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Our brains handle vast amounts of information incoming through our senses. 

Continuously exposed to sensory input, the sense of touch, however, may miss tactile 

stimuli, no matter how much attention we pay to them. In four empirical studies, this 

thesis tested (1) the feasibility of investigating undetectable stimulation by electrical finger 

nerve pulses, (2) how its neural correlates dissociate from detectable stimulation and (3) 

whether and how selective somatosensory attention nevertheless affects the neural 

representation of undetectable stimuli. The first two studies showed that there is a natural 

range of electrical stimulation intensities that cannot be detected. A rigorous statistical 

evaluation with Bayes factor analysis indicated that the evidence of chance performance 

after undetectable stimulation reliably outweighed evidence of above-chance performance. 

A subsequent study applying electroencephalography (EEG) revealed qualitative 

differences between the processing of detectable and undetectable stimulation, which is 

evident in altered event-related potentials (ERP). Specifically, undetectable stimulation 

evokes a single component that is not predictive of stimulus detectability, but lacks a 

subsequent component, which correlates with upcoming stimulus detection. The final 

study showed that attention nevertheless affects neural processing of undetectable stimuli 

in a top-down manner as it does for detectable stimuli and fosters the view of attention 

and awareness being two separate and mostly independent mechanisms. The influence 

of the pre-stimulus oscillatory (~10 Hz) alpha amplitude—a putative marker of 

attentional deployment—on the ERP depended on the current attentional state and 

indicats that both processes are interacting but not functionally matching.  



 

  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“[…] Die Theorie ist das Netz das wir auswerfen, um ‘die Welt’ einzufangen, - sie zu 

rationalisieren, zu erklären und zu beherrschen. Wir arbeiten daran, die Maschen des Netzes immer 

enger zu machen.“ (Karl Popper, p. 31 in ‘Logik der Forschung’, Tübingen, 1973) 
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1 Touch, Consciousness, And Attention – Theoretical 

Considerations 

The sense of touch is the most intimate link to everyone’s environment and, from an 

evolutionary point of view, of utmost importance. We can shut our eyes, close our 

mouth, cover our ears, or hold our nose. However, “silencing” touch may not be 

achieved as easily (cf. Low, 2009). E.g., it requires considerable mental effort to not 

withdraw a finger from a needle perturbating the skin. Signaling proximate and 

potentially harmful interactions with the external world is of central importance for the 

survival of an individual and the species as a whole.  

Moreover, this perpetual immediacy constitutes our feeling of an integrated, i.e., 

unitary self and thereby enables us to distinguish ourselves consciously from our 

surroundings (Grunwald, 2008). Given its unmatched heterogeneous structure 

comprised of a variety of mechano-, chemo-, thermoreceptors as well as noci- and 

proprioceptors, we will easily miss many somatic sensations if we do not pay attention 

to them: the touch of the clothes that we are wearing while reading a book, the body 

position or gesticulation during an intense discussion, just to mention a few. Under 

optimal conditions, however, humans may consciously perceive skin indentations of the 

fingertip as small as 11 µm (Johansson & Vallbo, 1979). Here, this thesis examines the 

possibility of sensory events escaping conscious access and the puzzling question 

whether there are correlates of such unconscious sensations in the brain. What do these 

neural markers—or the absence of those that are present during conscious 

perception—tell us about the mechanisms precluding awareness and what is the role of 

cognitive factors, foremost attention, in modulating such perceptual processes. 

After a short introduction into the empirical study of consciousness (section 1.1), 

detection thresholds (section 1.3) and selective attention (section 1.4), this dissertation 

is comprised of four studies, first investigating the validity of undetectable electrical 

stimulation in touch through psychophysics (section 2.2). Next, suitable central neural 

markers related to these sensations will be identified (section 2.3). The final study 

(section 2.4) utilizes those neural correlates to investigate their potential modulation by 

attention and supports our understanding of a general neural signature for attentional 

deployment that is independent of conscious perception (Koch & Tsuchiya, 2007). 
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1.1 A Neural Account To (Un-) Consciousness 

Contrary to the collective intuition of experiencing a unitary consciousness, the meaning 

of the term varies broadly in its scientific study. In order to address the results of the 

current thesis adequately, one has to define those aspects of consciousness, to which 

the studies explicitly refer. Unless stated otherwise, this thesis confines the meaning of 

consciousness to two aspects. First, in distinguishing between global states of arousal 

ranging from coma to alertness (Kiefer, 2002), this thesis is exclusively concerned with 

fully awake participants that can communicate in an experimental environment. Various 

states of this aspect not only pose the necessary condition to perceptual awareness, but 

they may additionally gate, which objects (Brentano, 1874) or contents our cognitive 

system might represent (Bayne, Hohwy, & Owen, 2016). That is, investigations on 

conscious and unconscious perception of external somatosensory stimulation have to 

control for the participant’s global state of arousal. Awake participants that are engaged 

in an experimental situation can perceive externally driven excitation. This capacity, 

however, might be absent or degraded for other states of arousal, in which we 

nevertheless experience a feeling of having a unitary consciousness (e.g., in lucid 

dreaming).  

The second constriction to the term of consciousness builds on an operational 

definition of what happens when we are aware of specific content or when we are not.  

 

“Using a broad definition, conscious information can be considered any stimulus, either externally- or 

internally-generated, which we are aware of at any given time - thus, these items are 'in mind'. In 

contrast, unconscious stimuli are those items, which are currently not in awareness, and have no 

reportability.” (Gilchrist & Cowan, 2010) 

 

Such an assessment will allow revealing the description of what underlies a conscious 

or unconscious percept but importantly does not provide any explanation the sort of 

“what is it like to be a bat?” (Nagel, 1974). The former is sometimes referred to as being 

the easy problem in consciousness research (Chalmers, 1996) and is related to the study 

of the neural correlates of consciousness (NCC, Mormann & Koch, 2007) that we will 

address more thoroughly below. The latter—referred to as the hard problem (Chalmers, 

1996)—reflects the first-person-perspective of having a private and subjective 

experience about something. Having a first-person-perspective—e.g., coined by mental 
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content like “I think” or “I perceive”—implicitly requires a model of one’s mental self 

(Craig, 2002; Park & Tallon-Baudry, 2014; Prinz, 2017a, 2017b). Cognitive 

neuroscientists argued that only a self-model allows a subjective perspective on external 

(e.g., sensory) and internal (e.g., thoughts) representations (Metzinger, 2007) and that 

representations representing the self therefore pose a necessary condition for being 

conscious at all (Metzinger, 2004; Prinz, 2017b). Although empirical approaches to the 

study of selfhood are feasible and actually undertaken (Blanke & Metzinger, 2009; Prinz, 

2017b), most literature in the field of consciousness research is focusing on descriptions 

of neural substrates and processes correlating with conscious and unconscious 

perception, memory and behavior (Aru, Bachmann, Singer, & Melloni, 2012; Baars, 

1997; Crick & Koch, 1990, 2003; Dehaene & Naccache, 2001; Victor A. F. Lamme, 

2006; Ruhnau, Hauswald, & Weisz, 2014; Samaha, 2015; Silverstein, Snodgrass, Shevrin, 

& Kushwaha, 2015a; Tononi & Koch, 2015). The studies of the present thesis build on 

an already developed first-person-perspective of the studied participants and ask the 

question, which brain processes add to their subjective, self-referential experience when 

they report an external stimulus, as compared to the subjective experience of an external 

stimulus reported being absent.  

Indeed, both invasive and non-invasive brain imaging techniques as, first of all, 

electroencephalography (EEG) and later magnetoencephalography (MEG) and 

functional magnetic resonance imaging (fMRI) uncovered a wealth of finely resolved 

brain responses related to perceiving and acting human subjects since 1929 (Berger, 

1929). None so far, however, has identified a unique neural correlate of conscious 

content everyone agrees on (for an overview see Aru et al., 2012; Verleger, 2010). An 

intricate difficulty arising when identifying NCCs comes with the requirement for any 

report with which the participant has to indicate his or her awareness of something 

(Hesselmann, Hebart, & Malach, 2011). Genuine markers of conscious content—the 

so-called NCC proper (Aru et al., 2012)—therefore appear to be conflated with other 

brain processes either preceding or following conscious perception, such as expectation, 

attention or decision-related processes. For example, Hillyard and colleagues (Hillyard, 

Squires, Bauer, & Lindsay, 1971) presented college students weak tones embedded into 

white background noise in a way that these tones were perceived on one trial but not 

on the other. Students’ task was to indicate after each trial whether they detected the 

tone or not. Because of concurrently measuring EEG, Hillyard et al. (1971) identified a 
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positive deflection in the event-related potential (ERP) about 300ms after tone 

presentation—a so-called P300 (see section 2.1.4 and 2.1.5 for further details)—that 

showed an increased amplitude when students detected the tone as compared to when 

they reported it to be absent. This increase indicates that the P300 component relates 

to conscious content. To reflect a proper marker of consciousness, however, it must 

also be present when participants are not engaged in a task and nevertheless experience 

the tone consciously. The P300, though, vanished utterly, when participants were 

passively receiving those tone intensities that they previously detected. Thus, the P300 

seems to reflect decisional processes that rely on a conscious percept and does not 

resemble a proper NCC but rather a consequence of it (Aru et al., 2012). Another 

obstacle for distinguishing proper markers of consciousness concerns the type of 

report, with which participants are asked to respond. Observers may report having 

nothing perceived but still perform better than chance (Adams, 1957). Accordingly, one 

distinguishes between subjective and objective measures of behavioral responses, where 

the former might be not sensitive enough to grasp partial consciousness, and the latter 

may be too conservative to allow it (Haynes, 2013). Experiments applying stimulation 

at the objective threshold belong to this latter kind, and we will discuss them more 

closely in the next section (1.2). 

The bottom line of this short excursion is that, in the current thesis, I will 

circumnavigate the quest of identifying proper NCC by shedding light on processes 

arising without the smallest sign of conscious perception, i.e., without partial conscious 

awareness, and trying to recognize those neural substrates that probably do not reflect 

the NCC (Aru et al., 2012). Such markers might be necessary for conscious perception 

but do not pose a sufficient condition. Specifically, investigating unconscious 

perception may reveal neural phenomena that may keep us from conscious perception 

and thereby showing qualitative distinctions between the neural processing of detectable 

and undetectable stimuli (Merikle & Daneman, 1998). The first step, however, is to 

identify a suitable procedure that allows stimulating reliably at the objective detection 

threshold or below, which is the topic of the next section. 

1.2 Controlling detectability of external stimulation 

There are two common ways to render stimuli undetectable. One is stimulus masking, 

of which the so-called backward masking is probably the most prominent (Breitmeyer 
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& Ogmen, 2007; Enns & Lollo, 2000; Meador, Ray, Day, Ghelani, & Loring, 1998; 

Schubert, Blankenburg, Lemm, Villringer, & Curio, 2006) and the other is by restricting 

the stimulation energy as a function of stimulus intensity and duration (Iliopoulos, 

Nierhaus, & Villringer, 2014; Shevrin, 2001). When applying backward masking in 

vision, for example, a briefly presented target stimulus turns invisible when followed by 

a non-target stimulus within tens of milliseconds (Enns & Lollo, 2000). 

Electrophysiological studies explained this effect by assuming interrupted cortical 

processing of the target stimulus by the processing of the mask and indeed, provided 

evidence for suppressed neural activity in early sensory areas after masked compared to 

unmasked stimulation (Fahrenfort, Scholte, & Lamme, 2007; Lamme, Zipser, & 

Spekreijse, 2002; Schubert et al., 2006). Thus, masking may preclude observations 

unique to neural processes below consciousness elicited by unmasked but undetectable 

stimulation. This difference seems highly relevant especially concerning early responses 

in the EEG evoked by the stimulus. Backward masking paradigms obscure early ERP 

modulations since the masking stimulus is applied only after the onset of those early 

components that were shown to be related to conscious perception (Auksztulewicz & 

Blankenburg, 2013; Auksztulewicz, Spitzer, & Blankenburg, 2012; Palva, Linkenkaer-

Hansen, Näätänen, & Palva, 2005; Schubert et al., 2006). Importantly, stimulus masking 

may not allow revealing any qualitative differences between conscious and unconscious 

perception during early phases of stimulus processing. 

Accordingly, in the current thesis, I controlled detectability of somatosensory events 

by manipulation of stimulus energy. The question then is, “is it possible to tune the 

energy of stimulation in such a way that observers are unaware of it even without a 

backward mask?” Physiological studies showed that Meissner corpuscles—one type of 

principal mechanoreceptors in the glabrous skin—respond to fingertip skin 

indentations as small as 11 µm and, furthermore, that a single action potential of an 

isolated axon innervating receptive fields of the hand might suffice for detection 

(Goodwin & Wheat, 2008; Johansson & Vallbo, 1979; Vallbo & Johansson, 1984). In 

other words, the absolute threshold for stimulus detection appears to be identical to the 

sensory threshold of the receptor. On the other hand, different studies applied 

transcutaneous electrical nerve stimulation either to a finger or the median nerve, for 

which participants were reported to be completely unaware (Baumgarten, Königs, 

Schnitzler, & Lange, 2017; Blankenburg et al., 2003; Ferrè, Sahani, & Haggard, 2016; 



 

1-16 

Iliopoulos et al., 2014; Klostermann et al., 2009; Libet, Alberts, Wright, & Feinstein, 

1967; Ray et al., 1999a; Taskin, Holtze, Krause, & Villringer, 2008). These studies 

defined undetectable stimulation magnitudes proportional to the intensity of the 

individually assessed detection threshold—typically 10 to 20% below the threshold and 

termed these either “subliminal” or “subthreshold.” However, the term threshold is 

mostly not described at all. In the psychophysical literature, a "threshold" defines a point 

on a psychometric function that satisfies a statistical criterion, i.e., the stimulus intensity 

required for 50% correct performance. Thus, any stimulus intensity below the threshold 

is considered "subthreshold." Stimulus intensities below the 50% threshold, therefore 

are still perceived consciously on a portion of the trials.  

Furthermore, the mentioned studies did not rigorously test—at least they did not 

report it—whether applied intensities below detection threshold were reliably 

undetectable. If any, retrospective subjective reports or a small number of test trials 

were acquired to validate the usage of a specific subthreshold intensity (Ferrè et al., 

2016; Taskin et al., 2008). As discussed above, subjective reports such as the presence 

of a signal or the rating of its magnitude (for an overview see Sandberg et al., 2010) are 

inappropriate for the investigation of unconscious stimulus processing as they might be 

insensitive to the availability of partially conscious information (Haynes, 2013).  

In contrast, objective reports refer to forced-choice procedures, where the observer 

is required to discriminate at least between two randomly presented stimulus conditions 

(Reingold, 1988), e.g., target-present and target-absent, resulting in four possible 

behavioral outcomes regarding correct and incorrect classification. To show the 

relevance of the distinction between subjective and objective reports neurally, 

Hesselmann et al. (2011) recently could dissociate blood-oxygen-level-dependent 

(BOLD) activation patterns of subjective visibility ratings and discrimination 

performance either in higher-order visual areas or in early visual areas, respectively. 

Importantly, although rated as invisible, observers’ performance was above chance 

(>25%) when asked to discriminate, in which of the four possible locations the target 

appeared. 

Thus, investigations on neural processes below conscious perception must prove 

objective performance being at the chance level for a specific stimulus claimed to be 

undetectable. However, objective measures of awareness (as subjective measures) might 

be susceptible to response biases, i.e., the observer’s contingent tendency to prefer a 
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particular response category often called “criterion.” In a forced-choice detection task, 

for example, an observer may be overly lenient in reporting the presence of a stimulus 

in order to increase stimulus detection probability. Conversely, a somewhat 

conservative response strategy would decrease false positives when in fact no stimulus 

is presented. In both cases, the observer’s sensitivity to a specific stimulation intensity 

could be the same, though the response strategy, i.e., the bias, is different. Signal 

detection theory (SDT) provides means to keep these factors apart, which influence 

observers’ decisions. Developed in the 50s and 60s by Tanner, Swets and Green (Green 

& Swets, 1966; Swets, 1964; Tanner & Swets, 1954) SDT is, until today, recognized as 

one of the most influential theories in basic Psychology (Macmillan & Creelman, 2004). 

Its notion of a perceptual continuum cast doubt on the existence of thresholds 

(Goldstein, 2009). Nevertheless, the term threshold is still widely used throughout the 

literature (Haynes, 2013; Kingdom & Prins, 2009). Therefore, the next section dedicates 

a few hopefully clarifying thoughts to the use of the term threshold under signal 

detection theory. 

 

1.3 Thresholds in the light of signal detection theory 

In SDT the process leading to the decision about presence or absence of a sensory 

stimulus, i.e., the signal, rests—apart from sensory sensitivity—on the internal, i.e., 

psychological, evaluation of a chosen decision criterion. If the stimulus—or more 

precisely the internal activation it produces—exceeds the criterion, the observer 

confirms its presence and vice versa. Importantly, another stimulation condition, e.g., 

without any stimulus, will be evaluated on the same grounds. Despite stimulation 

absence, the observer reports the detection of a “stimulus” due to baseline activity of 

the sensory system—often referred to as being noise—if this activity exceeds the 

criterion. Thus, the report of the presence or absence of a stimulus varies with the 

strategy or criterion the observer adopts in order to cope with the experimental 

situation.  

Classical psychophysics researchers noted the variability of behavioral reports, too, 

and proposed a statistical definition of a threshold being an “arbitrary point within a 

range of variability” (Stevens, 1951). However, whereas SDT assumes perception to 

happen on a continuum (Macmillan & Creelman, 2004), threshold theory conceives an 
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in-built limit within the observing system that divides experience into different discrete 

states, in one of which we consciously perceive sensory stimuli and in the other we do 

not have conscious access. Discredit for the usage of the term threshold mainly comes 

from the latter. For threshold theory, i.e., more specific “high-threshold theory,” 

undetected signals directly correspond to the state below the threshold and “yes”-

responses to stimulus absent trials (catch trials)—false alarms in SDT—are treated as 

guesses. Sensitivity threshold then is merely the proportion of detected signal trials 

corrected for guessing (Macmillan & Creelman, 2004). A threshold defined in this way 

implies chance performance below that very threshold because behavioral responses 

here may only arise from the state below consciousness. However, in a rating 

experiment, in which Swets (1961) presented both stimulus and catch trials and asked 

observers to indicate the likelihood of stimulus presence on a six-point scale. High-

threshold theory predicts that below threshold no ordering regarding the likelihood of 

stimulus presence should be possible. Nevertheless, in Swets study (1961) classifications 

of stimulus likelihood did predict the proportion of detection even below the threshold. 

On the contrary, a continuous perception proposed by SDT explains this ordering very 

well, because there is no internal state not capable of perceptual processing. 

Alongside this internal threshold definition, researchers often operationally assess 

the relation between stimulus intensity and psychological detection, so-called 

psychometric functions. Along with such functions, one may define any threshold 

magnitude about an arbitrarily chosen, preselected performance level (Macmillan & 

Creelman, 2004). As we have seen, SDT provides a measure for the observer’s response 

criterion that is independent of the empirical threshold measure. SDT, therefore, 

controls for decision-related processes occluding inferences on sensory sensitivity from 

overt behavior, which was not possible in classical psychophysics (Dixon, 1971; Swets, 

1961). Thus, throughout the thesis, I will empirically define any subthreshold stimulation 

to exert zero sensitive responses that are independent of observer’s response criterion 

(see also section 2.1.3 for the statistical proof of zero sensitivity). I.e., the terms absolute 

detection threshold and subthreshold stimulation refer exclusively to the ability or 

inability of observers to detect, i.e., report, stimuli without their decisional tendency to 

prefer one answer over the other. 
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1.4 Selective attention in touch 

In the previous section, we have seen that the observer’s chosen response criterion 

determines the behavioral report irrespective of actual stimulus presence. On the other 

hand, it is clear that the probability of detecting a “true” stimulus depends on how well 

its elicited activity within the observer separates from neural baseline activity (noise). 

Long before the advent of neuroimaging techniques, William James’ imposing 

phenomenal description of selective attention, pointed to its involvement in improving 

detection by sharpening sensory percepts to “catch an impression of extreme faintness” 

or “discriminate a sensation merged in a mass of others that are similar” (James, 1890). 

Extensive empirical research on this topic ever since conjectured two complementary, 

i.e., mutually non-exclusive, mechanisms serving selective attention. First, enhancement 

of signal activation that can be observed in psychophysical experiments by a reduced 

contrast threshold (Herrmann, Montaser-Kouhsari, Carrasco, & Heeger, 2010) or, in 

the brain, by an activity gain in the neural response of the stimulus coding population 

(Carrasco, 2011). Second, the reduction of noise—external, i.e., sensory, or internal 

noise, i.e., neural activity unrelated to the task—that has been shown to sharpen neural 

response tuning curves, e.g. in feature-based attention (David, Hayden, Mazer, & 

Gallant, 2008; Ling, Liu, & Carrasco, 2009). Thus, selective attention may play a crucial 

role in dissociating relevant sensory input from noise (Carrasco, 2011). For a distracted 

observer, a stimulus might pass by undetected if the stimulus’ neural response is small 

and close to baseline activity. However, the very same stimulus could be consciously 

perceived if the observer pays attention to it.  

A large body of neurocognitive research illustrates the selective prioritization of 

those neural responses that are most relevant for the current behavioral goals 

(Buschman & Kastner, 2015). For now, we will focus on work studying attention in 

touch (for an overview see Gomez-Ramirez et al., 2016). Studies showing enhanced 

activity of single cells in primary and secondary somatosensory cortex (SI and SII; Hsiao 

et al., 1993), increased neural population responses in the EEG (Forster & Eimer, 2004), 

and whole neural network modulations (Goltz et al., 2015; Goltz, Pleger, Thiel, 

Villringer, & Müller, 2013) during attention agree with a signal gain mechanism. 

Furthermore, in an ERP study Forster and Eimer (2005) observed—relative to a neutral 

cue condition, in which participants had no information about the location of an 

upcoming vibrotactile target—an increased N140 amplitude after the target when it 
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appeared at the cued hand, however, a reduction of N140 when it appeared at the 

uncued side. This points to the co-occurrence of signal gain at attended locations and 

suppression of irrelevant information coming from unattended locations mediating the 

effect of attention (Forster & Eimer, 2005).  

Another potential marker for noise suppression is oscillatory neural activity in the 

alpha-band (~10Hz; Foxe & Snyder, 2011). Neural oscillations are thought to emerge 

from the rhythmic firing of neural populations and may coordinate distributed network 

activity (Buschman & Kastner, 2015; Buzsaki, 2011). The advantage of firing in 

synchrony is increasing the effectiveness of neurons (in influencing others) without 

changing their firing rate (the so-called temporal synchronization hypothesis, Singer & 

Gray, 1995). In a MEG study, Jones and colleagues (2010) observed less rolandic alpha 

amplitudes (i.e., mu, alpha oscillatory activity over somatosensory regions) in 

somatotopically localized hand area in primary somatosensory cortex (SI) after cueing 

attention to the hand compared to when cueing attention to the foot. Furthermore, in 

a simple detection task, they found pre-stimulus mu power negatively correlated with 

the detection probability of a small tap to right-hand fingertips. Other studies also 

suggest a close relationship between mu-activity and both performance and attention 

(Haegens, Händel, & Jensen, 2011; Haegens, Luther, & Jensen, 2011) leading to the 

hypothesis that attention suppresses irrelevant or distracting stimuli by up-regulating 

alpha activity (Foxe & Snyder, 2011; Gomez-Ramirez et al., 2016). However, as we will 

discuss later (section 2.4), this view is not always supported by empirical data.  

In summary, this thesis takes advantage of the EEG method—specifically by 

analyzing the ERP and mu-alpha (i.e., sensorimotor or rolandic alpha or simply mu) 

amplitudes, respectively—in order to study signal enhancement and noise suppression 

in stimulus perception. 

 

Concerning the tight relationship of attention and consciousness, the unmatched 

William James already noted that “but without it [attention] the consciousness of every 

creature would be a gray chaotic indiscriminateness, impossible for us even to conceive” 

(James, 1890). Without selective attention, we are dazed and “the foreground of 

consciousness is filled, if by anything, by a sort of solemn sense of surrender to the 

empty passing of time” (p. 404, ibid.). However, interrelatedness does not imply a strict 

dependence of attention on conscious percepts or vice versa (Koch & Tsuchiya, 2007). 
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So-called blindsight patients suffering from a lesion within primary visual cortices give 

one of the most intriguing examples of attention without consciousness (for an 

overview see Kiefer (2002) and Weiskrantz (2007)). Those patients are not aware of 

stimuli occurring in the affected visual field but can point towards them, discriminate 

targets among other stimuli, and show shorter reaction times to targets that match the 

location indicated by a previous but unseen cue (Kentridge, Heywood, & Weiskrantz, 

1999). This phenomenon has been observed in touch as well (Rossetti, Rode, & 

Boisson, 1995), however, instead emerging from a thalamic lesion. The existence of 

blindsight or blind touch shows that selective attention may operate without the 

presence of conscious percepts and therefore does not represent a sufficient condition 

for conscious detection. A full dissociation of both concepts, leading to a four-way 

classification scheme, is not subject to the current work. This is discussed at length in 

the review by Koch and Tsuchiya (2007), who enlist empirical findings for all four 

combinations of the alleged different processes: attention with consciousness (e.g. 

verbal reportability), no or minimal attention without consciousness (e.g. negative 

afterimages), attention without consciousness (see blindsight example above) and 

consciousness without attention (gist extraction of unattended peripheral scenes). 

With stimulus intensities producing chance performance (see section 1.2), 

manipulation of top-down selective attention, and concurrently measuring EEG 

responses, the current thesis quantifies attentional processes in the absence of conscious 

perception in healthy human participants. Contrary to the proposition of representing 

selective attention and subthreshold perception as endpoints on a continuum of 

information handling (Dixon, 1971), this work exploits and compares neural processing 

of both attended and ignored detectable stimulation as well as sensory perturbations 

that may never become consciously perceived.  

 

1.5 Research questions 

In this thesis, I set out to investigate neural processes related to undetectable 

somatosensory stimuli and examined mechanisms precluding conscious awareness. 

Furthermore, I asked whether attentional modulation is limited to consciously 

perceivable stimuli, or also applies to undetectable stimulation that is empirically defined 

to exert objective performance at the chance level, independent of observer’s response 
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criterion. For this, two psychophysical (n=22) and two electrophysiological (n=80) 

studies explored perception for various stimulation intensities along the individual 

psychometric function in an overall sample of 102 participants.  

The primary research questions are: (1) Is it possible to adjust the intensity of 

unmasked electrical somatosensory stimulation in a way that observers’ behavioral 

performance is reliably at the chance level? Study I (section 2.2.1) establishes a fast and 

reliable, manual threshold assessment procedure in order to estimate observers’ 

absolute detection thresholds (ADTH) below which they produce a chance-level 

performance. Study II (section 2.2.2) validates this threshold assessment procedure by 

applying a one-alternative-forced-choice (1AFC, i.e., yes-no detection) task for stimuli 

ranging from intensities below absolute detection threshold to intensities clearly above 

it, but still below the pain threshold. Importantly, the design includes trials without any 

stimulation (catch trials) to allow for the estimation of perceptual sensitivity (d-prime) 

and response bias (criterion) according to signal detection theory and statistically proves 

the chance performance of stimulation intensities below ADTH by Bayes factor null-

hypothesis testing (see section 2.1.3 for details). 

Section 2.3 asks (2) whether there are measurable neural correlates of subthreshold 

stimulation intensities. If so, are there qualitative differences between stimulation below 

and above ADTH concerning the stimulus-evoked response and oscillatory activity that 

may prevent access to conscious experience in the case of subthreshold stimulation? 

Furthermore, (3) which features of the earliest neural responses (amplitude and latency 

of the somatosensory evoked potential, SEP) after somatosensory stimulation are 

predictive of its detection and do these post-stimulus features interact with pre-stimulus 

intrinsic oscillatory activity in the alpha-band that has been surmised to regulate the 

excitability of sensory cortices awaiting stimulus input? Study III (section 2.3.2) was 

therefore designed as an EEG adaptation of study II and investigates these neural 

stimulus-locked responses for various stimulation intensities. 

As discussed in section 1.4, selective attention plays a crucial role in stimulus 

detection by increasing the target signal response and suppressing task-irrelevant noise. 

Furthermore, attention affects both SEPs and alpha-band activity. Thus, study IV 

(section 2.4) investigates the modulatory role of selective spatial attention in 

somatosensory stimulus processing across awareness conditions by its relation to early 

SEPs and oscillatory mu-alpha activity. Precisely, (4) does attention modulate neural 
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processing of subthreshold somatosensory stimuli and (5) what is the role of 

sensorimotor alpha-band activity to the effect of attention? 
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2 Empirical Evidence 

 

2.1 General methods 

This chapter summarizes the most important methods used throughout the empirical 

investigations. It is not meant, however, only to collect facts about the experiments but, 

importantly, also contains central reasoning within this thesis: the direct proof of 

unconscious stimulus processing, the topic of section 2.1.3 and 2.1.4. So, dear reader, 

please keep on reading. The method sections of the specific studies hold additional 

methodological details. 

2.1.1 Stimulation 

All studies used constant-current stimulators (DS7/DS7A, Digitimer, Welwyn Garden 

City, Hertfordshire, United Kingdom) for electrical finger nerve stimulation. Single 

current pulses (quantified in milliampere, mA) are adjusted to have a monophasic square 

wave shape with duration of 200µs consistent with previous studies (Blankenburg et al., 

2003; Iliopoulos et al., 2014; Taskin et al., 2008). The experimenter adjusted stimulation 

magnitudes directly at the device and triggered pulses manually during threshold 

assessment (see next section) or automatically during the main experiments by custom 

scripts running in the stimulation software “Presentation” (Neurobehavioral Systems, 

San Francisco, U.S.A.). A pair of steel wire ring electrodes attached to the middle 

(anode) and the proximal (cathode) phalanx of the left (and for the attention study of 

section 2.4 right) index finger delivered the stimulator output. 

2.1.2 Threshold assessment procedure 

All studies defined the absolute detection threshold (ADTH) empirically as the lowest 

current intensity at which participants just reported a sensation. ADTH was assessed 

manually by the experimenter employing a two-step procedure that involves one trial 

method of limits with ascending intensities for a rough estimation followed by a one-

alternative-forced-choice task (1AFC, i.e., yes-no detection) for fine adjustment. In the 

former task, the experimenter gradually increases stimulation intensity until the 
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participant verbally reports a conscious percept. The latter task involves a semi-random 

presentation of stimulation intensities around the previously estimated rough threshold. 

The participant has to respond (forced-choice) either having detected a stimulus (“yes”) 

or not (“no”). Importantly, the experimenter applies trials without any stimulation 

(“catch trials”), too, in about 20% of all trials (usually 30–60). These catch trials allow 

estimating the participant’s tendency towards responding with “yes” despite no 

stimulation (“false alarms” or simply fA). ADTH is then the smallest stimulus 

magnitude for which the participant’s detection rate (“hit-rate”) exceeds the fA-rate of 

the catch trials, which is equivalent to calculate stimulus sensitivity in signal detection 

theory that is independent of the individual response bias (see next section). This 

procedure is relatively fast, as, in each trial, stimulation and verbal response require 

roughly five seconds. 

In most of the current studies, a stimulation intensity above ADTH (i.e., 

suprathreshold) but well below pain threshold was directly estimated during threshold 

assessment either depending on the participants’ subjective reports of experiencing a 

clear (i.e., conscious) percept or by applying the method of constant stimuli. For the 

latter, the experimenter presented several different stimulation intensities and 

participants responded according to the 1AFC scheme (see above). The suprathreshold 

stimulus (STH) then refers to the smallest intensity that exerts (close to) perfect 

detection performance, i.e., hit-rates of roughly 100%. 

 

2.1.3 Behavioral analysis 

All studies report the hit- and false alarm rates (HR, FAR), i.e., the probability of 

responding “yes” when a stimulus was presented or responding “no” when there was 

no stimulation, respectively. Both measures are affected by the observer’s perceptual 

sensitivity to a stimulation intensity and an individual response tendency towards 

reporting or not reporting a signal, independent of its actual presence (Green & Swets, 

1966; Kingdom & Prins, 2009; Macmillan & Creelman, 2004; Swets, 1961, 1964). 

Therefore, in those studies that include catch trials, perceptual sensitivity is calculated 

as D-prime (Macmillan & Creelman, 2004): 

 

�� = ����� − ��
���, 
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where the function z(x) is the inverse-normal transformation and converts hit and false 

alarm rates ranging from 0 to 1 to z scores having zero mean and a standard deviation 

of one. D-prime is then the distance between the two z-scores representing the 

observers’ internal response to a signal and noise, respectively. This distance is 

mathematically independent of a possible response tendency of the observer being 

either lenient (bias towards saying “yes”) or stringent (bias towards saying “no”). With 

d’ values of zero, observers are not able to discriminate a stimulus at all, i.e., HR = FAR. 

A stimulus that exerts zero perceptual sensitivity, i.e., a detection probability that is no 

different from “yes” responses to null events, therefore satisfies the condition of 

escaping conscious perception, because objective performance is at the chance level. 

This situation, though, is hard to meet, since a satisfying precision for the statistical 

estimate of the true value would require an impractical amount of data. 

Furthermore, testing the null hypothesis (NH), i.e., proving chance performance, 

cannot be accomplished by classical test theoretic procedures. Frequentist statistics are 

designed to reject the null and to be sensitive for the alternative hypothesis (AH, Rouder 

et al., 2009). This sensitivity for the AH is, e.g., evident for the simple t statistic of a 

one-sample t-test, which—despite constant mean difference and variance—increases 

by ramping up the sample. Conversely, if the null hypothesis is true, p-values are equally 

likely and may take on any value between 0 and 1 (Rouder et al., 2009). Unconsciousness 

in this framework, therefore, cannot be proven. Although this led the research field to 

propel productive questions of qualitative differences on the consequence of 

unconscious perception from the consequences of conscious perception (Merikle & 

Daneman, 1998), also methodologically motivated alternatives to classical test theory 

have been suggested (Rouder, Morey, Speckman, & Pratte, 2007; Rouder et al., 2009). 

However, these are almost unnoticed in the core field of unconscious perception 

research (Haynes, 2013; Kiefer, 2012; Peters & Lau, 2016; Silverstein et al., 2015a; Soon, 

Brass, Heinze, & Haynes, 2008; Wiens, 2008).  

Bayes factors, instead, evaluate probabilities of at least two hypotheses conditional 

on observed data (Rouder et al., 2009). In the case of comparing the evidence for the 

NH against the evidence for the alternative, a Bayes factor calculates the posterior odds 

ratio of the probability of the NH given the data against the probability of the alternative 

hypothesis (AH) given the data: 
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, 

 

where H0 and H1 denote null and alternative hypothesis, respectively (Rouder et al., 

2009). An odds ratio of two means in this case that the NH is two times more likely 

than the alternative. A convention by Lee and Wagenmakers (2013) classifies odds ratios 

of more than three as moderate and more than ten as strong evidence in favor of the 

hypothesis in the nominator. In order to calculate the probabilities of the competing 

hypotheses, prior information about the hypotheses’ parameters have to be 

incorporated. Under the null hypothesis, i.e., chance performance, the true standardized 

difference between the perceptual sensitivity to a stimulus intensity is assumed to be 

zero. Under the alternative, a distribution of different weights on different effect sizes 

expresses this prior information. For an objective statistical proof of chance 

performance exerted by subthreshold stimulation in the current thesis, we need priors 

with minimal assumptions about the range of effect sizes under the alternative. 

Therefore, I rely on the Cauchy distribution (one degree of freedom t distribution) of 

effect sizes together with the Jeffreys prior on variance (Jeffreys, 1961). The zero-

centered Cauchy does not favor a direction of effect sizes in the two-sided test case and 

further assumes them to be normally distributed (Rouder et al., 2009). The so-called 

JZS prior, i.e., the combination of the Cauchy distribution on effect size and Jeffreys 

prior on variance (ibid.), might be scaled when smaller or larger effect sizes are expected 

a priori (ibid.). However, the Bayes factor analysis in this thesis considers a range of 

scales, r, to relax strong expectations about the effect size. 

The computational implementation of the above procedures, I mainly realized in 

two software packages: 1) Matlab (Mathworks, Natick, MA, USA, RRID: SCR_001622) 

for the basic statistical comparisons of experimental conditions, e.g., condition contrasts 

with t-test statistics and 2) the R environment (R Core Team, 2014) for more advanced 

modeling, like Bayesian statistical inference. 

2.1.4 Electrophysiological measurement 

To analyze the rapid changes (<500 milliseconds) underlying the processing of sensory 

events supposed to distinguish conscious from unconscious perception, a temporally 
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exemplary resolved method is required. Non-invasive electroencephalography (EEG) 

measures little potential changes by placing many small electrodes over the (human) 

scalp. These scalp potentials are generated by synchronized and spatially aligned current 

dipoles in the brain and propagate through the insulating, anatomical layers of the brain, 

cerebral spinal fluid (CSF), dura and scalp (Jackson & Bolger, 2014)—the so-called 

volume conduction. Coherently oriented pyramidal dendritic trunks form cortical 

macro-columns that are thought to contribute to EEG signals (Pizzagalli, 2007) mainly. 

Synchronized input to these macro-columns by excitatory and inhibitory post-synaptic 

potentials (EPSP and IPSP) sums up and composes the signal that the scalp electrodes 

measure. The polarity of these scalp potentials depends on the depth of the post-

synaptic potentials relative to the Pyramidal cells (soma or apical dendrite) and the 

position of the scalp electrode relative to the radially or tangentially oriented dipoles. 

Neural source modeling of sensory evoked responses showed that EEG may be both 

sensitive to the initial feedforward sweep from thalamus to granular layers (4/5) of SI 

as well as feedback connections from either local or distant brain areas like secondary 

somatosensory cortex (SII) frontal cortex (FC) or posterior parietal cortex (PPC; 

Auksztulewicz & Blankenburg, 2013; Auksztulewicz et al., 2012; Jones et al., 2009; 

Jones, Pritchett, Stufflebeam, Hämäläinen, & Moore, 2007). 

Either 32-channel caps (study section 2.4) or 62-channel caps (study section 2.3.2) 

realized EEG recordings using the BrainAmp amplifier (Brain Products, Munich, 

Germany) together with the Brain Vision Recorder to record the signals of active 

Ag/AgCl electrodes arranged according to the international 10-20 system or its 

extended version, respectively. The midfrontal electrode (FCz) served as an online 

reference and a sternum electrode as ground. Impedances were checked at the 

beginning of each session and reduced below five kΩ for all channels. The method 

sections of the EEG studies (section 2.3.2 and 2.4) detail all information of the specific 

EEG acquisition. In the following two sections, I describe the general analysis 

procedures behind the central EEG measures investigated in the current thesis: event-

related potentials (ERP, section 2.1.5) and the time-frequency response (TFR, section 

2.1.6). 
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2.1.5 Analysis of event-related potentials 

An event-related potential captures neural activity that is generally phase- or time-locked 

to a specific event, be it the onset of a stimulus or the onset of a behavioral response. 

In the remainder, I will refer to stimulus-related potentials exclusively. The ERP in a 

single trial is overlaid by steadily varying background activity (see next section), whereas 

the event-related response, i.e., the transmission of electrical current after transducing 

an incoming stimulus by the receptor (sometimes called evoked potential, see Luck, 

2005), is thought to be relatively invariant with respect to time. To distill the evoked 

response, averaging many trials will cancel the time-varying components (background 

and induced activity) in the signal and leave the stimulus-locked components. Early 

components, i.e., roughly up to 100ms following stimulus onset, usually have a marked 

peak either in the positive or negative direction and mainly depend on external factors 

like stimulus magnitude (“exogenous components”; Luck, 2005). Endogenous 

components, instead, depend on internal factors like awareness of stimulation, 

attentional deployment or reporting related activity (Pitts, Metzler, & Hillyard, 2014; 

Silverstein et al., 2015a). Potential amplitudes across time for a specific channel or group 

of channels illustrate such evoked components where zero marks the onset of the 

stimulus. Complementary, one calculates the potential amplitude at a specific time, e.g., 

at the peak of a specific component, for all channels as a topographic map. Because this 

thesis investigates event-related potentials to somatosensory stimulation, topographic 

maps show maximum component peak distributions close to central gyrus, i.e., at 

midline EEG channels. As a convention, I will call these ERPs “somatosensory evoked 

potentials” (SEP).  

 

2.1.6 Spectral Analysis resolved over time 

As mentioned in the previous section, EEG also captures activity that is not strictly 

phase-locked to the onset of an external stimulus. Simply averaging single trials would 

suppress such signal variations. Often these variations show a certain periodicity over 

time. Hans Berger (1929) gave the first record of a ten times per second (i.e., 10 Hz) 

waxing and waning human EEG, the so-called alpha rhythm. One way to extract such 

rhythms is by convolving the single trial data with so-called morlet wavelets (MW). 

Morlet wavelets are complex valued sinusoids of the frequency of interest (f) multiplied 
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by a Gaussian window. Convolution of the single trial signal with the MW results in a 

time-frequency response of the trial that enhances frequency components that are 

similar to the MW and suppresses others (Cohen, 2014). The TFR is a smoothed 

representation of f localized in time (t), i.e., it depends on neighboring time points and 

frequencies. This smoothing—or the precision of the TFR—can be controlled by 

adjusting the width of the Gaussian window with � = � ⁄ �2� ∗ ��, where c is the 

number of cycles of f the MW should “look for” in the signal. With a wider Gaussian 

window, i.e., more frequency cycles, more sustained oscillatory effects can be extracted. 

Accordingly, narrow Gaussian windows track more transient changes. Importantly, this 

comes with a trade-off with respect to frequency precision: the more localized in time, 

the broader the smoothing across frequencies and vice versa. The following formula 

constructs a complex morlet wavelet for a discrete time period t and the just introduced 

parameters: 

 

�� � = !"#$

%∗&$'  ∗  !"(∗%)∗*∗# 

 

The first part of the formula is the Gaussian window that is multiplied by a complex 

sinusoid, indicated by the i, of the second part. The literature discusses at length some 

further details to the method (e.g., Cohen, 2014). The point here was to illustrate why 

averaging of single-trial TFRs may not suppress activity that is not phase-locked. 

Depending on the amount of temporal smoothing it is less critical whether an oscillatory 

activity appears several milliseconds earlier or later across the to-be-averaged trials as 

long as the time window of the MW can capture it.  

If the oscillatory activity is related to the onset of a stimulus but not strictly phase-

locked to it, one often refers to as induced time-frequency response (iTFR). iTFR 

amplitudes in the alpha (8–14 Hz) and beta band (15–30 Hz) are known to decrease 

upon stimulus presentation with respect to a pre-stimulus baseline (van Ede, Szebényi, 

& Maris, 2014), which has been attributed to serve different functions ranging from 

processing of the incoming stimulation to higher cognitive processes (Neuper & 

Klimesch, 2006; Nierhaus, Schön, Becker, Ritter, & Villringer, 2009; Pfurtscheller & 

Lopes da Silva, 1999; Sauseng et al., 2005). 

However, oscillatory rhythms may also fluctuate spontaneously, i.e., without being 

evoked or induced by a stimulus, e.g., in the resting state (Papo, 2013) or the period 
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before a stimulation (the “baseline”), the so-called background activity (Nierhaus et al., 

2009). There are at least three different background rhythms in the 8–14 Hz range 

related to the brain area processing the sensory modality: the occipital alpha rhythm 

(visual alpha), the Rolandic alpha rhythm (somatosensory alpha or mu) and the tau 

rhythm (auditory alpha, Nierhaus et al., 2009). The mu rhythm amplitude, which is 

central to the current thesis, has been shown to inversely correlate with BOLD signal 

activity (Ritter, Moosmann, & Villringer, 2009; Yin, Liu, & Ding, 2016) and reduced 

amplitude values to be predictive for upcoming stimulus detection (Schubert, Haufe, 

Blankenburg, Villringer, & Curio, 2008) and greater attentional deployment (van Ede et 

al., 2014). 
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2.2 Psychophysical assessment of subthreshold stimulation 

In this chapter, means for assessing the individual threshold are explored and validated. 

The goal was to derive a practical assessment procedure that is both fast in the 

application (section 2.2.1) and reliable in its estimation of an absolute detection 

threshold (section 2.2.2). 

 

2.2.1 A method for assessing the individual absolute detection threshold 

(ADTH) 

It is known that longer stimulation of cortical areas increases the probability of reporting 

a sensation (Libet et al., 1967; Ray et al., 1999a), which suggests the duration of neuronal 

activation to be an essential factor determining conscious and unconscious experience. 

E.g., Ray and colleagues (1999) reported the lowest (cortical) absolute detection 

thresholds for stimulus trains lasting ≥ 1000ms resulting from averaged trials of 

ascending and descending electrical current intensities (method of limits, see section 

2.1.2). Shorter stimulation trains resulted in increased ADTH, i.e., the more electrical 

current had to be applied in order to exert a conscious percept. This result is congruent 

with our experience from the laboratory for ADTH assessment with healthy volunteers. 

It is usually much easier (and faster) for participants to get an idea of the perceptual 

quality of electrical stimulation presented with longer stimulus durations (e.g., 1sec of 7 

Hz monophasic current stimulation) rather than irregular sub-Hz single pulses, 

especially for untrained participants. Thus, manipulating the duration of peripheral 

electrical stimulation may lead to lower ADTH for longer stimulation trains than for 

single pulses; however, no one, so far, reported a systematic assessment with such 

stimuli. 

Furthermore, the primary concern with stimulation intensities below ADTH is 

whether they are indeed “subthreshold,” i.e., whether those stimuli exert chance 

performance or, more precisely, observers do not respond more often with “yes” (hit-

rate) than for trials without any stimulation (false-alarm-rate, fA-rate). Comparing 

response rates is straightforward if the fA-rate is greater than zero indicating that the 

individual criterion is placed within the internal noise distribution (see also section 1.3 

and 2.1.3). However, both measures—hit-rates to subthreshold stimulation and false-

alarm-rates—being zero might blur a true sensitivity to subthreshold stimulation if the 
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observer rather tends to respond with “no” (overly conservative response bias). Thus, 

despite showing chance performance to subthreshold stimulation, internal signal and 

noise distribution might be separated. Assessing ADTH with longer stimulation 

durations than applied during the main experiment would, at least partly, account for 

this problem when an observer’s criterion is low (i.e., overly conservative). 

In order to test stimulation duration effects on ADTH, we ran a psychophysics 

experiment comparing the estimates of our manual DS7 threshold assessment 

procedure (section 2.1.2) conducted with either 7 Hz stimulation or irregular single 

pulse stimulation (roughly around 0.5 Hz).  

 

Methods 

Participants 

Eight participants (age range 22–29 yrs, mean 25.4 ± 2.6 yrs S.D.; 7 females) volunteered 

and gave their informed consent to take part in the study. The local ethics committee 

at the medical faculty of the University of Leipzig approved the study. 

 

Experimental Procedures 

Somatosensory Stimulation and Task Design 

The Experimenter manually assessed ADTH of the left index finger as described in 

section 2.1.2 via electrical stimulation through a pair of steel wire ring electrodes 

controlled by a constant current stimulator (DS7). The electrical current step size for 

the fine adjustment was 0.05 mA. Participants underwent a threshold assessment two 

times for two different stimulation conditions: 7Hz pulse trains and single irregular 

pulses (ISP). Repetition of threshold assessment allowed estimating threshold stability 

over time. The order of stimulation conditions alternated after, an across participants, 

randomized starting condition. Stimulation duration within a trial was 2–3 seconds to 

allow at least two pulses in the ISP condition triggered at a stimulation rate of roughly 

0.5Hz, i.e., every two seconds on average with a pseudo-random jitter of ±300ms. Each 

threshold assessment took about 5 minutes, which makes up 20 minutes per participant 

for the whole experiment. 
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Behavioral Analysis 

ADTH values (in mA) for all conditions were statistically analyzed in a 2 by 2 within-

subject repeated measurement analysis of variance (ANOVA) with the factors 

“stimulation frequency” (7Hz, ISP) and “measurement” (1,2) using the “ez-package” 

(Lawrence, 2013) in R, as well as post hoc t-tests for condition contrasts. The 

visualization was produced with a custom Matlab script.  

 

Results 

Threshold assessment resulted in lower current values (in milliampere) for the 7Hz 

condition (M=1.6 mA; SD=0.38 mA; range: 1.1–2.08 mA) as compared to the ISP 

condition (M=1.88 mA; SD=0.44 mA; range: 1.2–2.25 mA). We found a small but 

significant interaction effect between stimulation frequency and measurement 

(F(1,7)=7, p=0.033, ƞ2
G=0.0003) indicating that a threshold shift within the sample after 

roughly 10 minutes depends on stimulation frequency. Furthermore, there was a 

significant main effect of stimulation frequency (F(1,7)=7.81, p=0.027, ƞ2
G=0.11), 

whereas factor measurement was not significant (F(1,7)<1.2). Threshold assessment 

with 7Hz stimulation consistently resulted in lower ADTH values than stimulation with 

single irregular pulses at a rate of 0.5Hz. 7Hz ADTH current values were lowest for all 

participants as can be observed in figure 1. Post hoc t-tests for the measurement factor 

contrasts of 7Hz and 0.5Hz irregular single pulse stimulation did not reveal a significant 

effect (t(7)=-0.36, p=0.7 and t(7)=-1.67, p=0.14, respectively). Descriptively, ADTH for 

7Hz stimulation on average increased by 0.006mA and for ISP by 0.03mA from the 

first to the second measurement (time difference ~10 minutes). 
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Discussion 

This experiment set out to test the influence of stimulation repetition rate on individual 

ADTH estimates of monophasic electrical currents across time. The results show that 

the threshold assessment with stimulation trains (7Hz) results in lower ADTH estimates 

than threshold assessment with short single irregular pulses at 0.5Hz. Furthermore, 

threshold estimates are relatively stable throughout at least 10 minutes. The interaction 

between stimulation condition and measurement, together with the post hoc t-tests, 

points toward a possible threshold shift for 0.5Hz stimulation. However, effect size 

here is tiny, and the average shift is smaller than the resolution of the threshold 

procedure (current step size was 0.05mA).  

Figure 1. ADTH current values in milliampere for all conditions and all participants (empty circles) 
showing lower thresholds when stimulated with regular 7Hz compared to jittered 0.5Hz pulses. 
Consecutive measurements are indicated by the label suffixes “Meas1” for the first and “Meas2” 
for the second measurement. Lines connect ADTH values from the different stimulation 
conditions for each participant. 
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The results of peripheral stimulation show a striking concordance with studies in 

which cortical sensory areas were stimulated directly in order to exert a tactile sensation 

(Libet et al., 1967; Ray et al., 1999a): the longer the stimulation, the lower the ADTH 

flooring at stimulation train duration ≥ 1000ms. Thus, extensive neural activation may 

lead to a higher probability of consciously perceiving sensory stimulation.  

The stability 7Hz ADTH estimate over time allows further studies the application 

of stimulation near ADTH for which variations in stimulus detection probability caused 

by threshold shifts is unlikely for at least 10 minutes. It has to be noted, however, that 

the experiment did not test more extended measurement periods. Vigilance drifts may 

play a role and could lead to ADTH variations earlier than 10 minutes for longer 

experimental sessions. Furthermore, ADTH assessment with higher stimulation 

repetition rates than applied during the main experiment should have an advantage 

when the experimenter strives for chance performance (e.g., during subthreshold 

stimulation), but false alarm rates of a participant are virtually zero. The criterion of 

such a participant cannot be estimated reliably and might hide an actual separation of 

internal signal and noise distribution. Referencing intensities of single irregular 

subthreshold stimulation to a long duration ADTH (e.g., 7Hz) will put the internal 

signal distribution of the former closer to the internal noise distribution thereby 

approaching zero sensitivity for subthreshold stimulation. The latter result warrants one 

of the central experimental manipulations of the following studies, namely the 

imperceptibility of subthreshold stimulation. 

In sum, manual threshold assessment with 7Hz stimuli of 2–3 seconds is a practical, 

reliable and relatively fast procedure to estimate the individual ADTH. 
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2.2.2 Validation of absolute detection threshold assessment by signal 

detection theory measures and Bayesian Null-Hypothesis testing 

 

This section partly originates in Forschack, N., Nierhaus, T., Müller, M. M., 

& Villringer, A. (2017). Alpha-Band Brain Oscillations Shape the Processing 

of Perceptible as well as Imperceptible Somatosensory Stimuli during 

Selective Attention. The Journal of Neuroscience, 37(29), 6983-6994, but 

addresses the psychophysics experiment and its results in detail. 

 

While the previous study described a successful setup for measuring the ADTH, chance 

performance for stimulation intensities below ADTH yet remains to be shown. In this 

psychophysics study, we, therefore, evaluated the observer’s performance in a signal 

detection theory (SDT) framework allowing the estimation of perceptual sensitivity 

independent of the observer’s response bias (Swets, 1964). Thus, the design included 

catch trials, i.e., trials without any stimulation. However, as in a classical SDT 

experiment, observers discriminate only between two situations (trials with or without 

a stimulus of fixed intensity), this will likely result in significant variations of observers’ 

vigilance in the case of either presenting catch trials or stimuli below ADTH, i.e., 

subthreshold and putative imperceptible stimulation. We, therefore, applied a variant of 

the classical design called two-response classification, in which several stimulus 

intensities are randomly chosen on each trial (Macmillan & Creelman, 2004). 

Specifically, stimulus magnitudes ranged from subthreshold to consciously 

perceivable—however not painful—suprathreshold intensities making the task more 

engaging. As the name “two-response” suggests, the participant responds “yes” if a 

current pulse can be felt and “no” otherwise. Importantly, we applied the very same 

procedure for ADTH determination as in the previous experiment and determined 

perceptual sensitivity (d’) for seven stimulation intensities along the individual 

psychometric function. 

The crucial test for rejecting conscious perception is to show zero perceptual 

sensitivity (d’=0) that indicates chance performance by the observers. However, as we 

have seen previously (section 2.1.3), this is testing the null-hypothesis (NH) and cannot 

be accomplished with classical test theoretic statistics. Therefore, we used a Bayes-factor 

approach (Rouder et al., 2009) in order to evaluate evidence for the NH—i.e., 
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subthreshold stimulation exerts zero perceptual performance—against the alternative 

hypothesis that observers perceive it above chance. 

 

Methods 

Participants 

We invited 14 volunteers (age range 22–32 yrs, mean 26.7 ± 2.8 yrs S.D.; 7 females) 

that were all right-handed (mean 90.4 ± 11.7 S.D.) and included in the analysis. The 

local ethics committee at the medical faculty of the University of Leipzig approved the 

study. 

 

Experimental Procedures 

Somatosensory Stimulation 

The same stimulator and electrode setup as in the previous study was used, except that 

a custom-built interface to the DS7 allowed automatic adjustment of stimulation 

magnitudes in steps of 0.1mA. Custom scripts running in the stimulation software 

“Presentation” (Neurobehavioral Systems, San Francisco, U.S.A.) triggered electrical 

pulses. 

 

Threshold Assessment and Task Design 

The experimental session was divided into five blocks (duration ~7-8 minutes per 

block) each containing 120 trials with or without stimulation. Preceding each block, a 

trained experimenter manually assessed the individual ADTH with the two-step 

procedure described in section 2.1.2, i.e., in the same way as in the previous study. A 

stimulation trial during the experimental session contained a single current pulse scaled 

with one out of seven different intensities defined relative to the ADTH. There were 

trials with two different subthreshold intensities (subTH-30%, subTH-15%, i.e., 70% 

and 85% of ADTH intensity, 100 trials each), the ADTH intensity (60 trials), three near-

threshold intensities (NTH25%, NTH50%, NTH75%, 60 trials each), whose current 

intensities equally divided the distance (in mA) between ADTH and the suprathreshold 

intensity (STH, 60 trials). The latter was individually adjusted to be the first that the 

participant perceived throughout all trials during a stimulus detection run preceding 

each block. This assessment applied five different intensities above ADTH and 

separated by 0.1mA (five repetitions for each and five catch trials) that remained 
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constant for two minutes (method of constants). If the experimenter could not identify 

the STH intensity, the participant conducted further stimulus detection runs, with 

stimulation intensities increased by 0.2mA, until STH criterion was reached. 

During an experimental trial, participants performed a forced-choice Yes/No 

detection (1AFC) task. A trial started with gaze fixation at a centrally presented cross 

on a monitor screen in front of the participants. In a period of 500ms up to 2500ms 

after fixation onset, participants either received a pseudo-randomly presented single 

current pulse scaled by one of the seven individually defined intensities (500 trials) or 

no stimulation (100 catch trials). Upon switch from fixation cross to question mark, 

participants indicated detection of a stimulus by pressing the left (“detected”) or the 

right button (“nothing detected”) of a response box with the index or middle finger of 

the right hand, respectively. As soon as participants pressed either button, the question 

mark disappeared, and a new trial started. 

 

Behavioral Analysis 

Hit- and false alarm rates as well as d-prime (see section 2.1.3) were calculated across 

blocks. Individual response tendency, i.e., the criterion, in a two-response classification 

task is given by: 

 

�+, !+,-. = −��
���, 

 

where the function z(x) is the inverse-normal transform and converts the false alarm 

rate to a z-score (Macmillan & Creelman, 2004). For any stimulation magnitude for 

which perceptual sensitivity, i.e., d’, is below this z–score, participants will have decided 

to have nothing perceived on more than half of the trials for the specific stimulation 

magnitude. 

D-prime values of all stimulation intensities are tested against zero by one-sample 

t-tests and visualized via boxplots using Matlab. Stimulation conditions that did not 

show any significant effect were submitted to a Bayes factor analysis incorporating the 

non-informative JZS-prior (scaling factor r=√2/2≈0.707) in order to evaluate the 

evidence for the null hypothesis against the alternative (see section 2.1.3 for details). 

This approach was implemented in R using the “BayesFactor”-package. Because 

different JZS prior widths alter the odds ratio of evidence of competing hypotheses, 
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Bayes factor analysis was repeated for different r ranging from 0.1 to 1.5 putting 

relatively more weight on small to large effect sizes, respectively. The prior scaling effect 

has been visualized using the statistics software JASP (JASP Team, 2018). Additionally, 

to test whether observers are still able to classify stimulation below ADTH, d’ values 

for the subthreshold stimulation intensities were compared via a paired Bayes factor 

test.  

 

Results 

Single electrical current pulses were applied in seven different intensities fitted to the 

individual psychometric function and ranged from intensities below absolute detection 

threshold to consciously perceivable intensities (table 1): 

 

Table 1 shows the average applied electrical current in milliampere (mA) for all stimulation 
conditions: 1=subTH-30%, 2=subTH-15%, 3=ADTH, 4=NTH25%, 5=NTH50%, 6=NTH75%, 
7=STH. 1 and 2 are defined relative to ADTH intensity. 4, 5 and 6 divide the ADTH-STH interval 
equally. M = mean, SD = standard deviation. 

CONDITION 1 2 3 4 5 6 7 

M (mA) 1.07 1.29 1.51 1.81 2.12 2.39 2.67 

SD (mA) 0.32 0.38 0.45 0.47 0.54 0.62 0.72 

Range (mA) 0.64–

1.74 

0.78–

2.08 

0.9–

2.46 

1.18–

2.68 

1.3–

3.12 

1.4–

3.54 

1.5–

4.04 

Rel. Intensity 0.71 0.85 1 1.22 1.44 1.64 1.85 

 

Participant’s sensitivity to single electrical current pulses increased, as expected, with 

the size of stimulation magnitude from ADTH to STH (ADTH: d’=0.12; t(13)=1.28; 

p=0.11; NTH25%: d’=0.37; t(13)=2.96; p<0.01; NTH50%: d’=0.79; t(13)=6.06; 

p<0.0001; NTH75%: d’=1.62; t(13)=6.64; p<0.00001; STH: d’=2.56; t(13)=10.66; 

p<0.0000001). Subthreshold stimulation trials, however, exerted d’ values close to zero 

(figure 2; subTH-30%: d’=0.04; subTH-15%: d’=-0.09; all t(13)<0.53). Observers’ 

response criteria ranged from 0.49 to 2.58 (M=1.73; SD=0.68) indicating that, in this 

experiment, observers mainly reported to detect stimuli 5 to 7, but not stimuli 1 to 4.  
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D-prime of ADTH intensities and below are not significantly different from zero and 

therefore, were submitted to a Bayes factor analysis to test whether the evidence for 

chance performance outweighs evidence for the alternative hypothesis of above chance 

performance. Bayes factors of the one-sided test of d’ values confirm chance 

performance for both subthreshold stimulation magnitudes with positive to moderate 

evidence in favor for the NH (BF01: 2.409 (subTH-30%); 6.88 (subTH-15%)). Widely 

different scaling of the JZS prior revealed that evidence for the null hypothesis, i.e., 

chance performance after subthreshold stimulation, outweighs evidence for the 

alternative for virtually all prior widths between 0.1 and 1.5 (figure 3). Evidence for the 

ADTH data is ambiguous, with the posterior odds instead favoring the alternative when 

the expected effect size is small (i.e., narrow prior) than when the prior weights more 

prominent effects more strongly (wide prior, figure 3). 

 

Figure 2. Boxplots depict individually averaged D-prime values across the sample for the seven 
different stimulation intensity categories showing that participants are zero sensitive to 
stimulation intensities below the individually adjusted ADTH. Absolute detection threshold 
served as individual reference for decreasing subTH stimulation intensities by 15% or 30%. NTH 
intensities were tuned to 25%, 50%, or 75% of the distance between absolute detection threshold
and 100% STH. Raw hit and false alarm rates were corrected according to Hautus (1995) to account 
for extreme values (i.e., no responses to target or catch trials). Notches indicate 95% confidence 
intervals. 
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Figure 3. Bayes factor tests of the d-prime values of subTH-30% (top left), subTH-15% (top right) 
and ADTH (bottom) stimulus intensities. Evidence for the null hypothesis (not different from 
zero) against the alternative hypothesis (greater than zero) along various Cauchy prior widths is 
depicted as likelihood values greater than one. The grey filled circle marks the prior width used in 
the main analysis. 

 

The Bayes factor for d’ values of stimulation intensities 85% against 70% of ADTH 

electrical current (JZS prior width r=√2/2) revealed that there is 9.16 times more 

evidence that perceptual sensitivity to both subthreshold intensities (subTH-15% and 

subTH-30%) is essentially the same. 

 

Discussion 

This experiment set out to validate the threshold assessment procedure described in the 

previous study (section 2.2.1). Specifically, we asked whether the definition of individual 

subthreshold intensities relative to ADTH results in zero perceptual sensitivity (i.e., d’) 

to these stimulation conditions, i.e., whether these stimuli are reliably undetectable. 

Indeed, results of the two-response classification task revealed that, contrary to 

stimulation intensities above the absolute detection threshold, sensitivity exerted by 
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intensities below ADTH did not vary significantly from zero. Model evidence of chance 

performance for subthreshold stimulation outperforms the model of above chance 

performance as shown by Bayes factor statistics. Reasonable variations of the prior 

width did not change the qualitative conclusion of evidence favoring the NH, which 

indicates that Bayes factor results are robust. 

Importantly, the experiment included catch-trials, i.e., trials without any stimulation. 

Forced responses to catch-trials allowed the calculation of perceptual sensitivity that is 

independent of individual response bias. Thus, the absence of a behavioral effect for 

subthreshold stimulation cannot be explained by observers’ tendencies to rather 

respond with “no,” i.e., applying a conservative decision criterion. Criterion values per 

se varied over a range of more than two standard deviations across participants. Even 

for the most “liberal” measured criteria (about half a standard deviation above zero), 

perceptual sensitivity to subthreshold stimulation remained largely below decision 

criterion. In three cases, however, false alarm rates floored to zero. For these observers, 

the estimate of response bias might not be reliable and could, therefore, “mask” partial 

conscious processing of applied subthreshold intensities. Three arguments speak against 

this: (1) Criteria were set to the maximum value according to the log-linear rule (Hautus, 

1995). Applying the log-linear rule adds 0.5 to all four cells of the contingency table, 

thereby increasing the number of stimulus-present trials and catch-trials by one each. 

Simulations showed that for at least 100 trials of a 1AFC detection task, this method 

resulted in accurate and unbiased sensitivity values when the true d’ and false alarm rates 

were equal or smaller than one and 0.05, respectively (Hautus, 1995). In the current 

study, hits and false alarm rates were based on 100 trials for each subthreshold intensity 

and catch trials. (2) For threshold assessment, we used a 7Hz train of 1-second of 

electrical pulses. As we have seen before, stimulating at a higher rate results in a lower 

detection threshold estimate. Accordingly, the definition of subthreshold intensities 

relative to 7Hz detection threshold should converge the signal distribution of 

stimulation presented at lower rates to the internal noise distribution. (3) The same 

argument holds for the fact that intensities for subthreshold stimulation were at least 

15% lower than ADTH. Therefore, it is unlikely that the three observers showing zero 

false alarm rates are partially sensitive to subthreshold stimulation. 

Despite that a single action potential of an isolated axon innervating the receptive 

field of mechanoreceptors (Meissner corpuscles) in the glabrous skin might suffice to 
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exert above chance performance (Goodwin & Wheat, 2008; Johansson & Vallbo, 1979; 

Vallbo & Johansson, 1984), we could present transcutaneous electrical current 

stimulation that is reliably reported to be absent. This discrepancy might be explained 

by the convergence of receptive fields in higher-order stages of the somatosensory 

perceptual system, e.g., in primary somatosensory cortex (SI). There, lateral inhibitory 

connections may suppress neurons of neighboring receptive fields (Gardner & Kandel, 

2000; Kim, Gomez-Ramirez, Thakur, & Hsiao, 2015). Activation of many receptive 

fields by transcutaneous electrical stimulation might evoke mutual inhibition of the 

different types of neurons responding to the very receptive fields. The net activation is 

then smaller as compared to a circumscribed stimulation of a few mechanoreceptors 

specifically responding to spatially localized skin indentation. The critical question is 

whether subthreshold stimulation that is defined relative to ADTH still reaches higher 

order processing stages like SI. If this is the case, cortical activation to subthreshold 

stimulation may dissociate from cortical processing of suprathreshold stimulation. 

Thus, event-related potentials and functional magnetic resonance imaging might help 

to elucidate a putative difference, and that is the central topic of the next section.  
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2.3 Non-invasive neural markers of unconscious perception 

2.3.1 Neural Correlates of Undetectable Somatosensory Stimulation in EEG 

and fMRI 

In the previous section, we saw that transcutaneous electrical current stimulation allows 

tuning individual detection performance to chance level by adjusting stimulation 

intensities below ADTH. Here, I will shortly review findings in the literature and own 

work regarding the neural processing of putatively subthreshold, i.e., undetectable, 

stimulation for which a rigorous statistical validation was so far missing. Furthermore, 

I will discuss how quantitative measures of undetectable stimulation differ from 

detectable stimulation. 

In a set of experiments, we recently investigated the neural correlates of 

subthreshold stimulus processing both with EEG and with fMRI (Nierhaus et al., 2015). 

For this, stimulation intensities 15% below the ADTH were presented every four 

seconds on average with a presentation jitter of one second. Importantly, we assessed 

ADTH in the same way as described in study 2.2.1. Participants had no specific task 

and did not report any felt stimulation after every 15 minutes block out of three in the 

EEG or the 6 minutes blocks of the fMRI experiments of subthreshold stimulation. 

The former included an additional block of suprathreshold stimulation only. The latter 

consisted of two sessions with a different sample each, in which the first underwent a 

resting and a subthreshold stimulation block and the second additionally received a 

suprathreshold stimulation block. In the EEG, somatosensory evoked potentials (SEP) 

revealed a single positive deflection 60ms after subthreshold stimulus presentation (P1) 

over somatomotor areas contralateral to the stimulation site.  

On the contrary, suprathreshold stimulation caused a bigger P1 that was followed 

by a negative component around 170ms.  

Furthermore, Rolandic alpha amplitudes increased relative to a pre-stimulus 

baseline contralateral to subthreshold stimulation and decreased for suprathreshold 

stimulation. A follow-up study with a slightly adjusted design that included infrequently 

occurring suprathreshold stimuli in addition to the subthreshold stimulation confirmed 

the increase of Rolandic alpha amplitude after the latter, showing that this effect is 

robust.  
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In the first fMRI session, data-driven and spatially assumption-free functional 

connectivity via eigenvector centrality mapping (ECM, (Lohmann et al., 2001) showed 

a decoupling of BOLD activity of the somatosensory areas (SI) from whole brain 

activity during subthreshold stimulation compared to stimulation-free blocks. 

Suprathreshold stimulation in session two did not varied EC compared to rest, but 

functional coupling was more substantial than in subthreshold stimulation blocks. 

This study showed for the first time non-invasively electroencephalographic 

components that may indicate processing of putatively unconscious perception, i.e., 

undetectable stimulation. Previously, this has been observed in small patient samples 

undergoing brain surgery (Libet et al., 1967; Ray et al., 1999). Interestingly, both 

observed a stimulus-evoked component 50–60ms following subthreshold stimulation 

that closely corresponds to the evoked activity measured by Nierhaus et al. (2015). 

Furthermore, functional connectivity results are in line with previous fMRI studies 

showing a negative BOLD contrast for subthreshold stimulation in SI (Blankenburg et 

al., 2003) and a reduced response to suprathreshold stimulation when intermingled with 

subthreshold stimulation trains to the adjacent finger (Taskin et al., 2008).  

Together, these results strongly suggest that perception of stimulation below 

ADTH dissociates qualitatively from stimulation above ADTH, illustrating neural 

processes rather dominant in unconscious and conscious perception, respectively 

(Merikle, Joordens, & Stolz, 1995). In Nierhaus et al. (2015), a single early small positive 

potential and importantly no detectable later ERP response characterized the processing 

of subthreshold stimulation. As these later ERP components have been associated with 

subjective awareness (Auksztulewicz & Blankenburg, 2013; Auksztulewicz et al., 2012), 

it seems that the subthreshold stimuli do not “proceed” to a pre-conscious or conscious 

state. Interestingly, in Nierhaus et al. (2015) participants had no task. Therefore, the 

N170 component that was only present after suprathreshold, i.e., consciously 

perceivable stimulation, but not following subthreshold stimuli, might indicate a proper 

marker of the neural correlates of consciousness (Aru et al., 2012; Hillyard et al., 1971). 

However, different stimulation strengths or the absence of conscious perception might 

cause this effect. One could speculate that it is both: along with the reduced stimulation 

strength, there is no neural correlate related to conscious processing (Nierhaus et al., 

2015). To investigate this further, an EEG design that contrasts perceived versus 



 Empirical Evidence 

 2-49 

unperceived stimuli with the same stimulation strength may reveal neural correlates 

related to detection rather than stimulation intensity (see next section). 

Another qualitative difference is that the commonly found event-related decrease 

of the alpha band after suprathreshold stimulation turns into an increase when 

participants are receiving subthreshold stimuli. Post-stimulus decreases in alpha 

amplitude are usually interpreted as an indicator of local ongoing sensory processing 

whereas an increase in amplitude indicates inhibition of the respective brain area 

(Buzsaki, 2011; Jensen & Mazaheri, 2010; Moosmann et al., 2003; Neuper & Klimesch, 

2006; Pfurtscheller, 1989; Pfurtscheller & Lopes da Silva, 1999; Ritter et al., 2009; 

Scheeringa, Petersson, Kleinschmidt, Jensen, & Bastiaansen, 2012). An increase after 

subthreshold stimulation is remarkable given the fact that undetected near-threshold 

stimuli, i.e., above ADTH, have been reported to induce a decrease just as 

suprathreshold stimulation (Palva et al., 2005). It is tempting to speculate that this 

finding (by Palva et al. 2005) may be an indicator of residual conscious processing 

despite being classified as undetected (near-threshold) by the subjective response. 

Alongside the reduced seed-based correlation from SI to frontal-parietal BOLD activity 

in Nierhaus et al. (2015), the increased alpha amplitude supports the notion that 

processing of subthreshold stimulation is terminated at an early stage in SI probably due 

to prevalent local inhibition. 

The search for neural correlates of unconsciousness requires stimulus energies as 

small as possible but sufficient to evoke a measurable signal. In turn, to show compelling 

unconscious behavioral or neural effects, any study on the topic must provide evidence 

for qualitative dissociations in the data or chance performance for the alleged below 

consciousness condition (Merikle et al., 1995). Nierhaus et al. (2015) have shown the 

former. In the next study, I will show both by concurrently measuring detection 

performance and the neural correlates of unconsciousness: can we observe qualitative 

neural differences between supra- and subthreshold stimulation for which we prove 

observers’ perceptual sensitivity being at the chance level? 

 

  



 

2-50 

  



 Empirical Evidence 

 2-51 

2.3.2 Prediction of stimulus perception by features of the evoked potential 

for different stimulation intensities along the psychometric function 

 

Investigating neural processes of perception without awareness may disclose neural 

phenomena that preclude conscious perception (Baumgarten et al., 2017; Forschack, 

Nierhaus, Müller, & Villringer, 2017; Merikle & Daneman, 1998; Nierhaus et al., 2015). 

Additionally, it may reveal markers that are necessary but, apparently, not sufficient for 

conscious perception and therefore might reflect prerequisites of the neural correlates 

of consciousness (NCC, Aru et al., 2012). Research dedicated to the identification of 

electrophysiological predictors of somatosensory detection agrees on the involvement 

of mid-range event-related components occurring after stimulus presentation, however, 

differs on the involvement of earlier event-related processes, specifically regarding the 

strength of the P50 (Auksztulewicz & Blankenburg, 2013; Auksztulewicz et al., 2012; 

Frey et al., 2016; Palva et al., 2005). These studies typically applied stimulation 

magnitudes individually tuned to exert detection on 50% of the trials, often called “near-

threshold” (NTH) stimulation. Whereas Auksztulewicz and colleagues (2012, 2013) 

found the most prominent effect of perceptual awareness to occur as a negative 

potential over contralateral somatosensory areas roughly peaking 140 ms after stimulus 

presentation, both Frey and colleagues (2016) and Palva et al. (2005) reported global 

awareness differences even before 60 ms.  

A different line of research investigated electrophysiological to stimulation below 

the absolute detection threshold (ADTH, Forschack et al., 2017; Libet et al., 1967; 

Nierhaus et al., 2015; Ray et al., 1999). For such imperceptible stimuli, observers exert 

equal detection probability as compared to catch trials, i.e., trials without any 

stimulation. Stimulation below ADTH (i.e., subthreshold) evokes a P50 but no further 

components. While these results agree to the notion that the mere presence of the P50 

is not sufficient for stimulus detection, a proper test to the hypothesis that its amplitude 

or latency might play a role in the detection of stimulation along the individual 

psychometric function, is hitherto absent. On the contrary, data from a somatosensory 

extinction patient revealed that attenuation rather than elimination of somatosensory 

responses in the damaged hemisphere might cause tactile extinction (Eimer, Maravita, 

Van Velzen, Husain, & Driver, 2002).  
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Thus, the current study set out to quantify the contribution of somatosensory 

electrophysiological response strength in stimulus detection by explicitly manipulating 

stimulation intensities along the individual psychometric function of healthy human 

volunteers. Specifically, we asked (1) do features (amplitude and latency) of stimulus-

evoked potentials in the EEG change gradually for varying stimulation magnitudes and 

(2), which features predict stimulus detection. Furthermore, as it has been observed 

previously that pre-stimulus oscillatory amplitude influences tactile perception 

(Anderson & Ding, 2011; Baumgarten, Schnitzler, & Lange, 2016; Forschack et al., 

2017; Linkenkaer-Hansen, Nikulin, Palva, Ilmoniemi, & Palva, 2004; Schubert, Haufe, 

et al., 2008; Weisz, Müller, Jatzev, & Bertrand, 2014; Zhang & Ding, 2009), we explored 

(3) the possible modulation of features of the evoked potential by pre-stimulus 

somatosensory alpha-band amplitudes. 

 

Methods 

Participants 

The local ethics committee at the medical faculty of the University of Leipzig approved 

the study. Before participation, all volunteers underwent a comprehensive neurological 

examination that screened for a history of neurological or psychiatric diseases or any 

medication. Forty healthy volunteers participated (age range 20–35 yrs, mean 27.2 ± 3.8 

yrs S.D.; 21 females); all were right-handed (laterality score according to the Oldfield 

questionnaire: mean 92.4 ± 12.8 S.D., over a range of –100 (entirely left-handed) to 100 

(entirely right-handed), (Oldfield, 1971). Data of four participants were discarded due 

to defective (2) or artifactual (2) EEG recordings, and so 36 datasets in total were 

analyzed. 

 

Experimental Procedures 

Somatosensory Stimulation 

Hardware, stimulation setup and threshold assessment for ADTH and STH were 

identical to the previous study. The experimental session comprised ten blocks 

(duration ~7 minutes per block) each starting with the threshold assessment. Every 

block contained 134 trials with or without stimulation (i.e., 1340 trial overall). Six 

different intensities were defined relative to the ADTH. There were trials with two 

different subthreshold intensities (subTH-30%, subTH-15%, i.e. 70% and 85% of 
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ADTH intensity, 420 trials each), the ADTH intensity (100 trials), two near-threshold 

intensities (NTH33%, NTH66%: 100 trials each), whose current intensities equally 

divided the interval (in mA) between ADTH and the suprathreshold intensity (STH: 

100 trials). 

 

Task Design 

During an experimental trial, participants performed a forced-choice Yes/No detection 

(1AFC) task. Trial duration was fixed to 3000 ms and started with gaze fixation at a 

centrally presented cross on a monitor screen in front of the participants. In a period of 

1200 ms up to 2000 ms after fixation onset, a stimulation routine either presented a 

single current pulse scaled by one of the six individually defined intensities pseudo-

randomly (1240 trials), or no stimulation (100 catch trials). Upon switch from fixation 

cross to question mark (i.e., at 2000 ms after stimulation onset), participants indicated 

detection of a stimulus by pressing the left (“detected”) or the right button (“nothing 

detected”) of a response box with the index or middle finger of the right hand, 

respectively. The question mark either disappeared after 1000ms or as soon as 

participants pressed either button; then a new trial started. 

 

EEG acquisition 

During 10 stimulation blocks each lasting roughly seven minutes, a BrainAmp actiCap 

system (Brain Products, Munich, Germany) recorded EEG continuously from 62 scalp 

channels (61 scalp electrodes plus 1 electrode recording the VEOG below the right eye) 

attached according to the 10-10 system (Oostenveld & Praamstra, 2001), referenced to 

midfrontal electrode (FCz) and grounded to an electrode placed at the sternum. 

Impedances were kept below five kΩ for all channels, sampling frequency 2.5 kHz, 

analog filter low-cutoff at 0.1 Hz and high cutoff at 1000 Hz, and a low-pass finite 

impulse response filter (high cut-off: 150 Hz, transition bandwidth: 50 Hz) was applied 

before downsampling EEG time courses to 500 Hz. 

 

Behavioral Analysis 

In most aspects, behavioral data analysis was identical to the previous study. However, 

because in the current study there were fewer catch trials (by a factor of four) than trials 

with subthreshold stimulation intensities, the former were expected to show more 
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variance concerning the probability of “yes”-responses. The z-transformation used for 

the calculation of d-prime values would artificially amplify differences especially for 

response rates below 0.1 that might result in d-prime values below zero. Therefore, 

Bayes factor analysis was implemented as paired one-sample tests of hit rates to 

subthreshold stimulation versus false alarm rates to catch trials. As in the previous study, 

d’ values for the subthreshold stimulation intensities were compared via a paired Bayes 

factor test to check whether observers are still able to classify stimulation below ADTH. 

 

EEG Data Analysis 

Preprocessing 

As a first step, we ran the standardized early-stage EEG processing pipeline (PREP, 

Bigdely-Shamlo, Mullen, Kreutz-Delgado, & Makeig, 2013) on the down-sampled data. 

This algorithm combines 50 Hz line noise removal by a sliding window multi-taper 

spectral regression approach (Mullen, 2012) and robust average referencing by 

iteratively detecting and interpolating noisy channels. Next, individual datasets 

underwent independent component analysis (ICA, adaptive mixture of independent 

component analyzers (AMICA, Palmer et al., 2011) both to remove sources of ocular 

and muscle artifacts as well as signals of other non-neural origin (Chaumon, Bishop, & 

Busch, 2015; Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012; Li, Ma, Lu, & Li, 

2006). Before ICA, datasets were prepared by applying the following procedures: 

training datasets for ICA were high-pass filtered with 1 Hz, all blocks were 

concatenated, and contiguous epochs of one second were extracted, corrected for the 

average epoch potential, screened for non-stereotypical artifacts and rejected if 

contaminated. Then, an initial ICA was performed after which artifactual epochs were 

identified in ICA space using improbable data estimation on single and across all 

components and removed semi-automatically (function “pop_jointprob”, threshold 

limit for single channels: 4.5 SD, threshold limit for all channels: 2.5 SD, Delorme et al., 

2007). The resulting datasets were submitted to a second ICA (again using AMICA 

algorithm). We visually inspected the new set of components and identified artifactual 

components based on various features of IC topographies and time courses calculated 

by SASICA (Semi-Automated Selection of Independent Components of the 

electroencephalogram for Artifact correction, Chaumon et al., 2015). Specifically, we 

regarded components showing correlations with VEOG channel higher than 0.6 or 
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horizontal EOG (bipolarized potential of channel “FT7” and “FT8”) higher than 0.4, 

blink or eye movement typical topographies and IC source activity, abnormal frequency 

spectrum, i.e., high frequency or line noise, focal topographies as indicative of non-

neural origin. Only the unmixing and sphering matrices of artifact-free components 

were forward-projected to high-pass filtered continuous datasets for the subsequent 

analysis steps (function “pop_firws” Widmann et al., 2015); low cut-off of 0.1 Hz, 

maximum pass-band deviation: 0.001 and transition bandwidth: 0.02 Hz with filter 

order of 9056). On average, 24.6 (4.5 SD) components per participant were rejected 

(average median component number when sorted from highest to lowest explained 

variance: 33). 

After rejecting artifactual components, data for ERP analysis was downsampled to 

250 Hz (high cut-off: 75 Hz, transition bandwidth: 25 Hz) and low-pass filtered by a 

Kaiser windowed sinc finite impulse response filter with a high cut-off of 41 Hz (high 

cut-off maximum pass-band deviation: 0.0001 and transition bandwidth: 10.25 Hz with 

a filter order of 124). Proper epochs were cut from the continuous channel signals 

ranging from -1200 to 3600 ms relative to stimulus onset (t=0), from which the 

individual epoch mean was subtracted. Epochs that exceeded the joint logarithmic 

probability of 4.5 or 2.5 SD within or across independent components, respectively, 

were discarded after manually reviewing the alleged artifactual epochs (Delorme et al., 

2007). Additionally, trials that contained behavioral responses within -800 to 800 ms 

relative to stimulus onset as well as reaction times smaller than 150 ms or higher than 

1100 ms have been excluded. These epoch rejection steps resulted in the following 

average number of trials per stimulation condition: 374 (21 S.D.) subTH-30%, 371 (22 

S.D.) subTH-15%, 90 (5 S.D.) ADTH, 90 (5 S.D.) NTH33%, 88 (6 S.D.) NTH66%, 87 

(6 S.D.) STH and 89 (5 S.D.) for catch trials. Linear detrending was applied on the 

remaining trials over a time range of -0.6–1.2 ms to remove any sustained potential 

drifts. 

 

Amplitude and latency extraction of SEP components and their statistical analysis concerning 

stimulation intensity and pulse detection  

Analysis of SEP components was based on the average signal of an ad-hoc selection of 

contralateral central electrode sites (“C2”, “C4”, “C6”, “CP2”, “CP4”, and “CP6”). A 

topographical test of the post-stimulus period (0–300 ms) averaged across all 
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stimulation conditions compared to a pre-stimulus baseline ranging from -100 to 0 ms 

to stimulus onset was conducted to estimate the sensibility of this selection. For multiple 

comparison correction, we applied threshold-free cluster enhancement (TFCE) with a 

cluster threshold of p = 0.05 (cluster size exponent E = 0.5, statistical intensity exponent 

H = 2, Mensen & Khatami, 2013; Smith & Nichols, 2009). For this, topographical 

isocontour voltage maps of P50 and N150 component peaks are represented. 

Baseline corrected (-100 to 0 ms) P50 and N150 ERP peak amplitudes and latencies 

of the stimulation condition averages have been extracted for each participant for the 

averaged contralateral central electrode cluster signal as neural markers indicative of 

perceptual changes along the psychometric response function. To this end, we ran a 

peak and latency detection algorithm within time windows of interest: 32 to 76 ms for 

the P50 peak latency and 128 to 172 for the N150 peak latency. Average maximal 

component amplitudes and latency values were plotted together with respective within-

subject confidence intervals (Cousineau, Montréal, Paradis, & For, 2005; Loftus & 

Masson, 1994; Morey, 2008). Pairwise two-tailed t-tests (p<0.05) were calculated for 

each stimulation condition pair and corrected for multiple comparisons using false 

discovery rate (fdr, q=0.05, Benjamini & Hochberg, 1995; Genovese, Lazar, & Nichols, 

2002). 

We tested the effect of stimulus detection and stimulation intensity on 

somatosensory electrophysiological response strength by calculating SEPs separately 

for detected and rejected STH and NTH66% trials. Average potentials were required to 

consist of, at least, ten trials per condition to assure reasonable noise reduction. 

Therefore, data of four additional participants were rejected for this specific analysis. 

P50 and N150 amplitudes of the remaining 32 participants were subjected to a 2 x 2 

repeated measures ANOVA with factors “detection” (stimulus detected vs. rejected) 

and “stimulus intensity” (STH vs. NTH66%). ANOVA statistics and bootstrapped 

confidence intervals (resampling of subject indices for each condition with 10,000 

iterations) were computed with the ez-package developed by Mike Lawrence (2013, 

version 4.2-2, https://github.com/mike-lawrence/ez). Effect sizes were quantified as 

generalized eta-squared (η0
% , Bakeman, 2005). 

The six different stimulation intensities were fixed within each block. To test whether 

detected and rejected trials are comparable concerning stimulation intensities across 

blocks, we calculated the average stimulation current for each participant and 
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stimulation condition, separately for all trials classified being detected and rejected, 

respectively. Resulting values were submitted to a paired one-sample t-test. 

 

Rolandic Rhythms 

To discern Rolandic rhythms from occipital alpha activity, I used the same preselection 

of the central contralateral electrode cluster as in the ERP analysis above, which is 

consistent with electrodes found to be predictive for somatosensory masking (Schubert, 

Haufe, et al., 2008). For this, I convolved every single trial of all stimulation conditions 

with complex morlet wavelets tuned to include 5.5 cycles of frequencies ranging from 

4 to 42 Hz. Frequency bands of interest were defined based on the results by Schubert 

et al. (2008). However, neighboring alpha and beta bands in Schubert and colleagues 

(2008) were slightly overlapping. I, therefore, redefined frequency bands of interest to 

be more distinct. I.e., the alpha band ranged from 9 to 14 Hz and the beta band from 

20 to 35 Hz. Wavelet parameters resulted in the following frequency and time 

smoothing: 3.85 Hz at full-width-half-maximum (FWHM) and 114.5ms (+/- FWHM) 

at 9 Hz; 5.99 Hz (FWHM) and 73.6 ms (+/- FWHM) at 14 Hz; 8.56 Hz (FWHM) and 

51.5 ms at 20 Hz (+/- FWHM); and 14.99 Hz (FWHM) and 29.4 ms (+/- FWHM) at 

35 Hz. For the pre-stimulus window that is going to be tested for its predictive value in 

stimulus detection, I chose it to be as close as possible to stimulus presentation but 

without smearing into the post-stimulus window; i.e., this window should not include 

latencies higher than -114.5 ms relative to stimulus onset for the 9 Hz frequency 

response. This window I defined from -400 to -150 ms relative to stimulus onset, which 

is following the time window in which Schubert and colleagues (2008) found the 

frequency band effects. Statistical analysis was performed by testing the pre-stimulus 

time-frequency-band-of-interest response of the central contralateral electrode cluster 

for detected versus rejected stimulation (NTH66% and STH only) with cluster-based 

two-tailed paired t-tests (p-level was set to 0.01 and corrected for multiple comparisons 

by tfce, Mensen & Khatami, 2013). 

 

Prediction of stimulus detection by evoked potentials and Rolandic alpha amplitude 

To identify further neural markers predictive for stimulus detection, I calculated SEPs 

at averaged central contralateral electrode sites separately for detected and rejected 

finger pulses and averaged these across NTH66% and STH stimulation intensities. 



 

2-58 

Specifically, we tested whether P50 and N150 latency and amplitude are predictive for 

behavioral classification. To this end, I applied binomial regularized logistic regression 

together with six-fold cross-validation (James, Witten, Hastie, & Tibshirani, 2015) to 

select the essential neural markers for stimulus detection. This procedure selects the 

best model out of a set of predictors. Regularization was achieved by adding the so-

called lasso penalty—or ℓ1 norm—to the standard maximum-likelihood model 

coefficient optimization. The influence of this penalty was controlled by the tuning 

parameter λ ranging from 0 to 100, where zero puts no penalty on the coefficients of 

the full model and corresponds to standard generalized linear modeling (glm). With 

increasing λ, predictor coefficients are shrunk towards zero depending on their 

predictive value for behavioral response classification; thus, the higher λ, the simpler 

the model. For model selection, I chose the model that shows the smallest cross-

validation error (CVE) across all λ. 

To assess a probable influence of pre-stimulus Rolandic alpha amplitude on neural 

markers of stimulus processing and detection, i.e. ERPs, I averaged spectral amplitudes 

within the alpha band (9 to 14 Hz) for each participant across those time-frames that 

showed a significant difference between detected and rejected trials for averaged near-

threshold stimulation conditions (i.e. NTH66% and STH). After normalizing to the 

individual condition mean (Cousineau et al., 2005), these alpha band amplitudes were 

added as an additional factor to the model mentioned above and allowed to interact 

with the P50 and N150 amplitude. Again, I used 6-fold cross-validation in order to 

identify the optimal tuning parameter for regularization of the logistic regression model. 

Regularized logistic regression was implemented with the “glmnet” package in R 

(Friedman, Hastie, & Tibshirani, 2010). 

 

Results 

Behavioral responses  

Single electrical current pulses were applied in six different intensities fitted to the 

individual psychometric function and ranged from magnitudes below absolute detection 

threshold to consciously perceivable intensities (table 2): 

 

Table 2 shows the average applied electrical current in milliampere (mA) for all stimulation 
conditions: 1=subTH-30%, 2=subTH-15%, 3=ADTH, 4=NTH33%, 5=NTH66%, 6=STH. For 
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the relative intensities, stimulation magnitudes have been normalized to ADTH. M = mean, SD 
= standard deviation. 

CONDITION 1 2 3 4 5 6 

M (mA) 1.12 1.35 1.59 2.01 2.42 2.84 

SD (mA) 0.41 0.51 0.59 0.61 0.67 0.75 

Range (mA) 0.47–2.03 0.52–2.5 0.66–2.91 0.91–3.39 1.11–3.87 1.24–4.35 

Rel. Intensity 0.70 0.85 1 1.3 1.6 1.9 

 

Participant’s sensitivity to single electrical current pulses increased, as expected, with 

the size of stimulation magnitude from ADTH to STH (ADTH: d’=0.05; t(35)=0.82; 

p=0.21; NTH33%: d’=0.48; t(35)=5.81; p<0.000001; NTH66%: d’=1.53; t(35)=16.87; 

p<1.0*10^-15; STH: d’=3.03; t(35)=34.77; p<1.0*10^-15). Subthreshold stimulation 

trials, however, exerted d’ values close to zero (Figure 4, subTH-30%: d’=-0.16; subTH-

15%: d’=-0.19; all t(35)<-2.5). Observers’ response criteria ranged from 1.1 to 2.58 

(M=2.16; SD=0.41) indicating that, in this experiment, observers mainly reported to 

detect stimuli 5 to 6, but not stimuli 1 to 4.  

 

 
Figure 4. Boxplots depict individually averaged d-prime values across the sample for the six 
different stimulation intensity categories showing that participants are zero sensitive to 
stimulation intensities below the individually adjusted ADTH. Absolute detection threshold 
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served as an individual reference for decreasing subTH stimulation intensities by 15% or 30%. 
NTH intensities were tuned to 33% or 66% of the interval between the absolute detection threshold 
and 100% STH. Raw hit and false alarm rates were corrected according to Hautus (1995) to account 
for extreme values (i.e., no responses to target or catch trials). Notches indicate 95% confidence 
intervals. 

 

D-prime of ADTH intensities and below are not significantly higher than zero. This 

null-difference is, however, not proof of chance performance (NH) and therefore 

evidence for the null model was evaluated against evidence for the alternative hypothesis 

of above chance performance by Bayes factor statistics (Rouder et al., 2009). As 

subthreshold intensities might suffer from oversampling compared to catch-trials, the 

z-transformation of low “yes”-response rates would artificially amplify any difference 

between both conditions concerning d’ values. Thus, Bayes factors are calculated as 

paired one-sample one-sided test of the hit against false alarm rates and confirmed 

chance performance with moderate to strong evidence in favor for the NH 

(FAR=0.018; subTH-30%: HR=0.018, BF01=6.1; subTH-15%: HR=0.016, BF01=10.8). 

Widely different scaling of the JZS prior revealed that evidence for the null hypothesis, 

i.e., chance performance after subthreshold stimulation, outweighs evidence for the 

alternative for virtually all prior widths between 0.1 and 1.5 (Figure 5 b-c, left). Evidence 

for the ADTH data is mixed: the posterior odds favor the alternative when the expected 

effect size is small (i.e., narrow prior, r=0.0757) as compared to when the prior weights 

bigger effects more strongly (wide prior, Figure 5 d, left). Sequential tests show that the 

Bayes Factor reliably favors the NH across different sample sizes. 
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Figure 5. A: Distributions of “yes”-response rates across all participants (dots) for those 
stimulation conditions for which d-prime values were not different from zero and the condition 
without stimulation (catch trials). The horizontal black line indicates the average false alarm rate. 
B-D: Bayes factor tests of hit rates of subTH-30% (B), subTH-15% (C) and ADTH (D) stimulus 
intensities against catch trial condition. Evidence for the null hypothesis (hit rates not different 
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from false alarm rates) against the alternative hypothesis (hit rates greater than false alarm rates) 
along various Cauchy prior widths (left) is depicted as likelihood values higher than one. The grey 
filled circle marks the prior width used in the main analysis. On the right, sequential tests show 
evidence accumulation when adding single participants until the final sample size for three 
different prior widths. For subthreshold intensities, there is at least moderate evidence favoring 
the null hypothesis for all sample sizes.  

 

To further the evidence for the NH, we calculated a Bayes factor meta-analysis (Rouder 

& Morey, 2011) based on the current detection rates of subthreshold stimulation 

intensities and the similar psychophysics dataset from section 2.2.2. Accumulated 

evidence moderately to strongly favors chance performance for subthreshold 

stimulation intensities (r=√2/2, subTH-30%: BF01=6.73, subTH-15%: BF01=12.18). 

The Bayes factor for the comparison between d’ values of stimulation intensities 85% 

against 70% of ADTH electrical current (JZS prior width r=√2/2) revealed 8.14 times 

more evidence favoring the null hypothesis instead of the alternative that perceptual 

sensitivity for the higher subthreshold intensity (subTH-15%) is equal to the lower 

intensity (subTH-30%). 

 

SEP amplitudes and latencies change along the psychometric function 

The grand-average SEP across all stimulation conditions over contralateral central 

electrode sites (Figure 6) revealed a positive and negative deflection that peaked around 

56 ms (P50) and 148 ms (N150) after stimulus onset, respectively. Statistical comparison 

of the post-stimulus window (0 to 300 ms) against pre-stimulus baseline (-100 to 0 ms) 

via TFCE showed C4 and CP5 being significant for the P50 and a cluster of contralateral 

electrodes (C2, C4, CP2, CP4, P4, FP4, FP6) being significant for the N150. As most 

of these electrodes correspond to our initially selected electrode cluster, I kept the latter 

for all further statistical tests (accepting that those might be conservative estimates of 

the true effects). 
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Figure 6 shows the grand-average SEP waveform across all stimulation conditions together with 
topographic voltage maps at component peaks of interest: P50 and N150. Shaded areas around the 
curve represent 95% confidence intervals of a running t-test for each time point against the 
averaged baseline. Purple-colored electrodes in the topographic maps mark significant voltage 
changes compared to baseline at the indicated time point tested with a non-parametric 
permutation test (10000 iterations) of the time window from 0 to 300 ms post-stimulus. Correction 
for multiple comparisons for achieved by tfce (Mensen & Khatami, 2013). 

 

Undetectable stimulation (d-prime~0, both subTH-30%, and subTH-15%) elicited a 

P50 after stimulation, but no N150 (Figure 7). In contrast, above threshold stimulation 

evoked both components. Stimulation at ADTH did not result in measurable 

components, probably due to the small number of averaged trials at this comparably 

low stimulation magnitude and are therefore not reproduced here. 
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Figure 7. Grand average SEP waveforms for all stimulation conditions extracted from the averaged 
contralateral electrode cluster indicated by the bottom right plot in red. Shaded areas around the 
curve represent 95% confidence intervals of a running t-test for each time point against the 
averaged baseline. subTH-averaged: all trials with stimulus intensities below absolute detection 
threshold (ADTH) averaged. Note the different ordinate scaling, esp. the negative (i.e., upwards) 
direction when comparing the two near-threshold stimulation conditions (NTH33% and 
NTH66%). 

 

Generally, both P50 and N150 component peak amplitudes were largest (i.e,. the N150 

most negative) for the highest and lowest (N150 highest) for the smallest stimulation 

intensity, respectively. In Figure 8, sample means for each condition are plotted together 

with within-subject 95%-confidence intervals, so that significant differences are directly 

observable. Pairwise t-tests for all possible stimulation magnitude condition pairs 

revealed significant P50 amplitude differences (fdr-corrected) from both subthreshold 

intensities to all above threshold intensities (all t(35) < -3.08, pfdr < 0.01). NTH33% P50 

amplitude was marginally smaller (t(35) = -2.06, pfdr = 0.059) and P50 amplitude of 

NTH66% was significantly smaller than P50 amplitude of STH (t(35) = -4.17, pfdr < 

0.001). No statistical difference was observed between the P50 amplitudes of the 

subthreshold stimulation conditions (subTH-33%-subTH-15%: t(35) = -0.06, pfdr = 

0.95) and the near-threshold conditions (NTH33%-NTH66%: t(35) = 1.47, pfdr = 0.17). 

Estimates of N150 amplitudes of the subthreshold stimulation conditions were not 

different from zero and significantly smaller than all other N150 amplitudes of the 

above threshold stimulation conditions (all t(35) > 2.9, pfdr < 0.01). N150 amplitudes of 
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above threshold stimulation conditions showed no significant difference (NTH33%-

NTH66%: t(35) = 1.94, pfdr = 0.087; NTH33%-STH: t(35) = 1.8, pfdr = 0.1; NTH66%-

STH: t(35) = 0.09, pfdr = 0.93). 

In two previous studies (Forschack et al., 2017; Nierhaus et al., 2015), we noticed a 

P50 latency shift for subTH-15% to STH stimulation intensities but did not explicitly 

test this difference. Here, a direct test of the two conditions revealed a small but 

significant effect of roughly 4 ms (t(35) = 2.04, p = 0.049, pfdr = 0.16). Also, the P50 of 

the near-threshold stimulation intensities were significantly later than the P50 of the 

STH intensity. However, no test survived correction for multiple comparisons when all 

possible condition combinations were tested (NTH33%-STH: t(35) = 2.56, p = 0.015, 

pfdr = 0.075; NTH66%-STH: t(35) = 2.56, p = 0.015, pfdr = 0.075; all other: -1.3 < t(35) 

< 1.4). N150 latencies were not significantly different (all -1.4 < t(35) < 1.7). 

 

 
Figure 8. Individual peak SEP amplitudes and latencies have been extracted, and the sample 
average is produced here as colored circles for each stimulation condition. Circle outlines 
represent the SEP component of interest; circle fill corresponds to the stimulation condition. 
Estimates are plotted together with within-subject error bars (i.e., between-subject variance 
removed, according to Morey, 2008), both for amplitude (vertical bars) and latency (horizontal 
bars). 
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P50 amplitude is sensitive to stimulation intensity but not detection 

To test the influence of stimulation intensity and detection on the early event-related 

potential, I modeled the P50 and N150 amplitudes following detected and rejected 

NTH66% and STH stimulation intensities in a repeated measures design. The ANOVA 

revealed a significant main effect of stimulation intensity on the P50 amplitude (F(1,31) 

= 6.51, p = 0.016, 12
% = 0.028), but interestingly, neither the effect of detecting a 

successive stimulus (F(1,31) < 0.6) nor the interaction of intensity and detection was 

significant (F(1,31) < 2.3). In contrast, both factors showed a pronounced effect on the 

N150 amplitude (stimulation intensity: F(1,31) = 9.71, p = 0.004, 12
% = 0.028, detection: 

F(1,31) = 15.86, p < 0.001, 12
% = 0.15). ERP average amplitudes and confidence intervals 

are reproduced in Figure 9. All conditions show a measurable P50. Except for undetected 

suprathreshold intensities, this is also true for the presence of the N150 as indicated by 

the bootstrapped confidence intervals.  

Average stimulation currents across blocks differed significantly between detected 

and rejected trials for STH stimulation condition (Mdetected = 2.84 mA, Mrejected = 2.79 mA, 

t(31) = 3.53, p  = 0.0013, maximum difference: 0.23 mA, i.e., two step sizes of the 

constant current stimulator, median difference: 0.04 mA), but not for NTH66% (Mdetected 

= 2.43 mA, Mrejected = 2.42 mA, t(31) = 1.26, p  = 0.22, maximum difference: 0.17 mA, 

median difference: 0.01 mA).  
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Figure 9. Average P50 and N150 amplitudes for the strongest stimulation intensities (NTH66% 
and STH) plotted for the factors stimulation intensity and behavioral response. Bootstrapped 95% 
confidence intervals, obtained by shuffling condition labels across participants 10000 times, 
indicate the presence of the component within the specific condition if not overlapping with the 
zero lines (i.e., the amplitude is significant from zero). 

 

Pre-stimulus Rolandic alpha amplitude predicts stimulus detection 

I assessed the overall effect of pre-stimulus frequency band amplitude (alpha band: 9–

14 Hz, beta band: 20–35 Hz) on near-threshold stimulus detection by comparing the 

averaged STH and NTH66% stimulation conditions between detected and rejected 

stimuli at the contralateral central electrode cluster. As indicated in Figure 10, there was 

no significant difference in the beta band as in Schuber and colleagues (2008).  
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Figure 10. Pre-stimulus oscillatory amplitudes effects on subsequent stimulus detection for a 
contralateral central electrode cluster and a time window of interest according to Schubert et al. 
(2008). Left: Pre-stimulus time-frequency amplitude difference of averaged NTH66% and STH 
stimulation conditions at the averaged central contralateral electrode cluster highlighted as red 
dots in the topographic map inset. The black boxes mark the time-windows for subsequent 
statistical analysis of alpha- and beta band responses, respectively. Middle: Alpha- and beta band 
pre-stimulus time courses for detected and undetected upcoming near-threshold stimulation. 
Average values are plotted together with within-subject confidence intervals of detection-by-time 
repeated measures ANOVA according to Cousineau et al. (2005) and Morey (2008). The horizontal 
dotted line indicates a paired cluster based t-test, which is thresholded at p = 0.01 and corrected 
for multiple comparisons with tfce (Mensen & Khatami, 2013). The bold line depicts the period 
with amplitude differences exceeding this threshold. Vertical lines indicate the amplitude 
difference showing the smallest p-value, subsequently used for representing the topographic 
changes across all electrodes. Right: Topographic amplitude difference at the most prominent 
time frame for both alpha- and beta band. None of the electrode tests survived multiple 
comparison correction. 

 

However, there is a definite alpha band amplitude difference with alpha being lower for 

successively detected stimuli as compared to undetected stimuli that survive multiple 

comparison correction at p < 0.01 for a time range that extended from -336 to -232 ms 

relative to stimulus onset (middle part of Figure 10).  

 

Pre-stimulus alpha and N150 amplitude best explain stimulus detection 

To assess whether further neural features despite amplitude are relevant for stimulus 

detection and rejection, I conducted regularized binomial logistic regression modeling 

including both P50, N150 amplitude and latency for various λ. Figure 11 shows the 

predicted detection probabilities of the model with a lasso penalty having the smallest 

cross-validation error. This model only contains N150 amplitude as a predictor for 
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stimulus detection and is accurate in 72.2% of the tested cases (p = 0.0001). Shrinking 

non-predictive coefficients excluded N150 latency and P50 amplitude and latency to 

zero.  

 

 
Figure 11. Detection probability predicted by the lasso regularized binomial logistic model 
showing the smallest cross-validation error (empty circles) together with the actual subject-level 
response data (filled circles) for averaged NTH66% and STH stimulus conditions. A: This model 
only contains N150 amplitude as a predictor for behavioral responses. Grey lines represent the 
model error, the shorter, the better. Black circles correspond to correctly and red circles to 
incorrectly classified responses. B: Winning model when including pre-stimulus contralateral 
alpha amplitudes averaged at 268 ms preceding detected and rejected stimuli. This model correctly 
classifies 76.4% of the cases. The between-subject variance was removed for alpha band amplitude 
values in order to center them along the behavioral response differences. 
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Because in the previous analysis, the pre-stimulus alpha amplitude is higher during 

rejected stimulation than during detected stimulation, I included alpha as a factor in the 

binomial regression model and allowed it to interact with P50 and N150 amplitude. 

Interestingly, the model with the smallest CVE was accurate in 76.4% of the cases and 

only contained alpha amplitude as a main predictor and alpha and N150 amplitude as 

interaction predictor. Alpha and N150 amplitude were significantly correlated by r = 

0.35 (p = 0.003) thereby sharing 12.2% of the variance in the data. 

 

Discussion 

Using a two-response classification task for various stimulation intensities along the 

individual psychometric response function while recording EEG, I investigated, which 

early electrophysiological neural features are related to the encoding of stimulation 

intensity and decoding of stimulus detectability. Importantly, including stimulation 

intensities below absolute detection threshold (ADTH), allowed to ask the question 

how measures of undetectable stimulation (subthreshold) might dissociate from 

stimulation above ADTH that may or may not be detected. For the subthreshold 

stimuli, there was only a P50 component, but no further event-related potentials, 

thereby replicating previous research (Libet et al., 1967; Ray et al., 1999b; Nierhaus et 

al., 2015; Forschack et al., 2017). P50 amplitude scaled with increasing stimulation 

intensities but was not predictive for stimulus detection for each of the two highest 

stimulation intensities. A more negative potential 150 ms after stimulus onset (N150) 

together with pre-stimulus somatosensory alpha amplitude best explained perceptual 

awareness of somatosensory stimulation. 

Stimulation intensity and awareness are highly collinear, i.e., higher stimulus 

intensities lead to enhanced perceptual evidence of having felt something. In the current 

experiment, participants received various stimulation intensities that were tuned to 

provide zero to high perceptual evidence (indicated by the detection rates and d’ values). 

In the framework of classical test theoretic statistics, it is only possible to prove the 

latter but not the former, as this would require testing the NH (null-hypothesis Rouder 

et al., 2009). Therefore, I used a Bayesian statistical framework to test for zero 

perceptual sensitivity (ibid.) Bayes Factors supported that the probability of reporting 
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to feel stimulation below ADTH is identical to make a false positive response upon null 

stimulation.  

In contrast, for stimulation above ADTH, observers showed increasing perceptual 

sensitivity, the higher the stimulation intensity. Thus, the presence of the P50 does not 

provide sufficient evidence for perceptual awareness (Forschack et al., 2017; Nierhaus 

et al., 2015) but, together with the absence of the N150 component, appears to be a 

neural dissociation of perceptual processing for stimulation below ADTH from 

stimulation above it. For the latter, we still measured the N150 even for undetected 

NTH stimuli, again suggesting that its mere presence does provide sufficient evidence 

for perceptual awareness.  

However, the N150 was not present for undetected stimulation at the highest 

intensity. On the one hand, this might be a result of the post hoc condition split into 

detected and rejected stimulation, for which the highest stimulation intensity is based 

on the smallest number of rejected trials, thereby reducing the likelihood of capturing a 

small potential. On the other hand, this could also mean that there is less chance of 

making a negative report (“rejected”) despite having perceived the stimulation, which 

could be related to individual response criteria.  

Furthermore, we observed a roughly 10 ms earlier P50 peak latency from the largest 

to the second largest stimulation intensity. This shift cannot be explained by SNR 

differences, which could influence the smoothness of the potential curve and thereby 

affecting latency estimation, because this latency shift was most pronounced from the 

largest (STH) to the second largest stimulation intensity. At the physiological level, this 

latency shift might indicate a shifted excitation-inhibition balance toward a dominant 

rapid activation of principal excitatory neurons (Isaacson & Scanziani, 2011; Nierhaus 

et al., 2015). On a cognitive level, one might argue that the strongest stimulation 

condition may trigger exogenous attention more reliably than weaker stimulation 

intensities. Thus, ERPs evoked by attended stimuli show a shorter latency than ERPs 

evoked by unattended stimuli, which is known as Titchener’s law of prior entry (see 

Spence & Parise, 2010 for an overview). 

So far, we discussed the effect of perceptual sensitivity and awareness on the 

presence or absence of the P50 and N150. However, sensitivity and awareness might 

be reflected within the component’s amplitude. Despite being positively dependent, our 

results suggest two independent mechanisms for encoding perceptual sensitivity and 
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perceptual awareness within the event-related potential. First, P50 component 

amplitudes are sensitive to stimulus intensity but, second, only the N150 amplitude 

appeared to be distinctive for detecting a given stimulus. This finding seems highly 

relevant for studies investigating perceptual awareness when comparing detected versus 

rejected stimuli at intensities close to the 50% detection threshold. Some studies (Weisz, 

Wühle, et al., 2014; Wühle, Mertiens, Rüter, Ostwald, & Braun, 2010) used an ongoing 

staircase procedure throughout the experimental protocol to control detectability. 

Although this might be (probably) the best method when aiming at almost equal trial 

numbers for the detection contrast, it produces different stimulation intensities for trials 

in which stimulation was detected versus those trials in which stimulation was missed. 

By increasing stimulation strength in the successive trial after the participant reports not 

having felt the stimulus and decreasing it after a positive report, the ongoing staircase 

results in stimulation intensities higher for detected and lower for undetected 

stimulation, thereby conflating effects of stimulation intensity and perceptual report 

concerning ERP amplitudes. To control for stimulation intensity within a specific 

stimulation condition in the current study, I kept stimulation intensities constant for a 

given block; however, adjusted these between blocks to account for threshold shifts. 

Although electrical stimulation currents differed slightly for the STH condition between 

detected and rejected trials (ranging from less than one current step size of the DS7 to 

two current step sizes), there was no significant difference regarding the P50 amplitude, 

which is sensitive for stimulation intensity (see above). Furthermore, stimulation 

currents did not differ for the NTH66% condition, but the N150 nevertheless decreased 

for detected trials. Taken together these results strengthen the assumption that the STH 

electrical current differences were minor and unlikely to affect ERP amplitudes 

concerning the detectability of the stimuli. 

Some previous research, however, found the P50 amplitude to be sensitive for 

stimulus detectability. Eimer and colleagues (2002) studied a patient who had a right-

hemispheric stroke leading to a neurological disorder called extinction. The patient was 

able to recognize left unilateral stimuli to the index finger; however, such contralesional 

stimuli were missed—i.e., extinguished—on 75% of the trials when concurrently 

presented together with a stimulus at the right index finger. Contralateral ERP 

responses to these extinguished left stimulations contained a P50 and N110, which were 

not present at the same sites during unilateral right stimulation but were numerically 
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smaller—however not statistically—as compared to (felt) unilateral left stimulation. 

Furthermore, unilateral contralesional left stimulation resulted in smaller components 

over the damaged hemisphere as compared to left hemisphere responses found after 

unilateral right stimulation. These results led to the hypothesis that extinction may arise 

from attenuation rather than the absence of early event-related components. 

Interestingly, components over the damaged hemisphere on bilateral extinguished trials 

were not different from felt unilateral left stimulation, suggesting that concurrent right 

tactile events might trigger competitive mechanisms that influence initial tactile 

processing. Modulations of P50 amplitude affecting perceptual awareness, therefore, 

could be less pronounced when stimuli are presented in isolation (Eimer et al., 2002), 

as it is the case for the current study.  

Regarding the role of the N150 as a marker of stimulus detection, the current results 

are well in line with previous research (Auksztulewicz et al., 2012; Cauller & Kulics, 

1991; Schubert et al., 2006; Zhang & Ding, 2009). However, none of these studies, 

including the current one, provide evidence for a proper neural correlate of 

consciousness (NCC, Aru et al., 2012), because all task paradigms will necessarily 

conflate perceptual awareness with decisional processes. It has been pointed out that a 

proper candidate component for NCC must not cease when participants passively 

perceive suprathreshold stimuli in the absence of a task (Hillyard et al., 1971; Squires, 

Hillyard, & Lindsay, 1973; Verleger, 2010). In our previous study (Nierhaus et al., 2015), 

we did find the N150 during electrical finger stimulation well above ADTH while 

participants had no task, which provides initial suggestive evidence for the N150 

resembling an NCC proper (Aru et al., 2012). Future studies, however, should ideally 

include a passive and an active condition within one experiment while sampling 

intensities close to NTH50% threshold. To re-evaluate the effect of the P50 amplitude 

on perceptual awareness, these studies additionally might present concurrent 

contralateral tactile stimuli that trigger competitive early-stage processes and hence 

could increase the influence of P50 amplitude on the perceptual fate of near-threshold 

stimuli (Eimer et al., 2002). 

Finally, the current study replicates a large body of previous research showing that pre-

stimulus alpha amplitude is predictive for the detectability of an upcoming event 

(Chaumon & Busch, 2014; Iemi et al., 2017; Limbach & Corballis, 2016; Linkenkaer-

Hansen et al., 2004; Ruhnau et al., 2014; Schubert, Haufe, et al., 2008; Weisz et al., 2014; 
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Zhang & Ding, 2009). Like these studies, I found that increased pre-stimulus alpha is 

related to negative behavioral responses regarding the presence of a stimulus. 

Specifically, there is a positive correlation between alpha amplitude and successive N150 

amplitude. I.e., the larger the alpha, the closer the N150 to zero. This result is in line 

with the results by Zhang and Ding (2009) who reported an inverse u-shape relationship 

between pre-stimulus alpha amplitude and both N150 amplitude and detection rate. 

Here, I tested in a single model whether there are further electrophysiological markers 

despite pre-stimulus alpha and N150 amplitude predicting stimulus detection, as, e.g., 

ERP peak latencies and P50 amplitude and failed to see an effect. Future studies might 

prove whether these features become relevant when attention and stimulus competition 

are experimentally manipulated. 

In conclusion, using Bayesian statistical inference, I fostered results from our previous 

studies that reliably undetectable stimulation, for which observers do not provide any 

sign of perceptual awareness, generates an early event-related potential, the P50. This 

component does not sufficiently predict upcoming stimulus detection but is driven by 

stimulation intensity. The successive N150 best explains behavioral responses and 

interacts with pre-stimulus oscillatory amplitude dynamics in the alpha band. Thus, 

alpha band amplitudes may describe a brain state that renders upcoming stimulation 

being reportable or not (Weisz et al., 2014). A thrilling question is whether the latter 

indicates the amount of attentional deployment to the sensory modality where a 

stimulus arrives and whether this still shapes the neural fate of undetectable and 

supposedly irrelevant stimulation. These questions are the central topic of the next and 

final study. 
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2.4 The role of Rolandic Alpha Activity in Somatosensation and its 

Relation to Attention 

 

Based on 
Forschack, N., Nierhaus, T., Müller, M. M., & Villringer, A. (2017). 

Alpha-Band Brain Oscillations Shape the Processing of Perceptible as 

well as Imperceptible Somatosensory Stimuli during Selective Attention 

 

As discussed in section 1.4, selective attention is “a mechanism by which information 

relevant to a perceptual decision is filtered or weighted, in the service providing the 

observer with the most efficient and accurate interpretation of the local sensory 

environment” (Summerfield & Egner, 2014). Attention facilitates conscious perception 

across sensory domains (Schröger, Marzecová, & SanMiguel, 2015; Dehaene, 

Changeux, Naccache, Sackur, & Sergent, 2006), as indexed by its well-documented 

influence on evoked potentials, evoked fMRI/PET signals or oscillatory activity 

(somatosensory evoked potentials, SEP: Desmedt and Robertson, 1977; Zopf et al., 

2004; Schubert et al., 2008b; visually evoked potentials, VEP: Eason et al., 1969; 

auditory evoked potentials, AEP: Hillyard et al., 1973; somatosensory fMRI: Johansen-

Berg et al., 2000; Goltz et al., 2013, 2015; visual fMRI: Gandhi et al., 1999; auditory 

fMRI: Alho et al., 1999; PET: Wu et al., 2007; brain rhythms: Clayton et al., 2015). 

However, attention processes do not necessarily depend on conscious percepts 

(Graziano, 2013; Kentridge, Nijboer, & Heywood, 2008; Koch & Tsuchiya, 2007). 

Attention effects on subliminal processing have been shown in the visual modality 

(Boxtel, Tsuchiya, & Koch, 2010; de Haan, Stoll, & Karnath, 2015; Watanabe et al., 

2011), but based on paradigms involving masking or extinction. However, subliminal 

brain responses to masked stimuli have been shown to be interrupted by the brain 

responses of the mask (Fahrenfort et al., 2007; Victor A. F. Lamme et al., 2002), which 

may preclude observations unique to genuine processes below consciousness elicited 

by unmasked subliminal stimulation. Neural markers for cerebral processing of 

somatosensory stimuli below absolute detection threshold (i.e., stimulation is never 

reported: subthreshold) have been described previously. However, these were only 

based on invasive studies using subdural electrodes under clinical conditions (Libet et 

al., 1967; Ray et al., 1999a) limiting potential investigations. Recently, Nierhaus et al. 
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(2015) have identified an event-related potential in response to subthreshold stimulation 

(a positive deflection occurring about 60 ms after stimulation: P1). First, these findings 

allowed us to address the question whether attention also modulates neural processing 

of subthreshold, that is, undetectable, somatosensory stimuli as it has been suggested 

previously (Dehaene et al., 2006). Second, we examined the role of alpha-band brain 

oscillations activity to the effect of attention. While several studies conclude that 

attention decreases the amplitude of baseline (pre-stimulus) alpha rhythm (Anderson & 

Ding, 2011; Haegens, Händel, et al., 2011; Haegens, Nácher, Luna, Romo, & Jensen, 

2011; Jensen, Bonnefond, & VanRullen, 2012; S. R. Jones et al., 2010; Palva & Palva, 

2007), evidence for the relationship of pre-stimulus alpha power on the amplitudes of 

evoked potentials is ambiguous. Both linear (Nikouline, Wikström, et al., 2000; 

Reinacher, Becker, Villringer, & Ritter, 2009; Roberts, Fedota, Buzzell, Parasuraman, & 

McDonald, 2014) and non-linear relationships (Anderson & Ding, 2011; Zhang & Ding, 

2009) have been reported. While the latter findings challenge the view of alpha activity 

directly reflecting cortical excitation (Foxe & Snyder, 2011; Jensen & Mazaheri, 2010), 

one might still argue that the variation of pre-stimulus alpha activity in spatial attention 

leads to a modulation of evoked activity (Haegens, Händel, et al., 2011; Haegens, Luther, 

et al., 2011; Jensen et al., 2012; S. R. Jones et al., 2010). Consequently, with attention, 

the highest P1 amplitudes should be accompanied by low pre-stimulus alpha power in 

the case of a linear relationship, or by intermediate power ranges in the non-linear case 

(Anderson & Ding, 2011). 

 

This study investigated the role of pre-stimulus peri-Rolandic alpha, that is, 

sensorimotor alpha or simply mu, amplitude and its (modulatory) impact on central 

stimulus processing using EEG recordings and event-related potentials in humans. We 

presented subthreshold and—at a lesser number—irregularly intermingled 

suprathreshold single electrical current pulses to the index fingers of both hands during 

variation of spatial attention. Thus, we tested whether attention and alpha activity 

operate analogously both for subthreshold and suprathreshold stimuli. Figure 12 

illustrates potential functional relationships between attention, mu rhythm activity, and 

evoked brain activity. 
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Figure 12. Three different models of possible relationships between attention, pre-stimulus 
somatosensory alpha (mu), and ERP/SEP amplitude. A: The mediator model: pre-stimulus mu 
mediates the effect of attention. B: Attention influences both pre-stimulus mu and SEP amplitude, 
but SEP modulation is independent of pre-stimulus mu amplitude (independence model). C, The 
interaction model: the relationship between pre-stimulus mu and SEP amplitude depends on the 
attentional state. 

 

Methods 

Participants 

The local ethics committee at the medical faculty of the University of Leipzig approved 

the study. Before participation, all volunteers underwent a comprehensive neurological 

examination. They had no history of neurological or psychiatric diseases and were not 

on any medication. Forty healthy volunteers participated (age range 20–32 yrs, mean 

25.1 ± 2.9 yrs S.D.; 20 females); all were right-handed (laterality score according to the 

Oldfield questionnaire: mean 91.6 ± 10.2 S.D., over a range of –100 (entirely left-

handed) to 100 (entirely right-handed), (Oldfield, 1971). Data of three subjects were 

discarded due to defective or artifactual EEG recordings, so in total 37 datasets were 

analyzed. 

 

Experimental Procedures 

Somatosensory Stimulation and Task Design 

A pair of steel wire ring electrodes was attached to the left and right index finger and 

delivered stimulation as described in section 2.1.1. A trained experimenter manually 

assessed ADTH, which—again—was defined as the lowest current intensity (for 

continuous 7 Hz electrical stimulation) at which participants just reported a sensation. 

A rough estimate of this detection threshold was derived by applying one trial of the 

method of limits with ascending intensities separately for the left and right index finger 



 

2-78 

(just before the first block). In order to control for threshold stability and to readjust 

stimulus intensities in case of a threshold shift, we precisely determined (0.05 mA 

precision) absolute detection thresholds before each EEG acquisition block using a 

yes/no detection procedure (one-alternative forced-choice, 1AFC, Kingdom and Prins, 

2009, not included in the EEG recording of ~8 min duration per block). Thus, the 

experimenter presented current intensities (at 7 Hz for one second each) around the 

previously estimated rough detection threshold (or the previous precise threshold for 

block numbers > 1) as well as catch/ blank trials (20% of all 1AFC trials) to control for 

potential response bias. From our experience, false alarm rates are mainly zero for this 

specific procedure, and this was also true for the current threshold assessments. 

Participants responded with “yes” if they felt a stimulus and “no” if otherwise. 

Intensities were selected adaptively, according to the participant’s responses; for 

example, if an observer perceived a given stimulus, the intensity for the following trial 

was usually (but not necessarily) decreased and vice versa. However, occasionally a 

stimulus at a high intensity was presented reminding the observer what to “look” for. 

The range of applied intensities was also decreased successively until an intensity was 

identified which satisfied the above definition of an absolute detection threshold, that 

is, an intensity that enables a stimulus to be just discriminated from its null (Kingdom 

and Prins, 2009). For instance, if an observer reliably responded with “No” to a given 

intensity “x” but reported to perceive the next higher intensity “x + 0.05 mA” on a 

fraction of the trials, the latter intensity value served as detection threshold (30–60 trials 

which took maximally 5 minutes). To ensure imperceptibility of subthreshold stimuli 

during the entire experiment, subthreshold stimulation intensity (left finger) was set to 

15% below absolute detection threshold and tested to be reliably imperceptible when 

presented as single pulses. The intensity of suprathreshold stimulation was adjusted 

within a range of 25 to 200% above detection threshold (Table 3) depending on the 

participants’ subjective report of experiencing a clear (i.e., conscious) isointense but 

innocuous percept on both fingers. During experimental blocks, sub- and 

suprathreshold stimulation intensities were kept constant and subthreshold stimulation 

was applied to the left hand only (Figure 13). Participants were instructed to respond to 

perceived stimuli only to the cued hand (left or right) via button press with their right 

foot. 
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Figure 13. Experimental setup and stimulation paradigm. Forty subjects received 936 
imperceptible electrical pulses to the left index finger via the DS7A (Digitimer) over 26 two-minute 
blocks. In each block, up to four perceptible stimuli were randomly presented to the left or right 
hand (in total 104). Absolute detection thresholds were determined initially using the method of 
limits (one ascending trial) and a subsequent yes/no adaptive detection task consisting of 30–60 
trials (maximally 5 min, including blank/ catch trials) and subsequently every four measurement 
blocks. 

 

Accordingly, the following stimulation conditions were presented during the 

experiment: subthreshold stimulation to the left hand that was either attended 

(“subthreshold left attended” condition) or unattended (“subthreshold left unattended” 

condition) and four conditions, in which suprathreshold stimulation to the left or the 

right hand was attended or unattended, respectively (“suprathreshold left attended”, 

“suprathreshold left unattended”, “suprathreshold right attended”, “suprathreshold 

right unattended” conditions). In the offline analysis, we only focused on left-hand 

stimulation (data on right-hand stimulation was not considered, Table 3). 

 

Table 3. Stimulation conditions and parameters. The intensity of stimuli is given in milliampere 
(mA). ADTH, absolute detection threshold; M, Mean; SD, Standard Deviation. 

 Stimulation left Stimulation right 

subthreshold ISI 3.2 s, ±1.0 s jitter 
936 stimuli, 36 per block 
1.48 mA (M), 0.45 mA (SD)  
15% below ADTH 

- 

suprathreshold pseudo-randomized 
52 stimuli, up to 4 per block 
2.94 mA, 0.65 SD 

pseudo-randomized 
52 stimuli, up to 4 per block 
3.05 mA, 0.66 SD 
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28–200% above detection 
threshold: 79% (M), 41% (SD) 

24–192% above perception 
threshold: 83% (M), 37% (SD) 

 

 

EEG acquisition 

During stimulation blocks, EEG was recorded continuously from 32 scalp channels 

(international 10-20 system; actiCap, BrainAmp, Brain Products, Munich, Germany): 

midfrontal electrode (FCz) as reference and a sternum electrode as ground with 

impedances ≤5 kΩ for all channels, sampling frequency 1 kHz, a low-pass finite impulse 

response filter (250 Hz) was applied before downsampling EEG time courses to 500 

Hz. 

To allow for reliable detection of SEPs and Rolandic rhythms, stimuli were 

presented at comparatively long interstimulus intervals, that is, subthreshold stimuli at 

a mean interstimulus interval of 3.2 s (jitter of ±1000ms during a block of ~2 min, in 

total 26 blocks, i.e., 936 trials per subject). Moreover, in each block no or up to four 

suprathreshold stimuli were presented pseudo-randomly to the left or the right hand 

(total 52 suprathreshold stimuli on either hand). Subjects were instructed to report the 

perception of stimuli only when presented to the cued side and to “ignore” stimuli to 

the non-cued hand. Finally, two additional blocks were appended comprising only 

suprathreshold stimulation of the left and right index finger without attention task 

(stimulation frequency every 1.6 ± 0.3 s, resulting in 360 trials, ~5 min block duration), 

so we obtained a sufficient number of trials with suprathreshold stimulation (for a 

criterion-guided independent component selection in later steps of the analysis 

procedure, see below). 

 

EEG Data Analysis 

Preprocessing 

EEG data analysis was performed offline using custom-built Matlab scripts 

(Mathworks, Natick, MA, USA, RRID: SCR_001622) and toolbox algorithms from 

EEGLAB (Delorme and Makeig, 2004, RRID: SCR_007292). Individual datasets 

underwent an independent component analysis (ICA, infomax extended) both to 

remove sources of ocular and muscle artifacts (Delorme et al., 2012; Li et al., 2006) and 

to select components resembling mu activity sources. Before ICA, datasets were 

prepared by applying the following procedures: training datasets for ICA were high-
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pass filtered with 1 Hz, all blocks were concatenated, contiguous epochs of 1 s were 

extracted, screened for non-stereotypical artifacts and rejected if contaminated. Then, 

an initial ICA was performed that removed artifactual epochs semi-automatically using 

improbable data estimation on single and across all components (function 

“pop_jointprob,” Delorme et al., 2007). The resulting datasets were submitted to a 

second ICA: The new set of components was visually inspected, artifactual components 

were identified (i.e., correlation with EOG channel higher than 0.8, blink or eye 

movement typical topographies and IC source activity, abnormal frequency spectrum, 

i.e., high frequency or line noise, focal topographies). Only the unmixing and sphering 

matrices of artifact-free components were forward-projected to the unfiltered datasets 

for the subsequent analysis steps. 

 

SEPs 

Epochs were defined ranging from -1200 to 2200 ms relative to stimulus onset (t=0), 

from which the individual epoch mean was subtracted. Those epochs, which exceeded 

the joint logarithmic probability of 4.5 or 2.5 SD within or across independent 

components, respectively, were discarded after manually reviewing the alleged 

artifactual epochs (Delorme et al., 2007). This resulted in an average number of 420 

trials (+/-14 S.D.) for attending left subthreshold stimulation and 420 trials (+/-13 

S.D.) for “ignoring” left subthreshold stimulation (i.e., attending right); 23 trials (+/-3 

S.D.) for attending left suprathreshold stimulation and 24 trials (+/-2 S.D.) for ignoring 

left suprathreshold stimulation. In a next step, data was low-pass filtered applying the 

standard EEGLAB Hamming windowed sinc finite impulse response filter (zero-phase 

FIR, passband edge: 41 Hz, high cut-off (-6 dB): 46.125 Hz, filter order 162, Widmann 

et al., 2015). Trials with behavioral responses following or preceding subthreshold 

stimulation were very rare and excluded from further analysis (only eight participants 

responded to subthreshold stimulation once or twice out of 960 trials). 

 

Topographical analysis via isocontour voltage maps 50 to 60 ms post-stimulation 

revealed that contralateral somatosensory areas were most sensitive to somatosensory 

stimulation in comparison to pre-stimulus baseline (paired t-tests, fdr-corrected). 

Therefore, statistical analysis of SEP amplitude was performed on electrode CP4 (i.e., 

in close vicinity to somatosensory cortex contralateral to stimulation site that has been 
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also previously found to exert maximum SEP amplitudes, Nierhaus et al., 2015), by 

averaging the amplitude of time points 50 to 60 ms post-subthreshold stimulation (P60) 

and performing a paired two-tailed t-test (p<0.05) against baseline (-100 to -20 ms 

relative to stimulus onset, Zhang and Ding, 2009). The definition of a time range of 

interest was hypothesis-driven because previously we only found the P60 and no 

additional components to be indicative of subthreshold somatosensory processing 

(Nierhaus et al., 2015). A known marker for early attention modulation of 

suprathreshold stimulation, the P50–N80 complex (Michie, Bearparic, Crawford, & 

Glue, 1987), was extracted by subtracting averaged amplitudes around 80 to 100 ms 

(N80) from averaged amplitudes around 50 to 60 ms (P50) post-stimulus. As for the 

P60, the amplitude of the P50N80 complex was tested between attention conditions 

using a paired t-test against the baseline. In order to test for the presence of further 

evoked potentials, each sample point of a 400 ms post-stimulus epoch was successively 

compared with the mean pre-stimulus baseline value (paired t-tests (p<0.05), multiple 

comparisons correction with fdr, not shown).  

 

Rolandic Rhythms 

In order to discern Rolandic rhythms from dominating occipital alpha activity, a 

preselection of "central" ICA components was performed before trial segmentation. 

For this purpose, all blocks (including the pure suprathreshold stimulation blocks) were 

concatenated to run a subject wise ICA. As in Nierhaus et al. (2015), we selected 

Rolandic background rhythms according to three criteria for each subject: (1) a central 

localization, (2) two peaks in the power spectrum, at alpha (8–15 Hz) and beta (16–30 

Hz) frequency bands, respectively, and (3) a pronounced power reduction of these 

bands after suprathreshold stimulation. Using this procedure, 1–4 (mean 2 ± 1 S.D.) 

ICs per subject were selected (all 37 participants showed at least one right hemispheric 

lateralized mu component, 24 showed a left-lateralized mu component additionally). 

Only these components were forward projected and included in the further analysis of 

somatosensory oscillatory activity. After forward projection of the "central" ICs and 

segmentation of sub- and suprathreshold epochs as defined above (-1200 to 2200 ms), 

wavelet analysis was performed for frequencies from 6–30 Hz in 1 Hz increments to 

allow for time-resolved frequency analysis of event-related power modulation. The 

wavelet transformation was performed on every single trial using wavelet cycle lengths 
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from 4 to 7 cycles increasing with frequency in linear steps. Subsequently, the resulting 

time-frequency response was averaged over trials.  

Statistical analysis was performed on electrode CP4 (located over SI contralateral to 

the stimulation site on the left hand and also showing maximal weights in independent 

component maps) by means of two-tailed paired t-tests of post-stimulus time points 

against frequency specific baseline average (p-level was fdr-corrected with q=0.05, 

Genovese et al., 2002, with a pre-stimulus baseline of -700 to -200 ms). In order to test 

the condition contrast across post-stimulus values, we compared baseline-normalized 

alpha band values (8–15 Hz) for attended and unattended sub- and suprathreshold 

stimulation conditions (fdr-corrected). 

 

Regression of SEPs and behavior on pre-stimulus mu amplitude 

In order to test the relationship between oscillatory brain state (mu amplitude) and 

stimulus processing (SEP amplitude and hit rates), we pooled trials across attention 

conditions on subject level and calculated the average mu amplitude (estimated by a 10 

Hz wavelet kernel with 4.9 cycles) for each trial 300 to 200 ms prior to stimulus onset. 

These values were reordered from smallest to largest amplitude and assembled into five 

consecutive bins (indexed by 1 to 5) with 50% overlap of trials for successive bins. 

Afterward, we separated the trials in each bin according to the attention condition. This 

binning procedure serves as normalization and compensates for inter-individual 

differences in absolute mu amplitude. Importantly, this also yields comparable mu 

amplitudes between attention conditions for any of these bins (tested via two-way 

repeated measures ANOVA with factors power bin (5 levels) and attention (2 levels) 

and mu amplitude as the dependent variable). Effect sizes were quantified as generalized 

eta squared (Bakeman, 2005). It has to be noted, however, that the number of trials 

within each bin may differ between attention conditions, which was tested by paired t-

tests (average number and SEM of trials per bin 1–5 for subthreshold attended: 143 (9), 

143(9), 140 (8), 139 (8), 137 (10); subthreshold unattended: 138 (10), 137 (9), 140 (7), 

141 (7), 144 (9); suprathreshold attended: 8 (2), 8 (1), 8 (2), 8 (2), 7 (2); suprathreshold 

unattended: 8 (1), 8 (2), 8 (2), 8 (2), 8 (2); significant between attention condition trial 

number differences: subthreshold bin 2 (t(36)=2.05, p=0.048); subthreshold bin 5 

(t(36)=-2.3, p=0.027); remaining tests yield absolute t-scores < 1.8). We then calculated 

the sub- and suprathreshold SEP for each bin and attention condition, and extracted 
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the amplitude of the key component (P1) as described above in the section SEPs. Bin-

wise hit rates (HR) were calculated for the suprathreshold left attended condition. 

To assess the grand-average relationship between SEP amplitude and pre-stimulus 

mu amplitude for each attention condition, we calculated a standard linear regression 

with mu amplitude bins serving as predictor (quadratic and linear, including an intercept, 

i.e., the ordinate (SEP amplitude) offset) and bin SEP amplitude (and HR) serving as 

regressor (in fact, there are five values that the predictor can attain). However, this 

approach has some substantial drawbacks as it obscures inter-subject variability. Factors 

like vigilance regulation patterns (Bekhtereva et al., 2014), individual behavior 

adjustments, threshold variations, which are deemed to be random across the sample, 

may influence the relationship between experimentally relevant factors. With linear 

mixed effects modeling (LMM), we acknowledge between- and within-subject 

variations in the data from the model’s fixed effects estimates (i.e., the grand average 

effect). We conducted the LMM analysis in R (R Core Team, 2014), RRID: 

SCR_001905) within the lme4 framework proposed by Bates et al. (2014). For our LMM 

fixed effects, we estimated intercept and weights for a quadratic and linear mu amplitude 

predictor just as for the standard regression in the fixed effects part (i.e., the grand 

average relationship, inter-subject variation ignored).  

Additionally, the same predictor structure was used for the random effects part of 

the model with “participant” as the grouping variable. This has the advantage of (1) 

being the maximal random effect structure required for hypothesis testing as claimed 

by Barr et al. (2013), and (2) it yields subject-specific deviation predictions from the 

fixed effects within a single model estimation instead of multiple by-participant ordinary 

regressions (Baayen, Davidson, & Bates, 2008; Zhang & Ding, 2009). LMMs are defined 

in the following form: outcome ~ predictor(s) + (predictor(s) | subject), which will fit 

predictors of the fixed effect part (next to the “~”) and predictors of the random effects 

part (in brackets) grouped by a factor for which the predictors vary randomly, in our 

case, subject. 

All in all, we computed four LMMs which regressed SEP amplitude on pre-stimulus 

mu amplitude bin separately for each attention (attended, unattended) and stimulation 

condition (P1 amplitude for subthreshold and suprathreshold stimulation) and one 

LMM in which hit rate was the dependent variable. To check the significance of each 

of the five models and the relevance of specific predictors, maximum-likelihood ratio 
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test statistics (which account for model complexity) between the complete (all 

predictors) and reduced models (one model assuming no relationship—i.e., only the 

intercept serves as predictor—and one model assuming a linear relationship, see Table 

4 for detailed model definitions) were parametrically bootstrapped with 10000 

simulations (pbkrtest-package by Halekoh and Højsgaard, 2014). All these models 

describe the relationship between mu amplitude and SEP amplitudes (and HR) but do 

not consider the subjective attentional state (see next paragraph), because fitting was 

done separately for each attention condition.  

 

Assessment of the relationship between pre-stimulus mu amplitude, somatosensory evoked potential, and 

attention 

How does attention affect pre-stimulus mu amplitude and SEP amplitudes? Is a putative 

attention effect on SEP amplitude mediated (or indexed) by pre-stimulus mu? Does 

attention affect both pre-stimulus mu and SEP amplitudes independently? Alternatively, 

do responses of these variables depend on each other, or, in other words, do they 

interact? In order to evaluate these questions, we tested three different types of possible 

relationships depicted in Figure 12. For this purpose, following LMMs were fitted to 

data including both attention conditions, not separately as in the previous paragraph.  

If the influence of attention is solely mediated by pre-stimulus mu amplitude (Figure 

12a, “mediator model”), any form of relation between pre-stimulus mu amplitude and 

SEP amplitude will not be differentiable between the two attention conditions. 

Therefore, we fitted two LMMs to sub- and suprathreshold SEP amplitudes (dependent 

variable) with intercept, linear, and quadratic predictor of pre-stimulus mu amplitude 

both for fixed and random effects grouped by subject (in fact the same model definition 

as for single attention condition fits above), neither of which including attention as 

predictor in the fixed nor random effects part. In other words, it is assumed that the 

attention effect on SEP amplitude is completely reflected in the variation of pre-

stimulus mu amplitude. 

However, if the effect of attention on SEP amplitudes is independent of an 

attention effect on pre-stimulus mu amplitude (Figure 12b, “independence model”), a 

significant relationship between pre-stimulus mu amplitude and SEP amplitudes will 

not be observable. Here, the two LMMs fitted sub- and suprathreshold SEP amplitudes 

with the factors intercept and attention in the fixed effects part and intercept grouped 
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by subject and attention as a within-subject factor in the random effects part (see Table 

4 for detailed model definitions). In short, the relationship between pre-stimulus mu 

amplitude and SEP amplitudes would appear to be flat, but SEP amplitudes between 

attention conditions would differ. (Note that an absence of significant relationships of 

any sort for the single attention conditions (see the previous section) would support the 

independence model). 

Finally, if the type of relationship between pre-stimulus mu amplitude and SEP 

amplitudes essentially depends on the subjective state of attention (Figure 12c, 

“interaction model”), we will observe different relationships for each attention 

condition. The LMM definitions to fit sub- and suprathreshold SEP amplitudes, 

therefore, include the factors intercept, attention, the linear and quadratic mu amplitude 

predictor, as well as the interaction of the latter and attention in the fixed effect part. 

The random effects part contains intercept, the linear and quadratic mu amplitude 

predictor grouped by subject, as well as attention as a within-subject factor (see model 

definitions in Table 4).  

Models were evaluated by their ability to explain the data, here maximum-likelihood, 

and significance was assessed via parametric bootstrapped likelihood ratio tests (10000 

simulations). 

 

Results 

We stimulated the left and right index finger with electrical pulses (Table 3) while 

participants responded to perceived sensations only on the cued side and ignored 

sensations on the other side (Figure 13), thus characterizing the effects of attention on 

central somatosensory stimulus processing. 

 

Behavioral responses  

The resulting average hit and false alarm rates for suprathreshold stimulation of 

attended left (hit rates: 71.06 +/-17.88% S.D, false alarm rates: 0.82 +/-0.17% S.D.) 

and right index finger (hit rates: 73.76 +/-17.59% S.D., false alarm rates: 0.66 +/-0.11% 

S.D.) did not differ significantly (-1<t(36)<1 in all cases). The average number of 

responses to subthreshold stimulation for both attention conditions was negligible (two 

subjects responded twice, six subjects responded once out of 480 subthreshold trials). 
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Responses to sub- and suprathreshold stimulation evolves differentially over time for SEP and 

sensorimotor alpha and beta band power 

SEPs in response to left-hand somatosensory stimulation were lateralized to the right 

hemisphere. As in our previous study (Nierhaus et al., 2015), we restricted our analysis 

to the contralateral hemisphere because only the left index finger received both sub- 

and suprathreshold stimulation. Depending on stimulation intensity (i.e., either above 

or below detection threshold), we observed different evoked components: for 

suprathreshold stimulation, a P50 was followed by an N80 and at least one following 

component (P150). For subthreshold stimuli, we observed a single early positivity 

around 60 ms, roughly 10 ms later than the first component for suprathreshold stimuli 

(Figure 14). 
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Figure 14. Subthreshold (A) and suprathreshold (B) isocontour voltage maps and SEPs. Aa, 
Average voltage topographies for a window of 50–60 ms poststimulus (grand average, GAVG, n=37 
participants) for the subthreshold left attended condition on the left and topographical p-value 
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distribution on the right side (t-tests against a baseline -100 to -20 ms pre-stimulus, fdr-corrected). 
Nonsignificant electrodes (p>0.05) are masked in dark blue, significant electrodes are emphasized 
by large purple discs in the voltage plot. Ab, Grand average SEPs at channel CP4 for the 
subthreshold left attended condition. The bottom plot shows the SEPs on a zoomed scale for the 
yellow shaded area of the top plot. Time is expressed relative to stimulus onset (0 ms). Lightly 
shaded background areas indicate 95% confidence intervals derived from paired t-tests of each 
data point against average baseline activity. Ac, Ba, and Bc are the same as Aa, but for the 
subthreshold left unattended, suprathreshold left attended and suprathreshold left unattended 
conditions, respectively. Note the different scaling of the ordinate for suprathreshold stimulation. 
Ad is the same as Ab but for the subthreshold left unattended condition. Bb and Bd are the same 
as Ab and Ad but for the suprathreshold left attended and suprathreshold left unattended 
conditions, respectively. Note the different scaling of the ordinate. 

 

Regarding mu amplitude, we found opposing effects: a decrease—as compared to 

baseline—after suprathreshold stimulation and an increase after subthreshold 

stimulation, which confirms our previous findings (Nierhaus et al., 2015). It is 

noteworthy that in the condition where the left index finger was unattended (attention 

directed to the right hand), an early increase of mu amplitude (13–15 Hz) and a decrease 

of beta amplitude (20–23 Hz, around 150–200 ms) following subthreshold left index 

finger stimulation was prevalent (t-test, fdr-corrected with p<0.05). When the left index 

finger was attended, an increase in mu amplitude (9–10 Hz) and a concomitant decrease 

in beta amplitude (20–24 Hz) occurred—approximately 200 to 300 ms later (fdr-

corrected, p<0.05; Figure 15). When directly comparing the stimulation effect of the 

averaged somatosensory alpha band (8–15 Hz) between attention conditions, this 

temporal dissociation was not significant (fdr-corrected). 
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Figure 15. Subthreshold stimulation increases, suprathreshold stimulation decreases Rolandic 
rhythms. Grand average time-frequency plots (contralateral to stimulation side at CP4) for 
subthreshold (Aa and Ab) and suprathreshold (Ba and Bb) stimulation after selection and forward 
projection of pericentral independent mu components. Time is expressed relative to stimulation 
onset; oscillatory activity is expressed relative to baseline amplitude (baseline: -700 to -200 ms pre-
stimulus). Light colored areas did not survive fdr-correction for multiple comparisons at q=0.05 
(Genovese et al., 2002). 

 

Sub- and suprathreshold SEPs and pre-stimulus mu amplitude are modulated by selective spatial 

attention 

We tested the main effect of attention on SEPs for averaged amplitudes 50–60 ms post-

stimulus. Subthreshold stimulation evoked a P1 at posterior peri-central electrode sites 

(CP4) that was significantly enhanced when the finger was attended compared to when 

it was unattended (Figure 16a, t(36) = 2.21, p < .04). This confirms our first hypothesis 
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that attention modulates neural processing of subthreshold, that is, unconsciously 

“perceived,” somatosensory stimuli. 

For suprathreshold stimulation, we subtracted averaged amplitudes around 80 to 

100 ms (N80) from averaged amplitudes around 50 to 60 ms (P50) post-stimulus onset. 

The P50–N80 complex (i.e., the peak between P1 and N1) was significantly increased 

during the attended as compared to the unattended condition (Figure 16a, t(36) = 2.22, 

p < .04).  

As expected, attention modulated overall mu amplitude preceding stimulation, with 

higher amplitudes contralateral to the unattended side (Figure 16b, t(36) = -2.34, p < 

.025). 

 

 
Figure 16. For all subplots, blue and red bars depict the attended and unattended conditions, 
respectively. A: Subthreshold (left) and suprathreshold (right) SEPs and (B) grand-average 
attention effect for pre-stimulus mu amplitude (-1000 to -200 ms). Error bars indicate 95% 
confidence intervals of the mean. Asterisks indicate significance at p<0.05. C, Subthreshold 
stimulation: relationship between pre-stimulus mu and SEP amplitudes (Ca) and pre-stimulus mu 
amplitude values averaged across trials within each bin (-300 to -200 ms; Cb). D, Suprathreshold 
stimulation: same as C but for the suprathreshold left attended condition. Da, Additionally, red 
dots show the average hit rates for each mu amplitude bin and the solid red line depicts the fit of 
the LMM for the suprathreshold left attended condition. Overlaid dashed and dotted lines in Ca 
and Da are fits of the LMM for respective SEP amplitudes. Red dots (with 95% confidence 
intervals) in Cb and Db depict the difference in an absolute number of trials of each mu amplitude 
bin between attention conditions. 

The relationship between pre-stimulus mu and SEP amplitude depends on attention 

To investigate the relationship between pre-stimulus mu amplitude (pre-mu) and SEPs 

and hit rates (HR), we aggregated trials for each attention and stimulation condition 

(attended or unattended and sub- or suprathreshold) separately over five bins of 
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increasing mu amplitude. The procedure resulted in mu amplitude bins with comparable 

(almost equal) mu amplitude between attention conditions within a given bin (Figure 

16cb+db, see methods section for details). The repeated measures ANOVA for binned 

mu amplitude preceding subthreshold stimulation reveals a significant main effect of 

both amplitude bin and attention (F(4,144)=1489.6, p[GG]<0.0001, ƞ2
G=0.44 and 

F(1,36)=6.7, p<0.014, ƞ2
G=0.00003, respectively). Post-hoc comparisons via paired t-

tests identified the bin with the highest mu amplitude as the driver of the attention main 

effect (t(36)=-2.86, p<0.01). A similar ANOVA, testing binned mu amplitude preceding 

suprathreshold stimulation, only showed the expected main effect of amplitude bin 

(F(4,144)=1264.5, p[GG]<0.0001, ƞ2
G=0.44). Average bin amplitude values are 

therefore comparable between attention conditions (except for bin 5 preceding 

subthreshold stimulation). 

In order to test the relationship between pre-stimulus mu amplitude and SEP 

amplitude, we calculated a linear mixed effects model (LMM) regression fits with both 

linear and quadratic predictors for each stimulus and attention condition. For 

suprathreshold stimulation, regressions both for attended and unattended stimulation 

turned out to be highly significant compared to an intercept-only model (i.e., a model 

with no relationship assumed, attended: 3%=26.01, p=0.0001; unattended: 3%=46.04, 

p=0.0001, see models 9 and 12 in Table 4). As can be seen in Figure 16da, the relationship 

for the attention conditions is reversed: We find a negative quadratic relationship when 

the stimulated finger is attended and a regular (positive) quadratic relationship when it 

is unattended. For subthreshold stimulation, we again observe a significant negative 

quadratic relationship when the stimulated side is attended (3%=22.25, p=0.0013, see 

model 3 in Table 4), and a positive quadratic relationship when the stimulated side is 

unattended (3%=30.03, p=0.0002, see model 6 in Table 4). 
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Table 4. LMM testing the relationship between pre-stimulus mu amplitude bin and SEP 
amplitude for each attention condition separately (model no. 1–12). The likelihood depicts the 
models’ log transformed likelihood; bigger is better, i.e., the model is more likely. LRT is the 
likelihood ratio test comparing two models for the same dataset [Bigger models (more parameters) 

are compared with respective smaller ones]. This returns a χ² value. However, p values are based 
on parametric bootstrapping (10,000 simulations; Halekoh and Højsgaard, 2014): *<0.05– 0.01, 
**<0.01– 0.001, ***<0.001– 0. 

Condition Model 

No. 

Lmer syntax Likeli-

hood 

LRT 

Subthreshold 

attended 

(1) 
(2) 
(3) 

P60~1+(1|Subject) 
P60~1+Bin+(1+Bin|Subject)  
P60~1+Bin+I(Bin^2)+ 
(1+Bin+I(Bin^2)|Subject) 

-177.49 
-170.52 
-166.37 

 
χ²=13.94** 
χ²=8.31* 

Subthreshold 

unattended 

(4) 
(5) 
(6) 

As (1),  
(2),  
(3), respectively 

-176.32 
-170.67 
-161.3 

 
χ²=11.29** 
χ²=18.73*** 

Suprathreshol 

attended 

(7) 
(8) 
(9) 

P50~1+(1|Subject) 
P50~1+Bin+(1+Bin|Subject) 
P50~1+Bin+I(Bin^2)+ 
(1+Bin+I(Bin^2)|Subject) 

-439.65 
-434.98 
-426.65 

 
χ²=9.34* 
χ²=16.7** 

Suprathreshold 

unattended 

(10) 
(11) 
(12) 

As (7), 
(8), 
(9), respectively 

-458.01 
-452.7 
-435 

 
χ²=10.7** 
χ²=35.34*** 

 

 

We also evaluated the relationship between pre-stimulus mu amplitude and hit rates for 

the suprathreshold attended condition, as this is the one condition in which subjects 

responded to perceived stimuli via a button press. As for the SEPs in the previous 

section, we found a significant quadratic relationship compared to the no-relationship 

(intercept-only) model (3%=42.44, p=0.001, see Table 5 also including the test against a 

pure linear model).  

 

Table 5. LMM testing the relationship between pre-stimulus mu amplitude bin and HR for the 
suprathreshold left attended condition (model no. 13–15). Models are evaluated as in Table 4 
(bootstrapped p values are based on 10,000 simulations): *<0.05–0.01, **<0.01–0.001, ***<0.001–0. 

Condition Model 
No. 

Lmer syntax Likeli-
hood 

LRT 

Suprathreshold 

attended 

(13) 
(14) 
(15) 

HR~1+(1|Subject) 
HR~1+Bin+(1+Bin|Subject) 
HR~1+Bin+I(Bin^2)+ 
(1+Bin+I(Bin^2)|Subject) 

73.02 
82.8 
94.23 

 
χ²=19.57*** 
χ²=22.87*** 

In order to test whether the variation of pre-mu solely reflects tactile attention, we fitted 

the data combining both attention conditions (Figure 12a, the mediator model, see 
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paragraph ”Assessment of the relationship between pre-stimulus mu amplitude, 

somatosensory evoked potential and attention” for details) with the very same model 

definition as above. For the case where the effect of attention on SEP amplitudes is 

independent of the effect on pre-mu activity (Figure 12b, independence model), we only 

included “attention” as fixed effect factor and within-subject factor in the random 

effects part in order to model SEP amplitudes across attention condition. Alternatively, 

if the relationship between pre-stimulus mu amplitude and SEP amplitude essentially 

depends on the actual attention state (Figure 12c, interaction model), a model with 

attention included as an interacting factor should better fit the very same dataset. 

Indeed, a bootstrapped likelihood ratio test revealed the attention interaction model to 

be significantly more likely than both the mediator and the independence model for 

both sub- and suprathreshold stimulation (Table 6; subthreshold: 3%=50.22, p=0.0016 

and 3%=45.41, p=0.0001; suprathreshold: 3%=56.94, p=0.024 and 3%=51.4, p=0.0006, 

respectively). 
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Table 6. LMM testing the relationship between pre-stimulus mu amplitude bin and SEP 
amplitude for datasets that combine both attention conditions (model no. 16 –21; Figure 12 A–C). 
The interaction model is compared with the two smaller models (mediator model and 
independence model, indicated by the model number given in the LRT column). Parametric 
bootstrapping was based on 10,000 simulations: *<0.05–0.01, **<0.01–0.001, ***<0.001–0. a For this 
test, we doubled the number of simulations, because the p-value based on 10,000 simulations 
marginally missed significance (p=0.058). 

Condition Model 

No. 

Lmer syntax Likeli-

hood 

LRT 

Subthreshold, 

both attention 

conditions 

(16) As (3), but across conditions, 
mediator model, Figure 12a 

-355.71 (17) 
χ²=-4.8 

(17) P60~1+Att+(1+Att|Subject), 
independence model, Figure 12b 

-353.3  

(18) P60~1+Bin+I(Bin^2)+Bin*Att+ 
I(Bin^2)*Att+ 
(1+Bin+I(Bin^2)|Subject:Att), 
interaction model, Figure 12c 

-330.6 (16) 
χ²=50.22** 
(17) 
χ²=45.41*** 

Suprathreshold, 

both attention 

conditions 

(19) As (9), but across conditions, 
mediator model, Figure 12a 

-894.7 (20) 
χ²=-5.5 

(20) P50~1+Att+(1+Att|Subject) , 
independence model, Figure 12b 

-891.93  

(21) P50~1+Bin+I(Bin^2)+Bin*Att+ 
I(Bin^2)*Att+ 
(1+Bin+I(Bin^2)|Subject:Att), 
interaction model, Figure 12c 

-866.23 (19) 
χ²=56.94*a 

(20) 
χ²=51.4*** 

 

Discussion 

In the present study, we investigated (1) whether spatial attention modulates the 

amplitude of early SEP components in response to electrical left finger nerve 

stimulation both for supra- and subthreshold intensities, and (2) the role of pre-stimulus 

mu activity on this attentional modulation. Taken together, we found that attention 

increases the amplitude for the P1 component for both kinds of stimulation. 

Furthermore, pre-stimulus mu amplitude (pre-mu) interacts with stimulus-related 

responses. Interestingly, pre-mu activity affects both behavioral responses and evoked 

brain activity, the latter differentially depending on the attentional state: With spatial 

attention, there is a negative quadratic relationship between pre-mu and evoked 

amplitudes whereas without spatial attention the relationship is positive quadratic. 

Intermediate and higher mu amplitudes go along with large evoked activity during 

spatial attention and with small evoked activity without attention.  

Sustained attention is widely known to improve perception in a variety of tasks and 

virtually all modalities (Carrasco, 2011; Kastner, Pinsk, De Weerd, Desimone, & 
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Ungerleider, 1999; Marks & Wheeler, 1998; Sathian & Burton, 1991; C. J. Spence & 

Driver, 1994; C. Spence, Kettenmann, Kobal, & McGlone, 2001; C. Spence, Pavani, & 

Driver, 2000). The deployment of attentional resources should facilitate perception to 

any task-relevant sensory input as long as it proceeds along the same bottom-up 

somatosensory pathway (Dehaene et al., 2006; Kiefer, 2012; Schröger et al., 2015). 

Whether this also holds for subthreshold stimuli, however, is not known, since non-

invasive recordings of evoked activity to unmasked subthreshold stimulation have been 

obtained in only a few studies (somatosensation: Nierhaus et al., 2015; vision: Bareither 

et al., 2014; Sperdin et al., 2014) and did not investigate attentional modulation. Our 

results clearly support this postulate by showing an increase in the P1 amplitude with 

spatial attention, 60ms after stimulation. This effect coincides with an attention effect 

in the same time range (P50–N80) for suprathreshold stimulation as it has been shown 

previously (Michie et al. (1987). However, evidence regarding the effect of attention on 

P1 is ambiguous, because Schubert et al. (2008b) found the attention effect on P1 only 

on one side (left but not right) and Zopf et al. (2004) did not find it at all. Interestingly, 

in our study, the attentional modulation of P1 was most clearly evident in the interaction 

between attention, pre-mu activity, and SEP, and the observed non-linear relationship 

between mu and P1 might explain why the effect of attention on P1 has not been seen 

in some previous studies. Future studies need to show whether this is also true for right 

index finger stimulation, for which perceptual differences have been reported (Meador 

et al., 1998). 

 

As we reported previously (Nierhaus et al., 2015), upon subthreshold stimulation, we 

did not observe any further ERP component beyond P1. However, a transient increase 

of mu amplitude has been observed after subthreshold stimulation (Figure 15), which 

contrasts the post-stimulus decrease typically seen after externally triggered near- and 

suprathreshold stimulation (Pfurtscheller, 1989; Nikouline, Linkenkaer-Hansen, et al., 

2000; Palva et al., 2005; Nierhaus et al., 2015). Generally speaking, increases in mu 

amplitude may be induced by the feed-forward inhibition associated with subthreshold 

stimulation as we have discussed previously (Blankenburg et al., 2003; Nierhaus et al., 

2015; Taskin et al., 2008).  
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With respect to the attention effect on pre-mu activity, our results are in line with several 

studies reporting that attention leads to a decrease of alpha power contralateral to where 

spatial attention is directed compared to ipsilateral sites (somatosensory: Pfurtscheller 

and Lopes da Silva, 1999; Jones et al., 2010; Anderson and Ding, 2011; Haegens et al., 

2011a, 2011b; visually: Thut et al., 2006; auditory: Weisz et al., 2014a; Wöstmann et al., 

2016). This strongly supports the assumption of selective attention relying on intrinsic 

oscillatory activity in the somatosensory cortex already prior to the incoming stimulus 

(Thut et al., 2006). 

Regarding the relationship between pre-mu activity and perceptual performance, we 

show detection rates to be largest for intermediate pre-mu and lowest for either minimal 

or maximal pre-mu, which is in line with previous research reporting inverse U-shaped 

relationships (Linkenkaer-Hansen et al., 2004; Zhang & Ding, 2009). Consistent with 

this, some studies reported a co-modulation of pre-stimulus mu activity and early SEP 

components in response to near- and suprathreshold electrical stimuli (Zhang and Ding 

2009; Anderson and Ding 2011), both cases exhibiting an inverted U-shaped 

relationship between pre-stimulus mu power and the respective N1.  

Contrasting two alpha power ranges (e.g., “high” and “low”) can allow only for 

describing linear effects as done in other studies. Here, we extracted five bins of pre-

mu that resulted in comparable mu amplitudes between attention conditions for each 

bin (Figure 16cb, db). We observe a non-linear influence of pre-mu activity on P1 

amplitudes for both attention conditions, which is in line with the findings of Zhang 

and Ding (2009) and Anderson and Ding (2011). Moreover, we find that the very same 

alpha amplitudes (intermediate to highest) are related to the highest SEP amplitudes 

under attention but also to the lowest SEP amplitudes during inattention. Thus, 

attention might alter the functional relationship between pre-mu activity and stimulus-

related processing (SEP components) according to the task requirements. Rather than 

serving the deployment of attention alone, mu activity may maximize evoked activity 

related to the “to-be-attended” stimulus (facilitation), but at the same time minimizes 

evoked neural processing related to the “to-be-unattended” stimulus (suppression).  

 

At first glance, this interpretation seems to contradict the initial hypothesis that alpha 

mediates the effect of attention: The very same pre-mu activity would convey the same 

attentional influence, and the relation between pre-mu activity and SEP amplitude 
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would not be differentiable between the two attention conditions. Indeed, a different 

role for alpha has been suggested in recent studies which indicate that it might reflect 

the expectation of upcoming events (Bauer, Stenner, Friston, & Dolan, 2014; Sedley et 

al., 2016) rather than attention (Anderson & Ding, 2011; Foxe & Snyder, 2011; Zhang 

& Ding, 2009). However, in our study, neither frequency nor timing of an upcoming 

perceivable event differed between attention conditions, so it is improbable that the 

differential influence of mu activity on SEP amplitudes concerning attention reflects 

differences in expectation. Admittedly, individual variations in the ability to predict an 

upcoming stimulation within a specific attentional state, which, then, might be related 

to different pre-mu activity, cannot be excluded. Whether this also holds for 

subthreshold stimulation is an interesting question, which we address by experimentally 

manipulating both attention and expectation in the future. 

Second, the underlying local spatial pattern of alpha distribution across the cortex 

might differ between the two conditions, which is possibly smeared given the limited 

spatial resolution of EEG (Lopes da Silva, van Rotterdam, Barts, van Heusden, & Burr, 

1976; Palva & Palva, 2007; Suffczynski, Kalitzin, Pfurtscheller, & Lopes da Silva, 2001). 

For the visual cortex, it is well-established that selective attention to a particular location 

or stimulus feature enhances the response of the coding receptive field while 

suppressing the immediate surrounding and leaving the further surrounding unaffected 

(Harvey et al., 2013). This is known as the “Mexican hat” distribution of selective 

attention (N. G. Müller & Kleinschmidt, 2004; N. G. Müller, Mollenhauer, Rösler, & 

Kleinschmidt, 2005; Treue, 2014). Such a distribution improves the internal signal-to-

noise ratio and could explain why the attention–mu relationship is not linear in our case: 

The mu rhythm (based on ICA) that was measured over an electrode (CP4) contralateral 

to the stimulation site is most probably a compound of rhythmic activities in adjacent 

brain areas. Thus, the intermediate overall mu amplitude may reflect a balance between 

decreased mu in the brain regions representing the receptive field of the attended finger 

(facilitation) and increased mu in adjacent topological fields (surround suppression, 

Suffczynski et al., 2001). 

Interestingly, this framework predicts smallest SEP amplitudes for intermediate mu 

activity as a consequence of compound rhythmic activities originating from adjacent 

brain areas: The response of the to-be-ignored receptive field is suppressed, thereby 

exhibiting higher mu activity while at the same time adjacent fields might be less 
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suppressed. Following this concept, the effect of attention is mediated by mu activity, 

albeit on a more local spatial scale than can be resolved with the common EEG 

approach. In future studies, simultaneous EEG-fMRI (in which the fMRI correlate of 

mu rhythm is expected to differ between the different attention conditions) or invasive 

electrocorticography may help to elucidate this question.  

In conclusion, our results show that although access to conscious perception is 

prevented, attention nevertheless affects neural processing of subthreshold stimuli in a 

top-down manner as it does for suprathreshold stimuli. Furthermore, pre-stimulus mu 

activity differentially influences neural processing to enable optimal performance in a 

given task and we suggest this to be a general neural signature for attentional 

deployment as it encompasses both conscious and unconscious perception. 
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3 General Discussion and Conclusions 

3.1 Summary of empirical results 

In the course of four empirical studies, I tested (1) the feasibility of investigating 

undetectable stimulation by unmasked electrical finger nerve pulses, (2) how its neural 

correlates dissociate from detectable stimulation and (3) whether and how selective 

somatosensory attention nevertheless affects the neural representation of stimuli 

destined to go by unnoticed. 

Study 1 showed that the intensity of just detectable stimulation (i.e., at ADTH) is 

lower for short repetitive pulse trains compared to single pulses. Defining subthreshold 

intensities relative to the ADTH of pulse trains lowers the sensory evidence for the 

same stimulation intensities of single electrical pulses and thereby minimizes possible 

effects of partial consciousness. Therefore, stimulus intensities in all subsequent 

experiments were derived from threshold assessments applying a higher repetition rate 

(here 7 Hz) of electrical pulses than in the actual experiments. 

Study 2 provided definitive proof that observers are zero sensitive to electrical 

finger stimulation intensities below ADTH. I showed that there is a physical range of 

electrical stimulation intensities that cannot be detected. Processing of subthreshold 

stimulation has been reported previously (Baumgarten et al., 2017; Blankenburg et al., 

2003; Ferrè et al., 2016; Iliopoulos et al., 2014; Klostermann et al., 2009; Libet et al., 

1967; Ray et al., 1999a; Taskin et al., 2008), however, a rigorous statistical evaluation of 

its un-detectability has not been shown yet. By the assessment of the bias-free measure 

of perceptual sensitivity, Bayes factor statistical inference indicated that the evidence of 

chance performance after subthreshold stimulation reliably outweighed evidence of 

above-chance performance. 

Study 3 set out to investigate how the neural correlates of subthreshold stimulation 

differ from neural processing above ADTH all the way up to clearly detectable stimuli 

with respect to electrophysiological recordings in humans. This study was designed to 

comply with signal detection theoretical analyses and could, therefore, like study 2, 

control for perceptual sensitivity at each stimulus intensity independent of subjective 

response tendencies. Together with own previous work applying similar subthreshold 

stimulation during resting-state functional magnetic resonance imaging, these data 



 

3-102 

revealed qualitative differences between detectable and undetectable stimulus 

processing evident in altered event-related potentials, induced oscillatory activity, blood-

oxygen-level-dependent responses, and functional connectivity. 

Finally, study 4 investigated how the deployment of attentional resources might 

shape the neural processing of undetectable somatosensory stimulation and contrasted 

this to the processing of detectable stimuli. Attention modulated early SEP amplitudes 

to both detectable and undetectable stimulation fostering the view of attention and 

awareness being two separate and mostly independent mechanisms. Furthermore, this 

study tested the effect of pre-stimulus Rolandic alpha amplitude on early somatosensory 

evoked potentials and its putative relationship to the guidance of selective spatial 

attention. The results clearly show that pre-stimulus Rolandic alpha was predictive for 

the upcoming SEP amplitude. However, the relationship of pre-stimulus alpha and SEP 

amplitude depended on the current attentional state indicating that both processes are 

interacting but not functionally matching. 

 

3.2 Neural processing of undetectable stimulation 

This work strongly supports the view that neural effects to undetectable somatosensory 

stimulation are a valid source of information to understand the underpinnings of 

functional brain activity. This view is not self-evident and has been debated 

controversially in the past. In a set of physiological studies, Johansson and Vallbo (1979) 

recorded peripheral nerve impulses from single fibers in the median nerve while 

perturbing single mechanosensitive afferent units in the glabrous skin of human 

participants. They found that in the most sensitive areas (the volar aspect of the fingers 

and peripheral parts of the palm) psychophysiological thresholds were identical to the 

physiological thresholds of the afferent. Moreover, participants’ false alarm rates in the 

1AFC task were close to zero. The correspondence of psychophysiological and 

physiological threshold together with low false alarm rates to catch trials generally speak 

for a low noise afferent signal transmission to the brain and leaves no space for neural 

processing of undetectable stimulation. 

It is conceivable that different stimulation types—mechanical or electrical—might 

play a role and could explain why minimal neurographic responses to mechanical touch 

lead to above chance performance whereas the current thesis showed brain 
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physiological responses to electrical finger stimulation for which behavioral 

performance is indeed at the chance level. Whereas little mechanical indentation mainly 

recruits afferent fibers innervating confined receptive fields containing rather few 

receptors (Goodwin & Wheat, 2008; Johansson & Vallbo, 1983), the flow of a small 

electrical current would depolarize all afferent fibers between the two terminals of a 

voltage source irrespective of their innervated receptor types. Intuitively, one should 

think that the more innervated afferents, the better the detection. Textbook knowledge, 

however, suggests the parallel processing of different stimulus attributes through 

converging and diverging afferent fibers (Gardner & Martin, 2000; Pei, Denchev, Hsiao, 

Craig, & Bensmaia, 2009) onto higher order relay (projection) neurons and its feature 

selective mapping in different areas of the cortex (Gardner & Kandel, 2000; Kim et al., 

2015). This spread of neural activity might dampen the overall response to concurrently 

activated, adjacent receptive fields by local phenomena of surround or lateral inhibition 

(ibid.; Goldstein, 2009) in the case of transcutaneous electrical stimulation and thereby 

allowing a divergence of psychophysical and sensory receptor threshold. 

Undetectable somatosensory stimulation applied here was tuned to intensities 30–

15% below ADTH and reliably produced sensitivity values of zero. Nevertheless, these 

subthreshold stimuli lead to a positive potential change about 50 milliseconds after their 

onset, the P50. Despite this early component, no further significant deflection has been 

observed. The absence of later components is remarkable in the light of earlier work on 

unconscious word processing in the visual domain (see Shevrin, 2001, for an overview). 

In 1968, Shevrin and Fritzler reported that the ERPs of detected and undetected stimuli 

appear to have a similar structure, however, ERP amplitudes of unconscious stimuli 

being at least four times smaller than conscious stimuli (see also Bernat, Bunce, & 

Shevrin, 2001 for similar results on unconscious valence recognition). In a set of other 

studies the same group (Bernat, Shevrin, & Snodgrass, 2001; Silverstein et al., 2015a; 

Snodgrass, Bernat, & Shevrin, 2004; Snodgrass & Shevrin, 2006) suggested that 

conscious and unconscious perception are functionally exclusive and should 

qualitatively dissociate from each other, which is at odds with the finding of similar ERP 

structure but weaker component amplitudes for unconscious stimuli. Effects that are 

just a weaker version of conscious perception effects do not strongly indicate 

unconscious perception and could point to residual conscious perception and therefore 

obey the so-called single process conscious perception model (ibid.). Data in the current 
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thesis and previous work suggests qualitative different processing of undetectable 

compared to detectable somatosensory stimulation in several aspects: (1) the absence 

of late components (study 3, 4 and Nierhaus et al., 2015, esp. the N150 that is indicative 

of stimulus detection (study 3), (2) increased instead of decreased event-related 

somatosensory alpha amplitude (study 4), (3) reduced instead of elevated BOLD activity 

(Blankenburg et al., 2003) as well as (4) reduced functional connectivity of primary 

somatosensory cortex to areas associated with conscious and higher somatosensory 

processing (Nierhaus et al., 2015). Despite the apparent difference of stimulus 

presentation modality in the studies by the Shevrin group and the current thesis, a 

couple of potentially relevant factors may have led to the diverging ERP findings. First, 

the visual studies (Bernat, Shevrin, et al., 2001; Silverstein et al., 2015) applied stimulus 

material that conveyed rather complex semantic information as compared to the small 

electrical pulses in the current studies. Such stimulation differences may have triggered 

effects in components beyond the initial processing stages, which is indicated by their 

frontal spatial origin. Second, it might be the case that subthreshold electrical 

somatosensory stimuli recruit more divergent fibers than the short flashing of words do 

(see the similar argumentation at the beginning of the section). This could cause 

relatively more mutual inhibition to occur in the neighboring neurons of primary 

sensory cortices coding adjacent receptive fields, which impede further processing. 

Likewise, subthreshold somatosensory stimulation might shift the excitation-inhibition-

balance (Isaacson & Scanziani, 2011) toward inhibition indicated by high stimulus-

related alpha amplitude and decreased functional connectivity as Nierhaus et al. (2015) 

have argued and thereby preventing perceptual awareness at later stages. 

 

3.3 Attention, awareness and neural oscillatory activity 

Study three (section 2.3.2) showed contralateral N150 to be the earliest component 

indicative of stimulus detection, which mirrors previous research (Auksztulewicz & 

Blankenburg, 2013; Auksztulewicz et al., 2012; Schubert et al., 2006). Auksztulewicz and 

colleagues (2012) stimulated the median nerve with a single near-threshold intensity. 

Besides an elevated N150 amplitude for detected compared to rejected stimulation, 

source connectivity modeling indicated that this component might reflect increased 

recurrent (both feedforward and feedback) processing between primary and secondary 
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somatosensory cortex (ibid.). Absence of N150, as I reported (study 3 and 4), for 

subthreshold, i.e., undetectable, stimulation then could point to an unmodulated 

connection between primary sensory cortices relative to baseline activity or even to 

reduced connectivity of S1 to the frontal-parietal network (Nierhaus et al., 2015). As I 

discussed earlier (section 2.3.1), the presence of N150 seems to be independent of the 

experimental context as Nierhaus and colleagues (2015) did not require participants to 

engage in a detection task but rather let them passively observe suprathreshold, i.e., 

detectable, stimulation. Its presence during passively observed detectable stimulation 

makes the N150 a candidate for a proper neural correlate of consciousness (Aru et al., 

2012; Verleger, 2010). In a visual backward masking study, a mid-latency negativity 

(VAN) indicated visual awareness of stimuli that were not task-relevant, but it was 

absent when participants did not perceived the stimuli (Pitts et al., 2014). Similarly, the 

posterior-contralateral negativity with a latency of roughly 200 ms (N2pc) only appeared 

after a valid compared to an invalid spatial attention cue was consciously perceived but 

was missing when the cue was masked (Giattino, Alam, & Woldorff, 2018). Although 

the latter findings could not rule out task-relevance as confounding factor, both studies 

corroborate the present results that perceptual awareness might emerge within 200 ms 

upon stimulus presentation but not as early as 60 ms.  

For this early time range, however, I reported an attentional modulation of the P50 

and that this modulation was independent of stimulus awareness (study 4). Together 

with the results by Giattino and colleagues (2018), who reported enhanced P1 amplitude 

upon validly relative to invalidly cued targets both for consciously perceived and non-

perceived cues, early attentional modulation of sensory input speaks for a general signal 

gain mechanism. In this sense, the results of the current thesis reject theories that 

envision attention as a gating mechanism putting unconscious perception and selective 

attention at the endpoints of a continuum (Brigard & Prinz, 2010; Dixon, 1971). I.e., 

attention does not shield the brain from faint but principally task-relevant information 

as long as this information proceeds along the same feedforward processing pathway 

where the focus of attention currently rests. Furthermore, this also foils theoretical 

accounts viewing attention to be sufficient for consciousness (Brigard & Prinz, 2010). 

Dividing attention in (1) attention to space and (2) attention to perceptual 

representations, Brigard and Prinz (2010) regard attention necessary and sufficient for 

consciousness “when and only when a perceptual representation of something (a color, 
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shape, object, movement and so on) is modulated by attention” but importantly not 

when attention is spatially focused. Instead, although attention is not a uniform 

phenomenon, and the current results shed some light on one, but arguably central 

aspect of it, namely focused selective attention (W. James, 1890), I think that the early 

P50 modulation under no sign of stimulus awareness triggered by top-down selective 

attention strongly speaks for an independence of attention from consciousness. It is not 

conclusive but seems arbitrary to claim that attention is sufficient for consciousness 

while only referring to one aspect of attention but not the other. 

Furthermore one may question whether “attention selection of perceptual 

representations to be passed onto working memory” (Brigard & Prinz, 2010) is different 

from “items that are in mind and have reportability,” which is taken from the definition 

of consciousness in the introduction put forward by Gilchrist and Cowan (2010). That 

is, passing perceptual representation to working memory might already reflect emerging 

consciousness. In that sense, attentional selection does not gate information but rather 

tries to increase the signal to noise ratio and thereby to boost the chance for stimulus 

reportability. However, that does not mean attention does not gate ignored stimuli. There 

are many studies of inattentional or change blindness showing that quite salient stimuli 

might be overseen (e.g., Rensink, O’Regan, & Clark, 1997; Simons & Chabris, 1999). If 

the stimulation site is attended, gating for perceptual awareness happens at later 

processing stages, starting roughly from 80 ms as previous research (Auksztulewicz & 

Blankenburg, 2013; Auksztulewicz et al., 2012; Cauller & Kulics, 1991; Schubert et al., 

2006; Zhang & Ding, 2009) and the current data indicate (study 3) but does not seem 

to be a function of early selective attention. The referenced research and the current 

data are better explained by two alternative but complementary accounts that describe 

attention selection and awareness as two independent, however, interrelated concepts 

(Dehaene et al., 2006; Kiefer, 2012; Kiefer & Martens, 2010). In the model by Dehaene, 

the extent to which a stimulus is processed and eventually becomes detected depends 

on its bottom-up stimulus strength and the amount of available attentional resources 

deployed to it. In that scheme, weak stimuli go unnoticed regardless how much 

attentional resources are available, which is consistent with the attentional modulation 

of subthreshold stimulus ERPs in study 4. If stimuli are principally strong enough, 

observers still might be unaware of them as long as attention is occupied elsewhere (see 

change blindness above). The attentional sensitization model of Markus Kiefer builds 
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on Dehaene’s taxonomy and extends it, especially concerning how the attentional 

modulation of undetectable stimulation is implemented. Regardless of whether the 

stimulus is consciously perceived or not, the mechanism for attentional control is the 

same: “processing of task-relevant pathways is enhanced by increasing the gain of 

neurons in the corresponding areas, whereas the processing of task-irrelevant pathways 

is attenuated by a decrease of the gain” (Kiefer, 2012; Kiefer & Martens, 2010). 

Although beyond the scope of the current thesis, it might be worth to reconcile the 

view of facilitation or signal enhancement by tactile attention along the awareness 

spectrum to elaborated models of visual attention that are able to integrate a whole lot 

of different empirical results in vision (Buschman & Kastner, 2015; Carrasco, 2011; 

Reynolds & Heeger, 2009). For a moment putting awareness aside, the increased P50 

amplitude for both undetectable and detectable somatosensory stimuli during attention 

may reflect a contrast gain in the stimulus coding neural population. I.e., neural 

population activity in primary cortices as a function of stimulus intensity increases 

across the whole stimulus intensity range. This neural gain decreases the stimulus 

intensity required for the neural population to respond and is equivalent to the neural 

response following increased stimulus intensity without attention (Carrasco, 2011). 

Computationally, this can be implemented by multiplying the “stimulus drive” (i.e., the 

neural response to the stimulus per se without modulation) with the “attentional field” 

(i.e., the actual gain for each neuron in the population depending on its spatial extent, 

Reynolds & Heeger, 2009). The result is divided by a normalization factor, the 

“suppressive drive,” to scale the neural population response. This suppressive drive 

reflects the amount of suppression due to the activity of other neurons responding to 

the surrounding context (Reynolds & Heeger, 2009) and therefore compete for neural 

representation (Buschman & Kastner, 2015; Desimone & Duncan, 1995). Attention 

then is a mechanism that alters activity across neural populations by shifting the balance 

between excitation and suppression. According to the normalization model of attention 

(Reynolds & Heeger, 2009), the bigger P50 contralateral to the attended finger in study 

4 is due to the multiplicative gain of the attention field and the stimulus drive. Thus, the 

smaller P50 contralateral to the unattended finger is governed by the suppressive drive 

probably resulting from local competitive interactions (Buschman & Kastner, 2015; 

Reynolds & Heeger, 2009) that are not resolved by attention (Desimone & Duncan, 

1995). Unfortunately, it is not possible to prove suppression based on the relatively 
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reduced P50 amplitude alone because study 4 is lacking a neutral baseline. However, 

increased sensory suppression has been argued to correlate with heightened alpha band 

amplitudes (Haegens, Nácher, et al., 2011; Jensen & Mazaheri, 2010; Kelly, Lalor, Reilly, 

& Foxe, 2006; Klimesch, 2012; Pfurtscheller, 1989; Thut et al., 2006) and to reflect the 

neural mechanism for the deployment of attention (Foxe & Snyder, 2011).  

Surprisingly in study 4, there was no statistically reliable difference in event-related 

alpha-band suppression when a suprathreshold stimulus was attended compared to 

when it was ignored. Supporting this finding, van Ede and colleagues (2014) did not 

observe any post-stimulus attention differences after tactile stimulation, too. Thus, post-

stimulus alpha-band amplitude does not seem to indicate attentional deployment. As 

discussed above, suppression is likely due to local competitive interactions that are 

increased the more stimuli compete for processing resources (Desimone & Duncan, 

1995). Thus, if alpha reflects sensory suppression the presence of an amplitude 

difference when comparing attended versus unattended stimuli might depend on the 

number of stimuli that are ignored. This hypothesis gets some support by research from 

visual-spatial and feature-based attention, which did not analyze alpha amplitudes, 

though, but the steady-state-visual evoked potential (SSVEP). For measuring an 

SSVEP, one or more stimuli are tagged with specific presentation frequencies, which 

amplitudes can be analyzed in M/EEG. In a study by Fuchs, Andersen, Gruber, and 

Müller (2008) the SSVEP signal of an unattended flickering bar only became suppressed 

when a second bar was presented close to it. Likewise, work in feature-based attention 

showed that the signal of the unattended feature was reduced compared to a neutral 

baseline when a local competitor was presented (Forschack, Andersen, & Müller, 2016; 

Müller, Gundlach, Forschack, & Brummerloh, 2018). Importantly, these studies could 

not analyze alpha, because SSVEP frequencies were covering the alpha-band range. 

Future studies should center flicker frequencies well above the alpha band to measure 

putative sensory suppression indicated by alpha amplitude increases concurrently with 

SSVEP amplitude reduction. 

Contrary to stimulus-induced alpha amplitude modulation, pre-stimulus alpha 

amplitudes might be relevant for the allocation of attentional resources. This link has 

been shown by relatively larger pre-stimulus alpha-band amplitudes when the finger was 

unattended compared to when it was attended in both van Ede and colleagues’ (2014) 

study and here in study 4. The relationship of alpha and attention regarding early sensory 
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stimulus processing, though, does not seem to be straight forward because the size of 

the P50 is either maximal or minimal for the same alpha amplitude depending on the 

attentional state (Forschack et al., 2017). Indeed, alpha-band modulations have been 

shown to correlate with attentional performance increases, especially for designs 

employing anticipatory attention. Thus, one conclusion is that alpha does not reflect 

attention in general but rather specific aspects of it (Klimesch, 2012), or might be 

indicative of the respective task context (van Ede et al., 2014). 

 

 

3.4 Limits of the current studies and future perspectives 

In the final section, I want to step back a bit and reflect on the scope of my thesis, which 

questions are arising and may trigger new research avenues. For this, I will first discuss 

the investigation of (un-) consciousness in tactile perception and finish with some 

consideration for selective spatial attention in touch. 

Although this thesis provides direct evidence for the effectiveness of unconscious 

content on neural processes and thereby rejects single-process models where only 

conscious processing appears effective (Schmidt & Vorberg, 2006), the current 

experiments have not investigated unconscious effects on obvious behavior as classic 

experimental approaches in the field of unconscious perception do (Merikle, Smilek, & 

Eastwood, 2001). Instead, by concurrently measuring the activity of neural populations 

with EEG, I hope to have demonstrated qualitative differences in the processing of 

consciously perceivable all the way down to non-perceivable stimuli. This approach has 

the potential to reveal effects about unconscious processing that go beyond a 

dichotomous view of perception either regarded as conscious or unconscious (Jacoby, 

1991). It allows investigating the depth of neural processing (Haynes, 2013) and opens 

the perspective on unconscious processing maybe happening mostly in parallel to or 

even independent of conscious processing (Dixon, 1971; Haynes & Rees, 2005). 

Nonetheless, for the effect of subthreshold stimulation on conscious perception, the 

current results provide a precise prediction. A subthreshold stimulus-induced event-

related increase in the alpha band amplitude, as shown in study 4 (section 2.4) should 

result in a decreased detection probability of a subsequent target stimulus under the 

assumption that high alpha band amplitudes correlate with functional inhibition. 
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Empirical support for the latter comes from a repetitive transcranial magnetic 

stimulation study (rTMS) that found decreased sensitivity to a vibrotactile stimulus after 

frequency specific entrainment in the alpha band over contralateral primary 

somatosensory cortex and intraparietal sulcus (Ruzzoli & Soto-Faraco, 2014).  

In the first part of the discussion, I speculated that the divergence of psychophysical 

and sensory receptor threshold for electrical in contrast to mechanical stimulation could 

be explained by an overall dampened cortical response due to mutual inhibition of 

concurrently activated afferent fibers. Of course, my thesis cannot decide on this 

hypothesis because it lacks measurements of the finger receptor afferents. Therefore, it 

would be interesting to compare mechanical and electrical finger nerve stimulation 

concerning the microneurographic activity of the median nerve in combination with a 

signal detection theoretic analysis of the behavioral responses. The prediction would be 

that small mechanical skin indentations only activate fast adaptive afferents of the 

receptive field leading to above chance performance (Vallbo & Johansson, 1984), 

whereas electrical perturbation of the skin at absolute detection threshold results in the 

parallel activation of multiple afferent types. 

The definition of consciousness as referring to stimuli either having objective 

reportability or not is a rather operational constriction. It cannot be concluded, though, 

that the early P50 amplitude after subthreshold stimulation does not relate to subjective 

reports like ratings. However, recent studies that employed peri-threshold median nerve 

stimulation (Auksztulewicz & Blankenburg, 2013) and continuous flash suppression in 

vision (Hesselmann et al., 2011) while asking the participants to rate the stimulus 

intensity/ visibility, provide evidence against this argument. These studies showed that 

only later electrophysiological response, the P300 (Auksztulewicz & Blankenburg, 

2013), and high-order visual areas (Hesselmann et al., 2011) distinguished variations in 

the subjective report but not the early ERP or activity of the lower visual hierarchy, 

respectively. Nevertheless, experimental designs combining both objective and 

subjective reports are a promising account to disentangle further the neural 

underpinnings of the emergence of conscious perception and the participant’s current 

subjective experience (Haynes, 2009). 

The focus on spatially localized signals in the EEG, i.e., ERPs and oscillatory 

activity based on one or a cluster of electrodes, is a further limitation given that 

perceptual awareness has been argued to arise from the interaction between more or 
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less distributed brain areas (e.g., Baars, 1997; Crick & Koch, 2003; Dehaene & 

Changeux, 2011; Lamme, 2004; Lau & Rosenthal, 2011; Tononi & Koch, 2015). This is 

not to say that there is no regional interaction underlying e.g., the N150. In fact, 

Auksztulewicz and Blankenburg, (2013) have shown that the N150 might reflect 

reverberating activity between primary and secondary somatosensory cortex. The study 

by Nierhaus and colleagues (2015, see section 2.3.1) could dissociate subthreshold from 

suprathreshold stimulation during resting-state fMRI where the former evoked a 

functional decoupling of primary somatosensory cortex from fronto-parietal areas. 

Additionally, recent fMRI graph theoretic results by (Grund, Forschack, Nierhaus, & 

Villringer, submitted) reveal a tight relationship of a sparse task-relevant network 

supporting perceptual awareness. Thus, future EEG research may benefit from 

investigating global scale activity and connectivity measures (as already has been done 

by a few groups: Hirvonen & Palva, 2016; Weisz, Wühle, et al., 2014) but, importantly, 

should relate and benchmark it to the accumulated wisdom of past decades of ERP 

experimental designs (Haynes, 2009; King & Dehaene, 2014). 

Contrarily, a much more fine-grained spatial resolution might be needed when it 

comes to interpreting oscillatory data. Invasive research in macaque monkeys found 

functionally dissociable alpha band activity even between different cortical layers 

(Bollimunta, Mo, Schroeder, & Ding, 2011). As discussed in section 2.4, it is possible 

that EEG level oscillations reflect a compound signal from nearby local oscillators and 

thereby obscuring their true functional role about cognitive factors like selective 

attention that arguably act at the scope of receptive field coding single cells (Carrasco, 

2011). Thus, in human research, invasive electroencephalography (iEEG) carefully 

designed to study selective attention would be a reasonable step toward proving the 

functional role of alpha and its relation to attention. 

Regarding the nature of the effect of attention in the somatosensory system, 

research relating it to signal enhancement or external/ internal noise suppression 

(Carrasco, 2011) or computational models of attention (Reynolds & Heeger, 2009) is 

very scarce (see the review by Gomez-Ramirez et al., 2016). The facility to precisely 

adjust parameters makes electrical stimulation a valuable tool to approach these 

questions in psychometric designs. Furthermore, as the concurrent presentation of 

targets and external noise has been shown previously (Iliopoulos et al., 2014), the 

manipulation of external noise levels in combination with attention would leverage this 
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field of research and shed light on the generalizability of attention mechanisms from 

other sensory modalities. 

Indeed, many questions remain to be studied. With the results of the present thesis, 

I hope to have provided new insights into the domain of somatosensation, which is 

central to the way everyone perceives and acts as an individual within a complex and 

continually changing environment.  

 



 References 

 113 

References 

Adams, J. K. (1957). Laboratory studies of behavior without awareness. Psychological 

Bulletin, 54(5), 383–405. https://doi.org/10/d6tgc8 

Alho, K., Medvedev, S. V., Pakhomov, S. V., Roudas, M. S., Tervaniemi, M., 

Reinikainen, K., … Näätänen, R. (1999). Selective tuning of the left and right auditory 

cortices during spatially directed attention. Cognitive Brain Research, 7(3), 335–341. 

https://doi.org/10/ftfk34 

Anderson, K. L., & Ding, M. (2011). Attentional modulation of the somatosensory 

mu rhythm. Neuroscience, 180, 165–180. https://doi.org/10/fp44vt 

Aru, J., Bachmann, T., Singer, W., & Melloni, L. (2012). Distilling the neural 

correlates of consciousness. Neuroscience & Biobehavioral Reviews, 36(2), 737–746. 

https://doi.org/10.1016/j.neubiorev.2011.12.003 

Auksztulewicz, R., & Blankenburg, F. (2013). Subjective Rating of Weak Tactile 

Stimuli Is Parametrically Encoded in Event-Related Potentials. The Journal of Neuroscience, 

33(29), 11878–11887. https://doi.org/10/f45gvh 

Auksztulewicz, R., Spitzer, B., & Blankenburg, F. (2012). Recurrent Neural 

Processing and Somatosensory Awareness. The Journal of Neuroscience, 32(3), 799–805. 

https://doi.org/10/fxskjk 

Baars, B. J. (1997). In the theatre of consciousness: global workspace theory, a 

rigorous scientific theory of consciousness. Journal of Consciousness Studies, 4, 292–309. 

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with 

crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 

390–412. https://doi.org/10/fpb5dz 

Bakeman, R. (2005). Recommended effect size statistics for repeated measures 

designs. Behavior Research Methods, 37(3), 379–384. https://doi.org/10/cdj9dv 

Bareither, I., Chaumon, M., Bernasconi, F., Villringer, A., & Busch, N. A. (2014). 

Invisible visual stimuli elicit increases in alpha-band power. Journal of Neurophysiology, 

112(5), 1082–1090. https://doi.org/10/f6gsn3 

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure 

for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 

68(3), 255–278. https://doi.org/10/gcm4wc 



 

114 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects 

Models using lme4. ArXiv:1406.5823 [Stat]. Retrieved from 

http://arxiv.org/abs/1406.5823 

Bauer, M., Stenner, M.-P., Friston, K. J., & Dolan, R. J. (2014). Attentional 

Modulation of Alpha/Beta and Gamma Oscillations Reflect Functionally Distinct 

Processes. The Journal of Neuroscience, 34(48), 16117–16125. 

https://doi.org/10.1523/JNEUROSCI.3474-13.2014 

Baumgarten, T. J., Königs, S., Schnitzler, A., & Lange, J. (2017). Subliminal stimuli 

modulate somatosensory perception rhythmically and provide evidence for discrete 

perception. Scientific Reports, 7, 43937. https://doi.org/10.1038/srep43937 

Baumgarten, T. J., Schnitzler, A., & Lange, J. (2016). Prestimulus Alpha Power 

Influences Tactile Temporal Perceptual Discrimination and Confidence in Decisions. 

Cerebral Cortex, 26(3), 891–903. https://doi.org/10.1093/cercor/bhu247 

Bayne, T., Hohwy, J., & Owen, A. M. (2016). Are There Levels of Consciousness? 

Trends in Cognitive Sciences, 20(6), 405–413. https://doi.org/10/f8pc7t 

Bekhtereva, V., Sander, C., Forschack, N., Olbrich, S., Hegerl, U., & Müller, M. M. 

(2014). Effects of EEG-vigilance regulation patterns on early perceptual processes in 

human visual cortex. Clinical Neurophysiology, 125(1), 98–107. 

https://doi.org/10.1016/j.clinph.2013.06.019 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A 

Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. 

Series B (Methodological), 57(1), 289–300. 

Berger, P. D. H. (1929). Über das Elektrenkephalogramm des Menschen. Archiv für 

Psychiatrie und Nervenkrankheiten, 87(1), 527–570. https://doi.org/10/b7cgqj 

Bernat, E., Bunce, S., & Shevrin, H. (2001). Event-related brain potentials 

differentiate positive and negative mood adjectives during both supraliminal and 

subliminal visual processing. International Journal of Psychophysiology, 42(1), 11–34. 

https://doi.org/10/cv7pkm 

Bernat, E., Shevrin, H., & Snodgrass, M. (2001). Subliminal visual oddball stimuli 

evoke a P300 component. Clinical Neurophysiology, 112(1), 159–171. 

https://doi.org/10/bgwsc8 



 References 

 115 

Bigdely-Shamlo, N., Mullen, T., Kreutz-Delgado, K., & Makeig, S. (2013). Measure 

projection analysis: A probabilistic approach to EEG source comparison and multi-

subject inference. NeuroImage, 72, 287–303. https://doi.org/10/f4tqbc 

Blanke, O., & Metzinger, T. (2009). Full-body illusions and minimal phenomenal 

selfhood. Trends in Cognitive Sciences, 13(1), 7–13. 

https://doi.org/10.1016/j.tics.2008.10.003 

Blankenburg, F., Taskin, B., Ruben, J., Moosmann, M., Ritter, P., Curio, G., & 

Villringer, A. (2003). Imperceptible Stimuli and Sensory Processing Impediment. Science, 

299(5614), 1864–1864. https://doi.org/10/cjfpm9 

Bollimunta, A., Mo, J., Schroeder, C. E., & Ding, M. (2011). Neuronal Mechanisms 

and Attentional Modulation of Corticothalamic Alpha Oscillations. The Journal of 

Neuroscience, 31(13), 4935–4943. https://doi.org/10/dwjnjj 

Boxtel, J. J. A. van, Tsuchiya, N., & Koch, C. (2010). Opposing effects of attention 

and consciousness on afterimages. Proceedings of the National Academy of Sciences, 107(19), 

8883–8888. https://doi.org/10.1073/pnas.0913292107 

Breitmeyer, B. G., & Ogmen, H. (2007). Visual masking. Scholarpedia, 2(7), 3330. 

https://doi.org/10.4249/scholarpedia.3330 

Brentano, F. C. (1874). Psychologie vom empirischen Standpunkt. Leipzig : Duncker 

&amp; Humblot. Retrieved from 

http://archive.org/details/psychologievome02brengoog 

Brigard, F. D., & Prinz, J. (2010). Attention and consciousness. Wiley Interdisciplinary 

Reviews: Cognitive Science, 1(1), 51–59. https://doi.org/10/c29r8j 

Buschman, T. J., & Kastner, S. (2015). From Behavior to Neural Dynamics: An 

Integrated Theory of Attention. Neuron, 88(1), 127–144. https://doi.org/10/f7whq5 

Buzsaki, G. (2011). Rhythms of the Brain (1st ed.). Oxford ; New York: Oxford 

University Press, U.S.A. 

Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 

1484–1525. https://doi.org/10/d4kfzg 

Cauller, L. J., & Kulics, A. T. (1991). The neural basis of the behaviorally relevant 

N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: 

evidence that backward cortical projections signal conscious touch sensation. 

Experimental Brain Research, 84(3), 607–619. 



 

116 

Chalmers, D. J. (1996). The conscious mind : in search of a fundamental theory / David J. 

Chalmers. New York: Oxford University Press. 

Chaumon, M., Bishop, D. V. M., & Busch, N. A. (2015). A practical guide to the 

selection of independent components of the electroencephalogram for artifact 

correction. Journal of Neuroscience Methods, 250, 47–63. 

https://doi.org/10.1016/j.jneumeth.2015.02.025 

Chaumon, M., & Busch, N. A. (2014). Prestimulus Neural Oscillations Inhibit 

Visual Perception via Modulation of Response Gain. Journal of Cognitive Neuroscience, 

26(11), 2514–2529. https://doi.org/10/gc3h8m 

Clayton, M. S., Yeung, N., & Kadosh, R. C. (2015). The roles of cortical oscillations 

in sustained attention. Trends in Cognitive Sciences, 19(4), 188–195. 

https://doi.org/10.1016/j.tics.2015.02.004 

Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice (1 edition). 

Cambridge, Massachusetts: The MIT Press. 

Cousineau, D., Montréal, U. D., Paradis, T. T. D., & For, D. C. (2005). Confidence 

intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorial in 

Quantitative Methods for Psychology. 

Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological 

condition of the body. Nature Reviews Neuroscience, 3(8), 655–666. 

https://doi.org/10.1038/nrn894 

Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. 

Seminars in the Neurosciences, 2(CaltechAUTHORS:20130816-103136937), 263–275. 

Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 

6(2), 119–126. https://doi.org/10.1038/nn0203-119 

David, S. V., Hayden, B. Y., Mazer, J. A., & Gallant, J. L. (2008). Attention to 

stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron, 

59(3), 509–521. https://doi.org/10.1016/j.neuron.2008.07.001 

de Haan, B., Stoll, T., & Karnath, H.-O. (2015). Early sensory processing in right 

hemispheric stroke patients with and without extinction. Neuropsychologia, 73, 141–150. 

https://doi.org/10/f7hrpd 

Dehaene, S., & Changeux, J.-P. (2011). Experimental and Theoretical Approaches 

to Conscious Processing. Neuron, 70(2), 200–227. https://doi.org/10/c94k82 



 References 

 117 

Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., & Sergent, C. (2006). 

Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in 

Cognitive Sciences, 10(5), 204–211. https://doi.org/10.1016/j.tics.2006.03.007 

Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of 

consciousness: basic evidence and a workspace framework. Cognition, 79(1), 1–37. 

https://doi.org/10.1016/S0010-0277(00)00123-2 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis 

of single-trial EEG dynamics including independent component analysis. Journal of 

Neuroscience Methods, 134(1), 9–21. https://doi.org/10/bqr2f2 

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). 

Independent EEG Sources Are Dipolar. PLoS ONE, 7(2), e30135. 

https://doi.org/10/gc3h5q 

Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in 

EEG data using higher-order statistics and independent component analysis. 

NeuroImage, 34(4), 1443–1449. https://doi.org/10/dvrjq7 

Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual 

Attention. Annual Review of Neuroscience, 18(1), 193–222. https://doi.org/10/bmcht5 

Desmedt, J. E., & Robertson, D. (1977). Differential enhancement of early and late 

components of the cerebral somatosensory evoked potentials during forced-paced 

cognitive tasks in man. The Journal of Physiology, 271(3), 761–782. 

Dixon, N. F. (1971). Subliminal perception: the nature of a controversy. London [u.a.]: 

McGraw-Hill. 

Eason, R. G., Harter, M. R., & White, C. T. (1969). Effects of attention and arousal 

on visually evoked cortical potentials and reaction time in man. Physiology & Behavior, 

4(3), 283–289. https://doi.org/10/cjk9x3 

Eimer, M., Maravita, A., Van Velzen, J., Husain, M., & Driver, J. (2002). The 

electrophysiology of tactile extinction: ERP correlates of unconscious somatosensory 

processing. Neuropsychologia, 40(13), 2438–2447. https://doi.org/10/d4p774 

Enns, J. T., & Lollo, V. D. (2000). What’s new in visual masking? Trends in Cognitive 

Sciences, 4(9), 345–352. https://doi.org/10/d263nh 

Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. F. (2007). Masking Disrupts 

Reentrant Processing in Human Visual Cortex. Journal of Cognitive Neuroscience, 19(9), 

1488–1497. https://doi.org/10.1162/jocn.2007.19.9.1488 



 

118 

Ferrè, E. R., Sahani, M., & Haggard, P. (2016). Subliminal stimulation and 

somatosensory signal detection. Acta Psychologica, 170, 103–111. 

https://doi.org/10/f88jwf 

Forschack, N., Andersen, S. K., & Müller, M. M. (2016). Global Enhancement but 

Local Suppression in Feature-based Attention. Journal of Cognitive Neuroscience, 29(4), 

619–627. https://doi.org/10/gfc5gz 

Forschack, N., Nierhaus, T., Müller, M. M., & Villringer, A. (2017). Alpha-Band 

Brain Oscillations Shape the Processing of Perceptible as well as Imperceptible 

Somatosensory Stimuli during Selective Attention. Journal of Neuroscience, 37(29), 6983–

6994. https://doi.org/10/gc3h4w 

Forster, B., & Eimer, M. (2004). The attentional selection of spatial and non-spatial 

attributes in touch: ERP evidence for parallel and independent processes. Biological 

Psychology, 66(1), 1–20. https://doi.org/10/bp8n4s 

Forster, B., & Eimer, M. (2005). Covert attention in touch: Behavioral and ERP 

evidence for costs and benefits. Psychophysiology, 42(2), 171–179. 

https://doi.org/10/dmrf3p 

Foxe, J. J., & Snyder, A. C. (2011). The Role of Alpha-Band Brain Oscillations as a 

Sensory Suppression Mechanism during Selective Attention. Frontiers in Psychology, 2, 

154. https://doi.org/10.3389/fpsyg.2011.00154 

Frey, J. N., Ruhnau, P., Leske, S., Siegel, M., Braun, C., & Weisz, N. (2016). The 

Tactile Window to Consciousness is Characterized by Frequency-Specific Integration 

and Segregation of the Primary Somatosensory Cortex. Scientific Reports, 6, 20805. 

https://doi.org/10/f79q2f 

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for 

Generalized Linear Models via Coordinate Descent | Friedman | Journal of Statistical 

Software. Journal of Statistical Software, 33(1). https://doi.org/10/bb3d 

Fuchs, S., Andersen, S. K., Gruber, T., & Müller, M. M. (2008). Attentional bias of 

competitive interactions in neuronal networks of early visual processing in the human 

brain. NeuroImage, 41(3), 1086–1101. https://doi.org/10/bptzjv 

Gandhi, S. P., Heeger, D. J., & Boynton, G. M. (1999). Spatial Attention Affects 

Brain Activity in Human Primary Visual Cortex. Proceedings of the National Academy of 

Sciences of the United States of America, 96(6), 3314–3319. 



 References 

 119 

Gardner, E. P., & Kandel, E. R. (2000). Touch. In E. R. Kandel, J. H. Schwartz, & 

T. M. Jessell (Eds.), Principles of neural science (pp. 452–471). New York, NY: McGraw-

Hill Publ. 

Gardner, E. P., & Martin, J. H. (2000). Coding of Sensory Information. In E. R. 

Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (pp. 412–430). 

New York, NY: McGraw-Hill Publ. 

Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of Statistical 

Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage, 15(4), 

870–878. https://doi.org/10.1006/nimg.2001.1037 

Giattino, C. M., Alam, Z. M., & Woldorff, M. G. (2018). Neural processes 

underlying the orienting of attention without awareness. Cortex, 102, 14–25. 

https://doi.org/10/gdjvbh 

Gilchrist, A. L., & Cowan, N. (2010). Conscious and unconscious aspects of 

working memory. In I. Czigler & I. Winkler (Eds.), Unconscious Memory Representations in 

Perception: Processes and Mechanisms in the Brain (pp. 1–35). Amsterdam/ Philadelphia: John 

Benjamins Publishing Company. 

Goldstein, E. B. (2009). Sensation and Perception (0008 ed.). Belmont, Calif: 

Wadsworth Inc Fulfillment. 

Goltz, D., Gundlach, C., Nierhaus, T., Villringer, A., Müller, M., & Pleger, B. (2015). 

Connections between Intraparietal Sulcus and a Sensorimotor Network Underpin 

Sustained Tactile Attention. The Journal of Neuroscience, 35(20), 7938–7949. 

https://doi.org/10/gc3h8s 

Goltz, D., Pleger, B., Thiel, S., Villringer, A., & Müller, M. M. (2013). Sustained 

Spatial Attention to Vibrotactile Stimulation in the Flutter Range: Relevant Brain 

Regions and Their Interaction. PLoS ONE, 8(12), e84196. 

https://doi.org/10.1371/journal.pone.0084196 

Gomez-Ramirez, M., Hysaj, K., & Niebur, E. (2016). Neural mechanisms of 

selective attention in the somatosensory system. Journal of Neurophysiology, 116(3), 1218–

1231. https://doi.org/10/f88jcp 

Goodwin, A., W., & Wheat, H. E. (2008). Physiological mechanisms of the receptor 

system. In M. Grunwald (Ed.), Human haptic perception: basics and applications (pp. 93–102). 

Basel [u.a.]: Birkhäuser. 



 

120 

Graziano, M. S. A. (2013). Consciousness and the social brain. Oxford, UK [u.a.]: Oxford 

Univ. Press. 

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: 

Wiley. 

Grund, M., Forschack, N., Nierhaus, T., & Villringer, A. (submitted). 

Somatosensory awareness shapes functional connectivity of task-relevant network 

nodes. 

Grunwald, M. (2008). Human haptic perception: basics and applications. Basel [u.a.]: 

Birkhäuser. 

Haegens, S., Händel, B. F., & Jensen, O. (2011). Top-Down Controlled Alpha Band 

Activity in Somatosensory Areas Determines Behavioral Performance in a 

Discrimination Task. The Journal of Neuroscience, 31(14), 5197–5204. 

https://doi.org/10.1523/JNEUROSCI.5199-10.2011 

Haegens, S., Luther, L., & Jensen, O. (2011). Somatosensory Anticipatory Alpha 

Activity Increases to Suppress Distracting Input. Journal of Cognitive Neuroscience, 24(3), 

677–685. https://doi.org/10/fr5jxk 

Haegens, S., Nácher, V., Luna, R., Romo, R., & Jensen, O. (2011). α-Oscillations in 

the monkey sensorimotor network influence discrimination performance by rhythmical 

inhibition of neuronal spiking. Proceedings of the National Academy of Sciences, 108(48), 

19377–19382. https://doi.org/10.1073/pnas.1117190108 

Halekoh, U., & Højsgaard, S. (2014). A Kenward-Roger Approximation and 

Parametric Bootstrap Methods for Tests in Linear Mixed Models - The R Package 

pbkrtest. Journal of Statistical Software, 59(9). https://doi.org/10.18637/jss.v059.i09 

Harvey, B. M., Vansteensel, M. J., Ferrier, C. H., Petridou, N., Zuiderbaan, W., 

Aarnoutse, E. J., … Dumoulin, S. O. (2013). Frequency specific spatial interactions in 

human electrocorticography: V1 alpha oscillations reflect surround suppression. 

NeuroImage, 65, 424–432. https://doi.org/10/f4gr9m 

Hautus, M. J. (1995). Corrections for extreme proportions and their biasing effects 

on estimated values ofd′. Behavior Research Methods, Instruments, & Computers, 27(1), 46–

51. https://doi.org/10.3758/BF03203619 

Haynes, J.-D. (2009). Decoding visual consciousness from human brain signals. 

Trends in Cognitive Sciences, 13(5), 194–202. https://doi.org/10/c2ggzq 



 References 

 121 

Haynes, J.-D. (2013). Bewusstsein und Aufmerksamkeit. In Affektive und kognitive 

Neurowissenschaft (Vol. 5, pp. 47–84). Göttingen; Bern; Toronto; Seattle, Wash.: Hogrefe 

Verlag. 

Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from 

activity in human primary visual cortex. Nature Neuroscience, 8(5), 686. 

https://doi.org/10/cp2ksx 

Herrmann, K., Montaser-Kouhsari, L., Carrasco, M., & Heeger, D. J. (2010). When 

size matters: attention affects performance by contrast or response gain. Nature 

Neuroscience, 13(12), 1554–1559. https://doi.org/10.1038/nn.2669 

Hesselmann, G., Hebart, M., & Malach, R. (2011). Differential BOLD Activity 

Associated with Subjective and Objective Reports during “Blindsight” in Normal 

Observers. Journal of Neuroscience, 31(36), 12936–12944. https://doi.org/10/bqkqkt 

Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical Signs 

of Selective Attention in the Human Brain. Science, 182(4108), 177–180. 

https://doi.org/10/dj93x5 

Hillyard, S. A., Squires, K. C., Bauer, J. W., & Lindsay, P. H. (1971). Evoked 

Potential Correlates of Auditory Signal Detection. Science, 172(3990), 1357–1360. 

https://doi.org/10/b8q6mn 

Hirvonen, J., & Palva, S. (2016). Cortical localization of phase and amplitude 

dynamics predicting access to somatosensory awareness. Human Brain Mapping, 37(1), 

311–326. https://doi.org/10/gc3h8r 

Hsiao, S. S., O’Shaughnessy, D. M., & Johnson, K. O. (1993). Effects of selective 

attention on spatial form processing in monkey primary and secondary somatosensory 

cortex. Journal of Neurophysiology, 70(1), 444–447. https://doi.org/10/gc3h4z 

Iemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A. (2017). Spontaneous Neural 

Oscillations Bias Perception by Modulating Baseline Excitability. Journal of Neuroscience, 

37(4), 807–819. https://doi.org/10/gc9z3r 

Iliopoulos, F., Nierhaus, T., & Villringer, A. (2014). Electrical noise modulates 

perception of electrical pulses in humans: sensation enhancement via stochastic 

resonance. Journal of Neurophysiology, 111(6), 1238–1248. https://doi.org/10/f5z2br 

Isaacson, J. S., & Scanziani, M. (2011). How Inhibition Shapes Cortical Activity. 

Neuron, 72(2), 231–243. https://doi.org/10/fvdzrb 



 

122 

Jackson, A. F., & Bolger, D. J. (2014). The neurophysiological bases of EEG and 

EEG measurement: A review for the rest of us: Neurophysiological bases of EEG. 

Psychophysiology, n/a-n/a. https://doi.org/10/f6m7fh 

Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from 

intentional uses of memory. Journal of Memory and Language, 30(5), 513–541. 

https://doi.org/10.1016/0749-596X(91)90025-F 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2015). An Introduction to Statistical 

Learning - with Applications in R. New York: Springer. Retrieved from 

http://www.springer.com/us/book/9781461471370 

James, W. (1890). The Principles of Psychology. United States: Henry Holt and 

Company. 

JASP Team. (2018). JASP (Version 0.8.6)[Computer software]. Retrieved from 

https://jasp-stats.org/ 

Jeffreys, H. (1961). Theory of Probability (Third). Oxford Oxfordshire : New York: 

Oxford University Press. 

Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for 

prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200–206. 

https://doi.org/10.1016/j.tics.2012.03.002 

Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory 

alpha activity: gating by inhibition. Frontiers in Human Neuroscience, 4, 186. 

https://doi.org/10/b5883g 

Johansen-Berg, H., Christensen, V., Woolrich, M., & Matthews, P. M. (2000). 

Attention to touch modulates activity in both primary and secondary somatosensory 

areas. Neuroreport, 11(6), 1237–1241. 

Johansson, R. S., & Vallbo, Å. B. (1983). Tactile sensory coding in the glabrous skin 

of the human hand. Trends in Neurosciences, 6, 27–32. https://doi.org/10/b22xs9 

Johansson, & Vallbo, A. B. (1979). Detection of tactile stimuli. Thresholds of 

afferent units related to psychophysical thresholds in the human hand. The Journal of 

Physiology, 297, 405–422. 

Jones, S. R., Kerr, C. E., Wan, Q., Pritchett, D. L., Hamalainen, M., & Moore, C. I. 

(2010). Cued Spatial Attention Drives Functionally Relevant Modulation of the Mu 

Rhythm in Primary Somatosensory Cortex. Journal of Neuroscience, 30(41), 13760–13765. 

https://doi.org/10.1523/JNEUROSCI.2969-10.2010 



 References 

 123 

Jones, Stephanie R., Pritchett, D. L., Sikora, M. A., Stufflebeam, S. M., Hämäläinen, 

M., & Moore, C. I. (2009). Quantitative Analysis and Biophysically Realistic Neural 

Modeling of the MEG Mu Rhythm: Rhythmogenesis and Modulation of Sensory-

Evoked Responses. Journal of Neurophysiology, 102(6), 3554–3572. 

https://doi.org/10/c4jq4n 

Jones, Stephanie R., Pritchett, D. L., Stufflebeam, S. M., Hämäläinen, M., & Moore, 

C. I. (2007). Neural Correlates of Tactile Detection: A Combined 

Magnetoencephalography and Biophysically Based Computational Modeling Study. The 

Journal of Neuroscience, 27(40), 10751–10764. https://doi.org/10/ffx53x 

Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). 

Increased Activity in Human Visual Cortex during Directed Attention in the Absence 

of Visual Stimulation. Neuron, 22(4), 751–761. https://doi.org/10.1016/S0896-

6273(00)80734-5 

Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in Alpha 

Oscillatory Power Reflect an Active Retinotopic Mechanism for Distracter Suppression 

During Sustained Visuospatial Attention. Journal of Neurophysiology, 95(6), 3844–3851. 

https://doi.org/10/cf9fcj 

Kentridge, R. W., Heywood, C. A., & Weiskrantz, L. (1999). Attention without 

awareness in blindsight. Proceedings of the Royal Society B: Biological Sciences, 266(1430), 

1805–1811. 

Kentridge, R. W., Nijboer, T. C. W., & Heywood, C. A. (2008). Attended but 

unseen: Visual attention is not sufficient for visual awareness. Neuropsychologia, 46(3), 

864–869. https://doi.org/10.1016/j.neuropsychologia.2007.11.036 

Kiefer, M. (2002). Bewusstsein. In J. Müsseler & W. Prinz (Eds.), Allgemeine 

Psychologie (1st ed., pp. 178–222). Heidelberg: Spektrum Akademischer Verlag. 

Kiefer, M. (2012). Executive control over unconscious cognition: attentional 

sensitization of unconscious information processing. Frontiers in Human Neuroscience, 

6(61), 1–12. https://doi.org/10.3389/fnhum.2012.00061 

Kiefer, M., & Martens, U. (2010). Attentional sensitization of unconscious 

cognition: Task sets modulate subsequent masked semantic priming. Journal of 

Experimental Psychology: General, 139(3), 464–489. https://doi.org/10/ft2s5j 



 

124 

Kim, S. S., Gomez-Ramirez, M., Thakur, P. H., & Hsiao, S. S. (2015). Multimodal 

Interactions between Proprioceptive and Cutaneous Signals in Primary Somatosensory 

Cortex. Neuron, 86(2), 555–566. https://doi.org/10/f6832b 

King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental 

representations: the temporal generalization method. Trends in Cognitive Sciences, 18(4), 

203–210. https://doi.org/10.1016/j.tics.2014.01.002 

Kingdom, F. A. A., & Prins, N. (2009). Psychophysics: a practical introduction. Acad. 

Press. 

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to 

stored information. Trends in Cognitive Sciences, 16(12), 606–617. 

https://doi.org/10/f3snb2 

Klostermann, F., Wahl, M., Schomann, J., Kupsch, A., Curio, G., & Marzinzik, F. 

(2009). Thalamo-cortical processing of near-threshold somatosensory stimuli in 

humans. European Journal of Neuroscience, 30(9), 1815–1822. https://doi.org/10/d2b48c 

Koch, C., & Tsuchiya, N. (2007). Attention and consciousness: two distinct brain 

processes. Trends in Cognitive Sciences, 11(1), 16–22. 

https://doi.org/10.1016/j.tics.2006.10.012 

Lamme, V. A. F. (2004). Separate neural definitions of visual consciousness and 

visual attention; a case for phenomenal awareness. Neural Networks, 17(5–6), 861–872. 

https://doi.org/10.1016/j.neunet.2004.02.005 

Lamme, Victor A. F. (2006). Towards a true neural stance on consciousness. Trends 

in Cognitive Sciences, 10(11), 494–501. https://doi.org/10.1016/j.tics.2006.09.001 

Lamme, Victor A. F., Zipser, K., & Spekreijse, H. (2002). Masking Interrupts 

Figure-Ground Signals in V1. Journal of Cognitive Neuroscience, 14(7), 1044–1053. 

https://doi.org/10.1162/089892902320474490 

Lau, H., & Rosenthal, D. (2011). Empirical support for higher-order theories of 

conscious awareness. Trends in Cognitive Sciences, 15(8), 365–373. 

https://doi.org/10/fmr68p 

Lawrence, M. A. (2013). ez: Easy analysis and visualization of factorial experiments. 

Retrieved from http://CRAN.R-project.org/package=ez 

Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian Cognitive Modeling: A Practical 

Course. Cambridge: Cambridge University Press. 

https://doi.org/10.1017/CBO9781139087759 



 References 

 125 

Li, Y., Ma, Z., Lu, W., & Li, Y. (2006). Automatic removal of the eye blink artifact 

from EEG using an ICA-based template matching approach. Physiological Measurement, 

27(4), 425. https://doi.org/10.1088/0967-3334/27/4/008 

Libet, B., Alberts, W. W., Wright, E. W., & Feinstein, B. (1967). Responses of 

Human Somatosensory Cortex to Stimuli below Threshold for Conscious Sensation. 

Science, 158(3808), 1597–1600. 

Limbach, K., & Corballis, P. M. (2016). Prestimulus alpha power influences 

response criterion in a detection task. Psychophysiology, 53(8), 1154–1164. 

https://doi.org/10.1111/psyp.12666 

Ling, S., Liu, T., & Carrasco, M. (2009). How spatial and feature-based attention 

affect the gain and tuning of population responses. Vision Research, 49(10), 1194–1204. 

https://doi.org/10.1016/j.visres.2008.05.025 

Linkenkaer-Hansen, K., Nikulin, V. V., Palva, S., Ilmoniemi, R. J., & Palva, J. M. 

(2004). Prestimulus Oscillations Enhance Psychophysical Performance in Humans. The 

Journal of Neuroscience, 24(45), 10186–10190. 

https://doi.org/10.1523/JNEUROSCI.2584-04.2004 

Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-

subject designs. Psychonomic Bulletin & Review, 1(4), 476–490. https://doi.org/10/cft3qp 

Lohmann, G., Müller, K., Bosch, V., Mentzel, H., Hessler, S., Chen, L., … von 

Cramon, D. Y. (2001). Lipsia—a new software system for the evaluation of functional 

magnetic resonance images of the human brain. Computerized Medical Imaging and Graphics, 

25(6), 449–457. https://doi.org/10/cw5tb7 

Lopes da Silva, F. H., van Rotterdam, A., Barts, P., van Heusden, E., & Burr, W. 

(1976). Models of Neuronal Populations: The Basic Mechanisms of Rhythmicity. In M. 

A. C. and D. F. Swaab (Ed.), Progress in Brain Research (Vol. 45, pp. 281–308). Elsevier. 

Retrieved from 

http://www.sciencedirect.com/science/article/pii/S0079612308609954 

Low, K. E. Y. (2009). Scents and Scent-sibilities: Smell and Everyday Life Experiences. 

Newcastle: Cambridge Scholars Publishing. 

Luck, S. J. (2005). An introduction to the event-related potential technique. MIT Press. 

Macmillan, N. A., & Creelman, C. D. (2004). Detection Theory: A User’s Guide (2 

edition). Mahwah, N.J: Psychology Press. 



 

126 

Marks, L. E., & Wheeler, M. E. (1998). Focused Attention and the Detectability of 

Weak Gustatory Stimuli: Empirical Measurement and Computer Simulations. Annals of 

the New York Academy of Sciences, 855(1), 645–647. https://doi.org/10.1111/j.1749-

6632.1998.tb10639.x 

Meador, K. J., Ray, P. G., Day, L., Ghelani, H., & Loring, D. W. (1998). Physiology 

of somatosensory perception: cerebral lateralization and extinction. Neurology, 51(3), 

721–727. 

Mensen, A., & Khatami, R. (2013). Advanced EEG analysis using threshold-free 

cluster-enhancement and non-parametric statistics. NeuroImage, 67, 111–118. 

https://doi.org/10.1016/j.neuroimage.2012.10.027 

Merikle, P. M., & Daneman, M. (1998). Psychological investigations of unconscious 

perception. Journal of Consciousness Studies, 5, 5–18. 

Merikle, P. M., Joordens, S., & Stolz, J. A. (1995). Measuring the Relative Magnitude 

of Unconscious Influences. Consciousness and Cognition, 4(4), 422–439. 

https://doi.org/10.1006/ccog.1995.1049 

Merikle, P. M., Smilek, D., & Eastwood, J. D. (2001). Perception without awareness: 

perspectives from cognitive psychology. Cognition, 79(1–2), 115–134. 

https://doi.org/10/b82rbt 

Metzinger, T. (2004). Being No One: The Self-Model Theory of Subjectivity (New Ed). 

Cambridge, Mass.: The Mit Press. 

Metzinger, T. (2007). Self models. Scholarpedia, 2(10), 4174. 

https://doi.org/10.4249/scholarpedia.4174 

Michie, P. T., Bearparic, H. M., Crawford, J. M., & Glue, L. C. T. (1987). The Effects 

of Spatial Selective Attention on the Somatosensory Event-Related Potential. 

Psychophysiology, 24(4), 449–463. https://doi.org/10.1111/j.1469-8986.1987.tb00316.x 

Moosmann, M., Ritter, P., Krastel, I., Brink, A., Thees, S., Blankenburg, F., … 

Villringer, A. (2003). Correlates of alpha rhythm in functional magnetic resonance 

imaging and near infrared spectroscopy. NeuroImage, 20(1), 145–158. 

https://doi.org/10/dqc4f8 

Morey, R. D. (2008). Confidence Intervals from Normalized Data: A correction to 

Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4, 61–64. 

Mormann, F., & Koch, C. (2007). Neural correlates of consciousness. Scholarpedia, 

2(12), 1740. https://doi.org/10.4249/scholarpedia.1740 



 References 

 127 

Mullen, T. (2012). NITRC: CleanLine: Tool/Resource Info. Retrieved March 24, 

2018, from https://www.nitrc.org/projects/cleanline/ 

Müller, M. M., Gundlach, C., Forschack, N., & Brummerloh, B. (2018). It takes two 

to tango: Suppression of task-irrelevant features requires (spatial) competition. 

NeuroImage, 178, 485–492. https://doi.org/10/gdm3gf 

Müller, N. G., & Kleinschmidt, A. (2004). The attentional “spotlight’s” penumbra: 

center-surround modulation in striate cortex. Neuroreport, 15(6), 977–980. 

Müller, N. G., Mollenhauer, M., Rösler, A., & Kleinschmidt, A. (2005). The 

attentional field has a Mexican hat distribution. Vision Research, 45(9), 1129–1137. 

https://doi.org/10.1016/j.visres.2004.11.003 

Nagel, T. (1974). What Is It Like to Be a Bat? The Philosophical Review, 83(4), 435–

450. https://doi.org/10.2307/2183914 

Neuper, C., & Klimesch, W. (2006). Event-Related Dynamics of Brain Oscillations. 

Elsevier. 

Nierhaus, T., Forschack, N., Piper, S. K., Holtze, S., Krause, T., Taskin, B., … 

Villringer, A. (2015). Imperceptible Somatosensory Stimulation Alters Sensorimotor 

Background Rhythm and Connectivity. The Journal of Neuroscience, 35(15), 5917–5925. 

https://doi.org/10/f68v8z 

Nierhaus, T., Schön, T., Becker, R., Ritter, P., & Villringer, A. (2009). Background 

and evoked activity and their interaction in the human brain. Magnetic Resonance Imaging, 

27(8), 1140–1150. https://doi.org/10/dhhztx 

Nikouline, V. V., Linkenkaer-Hansen, K., Wikström, H., Kesäniemi, M., Antonova, 

E. V., Ilmoniemi, R. J., & Huttunen, J. (2000). Dynamics of mu-rhythm suppression 

caused by median nerve stimulation: a magnetoencephalographic study in human 

subjects. Neuroscience Letters, 294(3), 163–166. https://doi.org/10/drqtpn 

Nikouline, V. V., Wikström, H., Linkenkaer-Hansen, K., Kesäniemi, M., Ilmoniemi, 

R. J., & Huttunen, J. (2000). Somatosensory evoked magnetic fields: relation to pre-

stimulus mu rhythm. Clinical Neurophysiology, 111(7), 1227–1233. 

https://doi.org/10/fckdwc 

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh 

inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-

3932(71)90067-4 



 

128 

Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-

resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713–719. 

https://doi.org/10/b2d2kv 

Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2011). AMICA: An Adaptive 

Mixture of Independent Component Analyzers with Shared Components. 

Palva, S., Linkenkaer-Hansen, K., Näätänen, R., & Palva, J. M. (2005). Early Neural 

Correlates of Conscious Somatosensory Perception. The Journal of Neuroscience, 25(21), 

5248–5258. https://doi.org/10/cn2nwt 

Palva, S., & Palva, J. M. (2007). New vistas for α-frequency band oscillations. Trends 

in Neurosciences, 30(4), 150–158. https://doi.org/10/b3d87m 

Papo, D. (2013). Why should cognitive neuroscientists study the brain’s resting 

state? Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00045 

Park, H.-D., & Tallon-Baudry, C. (2014). The neural subjective frame: from bodily 

signals to perceptual consciousness. Phil. Trans. R. Soc. B, 369(1641), 20130208. 

https://doi.org/10/gc3h4x 

Pei, Y.-C., Denchev, P. V., Hsiao, S. S., Craig, J. C., & Bensmaia, S. J. (2009). 

Convergence of Submodality-Specific Input Onto Neurons in Primary Somatosensory 

Cortex. Journal of Neurophysiology, 102(3), 1843–1853. https://doi.org/10/dbwmjj 

Peters, M. A. K., & Lau, H. (2016). Human observers have optimal introspective 

access to perceptual processes even for visually masked stimuli. ELife, 4, e09651. 

https://doi.org/10.7554/eLife.09651 

Pfurtscheller, G. (1989). Functional Topography During Sensorimotor Activation 

Studied with Event-Related Desynchronization Mapping. Journal of Clinical 

Neurophysiology, 6(1). Retrieved from 

http://journals.lww.com/clinicalneurophys/Fulltext/1989/01000/Functional_Topog

raphy_During_Sensorimotor.3.aspx 

Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG 

synchronization and desynchronization: basic principles. Clinical Neurophysiology, 

110(11), 1842–1857. 

Pitts, M. A., Metzler, S., & Hillyard, S. A. (2014). Isolating neural correlates of 

conscious perception from neural correlates of reporting one’s perception. Consciousness 

Research, 5, 1078. https://doi.org/10.3389/fpsyg.2014.01078 



 References 

 129 

Prinz, W. (2017a). Bewusstsein - was ist das? Woher kommt es? Und was würde uns 

eigentlich fehlen, wenn wir es nicht hätten? Spektrum Der Wissenschaft, 58–63. 

Prinz, W. (2017b). Modeling self on others: An import theory of subjectivity and 

selfhood. Consciousness and Cognition, 49(Supplement C), 347–362. 

https://doi.org/10/f9zp6d 

R Core Team. (2014). R: A Language and Environment for Statistical Computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-

project.org/ 

Ray, P. G., Meador, K. J., Smith, J. R., Wheless, J. W., Sittenfeld, M., & Clifton, G. 

L. (1999a). Physiology of perception: cortical stimulation and recording in humans. 

Neurology, 52(5), 1044–1049. 

Ray, P. G., Meador, K. J., Smith, J. R., Wheless, J. W., Sittenfeld, M., & Clifton, G. 

L. (1999b). Physiology of perception: cortical stimulation and recording in humans. 

Neurology, 52(5), 1044–1049. 

Reinacher, M., Becker, R., Villringer, A., & Ritter, P. (2009). Oscillatory brain states 

interact with late cognitive components of the somatosensory evoked potential. Journal 

of Neuroscience Methods, 183(1), 49–56. https://doi.org/10/d7xqgd 

Reingold, E. (1988). Using direct and indirect measures to study perception without 

awareness. Perception & Psychophysics, 44(6), 563–575. 

Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To See or Not to See: The 

Need for Attention to Perceive Changes in Scenes. Psychological Science, 8, 368–373. 

https://doi.org/10/b8q55b 

Reynolds, J. H., & Heeger, D. J. (2009). The Normalization Model of Attention. 

Neuron, 61(2), 168–185. https://doi.org/10.1016/j.neuron.2009.01.002 

Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta EEG 

rhythms’ strengths are inversely related to fMRI-BOLD signal in primary 

somatosensory and motor cortex. Human Brain Mapping, 30(4), 1168–1187. 

https://doi.org/10/czz97v 

Roberts, D. M., Fedota, J. R., Buzzell, G. A., Parasuraman, R., & McDonald, C. G. 

(2014). Prestimulus Oscillations in the Alpha Band of the EEG Are Modulated by the 

Difficulty of Feature Discrimination and Predict Activation of a Sensory Discrimination 

Process. Journal of Cognitive Neuroscience, 26(8), 1615–1628. https://doi.org/10/gc3h6w 



 

130 

Rossetti, Y., Rode, G., & Boisson, D. (1995). Implicit processing of somaesthetic 

information: a dissociation between where and how? NeuroReport, 6(3), 506. 

Rouder, J. N., & Morey, R. D. (2011). A Bayes factor meta-analysis of Bem’s ESP 

claim. Psychonomic Bulletin & Review, 18(4), 682–689. https://doi.org/10/bs497m 

Rouder, J. N., Morey, R. D., Speckman, P. L., & Pratte, M. S. (2007). Detecting 

chance: a solution to the null sensitivity problem in subliminal priming. Psychonomic 

Bulletin & Review, 14(4), 597–605. 

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). 

Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & 

Review, 16(2), 225–237. https://doi.org/10.3758/PBR.16.2.225 

Ruhnau, P., Hauswald, A., & Weisz, N. (2014). Investigating ongoing brain 

oscillations and their influence on conscious perception – network states and the 

window to consciousness. Consciousness Research, 5, 1230. https://doi.org/10/gc3h7v 

Ruzzoli, M., & Soto-Faraco, S. (2014). Alpha Stimulation of the Human Parietal 

Cortex Attunes Tactile Perception to External Space. Current Biology, 24(3), 329–332. 

https://doi.org/10/f5rvxv 

Samaha, J. (2015). How best to study the function of consciousness? Frontiers in 

Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00604 

Sandberg, K., Timmermans, B., Overgaard, M., & Cleeremans, A. (2010). 

Measuring consciousness: Is one measure better than the other? Consciousness and 

Cognition, 19(4), 1069–1078. https://doi.org/10/bpgqtc 

Sathian, K., & Burton, H. (1991). The role of spatially selective attention in the 

tactile perception of texture. Perception & Psychophysics, 50(3), 237–248. 

https://doi.org/10/cpj75d 

Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, 

S., … Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated 

with human EEG alpha activity. European Journal of Neuroscience, 22(11), 2917–2926. 

https://doi.org/10.1111/j.1460-9568.2005.04482.x 

Scheeringa, R., Petersson, K. M., Kleinschmidt, A., Jensen, O., & Bastiaansen, M. 

C. M. (2012). EEG Alpha Power Modulation of fMRI Resting-State Connectivity. Brain 

Connectivity, 2(5), 254–264. https://doi.org/10/gc3h8f 

Schmidt, T., & Vorberg, D. (2006). Criteria for unconscious cognition: three types 

of dissociation. Perception & Psychophysics, 68(3), 489–504. 



 References 

 131 

Schröger, E., Marzecová, A., & SanMiguel, I. (2015). Attention and prediction in 

human audition: a lesson from cognitive psychophysiology. European Journal of 

Neuroscience, 41(5), 641–664. https://doi.org/10/f63vcj 

Schubert, R., Blankenburg, F., Lemm, S., Villringer, A., & Curio, G. (2006). Now 

you feel it—now you don’t: ERP correlates of somatosensory awareness. Psychophysiology, 

43(1), 31–40. https://doi.org/10.1111/j.1469-8986.2006.00379.x 

Schubert, R., Haufe, S., Blankenburg, F., Villringer, A., & Curio, G. (2008). Now 

You’ll Feel It, Now You Won’t: EEG Rhythms Predict the Effectiveness of Perceptual 

Masking. Journal of Cognitive Neuroscience, 21(12), 2407–2419. https://doi.org/10/b9ggn9 

Schubert, R., Ritter, P., Wüstenberg, T., Preuschhof, C., Curio, G., Sommer, W., & 

Villringer, A. (2008). Spatial Attention Related SEP Amplitude Modulations Covary 

with BOLD Signal in S1—A Simultaneous EEG—fMRI Study. Cerebral Cortex, 18(11), 

2686–2700. https://doi.org/10.1093/cercor/bhn029 

Sedley, W., Gander, P. E., Kumar, S., Kovach, C. K., Oya, H., Kawasaki, H., … 

Griffiths, T. D. (2016). Neural signatures of perceptual inference. ELife, 5, e11476. 

https://doi.org/10/gc3h8n 

Shevrin, H. (1973). Brain wave correlates of subliminal stimulation, unconscious 

attention, primary- and secondary-process thinking, and repressiveness. Psychological 

Issues, 8(2), 56–87. 

Shevrin, Howard. (2001). Event-related markers of unconscious processes. 

International Journal of Psychophysiology, 42(2), 209–218. https://doi.org/10.1016/S0167-

8760(01)00165-9 

Silverstein, B. H., Snodgrass, M., Shevrin, H., & Kushwaha, R. (2015a). P3b, 

consciousness, and complex unconscious processing. Cortex, 73, 216–227. 

https://doi.org/10/8v5 

Silverstein, B. H., Snodgrass, M., Shevrin, H., & Kushwaha, R. (2015b). P3b, 

consciousness, and complex unconscious processing. Cortex, 73, 216–227. 

https://doi.org/10/8v5 

Simons, D. J., & Chabris, C. F. (1999). Gorillas in Our Midst: Sustained 

Inattentional Blindness for Dynamic Events. Perception, 28(9), 1059–1074. 

https://doi.org/10/gdh8td 



 

132 

Singer, W., & Gray, C. M. (1995). Visual Feature Integration and the Temporal 

Correlation Hypothesis. Annual Review of Neuroscience, 18(1), 555–586. 

https://doi.org/10.1146/annurev.ne.18.030195.003011 

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: 

Addressing problems of smoothing, threshold dependence and localisation in cluster 

inference. NeuroImage, 44(1), 83–98. 

https://doi.org/10.1016/j.neuroimage.2008.03.061 

Snodgrass, M., Bernat, E., & Shevrin, H. (2004). Unconscious perception: A model-

based approach to method and evidence. Perception & Psychophysics, 66(5), 846–867. 

https://doi.org/10.3758/BF03194978 

Snodgrass, M., & Shevrin, H. (2006). Unconscious inhibition and facilitation at the 

objective detection threshold: Replicable and qualitatively different unconscious 

perceptual effects. Cognition, 101(1), 43–79. 

https://doi.org/10.1016/j.cognition.2005.06.006 

Soon, C. S., Brass, M., Heinze, H.-J., & Haynes, J.-D. (2008). Unconscious 

determinants of free decisions in the human brain. Nature Neuroscience, 11(5), 543–545. 

https://doi.org/10/cs3rzv 

Spence, C. J., & Driver, J. (1994). Covert spatial orienting in audition: Exogenous 

and endogenous mechanisms. Journal of Experimental Psychology: Human Perception and 

Performance, 20(3), 555. https://doi.org/10/bd2fpg 

Spence, C., Kettenmann, B., Kobal, G., & McGlone, F. P. (2001). Shared attentional 

resources for processing visual and chemosensory information. The Quarterly Journal of 

Experimental Psychology Section A, 54(3), 775–783. https://doi.org/10/bjjt68 

Spence, C., & Parise, C. (2010). Prior-entry: A review. Consciousness and Cognition, 

19(1), 364–379. https://doi.org/10/cz4rb5 

Spence, C., Pavani, F., & Driver, J. (2000). Crossmodal links between vision and 

touch in covert endogenous spatial attention. J Exp Psychol Hum Percept Perform. 

Journal of Experimental Psychology. Human Perception and Performance, 26(4), 1298–1319. 

https://doi.org/10.1037//0096-1523.26.4.1298 

Sperdin, H. F., Spierer, L., Becker, R., Michel, C. M., & Landis, T. (2014). 

Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses. 

Human Brain Mapping, 36(4), 1470–1483. https://doi.org/10.1002/hbm.22716 



 References 

 133 

Squires, K. C., Hillyard, S. A., & Lindsay, P. H. (1973). Vertex potentials evoked 

during auditory signal detection: Relation to decision criteria. Perception & Psychophysics, 

14(2), 265–272. https://doi.org/10/fj4b82 

Stevens, S. S. (Ed.). (1951). Handbook of Experimental Psychology. New York: John 

Wiley & Sons Inc. 

Suffczynski, P., Kalitzin, S., Pfurtscheller, G., & Lopes da Silva, F. H. (2001). 

Computational model of thalamo-cortical networks: dynamical control of alpha 

rhythms in relation to focal attention. International Journal of Psychophysiology, 43(1), 25–40. 

https://doi.org/10.1016/S0167-8760(01)00177-5 

Summerfield, C., & Egner, T. (2014). Attention and Decision-Making. Retrieved 

from 

http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199675111.001.00

01/oxfordhb-9780199675111-e-018 

Swets, J. A. (1961). Is There a Sensory Threshold? Science, 134(3473), 168–177. 

https://doi.org/10.1126/science.134.3473.168 

Swets, J. A. (1964). Signal detection and recognition by human observers. New York: Wiley. 

Tanner, W. P., & Swets, J. A. (1954). A decision-making theory of visual detection. 

Psychological Review, 61(6), 401–409. 

Taskin, B., Holtze, S., Krause, T., & Villringer, A. (2008). Inhibitory impact of 

subliminal electrical finger stimulation on SI representation and perceptual sensitivity 

of an adjacent finger. NeuroImage, 39(3), 1307–1313. https://doi.org/10/dr7gc8 

Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). α-Band 

Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention 

Bias and Predicts Visual Target Detection. The Journal of Neuroscience, 26(37), 9494–9502. 

https://doi.org/10.1523/JNEUROSCI.0875-06.2006 

Tononi, G., & Koch, C. (2015). Consciousness: here, there and everywhere? 

Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370(1668), 

20140167. https://doi.org/10/gc3h8c 

Treue, S. (2014). Attentional Selection: Mexican Hats Everywhere. Current Biology, 

24(18), R838–R839. https://doi.org/10/gc3h8q 

Vallbo, A. B., & Johansson, R. S. (1984). Properties of cutaneous mechanoreceptors 

in the human hand related to touch sensation. Human Neurobiology, 3(1), 3–14. 



 

134 

van Ede, F., Szebényi, S., & Maris, E. (2014). Attentional modulations of 

somatosensory alpha, beta and gamma oscillations dissociate between anticipation and 

stimulus processing. NeuroImage, 97, 134–141. https://doi.org/10/gc3h68 

Verleger, R. (2010). Markers of awareness? EEG potentials evoked by faint and 

masked events, with special reference to the “attentional blink.” In I. Czigler & I. 

Winkler (Eds.), Unconscious Memory Representations in Perception: Processes and Mechanisms in 

the Brain. Amsterdam/ Philadelphia: John Benjamins Publishing Company. 

Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., & 

Logothetis, N. (2011). Attention But Not Awareness Modulates the BOLD Signal in 

the Human V1 During Binocular Suppression. Science, 334(6057), 829–831. 

https://doi.org/10.1126/science.1203161 

Weiskrantz, L. (2007). Blindsight. Scholarpedia, 2(4), 3047. 

https://doi.org/10.4249/scholarpedia.3047 

Weisz, N., Müller, N., Jatzev, S., & Bertrand, O. (2014). Oscillatory Alpha 

Modulations in Right Auditory Regions Reflect the Validity of Acoustic Cues in an 

Auditory Spatial Attention Task. Cerebral Cortex, 24(10), 2579–2590. 

https://doi.org/10/f6mqbc 

Weisz, N., Wühle, A., Monittola, G., Demarchi, G., Frey, J., Popov, T., & Braun, 

C. (2014). Prestimulus oscillatory power and connectivity patterns predispose conscious 

somatosensory perception. Proceedings of the National Academy of Sciences, 111(4), E417–

E425. https://doi.org/10.1073/pnas.1317267111 

Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for 

electrophysiological data – a practical approach. Journal of Neuroscience Methods, 250, 34–

46. https://doi.org/10/f7g3rd 

Wiens, S. (2008). Concepts of visual consciousness and their    

  measurement. Advances in Cognitive Psychology, 3(1–2), 349–359. 

https://doi.org/10.2478/v10053-008-0035-y 

Wöstmann, M., Herrmann, B., Maess, B., & Obleser, J. (2016). Spatiotemporal 

dynamics of auditory attention synchronize with speech. Proceedings of the National 

Academy of Sciences, (113), 3873–3878. https://doi.org/10.1073/pnas.1523357113 

Wu, C.-T., Weissman, D. H., Roberts, K. C., & Woldorff, M. G. (2007). The neural 

circuitry underlying the executive control of auditory spatial attention. Brain Research, 

1134, 187–198. https://doi.org/10/bd2br3 



 References 

 135 

Wühle, A., Mertiens, L., Rüter, J., Ostwald, D., & Braun, C. (2010). Cortical 

processing of near-threshold tactile stimuli: An MEG study. Psychophysiology, 47(3), 523–

534. https://doi.org/10.1111/j.1469-8986.2010.00964.x 

Yin, S., Liu, Y., & Ding, M. (2016). Amplitude of Sensorimotor Mu Rhythm Is 

Correlated with BOLD from Multiple Brain Regions: A Simultaneous EEG-fMRI 

Study. Frontiers in Human Neuroscience, 10. https://doi.org/10/gc5vpr 

Zhang, Y., & Ding, M. (2009). Detection of a Weak Somatosensory Stimulus: Role 

of the Prestimulus Mu Rhythm and Its Top–Down Modulation. Journal of Cognitive 

Neuroscience, 22(2), 307–322. https://doi.org/10/dnz6pp 

Zopf, R., Giabbiconi, C. M., Gruber, T., & Müller, M. M. (2004). Attentional 

modulation of the human somatosensory evoked potential in a trial-by-trial spatial 

cueing and sustained spatial attention task measured with high density 128 channels 

EEG. Cognitive Brain Research, 20(3), 491–509. https://doi.org/10/cc6rfq 

  



 

136 

  



 Summary 

 137 

Summary 

 

Introduction 

Humans are in touch with themselves (Metzinger, 2004). With touch, we explore our 

surrounding environment and distinguish us from it. For this, the sense of touch 

provides a unique heterogeneous structure comprised of a variety of mechano-, chemo-

, thermoreceptors as well as noci- and proprioceptors. Continuously exposed to sensory 

input, we may miss tactile stimuli, no matter how much attention we pay to them. Under 

optimal conditions, however, humans may consciously perceive skin indentations of the 

fingertip as small as 11 µm (Johansson & Vallbo, 1979). This thesis examines the 

possibility of sensory events escaping conscious access and the puzzling question 

whether there are correlates of such unconscious sensations in the brain. What do these 

neural markers—or the absence of those that are present during conscious 

perception—tell us about the mechanisms precluding awareness and what is the role of 

cognitive factors, foremost attention, in modulating such perceptual processes. The 

present dissertation comprises four empirical studies investigating behavioral responses 

and neural activity using electroencephalography (EEG) in humans that receive 

somatosensory stimulation. First of all, it is investigated in which range electrical 

impulses on the finger nerves can no longer be detected consciously. Secondly, this 

thesis demonstrates how neuronal correlates of undetectable stimulation dissociate 

from neuronal correlates of detectable stimulation.; and thirdly, it shows that selective 

attention affects the neuronal representation of somatosensory stimuli independently 

of their detectability, which supports the assumption of a general and consciousness-

independent neuronal signature for the distribution of attention (Koch & Tsuchiya, 

2007).  

There are two common ways to render stimuli undetectable. One is backward 

masking, in which a shortly presented target stimulus turns invisible when another non-

target stimulus follows within tens of a seconds (Enns & Lollo, 2000). However, 

masking may preclude observations unique to early neural processes that are unique for 

processing unmasked but undetectable stimulation. Thus, the present studies employ 

another method that limits stimulation energy as a function of stimulus intensity and 
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duration to control the detectability of stimuli (Iliopoulos et al., 2014; Shevrin, 2001). 

Two studies (n = 22) in this thesis, therefore, carefully validate the threshold assessment 

procedure, which sets the stimulation parameters for each observer individually. A 

particular challenge is to show that a specific stimulus intensity cannot be detected, i.e., 

more precisely, that the detection rate for that stimulus is no different from chance. 

Testing this null hypothesis (NH) cannot be carried out with classical test theoretical 

methods, which were constructed to reject the NH, but not to confirm it.. Instead, in 

the present thesis, Bayes factor statistics evaluate the empirical support for the chance 

level performance (i.e., the NH) of putative undetectable stimuli against above chance 

performance (i.e., the alternative hypothesis, AH). 

In two subsequent studies (n = 80), this thesis investigates the neural responses of 

the processing of undetectable stimulation, what the difference is to the processing of 

detectable stimulation, and whether and how selective spatial attention modulates the 

neural signal of stimuli that are adjusted to escape conscious perception. The high 

temporal resolution of the EEG allows studying temporally distinct neural mechanisms 

of stimulus processing and attention: single successive stimulus-locked somatosensory 

evoked potentials (SEP) in the EEG can change along different stimulation intensities, 

with stimulus detection and by different attention states. In addition, brain oscillations 

both before and shortly after a stimulus may mediate the top-down deployment of 

selective spatial attention. In general, this thesis asks to what extent the neural responses 

to different stimulation intensities distinguish from neural responses that correlate with 

stimulus awareness and selective attention. 

 

Experiments and results 

Study I establishes a fast and reliable, manual threshold assessment procedure to 

estimate observers’ absolute detection thresholds (ADTH) below which they provide 

random detection rates. It shows that the intensity of just noticable stimulation (i.e., at 

ADTH) is lower with short repetitive pulse trains than with single pulses. Defining 

subthreshold stimulus intensities relative to the ADTH of pulse trains lowers the 

sensory evidence for the same stimulation intensities of single electrical pulses and thus 

minimizes possible effects of partial consciousness. Therefore, stimulus intensities in all 

subsequent experiments were derived from threshold assessments applying a higher 

repetition rate (here 7 Hz) of electrical pulses than in the actual experiments.  
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Study II validates this threshold assessment procedure by applying a One-

Alternative-Forced-Choice-(1AFC, i.e., yes-no detection) task for stimuli ranging from 

intensities below absolute detection threshold to intensities clearly above but still below 

the pain threshold. Importantly, the design includes trials without any stimulation (catch 

trials) to allow for the estimation of perceptual sensitivity (d-prime) and response bias 

(criterion) according to signal detection theory, and validates the chance performance 

for stimulation intensities below ADTH (i.e., subthreshold) statistically by Bayes factor 

null-hypothesis testing. The results indicate that there is a physical range of electrical 

stimulation intensities that cannot be detected because the statistical evidence for 

detection rates at random level after sub-threshold stimulation indicated by the Bayes 

factor reliably outweighs the statistical evidence for detection rates above random level. 

Study III asks whether there are measurable neural correlates of subthreshold 

stimulation intensities. If so, are there qualitative differences between stimulation below 

and above ADTH concerning the stimulus-evoked response and oscillatory activity that 

could prevent access to conscious experience in the case of subthreshold stimulation? 

Furthermore, this study tests, which features of the earliest neural responses (amplitude 

and latency of the SEP) after somatosensory stimulation are predictive of its detection 

and how these post-stimulus features interact with pre-stimulus intrinsic oscillatory 

activity in the alpha-band that has been surmised to regulate the excitability of sensory 

cortices awaiting stimulus input? Study III was therefore designed as an EEG adaptation 

of study II and investigates these neural stimulus-related responses for various 

stimulation intensities. For the subthreshold stimuli, there was only one P50 component 

50 ms after stimulation, but no further event-related potentials, thereby replicating 

previous research (Libet et al., 1967; Ray et al., 1999; Nierhaus et al., 2015; Forschack 

et al., 2017). The P50 amplitude scaled with increasing stimulation intensities but was 

not predictive for stimulus detection for the two highest stimulation intensities. A 

stronger negative potential 150 ms after stimulus onset (N150) together with the pre-

stimulus somatosensory alpha (i.e., mu) amplitude best explains perceptual awareness 

of somatosensory stimulation. 

Selective attention plays a crucial role in stimulus detection by amplifying the task-

relevant neural responses and suppressing task-irrelevant noise (Desimone & Duncan, 

1995; Hillyard et al., 1973). In addition, attention affects both SEPs and alpha-band 

activity. Therefore, study IV examines the modulatory role of selective spatial attention 
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in somatosensory stimulus processing across awareness conditions by its relation to 

early SEPs and oscillatory mu-alpha activity. The results reveal that attention increases 

the amplitude for the P50 component to both detectable and undetectable stimulation 

and foster the view of attention and awareness being two separate and mostly 

independent mechanisms. In addition, pre-stimulus mu amplitudes (pre-mu) interact 

with stimulus-evoked responses.  

Interestingly, pre-mu activity affects both behavioral responses and SEP 

amplitudes, the latter differentially depending on the attentional state: With spatial 

attention there is a negative quadratic relationship between pre-mu and evoked 

amplitudes whereas without spatial attention the relationship is positive quadratic. I.e., 

Intermediate and higher pre-mu amplitudes go along with large evoked activity during 

spatial attention and small evoked activity without attention. This result pattern suggests 

that pre-mu amplitude and attention are interrelated but are not functionally matching. 

 

Discussion 

This work strongly supports the view that neural responses to undetectable 

somatosensory stimulation are a valid source of information to understand the 

underpinnings of functional brain activity. Undetectable somatosensory stimulation 

applied here was tuned to intensities 30–15% below ADTH and reliably produced 

sensitivity values of zero. Nevertheless, these subthreshold stimuli led to a positive 

potential change about 50 milliseconds after their onset, the P50. Apart from this early 

component, no further significant deflection was observed. The data in the present 

thesis and in earlier collaborative work indicate a qualitative different processing of 

undetectable compared to detectable somatosensory stimulation in several aspects: (1) 

the absence of late components (study 3, 4 and Nierhaus et al., 2015), especially the 

N150 that is indicative of stimulus detection (study 3), (2) increased but not decreased 

stimulus-related somatosensory alpha amplitudes (study 4), (3) decreased instead of 

increased BOLD activity (Blankenburg et al., 2003) and (4) reduced functional 

connectivity of primary somatosensory cortex with areas associated with conscious and 

higher somatosensory processing (Nierhaus et al., 2015). In summary, one can speculate 

that this result pattern indicates a shift in the balance between neural excitation and 

inhibition (Isaacson, Scanziani, 2011) in favor of inhibition, which prevents stimulus 

detection in later processing phases, as Nierhaus et al. (2015) have argued. 
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The absence of the N150 for subthreshold, i.e., undetectable, stimulation then could 

point to an unmodulated connection between primary sensory cortices relative to 

baseline activity or even to reduced connectivity of S1 with the frontal-parietal network 

(Nierhaus et al., 2015) compared to detectable stimulation (Auksztulewicz et al., 2012). 

Furthermore, the presence of the N150 seems to be independent of the experimental 

context since Nierhaus and colleagues (2015) did not require participants to engage in 

a detection task but instead let them passively observe suprathreshold, i.e., detectable, 

stimulation. The presence of the N150 after passively perceived detectable stimulation 

makes this EEG component a candidate for a proper neural correlate of consciousness 

(Aru et al., 2012; Verleger, 2010). 

For an earlier time range, however, this thesis reports an attention modulation of 

the P50, and this modulation is independent of stimulus detection (study 4). In this 

sense, the results reject theories that envisage attention as a gating mechanism that 

places unconscious perception and selective attention on the endpoints of a continuum 

(Brigard & Prinz, 2010; Dixon, 1971). This means that attention does not shield the 

brain from faint but potentially task-relevant information as long as this information 

proceeds along the same feedforward processing pathway on which attention is 

currently focused (Forschack et al., 2017). In addition, this also foils theoretical accounts 

viewing attention sufficient for consciousness (Brigard & Prinz, 2010). Instead, 

although attention is not a uniform phenomenon and the current results shed some 

light on one, but arguably central, aspect of it, namely focused selective attention (James, 

1890), early P50 modulation by attention under no sign of stimulus detection strongly 

speaks for an independence of attention and consciousness. 

The current data is best explained by two alternative but complementary accounts 

that describe attention and consciousness as two independent but interrelated concepts 

(Dehaene et al., 2006; Kiefer, 2012; Kiefer & Martens, 2010). In the Dehaene model, 

the extent to which a stimulus is processed and eventually detected depends on its 

bottom-up stimulus strength and the amount of attention resources available. In this 

scheme, weak stimuli remain unnoticed regardless how much attention resources are 

available, which is consistent with the attentional modulation of subthreshold stimulus 

ERPs in study 4. If stimuli are strong enough in principal, observers may not be aware 

of them yet, as long as attention is occupied elsewhere. Markus Kiefer‘s attentional 

sensitization model builds on Dehaene’s taxonomy and expands on it, especially 
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concerning the question of how attention modulation is implemented in the processing 

of undetectable stimulation. Regardless of whether the stimulus is consciously perceived 

or not, the mechanism of attention control is the same: “processing of task-relevant 

pathways is enhanced by increasing the gain of neurons in the corresponding areas, 

whereas the processing of task-irrelevant pathways is attenuated by a decrease of the 

gain” (Kiefer, 2012; Kiefer & Martens, 2010). 

In contrast to the absence of stimulus-induced mu amplitude modulations by 

attention, pre-stimulus mu amplitudes may be relevant for the allocation of attention 

resources. This link was shown in both the study by Ede, Lange and Maris (2014) and 

here in study 4 as relatively larger pre-Mu amplitudes with unattended compared to 

attended fingers. However, the relationship of alpha and attention regarding early 

sensory stimulus processing does not appear to be proportional, since the size of the 

P50 at the same alpha amplitude is either at maximum or minimum, depending on the 

attentional state (Forschack et al., 2017). In fact, alpha-band modulations have been 

shown to correlate with attentional performance increases, especially for designs 

employing anticipatory attention. Thus, one conclusion is that alpha does not reflect 

attention in general, but can refer to specific aspects of it (Klimesch, 2012), or to the 

the respective task context (van Ede et al., 2014). 
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Zusammenfassung 

 

Einleitung 

Der Tastsinn erlaubt es dem Menschen, die nahe Umgebung zu „begreifen“ und sich 

selbst von dieser zu unterscheiden. Dafür bietet der Tastsinn eine einzigartige 

heterogene Struktur, die aus einer Vielzahl von Mechano-, Chemo-, Thermorezeptoren 

sowie Nozi- und Propriozeptoren besteht. Unablässig dem Strom sensorischer Reize 

ausgesetzt, können diese uns unbemerkt beeinflussen, egal wie viel Aufmerksamkeit wir 

ihnen schenken. Unter optimalen Bedingungen hingegen kann der Mensch eine 

Verformung der Fingerspitze von nicht mehr als 11 µm bewusst wahrnehmen 

(Johansson & Vallbo, 1979). Diese Arbeit untersucht den Bereich der nicht 

bewusstseinsfähigen sensorischen Reize und geht der Frage nach, ob es Korrelate 

solcher unbewussten Empfindungen im Gehirn gibt. Welche Rückschlüsse erlauben 

diese neuronalen Indikatoren—oder das Fehlen derer, die während bewusster 

Wahrnehmung vorhanden sind—auf Mechanismen, welche die bewusste 

Wahrnehmung taktiler Reize verhindern; und welche Rolle spielen kognitive Faktoren, 

vor allem Aufmerksamkeit, bei der Modulation solcher Wahrnehmungsprozesse? Die 

vorliegende Dissertation umfasst vier empirische Studien, die sowohl 

Verhaltensreaktionen als auch neuronale Aktivität—gemessen mittels 

Elektroenzephalographie (EEG)—beim Menschen unter somatosensorischer 

Stimulation untersuchen. Zunächst wird untersucht, in welchem Bereich elektrische 

Impulse an den Fingernerven nicht mehr bewusst detektiert werden können. Zweitens 

zeigt diese Arbeit, wie sich neuronale Korrelate nicht detektierbarer Stimulation von 

neuronalen Korrelaten detektierbarer Stimulation dissoziieren; und drittens, dass 

selektive Aufmerksamkeit die neuronale Repräsentation von somatosensorischen 

Reizen unabhängig ihrer Detektierbarkeit beeinflusst und dies die Annahme einer 

allgemeinen und bewusstseinsunabhängigen neuronalen Signatur für die Verteilung von 

Aufmerksamkeit unterstützt (Koch & Tsuchiya, 2007). 

Es gibt zwei gängige Methoden, Reize so zu präsentieren, dass diese bewusst nicht 

wahrgenommen werden. Eine davon ist die sog. rückwärtsgerichtete Maskierung, bei 

der ein kurz dargestellter Zielreiz unsichtbar wird, wenn innerhalb von 

Zehntelsekunden ein weiterer Reiz folgt (Enns & Lollo, 2000). Dadurch kann die 
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Maskierung jedoch frühe neuronale Prozesse verdecken, die für die Verarbeitung 

unmaskierter aber nicht detektierbarer Stimulation einzigartig sind. Daher wenden die 

vorliegenden Studien eine andere Methode an, welche die Stimulationsenergie als 

Funktion der Stimulusintensität und -dauer einschränkt, um die Detektierbarkeit von 

Reizen zu kontrollieren (Iliopoulos et al., 2014; Shevrin, 2001). Zwei Studien (n = 22) 

dieser Arbeit validieren sorgfältig das Verfahren zur Schwellenwertbestimmung, mit 

dem die Stimulationsparameter für jeden Beobachter individuell eingestellt werden. 

Eine besondere Herausforderung besteht darin, zu zeigen, dass eine bestimmte 

Reizstärke nicht erfasst werden kann, d. h. genauer gesagt, dass sich die Detektionsrate 

auf diesen Reiz nicht vom Zufall unterscheidet. Die Überprüfung dieser Nullhypothese 

(NH) kann nicht mit klassischen testtheoretischen Verfahren durchgeführt werden, 

welche daraufhin konstruiert wurden die NH zurückzuweisen, jedoch nicht zu 

bestätigen. Stattdessen setzen die Bayes-Faktor-Statistiken in der vorliegenden Arbeit 

die Wahrscheinlichkeit, dass die Detektionsraten für eine vermeintlich nicht bewusst 

wahrnehmbare Reizintensität auf Zufallsniveau liegen (d. h. die NH) ins Verhältnis zur 

Wahrscheinlichkeit, dass diese über dem Zufall liegen (d. h. die Alternativhypothese, 

AH). 

In zwei weiteren Studien (n = 80) untersucht diese Arbeit die neuronalen Korrelate 

der Verarbeitung nicht detektierbarer Stimulation, was der Unterschied zur 

Verarbeitung detektierbarer Stimulation ist, und ob und wie selektive räumliche 

Aufmerksamkeit das neuronale Signal von Reizen moduliert, die der bewussten 

Wahrnehmung stets entgehen. Die hohe zeitliche Auflösung des EEG ermöglicht die 

Untersuchung zeitlich unterschiedlicher neuronaler Mechanismen der Reizverarbeitung 

und der Aufmerksamkeit: Einzelne somatosensorisch evozierte Potentiale (SEP) im 

EEG können sich entlang verschiedener Stimulationsintensitäten, mit der 

Stimulusdetektion und durch verschiedene Aufmerksamkeitszustände verändern. 

Darüber hinaus könnten Oszillationen des Gehirns sowohl vor, als auch kurz nach 

einem Stimulus den Top-down-Einsatz selektiver räumlicher Aufmerksamkeit 

vermitteln. Im Allgemeinen fragt diese Arbeit, inwieweit sich die neuronalen Reaktionen 

auf verschiedene Stimulationsintensitäten von neuronalen Reaktionen unterscheiden, 

die mit Reizbewusstsein und selektiver Aufmerksamkeit korrelieren. 
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Experimente und Ergebnisse 

Studie I etabliert ein schnelles und zuverlässiges, manuelles Verfahren zur 

Schwellenwertbestimmung, um die absoluten Detektionsschwellen (ADTH) der 

Beobachter abzuschätzen, unterhalb derer sie Detektionsraten auf Zufallsniveau 

erbringen. Sie zeigt, dass die Intensität der eben merklichen Stimulation (d. h. ADTH) 

bei kurzen repetitiven Impulsfolgen geringer ist als bei Einzelpulsen. Die Definition 

von unterschwelligen Reizintensitäten relativ zur ADTH von repetitiven Impulsen 

senkt die sensorische Evidenz für die gleichen Stimulationsintensitäten einzelner 

elektrischer Impulse und minimiert dadurch mögliche Auswirkungen von residualer 

bewusster Wahrnehmung. Daher wurden die Reizintensitäten in allen nachfolgenden 

Experimenten aus Schwellwertbestimmungen mit einer höheren Wiederholrate (hier 7 

Hz) der elektrischen Impulse abgeleitet als in den eigentlichen Experimenten. 

Studie II validiert dieses Schwellenwertbestimmungsverfahren durch die 

Anwendung einer One-Alternative-Forced-Choice-(1AFC, d.h. Ja-Nein-Detektions-) 

Aufgabe für Stimuli, die von Intensitäten unterhalb der absoluten Detektionsschwelle 

bis hin zu Intensitäten deutlich darüber, aber immer noch unterhalb der Schmerzgrenze 

reichen. Wichtig ist, dass das Design Versuchsdurchgänge ohne Stimulation („catch-

trials“) vorsieht, um die Bestimmung der Sensitivität (d-prime) und des Antwort-Bias 

(Kriteriums) gemäß der Signal-Entdeckungs-Theorie zu ermöglichen, und dass 

Detektionsraten auf Zufallsniveau für Stimulationsintensitäten unterhalb von ADTH 

(d. h. unterschwellig) statistisch durch den Bayes-Faktor Null-Hypothesentest 

abgesichert werden. Die Ergebnisse zeigen, dass es eine physikalische Bandbreite von 

elektrischen Stimulationsintensitäten gibt, die nicht erkannt werden können, da die 

statistische Evidenz für Detektionsraten auf Zufallsniveau nach unterschwelliger 

Stimulation—angezeigt durch den Bayes-Faktors—zuverlässig die statistische Evidenz 

für Detektionsraten über Zufallsniveau überwiegt. 

Studie III fragt, ob es messbare neuronale Korrelate der unterschwelligen 

Stimulationsintensitäten gibt. Wenn ja, gibt es qualitative Unterschiede zwischen 

Stimulation unterhalb und oberhalb der ADTH in Bezug auf das Stimulus-evozierte 

Potential und die oszillatorische Aktivität, die den Zugang zu bewusster Erfahrung im 

Falle der unterschwelligen Stimulation unterbinden könnte? Darüber hinaus testet diese 

Studie, welche Merkmale der frühesten neuronalen Reaktionen (Amplitude und Latenz 

des SEP) nach somatosensorischer Stimulation für deren Detektion prädiktiv sind und 
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wie diese Stimulus-evozierten Merkmale mit der intrinsischen oszillatorischen Aktivität 

unmittelbar vor Stimulation im Alpha-Band interagieren, von dem angenommen wird, 

dass es die Erregbarkeit der sensorischen Kortizes und damit deren Empfänglichkeit 

für die Verarbeitung externer Reize anzeigt. Studie III wurde daher als EEG-Anpassung 

der Studie II konzipiert und untersucht diese neuronalen Stimulus-bezogenen 

Reaktionen für verschiedene Stimulationsintensitäten. Für unterschwellige Reize gab es 

nur eine P50-Komponente 50 ms nach Stimulation, aber keine weiteren evozierten 

Potentiale, wodurch frühere Studien repliziert wurden (Libet et al., 1967; Ray et al., 

1999; Nierhaus et al., 2015; Forschack et al. 2017). Die P50-Amplitude vergrößerte sich 

mit zunehmender Stimulationsintensität, war jedoch für die Stimulusdetektion der 

beiden höchsten Stimulationsintensitäten nicht prädiktiv. Ein stärkeres negatives 

Potential 150 ms nach Beginn des Stimulus (N150) zusammen mit der 

somatosensorischen Alpha-Amplitude (d. h. Mu) vor dem Stimulus erklärt am besten 

die Detektion der somatosensorischen Stimulation. 

Die selektive Aufmerksamkeit spielt eine entscheidende Rolle bei der 

Stimulusdetektion, indem sie die aufgabenrelevanten neuronalen Reaktionen verstärkt 

und aufgabenunabhängiges Rauschen unterdrückt (Desimone & Duncan, 1995; 

Hillyard et al., 1973). Darüber hinaus wirkt sich Aufmerksamkeit sowohl auf SEPs als 

auch auf die Alpha-Band-Aktivität aus. Daher untersucht Studie IV den 

modulatorischen Einfluss der selektiven räumlichen Aufmerksamkeit bei der 

Verarbeitung bewusster und unbewusster somatosensorischer Stimuli anhand ihrer 

Beziehung zu frühen SEPs und der oszillatorischen Mu-Aktivität. Die Ergebnisse 

zeigen, dass die Aufmerksamkeit die Amplitude der P50-Komponente auf detektierbare 

und nicht detektierbare Stimulation erhöht und festigen die Vorstellung von zwei 

getrennten und größtenteils unabhängigen Mechanismen für Aufmerksamkeit und 

Bewusstsein. Darüber hinaus interagiert die Prä-Stimulus-Mu-(Prä-Mu) Amplitude mit 

den Stimulus-evozierten Reaktionen. 

Interessanterweise beeinflusst die Prä-Mu-Aktivität sowohl Verhaltensreaktionen 

als auch SEP-Amplituden, wobei letztere je nach Aufmerksamkeitszustand differenziert 

sind: Mit räumlicher Aufmerksamkeit besteht eine negative quadratische Beziehung 

zwischen Prä-Mu und evozierten Amplituden, während ohne räumliche 

Aufmerksamkeit die Beziehung positiv quadratisch ist. D. h., mittlere und höhere Prä-

Mu-Amplituden gehen mit großer evozierter Aktivität während räumlicher 
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Aufmerksamkeit einher und mit geringer evozierter Aktivität ohne Aufmerksamkeit. 

Dieses Ergebnismuster deutet darauf hin, dass Prä-Mu-Amplitude und Aufmerksamkeit 

interagieren, jedoch funktional nicht identisch sind. 

 

Diskussion 

Diese Arbeit unterstützt nachdrücklich die Ansicht, dass neuronale Reaktionen auf 

nicht detektierbare somatosensorische Stimulationen eine valide Informationsquelle 

sind, um die Grundlagen funktioneller Gehirnaktivität zu verstehen. Die 

unterschwellige somatosensorische Stimulation in dieser Arbeit wurde auf Intensitäten 

von 30–15% unter ADTH eingestellt und erzeugte zuverlässig Sensitivitätsswerte von 

Null. Nichtsdestotrotz führen diese nicht detektierbaren Reize etwa 50 Millisekunden 

nach ihrem Auftreten, zu einer positiven Potentialänderung, der P50. Neben dieser 

frühen Komponente wurde keine weitere signifikante Potentialveränderung 

beobachtet. Die Daten in der vorliegenden Dissertation und in früheren kooperativen 

Arbeiten deuten auf eine qualitativ unterschiedliche Verarbeitung nicht detektierbarer 

im Vergleich zu detektierbarer somatosensorischer Stimulation in mehreren Aspekten 

hin: (1) das Fehlen späterer Komponenten (Studie 3, 4 und Nierhaus et al., 2015), 

insbesondere der N150, welche die Stimulusdetektion anzeigt (Studie 3), (2) erhöhte, 

nicht aber verringerte Stimulus-bezogene somatosensorische Alpha-Amplituden 

(Studie 4), (3) verringerte statt erhöhter BOLD-Aktivität (Blankenburg et al., 2003) 

sowie (4) verringerte funktionelle Konnektivität des primären somatosensorischen 

Kortex mit Bereichen, die mit bewusster und höherer somatosensorischer Verarbeitung 

verbunden sind (Nierhaus et al., 2015). Zusammenfassend kann man spekulieren, dass 

dieses Ergebnismuster eine Verschiebung des Gleichgewichtes zwischen neuronaler 

Erregung und Hemmung (Isaacson, Scanziani, 2011) zu Gunsten neuronaler Hemmung 

anzeigt, was die Stimulusdetektion in späteren Verarbeitungsphasen verhindert, wie 

Nierhaus et al. (2015) argumentiert haben. 

Das Fehlen der N150 für unterschwellige, d. h. nicht detektierbare Stimulation, 

könnte dann auf eine unmodulierte Verbindung zwischen primären sensorischen 

Kortizes relativ zur Basisaktivität oder sogar auf eine verringerte Konnektivität von S1 

mit dem frontal-parietalen Netzwerk (Nierhaus et al., 2015) im Vergleich zu 

detektierbarer Stimulation hinweisen (Auksztulewicz et al., 2012). Darüber hinaus 

scheint die Anwesenheit der N150 unabhängig vom experimentellen Kontext zu sein, 
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da Nierhaus und Kollegen (2015) die Teilnehmer ihrer Studie keine Detektionsaufgabe 

durchführen ließen, sondern diese passiv die überschwellige, d. h. detektierbare 

Stimulation wahrnahmen. Die Anwesenheit der N150 nach passiv wahrgenommener 

detektierbarer Stimulation macht diese EEG Komponente zu einem Kandidaten für ein 

reines neuronales Korrelat des Bewusstseins (Aru et al., 2012; Verleger, 2010). 

Für eine frühere Phase der neuronalen Verarbeitung berichtet diese Arbeit jedoch 

eine Aufmerksamkeitsmodulation der P50, und diese Modulation ist unabhängig von 

der Stimulusdetektion (Studie 4). In diesem Sinne weisen die Ergebnisse Theorien 

zurück, die sich Aufmerksamkeit als einen „Gate“-Mechanismus vorstellen, der 

unbewusste Wahrnehmung und selektive Aufmerksamkeit auf die Endpunkte eines 

Kontinuums platziert (Brigard & Prinz, 2010; Dixon, 1971). Das heißt, die 

Aufmerksamkeit schirmt das Gehirn nicht vor schwachen, aber potentiell 

aufgabenrelevanten Informationen ab, solange diese Informationen denselben 

Verarbeitungspfad beanspruchen, auf dem der Fokus der Aufmerksamkeit derzeit liegt 

(Forschack et al., 2017). Darüber hinaus werden auch theoretische Darstellungen, die 

Aufmerksamkeit als ausreichend für das Bewusstsein betrachten, verworfen (Brigard & 

Prinz, 2010). Obwohl Aufmerksamkeit kein einheitliches Phänomen ist und die 

aktuellen Ergebnisse etwas Licht auf einen, wohl aber zentralen Aspekt davon werfen, 

nämlich fokussierter selektiver Aufmerksamkeit (James, 1890), spricht die frühe P50-

Modulation durch Aufmerksamkeit in Abwesenheit von Stimulusdetektion stark für 

eine Unabhängigkeit von Aufmerksamkeit und Bewusstsein. 

Die aktuellen Daten lassen sich am besten durch zwei alternative, aber 

komplementäre Modelle erklären, die Aufmerksamkeit und Bewusstsein als zwei 

unabhängige, jedoch miteinander verbundene Konzepte beschreiben (Dehaene et al., 

2006; Kiefer, 2012; Kiefer & Martens, 2010). In dem Modell von Dehaene hängt das 

Ausmaß, in dem ein Stimulus verarbeitet und schließlich detektiert wird, von seiner 

Stimulusintensität und der Menge verfügbarer Aufmerksamkeitsressourcen ab. In 

diesem Schema bleiben schwache Reize unbemerkt, unabhängig davon, wie viele 

Aufmerksamkeitsressourcen verfügbar sind, was mit der Aufmerksamkeitsmodulation 

der ERPs nach unterschwelligen Reizen in Studie 4 übereinstimmt. Wenn Stimuli 

prinzipiell stark genug sind, sind sie den Beobachtern möglicherweise noch nicht 

bewusst, solange die Aufmerksamkeit an anderer Stelle liegt. Das Aufmerksamkeits-

Bewusstseinsbildungs-Modell von Markus Kiefer baut auf der Taxonomie von Dehaene 
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auf und erweitert diese insbesondere hinsichtlich der Frage, wie die 

Aufmerksamkeitsmodulation bei der Verarbeitung nicht detektierbarer Stimulation 

umgesetzt wird. Unabhängig davon, ob der Reiz bewusst wahrgenommen wird oder 

nicht, ist der Mechanismus der Aufmerksamkeitskontrolle derselbe: „aufgabenrelevante 

Verarbeitungspfade werden, durch die Erhöhung der neuronalen Reaktion 

entsprechender Bereiche im Gehirn, verstärkt, wohingegen aufgabenirrelevante 

Verarbeitungspfade, durch eine Verringerung der neuronalen Reaktion, abgeschwächt 

werden“ (übersetzt aus Kiefer, 2012; Kiefer & Martens, 2010). 

Im Gegensatz zum Ausbleiben Stimulus-induzierter Mu-Amplitudenmodulationen 

durch Aufmerksamkeit können die Mu-Amplituden vor dem Stimulus für die 

Zuweisung von Aufmerksamkeitsressourcen relevant sein. Dieser Zusammenhang 

wurde sowohl in der Studie von Ede, Lange und Maris (2014) als auch hier in Studie 4 

als relativ größere Prä-Mu-Amplituden bei unbeachtetem im Vergleich zu beachtetem 

Finger gezeigt. Die Beziehung zwischen Alpha und Aufmerksamkeit bei der frühen 

sensorischen Stimulusverarbeitung scheint jedoch nicht proportional zu sein, da die 

Größe der P50 bei gleicher Alpha-Amplitude je nach Aufmerksamkeitszustand 

entweder maximal oder minimal ist (Forschack et al., 2017). Tatsächlich wurde gezeigt, 

dass Alpha-Band-Modulationen mit der Verbesserung von Verhaltensleistungen durch 

Aufmerksamkeit korrelieren, insbesondere bei Experimenten zur zeitlichen 

Aufmerksamkeitssteuerung. Eine Schlussfolgerung lautet daher, dass Alpha nicht die 

Aufmerksamkeit im Allgemeinen widerspiegelt, sondern spezifische Aspekte davon 

(Klimesch, 2012), oder auf den jeweiligen Aufgabenkontext hinweisen kann (van Ede 

et al., 2014). 
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