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Abstract  10 

Skagerrak has been subject to several anthropogenic influences over the past decades, with 11 

climate change and eutrophication being considered as the most serious and large-scale 12 

disturbance factors. The present study reports monitoring data from six soft bottom stations in 50-13 

380 m depth at the Norwegian Skagerrak coast aimed at investigating to which degree changes in 14 

environmental conditions have affected species communities and diversity. Sampling was carried 15 

out yearly in the period 1990-2010. Links between benthic community patterns and climate 16 

factors and physicochemical variables from the water mases were examined using uni- and 17 

multivariate statistical methods. Throughout the period species richness gradually increased. 18 

Although all stations showed distinct species assemblages, the community composition gradually 19 

changed towards increased importance of sensitive small molluscs and tube-building annelids 20 

concurrent with a general temperature increase and reduction of nutrients in the water masses. 21 

The trend was largely similar over the stations, indicating that large-scale changes in the 22 

Skagerrak water masses were driving factors compared to possible influences from local sources. 23 

The faunal changes during the study period thus indicate an improved status of the soft bottom 24 

benthos, which possibly could be related to a reduction in the eutrophication. On a shorter scale, 25 

species richness was found to vary in relation to North Atlantic Oscillation (NAO) Index in the 26 

previous year (decline), nutrient concentrations in spring (decline), and winter water temperature 27 

(incline). 28 

 29 

Keywords: Soft bottom benthos, species richness, climate change, eutrophication, time-series 30 

 31 

 32 

1. INTRODUCTION 33 

 34 

Climate change is both a global and a regional challenge. In the North Sea, water temperature has 35 

increased 1-2 ºC since 1985 (OSPAR 2010), and benthic communities have been documented to 36 

be affected by temperature changes (e.g. Kröncke et al. 1998; Kröncke et al. 2011; Neumann & 37 

Kröncke 2011). Climatic induced shifts in diversity patterns and species ranges have been 38 

observed along the Norwegian coast (Narayanaswamy et al. 2010). Increasing temperature is 39 

expected to increase the global rate of species extinction (Thomas et al. 2004), but in the coastal 40 

zone indirect effects of climate change caused by e.g. increased runoff from land and increased 41 

stratification may be more important on a short term. Frigstad et al. (2013) documented a regime 42 

shift in seston and non-autotrophic material in coastal waters of the Norwegian Skagerrak early in 43 

the 2000s, and suggested that effects of increased freshwater runoff, especially increased inputs 44 

of terrestrial-derived, humic material, could play a role in the observed changes. At the same time 45 

remarkable biological changes took place in the coastal waters, e.g. reduction in sugar kelp 46 
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Saccharina latissima (Moy & Christie 2012) and reduction in recruitment of fish (Johannessen et 47 

al. 2011). Eutrophication has been one of the most serious and challenging environmental 48 

problems both on a global scale and in the North Sea (OSPAR 2010) and Skagerrak (Boesch et 49 

al. 2006). Due to management effort, regional inputs of nutrients by ocean currents from the 50 

south North Sea have decreased during the last two decades (Aure & Magnusson 2008, Vermaat 51 

et al. 2008). On the other hand, inputs from some rivers and aquaculture have increased 52 

(Skarbøvik et al. 2010), and there is evidence of an increase in terrestrial-derived matter in 53 

coastal waters (Frigstad et al. 2013).  54 

 55 

Climate changes and eutrophication affect species composition of pelagic as well as benthic 56 

ecosystems. Benthic communities are particularly suited for monitoring as the constituent species 57 

are mainly sessile and integrate long-term effects of environmental change over time (Gray et al. 58 

1990). As the species vary in sensitivity, the benthic communities undergo changes in 59 

composition corresponding to the degree of disturbances (Pearson & Rosenberg 1978, Bilyard 60 

1987, Olsgard & Gray 1995). In this regard, it is important to be aware that the long time-interval 61 

over which degradation has occurred makes it difficult to determine the original status of the 62 

ecosystem, and it is likely that many coastal areas have suffered from the ‘shifting baseline 63 

syndrome’ (Pauly 1995, Dayton et al. 1998). Another challenging task in monitoring of benthic 64 

communities is to understand and discriminate responses in cases of interacting effects where 65 

community responses are likely to be complex and irregular. One attempt to understand 66 

underlying patterns and disentangle natural variability and impacts from external factors, is 67 

through the study of systematically sampled long-term data (e.g. Southward 1995, Hawkins et al. 68 

2003). In the cases of anthropogenic eutrophication embedded within a climate signal, long-term 69 

baseline data with extensive spatial and temporal coverage are strongly needed (Edwards et al. 70 

2006).   71 

 72 

Long-term monitoring of soft bottom communities in order to detect effects of external factors 73 

has been carried out at several places in the North Sea. The longest time series is from two 74 

stations (50 m and 80 m deep) at Northumberland (UK), which have been sampled since the 75 

1970s. During the period there have been changes with approximately ten-year intervals in faunal 76 

composition which could be related to climatic factors, production in overlying waters and 77 

fishing intensity with various effects in different time periods (Frid et al. 2009a, b). Also in other 78 

parts of the North Sea, time-series have documented long-term trends in the benthos, and that 79 

faunal variation could be related to e.g. climatic factors, nutrient input, plankton as well as 80 

freshwater-runoff (e.g. Tunberg & Nelson 1998, Hagberg & Tunberg 2000, Josefson & Hansen 81 

2003, Reiss et al. 2006). Most studies have focused on patterns in species assemblages, but there 82 

is currently an increasing interest in the use of biological traits, which can be defined as the 83 

morphological, physiological, phenological or behavioral features of an organism that 84 

describe its performance (Violle et al. 2014). Traits are often used as surrogates for ecosystem 85 

properties as they have been documented to affect multiple ecosystem functions, and thus traits 86 

analyses are increasingly used as means to improve the assessment of marine ecosystem 87 

functioning including the understanding of the actual ecological significance of disturbance 88 

effects (Oug et al. 2012, Beauchard et al. 2017). 89 

 90 

In Norwegian waters, the Norwegian Coastal Monitoring Programme has monitored the 91 

environmental status and development in coastal parts of Skagerrak since 1990 (Norderhaug et al. 92 

2011). The programme has regularly collected data for soft bottom communities and shallow 93 
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subtidal hard bottom communities, as well as for climatic factors, nutrients, particle loading and 94 

microalgae in the pelagic. Thus, the programme covers a multitude of environmental and 95 

biological parameters from shallow to deeper areas in the Skagerrak and eastern North Sea. The 96 

main aim of the programme has been to reveal possible effects of eutrophication and climate 97 

change on the coastal ecosystems. It has been an important part of the project to distinguish 98 

between the effects from long-distance transported substances and local sources. 99 

 100 

Environmental management needs better information about complex ecosystem dynamics (Frid 101 

et al. 2005), and about the single and interactive effects of disturbances such as eutrophication 102 

and climatic variation on marine ecosystems. The aim of the present work is to examine the 103 

development of the coastal soft bottom communities in the Skagerrak within the period 1990-104 

2010 and the influence of eutrophication and climatic variation. Specifically, spatial and temporal 105 

changes in water temperature, salinity, nutrients, and suspended particles are related to species 106 

richness, diversity, community structure and community functioning. The effects on shallow 107 

water hard bottom systems for the same time period have been reported by Norderhaug et al. 108 

(2015).  109 

 110 

 111 

2. MATERIALS AND METHODS 112 

 113 

2.1. Sea area characteristics 114 

The Skagerrak is a part of the North Sea situated between the southeast coast of Norway, the 115 

southwest coast of Sweden, and the Jutland peninsula of Denmark. It connects the main North 116 

Sea and the Kattegat sea area, which leads to the Baltic Sea (Figure 1). It is a hydrodynamically 117 

complex area, where water masses from the North Sea and the shallow, brackish Kattegat meet 118 

and mix (Figure 1). The coastal water along the Norwegian Skagerrak coast is basically a mixture 119 

of two water masses; Atlantic water and freshwater. Most of the freshwater comes from three 120 

sources; local runoff to the coast, the Baltic Sea and the large rivers draining to the southern part 121 

of the North Sea. These water masses combine to form the Norwegian Coastal Current. 122 

 123 

The Coastal Current and thereby Skagerrak receives large regional nutrient inputs from European 124 

rivers (Aure & Magnusson 2008). The mean annual freshwater supply to the Skagerrak from the 125 

Baltic Sea and the Kattegat is estimated to ca. 215 000 m3 s-1, and in addition, a large fraction of 126 

the 4 500 m3 s-1 of continental river discharge to the North Sea passes through the area (Aure et 127 

al. 1998). Particularly water from the German Bight strongly influences the water quality. This 128 

water contributes to approximately 75% of nitrate and 40% of phosphate in the Coastal Current, 129 

respectively, but in the period 1990-1995, when discharges from European rivers reached a 130 

maximum level, the contribution was approximately 83% and 48%, respectively (Aure & 131 

Magnusson 2008). Strong management effort has lead to an improvement in the water quality, 132 

although the current levels still are considerable higher than during earlier periods (1965-1980) 133 

(Norderhaug et al. 2011). Notably, in contrast to declining nutrient concentrations, the 134 

concentrations of carbon and nitrogen in seston, dissolved organic nitrogen and the estimated 135 

fraction on non-autrophic material have been found to undergo a rapid increase between 1998 136 

and 2000, and have remained at a higher level since (Frigstad et al. 2013). This increase is 137 

probably caused by increased inputs of terrestrial-derived, humic material due to an increased 138 

freshwater runoff (Frigstad et al. 2013).  139 
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 140 

2.2. Sampling stations 141 

Two soft bottom stations were positioned within each of three areas; the outer Oslofjord (A), the 142 

southeast coast (B), and the southwest coast (C) (Figure 1). In each of the areas A and B, one 143 

coast-near shallow (A05 and B05; 50 m depth) and one outer deep (A36; 360 m and B35; 350 m) 144 

soft bottom station was sampled (Figure 1). Area C also had one deep station (C38; 380 m), while 145 

the other station was placed in intermediate depth inside a fjord (C16; 160 m). Originally, the 146 

program was composed of more stations than the present six, and was also supposed to include 147 

fjord environments, which is the reason why station C16 apparently not accords with the other 148 

stations.  149 

 150 

Hydrophysical and hydrochemical parameters were collected from four pelagic stations located 151 

within the three areas (one in A, two in B, and one in C), at a maximum distance of 30.6 km from 152 

the benthic stations (Figure 1). The benthic and pelagic station positioning was designed 153 

according to circulation and stratification patterns in the areas, and the pelagic stations are 154 

considered to represent the water in the area of the biological stations well (NIVA 2002). At the 155 

pelagic stations, the water column was sampled from the surface down to the seabed at standard 156 

intervals (0, 5, 10, 20, 30, 50, 100, 125, 150, 200, 250, 300 and 400 m, with some adjustments to 157 

ensure sampling at 5 m above the seabed). The pelagic station Oslofjord 1 (0-440 m) supported 158 

the two A-stations; Arendal 3 (0-240 m) supported B35, Arendal 2 (0-50 m) supported B05, and 159 

Lista (0-300 m) supported stations C38 and C16. Due to logistic and financial reasons, the 160 

position of the pelagic station in the outer Oslofjord (Oslofjord 1) was slightly adjusted three 161 

times during the monitoring period. It was assumed that these adjustments did not influence the 162 

results significantly. 163 

 164 

2.3. Sampling and processing 165 

2.3.1. Soft bottom fauna 166 

The six benthos stations were sampled with a 0.1 m2 Day or van Veen grab in May or June each 167 

year from 1990 to 2010, and fauna was sieved on a 1 mm screen. The field work and processing 168 

were performed according to guidelines for quantitative sampling and sample processing of 169 

marine soft-bottom macrofauna (NS-EN ISO 16665:2013). At each sampling occasion, either 170 

four or eight grabs were sampled, but for the purpose of the present analyses four grabs (in the 171 

case of eight, the first four) were used to make observations comparable. All specimens were 172 

identified to species or lowest taxon possible. The species matrix of the faunal data consisted of 173 

more than 140,000 individuals belonging to 531 taxa. Before analyses, abundances were 174 

calculated as average values per 0.1 m2 for each station and sampling occasion. The raw taxon 175 

data matrix was inspected for inconsistencies in the identifications including changes in 176 

taxonomy. Despite twenty years of data, very few persons have been involved in the 177 

identification and care has been taken to transfer competence at change of personnel, which 178 

reduces the chance of inconsistency in the species list.  179 

 180 

2.3.1. Environmental variables  181 

Samples for percent sediment fine fraction (i.e. the pelite content measured as % particles < 0.063 182 

mm) and mg/g total organic carbon (TOC) were collected at the soft bottom stations at each 183 

sampling occasion. Fine fraction was determined by wet sieving, while carbon was determined 184 

using a CHN (i.e. Carbon, Hydrogen, and Nitrogen) analyser after removal of inorganic carbons 185 

by acidification. According to Norwegian monitoring practice (e.g. Water Directive Guide 186 
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02:2013), the measured (m) TOC content was normalized (n) to adjust for varying sediment fine 187 

fraction (FF): 188 

𝑇𝑂𝐶𝑛(𝑚𝑔/𝑔) = 𝑇𝑂𝐶𝑚(𝑚𝑔/𝑔) + 18(1 − 𝐹𝐹) 189 

 190 

Temperature (T) and salinity (Sal) in the water masses were sampled monthly or bi-monthly at 191 

the pelagic stations (Figure 1) with the use of CTD (i.e. Conductivity, Temperature and Depth 192 

instrument). Simultaneously, water samples were taken and analysed for hydrochemical and 193 

plankton contents that resulted in the following variables: total phosphorus (TotP), phosphate 194 

(PO4
3, denoted PO4), total nitrogen (TotN), nitrate + nitrite (NO3

-+NO2
-, denoted NO3+NO2), 195 

particulate organic carbon (POC) and nitrogen (PON) and chlorophyll a (Chla). The sampling 196 

procedure was performed according to OSPAR Guidelines for the Joint Assessment and 197 

Monitoring Programme (JAMP, OSPAR 2009) as well as ICES technical manuals and Guidance 198 

on sampling from marine waters (NS-ISO 5667-9:1992).  199 

 200 

2.4. Data analyses 201 

Temporal changes in species richness and diversity were assessed in relation to environmental 202 

variables using Generalized Additive Models (GAM) and regression analyses. Spatial and 203 

temporal patterns in species communities and functional attributes were analysed using non-204 

metric multidimensional scaling (nMDS: community structure) and principal coordinate analysis 205 

(PCoA: community functioning). Relationships between species communities and environmental 206 

variables were examined using distance based redundancy analysis (db-RDA). As far as possible, 207 

the GAM analyses on univariate measures (S, H’) and the nMDS and db-RDA on the 208 

multivariate species data were designed in comparable ways in order to assess if the same 209 

environmental variables influenced both species richness, diversity and composition of the 210 

species communities.    211 

 212 

2.4.1. Environmental variables  213 

A total of 48 environmental variables representing sediment conditions, climate, nutrient 214 

concentrations and topography (depth and longitude) were designated for the analyses of fauna-215 

environment relationships. Sediment conditions were represented by the measured values for 216 

pelite content and TOC (normalised). From the hydrophysical and hydrochemical measurements, 217 

variables for temperature, salinity, nutrients (TotP, PO4, TotN, NO3+NO2), particulate organic 218 

matter (POC, PON, POP) and chlorophyll a (Chla) were derived. Monthly averages were 219 

calculated and used as separate variables for July (previous year), October (previous year), 220 

January, and April to represent summer, autumn, winter and spring conditions prior to the time of 221 

biological sampling (May/June). For temperature, also the maximum values observed during the 222 

last twelve months before the time of biological sampling were used. Values were either taken 223 

from the depth closest to the seabed reflecting the ambient conditions for the benthos (e.g. 224 

temperature and salinity) or taken from the upper water column (0-30 m) in order to reflect the 225 

algal production (e.g. production-related variables).  226 

 227 

In addition to measured parameters, station depth, position (latitude and longitude) and the North 228 

Atlantic Oscillation (NAO) index were entered among the environmental variables. NAO is a 229 

measure of the strength of the sea‐level air pressure gradient between Iceland and the Azores 230 

(Bjerknes 1964). In the present study, the winter-based (December through February) NAO was 231 

used. This variable was used in the analyses both for the same year as the biological sampling 232 

(denoted NAO) and as a time-lagged variable, i.e. NAO for the previous year (denoted NAOprev).  233 
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 234 

2.4.2. Variable selection 235 

Due to inconsistency in the water mass sampling (changes in sampling program, technical 236 

problems, bad weather etc.), not all environmental variables were sampled for all stations at all 237 

times. For univariable analyses (i.e. one predictor at a time) this is technically not a problem, but 238 

for model selection using GAM and ordination analyses (see below) that require no missing data 239 

for any of the variables, several variables and/or samples had to be omitted to obtain complete 240 

data matrices. The variable selection was thus a trade-off between maximising the number of 241 

samples (i.e. few variables) and including as many variables as possible (i.e. smaller sample size). 242 

This resulted in a compromise where the following variables was excluded from GAM and 243 

ordination analyses: POC, PON and Chla for all four seasons and all environmental variables for 244 

the month of July (T, Sal, TotP, PO4, TotN, NO3+NO2).  245 

 246 

After exclusion of incomplete environmental variables, the number was reduced to 23 variables 247 

available for model selection by GAM and ordination analyses. This number was still high and 248 

needed to be reduced for the GAM modelling of species richness and diversity to reduce the risk 249 

of model overfitting and to reduce computational time in the model selection procedure. 250 

Therefore, a subsequent a priori variable selection procedure was carried out before the actual 251 

analyses to identify highly correlated variables. The selection was performed based on an 252 

inspection of the concurvity (the nonparametric analogue of collinearity, Ramsay et al. 2003) 253 

matrix between all remaining, full-length environmental variables. The selection was done in a 254 

sequential way where the one variable of a pair of the highest correlated (i.e. with highest 255 

concurvity values according to the type “estimate” in the mgcv library, see below) variables, that 256 

also correlates most with other variables, was removed. A new concurvity matrix was then made 257 

after each removal, until a model with 15 variables with concurvity less than or equal to 0,51 was 258 

reached. This was found as a reasonable compromise between too few and too correlated 259 

predictors (Table 1). A total of 15 largely uncorrelated environmental variables were then subject 260 

to the analyses. A correlation matrix (not concurvity, since concurvity estimates are based on a 261 

full model including all variables, and such a large model was not possible) including also the 262 

excluded variables is available (Supplement 1), which might be useful for considering patterns of 263 

correlations between all environmental variables.  264 

 265 

The inclusion of the time-lagged environmental variables (i.e. measures from summer and 266 

autumn one year prior to the biological sampling) in the analyses of species richness and diversity 267 

necessitated the exclusion of faunal 1990 data. This resulted in a sample of 82 observations, as 268 

opposed to the 126 observations available for the multivariate analyses (Table 2). 269 

 270 

2.4.3. Univariate analyses - analysis of species richness and diversity 271 

For each sample, species richness (S) and Shannon-Wiener diversity index (H’log2) (Shannon & 272 

Weaver 1963) were calculated. The diversity index accounts for both abundance and evenness of 273 

the species present, i.e. H’ increases both with number of species and as the proportion of 274 

individuals per species becomes more constant (Gray & Elliott 2009). The average of S and H’ 275 

over the four samples (i.e. per 0.1 m2) was used in the analyses for each station and sampling 276 

occasion.  277 

 278 

Patterns in species richness across stations (beta or turnover diversity) were assessed using 279 

Whittaker’s beta index. The index was calculated according to the formula bw = (Stot/Sstn) – 1 (as 280 
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cited by Magurran 1988), where Stot is the total number of species collected per sampling 281 

occasion, and Sstn is the average number of species per station (i.e. per 0.4 m2). The index 282 

measures to which degree the whole investigated area is richer in species than the sampling 283 

stations within the area. 284 

  285 

All analyses of species richness and diversity at stations (S, H’) with relation to the 286 

environmental variables were carried out using R version 2.15.1 (R Development Core Team 287 

2012). First, S, H’ and all the 48 environmental variables available were tested for possible linear 288 

time trends through the study period in univariable (i.e. individual) analyses using the lm function 289 

in the R library stats (R Development Core Team 2012). Then, relationships between each 290 

environmental factor and S and H’ were assessed using the function gamm in the library mgcv 291 

(Wood 2011) for Generalized Additive Mixed Models (Mixed GAM; Zuur et al. 2009). A 292 

smoothing parameter (k) of max 3 was chosen for all continuous predictors, to allow for some 293 

degree of non-linear effects, but not overfitting the models. Station ID was included as a random 294 

factor in the GAMs to account for a potential dependence between observations taken at the same 295 

site.  296 

 297 

In subsequent analyses combinations of environmental variables for explaining species richness 298 

(S) and diversity (H’) were tested by model selection using mixed GAM. For this purpose, the 299 

reduced dataset consisting of only the 15 preselected environmental variables were used. This 300 

dataset consisted of variables that were only weakly correlated and had no missing data to meet 301 

the criteria of model selection (Burnham et al. 2011). By the use of the R library MuMIn (Barton 302 

2013), several thousand candidate models were tested, using all possible combinations of the 15 303 

environmental predictor variables, and ranked by the use of Akaike Information criterion (AICc, 304 

Burnham et al. 2011). Due to the limited number of degrees of freedom and the great number of 305 

variables, interaction effects were not tested in the model selection procedure. Instead, the 306 

potential non-additive effects of eutrophication and climate were analysed after finishing the 307 

model selection by including their interaction to the best of candidate models that included the 308 

two component variables of the interaction; each interaction in separate models.   309 

 310 

Beta diversity was related to environmental variables by linear regression. All variables 311 

representing climate and water mass characteristics (nutrients, particulate materials, cholophyll a) 312 

were used. In order to maximise the number of variables, data from stn B05 were used and here 313 

considered to reflect the major trends in the whole area (42 variables, omitting station position 314 

and topography, see Table 2).  315 

 316 

2.4.4. Multivariate analyses - analysis of species composition and community functioning 317 

To analyse for similarities in the composition of species communities, non-metric 318 

multidimensional scaling (nMDS) was used, based on Bray-Curtis similarity measure. Similarity-319 

calculations were based on fourth-root transformed data. This analysis was performed for the 320 

complete biological dataset (i.e. all stations at all years; n = 126), in addition to each station 321 

separately. Similarity percentage (SIMPER) analysis (Clarke 1993) was performed to obtain 322 

information on changes in species composition during the time-period (1990-1999 vs. 2000-323 

2010). For analysing relationships between species composition and environmental variables, 324 

Distance-based Linear Model (DistLM, Anderson 2001) was used. In order to obtain results that 325 

could be comparable with the GAM-analyses, the same set of 15 environmental variables and 326 

faunal data was used (see Table 2). Final inclusion of predictor variables in the model was based 327 
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on AICc criterium and a stepwise (which includes a forward as well as a backward step) selection 328 

procedure. Sequential tests were done using 9999 permutations of residuals under the reduced 329 

model. The ordination method of distance-based redundancy analysis (db-RDA) was used to 330 

visualise the results. The db-RDA runs an eigen analysis and produces an ordination which is 331 

constrained to be a linear combination of the environmental variables responsible for explaining 332 

significant portions of the variation within the data cloud. DistLM and the corresponding db-333 

RDA were performed for the reduced data matrix. Also, marginal test was performed in DistLM 334 

in order to quantify how much variation each variable explains alone, i.e. ignoring other 335 

variables. The multivariate analyses were performed with PRIMER package version 6.1.13 336 

(Clarke and Warwick, 2001).  337 

 338 

To analyse for patterns in functional attributes of the species communities, biological trait 339 

analysis (BTA) was conducted. Species abundance data were combined with traits data for each 340 

species to calculate community weighted means (CWMs or ‘trait profiles’) expressing the 341 

functional composition of the species assemblages (see Bremner et al. 2003, 2006, Oug et al. 342 

2012, 2018, Beauchard et al. 2017). Nine traits representing adult life habit, degree of attachment, 343 

mobility, size, body form, sediment dwelling depth, feeding mode, larvae type and sediment 344 

reworking were used. These properties are key components of essential functions provided by 345 

coastal benthic ecosystems, and are considered to reflect basic ecological aspects of the species, 346 

including implications for sediment reworking and community stability. Each trait is divided in a 347 

number of categories (2-9) that expresses different states of the trait. The species traits data were 348 

extracted from a database held by Norwegian Institute for Water Research (NIVA) where 349 

information has been compiled from a broad selection of literature and by consulting experts 350 

(Oug et al. 2012), except for sediment reworking where data presented by Queirós et al. (2013) 351 

on classification of soft bottom species with regard to bioturbation potential were applied. 352 

Species traits were scored according to the ‘fuzzy coding’ procedure (Chevenet et al. 1994) with 353 

values ranging from 0 (= no affinity) to 3 (= dominant) (see Oug et al. 2012, 2018 for further 354 

details on trait categories and calculations). The analysis was carried out on a matrix of 187 355 

species by omitting rare species (abundance < 0.0001% of total) and some few more of low 356 

abundance lacking traits information. In the resulting matrix the traits information was complete 357 

except for larvae type where data were missing for 15% of the species. The analysis was 358 

performed with principal coordinate analysis PCoA (= metric MDS based on Euclidean distance 359 

for calculation of similarities) in PRIMER package version 6.1.13. Prior to the analysis, species 360 

data were fourth-root transformed as for the MDS. The ordination was based on the distances 361 

among centroids for each station divided between 1990-1999 and 2000-2010.  362 

 363 

 364 

3. RESULTS 365 

 366 

3.1. General faunal characteristics 367 

Altogether, 531 taxa and more than 140,000 individuals and were recorded in the samples. The 368 

species assemblages were generally characterized by small annelids and mollucks. The deep 369 

stations A36 in the outer Oslofjord and B35 along the southeast coast were very similar regarding 370 

sediment characteristics and faunal composition. The mean sediment fine fraction was as high as 371 

99% at both stations. The fauna was dominated by small bivalves (e.g. Thyasira equalis and Abra 372 

nitida) and annelids (e.g. Paramphinome jeffreysii, Heteromastus filiformis and Tharyx sp.). The 373 
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deep station C38 at the southwest coast had coarser sediment, with a fine fraction of 76%. This 374 

station was mainly dominated by annelids (e.g. Myriochele heeri, Galathowenia oculata), brittle 375 

stars (e.g. Amphilepis norvegica) as well as the ostracode Philomedes lilljeborgi. The shallow 376 

station A05 in the outer Oslofjord had a sediment fine fraction of 63%, and a fauna consisting 377 

mainly of annelids (H. filiformis, Chaetozone setosa and Prionospio fallax), Nemertea and brittle 378 

stars (e.g. Amphiura chiajei). The sediment was finer at B05 at the southeast coast, with a mean 379 

fine fraction of 87%, despite its shallow location. Here, the fauna was dominated by annelids 380 

(e.g. Diplocirrus glaucus and C. setosa), Nemertini, gastropods (e.g. Hyala vitrea) and bivalves 381 

(e.g. Ennucula tenuis). Station C16 at intermediate depth at the southwest coast had a sediment 382 

fine fraction as high as 90%, and annelids (e.g. H. filiformis, Spiophanes kroyeri and P. jeffreysii) 383 

and small bivalves (T. equalis and Kelliella miliaris) dominated the fauna.  384 

 385 

In the MDS-ordination of all stations (Figure 2), the samples were mainly clustered according to 386 

station and depth, although C38 also seemed somewhat different from the others (A36, B35, and 387 

C16). Station C16 showed the largest variation during the period. Notably, the samples from C16 388 

in 2009 and A05 in 1991 and 2010 were separated from the main groups, but except from this all 389 

stations more or less kept their identity throughout the monitoring period.  390 

 391 

The analysis of community functioning revealed a main grouping based on station and depth, 392 

roughly similar to the analysis of community structure (Figure 3). The horizontal axis largely 393 

reflects a geographical gradient, whereas the vertical axis reflects depth with the deep stations at 394 

the bottom of the plot. The functional features that contribute most to the ordination pattern were 395 

represented by a variety of different traits (life habit, mobility, feeding habit, size, larvae type, 396 

degree of attachment and sediment reworking) (Figure 3). The horizontal axis can be interpreted 397 

as a gradient from high relative abundance of free-living burrowing and carnivorous species (left; 398 

eastern stations) to a general dominance of non-mobile surface and deposit feeders (right; western 399 

stations). Larvae type was highly correlated to the vertical axis, with increased dominance by 400 

lecithotrophic larvae towards the deep stations and dominance by planktotrophic larvae towards 401 

the shallow stations.  402 

 403 

3.2. Temporal variation in faunal characteristics 404 

Species richness and diversity varied both among stations and over time during the monitoring 405 

period (Figure 4). There was an overall increase in average species richness over time (linear 406 

regression: p=0.02, R2=0.16), but not in diversity (p=0.15, R2=0.07). The total species richness in 407 

the sampling area increased gradually (linear regression: p=0.003, R2=0.37). The beta diversity 408 

showed a cyclic pattern with periods with higher diversity (generally more species across 409 

stations) separated by periods with lower diversity (Figure 4).  410 

 411 

The species composition changed gradually at all stations during the monitoring period (Figure 412 

5). The trend was more or less the same for all stations with samples from the 1990s placed 413 

towards the left side of the plot and the samples from the 2000s towards the right side. To 414 

identify the species showing the largest changes, a SIMPER-analysis was performed (Table 3). 415 

For instance, the annelids Heteromastus filiformis, Paramphinome jeffreysii and Tharyx sp. 416 

showed marked reductions from the 1990s to the 2000s, while the annelid Myriochele heeri and 417 

the bivalves Thyasira equalis and Abra nitida increased in abundance. Notably, typically 418 

increasing species were shell-bearing molluscs and tube-building annelids, whereas decreasing 419 

species were free-living annelids and nemerteans.  420 
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 421 

Temporal changes were also seen in the analysis of community functioning (Figure 3). The 422 

increase of shell-bearing molluscs and tube-building annelids and the decrease of free-living 423 

annelids were reflected in the increase of attachment and permanent tubes and the decrease of 424 

mobility, displayed on the first axis. The changes were most apparent at the deep stations (B35, 425 

C38), where non-mobile surface and deep deposit feeders increased from the 1990s to the 2000s. 426 

At the more shallow stations (A05, B05), suspension feeders with planktonic larvae appeared to 427 

increase, whereas unattached subsurface deposit feeders decreased in the same period.   428 

 429 

 430 

3.3. Temporal variation in environmental variables 431 

During the monitoring period, the climate in Skagerrak and North Sea was generally mild, and 432 

NAO indices were positive or close to zero during winter, with relatively high temperatures and 433 

more than average precipitation in most years (Supplement 2). However, in 1996, 2010 and partly 434 

2001, the winter weather was cold and dry, resulting in strongly negative NAO indices. January 435 

temperatures increased steadily (linear regression: p<0.0001) during the monitoring period, while 436 

the other temperature variables did not show the same linear trend (Supplement 2). Regarding 437 

nutrient concentrations, a trend with decreasing April concentrations was evident, which was 438 

significant for PO4Apr and TotNApr, and close to significant for NO3+NO2Apr and TotPApr. A 439 

significant linear trend with increasing concentration throughout the time-period was found for 440 

TotNJul, however, a sudden increase took place in the late 1990s, and a linear trend does not 441 

describe the pattern well. A similar increase was recorded for ChlaJul towards the end of 2000s. In 442 

general, Chla had some extreme values in certain years, and general trends were not obvious 443 

(Supplement 2).  444 

 445 

3.4. Environmental effects on species richness and diversity  446 

The response of species richness (S) and diversity (H’) to all selected environmental variables 447 

were first analysed in individual, univariable (i.e. one single environmental variable in each 448 

model) Mixed GAMs, see Figure 6 (only relations with p<0.1 are shown). Regarding diversity 449 

(H’), no variables were significant, thus no plots are presented from these analyses. Species 450 

richness responded significantly to the pelite content and NAO (for the previous year) and to 451 

various variables related to the nutrient content of the water column (TotNJan, TotPApr, PO4Apr, 452 

TotNApr, NO3+NO2Apr and TotNOct). There was weak evidence for increasing species richness 453 

with increasing temperature in January (p=0.060, Figure 6). In general, lower species richness 454 

was found after a spring with high concentrations of nutrients, while the opposite was true for 455 

autumn conditions the previous year as TotNOct was associated with an increase in species 456 

richness. A predominantly positive response was also observed for low and medium levels of 457 

TotNJan, however a negative, but uncertain, effect was also found at high levels of TotN (Figure 458 

6).  459 
 460 
In the Mixed GAM analyses more than 250,000 candidate models consisting of all possible 461 

combinations of the 15 selected environmental variables were tested for effects on both species 462 

richness and diversity during the model selection procedure. Models were then ranked according 463 

to their AICc values, with the most parsimonious models at top. The analysis of environmental 464 

factors on species richness was generally much more convincing than the one for diversity. In 465 

fact, based on AICc values, none of the candidate models tested explained the variation in 466 

diversity better than the null model (i.e. no environmental variables included) with ΔAICc = 3.4 467 
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towards the second best model including only TotNOct. Nor did any of the models including the 468 

interaction between eutrophication and climate rank higher than this (best interaction model was 469 

the one between NO3Apr and NAO with ΔAICc=14.3 towards the null model). These results also 470 

correspond well with the fact that no variables were significant for H’ in the uni-variable mixed 471 

GAMs presented above.  472 

 473 

For species richness, on the other hand, nine different candidate models were regarded as equally 474 

good, since their ΔAICc were less than 2 (Burnham et al. 2011). These nine models included four 475 

or five variables, represented by 11 of the 15 environmental variables tested. Only NO3+NO2Apr, 476 

TApr, TOC, and TotPJan were not included in any of these models. Further, when checking the 477 

AICc-values for the interaction models, most of them were considerably better than their additive 478 

counterpart.  479 

 480 

To be able to compare the relative importance of the environmental variables against each other, 481 

a set of the best models was examined. The models included most of the variables tested, but still 482 

had sufficient support from the data. A ∆AICc level of <7 was thus chosen (Burnham et al. 483 

2011), resulting in a set of 35 and 10 models of species richness and diversity, respectively 484 

(Table 4). For species richness, the most important variable was depth, with a Relative 485 

Importance Value (RIV, ranging from 0 to 1) of 0.996 (meaning it was included in almost all of 486 

the 35 models considered). Depth was followed by the pelite content (RIV=0.69), NO3+NO2Jan 487 

(RIV=0.59), TotPApr (RIV=0.36), TJan (RIV=0.34), TotNOct (RIV=0.18), NAOprev (RIV=0.17), 488 

and longitude (RIV=0.07). Although the importance values were far lower for diversity than for 489 

species richness, it can be worth noting that TotNOct (RIV=0.11) and depth (RIV=0.07) were 490 

ranked as the most important variables; the rest was only 0.04 or less. Model averaging (Burnham 491 

and Anderson 2002) of the 35 best models of species richness and the 10 best models of diversity 492 

(H’) resulted in models explaining 56% (R2=0.56) and 5% (R2=0.049) of the variation of species 493 

richness and diversity, respectively.  494 

 495 

Due to the limited number of degrees of freedom, interactions were not included in the model 496 

selection procedure. Instead, each possible variable combination of eutrophication and climate 497 

was included as interactions to the best of the candidate models that included the two component 498 

variables of the interaction. In the case of species richness, models with an interaction generally 499 

performed better than models without, and in fact all of the 35 models with ∆AICc<7 included an 500 

interaction. Also for diversity, the interaction models ranked high (from rank 14 and further), 501 

although no interaction models were among the 10 best models with ∆AICc<7. 502 

 503 

For beta diversity, there was a significant (p < 0.05) relationship for five variables related to 504 

temperature, nutrients and chlorophyll in July the previous year (positive for TJul_prev, POCJul_prev, 505 

PONJul_prev, ChlaJul_prev; negative for PO4PJul_prev). NAO, temperature in January and salinity in 506 

January (all positive) were close to significant (p≤0.1).  507 

  508 

3.5. Environmental effects on changes in fauna composition  509 

Faunal community composition responses to environmental variables were examined with 510 

DistLM (Table 5). Of the 15 environmental variables examined, 7 were identified as significant 511 

in the sequential test, and these variables collectively accounted for 55% of the variance in the 512 

fauna. Depth, longitude, pelite, TOC, TJan, TApr and NAOprev were identified as significant 513 

variables for the community composition, while NO3+NO2Apr and TotNJan were close to 514 
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significant (p<0.077). In the marginal test, where each variable is considered alone, 12 of the 15 515 

variables were significant.  516 

 517 

In the corresponding db-RDA plot (Figure 7 a and b), the samples were grouped according to 518 

stations on the two first axes, as in the MDS-ordination. The first axis was mainly correlated to 519 

depth, while the second axis mainly to sediment pelite content and longitude, thus these three 520 

variables were the main descriptors for the variation between stations. The third axis was mainly 521 

correlated to longitude, TOC, TJan and TApr. While depth and longitude are station-specific 522 

variables, TJan and TApr vary through time. Altogether, the first three RDA-axes explained 86% of 523 

the fitted variation, and 51% of the total variation of the multivariate community data. All of the 524 

RDA-axes together explained 100% of the fitted variation and 60% of the total variation. 525 

 526 

 527 

4. DISCUSSION 528 

 529 

4.1. Patterns in community composition and functional traits 530 

Soft bottom communities and hydrochemical parameters have been monitored through a 20-year 531 

period along the Skagerrak coast. Not unexpected, the six monitoring stations differed with 532 

regard to species composition, but the analyses showed that all stations kept their identity during 533 

the monitoring period, evidenced by the analyses of community structure (Figure 2) as well as 534 

functional features (Figure 3) and relation to environmental variables (Figure 7). During the 535 

monitoring period, there were consistent but more or less parallel temporal changes in the species 536 

composition and functional features across the stations (Figures 5 and 7). Essentially, these 537 

results answer to one of the fundamental questions posed at the onset of the Norwegian Coastal 538 

Monitoring Programme; whether the three areas (A, B, C) were differently influenced by local 539 

sources, e.g. in eutrophication and fresh-water runoff, or were more influenced by large-scale 540 

changes in the Skagerrak water masses including long-transported nutrient components from the 541 

southern North Sea. The parallel changes at the stations clearly indicate that large-scale changes 542 

were the most important.  543 

 544 

It appeared that the species composition had undergone only moderate changes in coast-near 545 

areas of Skagerrak during the investigated period. Another study from the central North Sea 546 

covering the years 1986 and 2000 suggests that benthos has not exhibited any large-scale changes 547 

(Kröncke et al. 2011). Other studies from approximately the same time period as this study report 548 

gradual changes in species composition over time in the North Sea (e.g. Rees et al. 2006, Reiss et 549 

al. 2006, Frid et al. 2009a, b). Notably, the deep stations in the present study, that are far deeper 550 

than other North Sea long-term monitoring sites, also underwent gradual changes at about the 551 

same scale during the study period. 552 

 553 

A significant increase in species richness was recorded through the monitoring period from 1990 554 

to 2010, with especially low richness the two first monitoring years (1990 and 1991). A similar, 555 

but not significant, positive trend was also observed for diversity. It may be noted that 1990 and 556 

1991 were placed in the periphery in the ordination plots of several stations, indicating that these 557 

years also were different from the following years regarding species composition. These findings 558 

correspond well with patterns of species richness and total abundance in the western North Sea, 559 

where Frid et al. (2009a, b) observed a change in the fauna around 1991, which they interpreted 560 
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as a benthic, lagged response of the “regime shift” in the North Sea plankton community. An 561 

alternative, or supplementary explanation for the changes observed in Skagerrak, is that the 562 

pattern might be related to a recovery phase after the bloom of the toxic algae Prymnesium 563 

polylepis (syn. Chrysochromulina polylepis). In 1988 an extensive bloom of this toxic flagellate 564 

occurred over much of the Skagerrak. Although the main concern of this alga was its effect on 565 

littoral wild fish and farmed fish, also the soft bottom fauna was affected (Olsgard 1993). At an 566 

impacted area in the western part of Skagerrak (ca. 34 km northwest of station C38), there was a 567 

documented clear switch in species composition immediately following the bloom, and a 568 

tendency of the fauna to return to the pre-bloom communities one to two years after the event 569 

(Olsgard 1993). However, at the most severely affected stations examined by Olsgard, effects 570 

appeared to still be present after three years (Gjøsæter et al. 2000).  571 

 572 

The analysis of community functioning (Figure 3) revealed that e.g. “suspension feeding” was a 573 

more important feature at the shallow stations than at the deeper stations. Presumably the shallow 574 

stations are more exposed to bottom currents and suspended particles in the water, which the 575 

suspension feeders may benefit on. Larvae type was also highly correlated to depth, with 576 

increased occurrence of lecithotrophic larvae, i.e. larvae with short or no pelagic stage, towards 577 

the deep stations and increase of planktotrophic larvae towards the shallow stations. This finding 578 

may again relate to food availability; as planktonic larvae depend on feeding and growing in the 579 

plankton, they obtain more nutrients in shallow than in deeper water (Thorson, 1950). In addition 580 

to depth, there was a geographical gradient in the functional traits. Towards the outer part of 581 

Skagerrak, there was a larger occurrence of surface and deep deposit feeders, also typically with 582 

low mobility.  583 

 584 

The small annelids Heteromastus filiformis, Paramphinome jeffreysii and Tharyx sp. showed 585 

marked reductions in abundance from the 1990s to 2000s (Table 3). These taxa are often 586 

recorded in high densities in organically or otherwise disturbed sediments (e.g. Pearson & 587 

Rosenberg 1978, Borja et al 2000). On the other hand, the tube-building annelids Myriochele 588 

heeri and Galathowenia oculata and the bivalve Abra nitida increased in abundance (Table 3). 589 

Although these species may thrive in slightly organically enriched or physically disturbed 590 

sediments, they are usually not present in highly disturbed environments (e.g. Holte & Gulliksen 591 

1998, Borja et al 2000). Furthermore, shell-bearing molluscs and tube-building annelids were 592 

among the increasing species, while free-living annelids and nemerteans were decreasing. 593 

Generally, larger, tube-building species are more sensitive towards disturbances than free-living, 594 

smaller species (e.g. Pearson & Rosenberg 1978, Oug et al. 2012). In total, the change in species 595 

richness and species composition observed suggests an improvement of the soft bottom benthos 596 

during the study period.  597 

 598 

4.2. Environmental variables and patterns in species assemblages 599 

The underlying mechanisms causing spatial gradients and changes with time in species 600 

communities may include numerous environmental factors and biotic relationships (Gray & Elliot 601 

2009). Several relationships are well described, whereas others are complex, and not well 602 

understood. In the present study, a set of environmental variables was designated for four main 603 

relationship groups; location and topography (depth, longitude), sediment conditions (pelite, 604 

TOC), climate (temperature, NAO) and food supply (nutrient levels; assumed to reflect the 605 

pelagic production). Variables for location and topography, and to some extent sediments, mostly 606 

represent differences between the sampling stations, whereas variables for climate and nutrients 607 



14 

 

represent time-dependent environmental changes.  608 

 609 

The analyses showed that environmental variables could be related both to species richness and 610 

species composition. No relationships were detected for diversity (H’), however. The reason is 611 

not clear, but the composite structure of H’, with one part based on species richness and the other 612 

on equitability, may complicate the relationships. For instance, simultaneous changes in number 613 

of species and individuals may not necessarily affect H’ (Gray & Elliott, 2009).  614 

 615 

Environmental variables from all four main relationship groups were significantly related to 616 

faunal patterns. Variables representing basic station ‘properties’ such as depth, location and 617 

sediment grain size (pelite) accounted for the larger fractions of variance in species composition 618 

(DistLM-analysis) and ranked among the most important for species richness (mixed GAM). 619 

Basically, the strength of these variables supports the intended design of the monitoring 620 

programme to include sampling sites with different environmental conditions. Variables related 621 

to climate and nutrient loading were less strongly, though significantly related to the faunal 622 

patterns. This finding suggests that the faunal variation at the various stations could be associated 623 

with measurable changes in environmental parameters.  624 

 625 

4.2.1. Topography and sediment conditions 626 

Depth and sediment characteristics are well-known descriptors for soft-bottom fauna (e.g. 627 

Ellingsen 2002, Gray & Elliott 2009). Depth is, however, less important as a factor per se, but 628 

rather represents several factors that vary with depth and determine the basic conditions for the 629 

fauna, for instance bottom currents, temperature, supply of food and quality of organic material 630 

(Oug 1998, Goginaa et al. 2010, McCallumc et al. 2010). It may vary to which degree these 631 

factors are characterized among other environmental variables that are used in the analysis. In 632 

both the variable selection in DistLM-analysis and the GAM modelling of species richness, depth 633 

ranked at the top possibly because it summarises the effects of several important factors. Grain 634 

size may also act as a surrogate variable as it reflects e.g. sedimentation regime, available organic 635 

matter, oxygen penetration and sediment stability (e.g. Gray & Elliott 2009). Content of organic 636 

carbon (TOC) was significant for species composition, but did not add much to explain variation 637 

in species richness. TOC also lumps various conditions by consisting of material of different 638 

origins, and in various stages of decomposition (Oug 1998). Longitude scored high in DistLM, 639 

but not when it came to species richness. The importance of longitude may reflect changes in 640 

faunal composition from inner to outer parts of Skagerrak. This could be a consequence of large-641 

scale topography-dependent factors that regulate species distributions, such as recruitment and 642 

larval transport in major current systems.  643 

 644 

4.2.2. Trends in climate and nutrients 645 

Several climate and nutrient related variables were identified as significant for species richness 646 

and species composition. For the study area as a whole, it seemed that variation in the total 647 

species richness expressed by beta-diversity was related to temperature, particulate material and 648 

chlorophyll a in the water masses the year previous to the sampling (July_prev). Possibly, this may 649 

reflect that supply of larvae into Skagerrak and recruitment to the benthic communities increased 650 

in years with relatively high temperatures and summer phytoplankton biomass. At station level, 651 

the most distinct relationships were observed for winter and spring measurements of temperature 652 

and nutrients, i.e. measurements taken 2-5 months before the faunal samples. In particular, 653 

temperature in January (TJan) was the first of the climate and nutrient variables to be selected in 654 
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the DistLM analyses and ranked high in importance in the GAMM modelling. It may be a rather 655 

complex matter, however, to indicate which relationships were the most influential, considering 656 

that many variables were excluded from analysis because of missing data, and several variables 657 

were omitted due to high inter-correlations. Regrettably, all variables from the month of July the 658 

year before sampling had to be omitted from the analyses at stations. The results, however, 659 

indicate that the conditions in the water masses in the previous summer, and during winter and 660 

spring influences the development of the benthic species communities. It may be noted that the 661 

climate variable NAO for the previous year (winter) also was found to be important. This 662 

variable may catch a different and more delayed effect on the fauna than the monthly averaged 663 

temperature and nutrients variables.  664 

 665 

Generally, species richness increased with reduced nutrient concentrations in spring (PO4Apr, 666 

TotPApr, NO3+NO2Apr and TotNApr). Direct cause and effect relationships are not possible to 667 

assess from the present study with no information on organic fluxes to the bottom, but the 668 

correlations may represent rather general faunal changes to variations in nutrient enrichment. 669 

Nutrients in April showed a decreasing trend during the study period from rather high 670 

concentrations in the 1990s to lower concentrations towards 2010. This decrease is in accordance 671 

with the general trend in coastal waters in Skagerrak (e.g. Norderhaug et al. 2011, Frigstad et al. 672 

2013) and other coastal regions of the North Sea (e.g. Carstensen et al. 2006, van Beusenkom et 673 

al. 2008, Voss et al. 2011). The reduced winter and spring concentrations have been interpreted 674 

as documentation of a reduced current-transported input of nutrients to the Skagerrak from the 675 

southern North Sea (Aure & Magnusson 2008, Vermaat et al. 2008). The decreasing 676 

concentrations co-occurred with the faunal shift from small free-living and tolerant annelids to 677 

higher dominance of more sensitive small molluscs and tube-building annelids. Thus, the faunal 678 

changes could possibly be interpreted as a response to reduced eutrophication, particularly since 679 

several of the declining species are generally stimulated by moderate enrichment (see e.g. 680 

Pearson & Rosenberg 1978). This is further supported by the concurrent studies of pelagic 681 

microalgae in the Norwegian Coastal monitoring programme showing a considerable shift after 682 

2001, with lower biomass and an altered species composition from 2002 until today compared 683 

with the period 1994-2001 (Trannum et al. 2012). Also for zooplankton large changes have been 684 

observed, e.g. a substantial reduction in Oithona spp. and Paracalanus/Pseudocalanus spp. 685 

(Johannessen et al. 2011). Changes in primary production and the pelagic food web structure may 686 

certainly have consequences for the food transport to the bottom, but the processes and links in 687 

the pelagic systems involved and the amount and quality of nutrient matters that in the end reach 688 

the bottom is difficult to ascertain (see e.g. Josefson 1990, Josefson et al. 1993, Salen-Picard et 689 

al. 2002, Josefson & Hansen 2003). Pelagic processes will also be influenced by other factors 690 

such as weather conditions and climate, complicating the interpretation of faunal changes in 691 

relation to nutrient levels.  692 

 693 

In contrast to the other nutrients, total nitrogen (TotN) showed a particular season-dependent 694 

relationship to species richness. Increasing levels in autumn (TotNOct) and decreasing levels in 695 

spring (TotNApr) were both associated with increased species richness, whereas a bell-shaped 696 

relationship was found for winter values (TotNJan). Also, TotNJan was the only nutrient variable 697 

which was not significant in the marginal test in DistLM, indicating that there was no clear 698 

relationship between this variable alone and the species composition. It may be noted that 699 

Norderhaug et al. (2015) found the same bell-shaped response for TotNJan on species richness on 700 

hard bottom. Although macroalgae are directly influenced by nutrients, there may be a consistent 701 
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pattern, although not necessarily a direct link, between nitrate in winter and species richness on 702 

both hard- and soft bottom. 703 

 704 

NAO is a descriptor of climate and correlates with broad variations in weather conditions in 705 

northern Europe. Several studies from the North Sea and Skagerrak areas have demonstrated 706 

relationships between NAO and benthic species communities (Tunberg & Nelson 1998, Hagberg 707 

& Tunberg 2000, Rees et al. 2006, Narayanaswamy et al. 2010, Kröncke et al. 2011). It has been 708 

found that single species as well as whole communities and functional groups are correlated to 709 

changes in NAO (Hagberg et al. 2004). The factors underlying these responses are not fully 710 

understood (Reid & Valdés 2011), but what is assumed, is that the influence of meteorological 711 

drivers on marine systems is complex, and involves not only influence on temperature and sea 712 

currents, but also mediation through plankton and benthic-pelagic coupling that typically produce 713 

time-lagged responses (Frid et al. 2009b). In the present study, it is worth noting that NAO for 714 

the previous year seemed to be much more important than NAO for the same year, which indeed 715 

points to a time-lagged response. In particular, factors affecting timing, amount and quality of 716 

organic matter which settles on the sea floor may seem to be important (e.g. Tunberg & Nelson 717 

1998, Pearson & Mannvik 1998, Rabalais et al. 2009, Kröncke et al. 2011). With a high NAO 718 

there is larger inflow of warm and nutrient-rich water from the southern North Sea (Hjøllo et al. 719 

2009). Further, weather conditions have a profound influence on freshwater runoff and material 720 

transported from land into the sea. In mild and wet winters (high NAO), when precipitation and 721 

thereby runoff is high, much plant debris and eroded soil material are transported into the coastal 722 

waters. In Swedish waters, a relationship between nutrient transport from land and benthic 723 

abundance and biomass has been established, assuming a link through phytoplankton production 724 

(Josefson 1990, Tunberg & Nelson 1998).  725 

 726 

Interestingly, NAO was not only found to be associated with changes in species composition, but 727 

also with species richness, where an increase in NAO (i.e. mild winters) was accompanied by a 728 

small, but consistent, decline in species richness the following year. A similar relationship was 729 

documented by Rees et al. (2006) for the western North Sea. Rees et al. (2006) suggested that the 730 

density and variety of species may be lower in response to warmer winters characterized by 731 

westerly airflows, which was a common feature of the weather patterns in the 1990s. Further, as 732 

discussed above, if an increase in NAO leads to increased organic matter content in the water-733 

column, a subsequent response of the benthos may take place, albeit with different time lags at 734 

different depths. It is worth mentioning that an increase in TJan was associated with an increase in 735 

species richness. This finding may apparently be in contrast to the relationship between NAO and 736 

S, but it is important to have in mind that it was NAOprev (i.e. NAO one year before TJan) which 737 

was significant for the patterns in community structure and species richness. Further, as discussed 738 

above, NAO is assumed to act through complex and time-lagged rather than direct mechanisms 739 

(see also review by Birchenough et al. 2015).  740 

 741 

4.2.3. General considerations 742 

Despite the effects of eutrophication in general have been reduced during the last two decades, 743 

climate change may counteract some of this positive trend (McQuatters-Gollop et al. 2009, 744 

Rabalais et al. 2009). Indeed, nutrient inputs from some Norwegian rivers and aquaculture have 745 

increased recently (Skarbøvik et al. 2010). Further, there has been an increase in seston, dissolved 746 

organic nitrogen (DON) and non-autotrophic materials (Frigstad et al. 2013) as well as a 747 

darkening of coastal waters, partly due to such increased runoff (Aksnes et al. 2009). Thus, there 748 
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appears to have been a shift towards increasing importance of local discharge sources relative to 749 

long-distance sources (Aure & Magnusson 2008, Norderhaug et al. 2015), which is of general 750 

concern. The massive reduction of sugar kelp Saccharina latissima that took place in the late 751 

1990s in shallow inshore waters, assumed to be a consequence of higher summer temperatures 752 

and increased siltation from freshwater runoff (Moy & Christie 2012), may be an early effect on 753 

benthic ecosystems. On outer coast however, hard bottom communities are far less affected 754 

(Norderhaug et al. 2015). In deeper water, no large-scale ecosystem changes have been observed, 755 

but, still, the present study documents that there were significant changes in the soft bottom fauna 756 

from the 1990s to the 2000s. This significant, though less dramatic changes in soft bottom fauna 757 

reported here, evidence a dampened response in deeper ecosystems. This agrees with the general 758 

results from the long-term studies in western North Sea where the soft bottom species 759 

communities appear to have undergone decadal shifts more or less coordinated with changes in 760 

dominant driving forces (Frid et al. 2009b). Complex mechanisms linking pelagic production and 761 

benthos, greater longevity of benthos compared to planktonic organisms, and recruitment 762 

dynamics of benthic species may contribute to explain the observed lagged and dampened 763 

responses to changes in the pelagic systems (Frid et al. 2009a, b). 764 

 765 

Thus, it is evident that there have been modifications of all ecosystem compartments around the 766 

year 2000. Frigstad et al. (2013) considered the concurrent changes in nutrients and particulate 767 

matter, zooplankton, fish populations and sugar kelp in the coastal waters of Skagerrak as 768 

evidence of a regime shift. Such shift also concurs well with an ecosystem shift in the North Sea, 769 

evidenced by several studies both for plankton (e.g. Beaugrand 2014) and benthic communities 770 

(e.g. Dippner et al. 2010, Kröncke and Reiss, 2010; Kröncke et al. 2013). As pointed out in these 771 

studies, the major driver behind the biological regime shift is probably related to a climatic 772 

regime shift. Such climatic change will both have direct and indirect effects (see review by 773 

Birchenough et al. 2015), where increased runoff from land and terrestrial derived material is 774 

hypothesised as one of the most important impact mechanisms for the coastal ecosystems.  775 

 776 

A large proportion of the variance in the biological patterns was not explained by the 777 

environmental data, which is not uncommon in observational studies. Marine benthic 778 

communities are highly complex and respond to a wide range of ecologically structuring 779 

processes acting on different scales (Kraufvelin et al. 2011, Buhl-Mortensen et al. 2012), and it is 780 

impossible to measure all the relevant parameters involved in these processes. Also the 781 

environmental variables, despite seasonal measures, may not have been collected at the right time 782 

to capture important peeks in the time-series. In the present study, some of the unexplained 783 

variation can probably be attributed to factors that have not been characterized in the present set 784 

of environmental variables, e.g. the Prymnesium polylepis bloom in 1988 which may have 785 

affected the benthic communities. Further, biological controlling factors, causing variances in e.g. 786 

recruitment patterns, competition and trophic group amensalism may add to such unexplained 787 

variation (Oug 1998). Even at the very local scale there may be patchiness related to topographic 788 

and hydrographical differences at the seabed not accounted for (Gundersen et al. 2011), which 789 

will appear as stochastic variation in the data. Lastly, there was a slight discrepancy in the 790 

sampling design between the soft bottom and pelagic stations, i.e. the samples were taken close to 791 

each other, but not at exactly the same location and depth.  792 
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Table 1. Concurvity matrix of the 15 environmental variables included in the model selection using GAM and 991 
ordination analyses. Concurvity is the non-parametric analogue of collinearity (Ramsay et al. 2003), and can be 992 
interpreted in the same way as a correlation coefficient; the higher values the higher correlation. 993 
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Table 2. The total dataset of 21 years and six soft bottom stations showing the number of available environmental 996 
variables (upper number, max 48) and the number of final selected environmental variables (lower number, max 15), 997 
which also sets the limitation for which stations that could be used in the GAM and DistLM analyses.  998 
 Years                    

Stations 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 

Oslofjord                      

A05 38 

14 

48 

15 

48 

15 

30 

7 

4 

4 

4 

4 

30 

10 

24 

10 

25 

8 

4 

4 

4 

4 

4 

4 

4 

4 

30 

11 

39 

15 

30 

7 

30 

7 

30 

14 

38 

15 

4 

4 

28 

14 

A36 38 

14 

48 

15 

48 

15 

29 

7 

4 

4 

4 

4 

30 

10 

24 

10 

25 

8 

4 

4 

4 

4 

4 

4 

4 

4 

26 

11 

33 

15 

26 

7 

26 

7 

25 

14 

33 

15 

4 

4 

26 

14 

SE coast                      

B05 38 

14 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

B35 37 

14 

47 

15 

48 

15 

48 

15 

47 

15 

48 

15 

48 

15 

47 

15 

46 

15 

47 

15 

47 

15 

47 

15 

48 

15 

48 

15 

46 

15 

48 

15 

48 

15 

48 

15 

48 

15 

46 

15 

44 

15 

SW coast                      
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14 

30 

15 

36 

15 

34 

14 

31 

14 

38 

15 

40 

15 

40 

15 

40 

13 

46 

15 

48 

15 

48 

15 

48 

15 

48 

15 

47 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

48 

15 

C38 20 

14 

30 

15 

36 

15 

34 
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38 
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40 

15 

40 

15 

38 
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15 

48 

15 

48 

15 

48 

15 

45 

15 

45 

15 

44 

15 
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15 
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15 

48 

15 
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15 

46 

15 
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Table 3. SIMPER-analysis for all stations treated together for the time-categories 1990-1999 vs. 2000-2010, where 1001 
taxa representing 70% of the difference between the groups are included. Abundance (no. ind/0.1 m2), trend (“+” 1002 
denotes increase; “-“denotes decrease), average dissimilarity (AvDis. %) and cumulative average dissimilarity of 1003 
differences between the groups area also presented. 1004 

 

Group 1990-1999 

Average abundance 

Group 2000-2010 

Average abundance 

 

Trend 

 

AvDis % 

Cumulative  

AvDis % 

Heteromastus filiformis 84.1 42.8 - 17.0 17.0 

Paramphinome jeffreysii 37.0 29.5 - 9.4 26.4 

Tharyx sp. 24.5 16.0 - 6.4 32.9 

Thyasira equalis 15.9 22.9 + 5.8 38.6 

Abra nitida 9.0 13.3 + 3.3 41.9 

Myriochele heeri 0.4 11.5 + 2.9 44.9 

Caulleriella sp. 9.2 8.1 - 2.7 47.5 

Chaetozone setosa 9.9 5.3 - 2.6 50.1 

Galathowenia oculata 2.4 8.1 + 2.4 52.5 

Diplocirrus glaucus 4.3 3.8 - 2.0 54.6 

Nemertea indet. 7.1 6.5 - 2.0 56.6 

Spiophanes kroyeri 3.1 5.6 + 1.9 58.4 

Lumbrineris sp. 7.3 5.2 - 1.8 60.2 

Ceratocephale loveni 3.3 5.4 + 1.5 61.7 

Ennucula tenuis 1.8 4.9 + 1.5 63.2 

Hyala vitrea 0.9 3.0 + 1.3 64.5 

Philomedes lilljeborgi 1.2 4.2 + 1.3 65.8 

Kelliella miliaris 1.3 3.9 + 1.3 67.1 

Prionospio fallax 1.9 3.0 + 1.2 68.3 

Amphilepis norvegica 1.9 3.0 + 1.1 69.4 

 1005 
  1006 
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Table 4. Importance table from the Mixed GAM analyses and model selection of species richness (S) and diversity 1007 
(H’). Variables are ranked according to their relative importance value (RIV) based on all models with ∆AICc<7. 1008 
RIV ranges between 0 and 1 and increases with its presence in the models considered, which was 35 and 10 for S and 1009 
H’, respectively. 1010 
Variables RIV (S) Variables RIV (H’) 

Depth 1.00 TotNOct 0.11 

Pelite 0.69 Depth 0.07 

NO3+NO2Jan 0.59 TotPApr 0.04 

TotPApr 0.36 Pelite 0.04 

TJan 0.34 Longitude 0.03 

TotNOct 0.18 TotNJan 0.03 

NAOprev 0.17 NAOprev 0.03 

Longitude 0.07 NO3+NO2Jan 0.03 

NAO 0.05 TotNApr 0.02 

TotNJan 0.03 NAO 0.00 

NO3+NO2Apr 0.00 NO3+NO2Apr 0.00 

TApr 0.00 TApr 0.00 

TOC 0.00 TJan 0.00 

TotNApr 0.00 TOC 0.00 

TotPJan 0.00 TotPJan 0.00 

 1011 
  1012 
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Table 5. Results of the DistLM-model, including Sum of squares (SS), Pseudo-F statistic, p-value and proportional 1013 
and cumulative explained total variance. Significant (p<0.05) variables are in bold. Sequential tests explain the 1014 
cumulative variation attributed to each variable fitted to the model in the order specified, taking previous variables 1015 
into account. Marginal tests show how much variation each variable explains when considered alone, ignoring other 1016 
variables. 1017 

Sequential test SS Pseudo-F p Prop. Cumul. 

Depth 44874 33.59 <0.001 0.309 0.31 

Longitude 13910 11.93 <0.001 0.096 0.41 

Pelite 7147 6.59 <0.001 0.049 0.45 

TOC 7643 7.69 <0.001 0.053 0.51 

TJan 3544 3.70 <0.001 0.024 0.53 

TApr 1901 2.01 0.006 0.013 0.55 

NAOprev 1427 1.53 0.049 0.010 0.56 

NO3+NO2Apr 1388 1.48 0.058 0.010 0.55 

TotNJan 1320 1.43 0.077 0.009 0.57 

TotNOct 1168 1.27 0.161 0.008 0.58 

NAO 1121 1.22 0.195 0.008 0.59 

TotPApr 1054 1.15 0.247 0.007 0.60 

Marginal test SS Pseudo-F p Prop. 

Depth 44874 33.59 <0.001 0.310 

TOC 25859 16.27 <0.001 0.180 

TApr 23325 14.37 <0.001 0.160 

Longitude 17533 10.31 <0.001 0.120 

TotNOct 16755 9.79 <0.001 0.120 

TJan 16604 9.69 <0.001 0.110 

TotPApr 15039 8.67 <0.001 0.100 

NO3+NO2Jan 13277 7.55 <0.001 0.092 

Pelite 11299 6.33 <0.001 0.078 

TotPjan 10000 5.55 <0.001 0.069 

NO3+NO2Apr 6914 3.75 <0.001 0.048 

TotNApr 5908 3.18 <0.001 0.041 

NAOprev 2044 1.07 0.320 0.014 

NAO 2041 1.07 0.332 0.014 

TotNjan 1546 0.81 0.551 0.011 
 1018 
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 1019 
Figure 1. Soft bottom (black dots) and pelagic (hydrophysical and hydrochemical, white dots) stations within the 1020 
Norwegian Coastal Monitoring Programme. The stations were positioned in three regions: the outer Oslofjord (A), 1021 
the southeast coast (B), and the southwest coast (C). Main water masses are presented as the Jutland Coastal Current 1022 
in red, water from Kattegat in orange, Atlantic waters in blue, and the Norwegian Coastal Current in green. 1023 
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 1024 
Figure 2. MDS-ordination (based on Bray-Curtis similarity) of soft bottom fauna on the outer coast of South Norway 1025 
from 1990 to 2010. 1026 
 1027 

  1028 
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 1029 
Figure 3. Principal coordinate analysis (PCoA) of species traits of soft bottom fauna on the outer coast of South 1030 
Norway from 1990 to 2010: biplot of station centroids (divided between 1990-1999 and 2000-2010 to indicate 1031 
temporal patterns) and trait categories. Trait categories are illustrated as vectors pointing in the direction of 1032 
maximum increase, long vectors indicate strong trends. For clarity, only traits with high correlation to the axes 1033 
(Pearson correlation coefficient > 0.6) are shown. These are adult life habit (AH), adult mobility (AM), body form 1034 
(BF), feeding habit (FH), larvae type (LT), degree of attachment (DA), sediment dwelling depth (SD) and sediment 1035 
reworking (SR). 1036 
  1037 
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1038 
                             1039 

 1040 
Figure 4. Species richness and diversity of soft bottom fauna on the outer coast of South Norway 1990-2010. Top: 1041 
Box (interquartile range) and whisker (extends to the most extreme data points) plots of species richness (S) and 1042 
diversity (Shannon-Wiener index, H’) at stations for each sampling occasion (averaged over the stations). Bottom: 1043 
Total number of species at each sampling occasion and Whittaker’s index of beta (turnover) diversity.  1044 
  1045 
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Figure 5. MDS-ordination (based on Bray-Curtis similarity) of soft bottom fauna from the six stations on the outer 1046 
coast of South Norway from 1990-2010 (year 1990-1999 in grey, year 2000-2010 in black). 1047 
  1048 
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 1049 
Figure 6. Predicted curves of species richness (S) based on univariable analyses of environmental variables used in 1050 
the modelling (only relations with p < 0.1 are shown). Levels for p values are p<0.01 (**), p<0.05 (*), and p<0.1 (·).  1051 
The y-axis is the effect on the response for each smooth and is centered around zero in order to ensure model 1052 
identifiability for the smoothed responses. 1053 
  1054 
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a) 1055 

 1056 
b) 1057 

 1058 
Figure 7. dbRDA plot of Bray Curtis similarity between samples based on soft bottom data for the period 1991-2010. 1059 
Variables identified as significant by DistLM, are typed with red. a) axes 1 and 2, b) axes 1 and 3.  1060 
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Supplement 1. Correlation matrix of all 48 environmental variables available. See main text for abbreviations.  1061 
 1062 

 1063 
  1064 
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Long 1.0

Depth 0.0 -0.1

Pelite 0.0 0.2 0.2

TOC -0.2 0.0 -0.7 0.3

NAO 0.2 0.2 0.1 0.0 0.0

NAOPrev 0.2 0.2 0.0 0.1 0.0 0.0

TempMax 0.4 0.4 -0.8 -0.2 0.6 0.0 0.1

TempJan -0.4 -0.4 0.4 0.0 -0.3 -0.2 -0.3 -0.5

TempApr -0.4 -0.5 0.6 -0.1 -0.5 0.1 -0.2 -0.6 0.5

TempJul 0.3 0.4 -0.7 -0.2 0.5 -0.1 0.2 0.8 -0.6 -0.7

TempOct 0.4 0.4 -0.8 -0.2 0.6 0.0 0.1 0.9 -0.5 -0.6 0.7

SALJan -0.3 -0.4 0.8 0.1 -0.6 -0.1 -0.1 -0.8 0.7 0.6 -0.7 -0.8

SALApr -0.3 -0.4 0.8 0.0 -0.6 -0.1 0.0 -0.8 0.5 0.8 -0.7 -0.7 0.8

SALJul -0.3 -0.4 0.8 0.3 -0.5 0.0 0.0 -0.7 0.5 0.6 -0.8 -0.7 0.7 0.8

SALOct -0.4 -0.4 0.8 0.3 -0.4 0.0 0.0 -0.8 0.5 0.6 -0.7 -0.8 0.8 0.7 0.9

TotPJan 0.2 0.1 0.5 0.1 -0.4 0.0 0.0 -0.3 -0.1 0.0 -0.1 -0.4 0.4 0.3 0.3 0.3

TotPApr -0.1 -0.1 0.5 0.2 -0.3 -0.1 0.3 -0.4 -0.1 0.4 -0.3 -0.4 0.3 0.6 0.5 0.5 0.4

TotPJul -0.2 -0.2 0.8 0.3 -0.5 0.1 0.0 -0.8 0.5 0.6 -0.8 -0.7 0.8 0.7 0.8 0.8 0.3 0.5

TotPOct -0.3 -0.3 0.7 0.3 -0.5 -0.1 -0.1 -0.8 0.3 0.5 -0.6 -0.9 0.7 0.7 0.7 0.8 0.5 0.6 0.7

PO4PJan 0.2 0.2 0.5 0.0 -0.4 0.0 0.3 -0.3 0.0 0.0 -0.2 -0.4 0.4 0.2 0.3 0.4 0.8 0.3 0.3 0.4

PO4PApr -0.2 -0.2 0.5 0.2 -0.4 0.0 0.3 -0.5 0.1 0.5 -0.4 -0.5 0.5 0.7 0.6 0.6 0.3 0.9 0.6 0.6 0.3

PO4PJul -0.3 -0.3 0.8 0.2 -0.6 0.1 0.0 -0.8 0.5 0.7 -0.9 -0.8 0.8 0.8 0.9 0.8 0.3 0.4 0.9 0.7 0.3 0.6

PO4POct -0.2 -0.2 0.9 0.3 -0.6 0.0 0.0 -0.9 0.3 0.5 -0.7 -0.9 0.8 0.7 0.7 0.9 0.5 0.6 0.7 0.9 0.5 0.7 0.8

TotNJan 0.3 0.2 0.0 -0.1 -0.1 0.0 0.1 0.1 -0.3 -0.1 0.2 0.0 0.0 -0.1 0.0 0.0 0.3 0.1 -0.1 0.0 0.2 0.1 0.0 0.1

TotNApr 0.3 0.4 -0.1 0.1 0.1 0.1 0.4 0.2 -0.5 -0.2 0.3 0.2 -0.4 -0.2 -0.3 -0.3 0.2 0.3 -0.2 -0.1 0.0 0.2 -0.2 -0.1 0.2

TotNJul -0.3 -0.2 0.3 0.1 -0.1 -0.3 -0.2 -0.3 0.2 0.3 -0.4 -0.3 0.3 0.4 0.3 0.3 0.2 0.1 0.4 0.4 0.1 0.2 0.3 0.3 0.0 -0.2

TotNOct -0.4 -0.4 0.5 0.2 -0.2 0.0 -0.2 -0.5 0.3 0.5 -0.5 -0.5 0.5 0.5 0.5 0.6 0.3 0.4 0.4 0.7 0.3 0.4 0.5 0.6 0.0 -0.3 0.4

NO3NO2Jan -0.1 -0.2 0.4 -0.1 -0.3 -0.1 0.1 -0.4 -0.1 0.1 -0.2 -0.4 0.4 0.2 0.2 0.3 0.6 0.3 0.2 0.4 0.6 0.3 0.3 0.4 0.3 0.1 0.2 0.4

NO3NO2Apr -0.2 -0.2 0.3 0.0 -0.3 0.0 0.4 -0.3 -0.1 0.3 -0.1 -0.4 0.1 0.3 0.3 0.3 0.3 0.7 0.3 0.4 0.2 0.8 0.2 0.4 0.1 0.5 0.0 0.2 0.3

NO3NO2Jul -0.4 -0.5 0.8 0.1 -0.6 0.0 0.0 -0.9 0.6 0.8 -0.9 -0.8 0.8 0.8 0.9 0.8 0.2 0.4 0.8 0.7 0.3 0.6 0.9 0.8 -0.1 -0.3 0.4 0.5 0.3 0.3

NO3NO2Oct -0.4 -0.4 0.8 0.2 -0.6 0.0 -0.1 -0.9 0.4 0.6 -0.7 -1.0 0.8 0.8 0.8 0.9 0.4 0.5 0.7 0.9 0.4 0.6 0.8 1.0 0.0 -0.2 0.4 0.7 0.5 0.3 0.9

POCJan 0.4 0.4 0.0 0.1 0.1 0.3 0.0 0.2 -0.1 -0.1 0.2 0.2 -0.3 -0.1 0.0 -0.2 0.0 -0.1 -0.1 -0.2 -0.2 -0.1 -0.1 -0.1 0.2 0.1 0.0 0.0 -0.4 -0.1 -0.2 -0.2

POCApr 0.6 0.6 -0.1 0.0 0.1 0.1 0.0 0.4 -0.2 -0.3 0.2 0.4 -0.3 -0.3 -0.4 -0.5 -0.1 -0.3 -0.3 -0.3 -0.1 -0.5 -0.2 -0.3 0.0 0.2 -0.1 -0.3 -0.1 -0.4 -0.3 -0.4 0.3

POCJul -0.1 -0.1 -0.1 0.0 0.2 0.1 0.0 0.1 0.0 -0.1 0.1 0.2 -0.1 0.0 -0.1 -0.1 -0.3 -0.2 -0.1 -0.2 -0.3 -0.1 0.0 -0.2 -0.3 0.0 0.0 -0.2 -0.3 -0.1 0.0 -0.2 0.1 0.0

POCOct 0.2 0.3 -0.4 0.1 0.5 0.0 -0.1 0.6 -0.4 -0.3 0.5 0.5 -0.5 -0.5 -0.5 -0.5 -0.2 -0.4 -0.4 -0.5 -0.2 -0.4 -0.5 -0.5 0.1 0.0 0.1 -0.1 -0.1 -0.4 -0.5 -0.5 0.2 0.4 0.1

PONJan 0.4 0.5 -0.2 0.1 0.2 0.3 0.2 0.4 -0.4 -0.3 0.4 0.4 -0.5 -0.3 -0.3 -0.4 -0.1 -0.1 -0.3 -0.3 -0.2 -0.1 -0.3 -0.3 0.4 0.2 -0.1 -0.2 -0.3 -0.1 -0.4 -0.4 0.8 0.3 0.1 0.4

PONApr 0.6 0.6 -0.2 0.1 0.1 0.1 0.0 0.4 -0.3 -0.4 0.3 0.4 -0.4 -0.4 -0.4 -0.5 -0.1 -0.3 -0.3 -0.4 -0.1 -0.5 -0.3 -0.4 0.0 0.3 -0.2 -0.4 -0.2 -0.4 -0.4 -0.4 0.3 1.0 -0.1 0.4 0.4

PONJul 0.1 0.3 -0.6 0.1 0.6 -0.3 0.0 0.6 -0.3 -0.6 0.6 0.5 -0.5 -0.5 -0.6 -0.4 -0.2 -0.2 -0.5 -0.4 -0.3 -0.3 -0.6 -0.5 0.1 0.1 0.0 -0.3 -0.2 -0.3 -0.7 -0.5 0.1 0.2 0.2 0.6 0.3 0.3

PONOct 0.2 0.3 -0.4 0.1 0.5 0.0 -0.1 0.6 -0.5 -0.4 0.5 0.5 -0.5 -0.6 -0.6 -0.5 -0.1 -0.3 -0.4 -0.4 -0.2 -0.4 -0.5 -0.5 0.1 0.1 0.1 -0.2 -0.1 -0.3 -0.6 -0.5 0.1 0.4 0.1 0.9 0.4 0.4 0.6

POPJan 0.4 0.5 -0.2 0.1 0.2 0.3 0.2 0.4 -0.4 -0.3 0.4 0.4 -0.5 -0.3 -0.3 -0.4 -0.1 -0.1 -0.3 -0.3 -0.2 -0.1 -0.3 -0.3 0.4 0.2 -0.1 -0.2 -0.3 -0.1 -0.4 -0.4 0.8 0.3 0.1 0.4 1.0 0.4 0.3 0.4

POPApr 0.6 0.6 -0.2 0.1 0.1 0.1 0.0 0.4 -0.3 -0.4 0.3 0.4 -0.4 -0.4 -0.4 -0.5 -0.1 -0.3 -0.3 -0.4 -0.1 -0.5 -0.3 -0.4 0.0 0.3 -0.2 -0.4 -0.2 -0.4 -0.4 -0.4 0.3 1.0 -0.1 0.4 0.4 1.0 0.3 0.4 0.4

POPJul 0.1 0.3 -0.6 0.1 0.6 -0.3 0.0 0.6 -0.3 -0.6 0.6 0.5 -0.5 -0.5 -0.6 -0.4 -0.2 -0.2 -0.5 -0.4 -0.3 -0.3 -0.6 -0.5 0.1 0.1 0.0 -0.3 -0.2 -0.3 -0.7 -0.5 0.1 0.2 0.2 0.6 0.3 0.3 1.0 0.6 0.3 0.3

POPOct 0.2 0.3 -0.4 0.1 0.5 0.0 -0.1 0.6 -0.5 -0.4 0.5 0.5 -0.5 -0.6 -0.6 -0.5 -0.1 -0.3 -0.4 -0.4 -0.2 -0.4 -0.5 -0.5 0.1 0.1 0.1 -0.2 -0.1 -0.3 -0.6 -0.5 0.1 0.4 0.1 0.9 0.4 0.4 0.6 1.0 0.4 0.4 0.6

ChlaJan 0.2 0.2 -0.2 0.1 0.1 -0.2 0.0 0.2 -0.3 -0.2 0.2 0.3 -0.3 -0.2 -0.1 -0.2 0.0 0.1 -0.1 -0.2 -0.2 0.0 -0.3 -0.2 0.2 0.1 0.0 -0.2 -0.4 0.1 -0.3 -0.3 0.2 -0.1 -0.2 0.1 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2

ChlaApr -0.2 -0.2 0.0 0.0 0.0 0.1 -0.2 -0.2 0.0 -0.1 -0.1 -0.2 0.1 -0.1 0.0 0.0 0.2 -0.1 0.0 0.2 0.2 -0.1 0.1 0.1 0.0 -0.2 0.1 0.3 0.3 -0.1 0.1 0.2 -0.1 0.1 0.0 0.1 -0.1 0.1 -0.2 0.0 -0.1 0.1 -0.2 0.0 -0.2

ChlaJul -0.1 -0.1 0.0 0.1 0.1 0.0 -0.3 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.1 -0.1 -0.1 -0.1 -0.1 -0.3 -0.1 -0.1 -0.1 -0.1 -0.3 -0.1 0.0 -0.1 -0.2 0.0 -0.1 0.1 0.0 -0.1 0.2 0.0 0.0 0.1 0.2 0.0 0.0 0.1 0.2 0.1 -0.2

ChlaOct 0.1 0.2 0.1 0.2 0.1 0.2 0.3 -0.1 -0.2 -0.2 0.0 -0.1 -0.1 -0.1 0.0 0.0 -0.1 0.1 0.0 0.0 -0.1 0.0 0.0 0.1 0.0 0.2 0.0 -0.1 -0.1 0.0 0.0 0.0 0.2 0.2 -0.1 0.0 0.3 0.2 0.1 0.0 0.3 0.2 0.1 0.0 0.0 0.1 0.0
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Supplement 2. Box (interquartile range) and whisker (extends to the most extreme data points) plots of yearly 1065 
variation in measured environmental variables used in the soft bottom dataset, averaged for all stations. Symbols 1066 
indicate significant levels at <0.001 (***), <0.01 (**), <0.05 (*), and <0.1 (∙) for the regression through time for each 1067 
environmental variable. Pelite content is measured as % particles < 0.063 mm, temperature (T) is given in °C, 1068 
salinity (Sal) in ppt, Total Organic Carbon (TOC) in mg g-1 whereas all nutrients, i.e. total phosphor (TotP), 1069 
phosphate (PO4), total nitrogen (TotN), nitrate + nitrite (NO3+NO2), Particulate Organic Carbon (POC), and 1070 
Nitrogen (PON) are given in µM.  1071 
 1072 

 1073 
 1074 
             Jan   Apr        Jul            Oct 1075 

1076 
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