at m, there exist topological decompositions X � Ker⊕Coim
and Y � Coker⊕ Im, and local diffeomorphisms ψ : X ⊇ S → X and φ : Y ⊇
W → Y such that the following diagram commutes:

X ⊇ S φ(W) ⊆ Y

X ⊇ ψ(S) W ⊆ Y,

fSρ

ψ

f̂+ fsing

φ (3.1.11)

where f̂ : Coim → Im is a linear isomorphism and fsing : S → Coker is a
smooth map satisfying T0 fsing � 0 and fsing(0, x2) � 0 for all x2 ∈ S ∩ Coim.
Without loss of generality, we may assume φ(W) ⊆ V . Recall that fSρ is
Gm-equivariant with respect to the linear Gm-action on Y introduced above.
Thus, as explained in Remark 2.2.7 (iii), we may assume that the above
decompositions of X and Y are Gm-invariant1, and that ψ, φ and fsing are
Gm-equivariant maps. These equivariance properties allow us to define the
map fNF : Gµ ×Gm ψ(S) → Gµ ×Gm W by

fNF([g , s′]) �
[
g , f̂ ◦ prCoim(s′) + fsing(s′)

]
(3.1.12)

for g ∈ Gµ and s′ ∈ ψ(S). Since ψ is a Gm-equivariant diffeomorphism, ψ(S) is
a new linear slice for the Gµ-action at m.

1 This is the only place in the proof where we need completeness of X and Y.
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Putting everything together Combining these three steps yields the follow-
ing commutative diagram:

M N

Gµ ×Gm S N

Gµ ×Gm S Gµ ×Gm φ(W)

Gµ ×Gm ψ(S) Gµ ×Gm W.

f

1. Slice for Gµ

fχ
χT

id

id

2. Slice for Gm

fχρ

id×ψ

ρT

3. Normal form of fSρ
fNF

id×φ

(3.1.13)

This finishes the proof of Theorem 3.1.6. �

Remarks 3.1.7
(i) In the setting of Theorem 3.1.6, assume additionally that Gµ is a split1 Lie

subgroup of G. In this case, we get control over the behavior of fS with
respect to the residual action of G/Gµ, at least on the infinitesimal level.
Indeed, since Gµ is split, there exists a closed subspace q ⊆ g such that

g � gµ ⊕ q (3.1.14)

is a topological decomposition. Intersecting the topological decomposi-
tion

Tm M � gµ . m ⊕ TmS (3.1.15)

that comes from the slice property (SL3) of Definition A.2.2 with g . m �

gµ . m ⊕ q . m yields q . m ⊆ TmS. Since f is G-equivariant, the restriction
of Tm fS to q . m takes the form

Tm fS : q . m → TµN, A . m 7→ A . µ. (3.1.16)

By definition, q is the complement of the stabilizer Lie algebra gµ and
hence Tm fS yields an isomorphism of q . m onto the orbit g . µ � q . µ.
This isomorphism is, of course, part of the isomorphism f̂ : Coim→ Im
of the normal form.

(ii) Recall from (2.2.8) the local diffeomorphism ψ : X ⊇ S→ X which brings
fSρ into a normal form. When S is viewed as a submanifold of M, then

1 A Lie subgroup H ⊆ G is said to be split if its Lie algebra h is topologically complemented in
g.
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Ψ � ψ−1 satisfiesΨ(0, 0) � m,

TΨ(x1 ,x2)M � g .Ψ(x1, x2) + Im T(x1 ,x2)Ψ (3.1.17)

for all (x1, x2) ∈ ψ(S), and

Tm f ◦ T(0,0)Ψ � f̂ ◦ prCoim Tm fS . (3.1.18)

In the context when f is the momentum map for a symplectic G-action, a
map with these properties is called a slice map in [Cho+03, Definition 2.1].
Although moving in a similar circle of ideas, the construction in [Cho+03,
Proposition 2.2] of such a slice map makes no use of slices. Thus, our
approach has the advantage of bringing the G-action into a normal form
simultaneously.

(iii) Recall that in the finite-dimensional setting, for a proper action, a slice
always exists [Pal61]. In the infinite-dimensional case, this may no
longer be true and additional assumptions have to be made (see [Sub86;
DR18c] for general slice theorems in infinite dimensions and [Ebi70;
ACM89; CMM91] for constructions of slices in concrete examples). We
refer the reader to Appendix A.2 for more details. Having in mind the
application to Yang–Mills theory, it is especially important to note that, in
particular, the action of the group of gauge transformations on the space
of connections admits a slice. ♦

In the remainder of this section, we present variations of the Normal Form
Theorem 3.1.6 which have assumptions that are often easier to verify in
applications. Similar to the discussion in Section 2.2, we start with the simplest
case and then work through various levels of functional-analytic settings,
finishing with the tame Nash–Moser category.

3.1.2 Normal form theorem with finite-dimensional target or domain

Let us start by considering the finite-dimensional setting.

Theorem 3.1.8 (Equivariant normal form — finite-dimensional version) Let G
be a finite-dimensional Lie group and let f : M → N be a smooth G-equivariant map
between finite-dimensional G-manifolds. If the G-action on M is proper, then f can be
brought into an equivariant normal form at every point. ♦

Proof. Let m ∈ M and µ � f (m). Since the stabilizer Gµ of µ is a closed
subgroup of a finite-dimensional Lie group, it is a Lie subgroup. The induced
Gµ-action on M is proper and thus the Slice Theorem of Palais [Pal61] implies
that there exists a slice S for the Gµ-action at m. Properness of the action
also implies that Gm is compact and thus Bochner’s Linearization Theorem
implies that the Gm-action on N can be linearized around the fixed point
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µ. Let fS � f�S : S → N. By Theorem 2.2.6 and Remark 2.2.7 (iii), fS can be
brought into a normal form in a Gm-equivariant way. Hence, all assumptions of
Theorem 3.1.6 are verified and so f can be brought into an equivariant normal
form. �

This result for the finite-dimensional case can be generalized such that only
one of the manifolds involved needs to be finite-dimensional.
Theorem 3.1.9 (Equivariant normal form— finite-dimensional target) Let G be
a Lie group and let f : M → N be a smooth G-equivariant map between G-manifolds,
where N is finite-dimensional. Let m ∈ M and µ � f (m). If the stabilizer subgroup
Gµ of µ is a Lie subgroup of G such that the induced Gµ-action on M is proper and
admits a slice S at m, then f can be brought into an equivariant normal form at m. ♦

Proof. The proof is similar to the one of Theorem 3.1.8 except for the fact that
Theorem 2.2.9 has to be used instead of Theorem 2.2.6. �

Theorem 3.1.10 (Equivariant normal form — finite-dimensional domain) Let
G be a finite-dimensional Lie group and let f : M → N be a smooth G-equivariant
map between G-manifolds, where M is finite-dimensional. Let m ∈ M and µ � f (m).
If the G-action on M is proper and the induced Gm-action on N can be linearized at µ,
then f can be brought into an equivariant normal form at m. ♦

Proof. The proof is analogous to the one of Theorem 3.1.8, only replacing
Theorem 2.2.6 by Theorem 2.2.10. �

3.1.3 Tame Fréchet and elliptic normal form theorem

Let us now come to a version of Theorem 3.1.6 which lives in the tame Fréchet
category.
Theorem 3.1.11 (Equivariant normal form— tame Fréchet version) Let G be
a tame Fréchet Lie group and let f : M → N be an equivariant map between tame
Fréchet G-manifolds. Let m ∈ M and µ � f (m). Assume that the following conditions
hold:

(i) The stabilizer subgroup Gµ of µ is a tame Fréchet Lie subgroup of G.

(ii) The induced Gµ-action on M is proper and admits a tame slice S at m.

(iii) The induced Gm-action on N can be linearized at µ.

(iv) The chain

0 gµ Ts M T f (s)N 0
Ts f

(3.1.19)

of linear maps parametrized by s ∈ S is uniformly tame regular at m. Here, the
first map is the Lie algebra action given by ξ 7→ ξ . s for ξ ∈ gµ.
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Then, f can be brought into an equivariant normal form at m. ♦

Proof. Let S be a tame slice at m modeled on the tame Fréchet space X.
According to Theorem 3.1.6, we have to show that the map fS : S→ N can be
brought into a normal form in a Gm-equivariant way. For this purpose, consider
slice coordinates as in (SL3) of DefinitionA.2.2. That is, let χ : U→ Gµ be a local
section of Gµ → Gµ/Gm defined on an open neighborhood U of the identity
coset [e] such that the map χS : U × S→ M defined by χS([g], s) � χ([g]) · s
is a local diffeomorphism. Clearly, T[e]χ : gµ/gm → gµ yields a continuous
splitting of the exact sequence

0 gm gµ gµ/gm 0 (3.1.20)

and thus induces a topological isomorphism gµ ' gµ/gm × gm . With respect to
this decomposition,wewrite elements ξ ∈ gµ aspairs ([ξ], ξgm )with [ξ] ∈ gµ/gm
and ξgm ∈ gm . Let ρ : N ⊇ V′→ V ⊆ Y be a local chart at µwhich linearizes the
Gm-action on N . As above, let fSρ : X ⊇ S→ Y denote the chart representation
of fS : S→ N . With respect to the local trivialization induced by χS and ρ, the
chain (3.1.19) parametrized by s ∈ S takes the form

0 gµ gµ/gm × X ×Y 0Γs Ξs (3.1.21)

where Γ : S × gµ → gµ/gm × X and Ξ : S × gµ/gm × X → Y are tame smooth
families of linear maps defined by

Γs(ξ) � ([ξ], ξgm . s) (3.1.22)

for s ∈ S and ξ ∈ gµ, and

Ξs([ξ], v) � T f (s)ρ
(
(T[e]χ([ξ])) . f (s)

)
+ Ts fSρ(v) (3.1.23)

for s ∈ S, [ξ] ∈ gµ/gm and v ∈ X. Since the chain (3.1.19) is uniformly tame
regular at m, we can assume that the chain (3.1.21) is uniformly tame regular
at m. Note that ImΓm � gµ/gm × {0}. Thus, Proposition 2.1.27 implies that the
family

(Ξs)�{[0]}×X � Ts fSρ : X 7→ Y (3.1.24)

of linear maps parametrized by s ∈ S is uniformly tame regular at m. Now,
Theorem 2.2.13 shows that fSρ can be brought into a normal form. The
deforming diffeomorphisms can be chosen to be Gm-equivariant according to
Remark 2.2.7 (iii). �

For the following elliptic version of the Equivariant Normal Form Theorem,
the reader might want to recall the notion of a geometric Fréchet manifold from
Definition 2.2.15.
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Theorem 3.1.12 (Equivariant normal form— elliptic) Let G be a tame Fréchet Lie
group and let f : M → N be an equivariant map between tame Fréchet G-manifolds.
Let m ∈ M and µ � f (m). Assume that the following conditions hold:

(i) The stabilizer subgroup Gµ of µ is a geometric tame Fréchet Lie subgroup of G.

(ii) The induced Gµ-action on M is proper and admits a geometric slice S at m.

(iii) The induced Gm-action on N can be linearized at µ.

(iv) The chain

0 gµ Ts M T f (s)N 0
Ts f

(3.1.25)

is a chain of geometric linear maps parametrized by s ∈ S, which is an elliptic
complex at m.

Then, f can be brought into an equivariant normal form at m. ♦

Proof. The claim follows directly as a special case of Theorem 3.1.11, because,
according to Theorem 2.1.28, a tame family of chains of differential operators is
uniformly tame regular in a neighborhood of a point at which the chain is an
elliptic complex. �

3.2 Kuranishi structures

Kuranishi spaces were introduced by Fukaya and Ono [FO99, Section 1.5] in
their study of the geometry of moduli spaces of pseudo-holomorphic curves.
The notion of a Kuranishi structure builds on ideas of Kuranishi [Kur65] for
the moduli space of complex structures and of Donaldson [Don83, Section II.2]
and Taubes [Tau82, Section 6] for moduli problems in gauge theory, see also
[DK97, Section 4.2.5]. As we will see, Kuranishi structures play an important
role in our general setting, too.

Definition 3.2.1 Let X be a topological space. A Kuranishi chart at a point
x ∈ X is a tuple (V, E, F,H, s , κ) consisting of the following data:

(i) an open neighborhood V of 0 in a locally convex vector space E,

(ii) a locally convex vector space F,

(iii) a compact Lie group H acting linearly and continuously on V and F,

(iv) a smooth H-equivariant map s : V → F,

(v) a homeomorphism κ from s−1(0)/H to a neighborhood of x in X.
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The bundle F × V → V is called the obstruction bundle and s is referred to as
the obstruction map. If E and F are finite-dimensional vector spaces, then the
Kuranishi chart is said to be finite-dimensional. ♦

Informally speaking, a space admitting Kuranishi charts is locally modeled
on the quotient of the zero set of a smooth map by a compact group. As such,
Kuranishi charts extend the notion of an orbifold and of a manifold chart.
Indeed, if the map s vanishes and H is a finite group acting faithfully on E, then
the Kuranishi chart reduces to an (infinite-dimensional) orbifold chart, i.e., X
is locally modeled on the quotient of E by a finite group action. If, in addition,
the H-action on E is trivial, then we obtain an ordinary manifold chart on X.
For a finite-dimensional Kuranishi chart (V, E, F,H, s , κ) at x ∈ X, the number

dim E − dim F − dim H (3.2.1)

is called the virtual dimension of X (at x). This is motivated by the fact that
s−1(0)/H forms a manifold of this dimension at regular points of s for which
the H-action is free.

Remarks 3.2.2
(i) Ournotionof afinite-dimensionalKuranishi chart is a slight generalization

of the one proposed by Oh et al. [Oh+09, Definition A.1.1]. There, H
is assumed to be a finite group (acting effectively on V). Finiteness of
H is a natural assumption in the context of moduli spaces of pseudo-
holomorphic curves, but it is too restrictive in our more general setting.
Moreover, we do not require X to be compact nor to be endowed with a
metric.
Usually, only finite-dimensional Kuranishi charts are discussed in the
literature. However, for general moduli spaces, one cannot expect the
Kuranishi chart to be finite-dimensional. As we will see below in Re-
mark 3.2.4, this amounts to requiring that a certain complex is Fredholm.

(ii) In order to define a Kuranishi structure on X, in a similar spirit to
the smooth structure of a manifold, one needs to introduce coordinate
transition maps, which explain how to glue together different Kuranishi
charts. A variety of definitions of suitable chart transitions are proposed
in the literature, eachwith their own advantages and functorial properties.
We refer the reader to [Joy14, Appendix A] for a recent review on this
matter.

(iii) Recently, Hofer, Wysocki, and Zehnder introduced the polyfold frame-
work as a different approach to deal with the analytic and geometric
issues occurring in the study of moduli spaces in symplectic field theory,
see [HWZ17a; HWZ17b] and references therein. We refer to [Yan14]
for an extensive discussion of the relation of Kuranishi structures and
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polyfold theory. Moreover, in Remark A.1.4 (i), we compare the theory
of tame Fréchet spaces to the so-called scale calculus that underlies the
polyfold framework. ♦

Theorem 3.2.3 Let f : M → N be an equivariant map between (locally convex)
G-manifolds. Let µ ∈ N be such that Mµ ≡ f −1(µ) is not empty and that the
stabilizer subgroup Gµ of µ is a Lie subgroup of G. If f can be brought into an
equivariant normal form at every point of Mµ, then there exists a Kuranishi chart
on M̌µ ≡ f −1(µ)/Gµ at every point. ♦

Proof. Let m ∈ Mµ and let (S, ρ, f̂ , fsing) be an equivariant normal form of f at
m in the sense of Definition 3.1.3. Then, there exists maps χ and ρ such that
the following diagram commutes:

M N

Gµ ×Gm X ⊇ Gµ ×Gm S Gµ ×Gm V ⊆ Gµ ×Gm Y,

f

fNF

χT ρT (3.2.2)

where fNF is defined by fNF([g , x1, x2]) � [g , f̂ (x2) + fsing(x1, x2)] for g ∈ Gµ,
x1 ∈ S ∩ Ker and x2 ∈ S ∩ Coim. Recall that the map ρT : Gµ ×Gm V → N is
given by ρT([g , y]) � g · ρ−1(y), where ρ : N ⊇ V′ → V ⊆ Y is a chart on N
satisfying ρ(µ) � 0. Hence, (ρT)−1(µ) � Gµ ×Gm {0}. Using the commutative
diagram (3.2.2), we obtain

(χT)−1(Mµ) � (χT)−1 ( f −1(µ)
)

� f −1
NF

(
(ρT)−1(µ)

)
� f −1

NF
(
Gµ ×Gm {0}

)
� Gµ ×Gm {(x1, 0) ∈ S : fsing(x1, 0) � 0}.

(3.2.3)

By Gµ-equivariance, the tube diffeomorphism χT thus induces a local homeo-
morphism of M̌µ � f −1(µ)/Gµ with

{(x1, 0) ∈ S : fsing(x1, 0) � 0}/Gm . (3.2.4)

This local homeomorphism provides a Kuranishi chart on M̌µ with V �

S ∩ Ker, F � Coker, H � Gm and s � fsing(·, 0) : V → F in the notation of
Definition 3.2.1. �

Remark 3.2.4 In the setting of Theorem 3.2.3, consider the chain complex

0 gµ Tm M TµN 0 ,TeΥm Tm f
(3.2.5)
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whereΥm : Gµ→ M is the orbit map of the Gµ-action at m ∈ M. The homology
groups of this complex are identified with the spaces

gm , Ker Tm f /gµ . m ' Ker, TµN/Im Tm f ' Coker, (3.2.6)

respectively. Here, Ker and Coker refer to the spaces occurring in the equivari-
ant normal form as in Definition 3.1.3. The Kuranishi charts on M̌µ constructed
in the proof of Theorem 3.2.3 had H � Gm , E � Ker and F � Coker. Thus, these
Kuranishi charts are finite-dimensional if and only if the complex (3.2.5) is
Fredholm. In this case, the Euler characteristic (2.1.64) of the complex (3.2.5),

dim gm − dim Ker+dim Coker, (3.2.7)

is (minus) the virtual dimension of X. ♦

Since every equivariant map between finite-dimensional G-manifolds can
be brought into an equivariant normal form according to Theorem 3.1.8, we
obtain the following corollary of Theorem 3.2.3.

Corollary 3.2.5 Let f : M → N be an equivariant map between finite-dimensional
G-manifolds and let µ ∈ N . If the Gµ-action on M is proper, then M̌µ ≡ f −1(µ)/Gµ

admits a Kuranishi chart at every point. ♦

3.3 Orbit type stratification

As we have seen in the previous section, the abstract moduli space M̌µ �

f −1(µ)/Gµ admits Kuranishi charts if f can be brought into an equivariant
normal form. Under additional conditions on the equivariant normal form,
M̌µ carries even more structure.

Proposition 3.3.1 Let f : M → N be a smooth equivariant map between (locally
convex) G-manifolds and let µ ∈ N. Assume that the stabilizer subgroup Gµ is a
Lie subgroup of G and that the induced action of Gµ on M is proper. Moreover,
assume that f can be brought into an equivariant normal form (S, ρ, f̂ , fsing) at every
m ∈ f −1(µ) such that the following holds:

(i) (submanifold property) The set{
(x1, 0) ∈ S(Gm) : fsing(x1, 0) � 0

}
� f −1

sing(0) ∩ Ker ∩ S(Gm) (3.3.1)

is a submanifold of S(Gm).

(ii) (approximation property) For every orbit type (K) ≤ (Gm) of the Gµ-action on
M, the point 0 lies in the closure of f −1

sing(0) ∩ Ker ∩ S(K) in S.
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Then, the partition of Mµ � f −1(µ) into the orbit type subsets Mµ ∩ M(H) is
a stratification. Moreover, under these assumptions, the decomposition of M̌µ �

f −1(µ)/Gµ into the sets Mµ ∩M(H)/Gµ is a stratification, too. ♦

Proof. Let m ∈ Mµ and let (S, ρ, f̂ , fsing) be an equivariant normal form of f
at m satisfying the submanifold and approximation property. In the proof of
Theorem 3.2.3, we have seen that the Gµ-equivariant tube diffeomorphism χT

locally identifies the subset Mµ with

Gµ ×Gm {(x1, 0) ∈ S : fsing(x1, 0) � 0}. (3.3.2)

Accordingly, Mµ ∩ S(Gm) is identified with the set{
(x1, 0) ∈ S(Gm) : fsing(x1, 0) � 0

}
. (3.3.3)

Since the latter is a submanifold of S(Gm) by the submanifold property, we
conclude thatMµ∩S(Gm) is a submanifold ofS(Gm). Moreover, the approximation
property entails that, for every Gµ-orbit type (K) ≤ (Gm), the point m lies in
the closure of Mµ ∩ S(K). Thus, the claims follow from Proposition A.2.8. �

3.4 Application: Gauge orbit types and anti-self-dual connec-
tions

In this section, we are concerned with the local properties of the moduli space
of anti-self-dual Yang–Mills connections. The local structure of this moduli
space is well-understood, see e.g. [DK97]. We will show how these structure
results can be rederivedwith relatively small effort using the general framework
developed in the previous sections.
Before we come to the anti-self-dual equation, let us recall a few general

results concerning the orbit type stratification for the action of the group
of gauge transformations on the space of connections. For this purpose,
consider the principal G-bundle π : P → M over the compact n-dimensional
Riemannian manifold M with G being a compact Lie group. A connection in
P is a G-equivariant splitting of the tangent bundle TP � VP ⊕ HP into the
canonical vertical distribution VP and a horizontal distribution HP. Recall that
VP is spanned by the Killing vector fields p 7→ ξ . p for ξ ∈ g and hence it is
isomorphic to the adjoint bundle AdP. A connection A in P yields a splitting
of the Atiyah sequence

0 AdP TP/G TM 0Tπ (3.4.1)

and we realize the space C(P) of connections on P as that of vector bundle
sections TM→ TP/G. Thus, the points of C(P) are in bĳective correspondence
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with the sections of an affinebundle over M and in thiswayC(P) carries a natural
tame Fréchet manifold structure modeled on the vector space Ω1(M,AdP), cf.
[Abb+86]. The covariant derivative with respect to A is denoted by dA and the
curvature of A is written as FA.
The group Gau(P) of local gauge transformations on P is a tame Fréchet

Lie group, because it is realized as the space of smooth sections of the group
bundle P ×G G, see [CM85] for details. The natural left action of Gau(P) on
C(P) is given by

A 7→ Adλ A + λ dλ−1, (3.4.2)

for λ ∈ Gau(P). This action is proper, see [RSV02b; Die13]. Moreover, it admits
a slice SA0 at every A0 ∈ C given by the Coulomb gauge condition. That is1,

SA0
..� {A ∈ U : d∗A0

(A − A0) � 0}, (3.4.3)

where U is a suitable open neighborhood of A0 in C. One uses the Nash–Moser
Inverse Function Theorem to show that SA0 is a slice. The details can be found
in [ACM89; Die13]. In the Banach context, the orbit type decomposition of
C(P) has been extensively studied in [KR86], see also [RSV02b]. The proof
that the decomposition satisfies the frontier condition [KR86, Theorem 4.3.5]
carries over to our Fréchet setting without major changes. As a consequence,
the decomposition of C(P) into gauge orbit types is a stratification, see Proposi-
tion A.2.8.

Finally, let us comment on the classification of the gauge orbit types. For this
purpose, choose a point p0 ∈ P. Evaluation at p0 of a gauge transformation λ ∈
Gau(P), seen as aG-equivariantmapP→ G, yields aLie grouphomomorphism

evp0 : Gau(P) → G. (3.4.4)

A gauge transformation λ ∈ Gau(P) leaves the connection A invariant if and
only if λ is constant on every A-horizontal curve, that is, if it is constant on
the holonomy bundle PA of A (based at p0). By G-equivariance, λ ∈ GauA(P)
is thus completely determined by its value at some point in PA. Hence, the
evaluation map evp0 restricts to an isomorphism of Lie groups between the
stabilizer GauA(P) and the centralizer CG(HolA) of the holonomy group of A
based at p0, cf. [RSV02b, Theorem 2.1]. We usually suppress the evaluation
map in our notation and view GauA(P) directly as a Lie subgroup of G. If the
stabilizer GauA(P) of A is trivial, then A is said to be irreducible. Recall that a
subgroup which can be written as a centralizer is called a Howe subgroup. In
particular,

H � CG
(
GauA(P)

)
� C2

G(HolA) (3.4.5)

1 Here, as usual, d∗Aα
..� (−1)k ∗dA ∗ α for a k-form α.
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is a Howe subgroup of G. Consider the H-principal bundle

PH
..� PA ×HolA H ≡ PA · H ⊆ P (3.4.6)

associated to the holonomy bundle PA. The bundle PH consists of all p ∈
P obeying λ(p) � λ(p0) for every λ ∈ GauA(P). Conversely, the stabilizer
subgroup can be recovered from PH as the subgroup

GauA(P) � {λ ∈ Gau(P) : λ�PH � const}. (3.4.7)

A bundle reduction of P to a Howe subgroup is called a Howe subbundle. A
bundle reduction Q of P is called holonomy-induced if there exists a connected
reduction Q̃ ⊆ P to a subgroup H̃ such that Q � Q̃ · C2

G(H̃). The following
proposition (cf. [RSV02b, Theorem 3.3]) is basic for the classification procedure.

Proposition 3.4.1 Let P be a principal G-bundle over the compact manifold M with
dim M ≥ 2. Then, the map

[GauA(P)] 7→
[
PA · C2

G(HolA)
]

(3.4.8)

from the set of gauge orbit types to the set of isomorphism classes of holonomy-induced
Howe subbundles of P (factorized by the action of G) is a bĳection. ♦

In [RSV02b], this proposition is proved in the context of Sobolev spaces, but
the result clearly holds true in the smooth category as well.

Remark 3.4.2 By [RSV02a, Theorem 6.2], every Howe subbundle of a principal
SU(n)-bundle is automatically holonomy induced. However, for other classical
groups this is not always the case, see the counterexample after Theorem 6.2 in
[RSV02a]. ♦
Thus, to enumerate the gauge orbit types for a given principal G-bundle

P → M, one has to work through the following program:

(i) Classify the Howe subgroups up to conjugacy.

(ii) Classify the Howe subbundles up to isomorphy.

(iii) Extract the Howe subbundles which are holonomy-induced.

(iv) Factorize by the principal action.

(v) Determine the natural partial order.

The classificationof the orbit types for all classical groupshas beenaccomplished
in [RSV02a; RSV02b; RSV02c; HRS10; HRS11]. For the convenience of the
reader, we recall the result for the case of G � SU(n), see also [RSV02c] for the
discussion of the partial order.
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Proposition 3.4.3 Let P be a principal SU(n)-bundle over a compact manifold M
of dimension 2, 3, or 4. The gauge orbit types of the space of connections on P are in
one-to-one correspondence with symbols [(I; α, ξ)], where

(i) I �
(
(k1, . . . , kr), (m1, . . . ,mr)

)
is a pair of sequences of positive integers

obeying
r∑

i�1
kimi � n , (3.4.9)

(ii) α � (α1, . . . , αr) is a sequence of elements αi ∈ H∗(M,Z) representing admis-
sible values of Chern classes of U(ki)-bundles over M,

(iii) ξ ∈ H1(M,Zd), where d is the greatest common divisor of (m1, . . . ,mr).

The cohomology elements αi and ξ are subject to the relations

r∑
i�1

mi

d
αi ,1 � βd(ξ), αm1

1 ∪ . . . ∪ α
mr
r � c(P), (3.4.10)

where c(P) is the total Chern class of P and βd : H1(M,Zd) → H2(M,Z) is the
Bockstein homomorphism associated with the short exact sequence of coefficient groups
0→ Z→ Z→ Zd → 0. For any permutation σ of {1, . . . r}, the symbols [(I; α, ξ)]
and [(σI; σα, ξ)] have to be identified. ♦

With these general results on the gauge orbit type stratification in mind, we
can now investigate the solution space of the anti-self-dual equation. For this
purpose, let M be a oriented compact Riemannian manifold of dimension 4.
Consider a principal G-bundle P → M, where G is a compact, semi-simple Lie
group. On a 4-dimensional manifold, the Hodge star operator ∗ associated
to the Riemannian metric satisfies ∗ ∗ � id on 2-forms and thus determines a
decomposition

Ω2(M) � Ω2
+(M) ⊕ Ω2

−(M) (3.4.11)

of the space of 2-forms into the ±1-eigenspaces. A similar decomposition holds
for vector-valued 2-forms and, in particular, the curvature FA of a connection
A ∈ C(P) can be written as

FA � F+

A + F−A (3.4.12)

with F±A ∈ Ω
2
±(M,AdP). A connection A with F+

A � 0 is called anti-self-dual
(ASD). The Bianchi identity implies that an ASD connection satisfies the
Yang–Mills equation. The self-dual part of the curvature gives a smooth map

F+ : C(P) → Ω2
+(M,AdP), (3.4.13)

which is equivariant with respect to the natural actions of the group Gau(P)
of gauge transformations. The moduli space of anti-self-dual connections is, by
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definition, the space
A � (F+)−1(0)/Gau(P) (3.4.14)

of anti-self-dual connections on P modulo gauge equivalence. This clearly
fits into the general framework considered in the previous sections. Let us
verify that the assumptions of Theorem 3.1.12 are met for the model under
consideration:

(i) The stabilizer of µ � 0 ∈ Ω2
+(M,AdP) is the whole group Gau(P), which is

a geometric tame Fréchet Lie group with Lie algebra gau(P) � Γ∞(AdP).

(ii) The natural action of Gau(P) on C(P) is proper and admits a slice S at
A ∈ C(P) as discussed above.

(iii) The action of Gau(P) on Ω2
+(M,AdP) is clearly linear.

(iv) Let A be an ASD connection and let S be a slice at A. The chain (3.1.19)
here takes the form

0 Ω0(M,AdP) Ω1(M,AdP) Ω2
+(M,AdP) 0,dB d+

B

(3.4.15)
where B ∈ S and d+

B denotes the self-dual part of the covariant derivative
dB. This chain is clearly a chain of linear differential operators tamely
parametrized by the connection B. The ASD condition for A asserts that
d+

A ◦ dA � 0 and so, at B � A, the chain (3.4.15) is a complex, called the
Yang–Mills complex. Ellipticity of the Yang–Mills complex is well-known
and follows from a straightforward computation in linear algebra, see e.g.
[RS17, Lemma 6.5.2]. Moreover, the Atiyah–Singer Index Theorem shows
that its Euler characteristic is given by

− 2 p1(AdP) + 1
2(χM − σM) · dim G (3.4.16)

where p1(AdP) is the Pontryagin index of the adjoint bundle, χM is the
Euler number of M and σM is the signature1 of M, see [RS17, Lemma 6.5.5].

Hence, by Theorem 3.1.12, the map F+ can be brought into an equivariant
normal form at every ASD connection A ∈ C(P). Moreover, as a consequence
1 The intersection form of M is the symmetric, non-degenerate bilinear form given by

H2(M) ×H2(M) → R,
(
[α], [β]

)
7→

∫
M

α ∧ β. (3.4.17)

The signature σM of M is defined as the difference between the number of positive eigenvalues
and the number of negative eigenvalues of the quadratic form corresponding to the intersection
form.
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of Theorem 3.2.3 and Remark 3.2.4, we obtain the following description of the
local geometry of the moduli space A of anti-self-dual connections.

Theorem 3.4.4 Let P be a principal G-bundle with a compact, semi-simple structure
group G over a 4-dimensional compact Riemannian manifold M. Then, the moduli
spaceA of anti-self-dual connections on P admits a finite-dimensional Kuranishi chart
at every point [A] ∈ A. Moreover, the virtual dimension of A is given by

2 p1(AdP) − 1
2(χM − σM) · dim G. (3.4.18)

♦
Let us describe the constructed Kuranishi charts on A in more detail. For

this purpose, let A ∈ C(P) be an ASD connection. According to Remark 3.2.4,
the linear spaces occurring in definition of a Kuranishi chart at [A] ∈ A are
given by the cohomology groups

E � H1,+
A (M,AdP) ≡ Ker d+

A/Im dA ,

F � H2,+
A (M,AdP) ≡ Ω2

+(M,AdP)/Im d+

A.
(3.4.19)

These spaces are finite-dimensional, because the Yang–Mills complex is elliptic.
Moreover, they are endowedwith anatural linear actionof the compact stabilizer
subgroup GauA(P) of A. Thus, the obstruction map is a GauA(P)-equivariant
map

s : H1,+
A (M,AdP) ⊇ V → H2,+

A (M,AdP), (3.4.20)

where V is a GauA(P)-invariant, open neighborhood of 0 in H1,+
A (M,AdP).

Finally, the moduli space A in a neighborhood of [A] is modeled on the
quotient s−1(0)/GauA(P). In this way, we recover the well-known result [DK97,
Proposition 4.2.23] concerning the local structure of A.
Further insights into the geometry of A require a more precise control of

the obstruction map s , which is rather difficult to obtain in full generality.
However, in concrete examples, one can often find conditions which ensure
that s vanishes. For example, if M is self-dual and has positive scalar curvature,
then it can be shown using the Weitzenböck formula that H2,+

A (M,AdP) is
trivial for every irreducible ASD connection A, see e.g. [RS17, Lemma 6.5.4].
Thus, in this case, the moduli space of irreducible anti-self-dual connections is
a smooth manifold. This important result was originally obtained by Atiyah,
Hitchin, and Singer [AHS78, Theorem 6.1].
For the remainder of this section, we specialize to G � SU(2). This setting

was used by Donaldson [Don83] to gain astounding insights into the topology
and geometry of 4-manifolds. For G � SU(2), we have p1(AdP) � 4k, where k
is the so-called instanton number. Let us restrict our attention to the case k � 1.
Moreover, we assume that M is simply connected and that its intersection
form is positive definite. These assumptions imply χM − σM � 1 so that the
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virtual dimension of A is 8 − 3 � 5. For G � SU(2), a reducible connection
A has a stabilizer group conjugate to U(1) or to Z2. Connections with a
discrete stabilizer subgroup are flat as a consequence of the Ambrose–Singer
Theorem and thus only connections with a stabilizer subgroup conjugate
to U(1) are of interest for the geometry of A. By refining the classification
of orbit types in Proposition 3.4.3, one can show that there are only finitely
many gauge-equivalence classes of ASD connections which are reducible to
U(1), see [RS17, Proposition 6.5.11]. The Kuranishi charts constructed above
determine the structure of A in a neighborhood of a singular point. Let A
be an ASD connection that is reducible to U(1). In the present setting, a
straightforward application of the representation theory of U(1) yields the
following isomorphisms of GauA(P)-representation spaces

H1,+
A (M,AdP) ' Cp , H2,+

A (M,AdP) ' Cq (3.4.21)

for some p and q satisfying p + q � 3, where U(1) acts in the usual way on Cp

and Cq , see [FU84, Proposition 4.9]. Thus, if H2,+
A (M,AdP) is trivial, then, in a

neighborhood of the singular point [A], the moduli space A is identified with
the cone C3/U(1) over CP2. We thus recover the following important result of
Donaldson [Don83].

Theorem 3.4.5 Let P be a principal SU(2)-bundle with instanton number 1 over
a 4-dimensional, compact, simply connected, oriented Riemannian manifold M, whose
intersection form is positive definite. Assume that H2,+

A (M,AdP) � {0} for every
ASD connection A on P. Then, the moduli space A of anti-self-dual connections on P
is a smooth 5-dimensional manifold except at finitely many points. At a singular point,
A has the geometry of a cone over CP2. ♦

In particular, every singular connection in A can be approximated by a
sequence of irreducible ASD connections. This implies that A is stratified
by orbit types. The case H2,+

A (M,AdP) , {0} is more complicated and a
perturbation of the metric on M is required, see [FU84, Section 4].

Further examples are discussed in [DK97, Section 4.2.6]. We note that, for
the above example and for the ones discussed in [DK97], the moduli space of
anti-self-dual connections is stratified by orbit types. We do not know whether
this holds true in general.



4Singular Symplectic Reduction

This chapter focuses on symmetry reduction of infinite-dimensional Hamilto-
nian dynamical systems. In the modern geometric formulation of Hamiltonian
systems, the phase space of the system is modeled as a symplectic manifold
(M, ω) and symmetries are represented by the action of a Lie group G on M
preserving the symplectic structure. The conserved quantities corresponding
to the G-symmetry are encoded in the momentum map J : M → g∗, which
takes values in the dual space of the Lie algebra of G. The Marsden-Weinstein
or symplectically reduced phase space at µ ∈ g∗ is, by definition, the space

M̌µ � J−1(µ)/Gµ , (4.0.1)

whereGµ denotes the stabilizer subgroupof µ under the coadjoint action ofG on
g∗. It is clear that this setting fits into the general framework of abstract moduli
spaces studied in the previous chapter. In finite dimensions, the structure of
M̌µ is well understood: If µ is a regular value and the G-action is free and
proper, then M̌µ is a manifold and the symplectic form ω on M descends to
a symplectic structure ω̌ on M̌µ. Moreover, the dynamics associated to a G-
invariant Hamiltonian projects down to a Hamiltonian flow on M̌µ. In general,
without assuming these regularity conditions, the space M̌µ has singularities
and is stratified by symplectic manifolds. The regular case is discussed in
[Mey73; MW74] and the singular case is studied in [AGJ90; SL91]. The aim of
this chapter is to extend these results concerning singular symplectic reduction
to the infinite-dimensional setting using the results of Chapter 3 about normal
forms of equivariant maps. We begin with the linear case of symplectic vector
spaces in Section 4.1, where we discuss under which conditions many well-
known results of linear symplectic geometry generalize to weakly symplectic
vector spaces. As a fundamental tool, we introduce and study a class of
topologies associated to the symplectic form. Next, in Section 4.2, we discuss
symplectic manifolds and momentummaps in our infinite-dimensional setting.
Based on joint work with T. Ratiu [DR] on actions of diffeomorphism groups,
we introduce the notion of a group-valued momentum map which unifies
several other notions of generalized momentum maps. The group structure
of the target allows to encode discrete topological information; a fact that is
especially relevant for the action of geometric automorphism groups, which are
sensitive to the topology of the spaces they live on. With the help of a refined
normal form result for momentum maps, in Section 4.3, we prove a theorem
on singular symplectic reduction in our infinite-dimensional setting. To our
knowledge, the results about the normal form of a momentum map and about



4. Singular Symplectic Reduction 69

the structure of singular symplectic quotients are new even for symplectic
Banach manifolds1. Finally, we discuss the example of symplectic reduction in
the context of the Yang–Mills equation over a Riemannian surface, which is
based on joint work with J. Huebschmann [DH18].

4.1 Symplectic functional analysis

In the Banach space setting, the theory of symplectic geometry splits into two
branches depending on whether the map ω[ : TM → T∗M induced by the
symplectic form ω on M is an isomorphism or merely an injection. The former
forms are called strongly symplectic and the latter are referred to as weakly
symplectic. The well-consolidated building of finite-dimensional symplectic
geometry generalizes almost without changes to strongly symplectic structures,
but it is confronted with serious problems if weakly symplectic forms are
considered. For example, the Darboux theorem holds for strongly symplectic
forms but fails for weak ones, see [Mar72].
In the case of a Fréchet manifold, a 2-form cannot be strongly symplectic,

because the dual of a Fréchet space is never a Fréchet space (except when it is
a Banach space). Thus, for us, weakly symplectic forms are the norm rather
than the exception and we need to find a way to address the problems that
originate from the failure of ω[ to be surjective. At the root of our approach
lies the observation that the symplectic form induces a natural topology on
the tangent spaces. For strongly symplectic forms, this topology is equivalent
to the one induced from the manifold topology; while for weakly symplectic
forms the manifold topology is finer. With respect to the symplectic topology,
the symplectic form behaves as if it were strongly symplectic and thus many
standard results of the finite-dimensional setting carry over to statements
relative to this topology. Then, tools from functional analysis, especially the
theory of dual pairs, can be used to compare the original and the symplectic
topology and in this way allow to transfer these conclusions to results relative to
the original topology. From a different angle, we translate algebraic questions
into a functional analytic setting and then employ the well-oiled machine of
dual pairs to solve these problems. We are not aware of any previous systematic
application of the theory of dual pairs to symplectic vector spaces, though
some elements can be found in [BZ18]. For the convenience of the reader we
summarize the relevant material concerning dual pairs in Appendix B.

Definition 4.1.1 A symplectic vector space (X, ω) is a locally convex vector space
X endowed with a jointly continuous, antisymmetric bilinear form ω which is

1 The theory of regular symplectic reduction for strongly symplectic Banach manifolds was
already discussed in [MW74].
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non-degenerate in the sense that the induced map

ω[ : X → X′, x 7→ ω(x , ·) (4.1.1)

is injective, where X′ denotes the topological dual of X. If ω[ is a bĳection,
then ω is called strongly symplectic. ♦

In the literature, symplectic forms ω for which ω[ is only injective are often
called weakly symplectic. Since, however, a genuine Fréchet space is never
isomorphic to its topological dual, there are no strongly symplectic forms
beyond the Banach setting and the weak case is the generic one for us.
Example 4.1.2 Consider the Fréchet space X � Ω1(M) of differential one-
forms on a closed two-dimensional surface M. The integration pairing yields a
symplectic form ω on Ω1(M) by setting

ω(α, β) �
∫
M

α ∧ β (4.1.2)

for α, β ∈ Ω1(M). Indeed, given a Riemannian metric g on M with associated
Hodge star operator ∗, the value

ωA(α, ∗ α) �
∫
M

‖α‖2g (4.1.3)

is positive for every non-vanishing α ∈ Ω1(M) and thus ω is non-degenerate.
Moreover, the symplectic structure ω is only weakly non-degenerate, because
the image of ω[ consists of regular functionals and not of all distributional
1-forms.

This example will reappear throughout the next sections serving as an
illustration of the abstract theory. The series consists of Examples 4.2.2, 4.2.6,
4.3.6, 4.2.9, 4.1.10 and 4.2.28. ♦
If we ignore for a moment that X already carries a locally convex topology,

we are left with a vector space endowed with a bilinear form ω. This setting
is well-studied in functional analysis, where such a pair (X, ω) is called a dual
pair, see Appendix B for background information. The bilinear form ω singles
out certain topologies τ on X for which it is strong, i.e., every τ-continuous
functional on X is of the form ω(x , ·) for some x ∈ X. In the general theory such
topologies are called compatible with the dual pair (X, ω). In the following,
we will use the notation (X, τ)′ for the space of all τ-continuous functionals on
X to emphasize the dependence on the topology τ of X.
Definition 4.1.3 Let (X, ω) be a symplectic vector space. A locally convex
topology τ on X is called compatiblewith ω or a symplectic topology if (X, τ)′ �
Imω[. ♦
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For a general dual pair, the so-called weak, strong, and Mackey topologies
play an important role, see Example B.1.5. In the context of a symplectic vector
space (X, ω), we put the prefix “symplectic” in front. For example, the weak
symplectic topology, denoted by σω, is determined by the seminorms

‖x‖A ..� sup
y∈A
|ω(y , x)| (4.1.4)

indexed by a finite subset A ⊆ X. The symplectic Mackey topology is defined in a
similarway except for the fact that the seminorms are indexed by convex, circled
and σω-compact subsets A ⊆ X. Both the weak symplectic and the symplectic
Mackey topology are compatible with the symplectic form. Moreover, we have
the following symplectic version of the Mackey–Arens Theorem B.1.6.

Proposition 4.1.4 A locally convex topology on a symplectic vector space (X, ω)
is symplectic if and only if it is lies between the weak symplectic and the symplectic
Mackey topology. ♦

In order to distinguish symplectic topologies from the original one in which
ω is jointly continuous, we call the latter the original topology. Note that, for
a weakly symplectic form, a symplectic topology is strictly coarser than the
original topology, because the latter has more continuous functionals.

Proposition 4.1.5 Let (X, ω) be a symplectic vector space. The original topology
on X is symplectic if and only if X is a normed space and ω is strongly symplectic. ♦

Proof. For a strongly symplectic form, the original topology is clearly symplec-
tic. Conversely, suppose that the original topology is symplectic. Then, by
definition, ω[ : X→ X′ is a bĳection and it remains to show that X is a normed
space. For this purpose, endow X′ with the topology τω by declaring ω[ to be
a homeomorphism. Accordingly, the inverse ω] : X′→ X of ω[ is a continuous
linear map with respect to the topology τω on X′ and the original topology on
X. Note that the canonical evaluation map X′ × X → R can be written as

(α, x) 7→ α(x) � ω(ω](α), x). (4.1.5)

Thus, it is jointly continuous with respect to τω on X′ and the original topology
on X. However, the evaluation map is only jointly continuous (for some vector
space topology on X′) if X is normable according to [Mai63]. �

In other words, the difference between the original topology and a symplectic
topology is a measure of how much ω[ : X → X′ fails to be surjective.
By definition, symplectic topologies are closely tied to the symplectic form

and thus they are often able to detect symplectic phenomena, which are hard
to describe in the original topology. As we will see now, problems involving
subspaces of symplectic spaces can be conveniently dealt within the framework
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of symplectic topologies. A first hint of this interplay can be gathered from
the fact that all symplectic topologies have the same closed linear subspaces
according to Proposition B.1.7. This observation allows us to introduce the
following notion.

Definition 4.1.6 Let (X, ω) be a symplectic vector space. A linear subspace
V ⊆ X is called symplectically closed, or simply ω-closed, if it is closed with
respect to some (and hence all) symplectic topology on X. In a similar vein, V is
said to be symplectically dense if it is dense relative to a symplectic topology. ♦
Let (X, ω) be a symplectic vector space and let V ⊆ X be a linear subspace.

The symplectic orthogonal of V is defined by

Vω ..� {x ∈ X : ω(x , v) � 0 for all v ∈ V}. (4.1.6)

Note that Vω is the symplectic counterpart of the polar (or annihilator) of
V in the general theory of dual pairs, see (B.1.2). Hence, the results about
polars apply, in particular, to symplectic orthogonals as well. The Bipolar
TheoremB.1.8 yields the followingdescriptionof symplectic double orthogonals
and thereby generalizes previous results of Booß-Bavnbek and Zhu [BZ18,
Lemma 1.4].

Proposition 4.1.7 Let (X, ω) be a symplectic vector space. For every linear subspace
V ⊆ X, the symplectic double orthogonal Vωω coincides with the closure of V with
respect to a symplectic topology. In particular, V is symplectically closed if and only
if Vωω � V . ♦
This results in a shift of perspective as we may complement the algebraic

approach to symplectic double orthogonals by powerful tools from topology.
Illustrating this shift in philosophy, the following result is almost trivial from a
topological point of view but not so straightforward to prove in an algebraic
fashion.

Lemma 4.1.8 Every finite-dimensional subspace of a symplectic vector space is
symplectically closed. ♦

Proof. Every finite-dimensional vector space V ⊆ X is closed for whatever
vector space topology we put on X, see [Köt83, Proposition 15.5.2]. �

In the literature, it is often assumed or even “proven” that in weakly symplec-
tic Banach spaces every linear subspace V which is closed with respect to the
original topology on X satisfies Vωω � V , see for example [Kob87, Lemma 7.5.9]
or [Bam99, Lemma 3.2]. Extending a counterexample of Booß-Bavnbek and
Zhu [BZ18, Example 1.6] we can, however, show that every genuinely weakly
symplectic space has at least one closed subspace that is not symplectically
closed. The following result is analogous to the fact that the dual of a non-
reflexive Banach space contains subspaces that are both norm-closed and
weak*-dense, see [DeV78, Fact 4.1.6].
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Proposition 4.1.9 Let (X, ω) be a symplectic vector space. If ω is not strongly
symplectic, then there exists a closed proper linear subspace that is symplectically dense.
In particular, every closed linear subspace of X is symplectically closed if and only if X
is a normed space and ω is strongly symplectic. ♦

Proof. Endow X′ with the weak topology determined by the dual pair (X′,X),
see Example B.1.5. Suppose that ω is not strongly non-degenerate. Then,
there exists a non-zero continuous linear functional α ∈ X′ \ Imω[. The
subspace A ..� R · α ⊆ X′ is finite-dimensional and hence closed, see [Köt83,
Proposition 15.5.2]. Consider the subspace V ..� A◦ ⊆ X, where the polar is
taken with respect to the dual pair (X′,X). By definition, V coincides with
the kernel of α and thus it is a proper closed subspace of X. The Bipolar
Theorem B.1.8 with respect to the dual pair (X′,X) and closedness of A imply
V◦ � A◦◦ � A � R · α. Since α is not contained in the image of ω[, we have
(ω[)−1(V◦) � {0}. As in Example B.2.2, we can view ω[ : X → X′ as a weakly
continuous map between the dual pairs ω(X,X) and (X′,X) with the identity
on X as the adjoint map. Hence, Proposition B.2.3 (i) implies

Vω
� (id(V))ω � (ω[)−1(V◦) � {0}. (4.1.7)

Thus, Vωω � X. In summary, every genuinely weakly symplectic space has
at least one closed proper subspace whose symplectic closure is the whole
space. In other words, if every closed subspace is symplectically closed then
the symplectic form has to be strongly symplectic. The latter is only possible
if X is normable according to Proposition 4.1.5. Conversely, if (X, ω) is a
strongly symplectic space, then the original topology on X is symplectic and
thus every closed subspace is also symplectically closed as a consequence of
Proposition B.1.7. �

Example 4.1.10 Continuing Example 4.1.2. Every tangent vector Xm ∈ Tm M
yields a continuous Dirac-like functional δXm : Ω1(M) → R by evaluation of a
1-form on Xm . Note that δXm is singular in the sense of distributions and thus
does not lie in the image of ω[. Consider the closed subspace

V ..� (span δXm )◦ � {α ∈ Ω1(M) : α(Xm) � 0}. (4.1.8)

Since integration is not sensitive to the behavior at a single point, we find
Vω � {0} and thus Vωω � Ω1(M). In summary, V is a closed but symplectically
dense subspace. ♦

In their original article on symplectic reduction, Marsden and Weinstein
[MW74] considered symplectic forms ω on reflexive Banach spaces whose
associated musical isomorphism ω[ has a closed image. This setting, a
priori, lies between weakly and strongly symplectic Banach spaces. However,
under these assumptions, they showed that every closed subspace is also
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symplectically closed, see [MW74, Lemma on p. 123]. Hence, Proposition 4.1.9
implies that such symplectic forms are automatically strongly non-degenerate.
Let us record this observation.

Proposition 4.1.11 Let X be a reflexive Banach space endowed with a symplectic
form ω. If ω[ has closed image in X′, then ω is a strongly symplectic form. ♦

The restriction ωV of the symplectic structure ω to a closed subspace V ⊆ X
is in general degenerate, the kernel of ω[V : V → V′ being V ∩ Vω.

Definition 4.1.12 A closed subspace V of a symplectic vector space (X, ω) is
called symplectic if V ∩ Vω � {0}. ♦

Accordingly, the restriction ωV of ω to a symplectic subspace V yields a
symplectic form on V . We emphasize that the notions “symplectically closed
subspace” and “symplectic subspace” should not be confused.

Example 4.1.13 Let (X, ω) be a symplectic vector space. Assume that ω is
not strongly symplectic and consider a closed, symplectically dense, proper
subspace V ⊂ X (which always exists according to Proposition 4.1.9). For every
x ∈ Vω, the functional ω(x , ·) on X is continuous with respect to a symplectic
topology on X but it also vanishes on the symplectically dense subspace V .
Thus, it has to vanish on the whole space X, which implies x � 0. Hence,
Vω � {0} and so V ∩ Vω � {0}. In other words, every symplectically dense
subspace is a symplectic subspace. ♦

In finite dimensions, every symplectic subspace V ⊆ X induces a direct
sum decomposition X � V ⊕ Vω. The previous example shows that this is
no longer the case in infinite dimensions (for a proper symplectically dense
subspace V , the subspace V ⊕Vω � V is a proper subspace of X). The following
phenomenon, peculiar for the infinite-dimensional setting, is related. Given
a subspace V ⊆ X and v ∈ V , the functional ω(v , ·) on X is continuous with
respect to a symplectic topology τω on X. Hence, its restriction to a functional
on V is continuous relative to the subspace topology, the latter being denoted
by τω as well. This furnishes a linear map

ΓV : V 7→ (V, τω)′, v 7→ ω(v , ·). (4.1.9)

Clearly, ΓV is injective if and only if V is a symplectic subspace. In finite
dimensions, a count of dimensions shows that ΓV is bĳective if V is a symplectic
subspace. However, when passing to the infinite-dimensional setting, the
above example of a symplectically dense subspace V ⊆ X shows that ΓV is
in general not surjective (for every non-zero y ∈ X \ V , the τω-continuous
functional ω(y , ·) on V is not representable by some v ∈ V).

Proposition 4.1.14 Let (X, ω) be a symplectic vector space. For a closed subspace
V ⊆ X, the following are equivalent:
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(i) V is a symplectic subspace and the restriction of every symplectic topology on X
yields a symplectic topology on (V, ωV).

(ii) There exists an algebraic direct sum decomposition X � V ⊕ Vω.

(iii) The linear map ΓV defined in (4.1.9) is surjective. ♦

Proof. The implication (i) → (iii) is clear. Now assume that ΓV is surjective.
Then, we have

V ∩ Vω
� {x ∈ V : ΓV(v)(x) � ω(v , x) � 0 for all v ∈ V}
� {x ∈ V : α(x) � 0 for all α ∈ (V, τω)′}
� {0},

(4.1.10)

where the last equality is a consequence of the Hahn–Banach Theorem [Köt83,
Proposition 20.1.2], which implies that τω-continuous functionals on V separate
points of V ; that is, for each non-zero x ∈ V there exists α ∈ (V, τω)′ such that
α(x) � 1. Moreover, by surjectivity of ΓV , for every x ∈ X, there exists v ∈ V
such that the functionals ω(x , ·) and ω(v , ·) coincide on V . Thus, ω(x − v , ·)
vanishes on V , that is, x − v ∈ Vω. Hence, X is the algebraic direct sum of V
and Vω, which establishes the implication (iii)→ (ii). For the last implication
(ii) → (i), suppose now that X � V ⊕ Vω is an algebraic direct sum. Then,
V is a symplectic subspace, because the sum is direct. Moreover, the Hahn–
Banach Theorem [Köt83, Proposition 20.1.1] implies that the restriction map
(X, τω)′→ (V, τω)′ is surjective. Hence, using the definition of the symplectic
topology, every τω-continuous functional on V is obtained as the restriction
to V of ω(x , ·) for some x ∈ X. Write x as x � v + w with v ∈ V and w ∈ Vω.
Then, the restrictions to V of ω(x , ·) and ω(v , ·) coincide. In other words, every
τω-continuous functional on V is of the form ω(v , ·) for some v ∈ V , which
completes the proof. �

Finally, we come to what can be considered the linear toy example of
symplectic reduction. Later on, the non-linear case will be reduced to this
simple setting. Assume that a compact Lie group G acts continuously and
linearly on a symplectic vector space (X, ω). We say that the symplectic form ω
is preserved by the G-action if

ω(g · x , g · y) � ω(x , y) (4.1.11)

holds for all g ∈ G and x , y ∈ X.

Proposition 4.1.15 Let (X, ω) be a symplectic vector space and let a compact Lie
group G act continuously and linearly on X in such a way that the symplectic form ω
is preserved. Then, the subspace XG of G-invariant elements is a symplectic subspace
of X and X � (XG) ⊕ (XG)ω is an algebraic direct sum. ♦
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Proof. Let τω be a symplectic topology on X. We will denote the induced
subspace topology on XG by τω as well. According to Proposition 4.1.14, we
have to show that the linear map

ΓXG : XG 7→ (XG , τω)′, v 7→ ω(v , ·) (4.1.12)

is surjective. For this purpose, let α ∈ (XG , τω)′. The functional α can be
extended to a τω-continuous functional ᾱ defined on the whole of X according
to the Hahn–Banach theorem [Köt83, Proposition 20.1.1]. By taking the average
over the compact Lie group G, we may assume that the extension ᾱ is G-
invariant. Since ᾱ is τω-continuous, there exists y ∈ X such that ᾱ � ω(y , .).
As ᾱ and ω are G-invariant, y has to be an element of XG. Clearly, Γ(y) � α,
which shows that Γ is surjective. �

4.2 Symplectic manifolds and momentum maps

In this section, we will introduce the notion of a symplectic structure on an
infinite-dimensional manifold. While some parts will be devoted to certain gen-
eral properties of symplectic manifolds, our main focus lies on the momentum
map geometry. Although this topic is well-studied in finite dimensions and is
the subject of many textbooks, we are not aware of any previous systematic
treatments of the infinite-dimensional case, especially beyond the Banach real.
Some aspects of the theory of Hamiltonian dynamics on symplectic Banach
manifolds can be found in [CM74; RM99; MRA02].

4.2.1 Group-valued momentum maps

Much of the content of this subsection represents joint work with T. Ratiu and
will be published as part of [DR].

Definition 4.2.1 Let M be a smooth manifold. A differential 2-form ω on M
is called a symplectic form if it closed and, for every m ∈ M, the induced bilinear
form ωm : Tm M × Tm M → R is a symplectic structure on Tm M in the sense of
Definition 4.1.1. ♦

We remind the reader that, for a symplectic form ω on M, the associated
map

ω[m : Tm M → (TmM)′, v 7→ ωm(v , ·) (4.2.1)

is required to be injective for all m ∈ M. If ω[m is a topological isomorphism,
thenwe say that ω is a strongly symplectic form. According to Proposition 4.1.5,
this may be the case only when M is a Banach manifold.

Example 4.2.2 Continuing in the series of Example 4.1.2. Let P → M be a
U(1)-bundle on a closed surface M. The space C(P) of connections on P is an
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affine space modeled on the Fréchet space Ω1(M). Generalizing Example 4.1.2,
the 2-form ω on C(P) defined by the integration pairing

ωA(α, β) �
∫
M

α ∧ β (4.2.2)

for A ∈ C(P) and α, β ∈ Ω1(M) is a symplectic form. Indeed, ω is closed,
because the right-hand side of (4.2.2) is independent of A, and non-degeneracy
follows from the same arguments as in Example 4.1.2. ♦
Let (M, ω) be a symplectic manifold and let Υ be an action of a Lie group

G on M by symplectic diffeomorphism, i.e. Υ∗gω � ω for all g ∈ G. We will
refer to this setting by saying that (M, ω) is a symplectic G-manifold. In finite
dimensions, the conserved quantities corresponding to the G-symmetry of the
system are encoded in the momentummap, which is a map from M to the dual
space of the Lie algebra g of G. To make sense of the notion of a momentum
map in our infinite-dimensional manifold, we first need to explain what we
understand by the dual space of the Lie algebra. Guided by the theory of dual
pairs, we say that a dual space of g is a locally convex vector space h, which is
in duality with g through a given weakly non-degenerate jointly continuous
bilinear map κ : h × g→ R. Using notation stemming from functional analysis,
we often write the dual pair as κ(h, g). Intuitively, we think of h as the dual
vector space of g and, for this reason, we often write g∗ ..� h, even though g∗ is
not necessarily the (topological) dual of g.

Definition 4.2.3 Let (M, ω) be a symplectic G-manifold and let κ(g∗, g) be a
dual pair. A map J : M → g∗ is called a momentum map if

ξ∗ ω + κ(dJ, ξ) � 0 (4.2.3)

holds for all ξ ∈ g, where ξ∗ denotes the fundamental vector field induced by
the action of the Lie algebra g on M. ♦

For every ξ ∈ g, the map Jξ : M → R defined by Jξ(m) � κ(J(m), ξ) is called
the ξ-component of J.

Example 4.2.4 (As a generalization of Lie algebra-valued momentum maps)
A jointly continuous, non-degenerate, symmetric bilinear form κ : g × g→ R
identifies the dual g∗ with g. This leads to the concept of a Lie algebra-valued
momentum map. Although this notion can be found in the literature since the
mid-seventies, it was recently formalized by Neeb, Sahlmann, and Thiemann
[NST14, Definition 4.3]: a Lie algebra-valued momentum map is a smooth map
J : M → g such that, for all ξ ∈ g, the component functions Jξ : M → R defined
by Jξ(m) � κ(J(m), ξ) for m ∈ M satisfy

ξ∗ ω + dJξ � 0. (4.2.4)
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It is immediately clear from the definition that such a Lie algebra-valued
momentum map can be regarded as a g-valued momentum map with respect
to the dual pair κ(g, g). ♦

Example 4.2.5 Let (X, ω) be a symplectic vector space endowed with a con-
tinuous linear action of the compact finite-dimensional Lie group G. Assume
that the symplectic form is preserved by the action, which in the linear setting
simply means that

ω(g · x , g · y) � ω(x , y) (4.2.5)

for all x , y ∈ X and g ∈ G. As a consequence, the Lie algebra action of g is
skew-symmetric with respect to ω. Although g is finite-dimensional and thus
there is no ambiguity of its dual space, we continue to use the dual pair notation
κ(g∗, g). A straightforward calculation shows that the quadratic map J : X→ g∗
defined by

κ(J(x), ξ) � 1
2ω(x , ξ . x), (4.2.6)

for ξ ∈ g, is a momentum map for the G-action. ♦

Example 4.2.6 Continuing in the setting of Example 4.2.2, let P → M be a
principal U(1)-bundle on the closed surface M. The group Gau(P) of gauge
transformations of P is identified with the space C∞(M,U(1)) and thus is a
Fréchet Lie group with Lie algebra gau(P) � C∞(M). The natural pairing

κ(α, φ) �
∫
M

φ α, (4.2.7)

for α ∈ Ω2(M) and φ ∈ gau(P), identifies Ω2(M) as the dual of gau(P).
The gauge group Gau(P) acts on C(P) via gauge transformations

Gau(P) × C(P) → C(P), (λ,A) 7→ A − δRλ, (4.2.8)

where δRλ ∈ Ω1(M)denotes the right logarithmic derivative of λ ∈ C∞(M,U(1))
defined by δRλ(v) � Tmλ(v) . λ−1(m) for v ∈ Tm M. The infinitesimal action of
gau(P) coincides with minus the exterior differential d: C∞(M,R) → Ω1(M).
The curvature map

J : C(P) → Ω2(M), A 7→ −FA (4.2.9)

is the momentum map for this action with respect to the pairing κ introduced
above. Indeed, we have TAJ � −d as FA+α � FA + dα for every α ∈ Ω1(M),
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and the calculation

ω(ψ . A, α) � ω(−dψ, α)

� −
∫
M

dψ ∧ α �

∫
M

ψ ∧ dα

� κ(dα, ψ) � −κ(TAJ (α), ψ)

(4.2.10)

for ψ ∈ C∞(M) and α ∈ Ω1(M) verifies the momentummap relation (4.2.3). ♦

Even in finite dimensions, a momentummap for a symplectic action does not
need to exist. This is the case if the 1-form ξ∗ ω is only closed and not exact
for some ξ ∈ g. Since ξ∗ ω is closed, it gives rise to the period homomorphism

perξ : H1(M,Z) → R, [γ] 7→
∫
γ

(ξ∗ ω), (4.2.11)

where γ is a closed curve in M. One could argue that the topological data
encoded in the period homomorphism is conserved by the action and such
conservation laws should be encoded in the momentum map as well, cf.
Proposition 4.2.11 below. However, the classical momentum map takes values
in a continuous vector space and thus there is no space to store (discrete)
topological information. In order to capture this additional data, we introduced
in [DR] the concept of a group-valued momentum map. At the heart of this
generalized notion of a momentum map lies the observation that if the periods
of ξ∗ ω are integral, i.e. perξ([γ]) ∈ Z for all closed curves γ in M, then there
exists a smooth map Jξ : M → U(1) such that the left logarithmic derivative of
Jξ equals ξ∗ ω. The U(1)-valued component function Jξ can be viewed as a
generalized primitive of ξ∗ ω in extension of the real-valuedmaps components
of an ordinary momentum map. The additional topological information is
encoded in the winding number of Jξ.
In order to formalize these ideas, we say that two Lie groups G and H are

dual to each other if there exists a non-degenerate bilinear form κ : h × g→ R
relative to which the associated Lie algebras are in duality. We use the notation
κ(H,G) in this case. As for Lie algebras, we often write G∗ ..� H, intuitively
thinking of G∗ as the dual group, as in the theory of Poisson Lie groups [LW90].
In this thesis, we assume, for simplicity, that G∗ is abelian and write its group
operation as addition and use 0 ∈ G∗ for the identity element. The reader is
referred to [DR] for the general non-abelian case.

Definition 4.2.7 Let (M, ω) be symplectic G-manifold. A group-valued mo-
mentum map is a tuple (J, κ), where κ(G∗,G) is a dual pair of Lie groups with
abelian G∗ and J : M → G∗ is a smooth map satisfying

ξ∗ ω + κ(δJ, ξ) � 0 (4.2.12)
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for all ξ ∈ g, where δJ ∈ Ω1(M, g∗) denotes the left logarithmic derivative of J
defined by δJ(v) � J(m)−1 . Tm J(v) for v ∈ Tm M. ♦

Example 4.2.8 Consider the the action of U(1) on the torus T2 � U(1) ×U(1)
by multiplication in the first factor. This action is symplectic with respect to the
natural volume form on T2, but it does not have a classical momentum map.
On the other hand, the projection onto the second factor yields a U(1)-valued
momentum map J : T2 → U(1). ♦

Example 4.2.9 Continuing with the setting of Example 4.2.6, let P → M be a
principal U(1)-bundle on the compact connected surface M. Choose a point
m0 ∈ M. The evaluation evm0 : Gau(P) → U(1) at m0 is a morphism of Lie
groups. The kernel of evm0 is called the group of pointed gauge transformations
and is denoted by Gaum0(P). This group is a normal, locally exponential Lie
subgroup ofGau(P)due to [Nee06, Proposition IV.3.4]. The Lie algebra gaum0(P)
of Gaum0(P) consists of all φ ∈ gau(P) vanishing at m0. The integration pairing1
suggests gaum0(P)∗ � dΩ1(M) as a natural choice for the dual of gaum0(P).
However, the momentum map J for the Gau(P)-action defined in (4.2.9) does
not yield a gaum0(P)∗-valued momentum map for the Gaum0(P)-action, because
the curvature FA of A ∈ C(P) is in general not exact. Instead, the curvature
is a closed 2-form with integral periods, i.e. FA ∈ Ω2

cl,Z(M). Thus, we get a
well-defined map

Jm0 : C(P) → Ω2
cl,Z(M), A 7→ −FA (4.2.13)

and it can easily be verified that Jm0 is a Ω2
cl,Z(M)-valued momentum map for

the action of Gaum0(P). Here, we view the abelian Lie group Ω2
cl,Z(M) with

group multiplication given by addition as a dual group of Gaum0(P), because
the exact sequence

0 dΩ1(M) Ω2
cl,Z(M) H2(M,Z) 0 (4.2.14)

identifies the Lie algebra of Ω2
cl,Z(M)with dΩ1(M) � gaum0(P)∗. The Ω2

cl,Z(M)-
valued momentum map Jm0 remembers the topological type of P in form of
the Chern class of P:

c(P) �
∫
M

FA � −
∫
M

Jm0(A) ∈ Z (4.2.15)

for some A ∈ C(P). The group-valued momentum map Jm0 simplifies to a
classical momentum map if and only if the bundle P is trivial. In summary,

1 The map φ 7→ (φ − φ(m0), φ(m0)) gives a topological decomposition gau(P) ' gaum0(P) ⊕ R
which is dual to the Hodge isomorphism Ω2(M) � dΩ1(M) ⊕ H2(M).
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for non-trivial bundles P, the group-valued momentum map Jm0 carries the
topological structure of P. ♦
The example of the action of the group of pointed gauge transformations

shows that valuable topological information is contained in a group-valued
momentum map. This is especially important for actions of diffeomorphism
groups, which by their very nature are sensitive to topological properties of
the manifold. As the full story goes beyond the scope of this thesis, we give
only a brief overview and refer the reader to [DR] for further information.

Example 4.2.10 Let (M, µ) be a closed finite-dimensional manifold endowed
with a volume form µ and let (F, ω) be a symplectic manifold. The space
C∞(M, F) of smooth maps from M to F carries the symplectic form

Ωφ(X,Y) �
∫
M

ωφ(m)(X(m),Y(m)) µ(m), (4.2.16)

where φ ∈ C∞(M, F) and X,Y ∈ Tφ C∞(M, F), i.e., X,Y : M → TF satisfy
X(m),Y(m) ∈ Tφ(m)F for all m ∈ M. The natural action by precomposition of
the group Diff µ(M) of diffeomorphisms of M preserving the volume form
µ leaves Ω invariant. If ω is exact, say with primitive ϑ ∈ Ω1(F), then the
associated momentum map for the Diff µ(M)-action is given by

J : C∞(M, F) → Xµ(M)∗, φ 7→
[
φ∗ϑ

]
, (4.2.17)

where the space of volume-preserving vector fields Xµ(M) (the vector fields
whose µ-divergence vanishes) is identifiedwith the space of closed (n−1)-forms
so that Xµ(M)∗ � Ω1(M)/dΩ0(M). More generally, Gay-Balmaz and Vizman
[GV12] showed that a (non-equivariant) momentum map exists also for the
case when the pull-back of ω by all maps φ ∈ C∞(M, F) is exact; for example,
this happens when H2(M) is trivial. However, without topological conditions
on M and without exactness of ω, a classical momentummap does not exist. In
contrast, our generalized group-valued momentummap no longer takes values
in Xµ(M)∗, but instead, in the abelian group Ĥ2(M,U(1)) that parametrizes
principal circle bundles with connections modulo gauge equivalence. If (F, ω)
has a prequantum bundle (L, ϑ), then the group-valued momentum map

J : C∞(M, F) → Ĥ2(M,U(1)), φ 7→ φ∗(L, ϑ) (4.2.18)

sends φ to the pull-back bundle with connection φ∗(L, ϑ). We see that no
(topological) restrictions have to be made for M and only the integrability
condition of the symplectic form ω is needed for the existence of the group-
valued momentum map. In contrast to the classical momentum map, the
Ĥ2(M,U(1))-valuedmomentummap contains topological information. Indeed,
the Chern class of the bundle, as a class in H2(M,Z), is available from the
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generalized momentum map. In our simple example, this is just the integral
refinement of the closed 2-form φ∗ω on M.
This additional topological information encoded in the group-valued mo-

mentum map has been used in [DR] to refine and extend many well-known
geometric constructions. For example, Marsden and Weinstein [MW83] con-
struct Clebsch variables for ideal fluids using an infinite-dimensional symplectic
system similar to the one discussed above. It turns out that every vector field
represented in those Clebsch variables has vanishing helicity, i.e., such a fluid
configuration has trivial topology and no links or knots. The more general
framework of group-valued momentum maps allows to construct generalized
Clebsch variables for vector fields with integral helicity.
When applied to the space of Lagrangian immersions, the group-valued

momentummap recovers the Liouville class as the conserved topological datum.
This observation allows to realize moduli spaces of Lagrangian immersions
(and modifications thereof) as symplectic quotients.

Awide range of interesting exampleswith geometric significance are obtained
when the target F is a fiber bundle over M with structure group G and typical
fiber a symplectic homogeneous space G/H. In this case, the space F of
smooth sections of F carries a symplectic form defined in a similar way
as in (4.2.16). Note that sections of F correspond to a reduction of the G-
bundle to H. Of special interest is the case where the fiber is Sp(2n ,R)/U(n),
so that points of the symplectic manifold F correspond to almost complex
structures compatible with a given symplectic structure. In this case, the
group-valued momentum map for the group of symplectomorphisms assigns
to an almost complex structure the anti-canonical bundle. It was already
observed by Fujiki [Fuj92] and Donaldson [Don97] that the Hermitian scalar
curvature furnishes a classical momentum map for the action of the group of
Hamiltonian symplectomorphisms. Of course, the Hermitian scalar curvature is
the curvature of the anti-canonical bundle. Thus, the group-valuedmomentum
map combines the geometric curvature form with the topological data of the
anti-canonical bundle. As a consequence, for the case of a 2-dimensional base
manifold, the Teichmüller moduli space with the symplectic Weil–Petersson
form can be realized as a symplectic (orbit) reduced space. ♦

Moreover, the concept of a group-valued momentum map generalizes and
unifies several other notions such as the circle-valued momentum [PR12,
Definition 1] and the cylinder-valued momentum map [CDM88], see [DR] for
details.
Despite its general nature, a group-valued momentum map still captures

conserved quantities of the dynamical system, i.e., it has the Noether property
(see [OR03, Definition 4.3.1]). In finite dimensions, every Hamiltonian h on a
symplectic manifold (M, ω) induces a Hamiltonian flow. This no longer holds
in an infinite-dimensional context. For one thing, the map ω[ : TM → T∗M
induced by the symplectic form ω on M is, in general, only injective and not
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surjective. Hence, a Hamiltonian vector field Xh associated to a Hamiltonian
h : M → R by the relation

Xh ω + dh � 0 (4.2.19)

may not exist1. Even if Xh exists, itmay not have a unique flow. The construction
of a flow requires the solution of an ordinary differential equation on M, which
a priori is not guaranteed to exist and to be unique in infinite dimensions.
Nonetheless, for concrete examples, one can often show that a unique flowexists.
For example, in the gauge theory context studied in Section 5.6 below, existence
and uniqueness of the Hamiltonian flow is equivalent to the well-posedness of
the Cauchy problem for the Yang–Mills-Higgs theory.

Proposition 4.2.11 (Noether’s theorem) Let (M, ω) be a symplectic G-manifold
and κ(G,G∗) a dual pair of Lie groups. Assume that the G-action on M has a G∗-valued
momentum map J : M → G∗. Let h ∈ C∞(M) be a smooth function for which the
Hamiltonian vector field Xh exists and has a unique local flow. If h is G-invariant,
then J is constant along the integral curves of Xh . ♦

Proof. Let ξ ∈ g and m ∈ M. Using the defining equation for the momentum
map, we have

κ
(
(δJ)m(Xh), ξ

)
� −ωm

(
ξ∗,Xh

)
� −(dh)m(ξ∗)

� − d
dε

�����0h(exp(εξ) · m) � 0
(4.2.20)

by G-invariance of h. Since ξ ∈ g is arbitrary and the pairing κ is non-degenerate,
we conclude δJ(Xh) � 0. Hence, J is constant along integral curves of Xh . �

Fix a dual pair κ(G∗,G) of Lie groups. Let G act on the symplectic manifold
(M, ω) and assume that the action has a group-valuedmomentummap J : M→
G∗. A natural question to ask is in which sense J is equivariant. Recall that the
coadjoint action is defined with respect to the duality pairing κ by

κ(Ad∗g µ, ξ) � κ(µ,Adg−1 ξ), (4.2.21)

for g ∈ G, ξ ∈ g and µ ∈ g∗. In infinite dimensions, this relation only ensures
uniqueness of Ad∗ but not its existence, because κ is in general only weakly
non-degenerate. In the following, we will assume that Ad∗ exists.

Definition 4.2.12 A left action Υ : G × G∗→ G∗ of G on G∗ is called a coconju-
gation action if it integrates the coadjoint action, that is,

δηΥg(η . µ) � Ad∗g µ (4.2.22)

1 For example, consider a symplectic vector space (X, ω). The Hamiltonian vector field
associated to a continuous linear functional h : X → R exists if and only if h ∈ X′ lies in the
image of ω[ : X → X′.
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holds for all g ∈ G, η ∈ G∗ and µ ∈ g∗, where η . µ ∈ TηG∗ is the derivative
at the identity of the (left) translation by η ∈ G∗ on G∗ in the direction µ ∈ g∗
and δηΥg(η . µ) ∈ g∗ denotes the (left) logarithmic derivative at η of the map
Υg : G∗ → G∗ in the direction η . µ ∈ TηG∗. If, in addition, Υg(ζ + η) �
Υg(ζ) +Υg(η) holds for all ζ, η ∈ G∗, then we say that the coconjugation action
is standard.

For a given coconjugation action, we say that the group-valued momentum
map J is equivariant if it is G-equivariant as a map J : M → G∗. ♦

Example 4.2.13 The coadjoint representation is a standard coconjugation
action of G on G∗ ..� g∗. Moreover, every 1-cocycles c : G → g∗ defines a
(non-standard) coconjugation action by

(g , µ) 7→ Ad∗g µ + c(g). (4.2.23)

Recall that such affine actions play an important role for ordinary non-
equivariant momentum maps (see [OR03, Definiton 4.5.23]). ♦

Every standard coconjugation action Υ of G on G∗ defines a Poisson Lie
structure Λ : G∗ × g→ g∗ on G∗ by

Λ(η, ξ) � η−1 . TeΥη(ξ), (4.2.24)

where Υη : G→ G∗ is the orbit map through η ∈ G∗. Moreover, non-standard
coconjugation actions are related to affine Poisson structures. A group-valued
momentum map is equivariant with respect to a given standard coconjugation
action Υ if and only if it is a Poisson map with respect to the induced Poisson
structure Λ. This is essentially a consequence of the infinitesimal equivariance
property

δm J(ξ . m) � J(m)−1 .
(
ξ . J(m)

)
� Λ(J(m), ξ), (4.2.25)

see [DR] for details. In the case when G∗ � g∗ endowed with the coadjoint
representation as the standard coconjugation action, the Poisson Lie structure
defined in (4.2.24) is simply given by

Λ(η, ξ) � ad∗ξ η (4.2.26)

and the equivariance condition (4.2.25) takes the usual form

Tm J(ξ . m) � ad∗ξ
(
J(m)

)
. (4.2.27)

4.2.2 Bifurcation lemma

Let (M, ω,Υ) be a symplectic G-manifold with group-valued momentum
map J : M → G∗. Throughout this section we assume that J is G-equivariant
with respect to a given coconjugation action on G∗. The momentum map
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relation (4.2.12) can be written in the form

κ
(
δm J(v), ξ

)
� ωm

(
v , TeΥm(ξ)

)
(4.2.28)

for all m ∈ M, v ∈ Tm M and ξ ∈ g. Phrased in the language of dual pairs, this
identity shows that δm J is the adjoint of the infinitesimal action TeΥm with
respect to the dual pairs ω(Tm M, Tm M) and κ(g∗, g), cf. Appendix B.2. In partic-
ular, TeΥm and δm J are continuous with respect to the weak topologies induced
by the dual pairs ω and κ. We will represent this situation diagrammatically
as follows:

Tm M g

Tm M g∗.

×ωm

TeΥm

×κ

δm J

(4.2.29)

Taken with a grain of salt, the momentum map J “integrates” this diagram to

M G

M G∗.

×ω

Υm

×κ

J

(4.2.30)

In this sense, we may view a (group-valued) momentummap as the symplectic
adjoint of the group action.

The theory of adjoints allows us to generalize the following important result
concerning the infinitesimal momentum map geometry to infinite dimensions
(see, e.g., [OR03, Proposition 4.5.12] for the finite-dimensional version). The
polar with respect to the dual pair κ will be denoted by ⊥, cf. (B.1.1).

Lemma 4.2.14 (Bifurcation Lemma) Let (M, ω) be a symplectic G-manifold with
equivariant momentum map J : M→ G∗. Then, for every m ∈ M, the following holds:

(i) (weak version)

Ker δm J � (g . m)ω , (4.2.31a)
gm � (Im δm J)⊥. (4.2.31b)

(ii) (strong version) If, additionally, g . m � (g . m)ωω holds, then we have

(Ker δm J)ω � g . m (4.2.32a)

and
Ker δm J ∩ (Ker δm J)ω � gµ . m , (4.2.32b)
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where µ � J(m) ∈ G∗. Moreover, if Im δm J � (Im δm J)⊥⊥, then

Im δm J � g⊥m . (4.2.32c)
♦

Proof. The formulae (4.2.31) follow from the general relation Ker T � (Im T∗)⊥
relating the image of a linear operator T and the kernel of its adjoint T∗,
see Proposition B.2.3, applied to T � δm J and T � TeΥm , respectively. In a
similar vein, the general identity (Im T)⊥⊥ � (Ker T∗)⊥ of Proposition B.2.3 (iii)
implies (4.2.32a) and (4.2.32c). Using (4.2.32a), we find

Ker δm J ∩ (Ker δm J)ω � Ker δm J ∩ g . m . (4.2.33)

The equivariance property (4.2.25) of J implies that ξ . m ∈ Ker δm J if and only
if ξ . µ � 0, i.e., ξ ∈ gµ. Hence, Ker δm J ∩ g . m � gµ . m. �

Recall from Proposition 4.1.7 that the condition (g .m)ωω � g .m is equivalent
to g . m being symplectically closed. In particular, by Lemma 4.1.8, every in-
finitesimal orbit of the action of a finite-dimensional Lie group is symplectically
closed.
The Bifurcation Lemma is a helpful tool to study the bifurcations (surprise,

surprise!) of Hamiltonian flows in the neighborhood of points with non-trivial
stabilizer. With view towards symplectic reduction, its main significance is the
existence of a symplectic slice at the infinitesimal level.
Proposition 4.2.15 Let (M, ω) be a symplectic G-manifold with equivariant momen-
tum map J : M→ G∗. Let m ∈ M and µ � J(m) ∈ G∗. Assume that the stabilizer Gµ

of µ is a Lie subgroup of G and that g . m is symplectically closed. Then, for every
slice S at m for the induced Gµ-action,

E ..� TmS ∩ Ker δm J (4.2.34)

is a symplectic subspace of (Tm M, ωm) in the sense of Definition 4.1.12. ♦

Proof. Using (4.2.31) and Proposition B.1.3 (iv), we obtain

E ∩ Eω � TmS ∩ Ker δm J ∩ Eω

� TmS ∩ (g . m)ω ∩ Eω

� TmS ∩ (g . m + E)ω .
(4.2.35)

Since Ker δm J ⊆ g . m + E, the anti-monotony of the symplectic orthogonal, see
Proposition B.1.3 (ii), implies E ∩ Eω ⊆ (Ker δm J)ω. Thus, using the Bifurcation
Lemma 4.2.14 (ii), we obtain

E ∩ Eω ⊆ TmS ∩ Ker δm J ∩ (Ker δm J)ω � TmS ∩ gµ . m � {0}, (4.2.36)
1 The momentum map fails to be a submersion exactly at points with non-trivial stabilizer.
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because S is a slice for the Gµ-action. Hence, E is a symplectic subspace of
(Tm M, ωm). �

By G-equivariance of J, we have a chain complex

0 gµ Tm M g∗ 0.TeΥm δm J (4.2.37)

Since, for every Gµ-slice S at m, TmS is a topological complement of gµ . m in
Tm M, the subspace E defined in (4.2.34) is identified with the middle homology
group of this complex. If the assumptions of the Strong Bifurcation Lemma
hold, then the other homology groups are given by gm and g∗m according
to (4.2.32c). Thus, if (4.2.37) is a Fredholm complex, then its Euler characteristic
is given by

dim gm − dim E + dim g∗m � 2 dim gm − dim E. (4.2.38)

According to Proposition 4.2.15, this number is always even. Keeping in mind
that the Euler characteristic of (4.2.37) coincides (up to a sign) with the virtual
dimension of the symplectic quotient, this observation is a first indication that
the latter carries a symplectic structure.

Remark 4.2.16 Let us rephrase the result of Proposition 4.2.15 in a more
familiar form by connecting it to the classical Witt–Artin decomposition. In
the setting of Proposition 4.2.15, assume additionally that Gµ is a split Lie
subgroup of G. Then, there exists a topological complement q of gµ in g. Since
S is a slice at m for the Gµ-action, we have a topological decomposition

Tm M � gµ . m ⊕ TmS. (4.2.39)

Assume that E has a topological complement F′ in TmS. Since q . m ∩ E � {0},
q . m is a subspace of F′. Assume that q . m has a topological complement F in
F′. Then we obtain the topological decomposition:

Tm M �

g.m︷          ︸︸          ︷
q . m ⊕ ︸      ︷︷      ︸

Ker δm J

gµ . m ⊕ E ⊕ F. (4.2.40)

For a classical momentum map, this decomposition is often referred to as the
Witt–Artin decomposition (see e.g. [RS12, Equation 10.2.11]). We emphasize
that, in addition to the conditions of Proposition 4.2.15, the derivation of the
Witt–Artin decomposition in infinite dimensions relied on several additional
assumptions concerning the existence of topological complements.

Let us now pass to the corresponding decomposition of g∗. For this purpose,
suppose that gm is topologically complemented in gµ so that we get the
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topological decomposition

g � q ⊕ m ⊕ gm︸  ︷︷  ︸
gµ

. (4.2.41)

If this decomposition is weakly continuous with respect to the dual pair κ,
then, by [Köt83, Section 20.5], we obtain a dual decomposition of g∗:

g∗ � q∗ ⊕ m∗ ⊕ g∗m , (4.2.42)

where q∗ is the annihilator of gµ in g and m∗ is the annihilator of gm in g∗µ.
Moreover, assume that Im δm J � (Im δm J)⊥⊥. Then, by Lemma 4.2.14 (ii), we
have Im δm J � g⊥m � q∗ ⊕ m∗. Hence, in summary, we obtain the decomposition

g∗ � q∗ ⊕ m∗︸  ︷︷  ︸
Im δm J

⊕ g∗m . (4.2.43)

Accordingly, δm J yields, by restriction, a bĳection between q .m ⊕ F and q∗ ⊕m∗,
cf. (4.2.40). Due to the equivariance property (4.2.25), the restriction of δm J to
q . m yields the map

Iµ : q . m 7→ q∗ ⊕ m∗, ξ . m 7→ µ−1 . (ξ . µ) � Λ(µ, ξ). (4.2.44)

Since q is a complement of gµ, the map Iµ is injective. In the case when G∗ � g∗

endowed with the coadjoint action as the coconjugation action, Iµ is given by

Iµ : q . m 7→ q∗ ⊕ m∗, ξ . m 7→ ad∗ξ µ, (4.2.45)

see (4.2.27). Then, Iµ takes values in q∗, because ad∗ξ µ ∈ g⊥µ � q∗ for every
ξ ∈ g. If q is finite-dimensional, then a dimension count shows that Iµ yields
an isomorphism between q . m and q∗. Moreover, in this case, δm J restricts to a
bĳection between F and m∗. We do not know if this observation generalizes to
infinite-dimensional q and/or to other coconjugation actions. ♦

Example 4.2.17 For the action of the group of gauge transformations on the
space of connections on a principal U(1)-bundle P discussed in Example 4.2.6,
we have found that the infinitesimal action d: Ω0(M) → Ω1(M) has δαJ �

d: Ω1(M) → Ω2(M) as its adjoint. The L2-orthogonal Hodge decompositions

Ω1(M) � d C∞(M) ⊕ d∗Ω2(M) ⊕ H1(M,R), (4.2.46)
Ω2(M) � dΩ1(M) ⊕ H2(M,R) (4.2.47)

show that the closedness conditions g . m � (g . m)ωω and Im δm J � (Im δm J)⊥⊥
hold for the case under consideration. The identities (4.2.32a) and (4.2.32c) of
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the Strong Bifurcation Lemma are equivalent to

(d C∞(M) ⊕ H1(M,R))ω � d C∞(M), (4.2.48)
dΩ1(M) � H0(M,R)⊥. (4.2.49)

These identities can be verified also by hand using a simple application of
Hodge theory.
Let us now determine the symplectic subspace E of Proposition 4.2.15 for

this example. The orbit through A ∈ C(P) of the Gau(P)-action is given by

Gau(P) · A � A + Ω1
cl,Z(M), (4.2.50)

where Ω1
cl,Z(M) denotes the space of closed 1-forms with integral periods.

According to the Hodge decomposition (4.2.46), a natural choice of a slice S at
A is given by S � A + U , where U is a sufficiently small neighborhood of 0 in
d∗Ω2(M) ⊕ H1(M,R). For the subspace defined in (4.2.34), we hence obtain

E � TAS ∩ Ker δAJ �
(
d∗Ω2(M) ⊕ H1(M,R)

)
∩ Ker d ' H1(M,R). (4.2.51)

It is a simple exercise to verify that E is a symplectic subspace, in accordance
with Proposition 4.2.15. Moreover, the restriction of the symplectic structure ω
on TA

(
C(P)

)
to E coincides with the intersection form on H1(M,R):(

[α], [β]
)
7→

∫
M

α ∧ β. (4.2.52)
♦

4.2.3 Normal form of a momentum map

Starting with the work of Arms [Arm81] on the Yang–Mills equation and
of Fischer, Marsden, and Moncrief [FMM80] on the Einstein equation, it
became clear that the solution spaces of field theories have singularities at
points with internal symmetry. Shortly thereafter, a similar relation between
internal symmetries and singularities of the momentum map was established
in [AMM81]. The occurrence of these singularities of momentum map level
sets was later explained by Marle [Mar83; Mar85] and Guillemin and Sternberg
[GS84], who proved normal form theorems for momentum maps. These
considerations were in a finite-dimensional setting or had a formal nature in the
sense that the problems of the infinite-dimensional contextwere largely ignored.
The aim of this section is to use and refine the construction of Section 3.1 to
establish a normal form result for equivariant momentum maps in infinite
dimensions.

At this point, the reader might want to recall the definition of an equivariant
normal form, cf. Definition 3.1.3. In a similar spirit, we define the concept of a
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normal form of an equivariant momentum map.

Definition 4.2.18 An abstract Marle–Guillemin–Sternberg (MGS) normal form
is a tuple (H,X, g∗, Ĵ, Jsing, ω̄) consisting of:

(i) an abstract equivariant normal form (H,X, g∗, Ĵ, Jsing) in the sense of
Definition 3.1.3 satisfying Coker � h∗, where Coker refers to the space in
the decomposition (3.1.1), g is a Lie algebra with a dual pair κ(g∗, g) and
the Lie algebra h of H is identified with a subalgebra of g,

(ii) a closed H-invariant 2-form1 ω̄ on U ∩ Ker such that ω̄0 is a symplectic
form on Ker, where U and Ker are as in Definition 3.1.3.

Moreover, we require that the momentum map identity

ω̄x
(
ξ . x , w

)
+ κ

(
Tx Jsing(w), ξ

)
� 0 (4.2.53)

holds for all x ∈ U ∩ Ker, w ∈ Ker and ξ ∈ h. An abstract MGS normal form is
called strong if ω̄x � ω̄0 holds and Jsing satisfies

κ
(
Jsing(x), ξ

)
�

1
2 ω̄0(x , ξ . x) (4.2.54)

for all x ∈ U ∩ Ker and ξ ∈ h. ♦
The important additional property of an MGS normal form in comparison

to an abstract equivariant normal form is the fact that the singular part Jsing
takes values in the dual of the Lie algebra of H and that it is tamed by the
2-form ω̄ using the momentum map identity (4.2.53). Clearly, (4.2.54) is the
integrated version of (4.2.53). Note that we do not require ω̄ to be symplectic
away from the origin. Nonetheless, this is automatically the case if Ker is
finite-dimensional, because then the space of invertible operators is open in
the space of all linear maps. Moreover, in this case, one can use the Darboux
theorem to pass from an MGS normal form to a strong one in the following
sense.

Proposition 4.2.19 Let (H,X, g∗, Ĵ, Jsing, ω̄) be an abstract MGS normal form. If
the subspace Ker occurring in the decomposition (3.1.1) is finite-dimensional, then
there exists an H-equivariant local diffeomorphism ψ of X such that (H,X, g∗, Ĵ, Jsing ◦
ψ, ψ∗ω̄) is a strong MGS normal form. ♦

Proof. Since Ker is finite-dimensional and ω̄0 is symplectic, we may shrink U
such that ω̄x is a symplectic form on Ker for all x ∈ U ∩ Ker. The classical
Darboux theorem for finite-dimensional symplectic manifolds yields a local
diffeomorphism ψ of U ∩ Ker satisfying ψ(0) � 0 and T0ψ � idKer such that

ψ∗ω̄ � ω̄0. (4.2.55)
1 That is, ω̄x is an antisymmetric H-invariant bilinear form on Ker for every x ∈ U ∩ Ker.



4. Singular Symplectic Reduction 91

By extending ψ to the whole of X using the identity map on Coim, we may
regard ψ as a local diffeomorphism of X. As H is a compact Lie group,
we may furthermore choose ψ to be H-equivariant. The momentum map
relation behaves naturally with respect to equivariant symplectomorphisms
and thus Jsing ◦ ψ is a momentum map for the linear H-action on Ker with
respect to the constant symplectic form ω̄0. Since, in finite dimensions, the
momentum map is unique (up to a constant which is fixed by the condition
Jsing ◦ ψ(0) � Jsing(0) � 0), we have

κ
(
Jsing ◦ ψ(x), ξ

)
�

1
2 ω̄0

(
x , ξ . x

)
(4.2.56)

for every x ∈ Ker and ξ ∈ h. In summary, Jsing ◦ ψ is in the strong MGS normal
form according to (4.2.54). �

For an MGS normal form (H,X, g∗, Ĵ, Jsing) and a Lie group Gµ with H ⊆ Gµ,
define the smooth map JNF : Gµ ×H U → Gµ ×H g

∗ by

JNF([g , x1, x2]) � [g , Ĵ(x2) + Jsing(x1, x2)] (4.2.57)

for g ∈ Gµ, x1 ∈ U ∩ Ker and x2 ∈ U ∩ Coim.

Definition 4.2.20 Let (M, ω) be a symplectic G-manifold with equivariant
momentum map J : M → G∗. Let m ∈ M. Assume that the stabilizer Gµ of
µ � J(m) ∈ G∗ is a Lie subgroup of G. We say that J can be brought into the MGS
normal form (H,X, g∗, Ĵ, Jsing, ω̄) at m if H � Gm and if there exists a linear slice S
at m for the Gµ-action, a Gm-equivariant diffeomorphism ιS : X ⊇ U → S ⊆ M
and a Gm-equivariant chart ρ : G∗ ⊇ V′→ V ⊆ g∗ at µ, which bring J into the
equivariant normal form JNF according to Definition 3.1.3 and for which the
restriction of ι∗Sω to Ker coincides with ω̄. ♦

If J can be brought into theMGS normal form (Gm ,X, g∗, Ĵ, Jsing, ω̄) at m ∈ M,
then according to Definition 3.1.3 there exists a commutative diagram of the
type

M G∗

Gµ ×Gm X ⊇ Gµ ×Gm U Gµ ×Gm V ⊆ Gµ ×Gm g
∗,

J

JNF

χT ◦ (idGµ×ιS) ρT (4.2.58)

where JNF was defined in (4.2.57).

Remark 4.2.21 Assume that the equivariant momentum map J : M → G∗ can
be brought into an MGS normal form (H,X, g∗, Ĵ, Jsing, ω̄) at m ∈ M using the
maps χT : Gµ ×Gm S → M, ιS : X ⊇ U → S and ρ : G∗ ⊇ V′→ V ⊆ g∗. Under
the natural isomorphisms T0ιS : X→ TmS and Tµρ : TµG∗→ g∗, theWitt–Artin
decomposition (cf. Remark 4.2.16) yields the following identification of the
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spaces occurring in the MGS normal form:

Tm M � gµ . m ⊕

X︷               ︸︸               ︷
E︸︷︷︸

Ker

⊕ F ⊕ q . m︸    ︷︷    ︸
Coim

(4.2.59)

and
g∗ � q∗ ⊕ m∗︸  ︷︷  ︸

Im

⊕ g∗m︸︷︷︸
Coker

. (4.2.60)

Moreover, under these identifications, suppressing ιS, the diagram (4.2.58)
takes the form

M G∗

Gµ ×Gm (E ⊕ F ⊕ q . m) Gµ ×Gm g
∗ ,

J

χT

JNF

ρT (4.2.61)

where JNF is given by JNF([g , e , f , ξ] . m) � [g , Ĵ( f , ξ . m) + Jsing(e , f , ξ)]. Fur-
thermore, the restriction of the symplectic form ωm on Tm M to E is identified
with the symplectic form ω̄0 on Ker. ♦

Remark 4.2.22 (Classical Marle–Guillemin–Sternberg normal form) The clas-
sical Marle–Guillemin–Sternberg normal form in finite dimensions (see, e.g.,
[OR03, Theorem 7.5.5]) has a slightly different form and can be summarized in
the following commutative diagram:

M g∗

G ×Gm (E ×m∗) G ×Gm g
∗ ,

J

JMGS

Λ (4.2.62)

where JMGS and Λ are defined by

JMGS([g , e , η]) � [g , η + JE(e)] (4.2.63)

and Λ([g , ν]) � Ad∗g−1(µ + ν), respectively. Here, JE : E→ g∗m is the quadratic
momentum map for the symplectic linear Gm-action on E, see Example 4.2.5.
The most important difference is that the classical MGS normal form splits

off the G-action while the Gµ-action lies in the focus of our normal form. With
view towards symmetry reduction, our formulation has advantages over the
traditional approach, because in the context of symplectic reduction the group
Gµ and not G is the major player. In the classical MGS normal form m∗ is
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identified with F via the map m∗ 3 ν 7→ f ∈ F implicitly defined by

κ(ν, ξ) � ωm(ξ . m , f ) (4.2.64)

for ξ ∈ m. As already noted in Remark 4.2.16, we do not know whether
this isomorphism generalizes to infinite dimensions. Furthermore, in the
classical MGS normal form the non-linear term JE only depends on points
in Ker while our normal form is weaker in this regard, allowing the singular
part Jsing to additionally depend on points in q and F. Finally, the classical
Marle–Guillemin–Sternberg normal form brings both the symplectic structure
and the momentum map simultaneously into a normal form, while we are
mostly concerned with the momentummap. In fact, we do not have any control
over the symplectic form in the Coim-direction. ♦

The following result is of fundamental importance for the construction of an
MGS normal form.

Lemma 4.2.23 Let (M, ω) be symplectic G-manifold with equivariant momentum
map J : M→ G∗. Let m ∈ M be such that g . m is symplectically closed. Assume that
J can be brought into the Gµ-equivariant normal form (Gm ,X, g∗, Ĵ, Jsing) at m using
the maps χT : Gµ ×Gm S→ M and ρ : G∗ ⊇ V′→ g∗ in the sense of Definition 3.1.3.
If, for all ν ∈ V′ ⊆ G∗, the left derivative

TL
νρ : g∗→ g∗, η 7→ Tνρ(ν . η) (4.2.65)

of ρ at ν restricts to the identity on g∗m , then J can be brought into the MGS normal
form (Gm ,X, g∗, Ĵ, Jsing, ω̄), where ω̄ � (ι∗Sω)�Ker. ♦

Proof. First, note that the commutative diagram (4.2.58) yields by restriction
the following commutative diagram:

M G∗

U ∩ Ker g∗m .

J

Jsing

ιS ρ−1 (4.2.66)

Moreover, by (A.0.4), we have δρ(ν)(ρ−1) ◦ TL
νρ � idg∗ . Thus, δρ(ν)(ρ−1) : g∗→ g∗

restricts to the identity on g∗m for all ν ∈ V′. Hence, for every x ∈ U ∩ Ker,
w ∈ Ker and ξ ∈ gm , we obtain

κ
(
Tx Jsing(w), ξ

)
� κ

(
δρ ◦J◦ιS(x)(ρ−1) ◦ Tx Jsing(w), ξ

)
� κ

(
διS(x) J ◦ Tx ιS(w), ξ

)
� ωιS(x)

(
Tx ιS(w), ξ . ιS(x)

)
� ωιS(x)

(
Tx ιS(w), Tx ιS(ξ . x)

)
� (ι∗Sω)x

(
w , ξ . x

)
,

(4.2.67)
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where we used the momentum map relation and Gm-equivariance of ιS. Thus,
if we let ω̄ � (ι∗Sω)�Ker, then (4.2.53) holds. Moreover, ω̄0 coincides with the
restriction of ωm to the subspace E � TmS ∩ Ker δm J (under the isomorphism
T0ιS : X→ TmS). Hence, ω̄0 is a symplectic form according to Proposition 4.2.15.
In summary, J is brought into theMGS normal form (Gm ,X, g∗, Ĵ, Jsing, ω̄) using
the maps χT and ρ. �

The assumption in Lemma 4.2.23 concerning the chart ρ is rather easy to
satisfy. For example, in the case when G∗ � g∗, we can simply take ρ to be the
translation by µ. More generally, if G∗ has an exponential map expG∗ which
is a local diffeomorphism, then ρ ..� exp−1

G∗ satisfies TL
νρ � idg∗ , because G∗ is

abelian. This covers the cases we are interested in and thus, for simplicity, we
will assume in the sequel that TL

νρ � idg∗ .

Remark 4.2.24 The proof of Lemma 4.2.23 shows that the momentum map
relation (4.2.53) holds even for all x ∈ U and not just x ∈ U ∩Ker (with ω̄ being
a 2-form on U). If Ker is finite-dimensional, this observation can be combined
with a slightly modified version of Proposition 4.2.19 to show that Jsing even
satisfies

κ
(
Jsing(x1, x2), ξ

)
�

1
2 ω̄(0,x2)(x1, ξ . x1) (4.2.68)

for all (x1, x2) ∈ U and ξ ∈ gm . Here, we used the property Jsing(0, x2) � 0
coming from the equivariant normal form to fix the constant of integration.
We see that Jsing(x1, x2) is quadratic in x1 for all x2. In comparison to the
classical MGS normal form, the only difference is that the quadratic form
x1 7→ ω̄(0,x2)(ξ . x1, x1) on Ker still depends on x2. ♦
With the help of Lemma 4.2.23, we can upgrade an equivariant normal form

of J in the sense of Definition 3.1.3 to an MGS normal form.

Theorem 4.2.25 (Marle–Guillemin–Sternberg Normal Form) Let (M, ω) be
symplectic G-manifold with equivariant momentum map J : M → G∗. Let m ∈ M
and µ � J(m) ∈ G∗. Assume that there exists a chart ρ : G∗ ⊇ V′→ g∗ at µ which
linearizes the Gm-action on G∗ and which satisfies TL

νρ � idg∗ for every ν ∈ V′.
Moreover, assume that g . m is symplectically closed and that the image of δm J is
weakly closed. If J satisfies the assumptions of Theorem 3.1.6 (or of one of the other
equivariant normal form theorems of Section 3.1), then J can be brought into an MGS
normal form. ♦

Proof. Theorem 3.1.6 (or its other variations in Section 3.1) shows that J can be
brought into an equivariant normal form in a neighborhood of m by deforming
the chart ρ using the local diffeomorphism φ defined in (2.2.9). A simple
inspection shows that the restriction of T(y1 ,y2)φ : Y → Y to Coker T is the
identity map for all (y1, y2) ∈ V (continuing in the notation of the proof of
Theorem 2.2.6). Since Im δm J is a weakly closed subspace of g∗, the strong
Bifurcation Lemma 4.2.14 (ii) shows that in our setting Coker T is identified
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with g∗m . Hence, the chart ρ′ � ρ◦φ−1 satisfies the assumptions of Lemma 4.2.23,
which implies that J can be brought into an MGS normal form. �

We note that, in finite dimensions and for classical momentum maps, all
assumptions of Theorem 4.2.25 are met automatically except for properness of
the action.

Remark 4.2.26 The proof of Theorem 4.2.25 is constructive in the sense that
the diffeomorphisms bringing J into the MGS normal form have explicit and
relatively simple expressions. In contrast, the usual proof of the classical MGS
normal form theorem relies on the relative Darboux theorem, which makes it
difficult1 to determine the deforming diffeomorphism (both analytically as well
as numerically). Thus, one would expect that our proof of the MGS normal
form theorem can be used to design new numerical discretization algorithms
which preserve the momentummap geometry. This will be explored in further
work. ♦

Recall from Proposition 4.2.15 that Ker ' E can be identified with the middle
homology group of the complex

0 gµ Tm M g∗ 0,TeΥm δm J (4.2.69)

where Υm : G → M denotes the orbit map as before. If this complex is
Fredholm, then Ker ' E is finite-dimensional and every MGS normal form can
be upgraded to a strongMGS normal form according to Proposition 4.2.19. This
is, in particular, the case for elliptic actions so that Theorems 3.1.12 and 4.2.25
yield the following MGS normal form theorem.

Theorem 4.2.27 (MGS Normal Form — elliptic version) Let G be a tame Fréchet
Lie group, let G∗ be a geometric dual Lie group and let (M, ω,Υ) be a symplectic
geometric tame Fréchet G-manifold with equivariant momentum map J : M → G∗.
Let m ∈ M and µ � J(m). Assume that the following conditions hold:

(i) The stabilizer subgroup Gµ of µ is a geometric tame Fréchet Lie subgroup of G.

(ii) The induced Gµ-action on M is proper and admits a slice S at m.

(iii) The induced Gm-action on G∗ can be linearized at µ using a chart ρ : G∗ ⊇
V′→ g∗ satisfying TL

νρ � idg∗ for every ν ∈ V′.

(iv) The chain

0 gµ Ts M g∗ 0TeΥs δs J (4.2.70)

1 Even in the simplest cases, it is usually impossible to integrate in closed-form the differential
flow equation underlying Moser’s method.
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of linear maps parametrized by s ∈ S is a chain of differential operators, which
constitute an elliptic complex at m.

(v) The subspace g . m ⊆ Tm M is symplectically closed and the image of δm J is
weakly closed in g∗.

Then, J can be brought into a strong MGS normal form at m. ♦

Example 4.2.28 Let us use Theorem 4.2.27 to show that the momentum map
for the action of the group of gauge transformations on the space of connections
on a principal U(1)-bundle P → M over a surface M can be brought into an
MGS normal form. By Example 4.2.6, the map J : C(P) → Ω2(M) assigning the
curvature FA to a connection A ∈ C(P) is the momentum map for the Gau(P)-
action on C(P). Let µ ∈ Ω2(M). Since Gau(P) acts trivially on Ω2(M), the
stabilizer group of µ coincides with the whole group Gau(P), which clearly is a
geometric tame Fréchet Lie group. As discussed in Example 4.2.17, the Gau(P)-
action is proper and admits a slice S at every A ∈ C(P) of the form S � A + U ,
where U is a sufficiently small neighborhood of 0 in d∗Ω2(M) ⊕ H1(M,R). In
this case, the chain (4.2.70) is independent of B ∈ S and coincides (up to a sign)
with the elliptic de Rham complex

0 Ω0(M) Ω1(M) Ω2(M) 0.d d (4.2.71)

The closedness assumptions of the subspaces g . m and Im δm J were checked in
Example 4.2.17 for themodel under consideration. In summary, Theorem 4.2.27
implies that J can be brought into a strong MGS normal form. In the present
setting, the normal form is particularly simple. Indeed, for every connection A,
the curvature map restricted to the slice S at A is already in the MGS normal
form

J : S � A + U 7→ Ω2(M), A + α1 + α2 7→ FA + dα1, (4.2.72)

where α1 ∈ d∗Ω2(M) and α2 ∈ H1(M,R). We read off that the linear part of J
is given by the isomorphism d: d∗Ω2(M) → dΩ1(M) and that the singular part
Jsing vanishes. The latter should not come as a surprise as the Gau(P)-action
on C(P) has only one orbit type, namely U(1). ♦

The linear action of a compact group on a symplectic vector space provides
another situation where we can show the existence of an MGS normal form. To
see this, let (X, ω) be a symplectic Fréchet space endowed with a continuous
linear symplectic action of the compact finite-dimensional Lie group G. Recall
from Example 4.2.5, that in this case, the momentum map J : X → g∗ for the
G-action is given by

κ(J(x), ξ) � 1
2ω(x , ξ . x), (4.2.73)
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for ξ ∈ g. Moreover, J is equivariant with respect to the coadjoint action of G
on g∗.

Theorem 4.2.29 Let (X, ω) be a symplectic Fréchet space endowed with a continuous
linear symplectic action of the compact Lie group G. Then, the equivariant momentum
map J : X → g∗ defined in (4.2.73) can be brought into a strong MGS normal form at
every point of X. ♦

Proof. Let x ∈ X and let µ � J(x). The stabilizer subgroup Gµ is a compact Lie
subgroup of G, because G is compact and thus finite-dimensional. Therefore,
the Gµ-action on X is proper and, by Theorem A.2.4, it admits a linear slice at
x. Since g is finite-dimensional, the image of Tx J is (weakly) closed and the
orbit g . x is symplectically closed due to Lemma 4.1.8. Define ρ : g∗ → g∗ by
ρ(ν) � ν − µ. Clearly, ρ is Ad∗Gµ

-invariant and satisfies Tνρ � idg∗ for every
ν ∈ g∗. Now, Theorem 3.1.9 and Theorem 4.2.25 imply that J can be brought
into an MGS normal form at x. Since the symplectic form ω on X is constant,
an argument similar to the one in the proof of Proposition 4.2.19 shows that
Jsing satisfies (4.2.54). �

4.3 Singular symplectic reduction

In this section, we are concerned with the geometric structure of the symplectic
quotient

M̌µ ≡ M //µ G � J−1(µ)/Gµ. (4.3.1)

In finite dimensions, the geometry of M̌µ attracted a lot of attention startingwith
the work of Meyer [Mey73] andMarsden andWeinstein [MW74] on the regular
case and of Arms, Gotay, and Jennings [AGJ90] and Sjamaar and Lerman
[SL91] on the singular case. Extending these classical structure theorems to our
infinite-dimensional context, we will show that the decomposition of M̌µ into
orbit types is a stratification and that each stratum carries a natural symplectic
structure. These results are obtained under the standing assumption that J can
be brought into an MGS normal form. Moreover, we will see that the frontier
condition of the stratification relies on the strong MGS normal form combined
with a certain approximation property.

We continue to work in the setting of the previous section. Let (M, ω) be a
symplectic G-manifold with proper G-action and with equivariant momentum
map J : M → G∗, where κ(G∗,G) is a dual pair and G∗ carries a given cocon-
jugation action. Recall from Appendix A.2 that M decomposes into the orbit
type subsets M(H) and that M(H) are submanifolds of M given that the group
action admits a slice at every point. The following is the symplectic version of
this fact.

Proposition 4.3.1 Let (M, ω) be a symplectic G-manifold with proper G-action and
with equivariant momentum map J : M → G∗. Let µ ∈ G∗. If J can be brought into
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an MGS normal form at every point of Mµ
..� J−1(µ), then, for every orbit type (H) of

the Gµ-action on Mµ, the set

M(H),µ ..� M(H) ∩ J−1(µ) (4.3.2)

is a smooth submanifold of M. Moreover, there exists a unique smooth manifold
structure on the quotient

M̌(H),µ ..� M(H),µ/Gµ (4.3.3)

such that the natural projection π(H),µ : M(H),µ → M̌(H),µ is a smooth surjective
submersion. Furthermore, for every m ∈ M(H),µ, the projection Tmπ(H),µ restricts to
an isomorphism

Tmπ(H),µ : EGm → T[m]M̌(H),µ , (4.3.4)

where EGm denotes the set of fixed points of E � TmS ∩ Ker δm J ⊆ Tm M under the
Gm-action and S is the Gµ-slice in the MGS normal form at m. ♦

Proof. Let m ∈ M(H),µ. By assumption, J can be brought into an MGS normal
form (Gm ,X, g∗, Ĵ, Jsing) using maps χT : Gµ ×Gm S→ M and ρ : G∗ ⊇ V′→ g∗.
Thus, we have

J ◦ χT ◦ (idGµ × ιS)
(
[g , x1, x2]

)
� ρT

(
[g , Ĵ(x2) + Jsing(x1, x2)]

)
(4.3.5)

for g ∈ Gµ and (x1, x2) ∈ U ⊆ X, where ιS : X ⊇ U → S is the slice diffeomor-
phism. Since (ρT)−1(µ) � Gµ ×Gm {0} and since Ĵ is an isomorphism, we find
that χT identifies the level set Mµ � J−1(µ)with the set

Gµ ×Gm

{
x1 ∈ U ∩ Ker : Jsing(x1) � 0

}
. (4.3.6)

Moreover, χT is Gµ-invariant and so M(H),µ is locally identified with

Gµ ×Gm

(
U(H) ∩ Ker ∩ J−1

sing(0)
)
, (4.3.7)

where for U(H) the stabilizer is taken with respect to the linear Gm-action but
conjugation is understood with respect to Gµ. Since the action is proper, we
have S(H) � SGm and therefore U(H) � UGm . Hence, for every x1 ∈ U(H) ∩ Ker,
w ∈ Ker and ξ ∈ gm , we find

κ
(
Tx1 Jsing(w), ξ

)
� −ω̄x1(ξ . x1, w) � 0 (4.3.8)

and so Tx1 Jsing(w) � 0. By possibly shrinking U, wemay assume that UGm ∩Ker
is convex. Now the Fundamental Theorem of Calculus [Nee06, Proposition
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I.2.3.2] implies

Jsing(x1) � Jsing(0) +
1∫

0

T(tx1) Jsing(x1) dt � 0 (4.3.9)

for every x1 ∈ UGm ∩ Ker. Thus, in summary, M(H),µ is locally identified with

Gµ ×Gm

(
U(H) ∩ Ker ∩ J−1

sing(0)
)
� Gµ ×

(
UGm ∩ Ker

)
, (4.3.10)

from which we conclude that M(H),µ is a smooth submanifold of M. More-
over, M̌(H),µ is locally identified with UGm ∩ Ker and so carries a smooth
manifold structure modeled on KerGm . In these coordinates, the projection
π(H),µ : M(H),µ → M̌(H),µ corresponds to the projection onto the second fac-
tor and thus is a smooth submersion. Finally, note that the Gm-equivariant
isomorphism T0ιS : X → TmS identifies KerGm with EGm . �

Remark 4.3.2 In contrast to the regular case, the level set Mµ is in general not
a smooth manifold. Indeed, as we have seen in (4.3.6), Mµ is locally modeled
on spaces of the type Ker∩J−1

sing(0). If the MGS normal form is strong, then
(Jsing)�Ker is a quadratic form and thus Mµ has conic singularities1. ♦

Proposition 4.3.3 In the setting of Proposition 4.3.1, assume additionally that g . m
is symplectically closed for every m ∈ M(H),µ. Then, there exists a symplectic form
ω̌(H),µ on M̌(H),µ uniquely determined by

π∗(H),µ ω̌(H),µ � ι∗(H),µω, (4.3.11)

where ι(H),µ : M(H),µ → M is the natural injection. ♦

Proof. To proof that (4.3.11) uniquely defines a 2-form ω̌(H),µ on M̌(H),µ it
suffices to show that ι∗(H),µω is Gµ-invariant and horizontal with respect to
the smooth submersion π(H),µ. Invariance under Gµ is clear, because ι(H),µ is
Gµ-equivariant and ω is G-invariant. Furthermore, for every ξ ∈ gµ, m ∈ M(H),µ
and v ∈ TmM(H),µ, we find(

ι∗(H),µω
)

m(ξ . m , v) � ωm(ξ . m , v) � −κ(δm J(v), ξ) � 0, (4.3.12)

because J is constant on M(H),µ. In summary, ι∗(H),µω is Gµ-invariant and
horizontal, and thus descends to a smooth 2-form ω̌(H),µ on M̌(H),µ which,
by definition, satisfies (4.3.11). Moreover, the identity (4.3.11) shows that

1 The fact that the level set of the momentummap has conic singularities is well-known in finite
dimensions (see, e.g., [OR03, Proposition 8.1.2]) and was first observed by Arms, Marsden,
and Moncrief [AMM81, Theorem 5].
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ω̌(H),µ is closed. It remains to prove that ω̌(H),µ is non-degenerate. For this
purpose, recall from Proposition 4.3.1 that the projection Tmπ(H),µ restricts to
an isomorphism of T[m]M̌(H),µ with EGm , where E � TmS ∩ Ker δm J and S is
the Gµ-slice in MGS normal form at m. Equation (4.3.11) shows that, under
this isomorphism, (ω̌(H),µ)[m] coincides with the restriction of ωm to EGm . By
Proposition 4.2.15, E is a symplectic subspace of (Tm M, ω). Since Gm is compact,
Proposition 4.1.15 implies that EGm is symplectic as well. Thus, we conclude
that ω̌(H),µ is non-degenerate. �

At this point, we know that M̌µ decomposes into orbit type manifolds, every
one of which carries a symplectic structure. We will now see that the pieces
fit together in a particularly nice way. The reader might want to recall from
Appendix A.2 the notion of a stratified space.

Proposition 4.3.4 Let (M, ω) be a symplectic G-manifold with proper G-action and
with equivariant momentum map J : M → G∗. Let µ ∈ G∗. Assume that J can be
brought into a strong MGS normal form (H,X, g, Ĵ, Jsing, ω̄) at every point m ∈ Mµ

such that the intersection
U(K) ∩ Ker ∩ J−1

sing(0) (4.3.13)

is non-empty for every orbit type (K) of the Gµ-action on Mµ satisfying (K) ≤ (Gm).
Then, the decomposition of Mµ and M̌µ into orbit type subsets M(H),µ and M̌(H),µ,
respectively, is a stratification. ♦

A strong MGS normal form (H,X, g, Ĵ, Jsing, ω̄) satisfying the assumption of
Proposition 4.3.4 is said to have the approximation property.

Proof. Let m ∈ Mµ and let (K) be an orbit type of the Gµ-action on Mµ with
(K) ≤ (H), where H � Gm . By assumption, there exists a strong MGS normal
form (H,X, g, Ĵ, Jsing, ω̄) at m such that Y ≡ U(K) ∩ Ker ∩ J−1

sing(0) is non-empty.
A point x ∈ U ∩Ker lies in Y if and only if (Hx) � (K) and Jsing(x) � 0. Since the
H-action on X is linear, we have Hx � Hαx for all α ∈ R>0. Moreover, by (4.2.54),
we obtain

κ
(
Jsing(αx), ξ

)
�

1
2 ω̄0

(
ξ . (αx), αx

)
� α2 κ

(
Jsing(x), ξ

)
(4.3.14)

Thus, for every x ∈ Y and α ∈ R>0, the point αx lies in Y as well. By letting
α → 0, we conclude that the point m lies in the closure of Y in X. Thus, the
claim follows from Proposition 3.3.1. �

In summary, we obtain the following result concerning the structure of the
symplectic quotient M̌µ.

Theorem 4.3.5 (Singular Reduction Theorem) Let (M, ω) be a symplectic G-
manifold with proper action and equivariant momentum map J : M→ G∗. Let µ ∈ G∗.
Assume that Gµ is a Lie subgroup of G and that g . m is symplectically closed for
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every m ∈ Mµ � J−1(µ). If J can be brought into an MGS normal form at every point
of Mµ, then the following holds:

(i) For every orbit type (H) of the Gµ-action on Mµ, the orbit type subset M(H),µ is
a smooth submanifold of M. Moreover, there exists a unique smooth manifold
structure on the quotient

M̌(H),µ ..� M(H),µ/Gµ (4.3.15)

such that the natural projection π(H),µ : M(H),µ → M̌(H),µ is a smooth submer-
sion.

(ii) If, additionally, the MGS normal forms can be chosen to be strong and to have
the approximation property, then the decomposition of Mµ and M̌µ into orbit
type subsets M(H),µ and M̌(H),µ, respectively, is a stratification.

(iii) For every orbit type (H) of the Gµ-action on Mµ, there exists a symplectic form
ω̌(H),µ on M̌(H),µ uniquely determined by

π∗(H),µ ω̌(H),µ � ι∗(H),µω, (4.3.16)

where ι(H),µ : M(H),µ → M is the natural injection. ♦

Example 4.3.6 Continuing in the setting of Example 4.2.6, let P → M be a
principalU(1)-bundle on the closed surface M. Aswehave seen, themomentum
map J : C(P) → Ω2(M) for the Gau(P)-action on C(P) is given by (minus) the
curvature. Thus, the symplectic quotient at 0,

Č0(P) ≡ J −1(0)/Gau(P), (4.3.17)

coincideswith themoduli space of flat connections. Moreover, by the discussion
in Example 4.2.28, J can be brought into a strong MGS normal form at every
A ∈ C(P). Since the Gau(P)-action is free, Theorem 4.3.5 implies that Č0(P) is a
symplectic manifold.
In the present setting, we can use the method of invariants to get a direct

description of Č0(P). Let (γi) be a family of closed piecewise smooth paths in M
generating π1(M). The holonomy HolA(γi) of γi with respect to a connection
A furnishes a map

K : C(P) → H1(M,U(1)), A 7→
(
γi 7→ HolA(γi)

)
, (4.3.18)

where we used the Universal Coefficient Theorem and the Hurewicz Theorem
to identify H1(M,U(1)) with Hom(π1(M),U(1)). Since K is Gau(P)-invariant,
it descends to a map Ǩ from Č0(P) to H1(M,U(1)). Moreover, by standard
arguments, Ǩ is a diffeomorphism. Under the identification given by Ǩ, the
reduced symplectic form on Č0(P) coincides with the intersection form on
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H1(M,R). The corresponding story for a principal G-bundle P with non-abelian
structure group G will be discussed below in Section 4.4. It turns out that, in
this case, the moduli space Č0(P) of flat connections has singularities and is a
stratified symplectic space. ♦

It is quite remarkable that, in the linear setting, the usual finite-dimensional
result about symplectic strata directly generalizes to the infinite-dimensional
realm without any further assumptions.

Corollary 4.3.7 Let (X, ω) be a symplectic Fréchet space endowed with a continuous
linear symplectic action of the compact Lie group G. Then, the G-action has a unique
(up to a constant) equivariant momentum map J : X → g∗ given by

κ(J(x), ξ) � 1
2ω(x , ξ . x) (4.3.19)

for x ∈ X and ξ ∈ g. Moreover, for every orbit type (H), the subset X(H),0 ..� X(H) ∩
J−1(0) is a smooth submanifold of X and there exists a unique smoothmanifold structure
on X̌(H),0 ..� X(H),0/G such that the natural projection π(H) : X(H),0 → X̌(H),0 is a
smooth submersion. Furthermore, X̌(H),0 carries a symplectic form ω̌(H) uniquely
determined by

π∗(H)ω̌(H) � ω�X(H),0 . (4.3.20)
♦

Proof. Since G is finite-dimensional, (4.3.19) defines a smooth map J : X → g∗.
That J is indeed a momentum map follows from a routine calculation, which
we leave to the reader. As G is compact, the G-action on X is proper. Moreover,
for every x, the orbit g . x is a finite-dimensional subspace of X and thus is
symplectically closed due to Lemma 4.1.8. According to Theorem 4.2.29, J
can be brought into an MGS normal form. Hence, the claims follow from the
Singular Reduction Theorem 4.3.5. �

Let us now pass from the kinematic picture presented so far to dynamics.

Proposition 4.3.8 Let h be a G-invariant Hamiltonian on the symplectic G-manifold
(M, ω) with equivariant momentum map J : M → G∗. Assume1 that the associated
Hamiltonian vector field Xh exists and that it has a unique flow FLh

t . Let (H) be an
orbit type and µ ∈ G∗. Then,

(i) the flow FLh
t is G-equivariant and leaves M(H),µ invariant and, hence, it projects

to a flow F̌Lh
t on M̌(H),µ,

1 Recall that the Hamiltonian vector field associated to the Hamiltonian h may not exist in
infinite dimensions and that vector fields on Fréchet manifolds need not have flows. The latter
is more or less equivalent to local in time solutions of the corresponding partial differential
equation.
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(ii) the projected flow F̌Lh
t is Hamiltonian with respect to the smooth function ȟ(H)

on M̌(H),µ defined by
π∗(H),µ ȟ(H) � h�M(H),µ . (4.3.21)

♦
Proof. Since h is G-invariant, the associated Hamiltonian vector field Xh is
invariant, too. The calculation

d
dt

�����t FLh
t (g · m) � (Xh)g·m � g . (Xh)m �

d
dt

�����t g · FLh
t (m) (4.3.22)

shows that the flow FLh
t is G-equivariant (since, by assumption, it exists and is

unique). Moreover, the Noether Proposition 4.2.11 implies that the flow FLh
t

leaves Mµ invariant. Hence, FLh
t preserves M(H),µ and so it projects onto a flow

F̌Lh
t on M̌(H),µ. Denote the induced vector field on M̌(H),µ by X̌(H). Since h is

G-invariant and since π(H) a surjective submersion, h descends to a smooth
function ȟ(H) on M̌(H),µ. That X̌(H) is Hamiltonian with respect to ȟ(H), indeed,
is verified by a routine calculation. �

4.4 Application: Yang–Mills equation over a Riemannian sur-
face

In this section, we are concerned with the moduli space of Yang–Mills con-
nections on a principal bundle over a closed surface. This moduli space was
extensively studied both from the geometric and algebraic point of view by
Atiyah and Bott [AB83]. They described the structure of this moduli space
using infinite-dimensional techniques inspired by symplectic reduction. We
rework and extend, in the framework of Fréchet manifolds, the approach
of Atiyah and Bott. As an application of the Reduction Theorem 4.2.27, we
show that (a variant of) the Yang–Mills moduli space is a symplectic stratified
space. Moreover, Atiyah and Bott established that Yang–Mills connections
are in bĳective correspondence with certain conjugacy classes of group ho-
momorphisms. This alternative finite-dimensional model has been further
investigated in [Hue93; HJ94; Jef94]. The extended moduli space construction
developed in these papers yields a stratified symplectic structure on such
spaces of homomorphisms. In the second part of this section, we prove that
the above bĳection between the Yang–Mills moduli space and these spaces of
homomorphisms is an isomorphism of stratified symplectic spaces, that is, it is
compatible with the additional topological, smooth and symplectic structure of
both spaces under consideration. The results described in this section are based
on joint work with J. Huebschmann published in extended form in [DH18].
Let G be a compact connected Lie group and let P → M be a principal

G-bundle over a closed Riemannian surface (M, g). Fix an AdG-invariant
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pairing on the Lie algebra g of G. We are interested in connections A ∈ C(P)
satisfying the Yang–Mills equation

dA ∗ FA � 0, (4.4.1)

where ∗ refers to the Hodge star operator associated to the Riemannian metric
g on M. A special class of Yang–Mills connections is provided by connections
A whose curvature is of the form

FA � ξ · volg , (4.4.2)

where ξ is an element of the Lie algebra z of the center of G. We call such a
connection a central Yang–Mills connection and refer to ξ as the charge of A.
The importance of central Yang–Mills connections for the study of the solution
space of the Yang–Mills equation on a Riemannian surface comes from the
following observation.

Proposition 4.4.1 ([AB83, p. 560]) EveryYang–Mills connectionA onP is reducible
to a central Yang–Mills connection Aξ on a subbundle Pξ ⊆ P. ♦

Proof. The statement follows directly from the theory of symmetry reduction
with ∗ FA ∈ Γ∞(AdP) playing the role of the Higgs field, cf. [RS17, Section 1.6].
For completeness, let provide more details. The section ∗ FA of AdP can be
viewed as a G-equivariant map P → g. For ξ ∈ g in the image of ∗ FA, consider
the subbundle

Pξ � {p ∈ P : (∗ FA)(p) � ξ} ⊆ P. (4.4.3)

It is straightforward to verify thatPξ is a reduction ofP to the stabilizer subgroup
Gξ of ξ. Moreover, the Yang–Mills equation entails that A is reducible to a
connection Aξ on Pξ. By construction, the curvature of Aξ satisfies ∗ FAξ � ξ,
which shows that Aξ is a central Yang–Mills connection on Pξ. �

Thus, the analysis of the moduli space of Yang–Mills connections is divided
into two steps: first, for all ξ ∈ g, determine the possible reductions Pξ of P
to the stabilizer subgroup Gξ; second, investigate the moduli space of central
Yang–Mills connections on Pξ. As ξ is determined by the topological type of
Pξ (according to Chern–Weil theory), the first step has a topological flavor and
has been extensively discussed in [AB83, Section 6]. In the following, we focus
on the second step from the point of view of symplectic reduction.
Recall from Example 4.3.6, that in the case G � U(1) the moduli space of

flat connections was realized as a symplectic quotient. In a similar vein, we
now describe the moduli space of central Yang–Mills connections on P as a
symplectically reduced space. The space C(P) of connections on P is an affine
space modeled on the tame Fréchet space Ω1(M,AdP) of 1-forms on M with
values in the adjoint bundle AdP. As in Example 4.2.2, the 2-form ω on C(P)
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defined by the integration pairing

ωA(α, β) �
∫
M

〈α ∧ β〉 (4.4.4)

for α, β ∈ Ω1(M,AdP) is a symplectic form, where 〈· ∧ ·〉 denotes the wedge
product relative to the AdG-invariant pairing on g. The natural action on C(P)
of the group Gau(P) of gauge transformations of P is smooth and preserves the
symplectic structure ω. In order to determine the associated momentum map,
note that the natural pairing1

κ : Γ∞(AdP) × Γ∞(AdP) → R, (φ, %) 7→ −
∫
M

〈φ, %〉 volg (4.4.5)

identifies Γ∞(AdP) as the dual of gau(P). A straightforward calculation similar
to the one in Example 4.2.6 verifies that the map

J : C(P) → Γ∞(AdP), A 7→ ∗ FA (4.4.6)

is a momentum map for the Gau(P)-action on C(P). Thus, the symplectic
quotient

J −1(ξ)/Gau(P) (4.4.7)

at ξ ∈ z (viewed as a constant section of AdP) coincides with the moduli
space Čξ(P) of central Yang–Mills connections with charge ξ. Recall that the
Gau(P)-action on C(P) is in general not free and thus the symplectic quotient is
not a smooth symplectic manifold. The following is the next best thing one
could hope for.

Theorem 4.4.2 For every ξ ∈ z, the orbit type subsets of the moduli space Čξ(P) are
finite-dimensional symplectic manifolds. ♦

Proof. For A ∈ J −1(ξ), let us verify the assumptions of Theorem 4.2.27 for the
momentum map J :

(i) Since ξ is a central element, its stabilizer coincides with the whole group
Gau(P), which is a geometric tame Fréchet Lie group.

(ii) The Gau(P)-action on C(P) is proper and admits a slice S at A as discussed
in Section 3.4.

(iii) Since the pairing κ is AdGau(P)-invariant, the coadjoint action coincides
with the adjoint action and thus is clearly linear.

1 The sign in front of the integral turns out to be a convenient choice in the sequel.
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(iv) The chain (4.2.70) takes the following form here:

0 Ω0(M,AdP) Ω1(M,AdP) Ω0(M,AdP), 0−dB ∗dB

(4.4.8)
where the connection B on P is an element of the slice S . This is clearly a
chain of differential operators tamely parametrized by B ∈ S . Moreover,
for B � A, this chain is an elliptic complex, because we have

dA dAη � [FA , η] � [ξ, η]volg � 0 (4.4.9)

for every η ∈ Γ∞(AdP).

(v) Arguments similar to those used in Example 4.2.17 show that gau(P) . A
is symplectically closed in TAC(P) and that the image of δA J is L2-closed
in gau(P).

Thus, by Theorem 4.2.27, the momentum map J can be bought into a strong
MGS normal form at A. Now the claim follows from the Singular Reduction
Theorem 4.3.5. �

The statement that the top stratum of Čξ(P) is endowed with a natural
symplectic reduction was already obtained by Atiyah and Bott [AB83, p. 587].
The symplectic nature of the singular strata has been established in [Hue96,
Theorem 1.2] in the Sobolev framework by reducing the problem to a finite-
dimensional symplectic quotient.

Remark 4.4.3 Let us spell out the local structure of Čξ(P) at a point [A] as
given by Theorems 4.2.27 and 4.3.5. According to Proposition 4.2.15, the space
Ker in the strong MGS normal form is identified with the middle homology of
the chain (4.4.8) at B � A, that is,

Ker � Ker
(
∗dA : Ω1(M,AdP) → Ω0(M,AdP)

)
/Im dA ≡ H1

A(M,AdP).
(4.4.10)

Note that this (co)homology group is only well-defined because A is a central
Yang–Mills connection. Similarly, the Lie algebra of the stabilizer subgroup
GauA(P) of A is given by

gauA(P) � Ker
(
dA : Ω0(M,AdP) → Ω1(M,AdP)

)
≡ H0

A(M,AdP). (4.4.11)

The symplectic structure ωA on TAC(P) restricts to a symplectic structure ω̄A
on H1

A(M,AdP). By (4.4.4), we have

ω̄A
(
[α], [β]

)
�

∫
M

〈α ∧ β〉. (4.4.12)
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In other words, ω̄A is the non-abelian generalization of the intersection form.
Nondegeneracy of ω̄A can be verified by a direct calculation or using the
Bifurcation Lemma 4.2.14 (ii). It is clear that the action of Gau(P) on C(P)
induces a symplectic action of GauA(P) on H1

A(M,AdP):

λ · α �
d

dε

�����0λ · (A + εα) � Adλ α (4.4.13)

for λ ∈ GauA(P) and [α] ∈ H1
A(M,AdP). The infinitesimal action of gauA(P) is

given by the Lie bracket so that the associated momentum map is defined by

Jsing : H1
A(M,AdP) → H0

A(M,AdP), [α] 7→ 1
2 ∗[α ∧ α], (4.4.14)

where [· ∧ ·] denotes the wedge product of AdP-valued differential forms
relative to the Lie bracket. Indeed, by Example 4.2.5, we have

κ
(
Jsing([α]), ξ

)
�

1
2 ω̄A

(
[α], [adξ α]

)
�

1
2

∫
M

〈α ∧ [ξ, α]〉

� −1
2

∫
M

〈[α ∧ α], ξ〉

�
1
2κ

(
∗[α ∧ α], ξ

)
.

(4.4.15)

Now, (4.3.6) entails that, locally, the moduli space of central Yang–Mills con-
nections is modeled on

J −1
sing(0)/GauA(P). (4.4.16)

Such a local description of Čξ(P) has already been obtained by Huebschmann
[Hue95, Theorem 2.32] in the framework of Sobolev spaces using techniques
similar to those employed in our construction of the MGS normal form. ♦

Recall from Example 4.3.6 that, for G � U(1), the moduli space of flat
connections is identified with the space of group homomorphisms from π1(M)
to U(1). Following [AB83], we discuss now a similar identification of Čξ(P) for
general compact groups G. For this purpose, fix a point m0 ∈ M, denote the
genus of M by l, and choose a canonical system (u1, v1, . . . , ul , vl) of closed
curves in M based at m0. That is to say, cutting M successively along these
curves yields a planar polygon. In this picture, the curve

u1 · v1 · u−1
1 v−1

1 · · · ul · vl · u−1
l v−1

l (4.4.17)

corresponds to the boundary of the polygon. We will denote the homotopy
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class of this boundary curve by r. As a consequence of the Seifert–van
Kampen theorem, the fundamental class π1(M,m0) ≡ π1 of M is generated by
the homotopy classes ([u1], [v1], . . . , [ul], [vl]) subject to the condition r � 1.
Consider the finite group Γ generated by ([u1], [v1], . . . , [ul], [vl]) and an
element J subject to the relation r � J. Note that J is central in Γ. The natural
projection from Γ to π1 is a group homomorphism with kernel Z〈r〉 (the free
group generated by r). Relative to the embedding Z〈r〉 → R of abelian groups
defined by r 7→ 1, let ΓR be the 1-dimensional Lie group characterized by the
requirement that

1 Z〈r〉 Γ π1 1

0 R ΓR π1 1

(4.4.18)

be a commutative diagram of central extensions.

Remark 4.4.4 By [Mor91, Theorem 2.2], the group ΓR admits the following
geometric description. Let L∝m0(M) be the space of closed, piecewise smooth
loops in M based at m0. Define the equivalence relation ∼volg on L

∝
m0(M) by

declaring two piecewise smooth loops γ1 and γ2 to be equivalent if and only if
there exists a homotopy h : [0, 1] × [0, 1] → M between γ1 and γ2 such that∫

[0,1]×[0,1]

h∗ volg � 0. (4.4.19)

Then, ΓR is identified with the quotient of L∝m0(M) relative to the equivalence
relation ∼volg . ♦

We continue to denote the image of the central element r ∈ Γ under the
embedding Γ→ ΓR by r. With this notation, the embedding ofR into ΓR is given
by t 7→ tr for t ∈ R. Note that this embedding yields a natural isomorphism
of R/Z with ΓR/Γ. Therefore, the projections onto ΓR/Γ and π1 yield an exact
sequence

1 Z〈r〉 ΓR R/Z × π1 1 (4.4.20)

In order to return to the geometric picture, assume that volg is normalized in
such a way that the total volume is 1. Thus, volg is a closed 2-form that defines
an integral class in H2(M,R) and we can always find a principal R/Z-bundle
Q → M and a connection on Q with volg as its curvature. This construction is
a basic result of the theory of geometric quantization and, in this context, Q
is referred to as the prequantum bundle, see e.g. [Woo97, Proposition 8.3.1].
The group Γ is isomorphic to the fundamental group of Q. Indeed, since the
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curvature determines the connection only up to an element of H1(M,R/Z),
we can choose the connection on Q in such a way that the holonomies of the
curves ui and vi are trivial (with respect to a fixed point of Q in the fiber
over m0). The horizontal lifts of ui and vi are then closed curves and we can
take their homotopy classes as generators of π1(Q) ' Γ. Since the universal
covering M̃ → M of M is a flat principal π1-bundle, the product connection
on the principal R/Z × π1-bundle Q ×M M̃ still has curvature volg . Lifting
the structure group to ΓR along (4.4.20) yields a principal ΓR-bundle QM → M
with connection AM and curvature FAM � volg . Comparing with (4.4.2), we see
that AM a central Yang–Mills connection with charge 1 ∈ R. The pair (QM ,AM)
plays a universal role as we shall now explain.

For every ξ ∈ z, let Homξ(ΓR,G) denote the space of Lie group homomor-
phisms χ : ΓR→ G with the property that

χ(tr) � exp(tξ) (4.4.21)

for all t ∈ R. The evaluation of a homomorphism χ ∈ Homξ(ΓR,G) on
(u1, v1, . . . , ul , vl) yields an embedding of Homξ(ΓR,G) into G2l as the subset{

(a1, b1, . . . , al , bl) : a1b1a−1
1 b−1

1 · · · al bla−1
l b−1

l � exp(ξ)
}
. (4.4.22)

Throughout, we endow Homξ(ΓR,G)with the relative topology and identify
it with its image under the embedding into G2l . Note that G acts naturally
on Homξ(ΓR,G) by conjugation. This action corresponds to the diagonal
conjugation action under the embedding of Homξ(ΓR,G) into G2l .
Given χ ∈ Homξ(ΓR,G), we can form the associated principal G-bundle

Pχ � QM ×χ G. It turns out that themap χ 7→ Pχ defines a bĳection between the
connected components ofHomξ(ΓR,G) and the topological types of principal G-
bundles on M having ξ ∈ z as its corresponding characteristic class, see [DH18,
Proposition 3.1]. We denote by Homξ(ΓR,G)P the connected component that
corresponds to the principal G-bundle P. The reference connection AM on QM
yields a principal connection Aχ on Pχ. Since the Lie algebra homomorphism
Trχ : R→ g associated to χ ∈ Homξ(ΓR,G) satisfies Trχ(1) � ξ, we find

FAχ � ξ · volg . (4.4.23)

Thus, Aχ is a central Yang–Mills connection with charge ξ. If χ is an element of
Homξ(ΓR,G)P , then Pχ has the same topological type as P so that there exists
a vertical automorphism Pχ → P of principal G-bundles. The push-forward
of Aχ along this automorphism yields a central Yang–Mills connection on P,
which we continue to denote by Aχ. Note that the connection Aχ on P depends
on the choice of the vertical automorphism Pχ → P and thus only its class
modulo gauge transformations is intrinsically well-defined. The crucial insight
of Atiyah and Bott [AB83, Theorem 6.7] (see also [Hue94, Theorem 2.1]) was
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that every central Yang–Mills connection on P can be obtained in this way (up
to gauge transformations).
Proposition 4.4.5 For every ξ ∈ z, the assignment χ 7→ Aχ yields a bĳection
between the space Homξ(ΓR,G)P/G of conjugacy classes of homomorphism ΓR→ G
and the moduli space Čξ(P) of central Yang–Mills connections on P with charge ξ. ♦
Let us recall how, conversely, every central Yang–Mills connection A on P

gives rise to a Lie group homomorphism χA : ΓR→ G. Fix a point q0 ∈ QM in
the fiber over m0. For every x ∈ ΓR, there exists an AM-horizontal path γ̂ in
QM from q0 to q0 · x. Project γ̂ to a necessarily closed curve γ in M and define
χA(x) ∈ G to be the holonomy of γ. By construction, χA(r) coincides with the
holonomy of the boundary curve v1 · u−1

1 v−1
1 · · · ul · vl · u−1

l v−1
l and thus is equal

to
χA(r) �

∫
M

FA �

∫
M

ξ · volg � ξ. (4.4.24)

Hence, the resulting group homomorphism χA : ΓR → G is an element of
Homξ(ΓR,G). Since ΓR is abelian, the homomorphism χA does not depend on
the choice of q0. However, choosing a different reference point in the fiber of P
over m0 for the holonomy χA(x) ∈ G yields a group homomorphism ΓR→ G
conjugate to χA.

Let Repξ(ΓR,G)P � Homξ(ΓR,G)P/G. The space Repξ(ΓR,G)P decomposes
naturally into orbit types according to the G-action on Homξ(ΓR,G)P by con-
jugation. Moreover, the extended moduli space construction developed in
[Hue93; HJ94; Jef94] endows Repξ(ΓR,G)P with a natural stratified symplectic
structure. In [AMM98], the extended moduli space construction was reinter-
preted as a quotient procedure for so-called quasi-Hamiltonian G-space. On
the other hand, we have seen that the moduli space Čξ(P) arises as a symplectic
quotient of an infinite-dimensional symplectic space. Note that the character
of both constructions is very different: reduction of a finite-dimensional quasi-
Hamiltonian system vs. infinite-dimensional symplectic reduction. Thus, it is
natural to ask whether the bĳection of Proposition 4.4.5 respects the manifold
and the symplectic structure of both quotients.

The first step towards an answer to this question is the following, which we
quote without proof.
Proposition 4.4.6 ([DH18, Theorem 5.2]) Let p0 ∈ P be a point in the fiber over
m0. For every closed curve γ in M based at m0, the map

Holp0
γ : C(P) → G, A 7→ Holp0

γ (A) (4.4.25)

that assigns to A the holonomy Holp0
γ (A) of γ is a smooth map with left logarithmic

derivative
δA Holp0

γ (α) �
∫
γA

α, (4.4.26)
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where γA denotes the A-horizontal lift of γ to p0 and α ∈ TAC(P) ' Ω1(M,AdP) is
viewed as a g-valued 1-form on P. ♦

Recall the canonical system (u1, v1, . . . , ul , vl) of closed curves in M based at
m0. The Wilson loop mapWp0 : C(P) → G2l is defined by

Wp0(A) �
(
Holp0

u1(A),Holp0
v1(A), . . . ,Holp0

ul
(A),Holp0

vl
(A)

)
. (4.4.27)

As a consequence of Proposition 4.4.6,Wp0 is a smoothmap. Recall from (4.4.22)
that Homξ(ΓR,G) is identified with a subset of G2l . If A is a central Yang–Mills
connection with charge ξ, then the holonomy of the boundary curve r of the
fundamental polygon is given by

Holp0
r (A) � exp ©«

∫
M

FA
ª®¬ � exp(ξ). (4.4.28)

Thus,Wp0(A) lies inHomξ(ΓR,G) ⊆ G2l for every central Yang–Mills connection
A. It is not hard to see that the correspondinghomomorphismΓR→ G coincides
with the homomorphism χA that was constructed above.

We maintain the choice of a point p0 ∈ P in the fiber over m0. Recall that the
evaluation at p0 of a gauge transformation λ ∈ Gau(P), seen as a G-equivariant
map P → G, yields a Lie group homomorphism

evp0 : Gau(P) → G. (4.4.29)

The group Gaum0(P) of pointed gauge transformations is the kernel of evp0 . This
group is independent of the particular choice of p0 and depends only on m0;
this justifies our notation Gaum0(P). By [Nee06, Proposition IV.3.4], Gaum0(P) is
a normal, locally exponential Lie subgroup of Gau(P). Note that the natural
action of Gaum0(P) on C(P) is free. Moreover, the slices for the Gau(P)-action can
bemodified to yield slices for the Gaum0(P)-action, see [DH18, Proposition 11.9].
Hence, according to Proposition A.2.7, the orbit space

Čm0(P) � C(P)/Gaum0(P) (4.4.30)

is a smooth Fréchet manifold. Using a similar notation, the quotient of the
space of central Yang–Mills connections with charge ξ by the group of pointed
gauge transformation will be denoted by Čξ,m0(P). Clearly, the Wilson loop
mapWp0 is invariant under the action of pointed gauge transformations and
thus descends to a smooth map W̌p0 : Čm0(P) → G2l .

Proposition 4.4.7 The Wilson loop map Wp0 : C(P) → G2l yields a smooth map
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W̌p0 : Čm0(P) → G2l which restricts to a G-equivariant homeomorphism

Čξ,m0(P) → Homξ(ΓR,G)P . (4.4.31)

Accordingly, W̌p0 induces a homeomorphism

Čξ(P) → Repξ(ΓR,G)P . (4.4.32)

Moreover, with respect to the G-orbit type stratifications on both sides, this homeo-
morphism is an isomorphism of stratified spaces which, on each stratum, restricts to a
diffeomorphism onto the corresponding stratum of the target space. ♦

Proof. We only sketch the main arguments and refer the reader to [DH18,
Theorem 7.1] for details.

Arguments similar to the ones discussed in connection with Proposition 4.4.5
show that W̌p0 restricts to a bĳection between Čξ,m0(P) and Homξ(ΓR,G)P .
Since W̌p0 is a smooth map, its restriction to Čξ,m0(P) is continuous. By
the Strong Uhlenbeck Compactness Theorem [Uhl82], for any sequence (A j)
of smooth Yang–Mills connections with constant curvature1, there exists a
subsequence (A ji ) and a sequence (λi) of smooth gauge transformations such
that the sequence (λi · A ji ) converges uniformly in the Fréchet topology to
a smooth connection A ∈ C(P). Therefore, the space Čξ,m0(P) is compact (in
the Fréchet topology) and, consequently, the Wilson loop map restricts to a
homeomorphism onto the compact subspace Homξ(ΓR,G)P of the compact
manifold G2l as asserted. Moreover, the G-equivariant homeomorphism
Čξ,m0(P) → Homξ(ΓR,G)P induces a homeomorphism Čξ(P) → Repξ(ΓR,G)P
which is compatible with the orbit type stratifications on both sides. Since the
Wilson loop map is smooth, it restricts, on each stratum, to a diffeomorphism
onto the corresponding stratum of the target space. �

Remark 4.4.8 The usage of the Uhlenbeck Compactness Theorem in the above
proof can be avoided using a detailed slice analysis, see [DH18, Lemma 7.5]. ♦

Finally, let us comment on the behavior of the isomorphism Čξ(P) →
Repξ(ΓR,G)P with regard to the symplectic structure on both quotients. For
simplicity, we restrict attention to the abelian case G � U(1) and to l � 1. In
this case, the extended moduli space construction yields a symplectic form σ
on U(1) ×U(1) given by

σ(a ,b)(a . ξ1 + b . η1, a . ξ2 + b . η2) � 〈ξ1, η2〉 − 〈ξ2, η1〉 (4.4.33)

for a , b ∈ U(1) and ξ1, ξ2, η1, η2 ∈ u(1). That is, σ coincides with the (normal-
ized) volume form on the torus U(1) ×U(1). Using the formula (4.4.26) for the

1 In fact, the hypothesis that the curvature be uniformly L2-bounded suffices.



4. Singular Symplectic Reduction 113

derivative of the Wilson loop map, we obtain for the pull-back of σ to C(P):

(W∗p0σ)A(α, β) �
〈∫

u

α,

∫
v

β

〉
−

〈∫
u

β,

∫
v

α

〉
, (4.4.34)

where A ∈ C(P), α, β ∈ Ω1(M) and u , v are the canonical closed curves on the
torus M. Moreover, if α and β are closed, a simple calculation using Hodge
theory yields the identity

(W∗p0σ)A(α, β) �
∫
M

α ∧ β � ω(α, β). (4.4.35)

Note that the space of closed 1-forms is the tangent space to J −1(ξ). We thus
find

(W∗p0σ)�J −1(ξ) � ω. (4.4.36)

Upon projecting with respect to the action of Gau(P), we see that the diffeo-
morphism Čξ(P) → Repξ(ΓR,U(1))P intertwines the symplectic structures. A
similar reasoning works for higher genus l ≥ 1 and non-abelian structure group
G. We thus obtain in summary.

Theorem 4.4.9 The Wilson loop map W̌p0 induces an isomorphism

Čξ(P) → Repξ(ΓR,G)P (4.4.37)

of stratified symplectic spaces. ♦

Thus, we conclude that the bĳection Čξ(P) → Repξ(ΓR,G)P established by
Atiyah and Bott [AB83] is compatible with the additional stratified symplectic
structure of both quotients.



5Singular Cotangent Bundle Reduction

In most applications in physics, the phase space is a cotangent bundle T∗Q over
the configuration spaceQ of the system. Whenperforming symplectic reduction
for that case, it is of interest to connect the geometry of the symplectically
reduced space T∗Q //µ G to the properties of the quotient Q/G. In finite
dimensions and for proper free G-actions, this connection is well understood:
the reduction T∗Q //0 G at zero is symplectomorphic to the cotangent bundle
T∗(Q/G) (with its canonical symplectic form) of the reduced configuration
space Q/G, see, for example, [Mar+07, Section 2] for details. The singular case
is more complicated due to the occurrence of new phenomena that are absent
in the regular case. In finite dimensions, Perlmutter, Rodriguez-Olmos, and
Sousa-Dias [PRS07] have shown that the fibered structure of the cotangent
bundle yields a refinement of the usual orbit-momentum type strata into so-
called seams. The principal seam is symplectomorphic to a cotangent bundle
while the singular seams are coisotropic submanifolds of the corresponding
symplectic stratum. In this chapter, we extend these results concerning singular
symplectic reduction of cotangent bundles to the case of infinite-dimensional
Fréchet1 manifolds. In the finite-dimensional setting, the proof that the
seams are manifolds follows from an appropriate symplectic slice theorem,
see [Sch07; RT17]. The latter theorem provides a normal form both for the
symplectic structure and for the momentum map, and additionally the local
symplectomorphism bringing the system to normal form is adapted to the fiber
structure of the cotangent bundle. When passing to the Fréchet context, it is
impossible to follow the approach of [PRS07; Sch07] because a few essential
tools required in the construction are not readily available for Fréchetmanifolds,
see Remark 5.2.1 for details. Similar to the strategy in Chapter 4, at the root
of our approach lies the observation that, for the cotangent bundle reduction
procedure, it is not essential to bring the symplectic structure into a normal
form. Instead, we exploit the additional structure of the cotangent bundle to
directly construct the normal form of the momentum map for the lifted action.
Using the harmonic oscillator as an example, we also discuss the influence
of the singular seams on the dynamics. Finally, we apply our general theory
to the singular cotangent bundle reduction of Yang–Mills–Higgs theory. The
content of this chapter will be published in a slightly modified version as part
of [DR18b].

1 Most results of this chapter readily generalize to infinite-dimensional manifolds modeled on
Mackey complete, locally convex spaces.
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5.1 Problems in infinite dimensions. The setting

Let Q be a Fréchet manifold. The tangent bundle TQ of Q is a smooth
manifold in such a way that the projection TQ → Q is a smooth locally trivial
bundle. However, the topological dual bundle T′Q ..�

⊔
q∈Q(TqQ)′ is not a

smooth fiber bundle for non-Banach manifolds Q, cf. [Nee06, Remark I.3.9]
and Appendix A.3. As a substitute, we say that a smooth Fréchet bundle
?
τ : T∗Q → Q is a cotangent bundle if there exists a fiberwise non-degenerate
pairing with TQ, see Appendix A.3 for details. We note that according to this
definition the cotangent bundle is no longer canonically associated to Q but
requires the choice of a bundle T∗Q and of a pairing T∗Q ×Q TQ→ R. Similarly
to the finite-dimensional case, for a given cotangent bundle T∗Q, the formula

θp(v) � 〈p , Tp
?
τ(v)〉, v ∈ Tp(T∗Q) , (5.1.1)

defines a smooth 1-form θ on T∗Q. Furthermore, ω � dθ is a symplectic form.
Next, assume that a Fréchet Lie group G acts smoothly on Q. We continue

to use the dot notation to write this action as (g , q) 7→ g · q. Throughout this
chapter, we assume that the G-action on Q is proper and that it admits a slice at
every point. By linearization, we also get a smooth action of G on the tangent
bundle TQ, which we write using the lower dot notation as g . v ∈ Tg·qQ for
g ∈ G and v ∈ TqQ. The action on TQ induces a G-action on T∗Q by requiring
that the pairing be left invariant, that is,

〈g · p , v〉 � 〈p , g−1 . v〉 (5.1.2)

for p ∈ T∗g−1·qQ and v ∈ TqQ. In order for this equation to define a smooth
action on T∗Q, the action Tg−1·qQ → TqQ needs to be weakly continuous with
respect to the pairing 〈 · , · 〉 for every g ∈ G.
In finite dimensions, there always exists a G-equivariant diffeomorphism

between TQ and T∗Q. Therefore, the orbit types of TQ and T∗Q coincide. In
the infinite-dimensional setting, a vector space may not be isomorphic to its
dual and thus the orbit types may differ. Indeed, we now give an example
where the action on the dual space has more orbit types.

Example 5.1.1 Consider the space `1 of real-valued doubly infinite sequences
(xn)n∈Z satisfying

‖(xn)‖1 ..�
∑
n∈Z
|xn | < ∞. (5.1.3)

With respect to the norm ‖ · ‖1, `1 is a Banach space. The topological dual
is isomorphic to the space `∞ of all bounded sequences (αn)n∈Z, which is a
Banach space with respect to the uniform norm

‖(αn)‖∞ ..� sup
n∈Z
|αn |. (5.1.4)
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The pairing between `1 and `∞ is given by

〈(αn), (xn)〉 ..�
∑
n∈Z

αnxn , (αn) ∈ `∞, (xn) ∈ `1. (5.1.5)

The group G � Z of integers acts on `1 via the shift operators T j : `1→ `1, with
j ∈ Z, defined by

T j(xn) ..� (xn+ j) . (5.1.6)

This action is linear and self-adjoint in the sense that the dual action on `∞ is
also given by the shift operators T j : `∞ → `∞. The actions on `1 and `∞ are
continuous for every topology on Z (in particular, we may endow Zwith the
cofinite topology in which it is compact). Recall that all subgroups of Z are of
the form kZ for some integer k ≥ 0. A sequence (xn) has stabilizer kZ if and
only if it is k-periodic. The subgroups {0} (k � 0) and Z (k � 1) can easily be
realized as stabilizer subgroups of some (xn) ∈ `1. However, none of the other
subgroups kZ with k > 1 occurs as the stabilizer subgroup of the action on
`1. Indeed, if a sequence (xn) is non-zero and k-periodic for k > 1, then it is
divergent and hence never an element of `1. On the other hand, every periodic
sequence is bounded and thus all subgroups kZ for k ≥ 0 occur as stabilizers
of the action on the dual space `∞. ♦

In order to exclude such pathological phenomena that make it impossible to
connect the orbit types of Q with the ones for the lifted action on T∗Q, in the
following, we will assume that there exists a G-equivariant diffeomorphism1

between TQ and T∗Q; an assumption that holds in the applications we are
interested in. Note that for a Hilbert manifold Q, a G-invariant scalar product
yields such a G-equivariant diffeomorphism.

By Proposition A.3.3, the lifted action of G on the cotangent bundle T∗Q
preserves the canonical symplectic form ω. In order to define the momentum
map, we need to specify a dual pair κ(g∗, g). With respect to this data, the
momentum map J : T∗Q → g∗, if it exists, satisfies

κ(J(p), ξ) � 〈p , ξ . q〉 (5.1.7)

for p ∈ T∗qQ and ξ ∈ g. Note that the right-hand side, viewed as a functional
on g, may not be representable by an element J(p) ∈ g∗. In this case, a g∗-valued
momentum map for the lifted action does not exist. The existence of the
momentum map mainly depends on the chosen duality κ and not so much
on the cotangent bundle. In fact, we now give an example for an action of an
infinite-dimensional Lie group acting on a finite-dimensional cotangent bundle
that does not possess a momentum map.

1 Without mentioning it in the future, we assume that the diffeomorphism TQ ' T∗Q is
fiber-preserving.



5. Singular Cotangent Bundle Reduction 117

Example 5.1.2 Let M be a compact finite-dimensional manifold endowed
with a volume form vol. Consider a finite-dimensional Lie group G that
acts on a finite-dimensional manifold Q. Fix a point m0 ∈ M and let the
current group C∞(M,G) act on Q via the evaluation group homomorphism
evm0 : C∞(M,G) → G, that is,

λ · q ..� λ(m0) ·G q (5.1.8)

for λ ∈ C∞(M,G) and q ∈ Q. The induced action of C∞(M,G) on the cotangent
bundle T∗Q is symplectic but it does not possess amomentummapwith respect
to the natural dual pairing

κ : C∞(M, g∗) × C∞(M, g) 3 (µ, ξ) 7→
∫
M

〈µ, ξ〉 vol ∈ R. (5.1.9)

If the momentum map J were to exist, then it would necessarily satisfy the
relation∫

M

〈J(p), ξ〉 vol � κ(J(p), ξ) � 〈p , ξ(m0) . q〉 � 〈JG(p), ξ(m0)〉 (5.1.10)

for all p ∈ T∗Q and ξ ∈ C∞(M, g), where JG : T∗Q→ g∗ denotes the momentum
map for the G-action. This is only possible if J(p) is a delta distribution
localized at the point m0. However, by definition, the dual C∞(M, g∗) only
contains regular distributions.
In other words, the reason for the non-existence of the momentum map

is that the evaluation map evm0 : C∞(M, g) → g is not weakly continuous
with respect to the pairings κ and 〈 · , · 〉, and hence does not have an adjoint
g∗→ C∞(M, g∗). ♦

In the following, we always assume that the lifted action on T∗Q has a
momentum map.
Finally, there is another basic problem typical to the infinite-dimensional

setting. As the map evm0 : C∞(M, g) → g of Example 5.1.2 shows, the adjoint of
a linear mapping between Fréchet spaces may not exist. However, our strategy
for the construction of the normal form will involve dualizing. Thus, in all
constructions of Chapter 5 that rely on dualizing, we will need to assume that
the corresponding adjoint maps exist. Moreover, even if the adjoint exists and
the original map is injective, the adjoint is in general not surjective but it only
has a dense image, see Proposition B.2.3 (iv). We will also assume that such
adjoints are actually surjective. As we will see in Section 5.6, these assumptions
are fulfilled for Yang–Mills theory because the maps involved are (elliptic)
differential operators.
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5.2 Lifted slices and normal form

The fibered structure of the cotangent bundle yields a refinement of the usual
orbit-momentum type strata into so-called seams. As in the context of standard
symplectic reduction, the manifold structure of these seams follows from an
appropriate normal form theorem for the momentum map. To arrive at such a
normal form result, it would seem natural to start from the construction of the
MGS normal form in Section 4.2.3 and adapt it to the geometry of the cotangent
bundle case. However, this approach would lead to a theorem with rather
strong assumptions in addition to the ones necessary for Theorem 4.2.27. It
turns out to be more efficient to incorporate the additional structure of the
cotangent bundle from the outset and to pursue a completely different strategy
for the construction of the normal form:

(i) By using a slice S at q ∈ Q, reduce the problem to T∗(G ×Gq S).

(ii) Establish an equivariant diffeomorphism T∗(G ×Gq S) ' G ×Gq (m∗ × T∗S),
where m is a complement of gq in g.

(iii) Calculate the momentum map under these identifications.

As a by-product, our theory provides an approach much simpler than the
construction of [PRS07; Sch07] in the finite-dimensional setting.

Remark 5.2.1 We also note that it is impossible to directly extend the approach
of [PRS07; Sch07] in the finite-dimensional setting to the Fréchet context
according to the following serious obstacles: one needs the existence of
(orthogonal) complements and an appropriate version of regular symplectic
reduction to construct the normal form reference system; moreover, the Inverse
Function Theorem is central to the construction of the local symplectomorphism
bringing the system into the normal form. All these tools are not readily
available for Fréchet manifolds. ♦

Let p ∈ T∗Q be a point in the fiber over q ∈ Q. Assume that the G-action on
Q has a slice S at q. According to the strategy outlined above, the first step is
to reduce the problem of determining the local structure of the momentum
map near p to a problem on T∗(G ×Gq S). This reduction is accomplished by
applying the following standard result to the tube map1 χT : G ×Gq S → Q,
which plainly extends from the finite- to the infinite-dimensional setting.

Proposition 5.2.2 (Lifting point transformations) Let C and Q be Fréchet mani-
folds and let φ : C→ Q be a diffeomorphism. Assume that the lift

T∗φ : T∗Q → T∗C, p 7→ φ∗p , (5.2.1)
1 Recall from Proposition A.2.3 that χT is a diffeomorphism onto an open neighborhood of q in

Q. Moreover, it is G-equivariant with respect to the action of G on G ×Gq S by left translation
on the G-factor.
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of φ is a diffeomorphism. Then, T∗φ is a symplectomorphism. If, moreover, φ is
G-equivariant and the lifted action on T∗Q has a momentum map JQ , then JC

..�
JQ ◦ T∗φ−1 : T∗C→ g∗ is a momentum map for the lifted G-action on T∗C. ♦
According to step two of the general strategy, we now establish a convenient

identification of the cotangent bundle of G ×Gq S. Generalizing the finite-
dimensional case, we say that a Lie subgroup H ⊆ G is reductive if its Lie algebra
h has an AdH-invariant complement in g. Since we consider only proper actions
of G on Q, the stabilizer Gq is always compact and, hence, the following lemma
shows that Gq is a reductive Lie subgroup of G.

Lemma 5.2.3 For every compact Lie subgroup H ⊆ G, there exists an AdH-invariant
complementm of h in g. Moreover, there exists a weakly complementary decomposition
g∗ � m∗ ⊕ h∗. ♦

Proof. Every compact Lie group is finite-dimensional, because every locally
compact topological vector space is finite-dimensional, see [Köt83, Propo-
sition 8.7.1]. As a finite-dimensional subspace, h is automatically closed
and has a topological complement by [Köt83, Proposition 15.5.2 and 20.5.5].
The complement can be chosen to be AdH-invariant by taking the average
over the projection using the invariant Haar measure, see Lemma A.2.5. By
[Köt83, Proposition 20.5.1], there exists a weakly complementary decomposi-
tion g∗ � g0

q ⊕ m0, where the subscript denotes the annihilator. Choose g0
q � m∗

and m0 � h∗. �

Let ι : G × S → G ×Gq S be the natural projection and, for a ∈ G and s ∈ S,
let ιa : S → G ×Gq S and ιs : G → G ×Gq S denote the induced embeddings,
respectively.

Definition 5.2.4 Let S be a slice at q and let m be an AdGq -invariant comple-
ment of gq in g. For a given choice of T∗(G ×Gq S), the slice S will be called
compatible with the cotangent bundle structures if it fulfills the following additional
requirements:

(ST1) The lift T∗χT of the tube map χT : G ×Gq S→ Q exists and is a diffeomor-
phism onto its image.

(ST2) The injective maps

Ta ιs(a . ·) : m→ T[a ,s](G ×Gq S), Ts ιa : TsS→ T[a ,s](G ×Gq S) (5.2.2)

have surjective adjoints. ♦
Whether a slice is compatible with the cotangent bundle structures strongly

depends on the dual pairings involved, so that one cannot hope to find a general
criterion for the existence of such a slice. Note that, in the finite-dimensional
setting, every slice is compatible with the cotangent bundle structures. In the
sequel, we will show that there is a natural choice for T∗(G ×Gq S).



5. Singular Cotangent Bundle Reduction 120

Lemma 5.2.5 For every choice of an AdGq -invariant complement m of gq in g, there
exists a G-equivariant diffeomorphism

T(G ×Gq S) ' G ×Gq (m × TS). (5.2.3)
♦

Proof. It is well-known that the choice of an Ad-invariant complement m
yields a homogeneous connection in G → G/Gq . Indeed, the horizontal
space at a ∈ G is, by definition, a . m and the horizontal lift of a vector
[a , ξ] ∈ G ×Gq m ' T(G/Gq) to the point a ∈ G is a . ξ. Accordingly, the tangent
bundle to the associated bundle G ×Gq S splits into its horizontal and vertical
parts so that the G-equivariant map defined by

G ×m × TS→ T(G ×Gq S), (a , ς,Ys) 7→ Ta ιs(a . ς) + Ts ιa(Ys), (5.2.4)

is a Gq-invariant submersion which descends to a G-equivariant diffeomor-
phism between G ×Gq (m × TS) and T(G ×Gq S). �

Bydualizing the isomorphism (5.2.3), we get a natural choice for the cotangent
bundle T∗(G ×Gq S). For that purpose, we choosem∗ as constructed in the proof
of Lemma 5.2.3. Moreover, viewing S as a submanifold of Q, let T∗S be the
image of TS under the G-equivariant diffeomorphism TQ → T∗Q. Now, the
cotangent bundle is provided by the G-equivariant diffeomorphism

φ : G ×Gq (m∗ × T∗S) → T∗(G ×Gq S) (5.2.5)

defined by

〈φ([a , (ν, αs)]), Ta ιs(a . ς) + Ts ιa(Ys)〉 � κ(ν, ς) + 〈αs ,Ys〉 (5.2.6)

for ς ∈ m andYs ∈ TsS. With this choice ofT∗(G×Gq S) the second condition (ST2)
inDefinition 5.2.4 is automatically satisfied, because the adjoints are the identical
mappings.

Remark 5.2.6 Alternatively, one could define T∗(G ×Gq S) by dualizing the
G-equivariant (local) diffeomorphism TχT : T(G×Gq S) → TQ given by the tube
diffeomorphism χT. In this case, the first condition (ST1) in Definition 5.2.4 is
automatically satisfied. ♦
Remark 5.2.7 In the finite-dimensional context, Schmah [Sch07, Proposi-
tion 13] established a similar identificationofT∗(G×Gq S)using regular cotangent
bundle reduction. The starting point is the cotangent bundle T∗(G × S). Using
left translation, identifyT∗G withG×g∗. Denote points inT∗(G×S) ' G×g∗×T∗S
by tuples (a , µ, αs). A straightforward calculation shows that the lift of the
twisted Gq-action on G × S has the momentum map

JGT
q
(a , µ, αs) � −µ�gq + JGq (αs), (5.2.7)
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where JGq : T∗S → g∗q is the momentum map for the lifted Gq-action on T∗S.
Define the map

ϕ : G × g∗ × T∗S ⊇ J−1
GT

q
(0) → T∗(G ×Gq S) (5.2.8)

by
〈ϕ(a , µ, αs), Tι(a . ξ,Ys)〉 � κ(µ, ξ) + 〈αs ,Ys〉, (5.2.9)

for ξ ∈ g and Ys ∈ TsS. The regular cotangent bundle reduction theorem
[OR03, Theorem 6.6.1] shows that ϕ is a submersion and that it descends to a
symplectomorphism ϕ̌ of J−1

GT
q
(0)/Gq with T∗(G ×Gq S). In order to establish the

link with the isomorphism φ discussed above (taken in the finite-dimensional
case), we define

ψ : G × (m∗ × T∗S) → G × (g∗ × T∗S), (5.2.10)
(a , ν, αs) 7→ (a , ν + JGq (αs), αs). (5.2.11)

By construction, ψ takes values in J−1
GT

q
(0) and on this set it has a smooth inverse,

J−1
GT

q
(0) → G × (m∗ × T∗S), (a , µ, αs) 7→ (a , µ�m , αs). (5.2.12)

Now, it is an easy exercise in chasing identifications to see that the following
diagram commutes

J−1
GT

q
(0) G × (m∗ × T∗S)

J−1
GT

q
(0)/Gq T∗(G ×Gq S) G ×Gq (m∗ × T∗S).

ϕ

ψ

ϕ̌ φ

(5.2.13)

Since the regular cotangent bundle reduction theorem does not directly gener-
alize to infinite dimensions1, the approach of [Sch07] is not available to us in
our infinite-dimensional context. One can, however, read (5.2.13) as a proof
that the regular reduction of T∗(G × S) coincides with T∗(G ×Gq S), indeed. ♦
Lemma 5.2.8 Under the diffeomorphism φ defined in (5.2.6), the momentum map
J : T∗(G ×Gq S) → g∗ for the lifted G-action is identified with the map

(J ◦ φ)([a , (ν, αs)]) � Ad∗a(ν + JGq (αs)), (5.2.14)

where JGq : T∗S→ g∗q is the momentummap for the lifted Gq-action on S. In particular,
the condition (J ◦ φ)([a , (ν, αs)]) � 0 is equivalent to JGq (αs) � 0 and ν � 0. ♦
1 We do prove a regular reduction theorem below in Theorem 5.3.8. However, this result relies
on the existence of the normal form and thus cannot be used to construct it.
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Proof. First, we note that the lifted Gq-action on T∗S has a momentum map
JGq : T∗S→ g∗q , because, by properness of the action, Gq is compact and hence
finite-dimensional. The canonical G-action g · [a , s] � [ga , s] on G ×Gq S has
the fundamental vector field

ξ . [a , s] � Ta ιs(ξ . a) � Ta ιs
(
a . (Ad−1

a ξ)
)
, ξ ∈ g. (5.2.15)

Let β � φ([a , (ν, αs)]) ∈ T∗[a ,s](G ×Gq S). Then, for every ξ ∈ g, the momentum
map satisfies

κ(J(β),Ada ξ) �
〈
β, (Ada ξ) . [a , s]

〉
�

〈
β, Ta ιs(a . ξ)

〉
�

〈
β, Ta ιs

(
a . ξgq

)〉
+

〈
β, Ta ιs (a . ξm)

〉
�

〈
β, Ts ιa

(
ξgq . s

)〉
+

〈
β, Ta ιs (a . ξm)

〉
�

〈
αs , ξgq . s

〉
+ κ(ν, ξm)

� κ
(
JGq (αs), ξgq

)
+ κ(ν, ξm),

(5.2.16)

where we have decomposed ξ � ξgq + ξm into ξgq ∈ gq and ξm ∈ m. In the line
before the last line we have used (5.2.6). Hence,

Ad∗a−1(J ◦ φ)([a , (ν, αs)]) ≡ Ad∗a−1 J(β) � JGq (αs) + ν (5.2.17)

and so J(β) � 0 if and only if JGq (αs) � 0 and ν � 0. �

Combining the diffeomorphism φ with the local tube diffeomorphism

T∗χT : T∗Q → T∗(G ×Gq S) (5.2.18)

yields a convenient normal form for the momentum map of the lifted G-action
on T∗Q.

Theorem 5.2.9 (Normal form) Let Q be a Fréchet G-manifold with proper G-action.
Assume that T∗Q is a Fréchet manifold, which is G-equivariantly diffeomorphic to TQ.
Let p ∈ T∗qQ and assume that the G-action on Q admits a slice at q compatible with
the cotangent bundle structures. Then, the map Φ : G ×Gq (m∗ × T∗S) → T∗Q defined
by the condition

〈Φ([a , (ν, αs)]), (Ada ρ) . (a · s) + a . Ys〉 � κ(ν, ρ) + 〈αs ,Ys〉, (5.2.19)

for all ρ ∈ m and Ys ∈ TsS, is a diffeomorphism onto an open neighborhood of p in
T∗Q. Moreover, Φ is G-equivariant with respect to left translation on the G-factor and
the lifted action on T∗Q. Assume, in addition, that the momentum map J : T∗Q → g∗
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for the lifted G-action exists. Then, under Φ, it is identified with the map

(J ◦Φ)([a , (ν, αs)]) � Ad∗a(ν + JGq (αs)), (5.2.20)

where JGq : T∗S→ g∗q is the momentum map for the lifted Gq-action on T∗S. ♦

Proof. Let the mapΦ � T∗(χT)−1 ◦φ be defined as the composition of the diffeo-
morphism φ : G ×Gq (m∗ × T∗S) → T∗(G ×Gq S)with the local diffeomorphism
T∗(χT)−1 : T∗(G ×Gq S) → T∗Q. The composition of (5.2.4) with TχT yields the
map

G ×Gq (m × TS) → TQ , [a , (ρ,Ys)] 7→ Ta ,s(χT ◦ ι)(a . ρ,Ys). (5.2.21)

Note that we have
χT ◦ ι(a , s) � χT([a , s]) � a · s . (5.2.22)

Thus, the above map reads

G ×Gq (m × TS) → TQ , [a , (ρ,Ys)] 7→ (Ada ρ) . (a · s) + a . Ys , (5.2.23)

which is a diffeomorphism onto its image, the latter being a subbundle of TQ.
By dualizing, we obtain the expression (5.2.19) for Φ. The asserted properties
follow immediately from the previous discussion. �

We should note, however, that the semi-global diffeomorphism Φ does
not bring the momentum map J in an MGS normal form in the sense of
Definition 4.2.18. In fact, it does not even provide a slice for the lifted action,
because we have taken the quotient by the ‘wrong’ stabilizer group, i.e., the
model space around p ∈ T∗qQ is of the form G ×Gq V instead of G ×Gp W .
In finite dimensions, much work in the study of singular cotangent bundle
reduction is devoted to constructing a bona fide symplectic slice adapted
to the cotangent bundle structure (see, e.g., [Sch07; RT17]). Converting the
normal form G×Gq (m∗×T∗S) into a symplectic slice requires a detailed analysis
of the Witt–Artin decomposition in the cotangent bundle setting and then
extending these infinitesimal results to a local statement using the Inverse
Function Theorem. It is not clear if and how these steps generalize to the
infinite-dimensional context as they lead to delicate issues of analytic nature.
It turns out, however, that the simple normal form (5.2.20) of the momentum
map we have constructed so far is sufficient for most questions concerning
singular cotangent bundle reduction.
Recall that the choice of a complement m of gq in g yields a canonical

identification of T[e](G/Gq)with m.

Proposition 5.2.10 Under the diffeomorphism Φ constructed in Theorem 5.2.9
and under the identification T[a ,(ν,αs)](G ×Gq (m∗ × T∗S)) ' m ×m∗ × Tαs (T∗S), the



5. Singular Cotangent Bundle Reduction 124

canonical symplectic form ω on T∗Q takes the following form:

(Φ∗ω)[a ,(ν,αs)]
(
(ξ1, η1, Z1), (ξ2, η2, Z2)

)
� κ(η1, ξ2) − κ(η2, ξ1) − κ

(
ν + JGq (αs), [ξ1, ξ2]

)
+ ωS

αs
(Z1, Z2),

(5.2.24)

where ξ i ∈ m, ηi ∈ m∗ andZ i ∈ Tαs (T∗S) for i � 1, 2 andωS is the canonical symplectic
form on T∗S. In particular, at points [a , (ν, αs)] with J ◦ Φ([a , (ν, αs)]) � 0, the
third term on the right-hand side vanishes and Φ∗ω is the direct sum of the canonical
symplectic forms on m ×m∗ and T∗S. ♦

Proof. Let ?
τ : T∗Q → Q be the canonical projection. Then, ?

τ ◦Φ([a , (ν, αs)]) �
a · s. Using (5.2.19), for the pull-back of the canonical 1-form θ we find:

(Φ∗θ)[a ,(ν,αs)]([a . ξ, (η, Z)])
� 〈Φ([a , (ν, αs)]), T[a ,(ν,αs)](

?
τ ◦Φ)([a . ξ, (η, Z)])〉,

� 〈Φ([a , (ν, αs)]), (Ada ξ) . (a · s) + a . Tαs
?
τ(Z)〉

� 〈Φ([a , (ν, αs)]), (Ada ξm) . (a · s) + a . (ξgq . s) + a . Tαs
?
τ(Z)〉

� κ(ν, ξm) + 〈αs , ξgq . s〉 + 〈αs , Tαs
?
τ(Z)〉

� κ(ν, ξm) + κ(JGq (αs), ξgq ) + θS
αs
(Z),

(5.2.25)

where ξ � ξm + ξgq ∈ g, η ∈ m∗ and Z ∈ Tαs (T∗S), and θS is the canonical
1-form on T∗S. If we introduce the left Maurer–Cartan form ϑ ∈ Ω1(G, g) by
ϑa(a . ξ) � ξ, then we get

(Φ∗θ)[a ,(ν,αs)] � κ
(
ν + JGq (αs), ϑa(·)

)
+ θS

αs
(·). (5.2.26)

The Maurer–Cartan equation dϑ � −1
2[ϑ ∧ ϑ] yields

(dΦ∗θ)[a ,(ν,αs)]
(
[a . ξ1, (η1, Z1)], [a . ξ2, (η2, Z2)]

)
� κ(η1, ξ2

m) − κ(η2, ξ1
m) + κ(ν + JGq (αs), (dϑ)a(a . ξ1, a . ξ2))

+ κ(Tαs JGq (Z1), ξ2
gq
) − κ(Tαs JGq (Z2), ξ1

gq
)

+ (dθS)αs (Z1, Z2)

� κ(η1, ξ2
m) − κ(η2, ξ1

m) − κ
(
ν + JGq (αs), [ξ1, ξ2]

)
+ ωS

αs
(Z1, ξ2

gq
. αs) − ωS

αs
(Z2, ξ1

gq
. αs) + ωS

αs
(Z1, Z2).

(5.2.27)

Now the identification T[a ,(ν,αs)](G×Gq (m∗×T∗S)) ' m×m∗×Tαs (T∗S) amounts
to setting the gq-component of ξ i to zero and we thus arrive at the claimed
formula (5.2.24). �
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5.3 Symplectic stratification

In Section 4.3, we have seen that the decomposition of the symplectically
reduced phase space into orbit type manifolds yields a stratification. For the
reduction scheme, we heavily relied on the MGS normal form to prove that
the orbit type subsets carry a smooth manifold structure. As we will see
now, the Normal Form Theorem 5.2.9 for the momentum map established in
the previous section allows to make similar statements concerning the local
structure in the context of cotangent bundles.

Theorem 5.3.1 Let Q be a Fréchet G-manifold. Assume that the G-action is proper,
that it admits at every point a slice compatible with the cotangent bundle structures and
that the decomposition of Q into orbit types satisfies the frontier condition. Moreover,
assume that T∗Q is a Fréchet manifold, which is G-equivariantly diffeomorphic to TQ,
and that the lifted action on T∗Q, endowed with its canonical symplectic form ω, has a
momentum map J. Then, the following holds:

(i) The set of orbit types of P ..� J−1(0) with respect to the lifted G-action coincides
with the set of orbit types for the G-action on Q.

(ii) The reduced phase space P̌ ..� J−1(0)/G is stratified into orbit type manifolds
P̌(K) ..� (J−1(0))(K)/G.

(iii) Assume, additionally, that the orbit g . p is symplectically closed for all p ∈ P.
Then, for every orbit type (K), the manifold P̌(K) carries a symplectic form ω̌(K)
uniquely determined by

π∗(K)ω̌(K) � ω�P(K) , (5.3.1)

where π(K) : P(K)→ P̌(K) is the natural projection. ♦

In the sequel, we will prove this theorem by means of a series of lemmas. Let
us start with the observation that the orbit types of the lifted action are tightly
connected to the ones for the action on the base manifold. The following results
extend the determination of orbit types of the lifted action [Rod06; PRS07,
Theorem 5] to the infinite-dimensional setting.

Lemma 5.3.2 Under the assumptions of Theorem 5.3.1, for every orbit type (K) of
T∗Q there exist a triple (H, H̃, L) such that (K) is represented by K � H̃ ∩ L, where
H̃ ⊆ H are stabilizer subgroups of Q and L is a stabilizer subgroup of the H-action
on (g/h)∗ with h being the Lie algebra of H.

Conversely, for every triple (H, (H̃), L), where H is a stabilizer subgroup of Q, (H̃)
is an orbit type of Q fulfilling (H̃) ≤ (H) and L is a stabilizer subgroup of the H-action
on (g/h)∗, there exists a representative H̃ of (H̃) and a stabilizer subgroup K of T∗Q
such that K � H̃ ∩ L. ♦

Proof. Let p ∈ T∗qQ and denote the stabilizer of p and q by K and H, respectively.
Choose an AdH-invariant complement m of h ≡ gq in g, which according to
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Lemma 5.2.3 is possible because H is compact. We will first show that there
exists q̃ ∈ Q (close to q) and ν ∈ m∗ such that

K � Gq̃ ∩ Hν . (5.3.2)

For this purpose, let S be a slice at q. Denote the model space of S by X. By
Theorem 5.2.9, there exists ν ∈ m∗ and α ∈ T∗qS such that Φ([e , (ν, (q , α))]) � p.
Since Φ is G-equivariant, the common stabilizer of ν and α under the H-
action on m∗ × T∗qS is K, that is, K � Hα ∩ Hν. By assumption, there exists
a G-equivariant diffeomorphism between TQ and T∗Q. The latter induces
an H-equivariant diffeomorphism between TS and T∗S. Thus, there exists
x ∈ X ' TqS whose stabilizer under the H-action is Hα. Since the topology of X
is generated by absorbent sets and S is (diffeomorphic to) an open neighborhood
of 0 in X, there exists r ∈ R such that x � rq̃ for some q̃ ∈ S. By linearity of
the H-action, both x and q̃ have the same stabilizer Hα. As q̃ ∈ S, (SL2) of
Definition A.2.2 shows that Gq̃ ⊆ H and so Gq̃ � Hq̃ . Hence, we have found q̃
and ν satisfying (5.3.2).

In the converse direction, let H be a stabilizer subgroup of Q, (H̃) be an orbit
type of Q fulfilling (H̃) ≤ (H) and L be a stabilizer subgroup of the H-action on
(g/h)∗. Let q ∈ Q be such that Gq � H. Choose a slice S at q. Since (H̃) ≤ (H),
the frontier condition and (SL3) of Definition A.2.2 imply that there exists q̃ ∈ S
with (Hq̃) � (Gq̃) � (H̃). Choose an AdH-invariant complement m of h in g and
ν ∈ m∗ with Hν � L. Since Φ is equivariant, the point p � Φ([e , (ν, (q̃ , 0))]) has
stabilizer

Gp � Hq̃ ∩ Hν , (5.3.3)

which completes the proof. �

Corollary 5.3.3 Under the assumptions of Theorem 5.3.1, the set of orbit types
of P � J−1(0) with respect to the lifted G-action coincides with the set of orbit types
for the G-action on Q, that is, a subgroup K is the stabilizer K of some p ∈ P if and
only if there exists a point q̃ ∈ Q such that Gq̃ � K. ♦

Proof. One direction is clear, as the zero section of T∗Q has the same orbit types
as Q and is contained in the zero level set of J. The conclusion in the converse
direction follows by similar arguments as in the proof of Lemma 5.3.2. Indeed,
J(p) � 0 implies that ν � 0 by (5.2.20) and hence Gq̃ � K by (5.3.2). �

Lemma 5.3.4 Under the assumptions of Theorem 5.3.1 the following holds. For every
orbit type (K) of T∗Q, the orbit type stratum (T∗Q)(K) is a submanifold of T∗Q and
the quotient (T∗Q)(K)/G is a Fréchet manifold. ♦

Proof. Let p ∈ (T∗Q)(K) and denote its base point by q ∈ Q. By Theorem 5.2.9, it
is enough to show that(

G ×Gq (m∗ × T∗S)
)
(Gp)

� G ×Gq

(
(m∗ × T∗S)(Gp)

)
(5.3.4)
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is a submanifold of G ×Gq (m∗ × T∗S). In this expression, (Gp) still denotes the
conjugacy class of Gp in G and not in Gq . Since the action is linear and Gq
is compact, Theorem A.2.4 implies that the Gq-action on m∗ × T∗S admits a
slice at every point. Using the existence of these slices and Lemma A.2.1, we
conclude that (m∗ × T∗S)(Gp) is a submanifold of m∗ × T∗S, cf. Proposition A.2.7.
Finally, the G-quotient is a smooth manifold, because it is locally identified
with (m∗ × T∗S)(Gp)/Gq . �

The normal form for the momentum map of the lifted action established in
Theorem 5.2.9 yields in a similar manner the following.
Lemma 5.3.5 Under the assumptions of Theorem 5.3.1 the following holds. For every
orbit type (K) of the lifted G-action, the set

P(K) ..� (T∗Q)(K) ∩ J−1(0) � (J−1(0))(K) (5.3.5)

is a smooth submanifold of (T∗Q)(K). Moreover, there exists a unique smooth manifold
structure on

P̌(K) ..� P(K)/G (5.3.6)

such that the natural projection π(K) : P(K)→ P̌(K) is a smooth submersion. ♦

Proof. Let p ∈ P(K) and let q ∈ Q be its base point. Under the local diffeomor-
phism Φ established in Theorem 5.2.9, the set P(K) is identified with(

G ×Gq (m∗ × T∗S)
)
(K)
∩ (J ◦Φ)−1(0) � G ×Gq

(
{0} × (J−1

Gq
(0))(K)

)
. (5.3.7)

This equality is a direct consequence of (5.3.4) and (5.2.20). By Corollary 4.3.7,
the orbit type subset (J−1

Gq
(0))(K) � (T∗S)(K) ∩ J−1

Gq
(0) is a smooth submanifold

of T∗S. By the same corollary, the quotient space (J−1
Gq
(0))(K)/Gq , which is the

model space of P̌(K), is a smooth manifold, too. �

Lemma 5.3.6 Under the assumptions of Theorem 5.3.1, the orbit type decompositions
of Q̌, P and P̌ satisfy the frontier condition. ♦

Proof. The quotient Q̌ inherits the frontier condition from Q by [DR18c, The-
orem 4.6]. Similarly, P̌ inherits the frontier condition from P. Let p ∈ P. We
have to show that p ∈ P(K) if and only if (Gp) ≥ (K). Denote the base point of
p by q, abbreviate H ≡ Gq and let Φ be the local diffeomorphism constructed
in Theorem 5.2.9. As we have seen in the proof of Lemma 5.3.5, P(K) is locally
identified with

G ×H
(
{0} × (J−1

H (0))(K)
)
. (5.3.8)

Moreover, P(K) is locally identified with

G ×H

(
{0} × (J−1

H (0))(K)
)
, (5.3.9)
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because the quotient map G × T∗S→ G ×H T∗S is open and f −1(A) � f −1(A)
for every open continuous map f : Y → Z and every subset A ⊆ X. Write
p � Φ([e , (0, α)]), where α ∈ T∗qS satisfies JH(α) � 0. Since Gp � Hα, it is enough
to show that α lies in the closure of (J−1

H (0))(K) if and only if (Hα) ≥ (K).
First, suppose that α ∈ (J−1

H (0))(K). Since H is compact, there exists a slice
at α and hence a neighborhood of α in T∗S such that every point in this
neighborhood has a stabilizer subconjugate to Hα. However, by assumption,
(J−1

H (0))(K) has to intersect this neighborhood and thus (K) ≤ (Hα).
For the converse direction, we first need to establish a result about the orbit

type decomposition of S. Since the orbit type stratification of Q satisfies the
frontier condition, we have

⋃
(H)≥(K)Q(H) ⊆ Q(K) for every orbit type (K) of Q.

We will show now that we get a similar approximation property in the slice.
For this purpose, let (H) > (K) be orbit types of the action on Q and let s ∈ S(H).
For every open neighborhood V of s in S, the image χS(U ×V) under the local
slice diffeomorphism χS : U × S→ Q is an open neighborhood of s in Q. Since
Q(H) ⊆ Q(K), the intersection

χS(U × V) ∩Q(K) � χS(U × V(K)) (5.3.10)

is non-empty. Thus, V(K) is non-empty and we have shown that S(H) ⊆ S(K) for
all orbit types (H) > (K).

Now, suppose that (K) is an orbit type ofP with (K) ≤ (Hα). ByCorollary 5.3.3,
(K) is also an orbit type of the G-action on Q. We will show that every open
neighborhood W of α in T∗qS has non-empty intersection with (J−1

H (0))(K). Note
that the momentum map JH vanishes on the whole fiber T∗qS, because q has
stabilizer H. Thus, it suffices to show that α lies in the closure of (T∗qS)(K). Since
T∗Q is G-equivariantly diffeomorphic to TQ, there exists an H-equivariant
diffeomorphism of T∗qS and TqS. Let v ∈ TqS be the image of α under this
diffeomorphism. Since S is (diffeomorphic to) an open subset of TqS, there
exists a non-zero r ∈ R such that rv ∈ S. Note that scaling by r is an H-
equivariant diffeomorphism of TqS. In particular, the stabilizer of rv coincides
with Hα. Thus, in summary, we have reduced the problem to showing that rv
lies in the closure of (TqS)(K). But, as (Hrv) � (Hα) ≥ (K), we have

rv ∈ S(K) ⊆ (TqS)(K) , (5.3.11)

using the approximation property S(Hα) ⊆ S(K). �

Remark 5.3.7 In the paper [PRS07] it was silently taken for granted that the
decomposition of Q into orbit types always satisfies the frontier condition.
However, in examples, there may be an orbit type whose closure contains some
but not all fixed points; and hence the frontier condition is violated in these
cases (see e.g., [CM18, Example 17 and Remark 13]). ♦
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Finally, the last point in Theorem 5.3.1 follows from Proposition 4.3.3. This
completes the proof of Theorem 5.3.1.
For the special case, when the G-action on Q has only one orbit type1,

we obtain the infinite-dimensional counterpart to the well-known cotangent
bundle reduction theorem for one orbit type [ER90, Theorem 1].

Theorem 5.3.8 In the setting of Theorem 5.3.1, assume additionally that the G-action
on Q has only one orbit type. Then, P̌ � J−1(0)/G is symplectomorphic to T∗(Q/G)
with its canonical symplectic structure. ♦

Proof. Let (H) denote the orbit type of Q. By assumption, we have Q(H) � Q
and thus the existence of slices ensures that the quotient Q̌ ≡ Q/G is a smooth
manifold, see Proposition A.2.7. Theorem 5.3.1 entails that every point of J−1(0)
has orbit type (H) and that, moreover, the reduced space P̌ ≡ J−1(0)/G is a
smooth manifold and carries a closed 2-form2 ω̌. Let π : Q → Q̌ denote the
natural projection. We claim that the map

τ : T∗Q̌ → P̌, α[q] 7→ [π∗α[q]] (5.3.12)

is a well-defined diffeomorphism and that τ∗ω̌ coincides with the canonical
symplectic form on T∗Q̌. First, for every q ∈ Q and α ∈ T∗[q]Q̌

〈π∗α[q], ξ . q〉 � 〈α[q], Tqπ(ξ . q)〉 � 0 (5.3.13)

shows that π∗α[q] lies in the zero level set of J and thus τ is well defined as a
map with values in P̌. It is straightforward to see that τ is bĳective as π is a
submersion with Ker Tqπ � g . q. In order to show that τ is a diffeomorphism,
let q ∈ Q with Gq � H and choose a slice S at q. In slice coordinates, we have
Q ' G ×H S and so Q̌ ' S, because the assumption that Q has only the orbit
type (H) implies S � SH . Thus, locally T∗Q̌ ' T∗S. On the other hand, in the
proof of Lemma 5.3.5 we have seen that P̌ is locally identified with J−1

H (0)(H)/H,
where JH : T∗S → h∗ is the momentum map for the H-action on T∗S. Now,
S � SH implies that J−1

H (0)(H)/H simply coincides with T∗S. Going back to the
definitions, it is easy to see that in these coordinates τ is the identity map on
T∗S and thus a diffeomorphism. Finally, by Proposition 5.2.10, under these
identifications the canonical symplectic form on T∗Q̌ and the form ω̌ both are
equal to the canonical symplectic form on T∗S. �

1 This assumption includes, of course, also the case of a free action.
2 A priori, ω̌ may be degenerate as we have not assumed that the orbits be symplectically
closed.
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5.4 Secondary stratification

Examples of singular cotangent bundle reduction (such as the ones coming from
lattice gauge theory [FRS07]) show that the natural projection from the reduced
phase space P̌ � T∗Q //0 G to the reduced configuration space Q̌ � Q/G is not
a morphism of stratified spaces, i.e., there exist strata in P̌ that project onto
different strata in Q̌. In the finite-dimensional context, Perlmutter, Rodriguez-
Olmos, and Sousa-Dias [PRS07] have refined the symplectic stratification of
P̌ in such a way that the projection P̌ → Q̌ becomes a morphism of stratified
spaces. This so-called secondary stratification has also the advantage of
identifying certain strata in the reduced phase space as cotangent bundles. In
this section, we construct this refined stratification in our infinite-dimensional
setting. In particular, we show that the secondary strata are submanifolds
(for finite-dimensional manifolds this is shown in [PRS07, Theorem 7], but
the proof there does not directly translate to the infinite-dimensional setting).
Moreover, we study how the secondary strata behave with respect to the
ambient symplectic structure and investigate the frontier condition. This
discussion culminates in Theorem 5.4.8. In this section, we continue to work in
the setting of Theorem 5.3.1.

For orbit types (K) and (H) of T∗Q and Q, respectively, consider the subset

(T∗Q)(K)(H)
..� {p ∈ T∗qQ : q ∈ Q(H), p ∈ (T∗Q)(K)} (5.4.1)

of the orbit type stratum (T∗Q)(K). Since the projection T∗Q → Q is G-
equivariant, (T∗Q)(K)(H) is non-empty only if (K) ≤ (H). Moreover, the union

of (T∗Q)(K)(H) over all orbit types (H) fulfilling this condition yields the orbit
type stratum (T∗Q)(K). Note that the stabilizer Gp of p ∈ T∗qQ under the lifted
G-action on T∗Q coincides with the stabilizer [Gq]p of p under the dual isotropy
action of Gq on the fiber T∗qQ. Whence, we equivalently have

(T∗Q)(K)(H)
..� {p ∈ T∗qQ : q ∈ Q(H), [Gq]p ∼ K}. (5.4.2)

Lemma 5.4.1 Assume that the G-action on Q is proper and that it admits a slice
compatible with the cotangent bundle structures at every point. Moreover, assume
that T∗Q is a Fréchet manifold, which is G-equivariantly diffeomorphic to TQ. Let (K)
be an orbit type of T∗Q. Then, for every orbit type (H) of Q fulfilling (H) ≥ (K),
the sets (T∗Q)(K)(H) and (T

∗Q)(K)(H)/G are submanifolds of (T∗Q)(K) and (T∗Q)(K)/G,
respectively. ♦

We call the sets (T∗Q)(K)(H) the secondary strata and the decomposition of T∗Q
into these secondary strata is referred to as the secondary orbit type stratification.
As far as we know, the above result is novel even for the finite-dimensional
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case.

Proof. Let p ∈ (T∗Q)(K)(H) and denote its base point by q ∈ Q. Without loss
of generality we may assume that Gp � K and Gq � H with Gp ⊆ Gq . By
Theorem 5.2.9, it is enough to show that the corresponding subset(

G ×Gq (m∗ × T∗S)
) (Gp)

(Gq)
⊆ G ×Gq (m∗ × T∗S) (5.4.3)

is a submanifold. By definition, S is diffeomorphic to an open subset of a
Fréchet space X and, hence, we may identify T∗S with S ×X∗. By Lemma A.2.1,
for every point s in the slice, Gs is conjugate to Gq if and only if Gs � Gq . We
thus find (

G ×Gq (m∗ × T∗S)
) (Gp)

(Gq)
� G ×Gq

(
(m∗ × X∗)(Gp) × SGq

)
. (5.4.4)

In this expression, (Gp) clearly denotes the conjugacy class of Gp in G and not
in Gq . Now, since Gq is compact, (m∗ × X∗)(Gp) is a submanifold of m∗ × X∗ (the
proof follows by the same arguments as in the proof of Lemma 5.3.4). Finally,
the G-quotient is again a smooth manifold, because it is locally identified with
(m∗ × X∗)(Gp)/Gq × SGq . �

For the study of the interaction of the secondary orbit type stratification with
the momentum map geometry we need the following basic result about linear
cotangent bundle reduction.

Lemma 5.4.2 Let 〈X∗,X〉 be a dual pair of Fréchet spaces and let G be a compact
Lie group acting linearly on X and, by duality, also on X∗. Then, the lifted G-action
on T∗X has an equivariant momentum map J : T∗X → g∗. Moreover, for every orbit
type (K),

(T∗X)(K)(G) ∩ J−1(0) ' XG × X∗(K) (5.4.5)

is a submanifold of T∗X. ♦

Proof. Under the identification T∗X ' X × X∗, the canonical 1-form takes the
form

θx ,α(y , β) � 〈α, y〉, x , y ∈ X, α, β ∈ X∗. (5.4.6)

Since G is compact and, hence, finite-dimensional, the linear G-action has a
momentum map J defined by

κ(J(x , α), ξ) � 〈α, ξ . x〉, ξ ∈ g. (5.4.7)

Note that J(x , α) � 0 if x ∈ XG. Since, by definition of the secondary strata,

(T∗X)(K)(G) ' X(G) × X∗(K) � XG × X∗(K) (5.4.8)
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holds, we obtain
(T∗X)(K)(G) ∩ J−1(0) ' XG × X∗(K). (5.4.9)

Since G is compact, the G-action on X∗ admits a slice at every point according
to Theorem A.2.4 and thus the orbit type manifold X∗(K) is a submanifold of X∗,

see Proposition A.2.7. Therefore, (T∗X)(K)(G) ∩ J−1(0) is a submanifold of T∗X. �

We now return to the general non-linear setting. Given two orbit types
(K) ≤ (H), following [PRS07], we call the set

P(K)(H)
..� (T∗Q)(K)(H) ∩ J−1(0) (5.4.10)

a preseam and the quotient P̌(K)(H)
..� P(K)(H)/G a seam.

Lemma 5.4.3 For every pair of orbit types (H) ≥ (K), the preseam P(K)(H) is a smooth

submanifold of T∗Q and the seam P̌(K)(H) is a smooth submanifold of P̌(K) and of

(T∗Q)(K)/G. Moreover, P̌(K)(H) is a smooth fiber bundle over Q̌(H). ♦

Proof. Let p ∈ (T∗Q)(K)(H) and denote its base point by q ∈ Q. Let S be a slice
at q and let X be the model space of S. Using the local diffeomorphism Φ of
Theorem 5.2.9 and the isomorphism of equation (5.4.5), in a neighborhood of p
we can identify the preseam with the submanifold(

G ×Gq (m∗ × T∗S)
) (Gp)

(Gq)
∩ J−1(0) � G ×Gq

(
{0} × J−1

Gq
(0)(Gp)
(Gq)

)
' G ×Gq

(
{0} × SGq × X∗(Gp)

) (5.4.11)

of G ×Gq (m∗ × T∗S). Similarly, the seam P̌(K)(H) has locally the same structure
as the smooth manifold SGq × (X∗(Gp)/Gq). Under these identifications, the

quotient map P̌(K)(H) → Q̌(H) corresponds to the projection onto the first factor
and is thus a locally trivial submersion. �

We now come to the interaction of the seams with the symplectic geometry.
For this purpose, denote by ω̌(K)(H) the restriction of ω̌(K) to P̌(K)(H) ⊆ P̌(K). The injec-
tion T(Q(H)) → (TQ)�Q(H) induces a surjective map pr: (T∗Q)�Q(H) → T∗(Q(H))
and, thereby, a map π̄ : P(K)(H) → T∗(Q(H)). Let ω̄(H) denote the canonical sym-
plectic form on T∗(Q(H)). With this notation, we can give a characterization of
ω̌(K)(H) similar to the one for the reduced symplectic form.
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Lemma 5.4.4 The restriction ω̌(K)(H) of ω̌(K) to P̌(K)(H) ⊆ P̌(K) is uniquely characterized
by (

π(K)(H)

)∗
ω̌(K)(H) � π̄

∗ ω̄(H), (5.4.12)

where π(K)(H) : P(K)(H)→ P̌(K)(H) is the canonical projection. ♦

Proof. We first note that the restriction of ω to (T∗Q)�Q(H) coincides with the
pull-back pr∗ ω̄(H). In fact, the commutative diagram

T∗(Q(H)) (T∗Q)�Q(H) T∗Q

Q(H) Q(H) Q

pr

id

(5.4.13)

and a straightforward calculation show that the pull-back pr∗ θ̄(H) of the
canonical 1-form on T∗(Q(H)) coincides with the restriction of θ to (T∗Q)�Q(H) .
Now the claim follows by chasing along the following commutative diagram:

T∗(Q(H)) (T∗Q)�Q(H) T∗Q

P(K)(H) P(K)

P̌(K)(H) P̌(K).

pr

π̄

π(K)(H)

(5.4.14)

�

The construction above provides additional insight into the structure of the
seam P̌(H)(H) . To see this, note that π̄ takes values in the zero level set of the
momentum map

J̄(H) : T∗(Q(H)) → g∗ . (5.4.15)

Moreover, π̄ is G-equivariant and thus descends to a map

ˇ̄π : P̌(K)(H)→ J̄−1
(H)(0)/G. (5.4.16)

By Theorem 5.3.8, the target space
(
J̄−1
(H)(0)

)
(H)/G is symplectomorphic to

T∗(Q̌(H)).

Proposition 5.4.5 For every orbit type (H), the restriction of ω̌(H) to P̌(H)(H) is

symplectic and ˇ̄π is a symplectomorphism between P̌(H)(H) and T∗(Q̌(H)) with its
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canonical symplectic structure1. ♦

We call P̌(H)(H) the principal seam.

Proof. As we have seen in the proof of Lemma 5.4.3, the seam P̌(H)(H) is locally
identified with SH × (X∗(H)/H) � SH × X∗H ' T∗(SH). On the other hand,
T∗(Q̌(H)) is locally equivalent to T∗(SH), see the proof of Theorem 5.3.8. It is
straightforward to see that, in these coordinates, ˇ̄π is the identity map on
T∗(SH) and hence a diffeomorphism. Finally, by Lemma 5.4.4, ˇ̄π intertwines
the closed 2-form ω̌(H)(H) with the canonical symplectic form on T∗(Q̌(H)). Since
ˇ̄π is a diffeomorphism, ω̌(H)(H) is symplectic. �

In finite dimensions, one can show that the seams P̌(K)(H) are coisotropic with
respect to the reduced symplectic form ω̌(K) on P̌(K), see [PRS07, Corollary 9].
The proof, however, relies on counting dimensions and thus does not generalize
to the infinite-dimensional setting. A different idea to show that the seams
are coisotropic is to use a Witt–Artin decomposition adapted to the cotangent
bundle case. In the finite-dimensional context, such a decomposition was
established in [PRS08], but its extension to infinite dimensions is not immediate
and will be left to future work.
Let us now discuss the frontier condition. For this purpose, we endow the

set of pairs of orbit types ((K), (H)) satisfying (H) ≥ (K) with the partial order

((K), (H)) ≤ ((K′), (H′)) if and only if (K) ≤ (K′) and (H) ≤ (H′).

Lemma 5.4.6 Assume that the orbit type decomposition of Q satisfies the frontier
condition. For every pair of orbit types (K) and (H) fulfilling (H) ≥ (K), we have

P̌(K)(H) �
⋃

((K′),(H′))≥((K),(H))
P̌(K

′)
(H′) , (5.4.17)

so that the decomposition of P̌ into seams also satisfies the frontier condition. ♦

Proof. Since the orbit type decomposition of Q satisfies the frontier condition,
the orbit type decomposition of P and P̌ share this property by Lemma 5.3.6.
Let P̌(K

′)
(H′) be a seam that has a non-empty intersection with the closure of P̌(K)(H).

In particular, P̌(K
′)

(H′) intersects the closure of P̌(K) and thus (K′) ≥ (K) as the

1 One might expect that (T∗Q)(H)(H) is symplectomorphic to T∗(Q(H)). However, simple examples
like G � SO(n) acting on Rn show that this is not the case.
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orbit type decomposition satisfies the frontier condition. Since the canonical
projection P̌ → Q̌ is continuous, a similar argument shows that (H′) ≥ (H).

For the converse direction, let P̌(K)(H) and P̌(K
′)

(H′) be seams with (K′) ≥ (K)
and (H′) ≥ (H). We have to show that P̌(K

′)
(H′) lies in the closure of P̌(K)(H). Let

[p] ∈ P̌(K
′)

(H′) and choose p ∈ P(K
′)

(H′). Denote the base point of p by q. We will
show that every neighborhood of p in P has a non-trivial intersection with
the preseam P(K)(H). Since this is a local question, it is enough to consider it in
a tubular neighborhood of the form G ×Gq (m∗ × T∗S). That is, it is enough
to show that every neighborhood of p�TqS ∈ T∗qS in J−1

Gq
(0) contains a point

(s , α) ∈ S × X∗ ' T∗S with (Gs) � (H) and (Gα) � (K). The existence of such a
point follows from the fact that P and Q satisfy the frontier condition. Indeed,
since (H) ≤ (H′) � (Gq), the frontier condition implies that every neighborhood
of q in Q contains a point q′ such that (Gq′) � (H). Without loss of generality,
we may assume that we work in slice coordinates and that there are, thus,
g ∈ G and s ∈ S with q′ � g · s. By equivariance of the stabilizer, we have
(Gs) � (Gq′) � (H). The construction of α ∈ J−1

Gq
(0)with (Gα) � (K) follows from

similar arguments using the frontier condition for P̌. �

Corollary 5.4.7 Assume that the orbit type decomposition of Q satisfies the frontier
condition. Then, for every pair of orbit types (K) and (H) with (H) ≥ (K), the closure
of P̌(K)(H) in P̌(K) is the union of P̌(K)(H′) over all orbit types (H

′) ≥ (H). In particular, the
decomposition of P̌(K) into seams satisfies the frontier condition. ♦

Let us summarize.

Theorem 5.4.8 (Singular cotangent bundle reduction at zero) Let Q be a Fréchet
G-manifold. Assume that the G-action is proper, that it admits at every point a slice
compatible with the cotangent bundle structures and that the decomposition of Q into
orbit types satisfies the frontier condition. Moreover, assume that T∗Q is a Fréchet
manifold, which is G-equivariantly diffeomorphic to TQ, and that the lifted action on
T∗Q, endowed with its canonical symplectic form ω, has a momentum map J. Assume,
additionally, that the orbit g . p is symplectically closed for all p ∈ J−1(0). Then, the
following holds:

(i) The set of orbit types of J−1(0) with respect to the lifted G-action coincides with
the set of orbit types for the G-action on Q.

(ii) The reduced phase space P̌ � J−1(0)/G is stratified into orbit type subsets
P̌(K) � (J−1(0))(K)/G. For every orbit type (K), the set P̌(K) is a smooth manifold
and carries a symplectic form ω̌(K).
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(iii) Every symplectic stratum P̌(K) is further stratified as

P̌(K) �
⊔
(H)≥(K)

P̌(K)(H) , (5.4.18)

where each seam P̌(K)(H) is a smooth fiber bundle over Q̌(H).

(iv) For every orbit type (H), the principal seam P̌(H)(H) endowed with the restriction
of the symplectic form ω̌(H) is symplectomorphic to T∗(Q̌(H)) endowed with its
canonical symplectic structure.

(v) The decomposition
P̌ �

⊔
(H)≥(K)

P̌(K)(H) (5.4.19)

is a stratification of P̌ called the secondary stratification. Moreover, the
projection T∗Q → Q induces a stratified surjective submersion P̌ → Q̌ with
respect to the secondary stratification of P̌ and the orbit type stratification of
Q̌. ♦

5.5 Dynamics

Let us now pass from the kinematic picture presented so far to dynamics.
According to Proposition 4.3.8, the Hamiltonian flow on the original phase
space T∗Q generated by a G-invariant Hamiltonian h : T∗Q → R descends to a
Hamiltonian flow on each symplectic stratum of the reduced phase space P̌. In
this sense, the symplectic stratification of P̌ represents an additional conversed
quantity. The interaction of dynamics with the secondary stratification is more
complicated. The seams are in general not preserved by the Hamiltonian
flow. The following example suggests that, for each orbit type (K), the singular
seams P̌(K)(H) with (H) > (K) stitch together the dynamics in the cotangent bundle

P̌(K)(K) ' T∗(Q̌(K)).

Example 5.5.1 Consider a two-dimensional isotropic harmonic oscillator,
whose coordinates are q � (q1, q2) and the corresponding momenta are p �

(p1, p2). Consequently, the phase space is T∗R2 and the Hamiltonian of the
system is given by

H(q , p) � 1
2 ‖p‖

2
+

1
2 ‖q‖

2. (5.5.1)

Note that U(1) acting by rotation in the (q1, q2)-plane is a symmetry of H. The
angular momentum

J(q , p) � q1p2 − q2p1 (5.5.2)
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is the momentum map for the lift of this action to T∗R2. Hence, J(q , p) � 0
if and only if q and p are parallel. The U(1)-action on Q is free except at the
origin, which has stabilizer U(1). Consequently, the secondary stratification of
P � J−1(0) is

P � {(0, 0)}︸  ︷︷  ︸
PU(1)

U(1)

∪ {(0, p , 0)}︸        ︷︷        ︸
P{e}U(1)

∪ {(q , 0, p) : q ‖ p}︸                  ︷︷                  ︸
P{e}{e}

. (5.5.3)

In order to identify the reduced phase space, consider the map

K : T∗R2 → R3, (q , p) 7→ ©«
E+

E−
H

ª®¬ ..� ©«
1
2 ‖p‖2 − 1

2 ‖q‖2
q · p

1
2 ‖p‖2 + 1

2 ‖q‖2
ª®¬ . (5.5.4)

The reason for this notation will become clear in a moment. On the way,
we note that the combination of K and J yields the momentum map for the
U(2)-symmetry1, see [CB97, I.3.3]. The Hamiltonian H is clearly non-negative
and a direct calculation shows that H2 − J2 � E2

+ + E2
−. Hence, the image of

P � J−1(0) under K is the upper cone (with origin included), see Figure 5.1.
Moreover, K is U(1)-invariant and descends to a homeomorphism

Ǩ : P̌ → C (5.5.5)

of the reduced phase space P̌ � J−1(0)/U(1) with the upper cone C ⊆ R3. The
image of P̌U(1)

U(1) under Ǩ is the origin and the seam P̌{e}U(1) gets mapped onto the
line L determined by E− � 0, H � E+ and H > 0. The remaining part of the
cone corresponds to P̌{e}{e} .
We now pass to the symplectic structure. The Poisson brackets of the

components E± and H of K (viewed as real-valued functions on T∗R2) are given
by

{H, E±} � ∓ 2E∓ {E+, E−} � 2H. (5.5.6)

These relations are identical with the commutation relations of sl(2,R). Hence,
K is a Poisson map from T∗R2 to R3 ' sl(2,R), where the latter space carries
the usual Lie–Poisson structure, i.e., the one given by the bivector field

Π � −2E− ∂H ∧ ∂E+
+ 2E+ ∂H ∧ ∂E− + 2H ∂E+

∧ ∂E− . (5.5.7)

The symplectic top stratum P̌{e}, i.e. the cone without the origin, is a coadjoint
orbit of SL(2,R) and thus carries the Kostant–Kirillov–Souriau symplectic form.
1 To be more precise, to arrive at the momentum map of Cushman and Bates [CB97, I.3.3] one
has to exchange the coordinates q2 and p1. The U(2) symmetry is a good starting point for
the qualitative discussion of the dynamics using the energy-momentum map; a topic which
will not be further developed here.
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As the singular stratum P̌U(1) is zero-dimensional, its symplectic form vanishes.
Recall from Proposition 5.4.5 the construction of the symplectomorphism ˇ̄π

between P̌{e}{e} and T∗(Q̌{e}). Moreover, the map [q] 7→ 1
2 ‖q‖2 identifies Q̌{e} with

R>0 and thus yields a symplectomorphism of T∗(Q̌{e})with T∗R>0 ' R>0 × R.
A straightforward calculation shows that the combined symplectomorphism

ψ : P̌{e}{e} → T∗(Q̌{e}) → T∗R>0 (5.5.8)

is given by

ψ([q , p]) �
(

1
2 ‖q‖

2,
q · p
‖q‖2

)
�

(
1
2(H − E+),

E−
H − E+

)
. (5.5.9)

Consider the map

I : T∗R>0 → R3, (q̄ , p̄) 7→ ©«
q̄(p̄2 − 1)

2q̄ p̄
q̄(p̄2 + 1)

ª®¬ . (5.5.10)

The image of I is the upper cone C without the line L and the following diagram
commutes

P̌{e}{e} C \ L

T∗(Q̌{e}) T∗R>0 .

Ǩ

ˇ̄π
ψ

I (5.5.11)

Moreover, a direct calculation shows that the components of I again satisfy the
commutation relations (5.5.6) and hence I is a Poisson immersion of T∗R>0 into
(sl(2,R),Π). To summarize the kinematic picture, we have decomposed the
reduced phase space into the symplectic strata P̌U(1) and P̌{e}. The symplectic
stratum P̌{e} further decomposes into the cotangent bundle T∗R>0 and the line
L. This decomposition is in accordance with Theorem 5.4.8.
Let us now discuss the dynamics. Using (5.5.7), the Hamiltonian vector field

XH � dH Π on R3 generated by H is

XH � −2E− ∂E+
+ 2E+ ∂E− . (5.5.12)

Hence, the time evolution is given by rotation in the (E+, E−)-plane with
H � const. In particular, the flow periodically hits the line L, i.e., the seam
P̌{e}U(1). It is interesting to compare this behavior to the Hamiltonian flow on
T∗R>0 generated by

H̄ ..� I∗H � q̄(p̄2
+ 1). (5.5.13)
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q̄

p̄

(a) Integral curves of YH̄ in T∗R>0.

P̌{e}{e}

P̌{e}U(1)

P̌U(1)
U(1)

(b) Integral curves of XH in P̌.

Figure 5.1: Comparison of the Hamiltonian flows in T∗R>0 and P̌.

The associated Hamiltonian vector field has the form

YH̄ � 2q̄ p̄ ∂q̄ − (p̄2
+ 1) ∂p̄ (5.5.14)

and, hence, the integral curves are given by

q̄(t) � H̄0 cos2(t + t0), p̄(t) � − tan(t + t0), (5.5.15)

where H̄0 and t0 are determined by the initial conditions. Under the map I,
they read

t 7→ H̄0
©«
−2 cos(2(t + t0))
−2 sin(2(t + t0))

1

ª®¬ . (5.5.16)

Note that in T∗R>0 the flow is not defined at times tc �
π
2 + kπ − t0 with k ∈ N.

At these times, p̄ explodes, i.e., the trajectory periodically tries to quickly leave
the configuration space R>0. On the other hand, the flow under I continuously
extends to t ∈ R. In other words, the map I plays the role of regularizing the
dynamics in T∗R>0. In this sense, the singular seam P̌{e}U(1) stitches together the

singular solution in P̌{e}{e} ' T∗R>0 to a nice periodic flow. See Figure 5.1 for a
visual comparison of the flows in T∗R>0 and P̌. ♦

5.6 Application: Yang–Mills–Higgs theory

In the sequel, we will investigate the stratified structure of the reduced phase
space of the Yang–Mills–Higgs theory. As a starting point, we use the Hamilto-
nian picture for thismodel as developed in [DR18a] based on the (3+1)-splitting
of the configuration space and on a geometric constraint analysis, cf. also [Śni99].
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First, we check that the model meets the assumptions made in the general
theory developed in the previous sections. Thus, the singular cotangent bundle
reduction theorem holds here and implies that the reduced phase space of
the theory is a stratified symplectic space. Next, we analyze the normal form
and the stratification in some detail. In particular, we find that including the
singular strata leads to a refinement of what is called the resolution of the
Gauß constraint in the physics literature. Our analysis of the normal form
improves upon earlier work [Arm81; AMM81] on the singular geometry of
the momentum map level set. We also describe the orbit types for the model
after symmetry breaking, which leads to a more transparent picture of the
stratification. Finally, we further analyze the secondary stratification in the
concrete example of the Higgs sector of the Glashow–Weinberg–Salam model.
Let (M, g) be a 3-dimensional oriented manifold with time-dependent Rie-

mannian metric, which plays the role of a Cauchy surface in the (3+ 1)-splitting.
Denote the induced volume form by volg . The geometry underlying Yang–
Mills-Higgs theory is that of a principal G-bundle P → M, where G is a
connected compact Lie group. As usual, the gauge potential is a connection A
on P and a bosonic matter field is a section ϕ of the associated vector bundle
F � P ×G F, where the typical fiber F carries a unitary G-representation. Thus,
the space of configurations Q of Yang–Mills–Higgs theory consists of pairs
(A, ϕ). It obviously is the product of the infinite-dimensional affine Fréchet
space C of connections1 on P and the Fréchet space F of sections of F. Let
V : F→ R be a G-invariant function and denote the induced function on F by
V (the Higgs potential).
In order to underline that the Hodge dual is defined in terms of a linear

functional on the space of differential forms, we use the convention that the
Hodge dual of a vector-valued differential form α ∈ Ωk(M, F) is the dual-valued
differential form ∗ α ∈ Ω3−k(M, F∗). Moreover, we use the diamond product2

� : Ωk(M, F) ×Ω3−r−k(M, F∗) → Ω3−r(M,Ad∗P) , (5.6.1)

which is defined by

〈ξ ∧ (α � β)〉 � 〈(ξ ∧. α) ∧ β〉 ∈ Ωdim M(M) (5.6.2)

for all ξ ∈ Ωr(M,AdP), where ∧. : Ωr(M,AdP) × Ωk(M, F) → Ωr+k(M, F) is
the natural operation obtained by combining the Lie algebra action g × F →
F, (ξ, f ) 7→ ξ . f with thewedge product operation. Moreover, for α ∈ Ωk(M, F)
and β ∈ Ω3−k(M, F∗), we have denoted by 〈α ∧ β〉 the real-valued top-form

1 If there is no risk of confusion, we write C instead of C(P) for the space of connection on P.
Similarly, the group of gauge transformations of P will be denoted by Gau(P) or simply by
Gau.

2 This is the natural extension to differential forms of the diamond product � : F × F∗ → g∗ that
plays an important role in the study of Lie–Poisson systems.
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which arises from combining the wedge product with the natural pairing
〈 · , · 〉 : F × F∗→ R.
SinceQ is an affine space, its tangent bundle is trivialwith fiberΩ1(M,AdP)×
Γ∞(F). Wewill denote points in TQ by tuples (A, α, ϕ, ζ)with α ∈ Ω1(M,AdP)
and ζ ∈ Γ∞(F). A natural choice for the cotangent bundle T∗Q is the trivial
bundle overQwith fiberΩ2(M,Ad∗P) ×Ω3(M, F∗). We denote elements of this
fiber by pairs (D ,Π). Then, the natural pairing with TQ is given by integration
over M,

〈(D ,Π), (α, ζ)〉 �
∫
M

〈D ∧ α〉 +
∫
M

〈Π ∧ ζ〉. (5.6.3)

The equations of motion are derived from their 4-dimensional covariant
counterpart in the temporal gauge, see [DR18a]. In this (3 + 1) formulation, M
is a Cauchy surface and the Lorentzian metric on the spacetime R ×M is of
the form −`(t)2 dt2 + g(t), where ` is the lapse function, that is, `(t) ∈ C∞(M).
With this notation at hand, the evolutionary form of the Yang–Mills–Higgs
equations is given by:

∂tD � −dA(` ∗ FA) − `ϕ � ∗(dAϕ), (5.6.4a)
∂tA � ` ∗D , (5.6.4b)
∂tΠ � dA(` ∗dAϕ) − `V′(ϕ)volg , (5.6.4c)
∂tϕ � ` ∗Π, (5.6.4d)

dAD + ϕ �Π � 0 . (5.6.4e)

By [DR18a, Theorem 3.4], the evolution equations (5.6.4a) to (5.6.4d) are
Hamiltonian with respect to the Hamiltonian

H(A,D , ϕ,Π) �
∫
M

`
2

(
〈D ∧ ∗D〉 + 〈FA ∧ ∗ FA〉 + 〈Π ∧ ∗Π〉

+ 〈dAϕ ∧ ∗dAϕ〉 + 2 V(ϕ)volg

)
.

(5.6.5)

Moreover, equation (5.6.4e) is the Gauß constraint. In terms of the cotangent
bundle geometry, it has the following interpretation, cf. [AMM81; Śni99; DR18a].
On Q � C × F we have a left action of the group Gau � Γ∞(P ×G G) of local
gauge transformations,

A 7→ Adλ A + λ dλ−1, ϕ 7→ λ · ϕ, (5.6.6)

for λ ∈ Gau. The HamiltonianH is invariant under the lift of this action to T∗Q.
A straightforward calculation shows that

J (A,D , ϕ,Π) � dAD + ϕ �Π (5.6.7)
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is the momentum map for the lifted action with respect to the natural choice
gau∗ � Ω3(M,Ad∗P), see [DR18a, Equation 3.10]. Hence, the Gauß con-
straint (5.6.4e) is equivalent to the momentum map constraint J � 0.

Remark 5.6.1 In [DR18a], we have accomplished a unification of the Hamil-
tonian evolution equations (5.6.4a) to (5.6.4d) with the constraint (5.6.4e) by
developing a novel variational principle (whichwe called the Clebsch–Lagrange
principle). Besides the variation of configuration variables, the latter includes
also the variation of the symmetry generators of the system. Here, these
generators coincide with the time-component of the gauge potential of the
4-dimensional theory. In this language, the choice of the temporal gauge has
the interpretation of being the first step in symplectic reduction by stages. In
the sequel, we discuss the reduction of the remaining symmetry of the Cauchy
problem. A version of the reduction by stages theorem thus shows that the
reduced phase space we obtain coincides with the reduced phase space of the
4-dimensional theory. ♦

Note that the action of the group of gauge transformations onQ is usually
not free. Hence, the model under consideration fits into the general setting
of infinite-dimensional singular cotangent bundle reduction as discussed in
Chapter 5. We now show that all assumptions made in the general discussion
are met for the Yang–Mills–Higgs system:

(i) Q is a Fréchet manifold, because it is an affine space modeled on the
Fréchet vector space Ω1(M,AdP) × Γ∞(F).

(ii) Gau is a Fréchet Lie group, because it is realized as the space of sections
of the group bundle P ×G G.

(iii) The cotangent bundle T∗Q � Q × Ω2(M,Ad∗P) × Ω3(M, F∗) is clearly a
Fréchet manifold. The Hodge operator yields a fiber-preserving Gau-
equivariant diffeomorphism between TQ and T∗Q.

(iv) The Gau-action on Q is affine and thus smooth. Moreover, it is proper,
see Section 3.4.

(v) The Gau-action on Q admits a slice at every point. First, recall from
Section 3.4 that the action of Gau on C has a slice SA0 at every1 A0 ∈ C
given in terms of the Coulomb gauge condition:

SA0
..� {A ∈ U : d∗A0

(A − A0) � 0}, (5.6.8)

where U is a suitable open neighborhood of A0 in C. Note that this slice
fixes the gauge transformations up to elements of the stabilizer GauA0 of

1 Here and in the following, the expression A0 should not be confused with the time component
of a connection.
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A0. Thus, we are left with the GauA0-action on F . This is a linear action
of a finite-dimensional compact group on a Fréchet space and hence has a
slice Sϕ0 at every point ϕ0 ∈ F , see Theorem A.2.4. By Proposition A.2.6,
the product SA0 × Sϕ0 is a slice at (A0, ϕ0) for the Gau-action onQ. This
slice is compatible with the cotangent bundle structures in the sense of
Definition 5.2.4 as will be discussed in Section 5.6.1.

(vi) That every infinitesimal orbit of Gau is symplectically closed will be
shown in Lemma 5.6.9 below. Thus, in particular, the strong version of
the Bifurcation Lemma 4.2.14 holds.

As a consequence, the Normal Form Theorem 5.2.9 holds. For the Reduction
Theorems 5.3.1 and 5.4.8 to hold we assume, additionally, that the frontier
condition for the decomposition of Q into gauge orbit types is satisfied. As
discussed in Section 3.4, the orbit type decomposition of C satisfies the frontier
condition. However, including matter fields is a rather delicate issue. As
we will see, the stabilizer of the Higgs field is given in terms of a series of
intersections of stabilizer groups of the G-action on F and this intersection is
hard to analyze in full generality. For the Glashow–Weinberg–Salam model the
frontier condition can be verified by direct inspection, see Proposition 5.6.12.
Subsequently, we analyze the content of these theorems for the case under
consideration.

5.6.1 Normal form

As for the classical Hodge–de Rham complex, elliptic theory1 gives topological
isomorphisms (cf. [RS17, Theorem 6.1.9]):

Ω0(M,AdP) � Im d∗A ⊕ Ker dA , (5.6.9a)
Ω1(M,AdP) � Im dA ⊕ Ker d∗A , (5.6.9b)

where d∗A is the codifferential. By applying the Hodge star operator, we obtain
the dual decompositions:

Ω3(M,Ad∗P) � Im dA ⊕ Ker d∗A , (5.6.9c)
Ω2(M,Ad∗P) � Im d∗A ⊕ Ker dA. (5.6.9d)

For clarity of presentation, we first derive the normal form of Theorem 5.2.9 for
T∗C and thereby ignore the Higgs part for a moment (see Remark 5.6.3). By the
above decompositions, we have a splitting of TC,

TAC ' Ω1(M,AdP) � Im dA ⊕ Ker d∗A , (5.6.10)

1 These Hodge-type decompositions are usually derived in a Sobolev context but elliptic
regularity implies that the decompositions below hold in the C∞-setting.
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into the canonical vertical distribution Im dA and the L2-orthogonal complement
Ker d∗A. This decomposition is basic for the study of the geometry of the
stratification, see [RS17, Sections 8.3 and 8.4]. As one expects from Hodge
theory, these decompositions satisfy the annihilation relations(

Im d∗A
)◦

� Ker d∗A , (Ker dA)◦ � Im dA , (5.6.11)
(Im dA)◦ � Ker dA ,

(
Ker d∗A

)◦
� Im d∗A , (5.6.12)

with respect to the natural pairing between Ωk(M,AdP) and Ω3−k(M,Ad∗P).
Thus, for the spaces involved in Theorem 5.2.9 we obtain:

gauA0 � Ker dA0 : Ω0(M,AdP) → Ω1(M,AdP), (5.6.13)
gau∗A0

� Ker d∗A0
: Ω3(M,Ad∗P) → Ω2(M,Ad∗P), (5.6.14)

m � Im d∗A0
: Ω1(M,AdP) → Ω0(M,AdP), (5.6.15)

m∗ � Im dA0 : Ω2(M,Ad∗P) → Ω3(M,Ad∗P), (5.6.16)
TASA0 � Ker d∗A0

: Ω1(M,AdP) → Ω0(M,AdP), (5.6.17)
T∗ASA0 � Ker dA0 : Ω2(M,Ad∗P) → Ω3(M,Ad∗P). (5.6.18)

In the sequel, we use ‖ or ⊥ to denote objects that are parallel or orthogonal
to the gauge orbits, respectively. Accordingly, we can write every E ∈ TAC

as E � Adλ(E⊥ + E‖) with E⊥ ∈ TASA0 and E‖ � −dAχ for some χ ∈ m. As a
consequence, the local diffeomorphism Gau ×GauA0

(m × TSA0) → TC defined
in (5.2.23) here takes the form

[λ, (χ,A, E⊥)] 7→
(
λ · A,Adλ(E⊥ − dAχ)

)
. (5.6.19)

In order to determine the dual map Φ, we introduce the Faddeev–Popov
operator 4AA0 for every A ∈ SA0 as the composition

Im dA0 Ω3(M,Ad∗P) Ω3(M,Ad∗P) Im dA0 .
dA d∗A0 pr (5.6.20)

By possibly shrinking the slice SA0 , we may assume that 4AA0 is an invertible
operator on Im dA0 for all A ∈ SA0 , see [RS17, p. 655] or [DH18, p. 22]. In
particular, we have dA d∗A0

◦ 4−1
AA0

� idIm dA0
. Thus, the operator

TA : T∗ASA0 ×m∗→ Ω2(M,Ad∗P), (D⊥, ν) 7→ D⊥ + d∗A0
4−1

AA0
ν (5.6.21)

satisfies

prKer dA ◦ TA(D⊥, ν) � D⊥, prIm dA ◦ dATA(D⊥, ν) � ν. (5.6.22)
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Thus, TA is an isomorphism of Fréchet spaces for every A ∈ SA0 . Moreover, we
find

〈E⊥ − dAχ, TA(D⊥, ν)〉 � 〈E⊥, TA(D⊥, ν)〉 + 〈χ, dATA(D⊥, ν)〉
� 〈E⊥,D⊥〉 + 〈χ, ν〉. (5.6.23)

In summary, here, the local diffeomorphism Φ : Gau ×GauA0
(m∗ × T∗SA0) → T∗C

defined in (5.2.19) has the form

Φ([λ, (ν,A,D⊥)]) �
(
λ · A,Ad∗λ(D⊥ + d∗A0

4−1
AA0

ν)
)
. (5.6.24)

Thus, every D ∈ T∗AC decomposes as D � Ad∗λ(D⊥ + D‖)with D⊥ ∈ T∗ASA0 and
D‖ � d∗A0

4−1
AA0

ν for some ν ∈ m∗. That is, ν � dA0 D‖ .

Remark 5.6.2 As we have seen, for every A ∈ SA0 , the map

m × TASA0 → TAC , (χ, E⊥) 7→ E⊥ − dAχ (5.6.25)

has the adjoint TA. Since TA is an isomorphism, we see that the slice S is
compatible with the cotangent bundle structures. ♦
In these local coordinates, the momentum map J of (5.6.7) is expressed as

follows, cf. (5.2.20):

J (Φ([λ, (ν,A,D⊥)]), ϕ,Π) � Ad∗λ(dAD⊥ + ν) + ϕ �Π, (5.6.26)

where A ∈ SA0 and D⊥ ∈ Ker dA0 . We denote the matter charge density ϕ �Π
by ρ and decompose it with respect to (5.6.9c),

ρ � Ad∗λ(ρ‖ + ρ⊥), (5.6.27)

where ρ‖ ∈ Im dA0 and ρ⊥ ∈ Ker d∗A0
. Note that dAD⊥ ∈ Ker d∗A0

, because
by upper semi-continuity of the kernel of a semi-Fredholm operator [Hör07,
Corollary 19.1.6] we have

Ker d∗A0
dA ⊆ Ker d∗A0

dA0 � Ker dA0 . (5.6.28)

Thus, with respect to the decomposition gau∗ � m∗ ⊕ gau∗A0
, the Gauß constraint

J ◦Φ � 0 is equivalent to the following equations:

ν + ρ‖ � 0 , (5.6.29a)
dAD⊥ + ρ⊥ � 0 . (5.6.29b)

In summary, we have decomposed the non-linear Gauß constraint into a linear
equation and finitely many non-linear equations according to the fact that
the stabilizer gauA0 is finite-dimensional. In spirit, this splitting is similar
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to the Kuranishi method or the Lyapunov–Schmidt construction used in
Section 2.2, where we also found convenient coordinates to reduce a non-
linear equation to a non-linear equation in finite dimensions. However, in
contrast to the construction in Section 2.2, we have found the coordinates here
by exploiting the cotangent bundle geometry of the problem and have not
directly used the Inverse Function Theorem. Note that the construction of
the local diffeomorphism Φ involves the non-local operator 4−1

AA0
. Hence, the

reconstruction of the solution (A,D) of the Gauß constraint from a solution
(ν,A,D⊥) of (5.6.29) is a non-local and non-linear operation. In the physics
literature, one usually only considers the case of trivial stabilizer gauA0 (i.e.,
irreducible connections). In this case, the above construction reduces the
Gauß constraint to the linear equation (5.6.29a). However, if one wants to
include non-generic configurations, that is, connections with a non-trivial
stabilizer, (5.6.29b) must be taken into account as well.

On the quantum level, our observations suggest that the standard quantiza-
tion methods, which only take the linear constraint (5.6.29a) into account, fail
in the neighborhood of reducible connections and need to be supplemented
by the non-linear constraint (5.6.29b). For a quantization program for lattice
gauge theories, where non-generic gauge orbit strata are included, we refer to
[RS17, Chapter 9] and to [HRS09] for a case study.
Remark 5.6.3 In the above construction of the normal form,wehave considered
only T∗C and, thereby, we have ignored the Higgs part. By passing to the
normal form of the full cotangent bundle T∗Q according to Theorem 5.2.9, we
note that the stabilizer gauA0 further decomposes into the stabilizer gau(A0 ,ϕ0) �
gauA0 ∩ gauϕ0 of (A0, ϕ0) ∈ Q and some complement r. Accordingly, the
non-linear part (5.6.29b) of the Gauß law further decomposes into a linear
equation in r∗ and a non-linear equation in gau∗(A0 ,ϕ0). ♦

5.6.2 Orbit types

Next, let us consider Theorem 5.3.1. By point (i) of this theorem, the set of
orbit types of P � J −1(0)with respect to the lifted Gau-action coincides with
the set of orbit types for the Gau-action on Q. We will now determine these
orbit types. First, recall from Section 3.4 that the stabilizer GauA of A ∈ C under
the Gau-action is isomorphic to the centralizer CG(HolA) of the holonomy
group of A (based at some point p0 ∈ P), because every gauge transformation
λ ∈ GauA is constant on the holonomy bundle PA of A. It is straightforward to
include the matter fields ϕ and to pass, thereby, from C toQ. Indeed, a gauge
transformation λ leaves ϕ invariant if and only if λ(p) ∈ Gϕ(p) for all p ∈ P,
where Gϕ(p) is the stabilizer of ϕ(p) ∈ F under the G-action. The equivariance
properties λ(p · g) � g−1λ(p)g and

Gϕ(p·g) � Gg−1·ϕ(p) � g−1Gϕ(p)g (5.6.30)
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show that it is actually enough to test λ(p) ∈ Gϕ(p) only for one point per fiber.
In particular, it suffices to let p range over points in the holonomy bundle PA.
Since a gauge transformation λ in the stabilizer of A is necessarily constant
on PA, the evaluation map evp0 : Gau → G defined in (3.4.4) restricts to an
isomorphism of Lie groups

GauA,ϕ � GauA ∩ Gauϕ ' CG(HolA) ∩
⋂

p∈PA

Gϕ(p) . (5.6.31)

To summarize, by point (i) of Theorem 5.3.1, we have completely determined
the stabilizer subgroups of points in P � J −1(0) ⊆ T∗Q with respect to the
lifted Gau-action.
Finally, let us also determine the orbit types of T∗Q. An arbitrary point
(A,D) ∈ C ×Ω2(M,Ad∗P) in the cotangent bundle T∗C has stabilizer

GauA,D � GauA ∩ GauD , (5.6.32)

where GauA and GauD denote the stabilizers of A and D under the action of
the gauge group, respectively.

To analyze GauA,D , for amoment, consider the stabilizer of a general k-form α
with values in F � P×G F, where F carries a G-representation. For α ∈ Ωk(M, F)
and p ∈ P, let Vα(p) be the subspace of F spanned by all elements of the form
αp(v1, . . . , vk), where vi ∈ TpP. Similar arguments as above for α � ϕ yield the
following identification

GauA,α ' CG(HolA) ∩
⋂

p∈PA
f ∈Vα(p)

G f . (5.6.33)

Now let us return to the stabilizer of D. Denote K ≡ HolA. Since the adjoint
action of CG(K) on the Lie algebra k of K is trivial, the subspace k ⊆ g is AdCG(K)-
invariant and thus has a CG(K)-invariant complement p in g. For ν ∈ k∗, we
have

〈Ad∗g ν, ξ〉 � 〈ν,Ad−1
g ξ〉 � 〈ν, ξ〉 (5.6.34)

for every g ∈ CG(K) and ξ ∈ k. Hence, Gν ⊆ CG(K) for every ν ∈ k∗. In summary,
we have shown:

Proposition 5.6.4 Let A ∈ C and D ∈ T∗AC. Then,

GauA,D ' CG(HolA) ∩
⋂

p∈PA
ν∈VD(p) ∩p∗

Gν , (5.6.35)

where VD(p) is the subspace of g∗ spanned by all elements of the form Dp(v1, v2) for
vi ∈ TpP. ♦
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5.6.3 Description of orbit types after symmetry breaking

Now, let us pass to a description of the model after symmetry breaking. As
usual in the physics literature, let us assume thatϕ takes values in one fixed orbit
type F(K) of the G-action for some stabilizer subgroup K. Assume, moreover,
that the bundle F(K) → F̌(K) � F(K)/G is trivial and choose a smooth section
f0 : F̌(K) → F(K) which takes values in the subset FK of isotropy type K. With
respect to this choice, we can write the Higgs field ϕ, viewed as a G-equivariant
map P → F, as

ϕ(p) � φ(p) · f0(η(p)), p ∈ P, (5.6.36)

where φ : P → G and η : P → F̌(K) are smooth maps. Since f0 takes values in
FK , the map φ is uniquely defined when viewed as a map with values in G/K.
Moreover, by G-equivariance of ϕ, we identify φ as a section of P ×G G/K
and η as a smooth map M → F̌(K). The map η (or rather η shifted by the
Higgs vacuum) is the surviving Higgs field. It is straightforward to see that
the decomposition (5.6.36) depends smoothly on ϕ and hence establishes a
diffeomorphism

F → Γ∞(P ×G G/K) × C∞
(
M, F̌(K)

)
, ϕ 7→ (φ, η) (5.6.37)

of Fréchet manifolds. In geometric terms, φ yields a reduction of P to the
principal K-bundle

P̂ ..� {p ∈ P : φ(p) � [e]}. (5.6.38)

Next, recall the following geometric version of the Higgs mechanism (cf.
[RS17, Proposition 7.3.4]). Since K is compact, there exists an AdK-invariant
decomposition g � k ⊕ p. Accordingly, the restriction of A to the K-bundle P̂
splits into

A�P̂ � Â + τ, (5.6.39)

where Â and τ take values in k and p, respectively. It is an easy exercise to
verify that Â is a principal K-connection in P̂ and τ a horizontal 1-form of
type AdK p on P̂, i.e., τ ∈ Ω1(M, P̂ ×K p). In the physics language, Â is the
reduced gauge field and τ is the intermediate vector boson. Let us combine
this decomposition of A with the diffeomorphism of (5.6.37). For this purpose,
consider the smooth Fréchet bundle E → Γ∞(P ×G G/K), whose fiber over φ is
C(P̂) ×Ω1(M, P̂ ×K p). The bundle E carries a natural action1 of Gau(P) as P̂ is
a subbundle of P. To summarize we obtain the following.
Proposition 5.6.5 The map (A, ϕ) 7→ (φ, Â, τ, η) defines a Gau(P)-equivariant
diffeomorphism of Q with E × C∞(M, F̌(K)). In particular, we get an isomorphism of
stratified spaces between the gauge orbit space Q̌ and

(
E/Gau(P)

)
×C∞

(
M, F̌(K)

)
. ♦

1 Note that the action of Gau on E mixes the variables Â and τ, because the decomposition
g � k ⊕ p is not AdG-invariant.
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When the bundle P̂ is non-trivial, thefieldφ representing P̂ carries topological
data, which may be encoded in various ways, e.g. in terms of Chern classes.
Using this proposition, the gauge orbit types ofQmay be characterized in

the following more explicit way. First, note that η does not contribute to the
orbit type structure. Next, recall that λ ∈ Gau(P) preserves ϕ if and only if
λ(p) · ϕ(p) � ϕ(p) for all p ∈ P. Thus, every λ ∈ Gauϕ(P) restricts to a K-gauge
transformation on P̂. In fact, a moment’s reflection shows that every K-gauge
transformation on P̂ can be obtained in that way (use P ×G K ' P̂ ×K K). This
yields the following.

Lemma 5.6.6 For every ϕ with associated K-bundle P̂, we have Gauϕ(P) � Gau(P̂).
♦

Let (A, ϕ) ∈ Q. By equivariance and (5.6.31), we find1

GauA,ϕ(P) ' CG(HolA) ∩
⋂

p∈PA

φ(p)Kφ(p)−1. (5.6.40)

It is interesting to compare the gauge orbit types GauA,ϕ(P) to the orbit types
of the theory after symmetry reduction. Using Proposition 5.6.5, we have

GauA,ϕ(P) � GauÂ,τ(P̂) � GauÂ(P̂) ∩ Gauτ(P̂), (5.6.41)

where GauÂ,τ(P̂) denotes the stabilizer of (Â, τ) under the natural Gau(P̂)-
action. Indeed, by Lemma 5.6.6, Gauϕ(P) is isomorphic to Gau(P̂) and it
is straightforward to see that a gauge transformation λ ∈ Gauϕ(P) leaves A
invariant if and only if λ�P̂ ∈ Gau(P̂) leaves A�P̂ � Â+ τ invariant. Furthermore,
using (5.6.33), we obtain a more explicit description of Gauτ(P̂), which, in
summary, yields the following.

Proposition 5.6.7 The stabilizer of (A, ϕ) under the Gau(P)-action onQ is given
by

GauA,ϕ(P) ' CK(HolÂ) ∩
⋂

p∈P̂Â
ξ∈Vτ(p)

Gξ . (5.6.42)
♦

Finally, let us consider a special case which is important for instance in the
theory of magnetic monopoles [RS17, Chapter 7]. It is defined by the additional
assumption that φ be covariantly constant with respect to A. Then, A reduces
to a connection Â on P̂ and so τ � 0. Thus, in this case, (5.6.42) simplifies to

GauA,ϕ(P) ' GauÂ(P̂) ' CK(HolÂ). (5.6.43)

1 In the sequel, we assume that the base point p0 defining PA lies in P̂, which can be always
assured by translation with a constant g ∈ G.
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As an immediate consequence, we obtain the following analogue of Proposi-
tion 3.4.1.

Proposition 5.6.8 The orbit types of the action of Gau(P) on Q at points (A, ϕ)
with dAφ � 0 are in one-to-one correspondence with isomorphism classes of holonomy-
induced Howe subbundles of K-reductions P̂ of P via the map

[GauA,ϕ(P)] 7→ [P̂Â · C2
K(HolÂ)]. (5.6.44)

♦
Proof. By (5.6.43), the stabilizer GauA,ϕ(P) of a point (A, ϕ) ∈ Q satisfying
dAφ � 0 is isomorphic to the stabilizer of Â under Gau(P̂). Now recall from
Proposition 3.4.1 that orbit types of connections on P̂ are in bĳective correspon-
dence with isomorphism classes of holonomy-induced Howe subbundles of
P̂. �

5.6.4 Reduced symplectic structure

Finally, let us come to point (iii) of Theorem 5.3.1. The symplectic structure Ω
on T∗Q is defined by

ΩA,ϕ,D ,Π
(
(δA1, δϕ1, δD1, δΠ1), (δA2, δϕ2, δD2, δΠ2)

)
�

∫
M

〈δD1 ∧ δA2〉 − 〈δD2 ∧ δA1〉 + 〈δΠ1 ∧ δϕ2〉 − 〈δΠ2 ∧ δϕ1〉, (5.6.45)

where (δA j , δD j , δϕ j , δΠ j) ∈ T(A,D ,ϕ,Π)(T∗Q) for j � 1, 2.

Lemma 5.6.9 The orbit gau . (A,D , ϕ,Π) is symplectically closed in T∗Q for every
(A,D , ϕ,Π) ∈ T∗Q, that is,(

gau . (A,D , ϕ,Π)
)ΩΩ

� gau . (A,D , ϕ,Π). (5.6.46)
♦

Proof. First, note that

j (δA, δD , δϕ, δΠ) ..� (− ∗ δD , ∗ δA,− ∗ δΠ, ∗ δϕ) (5.6.47)

defines an almost complex structure j on T∗Q, which intertwines the symplectic
structure Ω with the L2-scalar product. Clearly, for every vector subspace
W ⊆ T(A,D ,ϕ,Π)(T∗Q) we have WΩ � jW⊥, where W⊥ is the L2-orthogonal
complement. Hence,

WΩΩ
� j (jW⊥)⊥ � W⊥⊥ (5.6.48)

and it remains to show that W⊥⊥ � W for W � gau . (A,D , ϕ,Π). By the
Bipolar Theorem B.1.8, this holds if and only if the orbit is closed with respect
to the weak L2-topology. Note that the infinitesimal action has the character
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of a multiplication operator in the D- and ϕ-direction and hence in these
components the orbit is not closed (it may actually be dense). Nonetheless, the
‘diagonal’ orbit gau . (A,D , ϕ,Π) is closed as we will show now.

Let (δA, δD , δϕ, δΠ) be an element of T(A,D ,ϕ,Π)(T∗Q) that does not lie on the
gau-orbit. It will be convenient to write α ≡ δA and abbreviate (δD , δϕ, δΠ) by
β. We have to construct an L2-open neighborhood U of (α, β) in T(A,D ,ϕ,Π)(T∗Q)
that is disjoint from the gau-orbit. First, suppose that α cannot be written as
dAξ for some ξ ∈ gau. Since the decomposition (5.6.9b) is orthogonal with
respect to the L2-scalar product, the orbit gau . A is closed in TAC with respect
to the weak L2-topology. Thus, there exists an L2-open neighborhood Uα of α
in Ω1(M,AdP)which is disjoint from gau . A. Then,

U ..� Uα ×Ω2(M,Ad∗P) × Γ∞(F) ×Ω3(M, F∗) (5.6.49)

is an L2-open neighborhood of (α, β) in T(A,D ,ϕ,Π)(T∗Q)which does not intersect
the gau-orbit. Now suppose that α � dAξ for some ξ ∈ gau. Then, ξ is
uniquely determined up to an element of the finite-dimensional stabilizer gauA.
Since the orbit gauA . (D , ϕ,Π) is finite-dimensional, it is automatically closed.
Hence, there exists an L2-open neighborhood Uβ of β and an L2-open subset V
containing the orbit gauA . (D , ϕ,Π) such that Uβ and V have empty intersection.
LetW ⊆ gau denote the inverse image of V under the action ξ→ ξ . (D , ϕ,Π).
Note that gauA ⊆ W . Now,

Uα
..� dAW ⊕ Ker d∗A (5.6.50)

is an L2-open neighborhood of α in Ω1(M,AdP). Suppose α′ ∈ Uα and β′ ∈ Uβ
are of the form α′ � dAξ′ and β′ � ξ′ . β for some ξ′ ∈ gau. Then, ξ′ ∈W and
thus β′ � ξ′ . β ∈ V . However, by assumption, β′ is an element of Uβ. Since
the latter is disjoint from V , we have constructed a contradiction. In summary,
U ..� Uα × Uβ is an L2-open neighborhood of (α, β) in T(A,D ,ϕ,Π)(T∗Q), which
has empty intersection with the gau-orbit. �

By this lemma, the strata of the reduced phase space inherit a symplectic
form from (T∗Q,Ω), according to point (iii) of Theorem 5.3.1.
Moreover, we have shown that Theorem 5.4.8 holds for Yang–Mills–Higgs

theory and thus, in particular, every symplectic stratum further decomposes
into seams and a cotangent bundle. This secondary stratification will be further
analyzed below in the concrete example of the Glashow–Weinberg–Salam
model.

5.6.5 Example: Glashow–Weinberg–Salam model

We now specialize the discussion to the Higgs sector of the standard model of
electroweak interactions. As in the general setting, the configurations of this
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model are pairs (A, ϕ) consisting of a connection in a principal bundle P and a
section of an associated vector bundle P ×G F. For this model, the principal
bundle P is an SU(2) ×U(1)-bundle over M and the associated bundle F has
typical fiber F � C2 carrying the following representation of SU(2) ×U(1):

ρa ,ϑ(z1, z2) � a · e i
2ϑ · (z1, z2), a ∈ SU(2), ϑ ∈ [0, 4π). (5.6.51)

The Higgs potential V : C2 → R has the form

V( f ) � λ
(
‖ f ‖2 − ν

2

2

)2

(5.6.52)

for given λ > 0 and non-zero ν ∈ R.
It is straightforward to see that under the representation ρ the origin is a

fixed point and that all other points have a stabilizer conjugate to

K ..�
{((

e i
2ϑ 0
0 e− i

2ϑ

)
, eiϑ

)
: ϑ ∈ [0, 4π)

}
, (5.6.53)

which is isomorphic to U(1) and plays the role of the electromagnetic gauge
group after symmetry breaking. As common in the physics literature, we
assume that ϕ vanishes nowhere, that is, we ignore the singular orbit type in
F. The generic orbits in F are three-spheres centered at the origin and hence
the quotient F̌(K) � F(K)/G is diffeomorphic to R>0. All the points r√

2
(0, ν) for

r ∈ R>0 have stabilizer K. Hence, the map f0 : r 7→ r√
2
(0, ν) is a smooth section

of F(K)→ F̌(K) taking values in FK . Accordingly, the decomposition (5.6.36) of
ϕ simplifies here to

ϕ �
η
√

2
φ ·

(
0
ν

)
, (5.6.54)

where φ ∈ Γ∞(P ×G G/K) and η ∈ C∞(M,R>0). Note that, in this presentation,
V(ϕ) � λν2

2 (η2 − 1)2.

5.6.5.1 Orbit types ofQ

According to the general program, we have to determine the Howe subgroups
of SU(2) × U(1). For that purpose, we use the following elementary result,
whose proof is a simple calculation that we leave to the reader.

Lemma 5.6.10 Let G be a group and L be an abelian group. A subgroup H of G × L
is Howe if and only if there exists a subgroup H′G of G such that

H � CG(H′G) × L. (5.6.55)
♦
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HolA GauA H

{e}, Z2 SU(2) Z2
U(1) U(1) U(1)
SU(2) Z2 SU(2)

Table 5.1: List of all possible holonomy groups for SU(2) up to conjugacy with the
corresponding stabilizer GauA � CG(HolA) and the Howe subgroup H � C2

G(HolA).

According to this lemma, we first have to determine the Howe subgroups of
SU(2). Clearly, each Howe subgroup of SU(2) is conjugate to the centralizer Z2,
to SU(2) itself or to U(1) (seen as a subgroup via the embedding α 7→

(
α 0
0 ᾱ

)
).

This corresponds to the trivial group or Z2, SU(2) and U(1) as holonomy
groups, respectively, see Table 5.1. Correspondingly, the Howe subgroups of
SU(2) ×U(1) are conjugate to SU(2) ×U(1), U(1) ×U(1) or Z2 ×U(1).
Even in the case when (5.6.55) uniquely determines H′G, there is still room

for different subgroups H′ of G × L with H � CG×L(H′). Indeed, recall that
by Goursat’s lemma subgroups of G × L are in bĳection with quintuples
(G1,G2, L1, L2, θ), where G2 E G1 ⊆ G, L2 E L1 ⊆ L and θ : G1/G2 → L1/L2 is
an isomorphism. Such a tuple yields the subgroup

H′ � {(g , l) ∈ G1 × L1 : θ(g G2) � l L2} ⊆ G × L. (5.6.56)

Note that the projection of H′ to the G-factor coincides with G1. Hence the
knowledge of H′G just determines G1 � H′G. We now determine the possible
choices for the other elements (G2, L1, L2, θ) that generate the Howe subgroups
of SU(2) ×U(1), as summarized in Table 5.2.

• The Howe subgroup SU(2) is generated by G1 � {e} or G1 � Z2. In the
first case, we hence have G2 � {e} and so L1 � L2 with θ being trivial.
In particular, L1 � L2 has to be either {e}, U(1) or the cyclic group Zp
for some p ∈ N, since these are the only subgroups of U(1). For G1 � Z2
there are two cases: First we may choose G2 � Z2, which then again
requires L1 � L2. Secondly, also G2 � {e} is possible. Then L1/L2 has to
be isomorphic to Z2, which is only possible1 if L1 � Z2p and L2 � Zp for
some p ∈ N.

• The Howe subgroup U(1) is generated by G1 � U(1). There are two
non-trivial choices for G2. First, G2 � U(1) leads again to L1 � L2. The
second choice G2 � Zq for some q ∈ N enforces L1 � U(1) and L2 � Zp .
Since the map z 7→ zq induces an isomorphism of U(1)/Zq with U(1) and
the only automorphisms of U(1) are of the form z 7→ zk for some k ∈ N,
isomorphisms U(1)/Zq → U(1)/Zp are necessarily induced by maps of

1 Note that Zp/Zq is isomorphic to Zp/q .



5. Singular Cotangent Bundle Reduction 154

H′

H G1 G2 L1 L2 θ

SU(2) ×U(1) {e} {e} U(1) U(1) trivial
{e} {e} Zp Zp trivial
{e} {e} {e} {e} trivial
Z2 Z2 U(1) U(1) trivial
Z2 Z2 Zp Zp trivial
Z2 Z2 {e} {e} trivial
Z2 {e} Z2p Zp idZ2

U(1) ×U(1) U(1) U(1) U(1) U(1) trivial
U(1) U(1) Zp Zp trivial
U(1) U(1) {e} {e} trivial
U(1) Zq U(1) Zp z 7→ z

kq
p for some k ∈ N

U(1) {e} U(1) {e} z 7→ zk for some k ∈ N
Z2 ×U(1) many choices

Table 5.2: List of all Howe subgroups H of SU(2) × U(1) up to conjugacy with the
corresponding generator H′ satisfying CSU(2)×U(1)(H′) � H.

the form z 7→ z
kq
p for some k ∈ N.

• The Howe subgroup Z2 is generated by G1 � SU(2) giving rise to a
plethora of possible choices for G2, L1 and L2. Fortunately, this case will
be of no further interest below, so we do not need to dive into details.

According to Proposition 3.4.1, we have accomplished the algebraic part of the
classification of stabilizer subgroups GauA. Depending on the topologies of
M and P, some of the Howe subgroups H may possibly not occur in the final
classification of orbit types.
According to (5.6.40), in order to calculate the stabilizer GauA,ϕ, we need

to determine which conjugates of K intersect K again. Writing a ∈ SU(2) as
a �

(
α −β̄
β ᾱ

)
with α, β ∈ C such that |α |2 + |β |2 � 1, we find

a
(
e iϑ

2 0
0 e− iϑ

2

)
a−1

�
©«
|α |2e iϑ

2 + |β |2e− iϑ
2 −αβ̄

(
e− iϑ

2 − e iϑ
2

)
ᾱβ

(
e iϑ

2 − e− iϑ
2

)
|α |2e− iϑ

2 + |β |2e iϑ
2

ª®¬ . (5.6.57)

Hence
(
a
(

e
iϑ
2 0

0 e−
iϑ
2

)
a−1, eiϑ

)
is an element of K if and only if either β � 0 or
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eiϑ � 1. Thus,⋂
p∈P

φ(p)Kφ(p)−1
�

{
K if β(p) � 0 for all p ∈ PA ,

Z2 otherwise,
(5.6.58)

where Z2 is viewed as the subgroup

Z2 '
{((

1 0
0 1

)
, 1

)
,

((
−1 0
0 −1

)
, 1

)}
(5.6.59)

of K. Thus, we obtain the following.

Proposition 5.6.11 The common stabilizer GauA,ϕ of (A, ϕ) is either K if β(p) � 0
for all p ∈ PA and the stabilizer of A is SU(2) ×U(1) or U(1) ×U(1); or otherwise it
is Z2. ♦

We now describe the structure of the orbit types in terms of the fields (Â, τ)
after symmetry breaking, see (5.6.39). For this purpose, choose the following
basis of g � su(2) × u(1): {

ta �
i
2σa , i

}
, (5.6.60)

where σa are the Pauli matrices. In terms of these generators, the induced
representation of g, which will also be denoted by ρ, is determined by

ρta � ta , ρi �
i
21. (5.6.61)

Let t± � t3± i. Then, the Lie algebra k of K is spanned by t+ and the complement
p is spanned by {t1, t2, t−}. With respect to the basis {ta , i}, we expand the
connection as

A � gW a ta + ig′B, (5.6.62)

where we have introduced the coupling constants g and g′. Thus, passing to
the basis {t1, t2, t±} yields the decomposition A � Â + τ, where

Â �
1
2(gW3

+ g′B)t+, (5.6.63a)

τ � gW1t1 + gW2t2 +
1
2(gW3 − g′B)t−. (5.6.63b)

As common in the physics literature, it is convenient to introduce the fields

W± �
1√
2
(W1 ∓ iW2), (5.6.64a)(

Z
Aγ

)
�

1√
g2 + g′2

(
g −g′

g′ g

) (
W3

B

)
. (5.6.64b)
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Moreover, we denote the elementary charge e by e �
g g′√
g2+g′2

and the Weinberg

angle θW by tan θW �
g′

g . Then,

Â �

(
eAγ +

g cos θW − g′ sin θW
2 Z

)
t+, (5.6.65a)

τ � gW+t + gW− t̄ +
g g′

2e
Zt− (5.6.65b)

with t ..� 1√
2
(t1 + it2) and t̄ ..� 1√

2
(t1 − it2). For later use, let us record the

commutation relations of the new basis:

[t , t̄ ] � it3, [t , t±] � −it , (5.6.66a)
[t+, t−] � 0, [t̄ , t±] � it̄ . (5.6.66b)

By (5.6.41), we have GauA,ϕ � GauÂ,τ(P̂). Since K is abelian, the stabilizer
GauÂ(P̂) is isomorphic to K. Thus it remains to determine which gauge
transformations leave τ invariant. For this purpose, let k �

((
e

i
2 ϑ 0
0 e−

i
2 ϑ

)
, eiϑ

)
∈ K.

A straightforward calculation shows that k acts on the basis {ta , i} as follows:

Adk t1 � cos ϑ t1 − sin ϑ t2, (5.6.67a)
Adk t2 � sin ϑ t1 + cos ϑ t2, (5.6.67b)
Adk t3 � t3, (5.6.67c)

Adk i � i. (5.6.67d)

That is, k acts as a rotation in the (t1, t2)-plane and acts trivially on t±. Thus,
by Proposition 5.6.7,

GauA,ϕ(P) � GauÂ(P̂) ∩ Gauτ(P̂) '
{

K if τ is proportional to t−,
Z2 otherwise.

(5.6.68)

In other words, (Â, τ) has non-trivial stabilizer if and only if W1 � 0 � W2, i.e.,
if the Z-boson is the only non-trivial intermediate vector boson. Hence, on the
non-generic stratum only one intermediate boson survives.

Finally, we show that the decomposition ofQ defines a stratification.

Proposition 5.6.12 The decomposition of Q into orbit types satisfies the frontier
condition. ♦

Proof. As we have seen above, the Gau-action onQ has only the orbit types (K)
and (Z2). The frontier condition thus requires that every pair (A, ϕ) ∈ Q with
orbit type (K) can be approximated by a sequence (Ai , ϕi) with orbit type (Z2).
By Proposition 5.6.11, a pair (A, ϕ) has a stabilizer conjugate to K only when A
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has a stabilizer conjugate to SU(2) ×U(1) or to U(1) ×U(1). In both cases, the
approximation theorem [KR86, Theorem 4.3.5] shows that there is a converging
sequence Ai → A of connections Ai with stabilizer conjugate to Z2 ×U(1). By
Lemma 5.6.6, the pair (Ai , ϕ) has stabilizer conjugate to (Z2 ×U(1)) ∩ K ' Z2
and converges to (A, ϕ) by construction. �

5.6.5.2 Orbit types of T∗Q

Next, we determine the secondary stratification of the cotangent bundle. For
this purpose, we endow g with the AdG-invariant scalar product given as the
product of (minus) the Killing form on su(2) and the usual scalar product on
u(1). The normalization is such that the generators {ta , i} form an orthonormal
basis. In the sequel, we will always use this scalar product to identify g∗ with
g. Now, let D ∈ Ω2(M,Ad∗P). We decompose D according to g � k ⊕ p into
D�P̂ � Dk + Dp, with Dk ∈ Ω2(M,Ad∗P̂) ' Ω2(M, k∗) and Dp ∈ Ω2(M, P̂ ×K p

∗).
Recall from the discussion above that GauÂ(P̂) is isomorphic to K, viewed as
constant gauge transformations in P̂. Then, similarly to the above reasoning,
using (5.6.67) and the fact that K is abelian, we find

GauD(P̂) ∩ GauÂ(P̂) � GauDp(P̂) ∩ GauÂ(P̂) �
{

K if Dp is proportional to t−,
Z2 otherwise.

(5.6.69)
We now turn to the stabilizer of Π ∈ F ∗, which we view as Π ∈ Γ∞(P ×G C2)
using the volume form. As we have seen above, a point f ∈ C2 has stabilizer K
if and only if it is of the form

f �
r√
2

(
eiα 0
0 e−iα

)
·
(
0
ν

)
�

r√
2

(
0

e−iαν

)
(5.6.70)

for some r ∈ R>0 and eiα ∈ U(1), that is, if its first component f1 vanishes. Thus,
we have

GauΠ(P̂) ∩ GauÂ(P̂) �
{

K if Π1 � 0 on P̂,
Z2 otherwise.

(5.6.71)

Hence, in summary, we find

Proposition 5.6.13 The stabilizer of (A, ϕ,D ,Π) ∈ T∗Q is conjugate to K if the
following conditions are met on P̂ (otherwise it is conjugate to Z2):

(i) τ is proportional to t−, i.e. W± � 0,

(ii) Dp is proportional to t− and

(iii) the first component of Π vanishes. ♦
We note that T∗Q thus has the same orbit types asQ, cf. Proposition 5.6.11.
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Remark 5.6.14 More generally, instead of (5.6.51) we could consider the
representation

ρY
a ,ϑ(z1, z2) � a · eiYϑ · (z1, z2), a ∈ SU(2), ϑ ∈ [0, 4π), (5.6.72)

which changes the weak hypercharge of the Higgs field from 1
2 to Y ∈ Q. In

this case, the stabilizer group K is replaced by

KY ..�
{((

eiYϑ 0
0 e−iYϑ

)
, eiϑ

)
: ϑ ∈ [0, 4π)

}
. (5.6.73)

Moreover, the generic orbit type is no longer Z2 but the subgroup of Z2 ×U(1)
generated by the elements((

eiπn 0
0 e−iπn

)
, ei πn

Y

)
, n ∈ Z. (5.6.74)

We see, in particular, that the orbit type stratification of the configuration space
Q depends on the weak hypercharge of the Higgs field. ♦

Note that there might be topological obstructions related to the conditions
in Proposition 5.6.13. Thus, the complete classification of gauge orbit types
depends on the topology of P and M.

Remark 5.6.15 Let us consider the special case M � S3. By the standard
principal fiber bundle classification theorem, all G-bundles over S3 are trivial,
because π2(G) � 0. That is, P is trivial in that case. The same applies to any
subbundle of P and hence to any holonomy-induced Howe subbundle. As a
consequence, the classification problem for that base manifold boils down to
the algebraic problem we just solved. ♦

5.6.5.3 Momentum map and reduced phase space

Let us determine the expression of the momentum map given by (5.6.7),

J : T∗Q→ gau∗, (A,D , ϕ,Π) 7→ dAD + ϕ �Πvolg . (5.6.75a)

First, we calculate the second summand. For this purpose, we consider the
momentum map J : C2 × C2 → g∗ for the lifted G-action on T∗C2. The latter is
determined by the equations

〈J(z , v), ta〉 � 〈v , ρta z〉 � Re(v∗ta z) , (5.6.76)

〈J(z , v), i〉 � 〈v , ρiz〉 � −
1
2 Im(v∗z) , (5.6.77)
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and hence, in vector form, it is given by

J(z , v) � −1
2 Im

©«
v∗1z2 + v∗2z1

iv∗2z1 − iv∗1z2
v∗1z1 − v∗2z2
v∗1z1 + v∗2z2

ª®®®¬ . (5.6.78)

Thus, we have

(ϕ �Π)�P̂ � J
(
η
√

2
(0, ν),Π

)
� −

ην

2
√

2
Im

©«
Π∗1
−iΠ∗1
−Π∗2
Π∗2

ª®®®¬
� −

ην

2

(
iΠ1

2 t −
iΠ∗1

2 t̄ +
ImΠ2√

2
t−

)
.

(5.6.79)

IfΠ lies in the singular orbit type (K), then its first componentΠ1 vanishes and
thus the current ϕ �Π is proportional to t− in this case.

Next, let us expand D�P̂ ∈ Ω2(M, P̂ ×K g
∗) in the basis {t , t̄ , t−, t+}:

D�P̂ �
D−
g

t +
D+

g
t̄ +

(
e

g g′
DZ −

g cos θW − g′ sin θW
2g g′

Dγ

)
t−︸                                                                 ︷︷                                                                 ︸

Dp

+
Dγ

2e
t+︸︷︷︸

Dk

, (5.6.80)

where the normalization was chosen in such a way that the symplectic form
stays in Darboux form in the new coordinates (W±,D±, Z,DZ ,Aγ ,Dγ) (with
respect to the scalar product in which {ta , i} is an orthonormal basis). In this
notation, using (5.6.65) and (5.6.66), we find

(dAD)�P̂ � dD�P̂ + [Â,D�P̂] + [τ,D�P̂]

�
1
g

dD−t +
1
g

dD+ t̄ +
e

g g′
dDZ t−

−
g cos θW − g′ sin θW

2g g′
dDγt−

+
1
2e

dDγt+ + i
(
sin θWAγ + cos θWZ

)
∧ (D−t − D+ t̄)

+ iW+ ∧
(
D+t3 − (sin θWDγ + cos θWDZ)t

)
− iW− ∧

(
D−t3 − (sin θWDγ + cos θWDZ)t̄

)
.

(5.6.81)
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P̌
(Z2)
(Z2) P̌

(Z2)
(K) P̌(Z2) D± , 0

P̌
(K)
(K) P̌(K) D± � 0

Q̌(Z2) Q̌(K)

W± , 0 W± � 0

}
}

Figure 5.2: Schematic illustration of the secondary stratification of the reduced phase
P̌ and its relation to the orbit type stratification of the reduced configuration space Q̌.
Dotted arrows mean that the target lies in the closure of the source.

Hence, the Gauß constraint (5.6.4e) takes the following form:

dD+ − ig(sin θWAγ + cos θWZ) ∧ D+

� −igW− ∧ (sin θWDγ + cos θWDZ) − i
ηνg

4 Π
∗
1 volg ,

(5.6.82a)

dD− + ig(sin θWAγ + cos θWZ) ∧ D−

� igW+ ∧ (sin θWDγ + cos θWDZ) + i
ηνg

4 Π1 volg ,
(5.6.82b)

dDZ � ig cos θW(W− ∧ D− −W+ ∧ D+) +
ηνg g′

2
√

2e
ImΠ2 volg , (5.6.82c)

dDγ � ie(W− ∧ D− −W+ ∧ D+). (5.6.82d)

Thus, considered on the singular stratumwherewehaveW± � 0 � D± according
to Proposition 5.6.13, the Gauß constraint is equivalent to the two equations

dDZ �
ηνg g′

2
√

2e
ImΠ2 volg , dDγ � 0. (5.6.83)

Since these equations are decoupled, the Gauß constraint cuts out a smooth
subbundle of (T∗Q)(K)(K), whose fiber is parametrized by the fields Dγ ∈ Ω2

cl(M),
DZ ∈ Ω2(M) and ν√

2
ReΠ2 ∈ C∞(M).

According to Theorem 5.4.8, the reduced phase space decomposes into

P̌ � P̌
(K)
(K)︸︷︷︸
P̌(K)

∪ P̌ (Z2)
(K) ∪ P̌

(Z2)
(Z2)︸         ︷︷         ︸

P̌(Z2)

(5.6.84)
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and the strata P̌(K) and P̌(Z2) are symplectic. Moreover, P̌ (K)(K) is symplecto-
morphic to the cotangent bundle of Q̌(K). As we have seen, this singular
stratum is the (reduced) phase space of the theory of a photon and the Z-boson
without any other intermediate bosons. In contrast, on the generic stratum
P̌
(Z2)
(Z2) ' T∗(Q̌(Z2)) all intermediate vector bosons are present. This cotangent

bundle is stitched together by the seam P̌
(Z2)
(K) , where no W-bosons are present

but their conjugate momenta are non-zero. The secondary stratification is
schematically illustrated in Figure 5.2. In the next section, we study the struc-
ture of the reduced phase space in detail and show that it is similar to that of
the harmonic oscillator discussed in Example 5.5.1.

5.6.5.4 Description of the reduced phase space

We now give an explicit parameterization of the reduced phase space. The
main idea is to identify a part of the configuration space on which the group of
gauge transformations acts transitively and thereby to reduce the symmetry
to a subgroup. Next, we repeat this process until only a finite-dimensional
symmetry remains. To simplify the discussion, we limit our attention to the
case M � S3. As noted in Remark 5.6.15, for M � S3 all bundles occurring in
the construction are trivial and we can hence represent all geometric objects on
the bundle as objects living on S3.

1. Reduction of the gauge group from C∞(M,G) to C∞(M, K): Recall
from Proposition 5.6.5 that the Higgs mechanism yields a parametrization
of (A, ϕ) ∈ Q in terms of the variables (φ, Â, τ, η), which are viewed as
elements of a bundle over Γ∞(P ×G G/K). In the present case of a trivial
bundle P, we can strengthen this result. For this purpose, recall that G/K
is diffeomorphic to S3 via the G-action on C2 defined in (5.6.51). Hence, in
particular, the K-bundle G → G/K is trivial. Therefore, every smooth map
M→ G/K lifts to a smoothmap M→ G and so the action ofGau(P) � C∞(M,G)
on Γ∞(P ×G G/K) ' C∞(M,G/K) is transitive. Moreover, the stabilizer of
the constant function taking values in the identity coset is the subgroup
Gau(P̂) � C∞(M, K) (this is in accordance with Lemma 5.6.6). Therefore,
C∞(M,G/K) is diffeomorphic to the homogeneous space Gau(P)/Gau(P̂). In
other words, the decomposition (5.6.54) takes the form

ϕ �
η
√

2
λ ·

(
0
ν

)
, (5.6.85)

where η ∈ C∞(M,R>0) and λ ∈ Gau(P) is unique up to an element of Gau(P̂).
By implementing the unitary gauge, i.e., by gauging away λ, we obtain the
following refinement of Proposition 5.6.5. Recall the decomposition g � p ⊕ k
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with p spanned by {t , t̄ , t−} and k spanned by t+.

Proposition 5.6.16 The assignment1

(A, ϕ) 7→ ([λ, Â, τ], η), (5.6.86)

where λ and η are determined by (5.6.85) and (λ−1 · A) � Â + τ, defines a Gau(P)-
equivariant diffeomorphism

Q→ Gau(P) ×Gau(P̂)
(
Ω1(M, k) ×Ω1(M,p)

)
× C∞(M,R>0). (5.6.87)

Here, on the right hand side, Gau(P) acts by left translation on the first factor and
Gau(P̂) acts by gauge transformations on the space of connections Ω1(M, k) and via
the adjoint action on Ω1(M,p). In particular, the gauge orbit space Q̌ is isomorphic to(
Ω1(M, k) ×Ω1(M,p)

)
/Gau(P̂) × C∞(M,R>0) in the sense of stratified spaces. ♦

Recall from the discussion in Section 5.2, that there is a natural description
of the cotangent bundle of an associated bundle such that the momentum map
is brought into a convenient normal form, cf. Theorem 5.2.9 (in Section 5.2
the focus lies on certain associated bundles where the slice is the typical fiber
— however, the discussion there does not really use the properties of a slice).
Using the same strategy, we identify

Gau(P) ×Gau(P̂)
(
C∞(M,p) ×Ω1(M, k)2 ×Ω1(M,p)2

)
× C∞(M,R>0) × C∞(M,R)

(5.6.88)
with TQ via the map

(
[λ, (ς, Â, δÂ, τ, δτ)], η, δη

)
7→

©«

A � λ · (Â + τ)
δA � Ad λ(δÂ + δτ) − dAς

ϕ �
η√
2
λ ·

(
0
ν

)
δϕ �

δη
η ϕ + ς . ϕ

ª®®®®®®¬
. (5.6.89)

Here, we have denoted Ω1(M, ·) × Ω1(M, ·) ≡ Ω1(M, ·)2. A straightforward
calculation shows that the dual map

T∗Q→ Gau(P) ×Gau(P̂)
(
Ω3(M,p∗) ×Ω1(M, k)

×Ω2(M, k∗) ×Ω1(M,p) ×Ω2(M,p∗)
)

× C∞(M,R>0) ×Ω3(M,R),
(A,D , ϕ,Π) 7→

(
[λ, ν, Â, D̂ , τ,Dτ], η,Πη

) (5.6.90)

1 With a slight abuse of notation, we continue to use the notation Â and τ. Note, however, that
these fields differ from the ones introduced in (5.6.62) by a gauge transformation.
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is given by

D̂ + Dτ � Ad∗λ−1 D , (5.6.91)

Πη �
1
η

Re(Π∗ϕ), (5.6.92)

ν � prp∗(dAD + ϕ �Π). (5.6.93)

Moreover, let us parametrize (Â, τ) in termsof thefields (W±, Z,Aγ) as in (5.6.65)
and (D̂ ,Dτ) in terms of the fields (D±,DZ ,Dγ) as in (5.6.80). Then, by (5.6.82),
the k∗-projection of the Gauß constraint is given by

0 � prk∗(dAD + ϕ �Π) � 1
2e

dDγ + Im
(
D− ∧W−

)
. (5.6.94)

Denote Qred � Ω1(M, k) × Ω1(M,C). Its elements are (Aγ ,W−). Moreover,
elements of T∗(Aγ ,W−)Qred � Ω2(M, k∗) ×Ω2(M,C) are denoted by (Dγ ,D−). The
right hand side of (5.6.94) is themomentummap for the inducedGau(P̂)-action1
on T∗Qred, because the momentum map for the lift of the K-action (5.6.67)
to T∗C is given by J

K
(z , w) � − Im(w∗z). The upshot of this first symmetry

reduction is the following description of the reduced phase space.

Proposition 5.6.17 The diffeomorphism (5.6.87) induces an isomorphism

P̌ � T∗Q//Gau(P) '
(
T∗Qred//Gau(P̂)

)
×T∗

(
Ω1(M,R t−)×C∞(M,R>0)

)
(5.6.95)

of symplectic stratified spaces. ♦

Proof. First note that the Gauß constraint (5.6.4e) is equivalent to ν � 0 and the
condition (5.6.94), which is themomentummap constraint for theGau(P̂)-action
as we have discussed above. Now the assertion follows from the decomposition
p � C ⊕ Rwith C spanned by {t , t̄} and R spanned by t− and from the fact that
K acts trivially on t−, cf. (5.6.67). �

Hence, the singular structure of the phase space is completely encoded in
the symplectic reduction of T∗Qred by the Gau(P̂)-action.

2. Reduction from Gau(P̂) to K: Since S3 is simply connected, the Hodge
decomposition theorem yields

Ω1(M, k) � d C∞(M, k) ⊕ d∗Ω2(M, k). (5.6.96)

1 Note that λ ∈ Gau(P̂) acts on Aγ ∈ Ω1(M, k) by λ · Aγ � Aγ − 1
e λ
−1 dλ.
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Note that every map f : M → k induces a map f̂ � expK ◦ f : M → K such that
f̂ −1 d f̂ � d f . Accordingly, every K-connection Aγ can be written as

Aγ � ψ−1 dψ + β, (5.6.97)

where ψ ∈ C∞(M, K) and β ∈ d∗Ω2(M, k) is uniquely determined by the curva-
ture FAγ of Aγ. The action of Gau(P̂) on dΩ0(M, k), viewed as a subspace of the
space of K-connections, is transitive with kernel consisting of the constant func-
tions. We identify this kernel with K. Note that K acts trivially on d∗Ω2(M, k)
and by rotation on Ω1(M,C), cf. (5.6.67).

Lemma 5.6.18 The map

Qred→
(
Gau(P̂) ×K Ω

1(M,C)
)
× dΩ1(M, k)

(Aγ ,W−) 7→ ([ψ, v], FAγ),
(5.6.98)

with v � ψ−1W− is a diffeomorphism. ♦

Proof. The inverse map ([ψ, v], β) 7→ (Aγ ,W−) is given by

Aγ � ψ−1 dψ + d∗ 4−1β, W− � ψ . v , (5.6.99)

with ψ ∈ Gau(P̂), β ∈ dΩ1(M, k) and v ∈ Ω1(M,C), because d d∗ 4−1 is the
identity operator on dΩ1(M, k). �

To get a convenient description of the cotangent bundle T∗Qred, we follow
the same strategy as above. Let C∞(M, k)0 denote the functions whose average
over M vanishes. The surjective linear map

C∞(M, k) → C∞(M, k)0, ψ 7→ ψ − 1
volM

∫
M

ψ volg (5.6.100)

has kernel k and thus yields the identification C∞(M, k)/k ' C∞(M, k)0. Dually,
the integral map

∫
M : Ω3(M, k∗) → k∗ has as kernel the space Ω3(M, k∗)0, which

is the dual space to C∞(M, k)0. Linearizing the reconstruction equations (5.6.99)
yields

δAγ � d δψ + d∗ 4−1 δβ,

δW− � δψ . (ψ · v) + ψ . δv ,
(5.6.101)

where δψ ∈ C∞(M, k)0, δβ ∈ dΩ1(M, k) and δv ∈ Ω1(M,C). By dualizing these
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equations, we get a diffeomorphism

T∗Qred→ Gau(P̂) ×K
(
Ω3(M, k∗)0 ×Ω1(M,C)2

)
× dΩ1(M, k) × d∗Ω2(M, k∗)

(Aγ ,Dγ ,W−,D−) 7→
(
[ψ,Π0, v ,Dv], FAγ ,DFAγ

)
,

(5.6.102)

with

Π0 � prΩ3(M,k∗)0

(
1
2e

dDγ + Im(D− ∧W−)
)
,

Dv � ψ−1 . D−,

DFAγ
� d∗ 4−1Dγ .

(5.6.103)

Moreover, the reduced Gauß constraint (5.6.94) is equivalent to Π0 � 0 and

0 �

∫
M

(
1
2e

dDγ + Im
(
D− ∧W−

) )
�

∫
M

Im
(
D− ∧W−

)
. (5.6.104)

The right hand side of this identity is themomentummap for the lifted K-action
on T∗

(
Ω1(M,C)

)
. Thus, the second symmetry reduction yields the following.

Proposition 5.6.19 The diffeomorphism (5.6.98) induces an isomorphism

T∗Qred // Gau(P̂) '
(
T∗

(
Ω1(M,C)

)
// K

)
× dΩ1(M, k) × d∗Ω2(M, k∗) (5.6.105)

of symplectic stratified spaces. ♦
Hence, in combination with the first reduction, see Proposition 5.6.17, we

find that the singular structure of the reduced phase space P̌ is completely
determined by the singular cotangent bundle reduction of T∗

(
Ω1(M,C)

)
with

respect to the action of the finite-dimensional (compact) Lie group K. Note
that T∗

(
Ω1(M,C)

)
is pointwise the phase space of three (coupled) harmonic

oscillators and the K action corresponds to the diagonal U(1)-symmetry. This
shows that the singularity structure of the reduced phase space is essentially
determined by a finite-dimensional Lie group action. The reduced phase space
T∗

(
Ω1(M,C)

)
//K may thus be studied using classical geometric invariant theory

for the finite-dimensional reference system. This will be done elsewhere.

5.6.5.5 Dynamics on the singular stratum

It is a challenge for further research to study the dynamics of this model on
its full stratified phase space. As a first step, we analyze the dynamics on
the singular stratum. First, a word of warning concerning conventions is in
order. Since we followed the usual physics convention and introduced the
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coupling constants when writing the connection A in terms of W and B fields,
see (5.6.62), we need to use a different scalar product on g in the Hamiltonian
to counterbalance the coupling constants1. Let κ be the scalar product on g
in which {ta , i} is orthogonal with norm κ(ta , ta) � 1

g2 and κ(i, i) � 1
g′2 (and

hence κ(t+, t±) � g′2±g2

g2 g′2 � κ(t−, t∓)). Moreover, let κ−1 be the inverse of κ, i.e.,
we have κ−1(ta , ta) � g2 and κ−1(i, i) � g′2. In terms of these scalar products,
the HamiltonianH defined by (5.6.5) reads as follows:

H(A,D , ϕ,Π) �
∫
M

`
2

(
‖D‖2

κ−1 + ‖FA‖2κ + ‖Π‖2C + ‖dAϕ‖2C + 2 V(ϕ)
)

volg .

(5.6.106)

Proposition 5.6.20 On the singular stratum (T∗Q)(K)(K), the Hamiltonian (5.6.106)
has the form

H(Aγ , Z, η,Dγ ,DZ ,Π2)

�

∫
M

`
2

(
‖Dγ‖2 + ‖DZ‖2 + ‖dAγ‖2 + ‖dZ‖2 + ‖Π2‖2C

+
ν2

2 ‖dη‖
2
+
η2ν2(g2 + g′2)

8 ‖Z‖2 + λν2(η2 − 1)2
)

volg .

(5.6.107)

♦

By examining the Hamiltonian (5.6.107), we can read off the particle content
over the singular stratum. We obtain a non-interacting system consisting of
electrodynamics described by the photon Aγ, the theory of a massive vector
boson described by the Z-boson with mass m2

Z �
η2ν2(g2+g′2)

4 and the theory of
a self-interacting real scalar field described by the Higgs boson η with mass
m2
η � −4λν2.

1 The reader might find it instructive to compare the situation at hand to that of classical
mechanics. There, the kinetic part of the Lagrangian is usually written in the form L �

m
2 v2.

But, themass can be absorbed in themetric g on the configuration space by setting ‖v‖2g ..� mv2.
Then, the Hamiltonian is given by H �

1
2 ‖p‖2g−1 , where the norm is taken with respect to the

inverse (or dual) metric g−1. In our field theoretic setting, the coupling constants play the
role of inverse masses.
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Proof. Over the singular stratum, we have D± � 0 and thus

‖D‖2
κ−1 �

DZ −
g2 − g′2

2g g′
Dγ

2

+
(g2 + g′2)2

4g2 g′2
‖Dγ‖2

+
g2 − g′2

g g′

〈
DZ −

g2 − g′2

2g g′
Dγ ,Dγ

〉
� ‖DZ‖2 + ‖Dγ‖2.

(5.6.108)

The curvature of A reads in terms of the fields after symmetry breaking as
follows:

(FA)�P̂ � FÂ + dÂτ +
1
2[τ ∧ τ]

� FÂ + dτ + ig2 (
sin θWAγ + cos θWZ

)
∧ (W+t −W− t̄)

+ ig2 W+ ∧W− t3.

(5.6.109)

Hence, on the singular stratum we simply have

(FA)�P̂ �

(
e dAγ +

g cos θW − g′ sin θW
2 dZ

)
t+ +

g g′

2e
dZ t−. (5.6.110)

The norm of FA with respect to κ, is thus, on the singular stratum, given by

‖FA‖2κ � ‖dAγ‖2 + ‖dZ‖2. (5.6.111)

According to (5.6.61), we get

dAϕ �

(
d + gW a ta +

ig′

2 B1
)
ϕ. (5.6.112)

Using the representation (5.6.54) and the definition (5.6.64) of W± and Z, we
find in terms of the fields after symmetry breaking

(dAϕ)�P̂ �
dη
√

2

(
0
ν

)
+

gη
√

2
W a ta

(
0
ν

)
+

ig′η
2
√

2
B

(
0
ν

)
�

igην
2 W+

(
1
0

)
+

(
ν√
2

dη −
iην

√
g2 + g′2

2
√

2
Z

) (
0
1

)
.

(5.6.113)

Thus, on the singular stratum,

‖dAϕ‖2C �
ν2

2 ‖dη‖
2
+
η2ν2(g2 + g′2)

8 ‖Z‖2. (5.6.114)

Plugging these identities into (5.6.106) yields (5.6.107). �



6Outlook

In this thesis, we have established a new general framework to study moduli
spaces and singular symplectic quotients in infinite dimensions. The techniques
developed in the previous chapters open many exciting paths of further
investigation. We list some relevant open problems and fundamental issues:

• It would be very interesting to extend the discussion of the normal form
of a smooth map in Section 2.2 to higher orders. One would expect
that the knowledge of higher order terms of the Taylor expansion of a
smooth map f yields further control over the behavior of its singular part
fsing. This way, one would gain deeper insight into the singular structure
of the level sets of f . As an application, the singularities of the set of
volume-preserving embeddings seem particularly tractable since they are
determined by a map between finite-dimensional spaces. In the context
of hydrodynamics, the set of volume-preserving embeddings serves as
the configuration space of a free boundary fluid flow and it would be
particularly important to see which physical phenomena are linked to the
singularities of the configuration space.

• The methods developed in Chapter 4 yield a suitable normal form for the
kinematic part of a Hamiltonian system with symmetries. It would be
very interesting to continue this research and investigate Hamiltonian
dynamics in that context. In particular, our theory should be suitable
to study equivariant bifurcation phenomena. For this, it might turn out
especially helpful that our proof of the MGS Normal Form Theorem
is constructive and does not rely on the relative Darboux theorem, cf.
Remark 4.2.26.

• Our results concerning infinite-dimensional singular symplectic reduction
clarify the structure of the reduced phase space on the classical level.
The next step is to pass to the quantum theory by developing a theory
of geometric quantization for infinite-dimensional stratified symplectic
spaces. First elements of such a theory are presented in [Die+], where
prequantum bundles over symplectic section spaces are constructed.

• In the context of singular cotangent bundle reduction, we have seen that
each singular stratum of the reduced phase space further decomposes
into seams. Our discussion of the harmonic oscillator in Section 5.5
shows that the singular seams have a regularizing effect on the dynamics
on the principal seam. It would be interesting to continue the study of
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the dynamics on the reduced phase space and, in particular, to clarify
the meaning of the seams for the interplay between reduction and
regularization.

• In Section 5.6.5, we have found an explicit parameterization of the reduced
phase space of the Glashow–Weinberg–Salam model. Moreover, we have
shown that the singular structure of the reduced phase space is encoded
in the action of the finite-dimensional Lie group U(1). To gain a deeper
understanding of how these singularities influence the properties of the
corresponding quantum theory, it is of interest to extend the discussion to
Cauchy surfaces of arbitrary topological type and to further analyze the
structure of the singular reduced phase space. The latter can be achieved,
for example, by using methods from geometric invariant theory.



A
Calculus on Infinite-Dimensional
Manifolds

Our references for terminology and notation in the framework of infinite-
dimensional differential geometry are [Ham82] for the tame Fréchet category
and [Nee06] for the general locally convex setting.
By a manifold we understand a possibly infinite-dimensional smooth man-

ifold M without boundary modeled on locally convex vector spaces. More
precisely, different connected components of M are allowed to be modeled on
non-isomorphic vector spaces in the same sense as e.g. in [Lan99, Section II.1;
MRA02, Definition 3.1.1]. A subset S of M is called a submanifold if, at each
point s ∈ S, there exist a chart κ : M ⊇ U → X and a closed subspace Y ⊆ X
such that κ(U ∩ S) � κ(U) ∩ Y. The submanifold S is said to be split if, addi-
tionally, each subspace Y is topologically complemented in X. A Lie group is a
group G endowed with a smooth manifold structure such that multiplication
and inversion are smooth maps. The Lie algebra associated to a Lie group is
written as a lowercase Fraktur letter corresponding to the uppercase Latin letter
denoting the group, i.e. g is the Lie algebra of the Lie group G. A Lie subgroup
H ⊆ G is called principal if the natural fibration G → G/H is a locally trivial
principal bundle, see [GN, Section 7.1.4].

The derivative of a smooth map f : M → N at m ∈ M is denoted by
Tm f : Tm M → T f (m)N. When the target or domain is a Lie group G, then
it is often convenient to exploit the left trivialization of the tangent bundle of
G and introduce the following variations of the derivative of a map. The left
derivative of a smooth map ψ : G → N at g ∈ G is the map TL

gψ : g→ Tψ(g)N
defined by

TL
gψ(ξ) � Tgψ(g . ξ), (A.0.1)

where g . ξ denotes the left translation by g ∈ G of ξ ∈ g to an element of TgG.
Given a smooth map φ : M→ G, the (left) logarithmic derivative δmφ : Tm M→ g
at m ∈ M is defined by

δmφ(v) � φ(m)−1 . Tm(v) (A.0.2)

for v ∈ Tm M. If f : P → M is a smooth map, then the chain rule clearly yields

δp(φ ◦ f ) � δ f (p)φ ◦ Tp f . (A.0.3)

Moreover, a straightforward calculation shows that the left derivative and the
logarithmic derivative are inverse to each other in the sense that, for every



A. Calculus on Infinite-Dimensional Manifolds 171

(local) diffeomorphism ψ : G→ N , we have

δψ(g)ψ
−1 ◦ TL

gψ � idg. (A.0.4)

A.1 Inverse Function Theorems

In this section, we give a brief overview of different generalizations of the
classical Inverse Function Theorem to the infinite-dimensional setting. The
primary focus is on Glöckner’s Inverse Function Theorem for maps between
Banach spaceswith parameters in a locally convex space and on theNash–Moser
theorem in the tame Fréchet category.

As a reference point, let us recall the classical version of the Inverse Function
Theorem in the Banach setting.

Theorem A.1.1 (Banach version, [Lan99, Theorem I.5.2]) Let X,Y be Banach
spaces and let f : X ⊇ U → Y be a smooth map defined on an open neighborhood U
of 0 in X. If T0 f : X → Y is an isomorphism of Banach spaces, then f is a local
diffeomorphism at 0. ♦

Glöckner [Glö05; Glö06] has established the following generalization of the
Banach Inverse Function Theorem to smooth maps depending on parameters
in a locally convex space. Similar results have been obtained in [Hil99] (using a
slightly stronger notion of differentiability) and in [Tei01] (using the convenient
calculus).

Theorem A.1.2 (Banach version with parameters, [Glö06, Theorem 2.3]) Let
P ⊆ E be an open neighborhood of 0 in the locally convex vector space E. Let X,Y be
Banach spaces, let U be an open neighborhood of 0 in X and let f : E×X ⊇ P×U→ Y
be a smooth map. If the partial derivative T2

(0,0) f : X → Y of f at (0, 0) with respect
to the second variable is an isomorphism of Banach spaces, then the map

E × X ⊇ P ×U → E × Y, (p , x) 7→
(
p , f (p , x)

)
(A.1.1)

is a local diffeomorphism at (0, 0). ♦
We now recall the main notions of the tame Fréchet category and the

Nash–Moser Inverse Function Theorem, cf. [Ham82]. A Fréchet space X is
called graded if it carries a distinguished increasing fundamental system of
seminorms ‖ · ‖k . A graded Fréchet space is called tame if the seminorms satisfy
an additional interpolation property, which formalizes the idea that X admits
smoothing operators, see [Ham82, Definition II.1.3.2] for the exact statement.
Let X and Y be tame Fréchet spaces. A continuous (possibly non-linear) map
f : X ⊇ U → Y defined on an open subset U ⊆ X is r-tame smooth if it satisfies
a local estimate of the form

‖ f (x)‖k ≤ C(1 + ‖x‖k+r). (A.1.2)
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Roughly speaking, this means that f has a maximal loss of r derivatives.
Moreover, a smooth map f is called r-tame smooth if f and all its derivatives
d( j) f : U × X j → Y are r-tame.

Theorem A.1.3 (Nash–Moser Inverse Function Theorem, [Ham82, Section III.1])
Let X and Y be tame Fréchet spaces, let U be an open neighborhood of 0 in X and
let f : X ⊇ U → Y be a tame smooth map. Assume that the derivative T f has a tame
smooth family ψ f of inverses, that is, ψ f : U × Y → X is a tame smooth map and the
family ψ f

x : Y→ X is inverse to Tx f for every x ∈ U. Then, the map f is a tame local
diffeomorphism at 0. ♦

The important point is that the derivative of f has to be invertible in a
neighborhood of 0 and that one requires tame estimates for the inverses.
Finally, let us comment on other generalizations of the Inverse Function

Theorem that have been obtained in various analytical setups.

Remarks A.1.4
(i) Inspired by analytic problems in symplectic field theory, Hofer–Wysocki–

Zehnder have introduced the scale calculus, see e.g. [HWZ17a; HWZ17b]
and references therein. In this approach, one works with sequences of
Banach spaces Ei connected by compact inclusions Ei+1 → Ei . With an
appropriate notion of scale-differentiability and scale-Fredholm maps,
one can show that a version of the Inverse Function Theorem holds
for smooth scale-Fredholm maps by reducing the issue to the ordinary
Banach Inverse Function Theorem.
Since E∞ �

⋂
i Ei is a Fréchet space, one can reinterpret the scale Inverse

Function Theorem as a theorem for maps between the corresponding
Fréchet spaces. Scale calculus focuses on the Banach spaces Ei while, in
contrast, the Nash–Moser approach is mainly concerned with E∞ and
only the shadow of the inclusions Ei+1 → Ei is noticed in form of the
tame estimates, see [Ger16] for a detailed comparison of the scale calculus
and the tame category. Scale calculus is tailored to the elliptic setting
one encounters in symplectic field theorem. We emphasize that the
Nash–Moser theorem covers these cases as well, but additionally allows
for applications that go well beyond the elliptic setting.

(ii) A local surjectivity theorem for maps between Fréchet spaces was pre-
sented by Ekeland [Eke11], which is based on his variational principle in
place of the usual Newton iteration procedure.

(iii) For a rather rigid class of smooth maps satisfying a Lipschitz bound, a
strong Inverse Function Theorem in the Fréchet setting is given in [Mül08,
Theorem 4.10]. ♦
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A.2 Slices and orbit type stratification

Let M be a (locally convex) manifold. Assume a (locally convex) Lie group
G acts smoothly on M, that is, assume that the action map G × M → M is
smooth. We refer to this setting by saying that M is a G-manifold. The action is
often written, using the dot notation, as (g ,m) 7→ g · m. Similarly, the induced
action of the Lie algebra g of G is denoted by ξ .m ∈ Tm M for ξ ∈ g and m ∈ M.
Clearly, m 7→ ξ . m is the Killing vector field generated by ξ. Furthermore,
G ·m � {g ·m : g ∈ G} ⊆ M is the orbit through m ∈ M. The G-action is called
proper if inverse images of compact subsets under the map

G ×M → M ×M, (g ,m) 7→ (g · m ,m) (A.2.1)

are compact.
The subgroup Gm

..� {g ∈ G : g · m � m} is called the stabilizer subgroup
of m ∈ M. It is not known, even for Banach Lie group actions, whether Gm
is always a Lie subgroup, see [Nee06, Problem IX.3.b]. However, for proper
actions this is the case, see [DR18c, Lemma 2.11]. The G-action is called free if
all stabilizer subgroups are trivial. Two subgroups H and K of G are said to
be conjugate if there exists a ∈ G such that aHa−1 � K; we write H ∼ K is this
case. In view of the equivariance relation Gg·m � gGm g−1, for every m ∈ M
and g ∈ G, we can assign to every orbit G · m the conjugacy class (Gm), which
is called the orbit type of m. We put a preorder on the set of orbit types by
declaring (H) ≤ (K) for two orbit types, represented by the stabilizer subgroups
H and K, if there exists a ∈ G such that aHa−1 ⊆ K. If the action is proper, this
preorder is actually a partial order. This follows from the following helpful
property of compact subgroups.

Lemma A.2.1 ([DR18c, Lemma 2.12]) Let G be a Lie group. Let H and K be two
compact Lie subgroups of G. If K is conjugate to H and K ⊆ H, then K � H. ♦

For every closed subgroup H ⊆ G, define the following subsets of M:

MH � {m ∈ M : Gm � H},
M(H) � {m ∈ M : (Gm) � (H)}.

The subset MH is called the isotropy type subset and M(H) is the subset of orbit
type (H). Analogous definitions hold for every subset N ⊆ M, so, for example,
NH � N ∩MH .
As in finite dimensions, the local structure of these sets is studied with the

help of slices, cf. Proposition A.2.7 below. Since slices play a fundamental
role in the construction of the normal form of an equivariant map, for the
convenience of the reader, we now recall the definition of a slice in infinite
dimensions, cf. [DR18c].
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Definition A.2.2 Let M be a G-manifold. A slice at m ∈ M is a submanifold
S ⊆ M containing m with the following properties:

(SL1) The submanifold S is invariant under the induced action of the stabilizer
subgroup Gm , that is Gm · S ⊆ S.

(SL2) Any g ∈ G with (g · S) ∩ S , ∅ is necessarily an element of Gm .

(SL3) The stabilizer Gm is a principal Lie subgroup of G and the principal
bundle G→ G/Gm admits a local section χ : G/Gm ⊇ U → G defined
on an open neighborhood U of the identity coset [e] in such a way that
the map

χS : U × S→ M, ([g], s) 7→ χ([g]) · s (A.2.2)

is a diffeomorphism onto an open neighborhood V ⊆ M of m. We call V
a slice neighborhood of m.

(SL4) The partial slice S(Gm) � {s ∈ S : Gs is conjugate to Gm} is a closed sub-
manifold of S.

(SL5) There exist a continuous representation of Gm on a locally convex vector
space X and a Gm-equivariant diffeomorphism ιS from a Gm-invariant
open neighborhood of 0 in X onto S such that ιS(0) � m. ♦

The notion of a slice is closely related to the concept of a tubular neighborhood.

Proposition A.2.3 ([DR18c, Proposition 2.6.2]) Let M be a G-manifold. For every
slice S at m ∈ M, the tube map

χT : G ×Gm S→ M, [g , s] 7→ g · s (A.2.3)

is a G-equivariant diffeomorphism onto an open, G-invariant neighborhood W of G ·m
in M. ♦

In the finite-dimensional context, the existence of slices for proper actions is
ensured by Palais’ slice theorem [Pal61]. Passing to the infinite-dimensional
case, this may no longer be true and additional hypotheses have to be made.
We refer the reader to [Sub86; DR18c] for general slice theorems in infinite
dimensions and to [Ebi70; ACM89; CMM91] for constructions of slices for
concrete examples. One of the problems one faces in the infinite-dimensional
setting is the failure of the Inverse Function Theorem and one usually is forced
to use hard alternatives such as the Nash–Moser theorem. However, for linear
actions of compact groups, the situation is better and we have the following
existence result.

Theorem A.2.4 ([DR18c, Theorem 3.15]) Let X be a Fréchet space and let G be a
compact Lie group that acts linearly and continuously on X. Then, there exists a slice
at every point of X. ♦
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The proof of the linear slice theorem uses, among other things, the following
result concerning the existence of invariant complements.

Lemma A.2.5 ([DR18c, Lemma 3.13]) Let G be a compact Lie group which acts
linearly and continuously on a Mackey complete locally convex vector space X. Let H
be a Lie subgroup of G. Then, every closed H-invariant topologically complemented
subspace E ⊆ X admits an H-invariant complement. ♦
In Section 5.6, we need to construct a slice for a group action on a product

manifold. This situation is covered by the next result.

Proposition A.2.6 ([DR18c, Proposition 3.29]) Let G be a Lie group that acts
smoothly on the manifolds M and N . Assume that the G-action admits a slice Sm ⊆ M
at a given point m ∈ M and that the Gm-action on N admits a slice Sn at the point
n ∈ N . Then, Sm × Sn is a slice at (m , n) for the diagonal action of G on the product
M × N . ♦
As in the finite-dimensional case, the existence of slices implies many nice

properties of the orbit space. For example, we have the following.

Proposition A.2.7 ([DR18c, Propositions 4.1 and 4.5]) Let M be a G-manifold
with proper G-action. If the G-action admits a slice at every point of M, then M(H) is
a submanifold of M. Moreover, M̌(H) � M(H)/G carries a smooth manifold structure
such that the natural projection π(H) : M(H)→ M̌(H) is a smooth submersion. ♦
If, in addition, a certain approximation property is satisfied, then the orbit

type manifolds fit together nicely and the orbit space is a stratified space, see
[DR18c, Theorem 4.2]. More generally, we have the following stratification
result for subsets of M.

Proposition A.2.8 ([DR18c, Proposition 4.7]) Let M be a G-manifold with proper
G-action and let P be a closed G-invariant subset of M. Assume that the G-action
on M admits a slice S at every point m ∈ P such that the following holds:

(i) P ∩ S(Gm) is a closed submanifold of S(Gm),

(ii) for every orbit type (K) ≤ (Gm), the point m lies in the closure of S(K) ∩ P in S.

Then, the induced partition of P into the orbit type subsets P(H) � P ∩ M(H) is a
stratification. Moreover, under these assumptions, the decomposition of P̌ � P/G
into P̌(H) � P(H)/G is a stratification, too. ♦

For completeness, we include our definition of a stratification here and refer
the reader to [DR18c] for further details and comparison with other notions of
stratified spaces in the literature.

Definition A.2.9 Let X be Hausdorff topological space. A partition Z of X
into subsets Xσ indexed by σ ∈ Σ is called a stratification of X if the following
conditions are satisfied:
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(DS1) Every piece Xσ is a locally closed, smooth manifold (whose manifold
topology coincides with the relative topology). We will call Xσ a stratum
of X.

(DS2) (frontier condition) Every pair of disjoint strata Xς and Xσwith Xς∩Xσ ,
∅ satisfies:
a) Xς is contained in the frontier Xσ \ Xσ of Xσ,

b) Xσ does not intersect Xς.
In this case, we write Xς < Xσ or ς < σ. ♦

A.3 Cotangent bundles in infinite dimensions

The tangent bundle TQ of a manifold Q is itself a smooth manifold again in
such a way that the projection TQ → Q is a smooth locally trivial bundle. The
dual bundle T′Q ..�

⊔
q∈Q(TqQ)′ is more problematic, cf. [Nee06, Remark I.3.9].

In order to endow T′Q with a smooth fiber bundle structure we need a locally
convex topology on the dual X′ of the model space X of Q such that for every
local diffeomorphism φ : X → X the map

τφ : X × X′→ X′, (x , α) 7→ α ◦ Txφ (A.3.1)

is smooth, because otherwise the notion of smoothness of T′Q is chart-
dependent. It is straightforward to construct a map φ such that τφ involves
the natural pairing X × X′→ R. However, this pairing is discontinuous in 0
for any vector topology on X′ except when X is a Banach space, see [Mai63,
Satz 1]. Thus, in summary, we cannot endow T′Q with a natural smooth bundle
structure for non-Banach manifolds Q.

Hence, the most important class of examples of symplectic manifolds is not
available a priori in infinite dimensions. We now present a substitute, which
will play the role of the cotangent bundle.

Definition A.3.1 A dual pairing between two vector bundles E→ Q and F→ Q
is a smooth map h : E ×Q F → R which is fiberwise non-degenerate, i.e.,
hq : Eq × Fq → R is a non-degenerate bilinear form for every q ∈ Q. If E is a
vector bundle in duality to the tangent bundle F � TQ, then we will write
T∗Q ≡ E and call it a cotangent bundle of Q. Correspondingly, we denote the
bundle projection T∗Q → Q by ?

τ. ♦

We will often denote the duality by brackets and write the dual pair as
〈T∗Q , TQ〉. IfQ carries aRiemannianmetric g, then the pairing g : TQ×Q TQ→
R identifies the cotangent bundle of Q with TQ. In the following, we assume
that a dual pair 〈T∗Q , TQ〉 is fixed and we will simply refer to T∗Q as the
cotangent bundle of Q. The reader should however keep in mind that there
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is no smooth canonical cotangent bundle and a choice of a dual pair is always
required.

Recall that, for a dual pair 〈X2,X1〉 of vector spaces [Köt83], one has a natural
embedding of X2 into the topological dual X′1 of X1. Similarly, for a dual pair
of vector bundles, we obtain a natural vector bundle injection of E into the dual
bundle F′, whose fiber over m is the topological dual F′m of Fm . In particular,
every cotangent bundle T∗Q comes with a natural injection into the topological
cotangent bundle T′Q.

Proposition A.3.2 For a cotangent bundle T∗Q, the formula

θp(v) � 〈p , Tp
?
τ(v)〉q , p ∈ T∗qQ , v ∈ Tp(T∗Q) (A.3.2)

defines a smooth 1-form θ on T∗Q. Furthermore, ω � dθ is a symplectic form. We
say that ω is the canonical symplectic form on T∗Q. ♦

Proof. Let U ⊆ Q be an open subset over which ?
τ : T∗Q → Q as well as

τ : TQ→ Q trivialize. Denote the fiber model space of TQ and of T∗Q by X and
X∗, respectively. Using a chart on Q, we identify U as a subspace of X. Then,
the local chart representation of the pairing is a smooth map U × X∗ × X → R.
In this chart, the canonical form θ : (U × X∗) × (X × X∗) → R is given by

θq ,α(u , β) � 〈α, u〉q (A.3.3)

and, hence, θ is a smooth 1-form on T∗Q. For the symplectic structure

ω : (U × X∗) × (X × X∗)2 → R, (A.3.4)

we find1

ωq ,p(u1, β1, u2, β2) � ∂q
(
〈p , u2〉q

)
(u1) − ∂q

(
〈p , u1〉q

)
(u2)

+ 〈β1, u2〉q − 〈β2, u1〉q .
(A.3.5)

In finite dimensions, this corresponds to the classical formula

ω � g i
j dpi ∧ dq j

+ ∂k (g i
j pi)dqk ∧ dq j , (A.3.6)

where g i
j(q) denote the components of the dual pair 〈 · , · 〉q . In either case, we

conclude that ω is non-degenerate because the dual pair 〈 · , · 〉q possesses this
property for every q ∈ Q. �

Let G be a Lie group acting smoothly on Q. By linearization, we get a smooth
action of G on the tangent bundle, which we write using the lower dot notation

1 This local expression for ω is well-known for the case that TQ is put in duality with itself
using a Riemannian metric on Q, see for example [Mar72, p. 591].
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as g . v ∈ Tg·qQ for g ∈ G and v ∈ TqQ. The action on TQ induces a G-action
on T∗Q by requiring that the pairing be left invariant, that is,

〈g · p , v〉q � 〈p , g−1 . v〉g−1·q , p ∈ T∗g−1·qQ , v ∈ TqQ. (A.3.7)

In order for this equation to define a smooth action onT∗Q, the actionTg−1·qQ→
TqQ needs to be weakly continuous with respect to the pairing 〈 · , · 〉 for every
g ∈ G. With respect to this action, the cotangent bundle projection ?

τ is
G-equivariant and so the action on T∗Q is a lift of the action on Q.
Let g be the Lie algebra of G. Similarly to the above strategy for the cotangent

bundle, the choice of a Fréchet space g∗ and of a separately continuous non-
degenerate bilinear form κ : g∗ × g→ R yields a dual pair, with g∗ serving as
the dual space of g.

Proposition A.3.3 Let G be a Lie group that acts smoothly on Q. Then, the lifted
action of G on the cotangent bundle T∗Q preserves the canonical symplectic form
ω. Let, moreover, κ(g∗, g) be a dual pair. If, for every p ∈ T∗Q, the functional
ξ 7→ θp(ξ . p) on g is represented by an element J(p) ∈ g∗ with respect to κ, then the
resulting map J : T∗Q → g∗ is a smooth G-equivariant g∗-valued momentum map for
the lifted G-action on T∗Q. ♦

Proof. The canonical form θ is G-invariant because we have

θg·p(g . v) � 〈g · p , Tg·p
?
τ(g . v)〉 � 〈g · p , g . Tp

?
τ(v)〉 � 〈p , Tp

?
τ(v)〉 (A.3.8)

for every g ∈ G and v ∈ Tp(T∗Q). Thus, the action leaves also the symplectic
form ω � dθ invariant. By assumption, the functional ξ 7→ θp(ξ . p) on g is
represented by an element J(p) ∈ g∗ with respect to the given dual pair κ(g∗, g).
This is to say,

κ(J(p), ξ) � θp(ξ . p) � 〈p , ξ . ?τ(p)〉. (A.3.9)

On the other hand, we have Lξ∗θ � 0, because θ is G-invariant and so

0 � Lξ∗θ � ξ∗ dθ + d(ξ∗ θ) � ξ∗ ω + κ(dJ, ξ), (A.3.10)

which shows that J is ag∗-valuedmomentummap. TheG-equivarianceproperty
of J is a direct consequence of the G-invariance of the pairing 〈T∗Q , TQ〉
and (A.3.9). �

In contrast to the finite-dimensional case, lifted actions of infinite-dimensional
Lie groups do not necessarily possess a momentum map, see Example 5.1.2.



BDual Pairs

In this appendix, we summarize the relevant material on the theory of dual
pairs without proofs. The exposition is based on standard references [RR64;
Sch71; Jar81; Köt83; NB10]. The basic idea underlying duality theory is that
one can translate a given problem living on a locally convex space X into a
question which primarily involves the dual space X′. This dual problem often
turns out to be easier to solve than the original one. Conversely, sometimes it
can be fruitful to convert problems concerning the dual space into questions
involving only the original space.

Definition B.0.1 ([Köt83, Section 10.3]) A dual pair is a pair of vector spaces
X1 and X2 together with a bilinear form 〈 · , · 〉 : X2 × X1 → R which is non-
degenerate in the sense that the following conditions are satisfied:

(i) If 〈α, x〉 � 0 for all x ∈ X1, then α � 0.

(ii) If 〈α, x〉 � 0 for all α ∈ X2, then x � 0.

We will often use the shorthand notation 〈X2,X1〉 to denote the dual pair. ♦

Although the spaces X1 and X2 are treated on an equal footing in Defini-
tion B.0.1, we think of X2 as the dual to X1 and this thinking is reflected in our
notation by using Greek letters to denote elements of X2. Non-degeneracy of
〈 · , · 〉 is equivalent to injectivity of the partial maps

X2 → X∗1, α 7→ 〈α, ·〉, (B.0.1)
X1 → X∗2, x 7→ 〈·, x〉, (B.0.2)

where X∗ denotes the algebraic dual of the vector space X. We call these maps
the natural embeddings. If the pairing is separately continuous with respect to
given locally convex topologies on X1 and X2, then the natural embeddings
take values in the topological dual rather than merely in the algebraic one.

Examples B.0.2

(i) For a locally convex space X, the natural pairing of X and its topological
dual yields a dual pair (X′,X) by the Hahn–Banach Theorem.

(ii) Let (X, ω) be a (weakly) symplectic vector space in the sense of Defini-
tion 4.1.1. Since the symplectic form ω is non-degenerate, it defines a
dual pair ω(X,X). As usual, we use the musical notation ω[ : X→ X′ for
the natural embedding. ♦
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B.1 Compatible and polar topologies

The natural embedding X2 → X∗1 is almost never surjective onto the full
algebraic dual. We can use a topology on X1 to restrict the class of admissible
functionals and thereby obtain a surjective map in the following sense.

Definition B.1.1 Let 〈X2,X1〉 be a dual pair. A locally convex topology τ on
X1 is called compatiblewith 〈 · , · 〉 if (X1, τ)′ � X2 under the natural embedding
X2 → X∗1, i.e., every linear τ-continuous functional on X1 is of the form 〈α, ·〉
for some (unique) α ∈ X2. ♦

Example B.1.2 For a locally convex space X, the original topology on X is
compatible with the natural pairing (X′,X). The topology on a symplectic
vector space (X, ω) is compatible with ω if and only if ω[ is surjective, i.e., if ω
is strongly non-degenerate, see Proposition 4.1.5. ♦

Let τs be a topology on X1 for which a given dual pair 〈 · , · 〉 : X2 × X1 → R
is separately continuous and let τc be a compatible topology on X1. Since every
τc-continuous linear functional on X1 is also τs-continuous, the topology τc is
coarser than τs . The difference between τs and τc provides a measure of how
much the natural embedding fails to be surjective onto (X1, τs)′. Although this
observation is almost tautological, it has far-reaching consequences since it
converts the algebraic question of surjectivity of the natural embedding into a
topological problem.
In order to systematically study topologies compatible with a dual pair
〈X2,X1〉, we need the concept of a polar topology. Following [Jar81, Sec-
tion II.8.2], the polar A◦ ⊆ X1 of a subset A ⊆ X2 is defined by

A◦ ..� {x ∈ X1 : |〈α, x〉| ≤ 1 for all α ∈ A}. (B.1.1)

The polar B◦ ⊆ X2 of a subset B ⊆ X1 is defined in a similar manner. For a
linear subspace Y ⊆ X2, the polar Y◦ coincides with the orthogonal

Y⊥ � {x ∈ X1 : 〈α, x〉 � 0 for all α ∈ Y}. (B.1.2)

Let us record some basic facts about polars.

Proposition B.1.3 ([Jar81, Proposition 8.2.1]) For every dual pair 〈X2,X1〉, the
following holds:

(i) {0}◦ � X1

(ii) (Anti-monotony) For subsets A1 ⊆ A2 of X2, we have A◦1 ⊇ A◦2.

(iii) For all non-zero λ ∈ R and a subset A ⊆ X2, the identity (λA)◦ � 1
λA◦ holds.

(iv) For linear subspaces Y1 and Y2 of X2, we have (Y1 + Y2)⊥ � Y⊥1 ∩ Y⊥2 .



B. Dual Pairs 181

♦

A polar topology on X1 is a topology whose 0-neighborhood base is given in
terms of polars of a suitable family of subsets of X2. The following proposition
clarifies the minimal requirements on the subsets A ⊆ X2 such that their polars
define a locally convex topology on X1.

Proposition B.1.4 ([Köt83, Proposition 21.1.1; NB10, Theorem 8.3.5]) Let
〈X2,X1〉 be a dual pair and let A ⊆ X2 be a subset. Then, the following are equivalent:

(i) The Minkowski functional

‖x‖A ..� inf{κ ∈ R : x ∈ κ · A◦} � sup
α∈A
|〈α, x〉| (B.1.3)

of the polar A◦ is a seminorm on X1.

(ii) A◦ is an absorbing subset of X1.

(iii) For all x ∈ X1, the set of values {〈α, x〉 : α ∈ A} is bounded in R. ♦

A subset A ⊆ X2 satisfying these equivalent conditions is called weakly
bounded. Accordingly, the seminorms ‖ · ‖A associated to a family A of weakly
bounded subsets A of X2 determine a topology on X1, which we call the
polar topology generated by A. The subsets εA◦ for ε > 0 and A ∈ A form
a 0-neighborhood subbase of this polar topology. Equivalently, a net (xγ)
in X1 converges to x ∈ X1 with respect to the polar topology if and only if
supα∈A |〈α, x − xγ〉| tends to 0 for all A ∈ A. Hence, the polar topology is
the topology of uniform convergence on the sets of A. The polar topology is
Hausdorff and thus locally convex if and only if 0 is the only element orthogonal
to the union ∪AA, see [Köt83, Proposition 21.2.2].

Examples B.1.5

(i) (Weak topology) The polar topology on X1 generated by the collection
A of finite subsets of X2 is called the weak topology and is denoted by
σ(X1,X2). The weak topology is the coarsest topology on X1 for which
the functionals 〈α, ·〉 with α ∈ X2 are continuous. In other words, the
weak topology is the weakest topology on X1 compatible with the dual
pair 〈X2,X1〉. The weak topology is equivalently characterized by the
following convergence condition: a net (xλ) in X1 converges in the weak
topology to x ∈ X1 if and only if 〈α, xλ〉 converges to 〈α, x〉 for all α ∈ X2.

(ii) (Mackey topology) The Mackey topology τ(X1,X2) is the polar topology
generated by all convex, circled1, σ(X2,X1)-compact subsets of X2. The
Mackey topology is compatible with the dual pair.

1 A subset A ⊆ X of a vector space X is called circled if {λ ∈ R : |λ | ≤ 1} · A � A.
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(iii) (Strong topology) The family of all weakly bounded subsets of X2 yields
the strongest polar topology on X1, which hence is called the strong
topology. We will denote it by β(X1,X2). The strong topology is in general
not compatible with the dual pair. ♦

Intuitively it is clear that the spectrum of compatible topologies is bounded
on both sides: there exists a coarsest compatible topology, because the func-
tionals 〈α, ·〉 have to stay continuous; on the other hand, there has to be a
finest compatible topology, because otherwise there are too many continuous
functionals to be of the form 〈α, ·〉. Polar topologies are a suitable tool to
characterize these topologies that are compatible with a given dual pair.

Theorem B.1.6 (Mackey–Arens, [Sch71, Theorem 3.3]) Let 〈X2,X1〉 be a dual
pair. A topology τ on X1 is compatible with 〈X2,X1〉 if and only if it is a polar topology
satisfying

σ(X1,X2) ≤ τ ≤ τ(X1,X2), (B.1.4)

where σ(X1,X2) and τ(X1,X2) denote the weak and the Mackey topology, respectively.
♦

As a consequence of the definition, all compatible topologies on X1 have
the same set of linear continuous functionals. Hence, it is not surprising that
certain other topological properties do not depend on the chosen compatible
topology, too.

Proposition B.1.7 ([Wil78, Corollary 8.3.6 and Theorem 8.4.1]) Let 〈X2,X1〉 be
a dual pair. All compatible topologies on X1 have the same closed convex subsets, the
same closed linear subspaces and the same bounded subsets. ♦

Let B ⊆ X1 be a subset. The polar B◦ ⊆ X2 of B is defined in the samemanner
as in (B.1.1):

B◦ ..� {α ∈ X2 : |〈α, x〉| ≤ 1 for all x ∈ B}. (B.1.5)

Taking the polar twice yields the bipolar B◦◦ ⊆ X1. While the definition of
the bipolar is completely algebraic, the following theorem establishes a deep
relation to compatible topologies.

Theorem B.1.8 (Bipolar Theorem, [Köt83, Proposition 20.3.2]) Let 〈X2,X1〉 be
a dual pair. For every subset B ⊆ X1, the bipolar B◦◦ coincides with the absolutely
convex closure of B with respect to a compatible topology on X1. In particular, for a
linear subspace Y ⊆ X we have Y⊥⊥ � Y, where the closure is taken with respect to a
compatible topology. ♦
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B.2 Adjoint maps

Let 〈X2,X1〉 and (Y2,Y1) be dual pairs. The adjoint of a linear map T : X1 → Y1
is a linear map T∗ : Y2 → X2 satisfying

(β, Tx) � 〈T∗β, x〉 (B.2.1)

for all x ∈ X1 and β ∈ Y2. The adjoint map T∗ is uniquely determined by this
relation.

Lemma B.2.1 ([Sch71, Proposition IV.2.1]) The adjoint of T : X1 → Y1 exists if
and only if T is continuous with respect to the weak topologies on X1 and Y1. ♦

Proof. If T is weakly continuous, then, for every β ∈ Y2, the functional X1 3
x 7→ (β, Tx) ∈ R is weakly continuous. Since the weak topology is compatible
with 〈X2,X1〉, this functional is represented by an element of X2, say T∗β. This
prescription defines a linear map T∗ : Y2 → X2 satisfying (β, Tx) � 〈T∗β, x〉.
Conversely, if the adjoint T∗ exists, then the functional

x 7→ (β, Tx) � 〈T∗β, x〉 (B.2.2)

on X1 is weakly continuous for every β ∈ Y2. By the definition of weak
topologies, this implies that T is weakly continuous. �

Example B.2.2 Let κ(X,Y) be a separately continuous dual pair. Then, the
natural embedding takes values in the topological dual space Y′ of Y, i.e.,

κ[ : X → Y′, x 7→ κ(x , ·). (B.2.3)

Obviously, the identity
(κ[x , y) � κ(x , y) (B.2.4)

holds with respect to the natural dual pair (Y′,Y). Hence, κ[ has the identity
on Y as its adjoint relative to the dual pairs κ(X,Y) and (Y′,Y). According to
Lemma B.2.1, the map κ[ is continuous with respect to the weak-κ topology on
X and the weak topology on Y′. ♦

Proposition B.2.3 ([Sch71, Proposition IV.2.3]) Let 〈X2,X1〉 and (Y2,Y1) be dual
pairs. For every weakly continuous linear map T : X1→ Y1 with adjoint T∗ : Y2→ X2,
the following holds:

(i)
(
T(A)

)◦
� (T∗)−1(A◦) for every subset A ⊆ X1.

(ii) Ker T � (Im T∗)⊥.

(iii) Im T � (Ker T∗)⊥, where the closure is taken with respect to a compatible
topology on Y1.
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(iv) The adjoint T∗ is injective if and only if Im T is dense with respect to a compatible
topology on Y1. ♦

Wewill sometimes write the adjoint of a linear map T : X1→ Y1 with respect
to dual pairs 〈X2,X1〉 and (Y2,Y1) in the following diagrammatic form:

X1 Y1

X2 Y2.

T

×〈 · , · 〉 ×( · , · )

T∗

(B.2.5)

Let 〈Z1, Z2〉 be another dual pair and let S : Y1 → Z1 be a weakly continuous
map with adjoint S∗ : Z2 → Y2. Since the adjoint of the composite map S ◦ T
is T∗ ◦ S∗, see [Sch71, Proposition IV.2.2], we obtain a formalism that allows
rudimentary “diagram chasing”:

X1 Y1 Z1

X2 Y2 Z2.

T

×〈 · , · 〉

S

×( · , · ) ×〈 · , · 〉

T∗ S∗

(B.2.6)
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