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To my family

"Look deep into nature, and then you will understand everything better"

-Albert Einstein
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Abstract

Recently, gap waveguide technology is introduced as a promising guiding structure

for millimeter-wave systems. The conception of gap waveguide technology can be
modeled for theoretical analysis by two parallel plates, a top perfect electric conduc-
tor layer and a bottom perfect magnetic conductor layer. This structure stops all
modes propagating in all directions except for a quasi-TEM mode along the strip
over a speci�c frequency band (stopband) when the gap between PEC and PMC
plates is smaller than quarter wavelength at an operation frequency. Until now there
are already four di�erent versions of this novel concept�groove, ridge, inverted mi-
crostrip and microstrip ridge gap waveguides. The proposed thesis mainly focuses
on array antenna design based on gap waveguide technology. We present several
low-pro�le single-layered and multilayer corporate-fed slot array antennas with high
gain for the 60-GHz band and 140-GHz. The aim of this thesis is to demonstrate
the advantages of gap waveguide technology as an alternative to the traditional low-
loss waveguide structure to overcome the problem of good electrical contact due to
mechanical assembly. Measurement results and experimental validation are provided
for the presented antenna design.

Keywords: metallic pins, perfect magnetic conductor, inverted microstrip gap waveg-
uide, ridge gap waveguide, slots array antenna, 60-GHz and 140-GHz.
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Chapter 1

Introduction

Communication technology has developed so fast in the past half century. In gen-

eral, the communication technology has a profound in�uences in the modern society.
Today coordination and knowledge among people are facilitated by the rapid advance-
ment of wireless and mobile communications. Wi-Fi and base station networks are
now spread almost everywhere allowing people to access anytime with the mobile ter-
minals. In 2020 the number of users will be exceeding �ve billion and expected to rise
even more in the next decades. Potential commercial applications for wireless system
include point to multi-point services, chip to chip high speed links, satellite commu-
nications, automotive radars, imaging and security systems. However, the current
saturation of spectrum at microwave frequencies below 10 GHz is the major chal-
lenge.Thereby, it is necessary to explore new frequency bands in higher frequencies.
Currently, considerable attention has been paid to millimeter and sub-millimeter wave
communications [1]. However, wireless communications at such frequency bands are
easily a�ected by the propagation loss and strong atmospheric absorption according
to fundamental principles of electromagnetic �eld theory [2]. Therefore, waveguide
structures with low loss property and high gain antennas are required for such a kind
of wireless systems.

c03TransmissionLinesandWaveguides Pozar July 29, 2011 20:41
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We see that the results are in reasonable agreement with the closed-form equa-
tions of (3.179) and the results from a commercial CAD package, particularly for
wider strips where the charge density is closer to uniform. Better results could be
obtained if more sophisticated estimates were used for the charge density. ■

3.8 MICROSTRIP LINE

Microstrip line is one of the most popular types of planar transmission lines primarily
because it can be fabricated by photolithographic processes and is easily miniaturized and
integrated with both passive and active microwave devices. The geometry of a microstrip
line is shown in Figure 3.25a. A conductor of width W is printed on a thin, grounded
dielectric substrate of thickness d and relative permittivity εr ; a sketch of the field lines is
shown in Figure 3.25b.

If the dielectric substrate were not present (εr = 1), we would have a two-wire line
consisting of a flat strip conductor over a ground plane, embedded in a homogeneous
medium (air). This would constitute a simple TEM transmission line with phase veloc-
ity vp = c and propagation constant β = k0.

The presence of the dielectric, particularly the fact that the dielectric does not fill the
region above the strip (y > d), complicates the behavior and analysis of microstrip line.
Unlike stripline, where all the fields are contained within a homogeneous dielectric region,
microstrip has some (usually most) of its field lines in the dielectric region between the strip
conductor and the ground plane and some fraction in the air region above the substrate. For
this reason microstrip line cannot support a pure TEM wave since the phase velocity of
TEM fields in the dielectric region would be c/

√
εr , while the phase velocity of TEM fields

in the air region would be c, so a phase-matching condition at the dielectric–air interface
would be impossible to enforce.

In actuality, the exact fields of a microstrip line constitute a hybrid TM-TE wave and
require more advanced analysis techniques than we are prepared to deal with here. In most
practical applications, however, the dielectric substrate is electrically very thin (d � λ),
and so the fields are quasi-TEM. In other words, the fields are essentially the same as those
of the static (DC) case. Thus, good approximations for the phase velocity, propagation con-
stant, and characteristic impedance can be obtained from static, or quasi-static, solutions.
Then the phase velocity and propagation constant can be expressed as

vp = c√
εe

, (3.193)

β = k0
√

εe, (3.194)

y

x

d�r

z

W

Ground plane
E

H

(a) (b)

FIGURE 3.25 Microstrip transmission line. (a) Geometry. (b) Electric and magnetic field lines.
Figure 1.1: Microstrip Transmission Line.
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y

x

b�r

z

W

Ground plane

Ground
plane

E

H

(a) (b)

FIGURE 3.22 Stripline transmission line. (a) Geometry. (b) Electric and magnetic field lines.

3.7 STRIPLINE

Stripline is a planar type of transmission line that lends itself well to microwave integrated
circuitry, miniaturization, and photolithographic fabrication. The geometry of stripline is
shown in Figure 3.22a. A thin conducting strip of width W is centered between two wide
conducting ground planes of separation b, and the region between the ground planes is
filled with a dielectric material. In practice stripline is usually constructed by etching the
center conductor on a grounded dielectric substrate of thickness b/2 and then covering
with another grounded substrate. Variations of the basic geometry of Figure 3.22a include
stripline with differing dielectric substrate thicknesses (asymmetric stripline) or different
dielectric constants (inhomogeneous stripline). Air dielectric is sometimes used when it is
necessary to minimize loss. An example of a stripline circuit is shown in Figure 3.23.

Because stripline has two conductors and a homogeneous dielectric, it supports a TEM
wave, and this is the usual mode of operation. Like parallel plate guide and coaxial line,
however, stripline can also support higher order waveguide modes. These can usually be
avoided in practice by restricting both the ground plane spacing and the sidewall width
to less than λd /2. Shorting vias between the ground planes are often used to enforce this
condition relative to the sidewall width. Shorting vias should also be used to eliminate
higher order modes that can be generated when an asymmetry is introduced between the
ground planes (e.g., when a surface-mounted coaxial transition is used).

Intuitively, one can think of stripline as a sort of “flattened-out” coax—both have a
center conductor completely enclosed by an outer conductor and are uniformly filled with
a dielectric medium. A sketch of the field lines for stripline is shown in Figure 3.22b.

The geometry of stripline does not lend itself to the simple analyses that were used
for previously treated transmission lines and waveguides. Because we will be concerned
primarily with the TEM mode of stripline, an electrostatic analysis is sufficient to give the
propagation constant and characteristic impedance. An exact solution of Laplace’s equa-
tion is possible by a conformal mapping approach [6], but the procedure and results are
cumbersome. Instead, we will present closed-form expressions that give good approxima-
tions to the exact results and then discuss an approximate numerical technique for solving
Laplace’s equation for a geometry similar to stripline.

Formulas for Propagation Constant, Characteristic Impedance,
and Attenuation

From Section 3.1 we know that the phase velocity of a TEM mode is given by

vp = 1/
√

µ0ε0εr = c/
√

εr , (3.176)

Figure 1.2: Stripline Transmission Line.

As is well-known, transmission lines are frequently utilized for traditional com-

munications systems. Transmission lines are specialized cable structures which carry
alternate current of radio frequency. In reality, transmission lines are used with the
purposes such as connected circuits for transmitter, receiver and antennas, distributed
television cable and high speed bus system in a computer. The most common types
of transmission lines are microstrip line and stripline. A microstrip line is the most
popular transmission line, as illustrated in Figure 1.1. A good conductor which is
usually copper of width W is printed on a thin, grounded dielectric substrate of
thickness d and relative permittivity εr. A regular sketch of the corresponding E-
and H-�elds is also shown in the Figure 1.1. Similarly, the geometry of a stripline is
depicted in Figure 1.2. A thin conducting strip of width W is centered between two
wide conducting ground planes of separation b, the area between the ground planes is
�lled with a dielectric material. In reality, stripline is usually constructed by etching
the center conductor on a grounded dielectric substrate of thickness b/2 and then
covering with another grounded substrate.

Generally, the total loss energy in a RF system consists of dielectric and conduc-

tion loss. Considering that those two wave-guided structures su�er from dielectric
substrate, the dielectric loss is unavoidable in them. The stripline and the microstrip
line are typical applied topologies based on parallel-plate transmission line. Theoret-

ically, the dielectric loss can be expressed as the multiplication of the frequency and

loss tangent of the materials. Therefore, the corresponding dielectric loss squarely in-
creases against the frequency. The high dielectric loss is one of the main problems in
transmission lines at millimeter wave frequency band for planar array technologies.

The waveguide structure usually refers to the rectangular and circular waveg-

uide. A typical geometry of rectangular waveguide is depicted in Figure 1.3. The
hollow waveguide characterizes high power handling capability, good isolation, large
gain/high e�ciency array antennas or high-Q �lters. However, the fabrication cost of
hollow waveguide will also be considered for millimeter wave frequency band. Until

now we have several methods to fabricate waveguide structures, such as Computer-

2
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FIGURE 3.6 Photograph of Ka-band (WR-28) rectangular waveguide components. Clockwise
from top: a variable attenuator, an E-H (magic) tee junction, a directional coupler,
an adaptor to ridge waveguide, an E-plane swept bend, an adjustable short, and a
sliding matched load.

and substituting into (3.73) to obtain

1

X

d2 X

dx2
+ 1

Y

d2Y

dy2
+ k2

c = 0. (3.75)

Then, by the usual separation-of-variables argument (see Section 1.5), each of the terms in
(3.75) must be equal to a constant, so we define separation constants kx and ky such that

d2 X

dx2
+ k2

x X = 0, (3.76a)

d2Y

dy2
+ k2

yY = 0, (3.76b)

y

x

z

�, �

b

0
a

FIGURE 3.7 Geometry of a rectangular waveguide.Figure 1.3: The geometry of a rectangular waveguide.

ized Numerical Control machining and Electric Discharging Machining. Generally,
the waveguide structures are typically manufactured in split-blocks and then be con-
nected by screwing, di�usion bonding or deep-brazing techniques. In millimeter wave
band the split-blocks are very small so that the manufacture outcomes usually are
not accurate and perfect.

Substrate integrated waveguide (SIW) [3] has shown big advantages over both
standard rectangular waveguide and printed circuit based transmission lines in mil-
limeter waves. Geometrically, SIW is a compact planar printed circuit in which two
rows of metallic via holes are embedded within a substrate material between two
metallic plates, as illustrated in Figure 1.4. The electromagnetic behaviors of SIW is
similar to those of rectangular waveguides with �lled dielectrics [4]. The di�erence
existing is that the electromagnetic wave propagates between two rows of metallic
via holes instead of metallic walls in rectangular waveguide. Until now, various array
antennas fed by SIW distribution networks have been reported in [5�12]. Moreover,68 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 1, JANUARY 2005

Fig. 3. Configuration of an SIW structure synthesized using metallic via-hole
arrays.

Since is a diagonal matrix, the eigenvalues of are
simply the diagonal elements of the matrix. This is used
to derive the unknown SIW propagation constants

(6)

where is the eigenvalue of and is the difference of
the two SIW lines of different length. Each mode is associated
with two opposite propagation constants and a pair of inverse
eigenvalues. Since the SIW transmission line is an open peri-
odic structure, we can easily extract the propagation constants
according to the attenuation constant of each mode.

The FDFD method we proposed and developed for modeling
the guided-wave properties in [7] is an algorithm that can model
periodic structures of complicated geometry and anisotropy.
The computational domain is restricted to a single period. The
guided-wave problem can be converted into an eigenvalue
problem as follows:

(7)

where isacomplexpropagation constant.Thealgorithmhasad-
vantages to handle a periodic guided-wave problem quickly and
accurately, however, a very tedious programming job is required.

IV. PROPAGATION CONSTANT AND CUTOFF FREQUENCY

Fig. 3 shows a typical SIW structure that is synthesized
with linear arrays of metallic via-holes on a low-loss substrate.
Fig. 4 presents multimode calibration and simulation results of
a -mode propagation constant compared with measured
results, as well as calculated results based on its equivalent
rectangular waveguide. As shown in Fig. 3, the sizes of the
SIW are selected as mm, mm,

mm, and mm. Excellent agreement between
the measured and calibrated results has verified the proposed
multimode calibration method. Experiments and simulations
have proven that dispersion characteristics of the SIW are the
same as those of its equivalent rectangular waveguide. The
equivalent width of the SIW is between and with a
very good approximate equation [5]

(8)

provided that is sufficiently small.

Fig. 4. Comparison of aTE -mode propagation constant between calculated
results using the numerical multimode calibration method and measured results,
as well as calculated results of an equivalent rectangular waveguide.

Fig. 5. Comparison of a TE -mode propagation constant between an SIW
(� = 2:33; d = 0:8 mm, s = 2:0 mm, w = 7:2 mm, h = 0:508mm) and an
equivalent rectangular waveguide (� = 2:33) whose width w is obtained
from (8).

Actually, is decided by three parameters, namely,
and . However, the modified term in (8) does not include the
effect of . When increases, the small error will appear, as
shown in Fig. 5. A more accurate empirical equation is proposed
here as follows:

(9)

When is smaller than three and is smaller than 1/5, the
empirical equation is very accurate. Fig. 6 shows the comparison
of propagation constants between the same SIW used as in Fig. 5
and the rectangular waveguide whose equivalent width is
calculated from (9).

For high-order modes of the SIW, the dispersion characteris-
tics are also the same as its equivalent rectangular counterpart.
However, there is a little difference in the equivalent width
between the high-order modes and the fundamental mode [5].

Figure 1.4: The geometry of a rectangular waveguide.
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Chapter 1. Introduction

SIW has an outstanding pro�le which facilities its easy integration with active RF

components, such as low noise ampli�er, power ampli�er and mixer [13]. Neverthe-
less, SIW still has dielectric loss like normal microstrip lines due to the use of the
substrate [14]. Applying low loss substrate materials is a choice to fabricate the SIW
structure, but the dielectric loss still exists and its cost might increase. Another crit-
ical point to the overall loss in SIW is the leakage energy through the gaps between
metallic via holes when these are not properly organized [15]. Thereby, the dimen-
sions of metallic via holes, the periodic space and the contact between two plates
might increase the design complexity and the cost.

The recently introduced gap waveguide technology [16] constitutes a new type
of wave guiding structure which presents lots of potential to overcome the problems
existing in conventional technologies mentioned before. The newly proposed gap
waveguide technology is based on the research results of soft- and hard- surfaces [17],
which states the cuto� of electromagnetic �elds when a metal plate is placed parallel
to a textured arti�cial magnetic conductor (AMC) and their distance is smaller than
quarter wavelength. The AMC surface is able to establish a high impedance sur-
face boundary condition that ensures the removal of any parallel-plate mode, cavity
mode, surface waves within a certain frequency band called the stopband. Usually
this AMC is realized by the periodic structure by metallic pins or mushrooms. Then
only a local TEM mode is allowed to propagate con�ned within the air gap and along

Figure 1.5: Four realized di�erent gap waveguide geometries. (a) Ridge Gap Waveguide. (b) Groove
Gap Waveguide. (c) Inverted Microstrip Gap Waveguide. (d) Microstrip-Ridged Gap Waveguide.
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a desired path de�ned by a metallic ridge, groove or microstrip embedded in the AMC

layer. Therefore, the gap waveguide technology is able to control the wave propaga-
tion in the desired paths, and forbids propagation of waves in undesired directions.
Thereby, the gap waveguide technology is a promising wave guiding structure alter-
native to counteract the limitations of conventional technologies mentioned before
in this report. So far there are four di�erent realized versions based on guiding-
line, propagation characteristics and the band gap structure. Ridge gap waveguide,
groove gap waveguide, inverted microstrip gap waveguide [18] and microstrip-ridge
gap waveguide [19] are four di�erent varieties of gap waveguide technology, as de-
picted in Figure 1.5. Firstly, the ridge gap waveguide guides a quasi-TEM mode
along the metallic ridge surrounding by metallic pins and no dielectric is required
in the structure. Then the inverted microstrip gap waveguide guides a quasi-TEM
mode along a microstrip etched on a Printed Circuited Broad (PCB). This PCB can
be either supported by an AMC surface or AMC itself embedded in the substrate
materials. In inverted microstrip gap waveguide the �eld is mainly con�ned in the air
gap. The groove gap waveguide can propagate a TE10 mode along the periodic pins
surface. No substrate material is involved in the geometry. This cuto� principle on
which this new technology is based, provides promising opportunities compared to
the conventional approaches, such as microstrip, coplanar waveguide, and standard
waveguides. The gap waveguide technology has interesting characteristics such as low
loss [18], easy manufacturing [20], and cost-e�ective RF integration [21] in millimeter
wave frequencies. The advantage compared with other candidates is low loss because
the wave propagates in the air. Secondly, the ridge and groove gap waveguide does
not contain any dielectrics so that they can totally avoid the dielectric loss. Fur-
thermore, they are mechanically more �exible to fabricate and assemble them than
normal hollow waveguide. In addition, electrical contact between the building blocks
is not needed anymore in such kinds of novel structures [22]. Thereby, this advantage
o�ers good opportunities for making millimeter wave antennas and corporate feed

networks [23�33]. And most importantly, gap waveguides geometries can be manu-

factured by the usage of low cost fabrication techniques such as injection molding,
die pressing, plastic hot embossing or electrical discharging machining.

Another useful advantage of gap waveguide technology is that the metallic pins
are able to supply PMC boundary condition. This boundary condition is able to avoid

the surface current which is the origin for the metallic loss. This huge advantage can

be utilized to package the integrated circuits [34�37] and passive elements [38�41].
Microstrips and coplanar waveguide transmission lines are open structures and the
�nal products need to be protected from interference and physical damages. The tra-

ditional method is based on using metallic shielding boxes. As we discussed before,

the metallic shielding boxes produce the surface current based on fundamental elec-
tromagnetic boundary condition. In addition, this method allows easy appearance of
cavity resonance modes when two of the dimensions of the box are larger than half
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Chapter 1. Introduction

wavelength. It is possible to suppress these resonances by adding absorber materials,

which introduces additional losses. The new gap waveguide technology can avoid all
such problems depicted in traditional method.

1.1 Goal and outline of the thesis

In previous paragraphs, some existing challenges in the millimeter wave technologies

have been already discussed very detailed. There exists a big performance gap be-
tween the planar transmission lines such as microstrips, coplanar waveguide, SIW,
multilayer technology and traditional hollow waveguide. One of the main current
research challenges is to �nd a new guiding structure with �exible, low cost manu-
facture and low loss at the same time. Taking the millimeter wave antennas design
as examples, hollow waveguide is able to realize a high e�ciency antenna, but the
manufacture cost are very high. Microstrip and SIW have low cost and easy manufac-
ture, but they su�er from high loss and low e�ciency. It is very di�cult to combine
all advantages together at the same time. Nevertheless, it is possible to utilize gap
waveguide technology to cover all advantages together. In this thesis, several di�er-
ent planar slot array antennas based on groove gap waveguide, ridge gap waveguide
and inverted microstrip gap waveguide in the V-Band, W-Band and D-Band will be
introduced. In Chapter 2, a 16 × 16 slot array antenna fed by inverted microstrip
gap waveguide (IMGW) in the V-Band is presented. The whole structure designed
consists of radiating slots, a groove gap cavity layer, a distribution feeding network,
and a transition from standard WR-15 waveguide to the IMGW. In Chapter 3, an 8
× 8 slot array antenna based on groove gap waveguide in the W-Band is proposed.
This W-Band antenna has also been built by the radiation slots, the backed-cavity
and the distribution networks. In Chapter 4, a single-layered corporate-fed array
antenna in V-Band is proposed. In the geometry, the backed cavity layer is avoided.

In Chapter 5, a double-layered corporate-fed array antenna in D-Band will be dis-

cussed. Both of the later array antennas are based on ridge gap waveguide. Above
mentioned four antennas demonstrate high-gain, high-e�ciency, low pro�le and low-
cost fabrication. Thereby, those performances prove that gap waveguide technology

has huge advantages than microstrip, coplanar array, SIW and standard waveguides.

In the future, the gap waveguide technology will somehow replace the traditional
wave-guided structures for its potential at millimeter wave frequency.
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Chapter 2

High Gain 60-GHz array antenna

based on Inverted Microstrip Gap

Waveguide

This chapter deals with the design of high gain array antenna based on inverted
microstrip gap waveguide in the V-Band. Compared with the other technologies
introduced in chapter 1, gap waveguide decreases cost and complexity of fabrication
process without the strict requirement of electric contact among di�erent layers. In
this chapter a high gain array antenna based on inverted microstrip gap waveguide
will be detailed introduced. The whole structure based on inverted microstrip gap
waveguide consists of radiating slots, groove gap cavity layer, distribution feeding
network and a transition from standard WR-15 waveguide to inverted microstrip gap
waveguide. The complete antenna array is designed and fabricated using Electrical
Discharging Machining (EDM) technology. The measurement shows that the antenna
has 16.95% bandwidth covering 54-64 GHz frequency range. The measured gain of
the antenna is more than 28 dBi with the e�ciency higher than 40% covering 54-64

GHz frequency range.

2.1 Introduction

The inverted microstrip gap waveguide technology is based on the presence of a thin
substrate that lies over a periodic pin pattern that composes the bed of nails. This

bed of nails constitutes an AMC material and the combination with the upper metal
lid prohibits any wave propagation within the air gap, also in the presence of the

dielectric layer. Only local waves are allowed to propagate along strips etched on this
substrate. Figure 2.1 shows the basic layout of the inverted microstrip gap waveguide.
As sketched in Figure 2.1, the inverted microstrip gap waveguide technology is based

on the use of a thin substrate which is applied for feeding network and lies over a
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Top metallic plate

Microstrip

Substrate

Periodic Pins

Bottom 

Metallic plate

Figure 2.1: Brief geometry of the inverted microstrip gap waveguide.

periodic pin pattern. This periodic metallic pin layer constitutes an AMC surface
and in combination with the upper metallic lid prohibits any wave propagation within
the air gap. Furthermore, a local quasi-TEM mode is allowed to propagate along the
metallic strip. The main motivation and advantage of this inverted microstrip gap
waveguide antenna lies to the fact that the pin plate with uniform pin period can
be easily fabricated by metal sawing or wire-cut technique and this will reduce the
cost of the overall antenna. Also, the feeding network will be printed on a PCB
which can be also low cost. In this chapter, we will systematically present a 16×16
slot antenna array designed with corporate feeding networks including an interface
to WR-15 rectangular waveguide. The brief design idea of the complete 16×16 slot
antenna array is shown as a �ow chart in Figure 2.2.

2.2 Design for Bed of Nails

As mentioned in previous section, gap waveguide uses a parallel-plate stopband over
a speci�c frequency range. The pin dimensions of bed of nails should be chosen cor-
rectly to achieve a parallel plate stopband which covers as much as 60-GHz frequency

band. The basic idea is numerical parametric analysis of the inverted microstrip gap

waveguide whose structure is illustrated in Figure 2.3. The PEC, periodic and PEC
boundary conditions are added for the structure in x-, y- and z-axis, respectively. The
geometrical parameters which e�ect the stopband of inverted microstrip gap waveg-

uide are: the gap height hg, the period p of pins, the width a of pins, the pin height

hp of pins and the thickness of substrate hs. Here the shape of pins in XOY plane
is square while dispersion diagrams metallic strip are supposed to be identical in the
both propagation directions x and y. The starting point for the parametric analysis

is based on the following rules: the height of the air gap hg must be smaller than λ/4
in order to stop the propagation of all parallel-plate modes. Secondly, the height of
metallic pins hp is supposed to be approximately equal to λ/4 so that highest surface
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Figure 2.2: The �ow chart for design the whole structure in this thesis.
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Figure 2.3: Geometrical interpretation of gap waveguide microstrip line. Along the y-axis Peri-
odic Boundary Condition is set up and the structure is simulated in CST Microwave Studio using
Eigenmode Solver.

Table 2.1: Geometrical Parameters of the Structure in Figure 2.3
hs hg hp a p

Geometrical Parameters 0.2 mm 0.25 mm 1.2 mm 0.4 mm 0.8 mm
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Figure 2.4: Dispersion diagram for the structure in Figure 2.2 and the blue curve crossing over the
stopband represents the quasi-TEM mode.

impedance is achieved. The ratio between the width of metallic pins and period a/p
has been chosen as 0.5. The considered substrate material is Rogers RO4003 with
relative permittivity εr = 3.55, loss tangent tanδ = 0.0027 (speci�cations are at 10
GHz according to Rogers material data sheet) and thickness hs = 0.2 mm. It should
be emphasized that the loss tangent value of the substrate material Rogers RO4003
at 60-GHz frequency band is much higher than that at 10 GHz in reality according
to fundamental electromagnetic �eld theory. Therefore, we have to set up the loss
tangent value of Rogers RO4003 as 0.01 in CST Microwave Studio, which is almost
4 times higher than the value at 10 GHz. The motivations to select RO4003 are that
it has lower loss value than traditional PCB substrate FR4 and mechanically more

rigid than other substrate materials. Correspondingly, the dispersion diagram of the
structure is shown in Figure 2.4, which is obtained by utilizing the eigenmode solver
in CST Microwave Studio software. The obtained stopband is from 48 to 72 GHz

and only one mode propagates within the structure, as shown in Figure 2.4. The

corresponding geometrical parameters are listed in Table 2.1.

2.3 Design for Antenna Unit Cell

As mentioned before, a 2×2 element sub-array is �rstly designed using periodic
boundary condition in order to evaluate the radiation pattern and directivity of whole
array antenna. Most importantly, the mutual coupling e�ect is taken into account

in this way so that the periodic boundary conditions in both x and y directions are
placed. Figure 2.5 shows exploded perspective view of the 2×2 element sub-array,

which brie�y consists of radiating slot layer, cavity layer, PCB microstrip layer and
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Figure 2.5: Detailed 3-D view of 2 × 2 slots sub-array.
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Figure 2.6: Geometrical parameters of a 2 × 2 slots array. (a) Top radiation slots layer. (b) Backed
cavity layer. (c) Coupling hole layer. (d) Feed distribution networks layer.
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bed of nails. Instead of normal hollow rectangular waveguide cavity, we have utilized

groove gap waveguide cavity here because it is convenient to be manufactured. Here
the groove gap waveguide cavity in the middle is partitioned into four spaces by two
sets of metallic blocks extending in the x and y directions. The PCB microstrip layer
feeds all the groove waveguide cavities with identical phase and amplitude by the
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Figure 2.7: (a) Simulated re�ection coe�cient S11 of 2×2 slots sub-array. (b) Directivity of an array
antenna of 16×16 slot aperture dimension in in�nite array environment.
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Figure 2.8: (a) Radiation pattern of 16×16 slot array antenna in E-Plane. (b) Radiation pattern
of 16×16 slot array antenna in H-Plane. Both simulation results are obtained by in�nite periodic
approach on 2×2 slot sub-array.

middle coupling hole.
As is well known, the slots in an antenna aperture ought to be uniformly spaced

in both x and y directions with spacing smaller than one wavelength in order to avoid

grating lobes in a large broadside array. The highest frequency of the antenna is cho-
sen to be 66 GHz and the corresponding wavelength λ is about 4.5 mm. Therefore,
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the slot space ds in this work we have chosen 4 mm. On the other hand, the value

W and L should be integer times of the pins period, namely W =Mp and L = Np.
Given the above-mentioned considerations, we select W = L = 10p = 8 mm. The
detailed geometrical demonstration of the antenna sub-array have been shown in Fig.
6. First of all, the slot dimensions Ws and Ls as well as the cavity metallic block
dimensions Wr1, Lr1, Wr2 and Lr2 have been well optimized to achieve good radia-
tion pattern. Secondly, Wc, Lc, Wm1, Wm2, Wm3 and Wm4 have been optimized to
achieve minimum re�ection coe�cient. Figure 2.7 (a) shows corresponding re�ection
coe�cient of sub-array and it has 14.5% impedance bandwidth (over 57-65.7 GHz)

Table 2.2: Geometrical Parameters of 2 × 2 Unit Cell the Structure in Figure 2.6
W L dx dy Ws

Geometrical Parameters 8 mm 8 mm 4 mm 4 mm 1.75 mm
Ls Wc Lc Wr1 Lr1

Geometrical Parameters 2.832 mm 1.748 mm 2.742 mm 0.637 mm 1.111 mm

with input re�ection coe�cient better than -15 dB. Figure 2.7 (b) also illustrates the
simulated directivity of 16×16 slot aperture array in in�nite array environment. The
optimized sub-array achieves that expected design target for whole antenna array.
The �nal dimensional parameters of sub-array are presented in Table 2.2. Here we
have utilized the CST Microwave Studio in�nite periodic approach along the x and
y directions of 8 elements in order to estimate the radiation pattern of the whole
structure. Figure 2.8 illustrates the radiation patterns of E- and H-plane of 16×16
slot array antenna according to in�nite periodic approach. We have observed that
the �rst side-lobe levels in both E- and H-planes are around -13 dB and the grating
lobe levels (GL) in E- and H-planes are respectively below -19 dB and -25 dB.

2.4 Transition from WR-15 to Inverted Microstrip

Gap Waveguide

A vertical transition from standard V-band rectangular waveguide to inverted mi-
crostrip gap waveguide is presented in this work. Since it is convenient to directly
measure antenna array with rectangular waveguide excitation, millimeter wave high

gain antennas are usually excited by a standard rectangular waveguide in reality. A

standard V-band rectangular waveguide (WR-15) thus works as the input port at the
bottom of antenna structure. Obviously, the main challenge here is how to transfer
TE10 mode in rectangular waveguide to the quasi-TEM mode of inverted microstrip

gap waveguide e�ciently with simple con�gureation. Normally there are three types

of transitions in microwave technology: inline transitions, aperture coupled patch
transitions and vertical transitions. Here we choose the vertical transition.

As sketched in Figure 2.9, this transition is composed of three parts: WR-15
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Figure 2.9: (a) Top view transition geometry. In order to observe the microstrip and waveguide
open details the substrate is hidden. (b) Cross-sectional view for complete structure.

feeding waveguide, inverted microstrip gap waveguide and backshort cavity at top
metallic layer. The whole structure works as a three-port power divider that can be
also utilized for power division. First of all, a PCB is positioned over a bed of pins and

57 58 59 60 61 62 63 64 65 66
-35

-30

-25

-20

-15

-10

-5

0

Frequency [GHz]

S
-P

a
ra

m
et

er
s 

[d
B

]

 

 

S11

S21

S31

-3.09

(a)

57 58 59 60 61 62 63 64 65 66

-150

-100

-50

0

50

100

150

Frequency [GHz]

P
ha

se
 [

de
gr

ee
]

 

 

S21
S31

(b)

Figure 2.10: Simulated S-parameter results of designed transition structure. (a) Amplitude. (b)
Phase.

it contains tapered section. These tapered-line sections act as an impedance trans-
former. A parametric sweep of the position and impedance of this tapered section
has been carried out in order to achieve optimum return loss within the frequency

band of interest. The layout of the transition circuit is shown in Figure 2.9 (a). On

the other hand, the whole transition is accomplished by adding a cavity backshort on
the top metallic lid, as shown in Figure 2.9 (b). The backshort is positioned opposite
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Table 2.3: Geometrical Parameters in Figure 2.9
Wx1 Wx2 Lcbx Lcby Lcbz

Geometrical Parameters 0.815 mm 0.961 mm 3 mm 1.785 mm 0.375 mm

to the rectangular waveguide opening. Its dimensions are �rstly roughly evaluated

by impedance transformer and then optimized together with the tapered-line by full
wave simulation. The distance between the backshort cavity and the substrate is
set as λ0/4 (λ0 = 4.95 mm) in order to compensate the reactance of two-steps mi-
crostrips. Hereby, the backshort cavity together with the tapered microstrip line
essentially contributes in �eld matching as well as impedance matching over 57 - 66
GHz. All signi�cant parameter values are speci�ed on Table 2.3 for this proposed
transition power divider. The simulated S-Parameters of the structure is shown in
Figure 2.10. The function of simple section is actually equal to a single WR-15 to
inverted microstrip gap waveguide transition and a T-junction power divider. In
addition, we should notice that the phases of the output ports have 180 degree dif-
ference, as shown in Figure 2.10 (b). Please observe that we will compensate this
di�erence in design of distribution networks.

2.5 Design of Feeding Distribution Networks

Compared with groove and ridge gap waveguide structure, the feeding distribution
networks based on inverted microstrip gap waveguide has some obvious advantages.
First of all, the inverted microstrip gap waveguide has a uniform bed of nails while
the other types of gap waveguide prototypes do not. This uniform pins make the
fabrication much easier and cheaper. For instance, a uniform pins surface can be
sawed with parallel saw blades, whereas nonuniform pin locations and ridges must

be milled with a thin milling tool. Secondly, theories and design principles of tradi-

tional inverted microstrip technique are very maturate in the past decades so that
we can directly utilize them with little modi�cation. For these reasons, the inverted
microstrip gap waveguide is attractive in feeding networks for slot antenna arrays at

high frequency.

Despite its advantages, the inverted microstrip gap waveguide technology is still
a challenge in design of feeding distribution networks for slots array. In [42] a planar
horn array fed by inverted microstrip gap waveguide has been already expounded.

Since metallic pins surface is able to supply a nearly PMC boundary condition, the

distribution networks in [42] has been �rst designed with an ideal PMC condition
instead of metallic pins structure located at the bottom of the substrate. Neverthe-
less, the corporate-feed networks design in this work di�ers from that in [42]. Most

important reason is that minute quantity of electric- and magnetic �elds still exist in-
side the metallic pins structure in reality while a quasi-TEM mode propagates along
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the top microstrip. However, electric- and magnetic �elds inside a PMC are both

null. Therefore, assuming an ideal PMC condition to replace the metallic pins struc-
ture may introduce signi�cant error in design of distribution networks. Until now
the inverted microstrip gap waveguide technology has been merely applied for design
bandpass �lter [43]. Given its complexity an antenna unit cell has been accomplished
without distribution networks in [44].

As introduced before, we have already designed a promising antenna unit cell
which is fed by inverted microstrip gap waveguide. In this section, a new procedure
for design distribution networks based on inverted microstrip gap waveguide struc-
ture will be presented. The feeding networks consists of several cascading T-junction
power dividers and their impedance matching transformers between each other.

2.5.1 Design of T-junction Power Divider

Essentially a T-junction power divider is a simple three-port network that can be uti-
lized for power division or combining. Thereby, the T-junction is a central component
in distribution networks for feeding antenna array. In this work we �rstly design a T-

Input Part
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Roger4003

(a)

𝑊𝑡,1

𝑊𝑡,2

𝑊𝑡,3

𝑊𝑡,4𝑊𝑡,5

(b)

Figure 2.11: (a) Illustration for single T-junction power divider based on inverted microstrip gap
waveguide. (b) Geometrical description for single T-junction and the substrate is hidden in order
to observe the microstrip and bottom bed of nails.

junction power divider with metallic pins in CST Microwave Studio shown in Figure
2.11 (a). In order to obtain correct transition performance an optimized numerical
port [45] has been utilized during the entire design procedure. The T-junction then

has been optimized with the dimensions of width of microstrips Wt,1, Wt,2, Wt,3, Wt,4

and Wt,5 and the �nal optimized geometrical parameters are listed in Table 2.4. Fig.

12 shows S-parameters, where the re�ection coe�cient S11 is below -30 dB from 57
to 66 GHz. The S21 and S31 are identical to -3.1 dB. Besides the lost energy in sub-
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Figure 2.12: The simulated S-parameters of single T-junction.

Table 2.4: Geometrical Parameters in Figure 2.11
Wt,1 Wt,2 Wt,3 Wt,4 Wt,5

Geometrical Parameters 1.045 mm 1.324 mm 0.306 mm 0.298 mm 1.100 mm

strate RO4003, the rest of electromagnetic energy are identically split to output port
2 and port 3. The simulated result also indicates that T-junction power divider has
promising abilities of power division and isolation for two output ports. The input

and output port impedances are calculated by CST and it is convenient to utilize
them for impedance transformer design in next subsection.

2.5.2 Design of Impedance Transformer

Impedance matching is a practical topic in microwave circuits. This fundamental
idea is that an impedance matching network placed between a load impedance and a

transmission line. The re�ection e�ect will be eliminated on the distribution networks
to the matching networks. The basic principle of impedance matching is shown in
Fig. 13 (a) and its implementation in this work is shown in Fig. 13 (b) as well.

In this work we apply classical second order binomial impedance transformer for
impedance matching. All characteristic impedances and load impedances has been

obtained from optimized numerical ports introduced in [45]. Here we should notice

17



Chapter 2. High Gain 60-GHz array antenna based on Inverted Microstrip...

c05ImpedanceMatchingandTuning Pozar July 29, 2011 20:34

5.1 Matching with Lumped Elements (L Networks) 229

Z0
Matching
network

Load
ZL

FIGURE 5.1 A lossless network matching an arbitrary load impedance to a transmission line.

� Implementation—Depending on the type of transmission line or waveguide being used,
one type of matching network may be preferable to another. For example, tuning
stubs are much easier to implement in waveguide than are multisection quarter-wave
transformers.� Adjustability—In some applications the matching network may require adjustment to
match a variable load impedance. Some types of matching networks are more amenable
than others in this regard.

5.1 MATCHING WITH LUMPED ELEMENTS (L NETWORKS)

Probably the simplest type of matching network is the L-section, which uses two reac-
tive elements to match an arbitrary load impedance to a transmission line. There are two
possible configurations for this network, as shown in Figure 5.2. If the normalized load
impedance, zL = ZL/Z0, is inside the 1 + j x circle on the Smith chart, then the circuit
of Figure 5.2a should be used. If the normalized load impedance is outside the 1 + j x cir-
cle on the Smith chart, the circuit of Figure 5.2b should be used. The 1 + j x circle is the
resistance circle on the impedance Smith chart for which r = 1.

In either of the configurations of Figure 5.2, the reactive elements may be either induc-
tors or capacitors, depending on the load impedance. Thus, there are eight distinct possibil-
ities for the matching circuit for various load impedances. If the frequency is low enough
and/or the circuit size is small enough, actual lumped-element capacitors and inductors can
be used. This may be feasible for frequencies up to about 1 GHz or so, although modern
microwave integrated circuits may be small enough such that lumped elements can be used
at higher frequencies as well. There is, however, a large range of frequencies and circuit
sizes where lumped elements may not be realizable. This is a limitation of the L-section

Z0

jX

ZL

(a) (b)

jB

jX

ZLjB

FIGURE 5.2 L-section matching networks. (a) Network for zL inside the 1 + j x circle. (b) Net-
work for zL outside the 1 + j x circle.
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Figure 2.13: (a) Illustration for a network matching an arbitrary load impedance to a transmission
line. (b) Realized whole feeding networks and its matching parts in this work. (c) Simulated
S-Parameters in CST Microwave Studio.
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2.6. Comparison between Simulated and experimental results

that part 1 of matching microstrip has been designed as shape of parallelogram in

order to remove its mutual coupling e�ect to the nearest coupling holes. In addition,
the input port in CST is set up at the bottom of WR-15 and the output ports are
built at the output microstrip of last stage T-junction power divider. Finally, the
whole distribution network is optimized by genetic algorithm.

The �nal designed structure of the feeding distribution networks is shown in Fig.
13 (b). The complete corporate-feed network consists of two 32-way power dividers
connected to the transition of WR-15 at the center. As described in section IV, the
transition power divider from WR-15 to inverted microstrip gap waveguide has 180
degree phase di�erence. Thereby, the whole feeding network is mirrored in order to
compensate the phase di�erence. Fig. 13 (c) shows the corresponding S-parameters
of the whole distribution networks. The re�ection coe�cient S11 is almost below -20
dB over 57 - 66 GHz.

2.6 Comparison between Simulated and experimen-

tal results

Top radiating layer

Backed cavity layer

Coupling hole layer

Bottom bed of nails

Feeding microstrip

(a) (b)

Figure 2.14: (a) Numerical model in CST Microswave studio of proposed array antenna. In order
to observe the microstrip and waveguide open details the substrate is hidden. (b) Photogragh of
proposed 16×16 array antenna fabricated by EDM technology.

The numerical model and �nal manufactured prototype of the 16×16 slot array

antenna discussed in this paper is shown in Fig. 14. The metallic parts of the array

antenna is fabricated by Electrical Discharging Machining (EDM) Technology. In
this manufacture technology, the designed prototype is etched by recurring electric
discharges between the workpiece and electrodes. The �nal designed array aperture
dimension is 64 × 64 mm2 (8 mm×8 mm× 64 elements).

The simulated and measured input re�ection coe�cients of the proposed antenna
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Figure 2.15: Comparison of simulated and measured re�ection coe�cient of the proposed 16 × 16
slot array antenna.

Chapter 4. Gap Waveguide Technology for Millimeter Wave Applications

Bed of nails

Substrate

Metal strip

(a) Longitudinal variation along axis.

(b) Variation in transverse direction.

(c) Simultaneous transverse and longitudinal variation.

Figure 4.7: Modeled curved profiles with different type of variations (exag-
gerated variation for illustration purpose).

cosine variation (longitudinal and transversal at the same time). These three

cases of variation are sketched in Fig. 4.7. For each type of variation, the

amplitude of the cosine and the number of periods have been controlled to

generate enough number of samples to extract relevant information about

the consequences of the bad contact between the bed of pins and the PCB.

Some conclusions that we can summarize from this study are:

1. If good contact between the pins and the planar substrate region that

contains the transition is forced, and longitudinal variation along the

52

Figure 2.16: Sketch of inverted microstrip gap waveguide with a bent substrate.

are shown in Fig. 15. The measured S11 is a bit higher than the simulation. How-
ever, it is still below -10 dB from 54.5 GHz to 66 GHz (19.2% impedance bandwidth).
There are some di�erences between the simulated and measured results. As above
discussed in section II, the dispersion diagram of whole structure is a�ected by dimen-
sions of metallic pins, the thickness of substrate and the height of air gap. Therefore,

any manufacture tolerances of bed of nails and the height change of air gap will cause
shift of parallel stopband. As reported in [46], there is always a frequency shift in
re�ection coe�cient which drifts towards to lower or higher frequency. A consequence

of this is that the PCB may not remain rigidly supported over the bed of pins, and

there are some points in which the pins do not have a good contact with the substrate
(see sketch presented in Fig. 16). Furthermore, these untouched gap between sub-
strate and pins automatically creates capacitance e�ect. This small shunt capacitor

a�ects the dispersion diagram of inverted microstrip gap waveguide.

The radiation pattern of proposed antenna is measured in an anechoic chamber.
The simulated and measured normalized radiation patterns in the E- and H-plane at
four di�erent frequencies 57, 60, 61, 66 GHz are shown in Fig. 17 and Fig. 18. The

measured Co-polarization radiation patterns show a very good agreement with the
simulated results. The simulated and measured radiation patterns are symmetrical,

and the �rst side-lobe levels in both E- and H-planes are around -13 dB. The mea-
sured grating lobes of the fabricated array in both E- and H-planes are below -20 dB
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Figure 2.17: Measured and simulated radiation pattern of proposed array antenna on E-plane. (a)
57 GHz. (b) 60 GHz. (c) 61 GHz. (d) 66 GHz.

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

Angle [degree]

R
el

a
ti

v
e 

A
m

p
li

tu
d

e 
[d

B
]

 

 

Sim.Co-pol.

Mea.Co-pol.

Mea.Cross-pol.

(a)

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

Angle [degree]

R
el

a
ti

v
e 

A
m

p
li

tu
d

e 
[d

B
]

 

 

Sim.Co-pol.

Mea.Co-pol.

Mea.Cross-pol.

(b)

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

Angle [degree]

R
el

a
ti

v
e 

A
m

p
li

tu
d

e 
[d

B
]

 

 

Sim.Co-pol.

Mea.Co-pol.

Mea.Cross-pol.

(c)

-80 -60 -40 -20 0 20 40 60 80
-80

-70

-60

-50

-40

-30

-20

-10

0

Angle [degree]

R
el

a
ti

v
e 

A
m

p
li

tu
d

e 
[d

B
]

 

 

Sim.Co-pol.

Mea.Co-pol.

Mea.Cross-pol.

(d)

Figure 2.18: Measured and simulated radiation pattern of proposed array antenna on H-plane. (a)
57 GHz. (b) 60 GHz. (c) 61 GHz. (d) 66 GHz.
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Chapter 2. High Gain 60-GHz array antenna based on Inverted Microstrip...

over the desired frequency band. The cross-polarization values are below -40 dB at

all frequencies.
The simulated directivity and gain of proposed antenna are shown in Fig. 19. The

red solid line, which stand for simulated directivity, is above 80% aperture e�ciency
(64×64mm2). The pink dash line in Fig. 19 indicates the simulated gain after setting
up the modi�ed loss tangent of substrate. This method help us accurately predict the
real gain after manufacturing. The blue dash-dot line in Fig. 19 shows the measured
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Figure 2.19: Measured gain and simulated directivity of present 16 × 16 slot array antenna.

gain, illustrating above 40% aperture e�ciency over the frequency band 54-64 GHz.

What we should notice in Fig. 19 is that the measured gain drops very rapidly at the
start of 64 GHz, yet our design target is 57-66 GHz. The probable explanation for
reducing of antenna gain of proposed array antenna is that the true loss tangent of

substrate is actually unknown in reality. The value of tangent loss is probably even

higher than 0.01 at higher frequency band. The other possible reason for the gain
reduction is that the antenna is made of steel. The top radiating layer is too thin to
be deformed by the force. The analogues phenomenons also appear in [47] and [48].

Compared with the designs in [47] and [48], our work exhibits wide impedance band-

width, higher aperture e�ciency and low cost on fabrication. However, because of
the ohmic loss in dielectrics of feed distribution networks, the realized gain of our
work is lower than those reported in [49], [50] and [51]. Thereby, there are still some

work to do for the further improvements. As illustrated in Fig. 16, the untouched
gap between pins and substrate is most important issue because it produces nega-

tive e�ect on wave propagation of the structure. How to solve this problem is an
important issue for this technology.
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2.7. Conclusion

2.7 Conclusion

A high gain and wide bandwidth slot array antenna based on inverted microstrip gap

waveguide at 60-GHz has been presented in this work. The proposed antenna consists
of four unconnected layers without any electric contact between them. The designed
prototype is manufactured by EDM technology. In this paper, we �rstly used we
used a new corporate feed network based on the inverted microstrip gap waveguide
technology. A transition power divider between WR-15 and inverted microstrip gap
waveguide have been designed in order to provide a simple excitation of the antenna.
The simulated and measured results of the whole antenna structure shows very good
agreements in radiation patterns in both E- and H-plane. The measured realized
gain is higher than 29 dBi over the entire operation bandwidth from 54.5 to 64
GHz, corresponding to e�ciency larger than 45%. This work shows that the inverted
microstrip gap waveguide technology is an excellent candidate for array antennas in
millimeter wave communication.

23



24



Chapter 3

Slot Array Antenna based on Groove

Gap Waveguide in the W-Band

The newly introduced gap waveguide technology o�ers non-contact waveguide con-
�gurations so that the good electrical contact between di�erent metallic layers can be
avoided. Thereby, the gap waveguide structures are relatively simple to manufacture,
especially at millimeter and sub-millimeter wave frequencies. This work systemati-
cally presents a high-e�ciency corporate-fed slot array antenna based on groove gap
waveguide in the millimeter waves. A cavity-backed slot sub-array is �rstly designed
in a groove gap waveguide cavity. The cavity is fed through a coupling hole from
groove gap waveguide distribution network at the bottom layer. The sub-array is
numerically optimized in an in�nite array environment. Low side lobes are obtained
in the both E- and H-planes by diagonal placement of the radiation slot rotating by
45 degrees. Furthermore, the radiation narrow slot pair is adopted so that the good
cross polarization is achieved. The fabricated antenna depicts more than 25% band-
width with input re�ection coe�cient better than -8 dB and the aperture e�ciency
higher than 60% with around 25 dBi realized gain between 70 and 90 GHz. The

measured cross polarization level is below -27 dB, which satis�es the ETSI standard.

3.1 Introduction

Recently, the saturation of spectrum at microwave frequencies causes the consider-
ation of higher frequency bands. Especially, the millimeter wave range between 30

GHz and 300 GHz has been paid lots of attentions. Furthermore, the usage of the
millimeter wave frequencies has the advantage of allowing for larger bandwidths, and

thereby, achieving higher data transfer rates. In such frequency ranges, traditional
hollow waveguide and microstrip lines have met up with di�culties to design antennas
and passive components.Indeed, hollow waveguide are normally manufactured in two

parts and then joined together. In microwave frequency band, it is still convenient to
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Chapter 3. Slot Array Antenna based on Groove Gap Waveguide in the...

Backed Cavity Layer 

Middle Slot Layer 

Top Slot-Pair Layer 

Figure 3.1: Con�guration of the proposed corporate-feed slot array antenna based on groove gap
waveguide.

fabricate hollow waveguide because its geometrical dimensions are large. However,
its fabrication becomes a big problem because its dimensions are very small in mil-
limeter waves. Moreover, it su�ers from problems of irregular rectangular shape and
poor electrical contacts. Di�usion bonding and vacuum welding are probably two
manufacture technologies for hollow waveguide in millimeter waves. Nevertheless, its
fabrication cost is relatively high. On the other hand, microstrip lines or covered
microstrip lines are able to integrate the active components, but still present high
dielectric losses in millimeter waves. Thereby, new technologies in millimeter waves
are still demanded.

Substrate integrated waveguide (SIW) is an appropriate candidate in millimeter
waves. Nevertheless, it exhibits undesired dielectric losses in the substrate at increas-
ing frequencies. As is well known, the loss tangent value of substrate increases versus

the frequency. Thereby, the dielectric loss in SIW is unacceptable above 60 GHz so

that the antenna e�ciency is a�ected. In such a situation, there is still need to �nd
new technological solutions for waveguides that have low losses and are cheap to man-
ufacture. The recently introduced gap waveguide technology constitutes a new type

of guiding structure that shows lot of potential to overcome the issues of conventional

technologies, and become a suitable approach at millimeter wave frequencies. First of
all, the gap waveguide shows low loss compared with microstrip, covered microstrip
and SIW. Secondly, unlike the conventional manufacture of hollow waveguide, the
gap waveguide structure is very �exible to be manufacture. Most importantly, the

electrical contact between the building blocks is not needed in this new guiding struc-

ture so that expensive fabrication technologies, such as vacuum welding and di�usion
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3.2. Design of Sub-array

bonding, can be avoided in millimeter waves. Until now four di�erent variety of gap

technology, ridge gap waveguide, groove gap waveguide, microstrip-gap waveguide,
and inverted microstrip-ridge gap waveguide have been already investigated. They
are able to achieve characteristics of high-gain and high-e�ciency because of low loss
property.

In this work, we Initially introduce a 45o linearly polarized corporate-feed groove
gap waveguide slot array antenna covering 71.5 to 90 GHz. As depicted in Figure
3.1, the whole slot array antenna consists of the distribution feeding networks, the
backed cavity layer, the middle slot layer and the top radiation slot layer. The feeding
part is composed of equally-split H-plane T-junctions and a vertical transition from
WR-10 standard hollow waveguide from its back. In order to satisfy the radiation
pattern of ETSI standard, the radiation slots usually have been 45o rotated. Given
the rising of the cross polarization level caused by 45o degree rotation, a narrow-slot
pair con�guration on the top is designed to suppress the cross-polarization. The pro-
posed antenna has been fabricated by computerized numerical control (CNC) milling
machine. The measured re�ection coe�cient and far-�eld radiation patterns are dis-
cussed in the end.

3.2 Design of Sub-array

The pin dimensions of bed of nails at both distribution networks and backed cavi-
ties should be chosen correctly to achieve a parallel plate stopband which covers as
much as the operating frequency. As depicted in Figure 3.2(a), the design unit cell of
proposed groove gap waveguide is built with PEC, periodic and PEC boundary con-
ditions in x-, y- and z-axis in CST Microwave Studio, respectively. Correspondingly,
the dispersion diagram of the structure is shown in Figure 3.2(b), which is obtained

(a) (b)

Figure 3.2: (a) A groove gap waveguide unit cell for determination of dispersion diagram. (b) The
corresponding dispersion diagram.
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x
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z

Radiation slot pair

Radiation cavity

Exciting slot Backed cavity

Coupling slot

Groove gap 
Waveguide feed 

network

Figure 3.3: Model for the analysis of the 2×2-element sub-array.

by utilizing the eigenmode solver in CST Microwave Studio. The obtained stopband
is from 65 to 115 GHz. The proposed 2×2 sub-array is illustrated in Figure 3.3. The
sub-array consists of four layers - the top pair radiation layer, the middle slot layer,
the backed cavity layer and the bottom distribution feed networks layer. An air-�lled
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Figure 3.4: The re�ection coe�cient of the sub-array.
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Figure 3.5: The simulated directivity of the 32×32 slot array according to the periodic boundary
condition.

cavity formed by pins, feeds four radiating slots with spacing smaller than 3.1 mm,
which is equal to one wavelength on the top layer. A groove gap waveguide excites
the cavity via a coupling slot on the bottom layer. There is a small gap between
each layers and thereby no electrical contact between the di�erent layers. This is a
manufacturing advantage of this technology. The designed sub-array has 6×6 mm2

dimensions. The sub-array is optimized in the in�nite array environment by using
CST Microwave Studio where the mutual coupling between sub-arrays are automat-
ically included. The simulated re�ection coe�cient of the sub-array is illustrated in
Figure 3.4. The sub-array bandwidth is 29% (71 � 95 GHz) with the VSWR better
than 1.7. The directivity versus frequency of an array with the same aperture size
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Figure 3.6: Normalized radiation patterns of an array with 32 × 32 slot aperture dimension in (a).
E-plane and (b). H-plane. In�nite array approach.
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Figure 3.7: Picture of manufactured antenna in this work.

70 75 80 85 90
Frequency [GHz]

-40

-35

-30

-25

-20

-15

-10

-5

0

R
ef

le
ct

io
n 

C
oe

ff
ic

ie
nt

 [
dB

] 71.5 GHz ---90 GHz VSWR =2.4

Figure 3.8: The simulated and the measured re�ection coe�cients of proposed antenna. The blue
curve indicates the simulated re�ection coe�cient, and the red line depicts the measured one.

is shown in Figure 3.5. The blue line in the graph shows the maximum available
directivity between 100% and 80% aperture e�ciency, which clearly shows that the

designed sub-array has high aperture e�ciency. In Figure 3.6, the E- and H-plane

far �eld patterns of an array with 32×32 slots over its aperture are illustrated for
di�erent frequencies.
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3.3. Simulation and Measurement for the 8×8 Slot Array
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Figure 3.9: The simulated far-�eld radiation patterns of proposed antenna. (a) E-plane and (b)
H-plane.
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Figure 3.10: The simulated and measured gains of the proposed array antenna. The measured one
shows the antenna e�ciency is higher than 60%. The measured cross-polarization is better than -27
dB, which ful�lls the ETSI standard.

3.3 Simulation and Measurement for the 8×8 Slot

Array

The fabricated 8×8 slot array antenna is illustrated in Figure 3.7. The prototype
is manufactured by Computerized Numerical Control (CNC) technology. The fab-
ricated machine is Fanuc α D14B15 with fabrication tolerance 2.5 µm, and this is

good enough to fabricate our array antenna. The dimensions of e�ective aperture

are 24×24 mm2 and it was fabricated by Aluminium (with electric conductivity 3.6×
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107 S/m ). The entire structure is simulated in CST Microwave Studio. The simu-

lated re�ection coe�cient of complete antenna is below -10 dB from 70 to 90 GHz,
as shown in Figure 3.8. However, the measured re�ection coe�cient is a bit higher
than simulated one because of the tolerances of manufacturing and assembling toler-
ances. Still, it covers 71.5 to 90 GHz with the VSWR better than 2.4. The simulated
far-�eld radiation patterns of proposed antenna at 70, 80 and 90 GHz in both E-
and H-planes are depicted in Figure 3.9. Low sidelobe characteristics are obtained
over the bandwidth investigated here. No grating lobe is observed. The simulated
�rst sidelobe levels are less than -26 dB. The measured frequency characteristics of
the gain and the cross polarization are shown in Figure 3.10. The gain and the cross
polarization are measured by V- and W-band far-�eld measurement systems for 70�
75 GHz and 75�90 GHz, respectively. In the 71�89 GHz band, the gain variation
is 25�26.2 dBi. The bandwidth for a gain of more than 25 dBi and the antenna
e�ciency of more than 60% is greatly improved. The cross polarization is suppressed
below -27 dB over the full bandwidth.

3.4 Conclusion

In this work, we present a 45 degree 8×8 cavity-backed slot array antenna based on
groove gap waveguide for high-gain 80 GHz. The proposed antenna consists of four
layers, i.e. 45 degree radiation slot layer, middle coupling slot layer, backed cavity
layer and feeding network layers without need of electrical contact between layers.
This presents manufacturing advantages in particular at millimeter wave. The array
antenna can be directly connected with standard WR-10 interface. The measured
gain is higher than 25 dBi from 71 to 90 GHz, correspondingly the antenna e�ciency
larger than 60%.
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Chapter 4

A Single-Layered Corporate-Feed Slot

Array based on Ridge Gap

Waveguide in the V-Band

This paper presents an 8×8-element slot array antenna with single-layered corporate-
feed based on the ridge gap waveguide technology in the 60-GHz band. As is well-
known, a corporate-feed slot array antenna usually has backed cavities to increase
the bandwidth and provide a space for its distribution network, and therefore three
layers in total: one layer for radiating slots and two layers for feed network with
one layer of back cavities and one of power dividers. The antenna in this work is
designed by utilizing only two separate metallic layers � a corporate-feed network
layer and a radiating slot layer. Compared with the conventional three-layered slot
array antennas, the proposed antenna avoids the utilization of the backed cavity
layer so that its complexity and manufacture cost decrease. In order to solve the
problem of the narrow bandwidth caused by taking away the backed cavities we
utilize double-ridged radiating slots instead of the conventional rectangular ones. A

compact transition power divider from standard waveguide WR-15 to the ridge gap
waveguide is introduced to excite the proposed array antenna. The 8×8-element
slot array antenna has been fabricated by computerized numerical control machining

technique. The measured results demonstrate that the -10 dB re�ection coe�cient

has around 17% bandwidth covering 56.5 � 67 GHz frequency range, and the measured
gain is better than 26 dBi with more than 70% antenna e�ciency over 58 � 66 GHz.

4.1 Introduction

Recently, the current saturation of spectrum at microwave frequencies causes new
attention to the millimeter waves (mmWs). Hence, the unlicensed 60-GHz band

(from 57 to 66 GHz) has a very strong potential for high data rates wireless com-
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munications. However, the communication distance at 60-GHz is strongly a�ected

by atmospheric absorption. Thereby, an antenna with high-gain and wideband is
theoretically required for such kind of point-to-point wireless systems. The re�ector
antenna is normally a conventional choice. Nevertheless, thin planar slot array an-
tennas are more desirable in the 60-GHz frequency band due to its high e�ciency
and thin pro�le. Recent popular technology to mmWs is the substrate integrated
waveguide (SIW). Nevertheless, its dielectric loss becomes problematically signi�cant
if it is applied for designing large high-gain array antennas in the 60-GHz band.

The gap waveguide is a new technology recently introduced. Theoretically, this
new waveguide consists of two parallel plates, a top plate of perfect electric conductor
(PEC) and a bottom plate of perfect magnetic conductor (PMC). If the air gap be-
tween the parallel plates is smaller than quarter-wavelength, there is no propagating
wave between the plates. However, if a wave guiding structure, such as a microstrip
or ridge, is added between the PEC-PMC plates, a quasi-TEM mode is able to prop-
agate along the guiding structure. Given the non-existence of PMC in nature, the
metallic pins surface is applied to realize Arti�cial Magnetic Conductor (AMC). This
novel gap waveguide has advantages compared to the microstrip line and the hollow
waveguide. First of all, the gap waveguide can keep a planar pro�le as well as being
low loss since the waves propagate in the air gap. Secondly, this technology can avoid
the requirement of good metallic contacts between the parallel metallic plates because
the metallic pins surface can create a high impedance to avoid the wave leakage. In
addition, the gap waveguide makes fabrication process easy and cheap by molding or
die-sink electrical discharge machining (EDM) technique. Furthermore, the AMC of
gap waveguide technology can be utilized to package active components and low-cost
bandpass �lters.

So far, there are four di�erent realizations of gap waveguide technology � groove,
ridge, inverted microstrip and microstrip-ridge gap waveguides. two high-gain high-
e�ciency slot array antennas in V-band on ridge gap waveguide (RGW) have been

reported. In previous chapter, a classic double-layer full corporate-feed slot array an-

tenna based on inverted microstrip gap waveguide has been introduced. In order to
achieve wideband and provide enough space for the distribution networks, this array
antenna has backed cavities where four slots are fed by one cavity. Therefore, such a
type of antennas consist of three layers � distribution feed networks, backed cavities

and radiation slots. Some typical examples are shown in Figure 4.1. Unfortunately,

it is inevitable to increase the manufacture cost and design complexity for designing
those corporate-feed antennas. On the other hand, instead of using the corporate-
feed network, a series-feed network is commonly applied for a single-layered fed slot

array because its structure is simple. Nevertheless, its congenital disadvantage is also

obvious. The bandwidth is usually limited to several percentage because of the long
line e�ect. Thereafter, it is much preferred to have a slot array with single-layered
corporate-feed network.
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(a) 

(b) (c) 
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Transition from WR-15 
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Radiating Slot 
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Transition from WR-15 

Radiating Slot 

Backed Cavity 

Feed Networks 
Feed Networks 

Figure 4.1: (a) depicts a cavity-backed slot array antenna fed by hollow waveguide. (b) shows a
cavity-backed slot array antenna fed by ridge gap waveguide and a similar antenna fed by inverted
microstrip gap waveguide stated is illustrated in (c). These three full corporate-feed antennas consist
of three layers � distribution feed networks, backed cavity and radiation slots and their operating
frequency all in the 60-GHz band.

In this chapter, we initially introduce a new slot array antenna with single-layered
corporate-feed network in the 60-GHz band. This novel antenna avoids utilization
of the backed-cavities by a new layout of the corporate-feed distribution network in
RGW and meanwhile achieves expected radiation pattern. The shape of the radia-
tion slots is a modi�ed double-ridge waveguide, which has a wider bandwidth than
that of rectangular slots with a single-layered corporate-feed network.

4.2 Geometrical dimensions of RGW for stopband,

transition and mutual coupling

Based on the fundamental theory, a gap waveguide supplies a stopband over a speci�c

frequency range between the two parallel-plates. Since our target is to cover the whole
unlicensed 60-GHz frequency band (57-66 GHz), the dimensions of the RGW should

be properly chosen to cover as much of the 60-GHz frequency band as possible. A
simple geometrical schematic diagram of the RGW is depicted in Figure 4.2. A

center frequency of f0 = 62 GHz is assumed in this work. Then the height of the
pins should be typically selected as λ0/4, which is equal to 1.2 mm. Nevertheless, for

the easier manufacture shorter pins have been chosen in this work. Furthermore, for
achieving good radiation patterns the spacing between any two slots is selected as
4.2 mm, which is equal to 0.87λ0. Having considered the layout of the distribution
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Figure 4.2: The geometrical dimensions of the ridge gap waveguide for the array antenna in this
work.

Table 4.1: Geometrical Parameters in Figure 4.2
Wr hr g hg hp a p

Geometrical Parameters 0.55 mm 0.75 mm 0.03 mm 0.2 mm 0.92 mm 0.4 mm 1.05 mm
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Figure 4.3: Corresponding dispersion diagram of the ridge gap waveguide depicted in Figure 4.2.
The blue solid line stands for the Quasi-TEM mode.

network, four rows of metallic pins are required for the dimension of 4.2 mm and
the corresponding periodicity of metallic pins is 1.05 mm. On the other hand, the

width of square metallic pins is chosen as 0.4 mm. Thereby, the spacing between two

arbitrary pins is 0.65 mm, which is equal to the di�erence of two mentioned variables.
The dispersion diagram of the ridge gap waveguide is depicted in Figure 4.3. The
stopband is from 38 to 125 GHz, which covers the whole V-band.

In corporate-feed array antennas, the space for the layout of ridge lines is

usually very limited so that the backed cavities is applied to provide more space for

the distribution feed network. Therefore, it is a big challenge to lay out feed networks
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Figure 4.4: Top view of two parallel ridge lines with one row of pins in between. Upper �at metallic
plate is hidden to illustrate the bottom plate.
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Figure 4.5: Simulated re�ection coe�cient and the transmission coe�cient of the two parallel RGWs
in Figure 4.4.

without backed cavities in this work. Before designing the whole array antenna, the
coupling between two ridge lines with only one row of pins should be tested. Figure

4.4 illustrates a simple model to examine the performance. The length of the whole
structure is 10.5 mm. While the height of the metallic pins hp is already �xed, we
have to search for the optimal dimensions of air gap height g, the width Wr and

the height hr of the ridge in order to minimize the re�ection coe�cients and the
coupling S31 between two ridge lines with only one row of pins. As illustrated in

Figure 4.5, the re�ection coe�cient of the straight ridge line is below -33 dB from
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Figure 4.6: Mutual coupling investigation on one row pins between two straight ridge lines de�ned
in Figure 4.2. Parameter sweep for g is carried out in CST Microwave Studio.

56 to 70 GHz. This outcome is acceptable for the array antenna design in this work.
The parameter sweep method is also utilized for g stated in Figure 4.2 in this part
in order to minimize the mutual coupling between the two ridge lines. As is shown
in Figure 4.6, the mutual coupling is lower than -20 dB when the air gap between
the metallic pins and upper metallic plate g is smaller than 0.03 mm. This value
is acceptable for designing distribution feed network based on RGW only with one
row of pins. Having considered the requirement of non-electrical contact, we have
selected 0.03 mm in this work and it presents that the feed network has very low
leakage and mutual coupling between two neighbor ridge lines with one row of pins

in the 60-GHz band.

4.3 Design of Antenna Unit Cell

As depicted in Figure 4.7, the antenna unit cell consists of a radiating slot and a

ridge feeding line. This element is under periodic boundary condition de�ned in CST
Microwave Studio. The slot in this work is designed as an '8' shape, which is actually

a double ridge slot with circularly curved corners and smoothly pro�led ridges. The
double ridges will lower the cuto� frequency of the dominant mode and will raise the
cuto� frequency of the next higher order modes in the slot. Therefore, it increases the

bandwidth of the array antenna compared with that by using a normal rectangular
slots. To excite the electromagnetic wave in the slot, the magnetic �eld created by the

ridge line of feed layer should rotate along the vertical direction of the double ridged
slot. Then electromagnetic wave can radiate with same phase and polarization from
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Figure 4.7: Proposed antenna unit cell: (a) Exploded view. (b) Radiating layer. (c) Feeding layer.
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Figure 4.8: Illustrations for �eld-distributions: (a) E-�led. (b) H-�eld.

slot. This method is actually a magnetic coupling radiation, which is di�erent from
excitation method stated in. It avoids utilization of the conventional bend ridge line

and makes the feed network very compact so the layout of the feed network is possible

in such limited space as in the single-layered corporate-feed network case. The length
of the slot Ls is �rstly chosen so that the mutual coupling to the neighbor feed line can
be eliminated. If Ls is small, the slot would not extend to the neighbor ridge feed line.

W1,W2, Hs and Lr have been optimized to achieve the minimum re�ection coe�cient.

Table 4.2: Geometrical Parameters of 2×2 Unit Cell the Structure in Figure 4.7
W1 W2 Ls Lr as Hs Hc

Geometries 1.13 mm 0.8 mm 2.7 mm 1.8 mm 0.3 mm 0.75 mm 1.25 mm
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Figure 4.9: Simulated re�ection coe�cient of the single slot unit cell and directivity of an array
antenna with 8×8 slot aperture dimension in in�nite array environment.
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Figure 4.10: E-plane radiation pattern of the 8×8-element array antenna with periodic boundary
condition.

Table 4.2 lists the optimized geometrical parameters of the unit cell shown in Figure
4.7. Figure 4.8 depicts the corresponding E- and H-�elds distributions in the double

ridged slot from CST Microwave Studio. The magnetic �eld is desired as predicted

before. The distance between any two slots is equal to 0.87λ0, which satis�es the
condition of non-grating lobes (element spacing d<1/(1+1/8)λ0=0.89λ0) in both E-
and H-planes. Figure 4.9 shows corresponding re�ection coe�cient of the unit cell

and the directivity of 8×8-element array antenna in in�nite array environment. It has
20% impedance bandwidth (over 56-68 GHz) with input re�ection coe�cient better
than -15 dB. The directivity is higher than 27.5 dBi and the aperture e�ciency is
better than 90% from 56 to 66 GHz. Here we have utilized the CST Microwave

Studio periodic boundary condition along the lateral and longitudinal directions of

8×8-element in order to estimate the radiation pattern of the whole structure. Figure
4.10 and 4.11 illustrate the radiation patterns in both E- and H-planes of 8×8-element
slot array antenna.
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Figure 4.11: H-plane radiation pattern of the 8×8-element array antenna with periodic boundary
condition.
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Figure 4.12: Geometry of the T-junction power divider based on RGW in this work. The upper
metallic plate is hidden.

4.4 Corporate-Feed Network Design

The corporate-feed array antenna utilizes a T-junction power divider to feed each unit

cell in the whole array antenna. The con�guration of the T-junction RGW power

divider used in this work is depicted in Figure 4.12. In Table 4.3, the geometrical
parameters of the T-junction RGW power divider are listed. The corresponding
simulated re�ection coe�cient is shown in Figure 4.13, which is below -30 dB from

Table 4.3: Design Parameters of the Structure in Figure 4.12
W1 Wq lq lt d wm lm hm

Geometries 0.54 mm 0.8 mm 0.72 mm 0.92 mm 0.4 mm 0.72 mm 0.6 mm 0.47 mm
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Figure 4.13: Simulated re�ection coe�cient and transmission coe�cient of the power divider in
Figure 4.12.

57 to 66 GHz. In order to have an easy massive production of the antenna by using
molding technique of plastic material with metalized surface treatment, the smallest
dimensions of the extruding parts (pins and ridges) are 0.4 mm.

The whole array antenna in this work is excited through a standard V-band
rectangular waveguide (WR-15) at the bottom of whole structure. In this work
we prefer a hybrid power divider similar as that described. The hybrid structure
is illustrated in Figure 4.14. The simulated S-parameters of the structure both in
amplitude and phase are shown in Figure 4.15. The re�ection coe�cient S11 in the
whole band 56 � 68 GHz is below -20 dB. In addition, we should point out that the
phases of the output ports have 180 degree di�erence, as shown in Figure 4.15 (b).
Figure 4.16 shows the whole array antenna. The complete corporate-feed network
consists of two 16-way RGW power dividers from central hybrid transition power

WR-15 Waveguide

Port 3Port 2 𝑙𝑚
ℎ𝑚

(Port 1)

Figure 4.14: Geometrical illustration for hybrid transition from WR-15 to RGW. lm = 0.75 mm
and hm = 0.45 mm.
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divider to 64 radiating slots. The two 16-way feed networks are mirrored since the

phase di�erence from hybrid transition part is able to be compensated. The thickness
of the whole array antenna is 9.7 mm.

4.5 Experimental Results

The fabricated 8×8 slot array antenna is illustrated in Figure 4.17. The proto-

type is manufactured by Computerized Numerical Control (CNC) technology with
aluminium (with electric conductivity 3.6 × 107 S/m). Planar dimension of the pro-
posed antenna is 36 mm × 36 mm (The dimensions of e�ective aperture are 33.6
mm × 33.6 mm).

The entire structure is simulated in CST Microwave Studio. Since the hybrid
transition, T-junction power divider and unit cell already have excellent re�ection
coe�cients, the simulated re�ection coe�cient of complete antenna is below -15 dB
from 57 to 66 GHz without any further optimization, as shown in Figure 4.18. How-
ever, the measured re�ection coe�cient is a bit higher than simulated one because the
assembly tolerance of the proposed antenna is around 0.015 mm, which is measured
by a X-ray inspection machine of Nikon, XTH 160 with a measurement tolerance of
20 nm.

The radiation patterns and the gain were measured in an anechoic chamber in
China Academy of Space Technology in Shanghai. The simulated and the measured
far-�eld radiation patterns of proposed antenna at 57, 62 and 67 GHz in both E- and
H-planes are depicted in Figure 4.19. The measured radiation patterns show a good
agreement with the simulated results. The simulated and the measured radiation
patterns are symmetrical, and the �rst relative side-lobe levels in both E- and H-
planes are around -12 dB. These mean that the distribution network works very well
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Figure 4.15: Simulated S-parameter results of designed hybrid transition from WR-15 to RGW. (a)
Amplitude. (b) Phase.
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Figure 4.16: Proposed single-layered corporate-feed 8×8 slot array antenna.

Figure 4.17: Con�guration of the 8×8 slot array and photos of the fabricated antenna.
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Figure 4.18: The simulated and the measured re�ection coe�cients of the proposed array antenna.
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Figure 4.19: The simulated and the measured radiation patterns of proposed array antenna on both
E-plane and H-plane at 57 GHz, 62 GHz and 67 GHz.

with low mutual couplings among the ridge feed lines. Since the element spacing of
proposed antenna is 4.2 mm and wavelength at 67 GHz is equal to 4.477 mm, so the

ratio 4.2/4.477= 0.94, which is larger than the non-grating lobes condition of 0.89 at

67 GHz, the radiation patterns in E-plane at 67 GHz at ± 90 degree are higher than
the desired.
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Figure 4.20: Red lines: simulated and measured gains of the proposed array antenna. Blue line:
simulated cross-polarized value.

The measured and the simulated antenna gains are shown in Figure 4.20. It can
be observed that the realized gain varies from 25.8 to 27 dBi over 57 to 66 GHz,
whereas the antenna e�ciency is more than 70% (Here the de�nition of antenna e�-
ciency is de�ned as eant=erad·epol·eap, where erad, epol and eap are radiation e�ciency,
polarization e�ciency and aperture e�ciency, respectively). The simulated relative
cross-polarization values are below -37 dB from 56 to 67 GHz, as also seen in Figure
4.20.

Conclusion

A single-layered corporate-feed array antenna based on RGW at 60-GHz is presented.

This array antenna not only overcomes the disadvantage of narrow bandwidth from

conventional single layer array with series-fed network, but also realize the advantage
of wideband from three-layer slot array with backed cavity. The simpler geometry
will de�nitely decrease the manufacture cost so that it has huge commercial potential

in the future. The array antenna can be directly connected with standard WR-15

interface. An 8×8-element slot array has been designed, simulated, manufactured
and measured. The measured gain is higher than 26 dBi from 58 to 66 GHz, corre-
spondingly the antenna e�ciency larger than 70%.
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Chapter 5

Design and Fabrication of a

High-Gain Slot Array Antenna based

on Ridge Gap Waveguide at 140 GHz

This paper presents a new design of slot array antenna based on ridge gap waveguide
at 140 GHz. The proposed array antenna consists of 32×32 radiation slots, backed
cavities and full-corporate distribution network based on ridge gap waveguide. In
order to fabricate the proposed array antenna by Computerized Numerical Control
(CNC) technology, the periodic pin structure has been chosen with an aspect ratio
of 1.5:1. Since the layout space for distribution networks is very limited, a novel
stepped T-junction power divider is introduced in this work. The achieved re�ec-
tion coe�cient is much lower than that of the previous continuous T-junction power
dividers which enables easy cascading of several T-junctions for building up a very
large feed network. The measured results demonstrate about 11.4% of re�ection coef-
�cient bandwidth (|S11| < -10 dB) covering the 135�151 GHz frequency range, and
the measured gain is larger than 37 dBi over the band with more than 50% antenna

e�ciency.

5.1 Introduction

Recently, D-band (110-170 GHz) has gained lots of attention for wireless applica-
tions, such as radar and wireless communication systems. As seen in Figure 5.1, the

frequency band 135-155 GHz has the lowest air attenuation over the whole D-band.
It is very advantageous to utilize this frequency band for high data rate wireless links.

Due to several limitations in commercially available D-band electronics such as output
power, Local oscillator leakage and packaging losses, the high-gain and high-e�ciency
antenna plays a very important role for the point-to-point wireless links. Usually, a

parabolic re�ector antenna is a classic choice for such a radio links system. However,
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110 170

D-BAND

The operating

frequency band

of the proposed work

Figure 5.1: Average atmospheric absorption of millimeter-waves at sea level.

such a bulky dimension makes it not convenient for integration with front-end planar
circuits. Hollow waveguide slot array antenna is probably another option. However,
the di�usion bonding technology needs around 1000oC with precise thermal control
and high mechanical pressure which makes this technology rather expensive. In past
few years, substrate integrated waveguide (SIW) and its applications for array an-

tennas have been explored. However, the substrate is a fundamental component and
its dielectric loss is becoming problematically signi�cant versus the frequency.

In this chapter, we present a slot array antenna based on ridge gap waveguide

at 140 GHz. The major challenges are stated as follows. The pin dimensions sig-

ni�cantly decrease up to that level which becomes very challenging to fabricate by
using conventional CNC milling or molding technique. The pins size had been chosen
as 0.4×0.4 mm2 with an aspect ratio of 3.25:1 in the every slot array antenna. In

this chapter, relatively larger pins are selected for 140 GHz array antenna so that

the fabrication technology such as the CNC milling can be used for fabricating the
antenna. Secondly, the conduction loss at 140 GHz becomes much greater then that
of lower frequency band because of the skin e�ect and surface roughness. Thereby,

the insertion losses of the sub-array, T-junction power divider and the other transi-

tion parts should be minimized so that the antenna e�ciency is guaranteed. This
high-gain antenna could be an alternative to re�ector, lens or slot array by di�usion
bonding technology in wireless link systems.
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5.2 Antenna Design

5.2.1 Design for Sub-Array

According to the former discussion in Chapter 1, an arbitrary gap waveguide is able to

provide a stopband over a speci�c frequency range between the two plates of Perfect
Electric Conductor(PEC) and Perfect Magnetic Conductor (PMC). Since our design
target is from 135-150 GHz, the dimensions of metallic pins are theoretically smaller
than 0.15 mm according to the previous experience. The width of the metallic pins
are appropriately selected in this work so that the proposed array antenna is able to
be fabricated by CNC milling technology. A center frequency of f0 = 140 GHz is
assumed in this work. Then the height of the pins is determined as λ0/4, which is
equal to 2.2 mm. Thereby, the height of metallic pins is selected as h = 0.58 mm in
this work. Furthermore, for achieving good radiation patterns the spacing between
any two slots is selected as 1.8 mm, which is equal to 0.81λ0. Having considered
the layout of the distribution network, �ve rows of metallic pins are required for the
dimension of 3.6 mm and the corresponding periodicity of metallic pins is 0.72 mm.
The dispersion diagram of the ridge gap waveguide is depicted in Figure 5.3. The
obtained stopband is from 100 to 180 GHz, which covers our design target 135-150
GHz. The corresponding geometrical parameters of the proposed RGW are listed in
Table 5.1.

As illustrated in Figure 5.4, the con�guration of a 2×2-element sub-array is �rst
designed using periodic boundary condition in CST Microwave Studio. The top of the
entire sub-array is the radiation layer, which contains radiation slots with rectangular
�are. The function of the �ared slot is to suppress mutual coupling between slots and
improve the bandwidth of the sub-array. Just below the slot layer, a gap waveguide
cavity layer is placed. The electromagnetic coupling to the cavity through a hole

PEC
PEC

PEC

PEC

Propagation Direction

Periodic Boundary Condition

a h

p

g

hei

wir

Figure 5.2: In�nite periodic unit cell based on RGW structure.

Table 5.1: Design Parameters of the Structure in Figure 5.2
wir hei p h d a g

Geometries 0.45 mm 0.3 mm 0.72 mm 0.58 mm 0.35 mm 0.38 mm 0.05 mm
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Figure 5.3: Dispersion diagram for the in�nite periodic unit cell including a ridge in RGW.

Top-View Bottom-View

Radiation Slots

Coupling Hole

Backed-Cavity

Excited Port

Figure 5.4: Distributed view of the proposed 2×2 cavity-backed slot sub-array.

aperture, which is excited via a ridge gap waveguide feeding line. The distribution
network is placed on the back side of the cavity layer. The major reason for this

design is to reduce the misalignment error between the separate cavity layer and

the feed layer which becomes very tricky at D-band and which e�ects the operating
bandwidth of the sub-array used previously. Thereby, the bottom waveguide layer is
a smooth metallic plate. Because all three layers are separated by a small gap, there

Table 5.2: Design Parameters of the Structure in Figure 5.2
W d Ls1 Ws1 Ls2 Ws2 Wb

Geometries 3.6 mm 1.8 mm 1.75 mm 1.15 mm 1.4 mm 0.72 mm 2.59 mm
Lb Wr Lr Wc Lc Wp Lri

Geometries 2.68 mm 0.45 mm 0.46 mm 0.4 mm 1.32 mm 0.55 mm 0.81 mm
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Figure 5.5: Geometrical parameters of a 2×2 slots array. (a) Top radiation slots layer. (b) Backed
cavity layer. (c) Distribution network layer. (d) Bottom metallic layer.
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Figure 5.6: Simulated directivity and re�ection coe�cient of the 2×2 sub-array.

is no electrical contact between the di�erent layers. The designed sub-array is 3.6 mm
× 3.6 mm in both E- and H-planes. Figure 5.5 illustrates the detailed geometrical

parameters of the 2×2 sub-array, and the corresponding values are listed in Table

5.2. The geometry is optimized by setting periodic boundary conditions in the CST
Microwave Studio. In Figure 5.6, the blue line shows the re�ection coe�cient, and an
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11.5% impedance bandwidth (over 134-150 GHz) with the input re�ection coe�cient

below -10 dB is achieved. The yellow line with triangle marks depicts the simulated
directivity of the 32×32 slot array in in�nite array environment. The simulated
antenna e�ciency is higher than 90% from 135 to 148 GHz.

5.2.2 Design for Distribution Networks

T-junction power divider on RGW in the V-band have been explored very well. Be-
cause the periodic length p is selected as 1.1 mm and a as 0.4 mm in the previous
design of V-band, there are enough space for the layout of the bend ridges. In this
work, the periodic length is so small that the T-junction power divider with contin-
uous bend ridge is impossible to �t in. For this reason, we have developed a stepped
T-junction power divider, as depicted in Figure 5.7. In Table 5.3, the geometrical
parameters of the T-junction RGW power divider are listed. The corresponding sim-
ulated re�ection coe�cient is shown in Figure 5.8, which is below -40 dB from 134 to
152 GHz. This performance is much better than the previous designs. Furthermore,
it is easy to be fabricated so that it can be found more applications in the other fre-
quency bands. The whole array antenna in this paper is excited through a standard
D-band rectangular waveguide (WR-6) at the bottom of the whole structure. Then,
a hybrid power divider is designed, and its geometry is illustrated in Figure 5.9. The
simulated S-parameters of the structure both in amplitude and phase are shown in
Figure 5.10. The re�ection coe�cient is below -27 dB in the whole band 134-150
GHz. The corresponding design parameters are listed in Table 5.3. In addition, such
a hybrid structure is essentially a di�erential feeding geometry so that the phases of
the output ports have 180 degree di�erence, as shown in Figure 5.10(b). In order to

Input Port

Output 

Port

Output

Port

Lp1

Lp2Lsc
Wsc

hsc

Figure 5.7: Geometry of the discontinuous T-junction power divider based on RGW in this work.
The upper metallic plate is hidden.
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Figure 5.8: Simulated re�ection coe�cient and transmission coe�cient of the power divider in Figure
5.7.

WR-6 Interface

Output Port

Output Port

hsc1
Wsc1

Lsc1

Figure 5.9: Geometrical illustration for hybrid transition from WR-6 to RGW.

compensate the di�erence of the output phases, the two distribution networks are in

a mirror geometry. The �nal numerical designed antenna is shown in Figure 5.11.

The thickness of the whole array antenna is 7.7 mm.

5.3 Experimental Results

The fabricated prototype of the 32×32 slot array antenna has been done by DMG

MORI CNC Milling machine with aluminum (with electric conductivity 3.6×107
S/m), which is illustrated in Figure 5.12. The manufacture tolerance of the machine
is 1 µm, which is accurate enough for the designed antenna. The planar dimension of
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Figure 5.10: Simulated S-parameter results of designed hybrid transition from WR-6 to RGW. (a)
Amplitude. (b) Phase.

Table 5.3: DESIGN PARAMETERS OF THE STRUCTURES IN FIGURE 5.7 AND
FIGURE 5.9

Lp1 1.35 mm

hsc 0.27 mm

Wsc 1.16 mm

Lsc 0.84 mm

Lp2 0.45 mm

Lsc1 2.05 mm

Wsc1 1.77 mm

hsc1 0.30 mm

Figure 5.11: The proposed 32×32 slot array antenna and its full corporate-feed distribution net-
works.

the proposed antenna is 65 mm × 65 mm (the dimensions of e�ective aperture are
57.6 mm×57.6 mm). The entire structure is simulated in CST Microwave Studio, and
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Figure 5.12: Photograph of the �nal fabricated 32× 32 slot array antenna.
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Figure 5.13: Simulated and the measured re�ection coe�cients of the proposed array antenna.

the simulated re�ection coe�cient of the completed antenna is below -10 dB from 135

to 150 GHz without any further optimization, as shown in Figure 5.13. Nevertheless,
the measured one is a bit higher than the simulated one. The misalignment of three
antenna layers from assembling is always a problem for such a high frequency band.

In addition, the extra ohmic losses caused by ridge surface roughness from CNC

milling fabrication should be also considered for the di�erence of re�ections. The
radiation patterns and the gain were measured by a near-�eld measurement setup in
an anechoic chamber at Southeast University in Nanjing, China, as shown in Figure
5.14. The simulated and the measured radiation patterns of the fabricated antenna

at 135, 140, 145 and 150 GHz in both E- and H-planes are depicted in Figure 5.15

and Figure 5.16. The measured radiation patterns have reasonable agreements with
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The plate for 
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Transmitter Antenna

D-band Module

Figure 5.14: Photograph of the measurement setup for the gain and the radiation pattern test.
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Figure 5.15: The simulated and the measured radiation patterns of proposed array antenna on
E-plane at (a) 135 GHz, (b) 140 GHz, (c) 145 GHz and (d) 150 GHz.

the simulated ones while the measured side lobes are a little bit higher than simulated

ones. Nevertheless, the measured radiation patterns are symmetrical, and their �rst

side lobes both in E- and H-planes are lower than -13 dB. The measured gain is higher
than 37 dBi with the measured antenna e�ciency higher than 50% from 136 to 150
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Figure 5.16: The simulated and the measured radiation patterns of proposed array antenna on
H-plane at (a) 135 GHz, (b) 140 GHz, (c) 145 GHz and (d) 150 GHz.
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Figure 5.17: Simulated and measured gains of the proposed array antenna.
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GHz, as depicted in Figure 5.17. There are big di�erences between the measured and

the simulated gains in the whole frequency band. In this chapter, we have realized
a slot array antenna based on RGW with low cost, high-gain, high-e�ciency and
low pro�le. This type of slot array antenna is very practical for D-band high speed
wireless links.

5.4 Conclusion

A 32×32 corporate-feed array antenna based on RGW in D-band is presented in this

work. The simpler geometry will de�nitely decrease the manufacturing cost so that
it has huge commercial potential in the future. The array antenna can be directly
connected with standard WR-6 interface. The measured gain is higher than 37 dBi
from 135 to 150 GHz, correspondingly the antenna e�ciency larger than 50%.
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Chapter 6

Summary and Conclusion

As a newly invented waveguide geometry, gap waveguide technology is able to over-

come the limitations of the traditional transmission lines, such as microstrip, coplanar
waveguide and rectangular hollow waveguide. Especially, gap waveguide shows very
strong competitive strength from Ka- to D-band, such as low loss and �exible fabrica-
tion and assembly. This thesis presents several types of the slot array antennas fed by
inverted microstrip gap waveguide, ridge gap waveguide and groove gap waveguide.
Furthermore, gap waveguide also shows advantages in passive components, MMIC
packaging and achievements in integration of active components in millimeter-wave
frequency bands. Moreover, the realization of gap waveguide structures is explored
by using several di�erent fabrication methods, such as die-sink EDM, CNC micro-
machining and micro-molding. The �rst part of this thesis comprises an introduction
of gap waveguide theory, the slot array antenna designed by gap waveguide geometry
from V-band to D-band. From the measurement results, gap waveguide structure
shows big advantages over the traditional hollow waveguide and microstrip line. It is
very helpful for industrial applications in future. The second part of the thesis con-
sists of the research contributions by the author, and this section summarizes those

appended articles.
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