
UNIVERSITY OF VAASA

SCHOOL OF TECHNOLOGY AND INNOVATION

AUTOMATION AND COMPUTER SCIENCE

Jeremias Snellman

IMPLEMENTATION AND EVALUATION OF A GRAPHQL-BASED WEB AP-

PLICATION FOR PROJECT FOLLOW UP

Vaasa 27.08.2019

Supervisor Prof. Timo Mantere

Instructor Petri Välisuo & Tim Wallin, Gambit

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osuva

https://core.ac.uk/display/227342375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

CONTENTS

LIST OF ABBREVIATIONS 4

ABSTRACT 5

1 INTRODUCTION 6

1.1 Research question and purpose 6

1.2 Limitations 7

1.3 Structure 8

1.4 Gambit Labs Ab Oy 8

2 WEB API 10

2.1 Client-server architecture 10

2.2 Hypertext Transfer Protocol (HTTP) 10

2.2.1 The history of HTTP 11

2.2.2 Structure of messages 12

2.3 Data formats 14

2.3.1 JavaScript Object Notation (JSON) 14

2.3.2 Extensible Markup Language (XML) 15

3 GRAPHQL 16

3.1 The Type System 18

3.1.1 Schema 18

3.1.2 Types 19

3.2 Queries, Mutations and Subscriptions 21

3.3 GraphQL API Architecture and Design 24

3.3.1 Domain analysis 25

 2

3.3.2 Architectural design 25

3.3.3 Prototyping 25

3.3.4 Implementing for production 26

3.3.5 Publishing 26

3.3.6 Maintenance 26

4 REPRESENTATIONAL STATE TRANSFER 27

4.1 The architectural style 27

4.2 RESTful API Design 28

4.2.1 Resources 29

4.2.2 Representation 30

4.2.3 Parameters 30

4.2.4 Methods 31

5 RELATED WORK 33

5.1 Web API Capacity Study 33

5.2 Performance analysis of Web Services 34

5.3 API Design in Distributed Systems 34

5.4 Semantics and Complexity of GraphQL 36

6 PLANNING AND IMPLEMENTATION 37

6.1 Toggl 37

6.1.1 Toggl API 38

6.1.2 Reports API 38

6.2 Requirements 40

6.3 Selection of technologies 42

6.3.1 Selection criteria 42

 3

6.3.2 Server-side 42

6.3.3 Client-side 43

6.4 System design and architecture 44

6.4.1 Data model 45

6.4.2 Synchronization service 46

6.5 Creating the GraphQL API 48

6.6 Consuming the GraphQL API 49

7 EVALUATION AND RESULTS 52

8 CONCLUSIONS AND DISCUSSION 57

REFERENCES 59

APPENDIX 63

A. List of HTTP status codes and reason phrases 63

B. List of supported API requests for the Toggl API 64

 4

LIST OF ABBREVIATIONS

AST Abstract Syntax Tree

API Application Programming Interface

CMS Content Management System

HTML Hypertext Markup Language

HTTP Hypertext Transport Protocol

JSON JavaScript Object Notation

REST Representational State Transfer

SOAP Simple Object Access Protocol

SPA Single-Page-Application

TCP Transmission Control Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

 5

UNIVERSITY OF VAASA

Faculty of technology

Author: Jeremias Snellman

Topic of the Thesis: Implementation and evaluation of a GraphQL-based

Web application for project follow up

Supervisor: Timo Mantere

Instructor: Tim Wallin, Petri Välisuo

Degree: Master of Science in Technology

Degree Programme: Degree Programme in Energy- and Information

Technology

Major: Automation and Computer Science

Year of Entering the University: 2014

Year of Completing the Thesis: 2019 Pages: 66

ABSTRACT

This thesis is about APIs and web development. Technologies specifically presented in-

clude GraphQL and REST as a basis for the implementation of the web application. The

purpose of the thesis was to create a web-based tool for project follow up. The main goal

of the tool is to provide reporting functionalities and views for project follow up based on

data from the public APIs provided by Toggl.

In the first part of the thesis, relevant theory about GraphQL, REST and APIs is provided.

Web APIs are presented, along with common protocols, such as HTTP, as well as differ-

ent data formats for the serialization of the data to be transmitted over the network. A

literature review is also performed on the current state of the research on GraphQL-based

APIs as well as on comparisons on GraphQL-, and RESTful-APIs.

The second part consists of the design and implementation of the application. Toggl, a

time tracking service, is described with its two different APIs, the Toggl API, and the

Report API. Further, the decision process of selecting the technologies for the developed

tool is presented. One of the main parts of the tool consists of the synchronization mech-

anism for keeping the data in the database up to date with the data stored in Toggl. The

other major part is about exposing the data via a GraphQL-API and consuming it in a

single-page-application created in React.

The developed application is a minimum viable product, fulfilling its purpose of provid-

ing reporting functionalities for projects based on the data provided by Toggl. It was de-

veloped with usability, flexibility and testability in mind enabling further development in

the future. GraphQL was the choice of API technology and was considered a suitable

approach in this application.

KEYWORDS: GraphQL, REST, API, Web application, Toggl

 6

1 INTRODUCTION

After the World Wide Web was invented and implemented, a need for standards for com-

municating between different computer systems rose in the 1990s. Different protocols

were developed, such as Hypertext Transfer Protocol (HTTP) and Simple Object Access

Protocol (SOAP). Later, a web architectural style called Representational State Transfer

(REST) was developed by Roy Fielding. (2000). With the emerge of SOAP and REST,

computer systems could communicate with each other via the Web using HTTP, utilizing

Application Programming Interfaces (API).

Together with Web APIs, Asynchronous JavaScript and XML (Ajax) enabled the possi-

bility to create dynamic sites which run in the browser. The term Single Page Application

(SPA) was coined in the 2000s, which is used for a web application which runs com-

pletely in the browser. The needed resources, for example, JavaScript files or Hypertext

Markup Language (HTML) documents are fetched from the server and form a standalone

application in the browser without the need of loading a new page when the user clicks

on a menu, for example. A large number of frameworks have been developed which

builds on this principle. React, developed by Facebook, Angular, which Google is the

inventor of, and Vue, founded by Evan You, to mention a few.

As the complexity of data has increased, the need for new ways for fetching data from

the server has emerged. As a response to this, Facebook developed a query language and

runtime called GraphQL, enabling a flexible and extensible way for the client to fetch

data and communicate with the server.

1.1 Research question and purpose

This thesis is about evaluating GraphQL from a practical approach, in the implementation

of a web application. Two different approaches for creating APIs, namely GraphQL and

REST, will be presented and evaluated. A literature review will also be performed on the

current state of research on GraphQL and REST.

 7

A need for a tool was discovered in the company Gambit Labs Ab Oy (see chapter 1.4),

to ease the follow-up of projects. A time tracking service called Toggl is in use by the

company. Toggl offers integrations to different project management tools, along with the

possibility to create custom integrations, using its public API. Toggl is used for tracking

the time developers, designers and project manager spend on different clients and pro-

jects, thus making it easier to invoice the customers as the total time spent and other que-

ries are easy to access from the Toggl reports.

The purpose of the thesis is to utilize Toggl’s public API in creating a tool for fetching

and presenting the data, thus creating views for the follow-up on estimates, time used,

and invoices on specific tasks within a project. On the short term, this tool primarily

serves in a retrospective way, whereas in the long term, it enables to serve as a foundation

for the salesforce on giving more precise estimates and offers for new potential projects.

1.2 Limitations

The thesis is limited to presenting only two different API technologies, namely GraphQL

and RESTful APIs, as these are very popular today. Terms such as Single Page Applica-

tion (SPA) will be explained, together with an exploration of different frontend and

backend frameworks. These will, however, not be evaluated nor compared to each other,

rather they only serve as a theoretical foundation for the later chapters in which the de-

velopment process is explained in more detail.

The tool created is not a complete project management tool, with all the different features

for managing a project, but a rather focused tool and a minimum viable product (MVP),

which aims to fulfill its purpose mentioned in the previous section. This will help to keep

the complexity down but still, enable further development in the future. Further utilization

of the Toggl data is effortlessly achievable, due the the flexibility and customizability of

GraphQL, which is used, thus enabling rapid creation of new user interfaces.

 8

1.3 Structure

After the introduction chapter, Web APIs in general are covered. HTTP, a commonly

used protocol, is explained along with different data formats for sending data between the

server and the client. In the following chapter GraphQL is explained in detail. Terms such

as schema, types, queries and mutations are covered, along with different use cases for

GraphQL and scenarios, where a different choice of technology is better suited.

In chapter four, alternatives to GraphQL, REST-based APIs are covered. The architec-

tural style will be presented along with its constraints. Finally, the term RESTful web

service, the implementation of REST, will be explained.

Chapter five provides a literature review of some of the research about GraphQL which

at the time of writing have been done. The research papers presented in this thesis cover

essentially comparisons between GraphQL and REST, as well as evaluations of the

GraphQL language itself.

In the initial part of chapter six, Toggl, the time tracking service in use in Gambit, is

explained. The usage as well as the public API with its different report types are covered.

Furthermore, the requirements of the tool is presented along with a section covering the

selection of technologies. Different UML diagrams are created in support of the tool,

covering the functionality and the structure of the application. Among these are class and

sequence diagrams.

Finally, in chapter seven, the results of the thesis are explained, covering the outcome of

the implemented tool and an evaluation of the application and GraphQL, from a practical

approach. In chapter eight the project is concluded and discussed.

1.4 Gambit Labs Ab Oy

 9

Gambit Labs Ab Oy, hereafter called Gambit, is a company founded in 2011. It is one of

the first companies in Finland with the intention of implementing smart mobile applica-

tions to customers. Gambit employs a total of 21 employees and is located in Runsor, in

the Finnish city of Vaasa. (Gambit 2019.)

Gambit has gained a broad portfolio of diverse projects and customers. These vary from

creating websites for small companies, to more complex solutions including mobile apps

and web services customized for solving a specific problem. (Gambit 2019.)

 10

2 WEB API

An API is an interface to a computer program, which exposes some data and functionality

to allow different systems to communicate with each other, and thus exchange infor-

mation. This can be done via a web service, which is a web server, whose purpose is to

support an application’s or a site’s needs. A Web API is the utilization of the two, expos-

ing a web server’s functionality allowing client programs to interact with the server.

(Masse 2011:5.)

2.1 Client-server architecture

Web APIs typically operate in a client-server architecture. This model can be described

as two separate, autonomous processes, which operates in a request-response way. That

is, the client requests a resource from the server, which then processes the request and

sends the resource in a response back to the client. (Singh & Yadav 2009:1). This is il-

lustrated in Figure 1.

Figure 1. A general view of a client-server architecture.

A common example of a client-server model with network communication, is the browser

acting as a client, which requests web sites or other resources from a web server. (Singh

& Yadav 2009:157.)

2.2 Hypertext Transfer Protocol (HTTP)

 11

The communication between a client and the server is often handled via HTTP. In general,

a client requests a resource from the server, using a GET or POST method or another

HTTP method, in which the server processes the request, and creates a response describ-

ing the performed actions, hence returning the required resource to the client. The re-

source can be of various formats, for example, images, audio and text, which could be

formatted in JSON or XML (described in chapter 2.3).

HTTP is a protocol at the application-level for distributed, collaborative, hypertext infor-

mation systems, stateless in its nature. It relies on reliable data-transmission protocols

such as Transmission Control Protocol (TCP), which ensures that the data received will

be the same as the data sent from the server. (Totty, Gourley, Sayer, Aggarwal & S. Reddy

2009). HTTP, built upon the previously mentioned client-server paradigm is often used

as the underlying protocol when designing and implementing web APIs.

2.2.1 The history of HTTP

The first prototype version of HTTP, version 0.9, was proposed by Tim Berners-Lee in

1991. As a protocol, it was rather limited. The only supported request type was a GET

request, which will be explained further later in this chapter. (Totty et al. 2009).

HTTP/0.9 was shortly replaced by version 1.0. This protocol was the first widely adopted

version, with support of more request methods such as GET, POST and DELETE. In

addition to the methods, HTTP headers and multimedia object handling were introduced,

allowing for creating content with a graphically appealing user interface. (Totty et al.

2009).

With the increased popularity, many features were added to HTTP by commonly used

web clients and servers. Even though they were unofficial, the features became the facto

standards, resulting in HTTP/1.0+. Its descendant, version 1.1 is the standard version of

HTTP. This version is since its publication used by most clients and is still very popular

today. In this version significant performance optimizations were made along with cor-

rections for many architectural flaws. (Totty et al. 2009.)

 12

The latest version of HTTP is version 2.0. Up until 2.0, the data are transmitted in plain

ASCII text. For increased performance, HTTP/2.0 transfers the data in binary form.

HTTP/2.0 also includes several other improvements and optimizations. The usage of

HTTP/2.0 is increasing, with a percentage usage of 33.3% of all websites, at the time of

writing. (W3Techs 2019.)

2.2.2 Structure of messages

An HTTP message consists of three parts; the start line, the headers and the entity body.

The start line and the headers, written in ASCII text, are separated by a two-character

end-of-line sequence. The entity body is an optional block in the message. It may contain

data in text or binary format, which is specified in the header block. (Totty et al. 2009).

The message is either a request or a response, both having the same structure of the mes-

sage.

The start line in a message defines the type of method, the Uniform Resource Identifier

(URI) of the request and the HTTP version to use. The available methods, according to

the current HTTP specification, version 1.1, are shown in table 1.

Table 1. Table representation of all methods specified in HTTP/1.1, as provided by

Fielding and Reschke. (2014:22.)

Method Description

GET Transfer a current representation of the target resource.

HEAD Same as GET, but only transfer the status line and header section.

POST Perform resource-specific processing on the request payload.

PUT
Replace all current representations of the target resource with the request pay-
load.

DELETE Remove all current representations of the target resource.

CONNECT Establish a tunnel to the server identified by the target resource.

OPTIONS Describe the communication options for the target resource.

TRACE Perform a message loop-back test along the path to the target resource.

In RFC 7231, in the Internet Engineering Task Force (IETF), Fielding and Reschke state

that the only required methods, which general-purpose servers must support, are the GET

and HEAD method, while the others are optional. (Fielding & Reschke 2014:22). As

 13

HTTP was designed to be easily extensible, other methods may be implemented by serv-

ers. These methods are called “extension methods”. (Totty et al. 2009.)

The start line in the response differs from the request. In the response, the star line con-

tains the HTTP version, a status-code and a reason-phrase. The status-code informs the

client about the occurred reactions during processing the request. It consists of a three-

digit sequence, with the first digit expressing the class of the response, for example “suc-

cess”, “error” et cetera. (Totty et al. 2009f). The following list describes the various clas-

ses of status codes, and their description, as presented by Fielding and Reschke (2014:47):

• 1xx (Informational): The request was received, continuing process.

• 2xx (Successful): The request was successfully received, understood and ac-

cepted.

• 3xx (Redirection): Further action needs to be taken in order to complete the re-

quest.

• 4xx (Client Error): The request contains bad syntax or cannot be fulfilled.

• 5xx (Server Error): The server failed to fulfill an apparently valid request.

In appendix A, a list of common status codes and corresponding reason phrases is pre-

sented. The reason phrases are only for human interpretation of the response and can be

changed without affecting the protocol.

The header section contains additional information regarding the request and response.

HTTP headers can be classified in the following categories; General-, Request-, Re-

sponse-, Entity-, and Extension-headers. The headers consist of a list of key-value pairs,

that is, a name of the header and its corresponding value, separated by a colon. An exam-

ple of a common header is “Content-length” which defines the length of the body in bytes.

 14

Another example is “Content-type”, which specifies the type of the body. For example,

“Content-type: image/jpeg” defines that the body is a jpeg image. (Totty et al. 2009.)

Finally, the entity body of the HTTP message is the payload. Entity bodies carry the actual

data, which was requested, for example HTML documents, images, videos et cetera. This

section is optional, thus providing it both in the request and the response is not needed.

(Totty et al. 2009.)

2.3 Data formats

As different systems communicate with each other, in a web-context often via HTTP, the

systems need to understand the transmitted data. A client application, for example a Ja-

vaScript application, must be able to understand the entity body of an HTTP request sent

to a server application, for example written in Python. For this case, different data formats

have been established. The purpose of the data formats is to retain common standards for

serializing data structures or other data in an application.

2.3.1 JavaScript Object Notation (JSON)

JSON is a lightweight, text-based format which is designed to be human readable, for

exchanging information typically in a client-server architecture. JSON originated from

JavaScript and uses JavaScript syntax. However, JSON is not dependent on JavaScript or

any other language. Many languages support the data format, among these are Java, PHP,

C# and Python. (Sriparasa 2013.)

Essentially, JSON is a format for serializing data. The format supports four primitive

types: numbers, booleans, strings and null. It is also able to represent two structured types:

objects and arrays. Strings in JSON are defined to be any sequence of any length, includ-

ing zero, of Unicode characters. Objects are a collection of key-value pairs, where the key

is a string representing the name of the value, and the value itself may be any of the

 15

primitive or structured types as defined in JSON. An array in JSON is an ordered list of

values of any length. (Bray 2017.)

2.3.2 Extensible Markup Language (XML)

XML is a subset of the Standard Generalized Markup Language (SGML) and was formed

in 1996 by a working group under the auspices of the World Wide Web Consortium

(W3C). The design purpose for XML is, among others, that it should be straightforwardly

usable over the Internet, it should be easy to create programs which handle and parse

XML documents and that the XML documents should be clear and human-readable.

(Bray, Paoli, Sperberg-McQueen, Maler & Yergeau. 2008.)

An XML document is built upon storage units, called entities. These entities contain data

and are usually identified by an entity name. The entities contain parsed or unparsed data.

Parsed data consists of characters which form data or markup. Character data contains the

representation of the data while the markup encodes a description of the layout and logical

structure of the document. (Bray et al. 2008.)

 16

3 GRAPHQL

GraphQL is a query language and a runtime. A client and a server which both understand

the query language, may request and respectively respond to the data requirements, which

is declaratively communicated by the client. The runtime lays on top of the server appli-

cation and is an execution layer, which ensures that the server is able to respond to the

request, made in the GraphQL language. In his book “Learning GraphQL and Relay”,

Samer Buna describes the relationship between the GraphQL language and runtime as the

following quotation:

Anyone can invent a new language and start speaking it, but no one would under-

stand them without learning the new language first or having someone translate it

for them. That’s why we need to implement a runtime for GraphQL on the backend

servers. (Buna 2016:7.)

Furthermore, the runtime layer is a graph-based schema, which is independent of any

language. The schema defines the capabilities of the corresponding data service. Based

on the schema, a client can perform any query against the runtime, as long as it lies within

the constraints of the schema. Using this approach, both the client and the server are de-

coupled from each other, enabling each to scale as well as evolve independently. (Buna

2016:6 – 7.)

When Facebook developed GraphQL, a set of design principles where followed: (Face-

book 2018a.)

• Hierarchical: In order for clients to describe the data requirements, a query is hi-

erarchically structured, in the same way as the data returned in the response. This

achieves congruency in the creation and manipulation of view hierarchies.

• Product-centric: GraphQL has a client-side first approach. Instead of starting from

the backend API designer’s perspective, everything starts from the front-end en-

gineer’s way of thinking and requirements.

 17

• Strong-typing: As every GraphQL server has its own type system, Query valida-

tion can be performed already at development time, using certain tools. With

strong-typing, the structure of and the nature of a response can be guaranteed at a

certain level before execution.

• Client-specified queries: Given the type system, the capabilities of a GraphQL

server is published to the client. The responsibility then lays in the client to define

what data should be returned on a detailed level. This is the opposite to most cli-

ent-server applications not using GraphQL, as the data returned is specified in the

server.

• Introspective: As defined in the specification, a GraphQL server’s type system

can be queried in itself. A client can query the server for which kind of queries

can be performed, for example. This feature allows for the creation of common

tools and client libraries, such as GraphiQL.

At its core, a GraphQL service is about defining types which contain fields, and then

provide functions for the fields. In figure 2, an example is shown, made by GraphQL

(2019a). In this example a service providing the current user in a system is declared. Fig-

ure 3 shows a corresponding implementation of the functions used for retrieving the data.

Figure 2. Example of two GraphQL types defined. (GraphQL 2019a.)

 18

Figure 3. Example functions for processing a GraphQL query. (GraphQL 2019a.)

Furthermore, when proceeding with the example above, figure 4 shows how the query

can be stated in this specific GraphQL server. The corresponding result of the query is

shown in figure 5.

Figure 4. GraphQL query example. (GraphQL 2019a.)

Figure 5. Example response of a GraphQL query. (GraphQL 2019a.)

3.1 The Type System

The GraphQL Type system defines the capabilities of the server. It is used to determine

whether a query is valid and whether the provided values in a query contains valid data.

The standard language of describing the type system, is the GraphQL Schema Definition

Language (SDL), a kind of Interface Description Language (IDL), which is included in

the GraphQL specifications. (Facebook 2018b.)

3.1.1 Schema

 19

In order to know what kind of operations are supported in a GraphQL server, the schema

must contain information about the Root Operation Types, which can be a query, muta-

tion or subscription. Among these, only queries are mandatory, with mutations and sub-

scriptions being optional. (Facebook 2018b.)

3.1.2 Types

A fundamental unit in the schema is the type. There is a total of six different types: object-

, scalar-, interface-, union-, enum- and input-object-types. Besides these types, there exist

wrapping types, which can be either a List or a Non-nullable type and the root operation

types, described in the previous section.

The object type is the most basic component of the schema. This represents the structure

of the data of a certain object. An object type contains fields which can be of any of the

other types. An example of an object type is as follows:

type Car {

 model: String!

 year: Int

 color: String

}

In this example, the object is a Car, which holds three fields, model, year and color. The

fields are all scalar types, which will be explained later. According to the GraphQL SDL

the exclamation mark (!) indicates that the model field is a Non-Null type. When a field

which is marked as Non-Null is queried, the result can not contain a null value. (Facebook

2018c.)

The scalar types are a defined set of raw data values. The default types available in the

specification are (GraphQL 2019b):

• Int: A signed 32-bit integer.

• Float: A signed double-precision floating-point value.

 20

• String: A UTF-8 character sequence.

• Boolean: true or false.

• ID: The ID scalar type represents a unique identifier, often used to re-fetch an

object or as the key for a cache. The ID type is serialized in the same way as a

String; however, defining it as an ID signifies that it is not intended to be human-

readable.

Interfaces are similar to interfaces in object-oriented programming in the way that they

define a set of fields, which an object type must include in order to implement the inter-

face. Extending the Car example above we could have an interface named Vehicle, which

the Car object implements:

interface Vehicle {

 id: ID!

 model: String!

 year: Int

 color: String

}

type Car implements Vehicle {

 id: ID!

 model: String!

 year: Int

 color: String

}

type Truck implements Vehicle {

 id: ID!

 model: String!

 year: Int

 color: String

}

In this example, there are two different kinds of objects, Car and Truck, both implement-

ing the Vehicle interface. In addition to this, each object types may add object specific

fields which do not belong to the interface.

 21

Another type in the specification is union types. These specify that a type may be either

one of the provided object types. In GraphQL’s web site an example is provided defined

as follows (GraphQL 2019b):

union SearchResult = Human | Droid | Starship

This example implies that when a query has a return type of SearchResult, the returned

object might be either an object of type Human, Droid, or Starship.

The enum type defines a set of predefined possible values. The values in the enum type

is a scalar value. This allows for the system to know, that the input or output of a query

is either one of the values defined in the enum. (GraphQL 2019b). For example:

enum Color {

 RED

 GREEN

 BLUE

 BLACK

}

The last type of the named types is the input object type. These are a special type which

is only used as a type when being passed as a query argument, but more commonly in

mutations (discussed in section 3.2). The input type is similar to a regular object type with

the difference in the keyword being used in the schema, input, instead of type. (GraphQL

2019b.)

3.2 Queries, Mutations and Subscriptions

Queries and mutations in GraphQL are means of interacting with the data. A query is a

read operation, meaning that a client performs a query, which is sent to the GraphQL

server. The server, in turn, processes the request and returns the requested data. This is

being done without performing any so-called side-effects on the data, for instance updat-

ing, or deleting any data.

 22

When the user wants to perform changes to data, for example create a new object, update

an instance or delete some data, a mutation operation is performed.

Queries and mutations in GraphQL belong to the root operation types along with sub-

scriptions. Similarly, as with the other types, queries and mutations are to be defined in

the schema.

In order to define a query in the schema, usually a type named Query is defined, with

each field representing a specific query, which can be performed. The name of the type

is not required to be Query, but according to the specifications, the schema definition is

not needed. Instead it can be omitted when the root types query, mutation and subscription

are named Query, Mutation and Subscription respectively. An example of this is:

type Query {

 readCars: [Cars]!

}

This above example specifies that there must exist a query called readCars, which must

return a list of car objects. The exclamation mark outside the brackets, allows the car

objects themselves, but not the list, to be null. Similarly, to define a mutation, a type

Mutation is added in the schema:

type Mutation {

 setCarColor(id: ID!, color: String!): Car

}

In this example, a mutation setCarColor is defined. This mutation takes two mandatory

arguments, id of type ID and color of type String. The response of this mutation is an

object of type Car.

When the queries and mutations are defined in the server schema similarly to the exam-

ples above, the client can utilize them by performing a request to the GraphQL server. If

a client wants to get data about all cars stored in a database, it can use the readCars query

in the following way:

 23

query {

 readCars {

 id

 model

 year

 }

}

Updating the color of a car is performed by using the example mutation like this:

mutation {

 setCarColor(id = 1234, color = “green”) {

 id

 color

 year

 model

 }

}

Subscriptions are a means of accessing near real-time updates to the client, when data or

another event occurs in the server. Typically, this has been done using polling or web

sockets. GraphQL subscriptions are defined in the same way as queries and mutations,

for example:

type Subscription {

 carAdded: Car

}

This subscription definition implies that a client can subscribe to an event called ca-

rAdded, which will inform the client whenever a new car is saved. The events or notifi-

cations are often triggered when a change has occurred to the graph, via a mutation or

another type of change, for instance, when new measurements from a sensor are received.

(Biehl 2018:36). When the client wants to use the above subscription, a request to the

GraphQL server is sent with the following payload:

subscription {

 carAdded {

 id

 model

 year

 24

 }

}

After the subscription request is sent to the server, the client will receive a notification

with the new car data every time a new car is added.

3.3 GraphQL API Architecture and Design

The architecture of a GraphQL server is often designed as a 3-tier architecture. These are

the database layer, the business logic layer and the front facing layer. The GraphQL API

lies in the front facing layer, along with possible other APIs, such as a RESTful API. This

allows for the different APIs to reuse most of the application, only implementing API

specific details in this layer. (Biehl 2018:43.)

Figure 6. Simplified 3-tier architecture, as shown by Biehl. (2018:43).

When designing an API, Biehl states that the fundamental idea is to treat the API as a

separate product, following that the API needs to be consumer-oriented (2018:45). Con-

sumers of an API are all the developers, who build different clients utilizing the API. In

its essence, being consumer-oriented means to prioritize the needs and desires of the con-

sumer first when designing the API. Practically this means that it should be as approach-

able, simple, clear and clean from the consumer perspective, as possible. This implies that

the designers need to know the type of solutions which are built using the API.

 25

Reusability is an aspect to maintain when designing a consumer-oriented API. One of the

traps to fall into when using a consumer-oriented design, is to design it too application

specific, meaning that it is designed with a specific use case or solution in mind. The API

needs to compromise between being too generic and narrow, and to maximize the reusa-

bility and the number of potential users, though being consumer-oriented at the same

time. (Biehl 2018:45.)

The design phases presented by Biehl are following an agile approach, consisting of an

iterative process with small incremental steps. These are the domain analysis, the archi-

tectural design, prototyping, implementing for production, publishing and maintenance.

Each phase consists of a creative and a verification part. In the creative part, an artifact is

created. The verification part provides early feedback in each phase, enabling relatively

simple modification at low risk and cost. As the method is agile, not all requirements and

information need to be available in the beginning, rather it is evolving as the project con-

tinues. (Biehl 2018:46.)

3.3.1 Domain analysis

In the domain analysis phase, the structure of the data is gathered and planned, to enable

thinking from a consumer perspective. Questions to be asked are, who are the consumers

of the API? What kind of solutions will be built with this API? How does the consumer

want to interact with the data from the API? (Biehl 2018:47.)

3.3.2 Architectural design

The server architecture and an API philosophy are chosen in the architectural design

phase. This phase involves evaluating different alternatives and choosing the best suitable

architecture for the application to be implemented. As previously mentioned, the 3-tier

architecture is commonly chosen as the architectural design in server environments.

(Biehl 2018:47.)

3.3.3 Prototyping

 26

Prototyping in the means of designing a GraphQL API, involves creating the actual

schema and setting up mock data, to be used by the GraphQL server. This enables the

consumers of the API to test and give feedback on the domain of the API. The schema

and the domain can be updated after an iteration, often by extending the current schema

to keep backward-compatibility. (Biehl 2018:47.)

3.3.4 Implementing for production

When implementing for production use, the schema is complete. This step involves pro-

ceeding towards using real data against the real application instead of using mock data.

Other factors which come into focus in this phase are non-functional properties, such as

performance, security and stability. (Biehl 2018:47.)

3.3.5 Publishing

After publishing the GraphQL API, further changes and improvements of the API need

to be backward compatible with the original API. Hence, it is important that the API is

tested properly and that enough feedback has been received from the consumers. (Biehl

2018:48.)

3.3.6 Maintenance

In the final phase, the API is maintained. Bug fixes included, but new features may be

added as well. Backward compatibility is important and kept by permitting only additions

of fields, queries or mutations, while obstructing the deleting of any functionality or field.

In this phase, analytics may be added to gain insight into how and why consumers use the

API, which assumes a direct communication with a consumer and an active community.

(Biehl 2018:48.)

 27

4 REPRESENTATIONAL STATE TRANSFER

In the previous chapter, GraphQL, the language and runtime were explained. Concepts

such as the types system, queries and mutations were mentioned. Later API design with

GraphQL was covered. This chapter provides information about a common architectural

style for designing APIs in today’s world of web development. REST and REST-based

APIs, often called RESTful APIs, are terms which will be explained.

4.1 The architectural style

In the year of 2000, the term Representational State Transfer (REST) was composed by

Roy Fielding in his doctoral dissertation. REST is an architectural style for distributed

hypermedia systems and consists of a set of constraints which, as Fielding states: “em-

phasizes scalability of component interactions, generality of interfaces, independent de-

ployment of components, and intermediary components to reduce interaction latency, en-

force security, and encapsulate legacy systems” (Fielding 2000). The REST architectural

style consists of six constraints defined as follows:

• Client-server: This constraint addresses the separation of concerns, separating the user

interface from the data storage. This enables that both the client and the server may

evolve independently and improves scalability, as the simplicity of the server may be

kept down. (Masse 2016:3.)

• Uniform interface: The uniform interface constraint keeps the overall architecture

simple and improves the visibility of interactions between the components. Another

benefit is that it decouples the implementation of the service. A drawback is that de-

creased efficiency often follows, since the information is standardized in the transpor-

tation between components, rather than transferring information in an application spe-

cific format. (Fielding 2000.)

 28

• Layered system: The layered system constraint ensures that each component can only

see the closest layer for which the interaction happens. This enables intermediate net-

work-based components, such as proxies or gateways to be deployed between a client

and a server. Benefits from this constraint are that layers can be used to encapsulate

legacy systems and improve scalability, by enabling load balancers, among others.

(Fielding 2000.)

• Cache: The caching constraint is important in web architecture. This requires the

server to declare whether a response may be cached or not, by the client. Caching

content reduces latency as the payload over the network may be significantly reduced.

Caching may decrease the reliability of data, in the case the data has been declared

cacheable by the server and the data is updated on the server, while the client reuses

the old data. (Fielding 2000.)

• Stateless: Adhering to the stateless constraint, the server does not keep track of appli-

cation state, resulting in improved scalability, reliability and visibility. The stateless

constraint indicates that each request must contain enough information for the server

to understand and to be processed as a whole, without relying on any data left in a

shared context on the server side. One of the drawbacks is increased network load,

since the same data might be sent repetitively between the client and the server. (Field-

ing 2000.)

• Code-on-demand: The code-on-demand constraint is the only optional constraint in

the REST architectural style. It allows for functionality on the client side to be down-

loaded and executed, in the form of scripts or applets. Benefits of the code-on-demand

constraint are extensibility among others, by allowing functionality to be downloaded

after deployment. According to Fielding, the reason for being an optional constraint

is that it reduces visibility and tends to establish technology coupling. (Fielding 2000.)

4.2 RESTful API Design

 29

APIs which fulfill the architectural constraints in REST are called RESTful APIs. This

section describes some of the aspects regarding designing an API using the REST con-

straints.

4.2.1 Resources

A resource is a structure uniquely identifiable by a URI, which contains raw data of the

business object. It is a central part of the API, thus making it difficult to change after the

API has been published. Hence, it is important to elaborate on the correct model of the

resources from the beginning. The design process of the resource model is similar to the

designing of classes in object-oriented programming. However, a difference between

these two is that the resource model in REST APIs is constrained by the HTTP methods,

whereas in object-oriented programming, the methods may be application specific. Some

aspects to consider in designing the resource model, is the scope of the resource, the at-

tributes, relations to other resources et cetera. (Biehl 2016:91.)

Biehl mentions three different categories of resources; instance resources, collection re-

sources and controller resources. (2016:103). The instance resource represents a single

instance of a business object. For example, the resource at the URL https://my-

cars.com/cars/123 represents a resource of type car, which returns a JSON response con-

taining the following data:

{

 “id”: 123,

 “model”: “audi”,

 “year”: “2019”,

 “color”: “red”

}

Collection resources represent a collection or a list of instance resources. Typically, the

consumer of the API is interested not only in a single instance, but rather all, or a set of

the existing instances of a resource. In the previous example, a car was fetched. To fetch

all cars, the following URL could be used, https://my-cars.com/cars. This request would

return all the available cars stored on the server side.

 30

The last category of resources is the controller resource. Sometimes, in the case of a long-

running process for example, the desired functionality cannot be described by a standard

resource and an HTTP method. A controller resource can then be used, by sending a

POST request to the URL, which triggers the process. The server then returns a response

with the status 202 Accepted, which indicates that the process is submitted. The response

might also include a Location header which provides a URI to the process. By performing

a GET request to the URI, the current status of the process is returned to the client. (Biehl

2016:106.)

4.2.2 Representation

Representation of a resource is the point of serializing a resource in a transferrable way.

As the resource in itself is merely raw data, the data needs to be serialized before trans-

ferring it between a server and a client. Furthermore, the client deserializes the represen-

tation back into a resource for additional processing.

There are various types of serialization rules. For example, in HTTP, the MIME-types

can be used as serialization rules. JSON and XML are typically used in the context of

web APIs. The representation of the resource can be found in the body of the request and

response. (Biehl 2016:121.)

4.2.3 Parameters

An API is typically dynamic, meaning that the response is dependent on the input from

the client, hence returning a specific response with regards to the input. In a RESTful API

the input parameters are sent as HTTP parameters or in the HTTP body. The parameters

can, depending on the use cases, be categorized in four different types. These are creation

and update, filtering and sorting, locators and the final type, projections. For creating a

new resource, the initial values of the resource need to be sent to the server. These are

often sent as a POST request with the input sent as form parameters. (Biehl 2016:133.)

 31

When the consumer fetches a list of resources, a collection resource, typically only a

subset is relevant for the consumer. Transferring the complete set of resources from the

server to the client for further processing, such as filtering and sorting is not efficient in

terms of network bandwidth usage. Hence, the API needs to provide this functionality to

the consumers. Filter and sorting criteria are often specified as query parameters, for ex-

ample https://my-cars.com/cars?model=audi&sort=year would return a collection of

Audis which is sorted by the year. (Biehl 2016:134.)

Projection is a means of providing a reduced set of fields or properties of a resource to

the consumer. A consumer might be interested only in a small set of properties; therefore,

the API should provide the functionality for reduced processing power and bandwidth.

Similar to the filter and sorting criteria, the projection, or the selection of fields, can be

provided as query parameters. Using the same example with cars, retrieving only the

model property of the collection of cars is done with the following GET request:

https:/my-cars.com/cars?fields=model. (Biehl 2016:136.)

4.2.4 Methods

Using the REST architectural style correctly, means that the HTTP protocol needs to be

used correctly as well. Using the principle of URIs, a basic set of operations is defined,

which can be performed on a resource. Encountering a new resource, the consumer will

be familiar with the manners of interacting with it. This does not imply that all operations

must be supported for each resource. The API provider determines which of the HTTP

methods will be supported for each resource, often limited to a subset of all the HTTP

methods. (Biehl 2016:142.)

The HTTP GET method is used for the retrieval of a resource. To fetch a list of resources,

a GET request is performed to the URL of the corresponding collection resource. In the

same way, retrieving an instance resource, a GET request is sent to the URI of the re-

source. When the resource exists in the server and the request is successful, a response

with the status code 200 Ok is sent back as a response, containing the resource in the

 32

body. If the resource does not exist, a response with the status code 404 Not Found is sent

back. (Biehl 2016.143.)

Creating a new resource is often done by sending a POST request. The request is sent to

the URL of a collection resource, of which the new resource is to be created. The initial

values are sent in the body of the request as form parameters. A successful request is

responded by a 201 Created response, and a Location header, which contains a URI to

the newly created resource. Performing a POST request to a URI of an instance resource

will return a response with a status code 405 Method Not Allowed. (Biehl 2016:144.)

To update a resource the PUT or PATCH method is used. The PUT method requires the

complete representation of the resource and will update all fields of the resource. The

representation is sent in the body of the request and the request itself is sent to the URI of

the instance resource. A successful update of the resource results in a 200 Ok response.

Partially updating a resource is done using the PATCH method. It is sent to the URI of

the instance resource, only containing the properties to be updated in the request body.

(Biehl 2016:145.)

When a consumer needs to delete a resource, a DELETE request is sent to the server to

the URI of the instance resource. A response status code 200 Ok is returned if the resource

exists or has ever existed. The consecutive responses fulfill the property of idempotent

methods, meaning that the method can be repeated without altering the end result. Only

in the case that the resource has never existed, the status code 404 Not Found is returned.

(Biehl 2016:146 – 147.)

The methods mentioned above are the most common HTTP methods, used for performing

CRUD (Create, Read, Update, Delete) operations on a resource. Several other HTTP

methods exist, for example the HEAD method, which is used to check the existence of a

resource. This method returns only a status code determining if the resource exists, with-

out sending the actual representation in the body. Another method which is used is the

OPTIONS method. This returns a header called Allow with a set of allowed HTTP meth-

ods, which can be performed on the resource. (Biehl 2016:147.)

 33

5 RELATED WORK

Both GraphQL and REST have been explained in the previous chapters. This chapter will

provide a literature review of some of the existing research papers regarding evaluating

GraphQL in itself, as well as comparing GraphQL and REST as a basis for designing

APIs. Since GraphQL is a query language and REST is a set of constraints for an archi-

tectural style, they are not trivially comparable.

Because GraphQL was initially released to the public in 2015, the amount of research

regarding GraphQL-based APIs, is still quite low. However, the research is increasing

and several papers on both comparisons and evaluations of GraphQL have been made.

5.1 Web API Capacity Study

The thesis “Web API Capacity Study – A Comparison of REST and GraphQL” was made

in 2018 by Tjip Pasma from the Aarhus University. A comparison between REST and

GraphQL was done, in the context of managing a large amount of time series data, which

is to be served to clients in real time. The data came from a wind power farm, which can

contain hundreds of turbines in one farm, each of the turbine producing thousands of

entries.

Three different APIs were implemented and evaluated; a RESTful API, a GraphQL RPC

API and a GraphQL API using subscriptions. Three hypotheses were made which focused

on comparing the capacity of different GraphQL implementations against a RESTful API.

One hypothesis focused on the usability of GraphQL, and was formulated as “Will a

GraphQL API have same or better usability metrics as REST based API?” (Pasma 2018:8

– 9.)

The results showed that with both GraphQL APIs, the capacity was increased with more

than 100% compared to the REST-based API. The usability test also revealed that the

 34

usability, based on a set of defined criteria, was improved by using the GraphQL based

APIs. (Pasma 2018:52).

5.2 Performance analysis of Web Services

Another study which compares RESTful and GraphQL web services, is done by Arnar

Freyr Helgason, from the University of Skövde, in 2017. This thesis investigates whether

GraphQL can increase the performance of the dataflow, as well as whether network per-

formance will increase by using GraphQL, with its single endpoint, compared to multiple

endpoints for RESTful APIs.

The test environment used in the thesis, consisted of a Node.js server environment with a

MySQL server, which stored the data to be fetched. In the client-side, the library jQuery

was used for performing the requests. For measuring the latency, the total time from that

a request was sent, until a response was received and parsed, was used. The measured

time includes multiple steps, such as data transmission and the server processing the re-

quest. A packet sniffer was used for measuring the size of packets and the latency as well.

(Helgason 2017:20.)

The results showed that for a simple structure of the data, the REST API outperformed

GraphQL in terms of response time, whereas in a more realistic scenario, with a more

complex table structure, using GraphQL improved the response time with approximately

25%. (Helgason 2017:37.)

5.3 API Design in Distributed Systems

The study by Thomas Eizinger, API Design in Distributed Systems: A Comparison be-

tween GraphQL and REST, (2017), from the University of Applied Sciences Technikum

Wien, has a more theoretical approach in comparing GraphQL and REST. The purpose

is to compare GraphQL against the architectural style REST, to find the key differences.

 35

This should assist in making an educated decision of choosing the best approach for a

specific task. The main questions which the thesis tries to answer are, how they can be

compared, since GraphQL is a specification and REST is an architectural style, and what

the main differences are, among others. (Eizinger 2017.)

The author starts by investigating different comparison approaches. The task of compar-

ing the two is not trivial, as GraphQL and REST operate on a different level of abstraction.

Therefore, three different comparison strategies are presented. The first strategy is to spe-

cialize REST, which means to choose concrete technologies for building a RESTful sys-

tem, for example HTTP. This comparison can be done by defining a set of criteria, two

use cases, and using both technologies in implementing the use cases. Another approach

for comparing GraphQL and REST, is to generalize GraphQL as an architectural style.

This means, identifying the principles in an architectural context behind GraphQL. Three

principles were identified, client-server, stateless, and declarative languages. The last ap-

proach is to identify the desired properties of a system offering an API, and then compar-

ing how GraphQL and REST influence the properties and manages occurring problems.

This approach compares GraphQL and REST as is, without the need for specialization or

generalization. Evaluation of the three strategies showed that the third alternative was the

best for the scope of the thesis. (Eizinger 2017:15 – 18.)

A set of comparison criteria were defined. Among these were operation reusability, dis-

coverability, component reusability, simplicity, performance and over-fetching. These

criteria were evaluated for both GraphQL and REST. In the conclusions, the author states

that some of the biggest implications for using GraphQL are that a number of responsi-

bilities shift from the server to the client. For example, the lack of metadata in the re-

sponses, implies that the client needs to know on its own, which steps of operations are

valid. Another example is the handling of cache invalidation, since it is a convoluted task

as the size and the complexity of the application grows. Finally, the author concluded that

a decision model for choosing the right approach is not provided, since the right approach

always is dependent on the requirements of the system. Instead, an overview of many

relevant aspects within API design is given. (Eizinger 2017:52.)

 36

5.4 Semantics and Complexity of GraphQL

The final research of this literature review is conducted by Olaf Hartig and Jorge Pérez in

2018. It is a technical evaluation of the semantics and the complexity of GraphQL. Ac-

cording to Hartig and Pérez, there is a need for a more fundamental understanding of the

properties of the language, since several implementations already exist for the language,

whereas a proper understanding of the properties does not exist at the time of writing. By

investigating the properties, the authors want to clarify the limitations of the language and

identify optimization possibilities of existing and potential new implementations of the

specifications. (Hartig & Pérez 2018:1155.)

In the conclusions, the Hartig and Pérez state that the popularity of GraphQL as an alter-

native to traditional REST APIs has increased. They also confirm that GraphQL, similarly

to other query languages, utilizes both a schema to describe the structure of the data, and

a declarative language for clients to access the data. Finally, they provide a full formali-

zation of the semantics of the language, showing that three different complexity related

problems, efficiently can be solved. Thus they help developers in implementing more

robust GraphQL interfaces. (Hartig & Pèrez 2018:1163.)

 37

6 PLANNING AND IMPLEMENTATION

In the previous chapters, web APIs have been presented in general, as well as a detailed

description of GraphQL-, and REST-based APIs. Previous studies of the two API tech-

nologies were also presented. The following sections cover the planning and the imple-

mentation of the web application conducted for Gambit, as well as a presentation of Toggl

and the public APIs provided.

6.1 Toggl

Keeping track of time is an ever-important task, in businesses today. Especially in the

field of software engineering, operating as IT consultants, time tracking is crucial. Pro-

jects are typically sold on a per hour basis, even though projects are occasionally offered

for a fixed price, depending on the type of project and the complexity of it.

Toggl is a web-based tool for tracking time. It features team management and project time

management, enabling the users to have several clients, projects, tasks within a project et

cetera. Toggl also provides a public API for fetching data, and for managing time entries,

which involves creating, updating, deleting and reading entries. The API has different

types of endpoints, from fetching raw data, to creating more complex reports. Toggl, in

combination with agile management, eases the time tracking and project management for

different sizes of software development companies.

Toggl API is divided into two APIs called Toggl API and Reports API. The Toggl API is

mainly for changing data, including creating new time entries. For read-only data, the

Reports API is to be used. This API gives the user access to time entries within a work-

space as well as aggregated data for reporting. Both APIs use the JSON data format for

requests and responses. For authentication, basic access authentication is used. The user

passes a header called Authorization with the value Basic <credentiatials>, where the

credentials are the username and password joined by a single colon, encoded using base64

encoding. (Toggl 2017.)

 38

6.1.1 Toggl API

The Toggl API provides CRUD operations on all the different entities. These are among

other Clients, Projects, Tasks, Time entries, Users and Workspaces. The API is based on

the REST architectural style. Hence, the most common HTTP methods are used for read-

ing or updating data. Using Projects as an example, reading the details of a project can be

done by performing a GET request to the URI https://www.toggl.com/api/v8/pro-

jects/{project_id}. Upon a successful response, a payload formatted in the JSON format

is returned as shown in figure 7.

Figure 7. Example of a successful response from the Toggl API. (Toggl 2017b.)

Similarly, to update or to delete a project, a PUT request with the changed fields respec-

tively a DELETE request is done to the same URI. A complete list of the available request

within the Toggl API can be found in Appendix A.

6.1.2 Reports API

The Reports API consists of four different types of reports. These are the weekly report,

detailed report, summary report and project dashboard. The reports share the same base

URL of https://toggl.com/reports/api/v2/{report_type}. A request to any of the report

 39

types consists of a set of standard request parameters, followed by the specific report type

parameters. The list of standard request parameters is presented in table 2.

Table 2. List of the Reports API standard request parameters. (Toggl 2017c.)

Parameter Description

user_agen
t

Required. The name of your application or your email address so we can get in
touch in case you’re doing something wrong.

work-
space_id Required. The workspace whose data you want to access.

since ISO 8601 date (YYYY-MM-DD) format. Defaults to today - 6 days.

until

ISO 8601 date (YYYY-MM-DD) format. Note: Maximum date span (until - since)
is one year. Defaults to today, unless since is in the future or more than a year
ago, in this case until is since + 6 days.

billable "yes", "no", or "both". Defaults to "both".

client_ids
A list of client IDs separated by a comma. Use "0" if you want to filter out time
entries without a client.

pro-
ject_ids

A list of project IDs separated by a comma. Use "0" if you want to filter out
time entries without a project.

user_ids A list of user IDs separated by a comma.

mem-
bers_of_gr
oup_ids

A list of group IDs separated by a comma. These limits provided user_ids to
the members of the given groups.

or_mem-
bers_of_gr
oup_ids

A list of group IDs separated by a comma. This extends provided user_ids with
the members of the given groups.

tag_ids
A list of tag IDs separated by a comma. Use "0" if you want to filter out time
entries without a tag.

task_ids
A list of task IDs separated by a comma. Use "0" if you want to filter out time
entries without a task.

time_en-
try_ids A list of time entry IDs separated by a comma.

descrip-
tion Matches against time entry descriptions.

with-
out_de-
scription

"true" or "false". Filters out the time entries which do not have a description
(literally "(no description)").

or-
der_field

-For detailed reports: "date", "description", "duration", or "user"
- For summary reports: "title", "duration", of "amount"
- For weekly reports: "title", "day1", "day2", "day3", "day4", "day5", "day6",
"day7", or "week_total"

or-
der_desc "on" for descending, or "off" for ascending order.

dis-
tinct_rates "on" or "off". Defaults to "off".

rounding "on" or "off". Defaults to "off". Rounds time according to workspace settings.

 40

dis-
play_hour
s

"decimal" or "minutes". Defaults to "minutes". Determines whether to display
hours as a decimal number or with minutes.

A successful response consists of a set of standard fields along with report specific data

as shown in figure 8.

Figure 8. Example response of the common fields for each report type. (Toggl

2017c.)

The different report types enable the user to easily obtain an overview of the data in Toggl

and provide aggregated data for different purposes, as well. The specific function of the

different report types is presented in the following list.

• Weekly report – This report gives aggregated data over seven-day durations or

earnings grouped by projects and/or users.

• Detailed report – The detailed report is used for fetching time entries based on

some given request parameters/filters. Since the amount of data might be very

high, this report returns paginated data.

• Summary report – Similarly to the detailed report, the summary report returns data

regarding the time entries. However, the data is grouped on two different levels,

according to the user’s request parameters. The data can be grouped by projects,

clients or users and sub-grouped by time entries, tasks and users, among others.

6.2 Requirements

 41

Previously, Microsoft’s Excel was used in Gambit for the purpose of following up on

projects. Data was exported from Toggl manually to Excel, where, together with other

financial data, a report of the current status of a project was created. The data included in

the Excel template was the hours offered for a certain task, and the number of hours spent

on each task. The invoiced hours were manually inserted from the accounting software.

The hourly rate used for a customer was inserted, and based on the invoiced hours, a net

hourly rate value could be calculated.

The goal of the developed tool is to replace this spreadsheet usage and ease the follow up

of invoice hours for a specific task within a project. Another goal is to get an overview of

the net hourly rate of projects. A requirement of the system is flexibility and extensibility,

since the usage may vary, and the tool will be further developed later, as the requirements

change. The development of the tool follows an agile process, meaning that the require-

ments must not be completely known in the planning phase, rather they evolve during the

development as the tool is tested and evaluated. An initial general list of requirements is

shown in table 3.

Table 3. The initial list of requirements.

Section Requirement

Data Fetch data from Toggl: customers, projects, tasks, time-entries et cetera.

 Synchronize the data every day, with the possibility to synchronize manually

Extend the data, to include invoices, add the possibility to select project man-
ager, notes about project invoicing, billing notes et cetera.

Security The application must be secured with login.

Project-
list List all projects

 Filter on a given time interval

 Search for a project

Project
details List tasks within a project, with used and offered hours

 Add invoices for a task

 42

6.3 Selection of technologies

Based on the general list of requirements above, the selection of technologies can be

made. Choosing the right technology for an application is a complex matter, especially

when the application is a commercial product, used by a lot of customers. However, in

this case, the application is limited to internal use in a small company, allowing for a more

flexible and unconstrained selection process.

6.3.1 Selection criteria

The following factors have been considered when deciding applicable technologies to

use.

Security – The developed application handles sensitive information. Therefore, it is of

utter importance that login is required for any access to the application.

Scalability & Performance – Since the application is merely for internal use, scalability

is not a strict requirement. The application should be able to handle small loads, but no

heavy peaks are expected. Likewise, the performance of the application does not need to

be extremely optimized, as long as the user experience is considered somewhat good.

Development cost – The application will not be monetized, rather it will only decrease

the amount of manual work of the project managers. Hence, the development time, thus

the cost, will be kept low, utilizing ready-made technologies and components when pos-

sible.

Eco-system – The chosen technologies, should preferably hold rich eco-systems and an

active development for further maintenance and development of the application.

6.3.2 Server-side

For the server-side a PHP-based framework called SilverStripe is used. SilverStripe is an

open-source Content Management System (CMS), which allows creating a site fast with

 43

small efforts, while also offering creation of custom functionality. The CMS includes user

management, authentication and an administrator interface for configuring the applica-

tion. Additionally, the framework possesses an Object-Relational Model (ORM) built-in,

which handles all the underlying communication with the database, in this case, a MySQL

database. Using the ORM in SilverStripe, the class DataObject is to be extended by a

class representing a database table. When developing the application, the database

schema is automatically generated based on the existing DataObjects. (SilverStripe

2019.)

The benefits of using SilverStripe in the server-side are due to the many built-in function-

alities in the framework mentioned above. Due to these features, the focus can be held on

developing the main functionalities of the application. One could argue that a dynamically

typed language is not suitable for this kind of application. However, utilizing a well-

structured framework, together with intelligent code completion, bring many of the ben-

efits of a statically typed language.

6.3.3 Client-side

For the client side, the JavaScript library React is used. React is a declarative, efficient

and flexible library for building user interfaces. A user interface built in React consists of

small pieces, called components, which combined form the whole page. These compo-

nents are isolated, enabling the creating of a modular and flexible user interface. The

typical way of using React is creating a Single-Page-Application (SPA). In a SPA, the

application resources are usually fetched upon visiting the site. The application then runs

completely in the client-side as a JavaScript application, which composes the HTML in-

stead of fetching the ready-made HTML resources from the server. When interaction with

the server is needed, the application utilizes a web API.

Today, some of the most popular JavaScript frameworks/libraries are React, Angular and

Vue. They all have their benefits and drawbacks. For the application in this thesis, the

reasonable choice is to use one of these, and React was chosen. For the GraphQL client,

Apollo client is used. Apollo is an open source implementation of GraphQL for both

 44

server and client. The Apollo client includes integrations towards the view layers men-

tioned above. (Apollo 2019a.) For the design, a simplistic design is used, using a ready-

made React library which is built on the Material Design specifications, made by Google.

6.4 System design and architecture

The first step in the application flow consists of consuming a RESTful API provided by

Toggl. The data must be synchronized and kept up to date with Toggl, to avoid inconsist-

encies between the data in Toggl, and the data in the application database. For this, a

synchronization service is created with a single purpose of keeping the application data-

base in synchronization with Toggl, which in turn acts as the single source of truth. The

rest of the server-side application is to provide necessary features, such as user manage-

ment, and to secure the data for unauthorized users. Finally, a GraphQL API is provided

for the SPA.

 45

Figure 9. The architecture of the application.

6.4.1 Data model

One of the reasons for developing the application, was to gain extended functionality and

data compared to the data and model provided by Toggl. The data model from Toggl is

explorable by using the APIs. A derived simplified data model from Toggl is shown in

figure 10.

 46

Figure 10. A simplified derived model of Toggl’s data model.

6.4.2 Synchronization service

The synchronization service’s task is to fetch all the data from Toggl for Gambit’s work-

space and store it in a database. This is not completely trivial since the data in Toggl may

change after it has been fetched and stored in the database. This means that Toggl acts as

a single source of truth, and the application needs to adapt the data accordingly. Keeping

track of when an object has been updated in Toggl is easy, as Toggl in most cases provides

a field called LastUpdated, which is a timestamp holding the value of the time when the

object was last updated. By using this field, the data can be fetched from Toggl and the

timestamp can be compared to the one saved in the database and updated when required.

For the case of the application developed in this thesis, both APIs from Toggl are utilized.

The Toggl API is used for fetching all the data regarding the workspace, clients, projects,

tasks and users. The process of fetching data is described in the following sequence dia-

gram.

 47

Figure 11. Diagram of fetching workspace specific data using the Toggl API.

The TogglWorkspaceService has a function called GetWorkspaceData(type), which has

a parameter specifying the type of resource (projects, users, tasks and so on) to be fetched.

Based on this, the complete URI is built and sent to the TogglBaseService, which per-

forms the actual HTTP request to the Toggl API. The response is returned and parsed for

further usage.

For the actual time entry data, the Report API is used. The process of fetching time entries

involves pagination and is performed according to the sequence diagram below.

 48

Figure 12. Sequence diagram of performing paginated requests for time entries us-

ing the Report API.

6.5 Creating the GraphQL API

Using SilverStripe and GraphQL is simple, since a GraphQL module is included in Sil-

verStripe. The module uses scaffolding for exposing the DataObjects, thus enabling fast

and simple creation of the GraphQL API. The scaffolding generates basic CRUD opera-

tions and provides pagination for exposing larger sets of data as well. To expose a

DataObject the name of the class needs to be defined in a configuration file. Then, to-

gether with scaffolding, the final GraphQL schema can be generated.

 49

Figure 13. A snippet of the configuration file for the generation of the GraphQL

schema.

The example above is part of the configuration of the scaffolding, which enables the cre-

ation of the GraphQL schema. Here, the DataObject of type Client is provided, defining

that the fields ID and Name should be exposed. Furthermore, the available operations are

read-only, with the configuration of excluding pagination, hence all Clients can be fetched

in a single query. The nestedQueries option specifies that the Projects for a certain Client

can be fetched in a single query.

6.6 Consuming the GraphQL API

As mentioned previously, consuming the GraphQL API is done by using React and

Apollo client. Apollo client provides components for queries and mutations in the same

declarative way as other React components. The components handle all the networking

and provide loading and error states. After the data has been successfully loaded it is

injected into the render function of the component, thus allowing further processing and

rendering of the data.

The query itself is written, using utilities provided by Apollo client for parsing GraphQL

queries. These functions parse a GraphQL query from a string to a standard GraphQL

Abstract Syntax Tree (AST). The GraphQL AST in turn enables readability and easy

 50

modification of the query. The Query component has a prop, which in React is an arbi-

trary input for a component, called query which is the query parsed as a GraphQL AST.

In the snippet shown below, a query called readProjects is defined, which has two argu-

ments. These are two dates specifying the time interval from where the projects should

be fetched. Basic information about the projects is fetched, that is, the ID, Name,

LastUpdated timestamp, along with the assigned project manager for the project and the

client to which the project belongs.

Figure 14. GraphQL query for fetching all projects within a given time interval.

 51

Figure 15. Render function of the Projects component.

The example in figures 14 and 15, shows how the Query component is used. The query

parsed as a GraphQL AST is passed as a prop along with the variables for the time inter-

val. When the Query component mounts, an observable is created for the query. The com-

ponent then subscribes to the result. First, the result is searched for in the Apollo cache.

If it is not found, it will be queried from the server. While fetching the result, the compo-

nent is rendering the loading state. When a response is received or an error occurs, the

error text is shown, or the data is received for further processing. In case of valid data, the

projects are parsed from the response data and passed along with options and other data

to the MUIDataTable component, which handles the rendering of the projects in a list.

(Apollo 2019b.)

 52

7 EVALUATION AND RESULTS

In this chapter, the results of the thesis and the developed application are presented.

GraphQL is evaluated along with an evaluation of the application based on a set of crite-

ria. The evaluation of GraphQL is done according to different aspects of using GraphQL

in the development of the application. These aspects are subjectively evaluated together

with a hypothetical corresponding implementation using a RESTful API. The relevant

aspects in the evaluation are the implementation and consumption of the API, the com-

plexity of data fetching as well as client-side caching of the content.

The results of the research papers presented in the literature review revealed that in some

specific cases, as the complexity of the data increases, GraphQL might a better alternative

for implementing the API compared to the traditional RESTful APIs. The studies also

showed that GraphQL in many cases increases performance, as the number of requests to

the server can be substantially decreased. This evaluation provides a more higher-level

evaluation from the developer’s perspective.

The implementation of the GraphQL API is dependent on the technologies used. In its

essence, the schema needs to be generated, either manually or as in this case, generated

by code and scaffolding techniques. Producing the GraphQL API is therefore easily done,

after the data model is designed and implemented. Similarly, a RESTful API implemen-

tation often relies on higher-level libraries and technologies. In light of the technologies

used in the development of the application, using GraphQL for exposing the data, is a fast

and reliable way.

Consuming the API is likewise to producing it, often dependant on high-level libraries

which abstracts much of the work needed to be done. For GraphQL, as Apollo Client is

used in this application, it enables the developer to write queries immediately without

regards on any lower-level details. Along with the introspective tool GraphiQL, the ca-

pabilities of the server can easily be inspected. Altogether, consuming the GraphQL API,

is about writing a component directly with the only need of declaratively stating which

data from the server to fetch, when needed. In a RESTful implementation, many good

 53

libraries and principles exist, which give similar introspective capabilities as GraphQL.

Also, consuming a RESTful version in modern JavaScript, could be easily done using a

lightweight or no library at all. The benefits of using one over the other are therefore

dependent on the language, frameworks and the libraries in use.

In the application, different levels of complex queries needed, for presenting the data. The

GraphQL API allows for all the needed data to be fetched in a single request, minimizing

bandwidth usage and latency. This is useful in some of the created components, as mul-

tiple resources often are needed for producing a view. However, even though the data can

be specified in the exact structure wanted, in reality some complex queries take a rather

long time to execute, leading to bad user experience. In these cases, the solution has often

been to restructure the query. Comparing the complexity to a RESTful API, the benefits

of GraphQL lay in the removal of over-fetching of the data. A RESTful implementation

would in some cases need to perform up to 5 different requests for the rendering a single

view, which in the GraphQL implementation can be done in one query.

Caching is a complex matter with no simple general solutions. In the case of this applica-

tion caching is handled by the GraphQL client. The data is often changing, forcing the

cache to update regularly. The Apollo Client caches all queries and their results. In case

a mutation has been performed, which creates stale data in the cache, the cache must be

updated. In simple cases, the cache is automatically updated, whereas in more complex

scenarios, the cache needs to be manually updated. As caching is a constraint in the REST

architectural style, caching is easier to manage, by allowing the browser to manage the

cache. In that aspect, a RESTful implementation could be a better alternative. However,

in the developed application, caching is not a strict requirement, and is managed well by

the default cache configuration in Apollo Client.

In table 4, the previous aspects have been graded in a 1 – 5 scale according to the suita-

bility of the technologies in the different areas. The table shows that in the developed

application, GraphQL is the more suitable alternative for producing the API. Some as-

pects are dependent on third party libraries, with little to no differences in using either

 54

API technology, whereas in terms of managing the complexity of the data, GraphQL is

clearly the better alternative.

Table 4. Evaluation of a GraphQL implementation and a corresponding hypothet-

ical RESTful implementation of the developed application’s API.

Area GraphQL REST Note

Producing

the API
3 3 Dependent on the framework and language used.

Consuming

the API
3 3 Dependent on the framework and language used.

Complexity 5 1

Complex queries are needed for different views.

With GraphQL a single request can be made,

fetching the exact data needed.

Caching 2 4
Out of the box, caching is more complex in

GraphQL, since HTTP caching can not be used.

The developed application is a MVP, with the intention of being further developed in the

future, which is outside the scope of this thesis. The evaluation of the application is two-

folded, on one side, there is the user evaluation of the application. Things considered here

are, usability and determining if the application fulfills the requirements. On the other

hand, the application is evaluated from a developer’s perspective. Factors to be consid-

ered here are, testability, flexibility and learnability.

When it comes to usability, the most important aspect is that the application is well de-

signed in terms of user experience, providing an intuitive way for working and using the

application on a daily basis. The users, in this case project managers, should in case

needed, be provided with documentation and/or schooling, to get started with using the

application. For achieving this, relevant schooling has been provided and for good user

experience, material design was utilized. Material design is a design language consisting

of guidelines, best practices, tools and components provided by Google and many open-

source projects, for user interface design.

 55

Since this is an MVP, flexibility is crucial for further development and addressing of

issues. In the future, development of the application might include integrations to other

software, for example accounting software. Other features could be more advanced anal-

ysis of the data, to find patterns of successful projects and estimates. For this, the foun-

dation needs to be strong, with a good and thought-through data model. Flexibility in this

case means that exposing new functionality should be simple.

Flexibility has been achieved by first and foremost investigating in a good data model.

For this the Toggl API has been explored, to get an understanding of how Toggl has

implemented their data model. Furthermore, using GraphQL enables the client side to

specify the exact data needed. As the requirements changes and new functionalities are

added, the client is able to directly specify and use the field. However, in case the data

model is updated in a way that an existing field is removed or modified, this might lead

to complications as the client side has to be updated accordingly in case it’s dependant on

the field.

Testability provides ways of ensuring that an application works in the intended way ac-

cording to the requirements and the specification. Testing an application can be done in

multiple steps, from the early design phase to the later steps of implementing and main-

taining the developed application. In the design phase, the application is designed by

composing small units, which if ensured performing as intended, the overall system is

functioning as intended. When implementing the units, each unit is tested individually,

which ensures that they function correctly. In the later steps when the units are composed

together, forming the complete application, integration tests are performed. These ensure

that the complete system fulfills its specification. (Mili & Tchier 2015:24.)

In the case of the developed application, there are some critical units which are testable.

These are among others, the synchronization of the data. It is crucial that the data in the

application is up to date with the data in Toggl. Other testable units are the CRUD oper-

ations on the data model. In the scope of this thesis, unit testing or integration testing is

not performed but should be considered in the future development of the application.

 56

The evaluation of the application is presented in table 5, where each different aspect has

been subjectively graded on a scale of 1 – 5 of how well the application fulfills the aspect.

Table 5. Summary of the evaluation of the application.

Aspect Grade Note

Usability 4
Using material design creates a minimalistic and easily man-

ageable user experience

Testability 2
The application is testable, but tests are not implemented in the

scope of the thesis

Flexibility 5
A good data model along with GraphQL provides a good flex-

ible foundation which can be further developed

Learnabil-

ity
3 The user interface is logically structured and easily explorable

 57

8 CONCLUSIONS AND DISCUSSION

The developed web application is a Single-Page-Application built with the popular Ja-

vaScript library React. For the user interface, Material Design was used as the design

principles, by utilizing ready-made libraries developed in React. SilverStripe was selected

as the server-side framework. Benefits of using the PHP-based framework lay in fast and

easy setup of user management and previous experience of using the framework. When

considering SilverStripe and GraphQL, the setup of the GraphQL runtime is done by uti-

lizing the SilverStripe GraphQL module. This module provides helpful utilities such as

the GraphiQL web-based tool for schema inspection. Scaffolding is used in the module,

which allows the developers to declare the schema rapidly. In an environment with strict

performance requirements, other technologies, based on a compiled language such as C#

and .NET Core could be a better option. However, due to the loose requirements of per-

formance, SilverStripe was chosen as the framework.

The application fulfills the initial requirements as an MVP and has been developed to be

extensible and flexible. The structure of the application is testable; however, tests have

not been written in the scope of this thesis. In the future for further development, and if

the application is utilized in a more central role, it is crucial that at least the core logic of

the application is tested with unit and integration tests.

GraphQL was the technology chosen in the implementation of the application. How

would a corresponding RESTful API implementation look like? What would be the ben-

efits and drawbacks of it? Taking it further, one could ask, is the server layer between the

Toggl API and the client needed at all, or could the same application be developed, calling

the Toggl REST API directly from the client?

A RESTful API implementation would certainly have some benefits over the chosen

GraphQL implementation. The development time would be similar to the developing the

GraphQL API, by using ready made modules and libraries for SilverStripe and React.

One of the greatest benefit would be caching, as shown in chapter 7, since it would be

handled by the browser, thus removing the need of a complex caching library. This is,

 58

however, not a problem with the GraphQL implementation, since Apollo client manages

caching well. A drawback of using a RESTful API would be in the complexity of fetching

the data, which in some cases, would require the client to perform five different requests

for rendering a view in the application. In the current implementation, GraphQL manages

this in a single query.

Using the Toggl API directly, removing the middle layer is also considered. This would

have reduced the development time greatly, since a considerable amount of time was

spent on the synchronization process between Toggl and the server. However, the need

of storing the data in a middle layer is inevitable, since the application is dependant on an

extended data model, which is not provided by Toggl. Therefore, the purpose of the ap-

plication would be eliminated without the middle layer.

Further research ideas derived from the thesis, would be to implement the same API using

REST, and measure the performance, as well as, evaluate the process of implementation

of the API from the developer’s perspective. In that case, a better judgement could be

done on the suitability of GraphQL, as a basis for the creating the API.

The process of developing the application has been exciting and fun. Developing an ap-

plication from the beginning brings many aspects which need to carefully be designed

and planned, in contrast to developing an existing application containing legacy code. I

have learned a lot about API technologies, specifically about RESTful-, and GraphQL-

APIs, along with the modern JavaScript library React. This kind of application is a good

case for learning and utilizing new technologies.

In the field of web development, as the complexity of the applications developed will

increase, we will probably see an increase in the usage of GraphQL as a means of creating

APIs. We already see giants such as Facebook and Netflix, developing their own proto-

cols for fetching data, as the standard approaches of using RESTful or other API technol-

ogies are not sufficient for the increased complexity in web applications.

 59

REFERENCES

Apollo. (2019a). The Apollo GraphQL platform [online]. [17.04.2019]. Available at:

https://www.apollographql.com/docs/intro/platform

Apollo. (2019b). Queries [online]. [08.05.2019]. Available at https://www.apol-

lographql.com/docs/react/essentials/queries.

Biehl, M. (2016). RESTful API Design. APIs your consumers will love. API-University

Press. ISBN 978-15147351169.

Biehl, M. (2018). GraphQL API Design. API-University Press. ISBN 978-1979717526.

Box D., D. Ehnebuske, G. Kakivaya, A. Layman, N, Mendelsohn, H. F. Nielsen, S.

Thatte & D. Winer. (2000). Simple Object Access Protocol (SOAP) 1.1 [online].

[05.03.2019]. W3C Note 08 May 2000. Available at:

https://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Bray, T. (2017). The JavaScript Object Notation (JSON) Data Interchange Format. In-

ternet Engineering Task Force (IETF) Request for Comments 8259 [online].

[05.03.2019]. 2-16. Available at: https://www.rfc-edi-

tor.org/rfc/pdfrfc/rfc8259.txt.pdf. ISSN 2070-1721.

Bray, T., J. Paoli, C. M. Sperberg-McQueen, M. Maler, F. Yergeau. (2008). Extensible

Markup Language (XML) 1.0 (Fifth edition) [online]. [05.03.2019]. W3C Recom-

mendation 26 November 2008. Available at: https://www.w3.org/TR/xml/

Buna S. (2016). Learning GraphQL and Relay. Build data-driven React applications

with eases using GraphQL and Relay. Livery Place: Packt Publishing Ltd. ISBN

978-1-78646-575-7.

https://www.apollographql.com/docs/intro/platform
https://www.apollographql.com/docs/react/essentials/queries
https://www.apollographql.com/docs/react/essentials/queries

 60

Eizinger T. (2017). API Design in Distributed Systems. A Comparison between

GraphQL and REST. University of Applied Sciences Technikum Wien.

Facebook. (2018a). Overview [online]. [28.02.2019]. Available at: https://face-

book.github.io/graphql/June2018/#sec-Overview

Facebook. (2018b). Schema [online]. [28.02.2019]. Available at: https://face-

book.github.io/graphql/June2018/#sec-Schema

Facebook. (2018c). Non-Null [online]. [28.02.2019]. Available at: https://face-

book.github.io/graphql/June2018/#sec-Type-System.Non-Null

Fielding R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures [online]. Doctoral dissertation, University of California. Available at:

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Fielding R., Reschke J. (2014). Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content [online]. RFC 7231. Internet Engineering Task Force (IETF). Available at:

https://tools.ietf.org/html/rfc7231

Gambit. (2019). Home page [online]. [28.02.2019]. Available at: https://www.gambit-

group.fi

GraphQL. (2019a). Introduction to GraphQL [online]. [28.02.2019]. Available at:

https://graphql.org/learn/

GraphQL. (2019b). Schemas and Types [online]. [28.02.2019]. Available at:

https://graphql.github.io/learn/schema/

Hartig O. & Pérez J. (2018). Semantics and Complexity of GraphQL. Lyon, France. Pro-

ceedings of the 2018 World Wide Web. Pages 1155 – 1164. ISBN 978-1-4503-5639-

8.

https://facebook.github.io/graphql/June2018/#sec-Overview
https://facebook.github.io/graphql/June2018/#sec-Overview

 61

Helgason A. F. (2017). Performance analysis of Web Services. Comparison between

RESTful & GraphQL web services. University of Skövde.

Masse M. (2016). REST API Design Rulebook: Designing Consistent RESTful Web Ser-

vice Interfaces. California: O’Reilly Media Inc. ISBN 978-1-449-31050-9.

Mili A. & Tchier F. (2015). Software Testing: Concepts and Operations, John Wiley &

Sons, Incorporated. ProQuest Ebook Central, https://ebookcentral-proquest-

com.proxy.uwasa.fi/lib/tritonia-ebooks/detail.action?docID=4040909.

Pasma T. (2018). Web API Capacity Study. A comparison of REST and GraphQL. Aar-

hus University.

SilverStripe. (2019). Introduction to the Data Model and ORM [online]. [17.04.2019].

Available at: https://docs.silverstripe.org/en/4/devel-

oper_guides/model/data_model_and_orm/

Sriparasa S. (2013). JavaScript and JSON Essentials [online]. Packt Publishing Ltd.

Available at: https://ebookcentral-proquest-com.proxy.uwasa.fi/lib/tritonia-

ebooks/reader.action?docID=1481127.

Toggl. (2017a). Toggl API Documentation [online]. [07.05.2019]. Available at

https://github.com/toggl/toggl_api_docs.

Toggl. (2017b). Projects [online]. [07.05.2019]. Available at

https://github.com/toggl/toggl_api_docs/blob/master/chapters/projects.md.

Toggl. (2017c). Toggl Reports API v2 [online]. [07.05.2019]. Available at

https://github.com/toggl/toggl_api_docs/blob/master/reports.md.

Toggl. (2017d). Toggl API v8 [online]. [24.05.2019]. Available at

https://github.com/toggl/toggl_api_docs/blob/master/toggl_api.md.

https://docs.silverstripe.org/en/4/developer_guides/model/data_model_and_orm/
https://docs.silverstripe.org/en/4/developer_guides/model/data_model_and_orm/
https://github.com/toggl/toggl_api_docs
https://github.com/toggl/toggl_api_docs/blob/master/chapters/projects.md
https://github.com/toggl/toggl_api_docs/blob/master/reports.md
https://github.com/toggl/toggl_api_docs/blob/master/toggl_api.md

 62

Totty B., D. Gourley, M. Sayer, A. Aggarwal & S. Reddy. (2009). HTTP: The Definitive

Guide [online]. California: O’Reilly Media Inc. ISBN 978-156-592509-0.

 63

APPENDIX

A. List of HTTP status codes and reason phrases

Table 6. A non-exhaustive list of status codes and reason phrases as provided by

Fielding & Reschke. (2014:49.)

Code Reason-Phrase

100 Continue

101 Switching Protocols

200 OK

201 Created

202 Accepted

203 Non-authoritative Information

204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices

301 Moved Permanently

302 Found

303 See Other

304 Not Modified

305 Use Proxy

307 Temporary Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Payload Too Large

 64

414 URI Too Long

415 Unsupported Media Type

416 Range Not Satisfiable

417 Expectation Failed

426 Upgrade Required

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

B. List of supported API requests for the Toggl API

Table 7. Complete list of possible API requests from the Toggl API. (Toggl 2017d.)

Type Available requests

Authenticate and get user data HTTP Basic Auth with e-mail and password

 HTTP Basic Auth with API token

 Authentication with a session cookie

 Destroy the session

Clients Create a client

 Get client details

 Update a client

 Delete a client

 Get clients visible to the user

 Get client projects

Groups Create a group

 Update a group

 Delete a group

Projects Create a project

 Get project data

 Update project data

 Delete a project

 Get project users

 Get project tasks

 Delete multiple projects

Project users Create a project user

 Update a project user

 65

 Delete a project user

 Add multiple users to a project

 Update multiple project users

 Delete multiple project users

Tags Create a tag

 Update a tag

 Delete a tag

Tasks Create a task

 Get task details

 Update a task

 Delete a task

 Update multiple tasks

 Delete multiple tasks

Time entries Create a time entry

 Start a time entry

 Stop a time entry

 Get time entry details

 Update time entry

 Delete time entry

 Get time entries started in a specific time range

 Bulk update time entries tags

Users Get current user data and time entries

 Update current user data

 Reset API token

 Sign up a new user

Workspaces Get user workspaces

 Get workspace users

 Get workspace clients

 Get workspace groups

 Get workspace projects

 Get workspace tasks

 Get workspace tags

Workspace users Invite users to the workspace

 Update workspace user

 Delete workspace user

 Get workspace users for a workspace

Dashboard Get a general overview of your team

