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Abstract
Spatial random fields are one of the key concepts in statistical anal-

ysis of spatial data. The random field explains the spatial dependency
and serves the purpose of regularizing interpolation of measured values
or to act as an explanatory model.

In this thesis, models for applications in medical imaging, spatial
point pattern analysis, and maritime engineering are developed. They
are constructed to be flexible yet interpretable. Since spatial data in sev-
eral dimensions tend to be large, the methods considered for estimation,
prediction, and approximation are focused on reducing computational
complexity.

The novelty of this work is based on two main ideas. First, the idea
of a spatial mixture model, i.e., a stochastic partitioning of the spatial
domain using a latent categorically valued random field. This makes it
possible to explain discontinuities in otherwise smoothly varying ran-
dom fields. It also introduces a different perspective—that of a spatial
classification problem. This idea is used to model the spatial distri-
bution of tissue types in the human head; an application important in
reducing cell damage due to ionizing radiation in medical imaging. The
idea is also used to introduce an extension of the popular log-Gaussian
Cox process. This extension adds an extra layer of a latent random
partitioning of the spatial domain. Using this model, it is possible to
classify spatial domains based on observed point patterns.

The second main idea of this thesis is that of spatially deforming
a solution to a stochastic partial differential equation. In this way, a
random field with a needed degree of non-stationarity and anisotropy
can be acquired. A coupled system of two such stochastic partial dif-
ferential equations is used to model the joint distribution of significant
wave heights and wave periods in the north Atlantic. The model is used
to assess risks in naval logistics.

Keywords: Spatial statistics, Point processes, Substitute-CT, Gaussian ran-
dom field, Stochastic partial differential equation, Significant wave height
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Chapter 1

Introduction

The thesis you are currently holding in your hand (or reading in the soothing
light of your screen) is a work made up of four articles in the field of spatial
statistics. In order to set the stage for presenting this work you need to
know the background and main concepts on which the effort was based. The
remainder of this chapter is devoted to a brief introduction to the field of
spatial statistics. Chapter 2 introduces the important concept of random
fields, Chapter 3 introduces the basics of spatial point processes, and Chapter 4
introduces the basics of stochastic partial differential equations. The main
philosophy behind the parameter estimation and statistical inference methods
used are explained in Chapter 5. The models presented in this thesis were
developed to solve problems arising in several separated fields of study. These
fields have their own methods, technology, and nomenclature. Chapter 6
give an overview of the most important problems and concepts associated
to the particular applications considered in this thesis. Chapter 7 presents
brief summaries of the papers and finally, Chapter 8 discusses possible future
extensions to the work of this thesis.

Spatial statistics is a subfield of statistics that arose from problems in
the industrial sectors in the early 1800s. The purpose of spatial statistics
is to draw conclusions or aid in decision making based on observed spatial
data. The word spatial here referring to data that can be compared using
geometrical concepts such as distance, direction, and/or neighborhood struc-
ture. The methodology originated from the fields of forestry, agriculture, and
mining (Gelfand et al., 2010).

In agriculture the yield of cereal was being studied. It was recognized that
spatial variations in yield could be attributed partly to soil constituents or
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other known covariates. The remaining variation usually showed some spatial
dependency that needed to be accounted for.

In forestry, the distribution of trees was being studied. Spatially repulsive
effects, such as the competition for sunlight and other resources, explained
why trees did not grow infinitely dense. At the same time, spatially attractive
effects due to pollination paths and seed dispersal explained why trees did not
grow far apart from each other. In order to model the distribution of trees,
such effects had to be represented by models and inference needed to be drawn
based on data.

In mining, engineers needed to predict the prevalence of certain minerals
in the ground based on samples. The samples were typically acquired by
drilling holes in the ground. Sampling was costly and they needed as much
information as possible from the smallest possible sample sizes.

The main philosophy behind the methodology of spatial statistics can be
summed up in Tobler’s first law of geography, i.e., “everything is related to
everything else, but near things are more related than distant things” (Tobler,
1970, p.236). Therefore, the methods are concerned with quantifying and
modeling spatial dependency structures. Spatial data can be sorted into three
main categories:

• Data sampled on a continuous spatial domain.

Between any two points s1 and s2, in some continuous space, D, there
are an infinite number of other points. The data consist of values at
some of these points. The interest of the analyst is how these measure-
ments relate to the values on the entire spatial domain made up of an
uncountable number of locations. Examples of such data are surface air
temperatures and water salinity.

• Data sampled on a discrete spatial domain.

The spatial domain only has a countable number of points. The data
consist of values at some of these points. Example of such data sets are
observed values associated with spatial regions such as countries, digi-
tal images (that are made up of a discrete set of pixels), experimental
designs with “blocked” regions. For data on a discrete spatial domain
there is usually some logic to the discretization that is not directly as-
sociated to geometrical distances. The discretization might instead be
due to regions of varying natural resources, policies, or risks. Hence,
it is often of more interest to measure proximity using the neighbor-
hood structure and number of paths between two locations instead of
the typical metrics of geometrical distance.
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• Spatial point pattern data.

For point patterns, the location of events are studied. The spatial do-
main concerned is most often continuous. The big difference compared
to the two other types of data is that the randomness is not in the values
at the locations but in which locations were chosen. That is, the data is
a countable collection of points; spread out over a (usually) continuous
spatial region. Typical examples of point patterns are locations of trees
in a forest, locations of robberies in a city, or locations of earthquakes
in a geographical region.

Statistical analysis of spatial data is typically needed to answer one or
more of the following questions:

• What are the values at unobserved points in space? (Spatial prediction
/ Kriging / interpolation)

• What are the parameter values of the spatial model explaining the data?
(Model estimation)

• Is the assumed model reasonable? (Model validation)

Spatial prediction refers to prediction of values at unobserved points in space
given the values at some observed ones, i.e., interpolation/extrapolation. Spa-
tial prediction was of interest to the South African mining engineer Danie Ger-
hardus Krige who pioneered research in this field. In spatial statistics such
conditional prediction problems are hence, as a homage to Krige, referred to
as Kriging. Often predictions are more than just point values, instead the
analyst wants to know the whole conditional distribution given the observed
data. From conditional distributions, important point estimates such as the
expected value, median, or mode can be acquired. Additionally, estimates
of the uncertainty such as the standard deviation or interquartile range can
be acquired from the conditional distribution and give important information
about the prediction error of the corresponding point estimate.

Model estimation is the act of fitting the parameters of a model to the
observed data. This is typically needed in order to draw conclusions about the
underlying process that generated the spatial data. For instance, a parametric
model representing tree growth in a forest might have a parameter representing
the repulsive effect between trees. Estimation of this particular parameter
gives information about the extent of the repulsive effect among this particular
species of tree.

Model validation examines a model’s ability to explain the observed data.
Since conclusions are drawn based on data and some model assumptions, it is



5

important to assess whether these assumptions are reasonable given observed
data. Validating a model is an important part of accepting or rejecting a
theory in any scientific field. Hence, having methodology to validate a spatial
model is of great importance. Moreover, if the model does not explain the
data well, the Kriging estimates and model estimation might not give any
useful information.

In order to perform meaningful spatial analysis, some model of spatial de-
pendency is assumed, either explicitly or implicitly. The assumed model is
often simplistic in order to make model estimation reliable and computation-
ally feasible. However, the true, but usually unknown, mechanism of spatial
dependencies might not be so simple. Therefore, some degree of model mis-
specification will often be present. An interesting phenomena is that a true but
complex model can often be less useful than a simplification. This is because
a simple model often has analytical expressions of important characteristics,
easier interpretation of parameters, a lighter computational footprint, and can
be estimated using smaller sample sizes and/or with greater robustness. Due
to these issues, statistical modeling is a constant balancing act between what
is possible and what is required. Closing this gap is one of the main aims of
research in spatial statistics. Particularly, this thesis has focused on adding
flexibility while keeping a low computational cost and robust estimates. An
effort has also been made on developing models in which parameters are easily
interpreted and convey a message; a property that is important in communi-
cating research results, especially in interdisciplinary work.

The archetypal spatial model is the mixed effects generalized linear model.
Here, Y (s) is an observable random variable associated to the spatial location
s. The mean of Y is dependent on some covariates {Bj(s)}Kj=1 as well as some
spatially varying random effect X(s), i.e.,

E
[
Y (s)

∣∣{Bj(s)}Kj=1, X(s)
]

= g−1

β0 +

K∑
j=1

βjBj(s) +X(s)

 ,

The link function, g, adds an extra layer of flexibility since the conditional
mean does only need to be a linear model after transformation.

What makes this model stand out compared to a typical generalized linear
model is the spatially dependent random effect X(s). Typically, X is used
to model unknown covariates and/or interactions between values at separate
locations. The distribution of Y (s) given the conditional expectation models
independent randomness between measurements at separate locations, typi-
cally measurement noise.
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Spatial variations can act on different scales. For instance, looking at
crop yield, there might be large scale variations due to regions with different
weather and there might be small scale variations due to the distance to some
nearby stream. Often, it is not possible to model all scales of variability
simultaneously. Therefore, depending on the scope of the problem, the short
scale variability might be included in the spatially independent noise of Y |X,
or the long scale variability in the baseline β0.



Chapter 2

Random fields

In statistics, conclusions are drawn based on incomplete information using
concepts from probability theory. Probability theory concerns processes where
the outcome of an action is not determinstic, i.e., the same action can result
in different outcomes under exactly the same surrounding conditions. We
will call such an action an experiment and the outcome of the experiment a
realization. A real-valued random variable is a mapping between a realization
and a real value, i.e., X : Ω → R, where X is the random variable, X(ω) a
real value, ω ∈ Ω a realization, and Ω is the set of all possible realizations. A
random field is a mapping between a realization and a, possibly infinite, set
of random variables, X(s, ω), indexed in space. Here s denotes a point in the
spatial domain D.

Intuitively, we can think of a realization of a random field as a real-valued
function in D. Hence, a random field is a random function with the domain
D. An example of two different realizations of the same random field on a
bounded and continuous domain in R2 can be seen in Figure 2.1. Note how the
two images show similar qualities even though they are, pointwise, completely
different.

A random field can have a discrete spatial domain, or a continuous spatial
domain. We will refer to a random field on a spatially discrete domain as
a spatially discrete random field and the contrary as a spatially continuous
random field. Likewise, the image of the random variables, X(s), (all possible
values attainable) at a point s can also be continuous or discrete. We will
refer to a random field where X(s) can only take on a countable number of
values for any fixed s as a discrete random field. From here on we omit the
dependence on the sample space in the notation, i.e., X(s, ω) = X(s).

7
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Figure 2.1: Two realizations of the same stationary Gaussian random field on
a bounded domain in R2.

As was mentioned in Chapter 1, spatial statistics concerns analysis of data
observed on a spatial domain. For the case of the first two types of data
(continuous- and discrete-domain spatial data), the quantity of interest is the
values at points in space. In other words, the data can be seen as observations
(or partial observations) of realizations of random fields. Also in the third
type of data (spatial point patterns) a realization is often dependent on some
underlying random fields, see Section 3. Therefore, the concept of random
fields is a vital part of spatial statistical methodology.

Two important functions used to characterize random fields are the mean
function and covariance function.

Definition 2.0.1 (Mean function). The mean function, µ(s), of a random
field, X(s), is defined as

µ(s) := E [X(s)] .

Definition 2.0.2 (Covariance function). The covariance function, Cov(s1, s2),
of a random field, X(s), is defined as

Cov(s1, s2) := E [X(s1)X(s2)]− µ(s1)µ(s2).

The mean function is a first order characteristic since it only concerns the
behavior of X at one location in D at a time. The covariance function instead
relates the value at two locations with each other and is hence a second order
characteristic.

An important concept of random fields is stationarity.

Definition 2.0.3 (Strongly stationary random field). Let X be a random field
on the spatial domain D. Furthermore, assume that translations are defined
on D, i.e., s2 = s1 +t.
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The random field, X, is strongly stationary if the vector [X(s1), ..., X(sn)]
is equal in distribution to the vector [X(s1 +t), ..., X(sn +t)] for any finite n,
any set of locations, and for any translation, t, that keep the locations within
the spatial domain, D.

In other words, strong stationarity is when the joint distribution between
a set of points is only dependent on their relative positions and not on their
absolute positions. Random fields that are stationary have important useful
properties. However, stationarity is a strong restriction and many real world
problems can not be modeled by truly stationary random fields. However, for
a small region the most random fields are approximately stationary.

A slightly less restrictive and related property of a random field is that of
weak stationarity, also known as second order stationarity.

Definition 2.0.4 (Weakly stationary random field). A random field is weakly
stationary if

Cov(s1, s2) = Cov(s1 +t, s2 +t), and µ(s1) = µ,∀ s1, s2 ∈ D .

A strongly stationary random field with finite variance is weakly stationary.
A weakly stationary field do not, however, need to be strongly stationary.

Just as stationarity concerns translations, isotropy concerns rotations.

Definition 2.0.5 (Isotropic random field). The random field is isotropic if
[X(s1), ..., X(sn)] is equal in distribution to [X(r s1), ..., X(r sn)] for any ro-
tation, r, any finite n, and any set of locations.

An important property of a random field that is both weakly stationary
and isotropic is that it will have a covariance function that only depends on
the distance between the two points considered.

Another property of a random field that is of great concern both in Pa-
per I and Papers III and IV is the Markov property. There are three slightly
different definitions of the Markov property, the local, global, and pairwise
(Rue and Held, 2005). We here only present the global Markov property since
it can be defined both for spatially discrete and spatially continuous random
fields.

Definition 2.0.6 (Global Markov property). X is globally Markov if X(A)
and X(B) are independent conditioned on X(C) for any two subdomains
A,B ⊂ D separated by a domain C ⊂ D. That is, if the values at points
in A and the values at points in B are independent conditioned on the values
of all points in C.
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This implies that if we want to predict values of X at locations in A and we
know the values of X at all locations in C, there is no additional information in
knowing the values at locations in B. For many applications this is a natural
property arising from the propagation of information in the physical system
that is being modeled. However, the Markov property can be computationally
beneficial and making a Markov approximation of a non-Markov system can—
if done properly—be very attractive. This is a major part of both Paper I
and Papers III and IV.

2.1 Spatially continuous random fields

A spatially continuous random field is a random field on D for which D is
a continuous spatial domain. Typically D is a Riemannian manifold and in
most applications of spatial statistics just some subset of R2 or R3.

An important theorem applicable to weakly stationary random fields on
Rd is Bochners theorem (Stein, 1999).

Theorem 2.1.1 (Bochners theorem). A complex-valued function C(s), s ∈
Rd is a covariance function for a weakly stationary mean square continuous
complex-valued random field if and only if it can be represented as

C(s) =

∫
eiω·sdF (ω),

where F is a positive finite measure.

The theorem states that the covariance function is related to a spectral
measure, F , through a Fourier transform. Hence, it is possible to model co-
variance structures using spectral methods. When F is absolutely continuous
with respect to the Lebesgue measure, the Radon-Nikodym derivative of F
with respect to the Lebesgue measure exists and is known as the spectral den-
sity. Often the spectral density can have an expression that is easier to work
with than the covariance function. It might also be computationally advan-
tageous to generate or analyze data using the spectral density. This is used
frequently in ocean wave modeling and is of importance to Paper III and IV,
see Section 6.3.

2.1.1 Gaussian random fields

A Gaussian random field (GRF) is a random field such that any finite set
of points on the spatial domain has a joint Gaussian distribution. A mul-
tivariate Gaussian distribution can be characterized by the mean value and
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covariance matrix. Likewise, a GRF can be characterized solely by the mean-
and covariance-functions. Often it is easier to work with a centered GRF, i.e.,
µ(s) ≡ 0. Such a field can easily be attained by subtracting the mean func-
tion from the original random field. Since the dependency structure of a GRF
is completely determined by the covariance function, a stationary covariance
function will lead to a stationary GRF (if the GRF is centered).

2.1.2 Matérn covariance

In applications, the amount of data and computing power is limited. A robust
estimate of an arbitrary covariance function cannot be achieved since data is
finite while the degrees of freedom of arbitrary covariance functions are in-
finite. Therefore it is common to assume that the covariance function is of
some parametric family with only a small number of parameters. One such
popular parametric class of stationary and isotropic covariance functions is
the Matérn class (Matérn, 1986; Stein, 1999). This class can be parametrized
by the marginal variance σ2, a smoothness parameter ν, and a correlation
dampening parameter, κ. The smoothness parameter, ν, controls the differ-
entiability of the covariance function at the origin. For a Gaussian random
field this controls the smoothness of the realizations of the field itself in the
sense that the field is almost surely Hölder continuous with ν as the corre-
sponding Hölder constant. Let r be the practical correlation range of the
random field, i.e., the distance between two points for which their correlation
is 0.1. Then the dampening, κ, is proportional to the inverse of r, κ ∝ r−1.
Increasing κ makes points a fixed distance apart less correlated while decreas-
ing κ has the opposite effect. A good approximation is that

√
8ν/κ correspond

to the distance between points for which the correlation is 0.13. The marginal
variance, σ2, is the variance of the marginal distribution of X(s) for any fixed
s ∈ D.

The Matérn covariance function is very popular in spatial statistics due
to its flexibility using only three easily interpretable parameters. Both the
exponential and Gaussian covariance functions are special cases of it and Stein
(1999) famously proclaimed ”Use the Matérn model“ due to its ability to
model the local smoothness of a Gaussian random fields using the ν parameter.
The Matérn covariance function is defined as

C(h) =
σ2

2ν−1Γ(ν)
(κh)νKν(κh),

where h = ‖ s2− s1 ‖, Γ is the gamma function, and K is the modified Bessel
function of the second kind. The spectral density of the Matérn covariance
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Figure 2.2: A Matérn covariance function as function of distance for ν = 1
(solid line) and ν = 2 (dashed line).

function is

γ(ω) = σ2 Γ(ν+d/2)

Γ(ν)πd/2
κ2 ν

(κ2 + ω2)ν+d/2
,

where d is the dimensionality of the spatial domain.
In Figure 2.2 a Matérn covariance function is plotted for two different

values of ν but with the same dampening and marginal variance. As can be
seen, a larger smoothness parameter increases correlation for points close to
each other but decreases correlation for points far away.

In Figure 2.3 realizations of three different Matérn Gaussian random fields
can be seen. Notice the difference when changing the correlation range as well
as when changing the smoothness parameter.

2.1.3 Gaussian white noise

A concept of great importance to this thesis is that of Wiener noise. In its
most general definition it can be defined as follows (Adler and Taylor, 2007).

Definition 2.1.2 (Wiener noise). Let (D,A, ν) be a σ-finite measure space
and A,B ∈ A. Then, a Wiener noise satisfies

1. W (A) ∼ N(0, ν(A))

2. A ∩B = ∅ ⇒W (A ∪B) = W (A) +W (B) a.s.
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Figure 2.3: Realizations of three distinctively different Matérn fields. Left:
ν = 1, r = 0.2. Middle: ν = 2, r = 0.2, Right: ν = 2, r = 0.4.

3. A ∩B = ∅ ⇒W (A) and W (B) are independent.

The measure space (D,A, ν) is for most practical considerations a subset
of Rd with associated Borel σ-algebra and Lebesgue measure or the corre-
sponding measure space when mapping this to a Riemannian manifold. As
can be noted, the Wiener noise is a random measure on D with a centered
normal distribution for which the variance is equal to the spatial measure of
the subset chosen. Also, the covariance between W (A) and W (B) is equal to
the spatial measure of the intersection A ∩ B. Since the Wiener measure of
disjoint subsets of D has zero correlation, the Wiener measure of two small
balls arbitrarily close but disjoint in D must be independent of each other.

An alternative interpretation of the Wiener noise is as the Radon-Nikodym
derivative of W with respect to ν. With this interpretation, W is a random
field. However, this random field do not have pointwise meaning and should
be interpreted in a distributional sense, i.e., as a generalized random field
(Stein, 1999).

As a generalized random field, the Wiener noise is defined by how func-
tionals act on it. Considering the typical setting of a L2-space on D for
which a functional, f(W ), is defined through Riesz representation theorem as
〈f,W 〉L2(D), the functionals with respect to a Wiener noise have the properties

f(W ) ∼ N
(

0,

∫
D
f(s)dν(s)

)
E [f(W )g(W )] = 〈f, g〉L2(D).

In short, the Wiener noise is defined by how it acts on square integrable
function on D. The usage of the Wiener noise in this thesis will be closely
connected to a Gaussian random field with a Matérn covariance function.
This connection is revealed in Chapter 4. Any Gaussian random field can be
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generated as a convolution between the square root of the covariance function
and a Wiener noise. This is used in Paper II to efficiently sample from a
Gaussian random field using the method of Lang and Potthoff (2011).

2.2 Spatially discrete random fields

Spatially discrete random fields only have a countable number of spatial lo-
cations in D. Such a space occurs either in applications where the space is
inherently discrete or where the space has been discretized for some reason. In
Paper I we consider a spatial domain that in reality is continuously indexed.
However, the data are measurements of activity over regions rather than at
points. Hence, the measurements need to be modeled on a discrete spatial
domain.

2.2.1 Gibbs random fields

For a spatially discrete random field, the spatial domain can be expressed as
an undirected graph, i.e., a set of nodes and edges between neighboring nodes.
For an undirected graph, a clique is a set of nodes that are all neighbors of
each other. A maximal clique is a clique which cannot be made any larger
without losing the clique property. A specific class of discrete random fields
are the Gibbs random fields.

Definition 2.2.1 (Gibbs random field). Any probability distribution of values
at nodes on an undirected graph defined as

P (X = x) ∝ e−
∑
c∈C Ec(xc) (2.1)

is a Gibbs random field.

Here, C is the set of all maximal cliques and Ec is a strictly positive func-
tion representing the energy associated with the configuration of the cliques
(Murphy, 2012, Chapter 19). The higher the energy in the clique, the less
likely it is to occur. The proportionality constant of the Gibbs distribution
will be denoted as W and is known as the partition function. The partition
function is simply the sum of the right hand side of Equation (2.1) over all
possible clique configurations. A Gibbs random field might involve a large
number of nodes and hence a very large number of possible configurations.
This often makes the partition function infeasible to compute.
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The Hammersley-Clifford theorem is an important result that relates Gibbs
random fields to Markov random fields. We here recite the theorem as stated
in (Winkler, 2003).

Theorem 2.2.2 (Hammersley-Clifford). Let a neighborhood system, N , on
D be given. Then the following holds:

1. A random field is a Markov field with respect to N if and only if it is a
Gibbs field for N .

2. For a Markov random field, X with neighborhood system N ,

P (X(s) = x(s), s ∈ A|X(t) = x(t),∀t ∈ D \A)

= P (X(s) = x(s), s ∈ A|X(t) = x(t),∀t ∈ N (A)) ,

for every subset A of D.

A neighborhood system, N , here refers to a collection of sets such that
s /∈ N (s) and s ∈ N (t) if and only if t ∈ N (s) (Winkler, 2003).

The Hammersley-Clifford theorem states that all Gibbs random fields are
equivalent to a Markov random field (MRF) and vice versa. Through the
Hammersley-Clifford theorem a Gibbs field can be defined by conditional prob-
abilities. Since neighborhoods usually involve a smaller number of nodes, the
normalizing constant of such conditional distributions is often attainable al-
though the partition function of the corresponding Gibbs distribution is not.

In Paper I a Gibbs random field is used. This random field was defined by
the conditional probability on the form

P (Xi = k|X−i) =
exp (−αk − βkfik(X−i))

W (α,β,X−i)
,

where fil denotes the number of points in the neighborhood of node i that
have the value l. The value of Xi can be referred to as the class that node i
belongs to. The β-parameters control the amount of attraction/repulsion be-
tween points of classes. The α-parameters control the marginal probabilities
of classes, i.e., they are equivalent but not identical with the, unconditional,
probability of Xi belonging to a certain class. The three dimensional neigh-
borhood structure used in Paper I can be seen in Figure 2.4. In this paper,
the spatial domain of the discretely indexed random field was on a lattice
grid. In the figure, the white ball denotes a point at node i. The black balls
correspond to the first order neighborhood of node i, that is the points that
have the smallest euclidean distance to si on the lattice.
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Figure 2.4: A first order neighborhood structure on a regular lattice in three
dimensions.

(a) β = 0 (b) β = −1 (c) β = −10

Figure 2.5: Example of realizations of a 3-class Potts field using three different
values of the attraction parameter.

Figure 2.5 shows three realizations of such a random field on a two di-
mensional lattice having three different classes (here illustrated by the colors
blue, green, and yellow). The first figure was generated without any spatial
interaction, βk = 0, the second with an attractive effect, βk = 1, and the
third with an even stronger attractive effect, βk = 10. As can be seen, the βk
parameters control the average size of the class regions.

2.2.2 Gaussian Markov random fields

A Gaussian random field on a discretely indexed domain can be stated as
a multivariate Gaussian distribution. For a Gaussian random field on a fi-
nite spatial domain this distribution can be characterized by the probability
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density function

f(x) =
|Σ|−1/2

(2π)n/2
e−

1
2 (x−µ)TΣ−1(x−µ).

Here, µ is the mean vector whose elements denotes the mean value for each
of the n points in D. The corresponding covariance matrix between each pair
of points in D is denoted by Σ. The inverse of the covariance matrix, i.e.,
the precision matrix Q = Σ−1, explains the conditional dependence between
points in the Gaussian random field.

The PDF of the Gaussian random field has similarities with that of a Gibbs
field, see Equation (2.1). In particular, if Q is non-zero only for pairs of points
which are neighbors to each other, the Gaussian random field will be a Gibbs
field. By the Hammersley-Clifford theorem it will hence be a Markov random
field.

In spatial statistics, the computations that are of main concern when work-
ing with a Gaussian distribution is computing the conditional mean, condi-
tional variance, and likelihood. The computational difficulties with these tasks
can basically be reduced to evaluating the determinant of Q, matrix multipli-
cations with Q, and solving a linear system with Q. The precision matrices
for non-degenerate Gaussian distributions are positive definite and symmet-
ric. Hence, Q can be factorized using the Cholesky decomposition Q = LLT

where L is a lower triangular matrix. Having the precision matrix expressed
by L is beneficial since solving a linear system of a triangular matrix has a
computational complexity of O(n2), as compared to O(n3) for general matri-
ces. Also, the determinant equals the square of the product of the diagonals
of L. The only problem is that computing the Cholesky triangle, L, generally
has a computational complexity of O(n3).

Rue and Held (2005) made a strong point when showing that for a Gaussian
Markov random field, the computational complexity of the Cholesky factoriza-
tion is greatly reduced. Considering a spatial domain in two dimensions, the
computational cost of the Cholesky factorization is reduced to O(n3/2) which
makes a big difference when considering a spatial domain of many points.
This property is one of the key benefits of the models proposed in Papers III
and IV, see Section 4.3.

2.3 Spatial mixture models

A finite mixture model (Everitt and Hand, 1981) can be defined in two differ-
ent but equivalent ways. Let us start by defining K classes; each associated
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with a random variable Xk with corresponding probability distributions Dk.
Assume further a random variable, Z, with probability distribution D0, on
a discrete sample space, {1, 2, ...,K}. The K different values that Z can as-
sume correspond to the K classes. The random variable Y will be distributed
according to a finite mixture model if it is generated by first acquiring a real-
ization z from Z, then assigning Y the value from a realization of Xz. Hence

Y =

K∑
k=1

I (Z = k)Xk.

The finite mixture model can be viewed as a doubly stochastic model since it
requires evaluation of random variables in two steps. If a probability density
function (or probability mass function) exists, the mixture distribution can
equivalently be defined by

fY (x) =

K∑
k=1

πkfk(x),

where fY is the PDF (or PMF) of Y , πk = P (Z = k), and fk is the PDF (or
PMF) of Xk.

Typically, the first definition is used when the properties of the latent
variable Z is of interest, which is the case for classification problems. The
second definition is more common when a complex probability distribution
should be approximated by a set of simple ones. For instance explaining a
multimodal distribution as a superposition of unimodal ones as in Figure 2.6.

Figure 2.6: An example of a PDF for a finite mixture distribution (black)
defined as the superposition of two Gaussian distributions (blue and red).
The probability of being a member of the blue class is slightly larger than
that of the red class, as can be seen by the right mode being larger.



2.3. Spatial mixture models 19

From here on out, finite mixture models will simply be referred to as
mixture models.

In Papers I and II, mixture models were incorporated in spatial models
where Z is no longer a random variable but instead a random field, Z(s).
Likewise, {Xk}k are no longer random variables but random fields as well,
{Xk(s)}k. This is a natural extension of the mixture model definition to a
spatial model since the marginal distribution for a fixed point in space is a
regular mixture model. Typically, such models can be used to classify regions
of a spatial domain or to acquire non-linear prediction functions.

In Paper I, a spatial mixture model was used to model the distribution of
voxel values in medical images. A Gibbs model was used to model the latent
classification for each voxel. Given this classification, each voxel was assigned
a value from the distribution of the corresponding class. Figure 7.2 shows an
example of the classification of the spatial region into 4 different classes.

In Paper II, a spatial mixture model was used to model the distribution of
the intensity function of a Cox process. The latent classification field, Z(s),
was acquired from level sets of a Gaussian random field using the level set
inversion approach of Iglesias et al. (2016) and Dunlop et al. (2016). Com-
pared to the model of Paper I, this model has the advantage that it defines
a classification field in a continuous spatial domain. In a geometric level set
inversion problem, level set functions define a partition of the spatial domain
through level sets of the function. That is, Ak = {s : ck−1 < X(s) ≤ ck} ,
where {Ak}k is the partition and {ck}k are threshold values. The aim of the
inversion problem is to estimate the partitioning of the domain given obser-
vations,

Y (si) =

K∑
k=1

akI (X(si) ∈]ck−1, ck]) + εi,

where εi are Gaussian i.i.d. random noise and ak are parameters.
Figure 2.7 show the observed field, Y , the underlying (latent) field, X, and

the classification field, Z, acquired from thresholding X in a realization of the
level set model.

In Paper II, the Gaussian noise model of Dunlop et al. (2016) is replaced
by a Poisson likelihood yielding an extension of the popular log-Gaussian Cox
process.
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Figure 2.7: (a) Observed data corrupted by noise, Y . (b) Corresponding level
set function, X. (c) Classification field.



Chapter 3

Spatial point processes

A spatial point pattern is a countable set of locations, Y = {x1, x2, ...}, xi ∈
D on some continuous spatial domain, D. We can refer to the locations
as events, in the sense that they correspond to locations where something
occurs. Often the point pattern is observed in an observational window, W .
That is, the point pattern exists on D but is only observed on W ⊆ D.
Here, we consider two types of point patterns, the finite and the infinite. An
infinite point pattern consist of an infinite number of events and is typically
defined on an open domain such as Rd. Practically, it is impossible to observe
such a pattern in its full domain, i.e., the observational window will be a
strict subset of D. A finite point pattern on the other hand will have a
bounded spatial domain including all of the events. Practically, for a finite
point pattern, the observational window is often the whole spatial domain
while for an infinite point pattern, the observational window is never the
whole spatial domain. Point patterns occur in a vast number of applications,
e.g., locations of galaxies as seen in Figure 3.1a (Drinkwater et al., 2004;
Baddeley and Turner, 2005), locations of cell centers observed under optical
microscopy as seen in Figure 3.1b (Baddeley and Turner, 2005; Ripley, 1977),
and location of trees as seen in Figure 7.3 and used in Paper II.

A point pattern can be defined as a counting measure, N , on the spatial
domain D, where N(A) counts the number of points in the spatial region
A ⊆ D. Often, point patterns can be seen as a realization from some stochastic
model. Using the examples, whenever a new cell colony is grown, a new cluster
of galaxies are observed, or a new region of forest is surveyed there will be
a new point pattern observed. Of course, under similar conditions we expect

21
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Figure 3.1: (a) Observations of galaxies in the Shapley supercluster. (b) Loca-
tion of centres of observed biological cells observed under optical microscopy.

corresponding point patterns to have similar structures, even though the set
of locations are different. Hence, we need to characterize the stochastic model
from which the observed patterns emanated. A point process is a stochastic
model of point patterns in the same way as a random variable is a stochastic
model of real values. Since a point pattern could be described as a counting
measure, a point process can be described as a random counting measure.
Statistical analysis of point patterns corresponds to analyzing the properties
of the point process that generated these point patterns.

3.1 The Poisson process

Historically, the most important point process is the homogeneous Poisson
process. This is the model of complete spatial randomness (CSR), i.e., an
unstructured point pattern. That is, events occur independently of each other
and the number of points in a chosen region are distributed according to a
Poisson random variable with intensity parameter proportional to the spatial
measure of the chosen region. In this work, we will only consider spatial
domains in euclidean spaces with corresponding Lebesgue measure, L, i.e,
E [N(A)] ∝ L(A), where A ⊆ D, and D is the spatial domain. This definition
yields that the point process for CSR is defined by a random counting measure
N(A) ∼ Pois(λ · L(A)), where λ ≥ 0 and A is any measurable subset of D.
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Historically, most methods in point process statistics have focused on dif-
ferentiating between CSR and structured patterns. A structured pattern can
either differ from CSR due to interaction between points and/or by spatial
dependencies due to some available or unknown covariates. The difference
between the two effects lies in the generative process more than the actual
observed pattern. For example, assume that a seed is planted in a spatial re-
gion. The seed grows into a tree and then a new seed is planted. If the second
seed is planted too close to the first tree, the plant will be shaded. The shade
inhibits its possibility of growing into a large tree itself. This is an example
of a repulsive interaction between points. On the other hand, the possibility
of the plant growing into a large tree might also depend on the topography
and soil constituents of the spatial region. Planting a seed close to a stream
or in a dry desert will affect its chances as well. This is an example of spatial
dependency.

Definition 3.1.1 (Intensity measure). The intensity measure, Λ, of a point
process is a deterministic measure defined as the expected value of the random
counting measure, i.e.,

Λ(A) = E [N(A)] , A ∈ D .

If Λ is absolutely continuous with respect to the spatial measure, it can
be described by the intensity function λ as Λ(A) =

∫
A
λ(s)d s. For the ho-

mogeneous Poisson process, λ(s) = λ,∀ s ∈ D, i.e., a constant intensity. The
inhomogeneous Poisson process is a point process which behaves as a homoge-
neous Poisson process on infinitesimal subregions of D. Due to the additivity
of Poisson distributed random variables, the counting measure of an inhomo-
geneous Poisson process is Poisson distributed as N(A) ∼ Pois(Λ(A)). Any
Poisson process (homogeneous or not) is characterized solely by the intensity
measure, Λ.

The inhomogeneous Poisson process can model some types of spatial de-
pendencies. If an intensity function exists, covariates can be included in the
model by letting λ be a function of the covariate values. In Paper II, a log-
linear relationship is considered where log λ(s) =

∑
j Bj(s)βj for covariates

Bj and coefficients βj . However, the inhomogeneous Poisson process assumes
no interaction between points, a feature inherited from the CSR model due
to the additivity of Poisson random variables. Hence, it is an important but
restricted special case of point processes.
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3.2 Cox processes

A further extension of the Poisson process is that to a Cox process. In this
process, λ(s) is itself modeled as a random object, i.e., a positive random
field on D. Conditioned on a given realization of λ(s), the point process is an
inhomogeneous Poisson process with λ as its intensity function. Hence, the
model is doubly stochastic in the sense that it defines a generative process
based on two steps of random objects. A Cox process can also be considered
as a Bayesian model of a Poisson process, where the latent intensity field, λ,
is given a prior probability distribution.

A popular Cox process model is the log-Gaussian Cox process (LGCP) for
which λ(s) = eX(s), and X is a Gaussian random field. The popularity of
the LGCP model is partly due to the marriage between the two most used
and studied spatial stochastic processes, the Gaussian random fields and the
Poisson processes. The popularity of the LGCP is also partly due to its
versatility. It can model point patterns under uncertainty about covariates,
i.e., it is unknown how and which covariates that affect the probability of
events. The uncertainty about the covariates is explained by the randomness
of λ. It can also model clustering effects, i.e., attractive interaction effects.
Regions with higher intensity in λ would correspond to clustered regions with
a higher probability of observing many events. The structure of the random
field, X, could in this sense explain to what extent points tend to be clustered.

A Cox process is however not enough to characterize all point processes.
For instance, repulsive interaction effects such as trees competing over sunlight
cannot be explained by such a model.

3.3 Characterizations of point processes

Just as moments, PDF’s, and CDF’s characterize a random variable, point
processes can be characterized by some similar concepts. One such character-
ization is through the moment measures. The moment measures characterize
the k-th order moments of N(A), analogously to how the intensity measure
was defined.

Definition 3.3.1 (k-th moment measure). The k-th moment measure of a
spatial point process is defined as

µ(k)(A1 × ...×Ak) = E [N(A1)...N(Ak)] .

Here, A1, ..., Ak are arbitrary measurable spatial regions on D.



3.3. Characterizations of point processes 25

Note that Λ(A) = µ(1)(A), the first order moment measure does not char-
acterize interactions but higher order moments do.

Just as with random fields, the concepts of stationarity and isotropy are
defined for point processeses.

Definition 3.3.2 (Stationarity). A point process with counting measure N(A)
is said to be stationary if,

P (N(A1) = n1, ..., N(Ak) = nk) = P (N(B1) = n1, ..., N(Bk) = nk) ,

for any finite set {Al}kl=1 where Bl = Al + t = {s : s−t ∈ Al}, i.e., a
translation of Al. (Illian et al., 2008)

Definition 3.3.3 (Isotropy). A point process is isotropic if,

P (N(A1) = n1, ..., N(Ak) = nk) = P (N(B1) = n1, ..., N(Bk) = nk) ,

for any finite set {Al}kl=1 where Bl = {s : Rθ s ∈ Al}, i.e. a rotation with
angle θ of the points of Al around the origin. (Illian et al., 2008)

The concept of ergodicity is also an important one. For an ergodic point
process, the dependency between N(A) and N(B) will be negligible if the clos-
est points in the two regions are sufficiently far away. This property means
that if an ergodic point pattern is observed on a sufficiently large observational
window, W , subregions far away from each other will have points distributed
as if from different realizations of the underlying point process. The impli-
cations being that, as long as the observational window is large enough and
the point process is ergodic and stationary, one point pattern is enough for
statistical analysis of the underlying process—since it acts as having observed
several independent realizations of point patterns from the same point pro-
cess. Historically, point pattern data have been scarse and spatial statisticians
have often been forced to work with single replicates of point patterns. To
draw any conclusion from such a dataset the ergodicity property is necessary.
Nowadays, more often datasets have an abundance of replicates and ergodicity
becomes less important.

A point pattern is a set of countable point locations in a sample space
of uncountable point locations. For analysis, it can often be of interest to
consider probability distributions conditioned on one or more events at spe-
cific locations. This shifts the viewpoint from “an absolute frame of reference
outside the process under study, to a frame of reference inside the process”
(Daley and Vere-Jones, 2003). Such probabilities can be modeled using Palm
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distributions. The Palm distribution of a point process is a probability distri-
bution of point locations conditioned on that one of the points of a realization
is located at a location, o. We will denote the expectation with respect to the
Palm distribution as Eo, in contrast to the regular expectation with regards
to the absolute frame of reference, E. The following definition holds for a
stationary point process.

Definition 3.3.4 (Palm expectation).

Eo [f(Y )] =
1

λL(W )
E

[ ∑
x∈Y ∩W

f(Y − x)

]
,

where Y is a point process, W is the observational window, and f is some real
valued function of a point pattern. (Illian et al., 2008)

In words, the Palm expectation gives the expected value of f(Y ) condi-
tioned on that one of the points of realizations are observed in o.

In point process literature, some functional characteristics have been given
particular attention. Here, a functional characteristic refers to a function that
characterizes some aspect of the point process. Originally they were mainly
used to test if point patterns behaved as CSR. Nowadays they are commonly
used also to evaluate the goodness-of-fit of more general point process models,
i.e., compare if the estimate of the characteristic from an observed point pat-
tern is similar to that of the model. In Paper II, a point pattern is compared
to simulations from several assumed models. Evaluation of the model’s per-
formance is based on the similarity of the functional characteristics between
the real pattern and the simulated ones.

In the case of a stationary point process, Ripley’s K-function (Ripley,
1977) (or estimates thereof) has been used extensively in order to investigate
departures from complete spatial randomness.

Definition 3.3.5 (Ripley’s K-function). For a stationary and isotropic point
process with counting measure N(A), the K-function is defined as,

K(r) =
1

λ
Eo [N(b(o, r) \ {o})] ,

where b(o, r) is the ball with center in point o and radius r.

In words, K(r) is the expected number of other points found inside a ball
of radius r normalized with the intensity and conditioned on that there is a
point in the center of the ball. For the CSR model, K(r) = bdr

d, where bd is
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the volume of the unit ball in Rd and d is the spatial dimension of the point
pattern. Hence, by estimating the K-function from the point pattern, it is
possible to study the deviations from the theoretical K-function of the CSR
model. For a point process with attractive spatial interaction (clustering),
K(r) > bdr

d. Likewise, a point process with repulsive spatial interaction
(regularization), K(r) < bdr

d.
A variant of the K-function that represents the same information but is

easier to interpret is Besag’s L-function (Ripley, 1977, Besags comments),

L(r) =

(
K(r)

bd

)1/d

.

The L-function is a modification of K such that for the CSR model, L(r) =
r and estimations tend to be homoscedastic with respect to r. A further
modification as L∗(r) = L(r)− r transforms the L-function into the centered
L-function for which the CSR model would have L∗(r) ≡ 0.

The pair correlation function, g(r), is another functional characteristic
which also relates to the K-function by,

g(r) =
K ′(r)

dbdrd−1r
,

where K ′ denotes the derivative of K. For the CSR model, g(r) ≡ 1. Values of
g(r) larger than 1 means that there is a clustering effect at distance, r, while
g(r) < 1 means that there is a repelling effect. Typically, a point process
might have attractive effects on some intervals and repulsive effects on others.
Taking the example with tree locations, a repulsive effect exists for points
very close to each other due to the competition for sun. However, at medium
distances there should be an attractive effect since the seed dispersal has a
limited range.

Figure 3.2 shows estimates of the pair correlation function for the two
point patterns shown in Figure 3.1. The galaxy dataset show a clustering
effect on short distances seen by g(r) > 1, while the cell data seem to be
regularly spaced, seen by the peak above 1 at the range of 0.11 − 0.20. This
fits intuitively with the visual perception of the two point patterns seen in
Figure 3.1.

In the setting of Paper II, we have used estimates of the pair correlation
function in order to compare our point pattern with simulations from the fitted
models. In that setting, we did neither assume isotropy nor stationarity of the
point process. However, we still expect the fitted model to yield estimated
functions similar to the ones estimated from the actual point pattern. Hence,
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Figure 3.2: Estimated pair correlation functions. (a) Estimated g for the
Shapley galaxy supercluster. (b) Estimated g for the cell data.

even though the interpretation of the functional characteristics is not clear
in the non-stationary case, estimates can still be used for comparison. For
details about estimating the functional characteristics mentioned above, see
Illian et al. (2008).
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Stochastic differential
equations

Let X(t) be a differentiable function defined on the interval [0, T ] and µ(x, t)
a function of x and t. If

dX(t)

dt
= µ (X(t), t) , X(0) = x0,∀t ∈ [0, T ],

then X(t) is a solution to an ordinary differential equation (ODE) of first
order with the initial value condition X(0) = x0. ODEs often describe the
evolution in time of a variable given some initial condition, i.e. a temporal
system. Since this thesis concerns models for spatial statistics, we can also
consider X(t) to be a function in one-dimensional space, not necessarily time.

In real world applications there is often some type of random noise present.
This noise can be due to measurement errors in equipment used to gather
data or uncertainties about the exact domain of the study. There can also be
some stochasticity inherent to the actual system of study. For an ODE, this
randomness leads to the solution, X(t), being a stochastic process rather than
a deterministic function. This random behavior can be modeled by considering
the differential to be a function of some random process, i.e.,

dX(t) = µ (X(t), t) dt+ σ (X(t), t) dB(t). (4.1)

Here, dB(t) denotes a random process (or generalized random process) and
σ denotes a function characterizing the influence of dB(t). Such a differen-
tial equation with a random component is known as a stochastic differential
equation (SDE).

29



30 Chapter 4. Stochastic differential equations

The solution to equation (4.1), when such exist, is no longer a deterministic
function but a stochastic process itself. SDEs provide an alternative way
of characterizing a stochastic process, as compared to, e.g., autocorrelation
functions and spectral densities.

The solution to a SDE can be interpreted in several ways, the most intuitive
being the strong solution.

Definition 4.0.1 (Strong solution to SDE). X(t) is a strong solution to the

SDE of Equation (4.1) if the integrals
∫ t

0
µ (X(t), t) dt and

∫ t
0
σ (X(t), t) dB(t)

exists for all t ∈ [0, T ] and

X(t) = X(0) +

∫ t

0

µ (X(t), t) dt+

∫ t

0

σ (X(t), t) dB(t).

The stochastic integral
∫ t

0
σ (X(t), t) dB(t) is an integral where the inte-

grand is a stochastic process and which is integrated with respect to a stochas-
tic measure induced by dB(t). Furthermore, integrating dB(t) with respect
to σ ≡ 1 gives rise to the stochastic process B(t) defined as

B(t) = B(s) +

∫ t

s

dB(t).

For an exact definition of a stochastic integral, see (Klebaner, 2012, Itô- and
Stratonovich-calculus).

Often SDEs are defined with respect to a Brownian motion process, i.e., B
is a Brownian motion. A Brownian motion has the property

B(t)−B(s) ∼ N (0, t− s), s ≤ t,

and is continuous everywhere but nowhere differentiable. Hence, dB(t) is
defined as a Wiener noise in one dimension when B(t) is a Brownian motion.

Since the solution to a SDE is a stochastic process, X(t) is a random
variable for any fixed t. The distribution of X(t) for large fixed t:s is often of
interest.

Definition 4.0.2 (Invariant probability distribution of stochastic process).
An SDE is said to have an invariant probability distribution, π, if X(s) ∼ π
implies that X(t) ∼ π,∀t > s.

Note, not all SDEs have an invariant probability distribution. One impor-
tant SDE that does have one is

dX(t) =
1

2
∇ log f(X(t)) + dB(t), (4.2)
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where f(x) is a twice continuously differentiable PDF of a probability distri-
bution. In fact, the invariant probability distribution of Equation (4.2) is the
distribution characterized by the PDF f . That is, with any feasible initial
value, the marginal distribution of X for time T will converge to a random
variable with PDF f as T → ∞. This is utilized in the MCMC method
MALA, see Section 5.3.1.

Often we cannot compute the solutions to the SDEs explicitly, instead we
have to approximate them numerically. A common method used to acquire
approximations of sample paths of SDEs is the Euler-Maruyama algorithm.
It is the SDE equivalent to Eulers method (using Itô calculus).

Definition 4.0.3. Euler-Maryuama method
Consider a diffusion process such as in Equation (4.1). Decide time steps

ti : ti = ti−1 + ∆t, then

Xt+1 = µ(Xt, t)∆t+ σ(Xt, t)∆Bt,

where ∆Bt
D
= B(t+ 1)−B(t).

4.1 Partial differential equations

The ODE gave rise to a solution which was a function in one dimension. This is
enough when considering the evolution of some value over time—spatial prob-
lems on the other hand are often concerned with observational domains in two-
or three-dimensions. Modeling spatial systems in dimensions higher than one
can be achieved with differential equations that include differential operators
with respect to several variables, i.e., partial differential equations (PDE).

A PDE can be a differential equation in both spatial variables and time.
It is common to make a distinction between these two classes of variables;
since time is causal and spatial dimensions are not, i.e., spatial dimensions
are acausal. In this thesis we are concerned with purely spatial PDEs with
respect to the Laplacian and gradient operators. Most of all, we are interested
in the stationary dampened heat equation,(

κ2 −∆
)
X(s) = F (s),∀ s ∈ D,

with some boundary value conditions. Here, s denotes a point in a d-dimensional

space and ∆ is the Laplacian operator, i.e., ∆f(s) :=
∑d
i=1

∂2

∂ s2i
f(s). The

boundary value conditions considered are typically: the value of X at the
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boundary of D (Dirichlet), the value of the projection of ∇X on to the nor-
mal vector at the boundary (Neumann), or a mixture of the two (Robin).

This PDE models heat transfer in materials which are able to absorb heat
to a certain degree. The RHS, F (s), is known as the source term and models
heat sources and heat sinks, κ2 models the dampening, where a large κ2

correspond to a material with a high degree of heat absorption.
The strong solution does not exist for all PDEs. This is often because the

strong solution has to be a smooth function while abrupt changes in material
constants or heat sources often occur in real world problems. However, in
the physical world we often observe solutions to PDEs, even when the strong
solution does not exist!

The problem is that the strong solution is interpreted pointwise, i.e., the
partial differential equation should hold for every point in the spatial domain.
In reality, this is not how the solution to most physical systems should be
interpreted. Instead, the differential equation does not need to hold for every
point but it should hold in a distributional sense, such a solution is known
as the weak solution. We present the weak solution for the dampened heat
equation on a subdomain D ⊆ Rd with respect to the Hilbert space L2(D)
and its inner product 〈·, ·〉. First, assume that the strong solution, X, exists
and is smooth enough such that

∣∣〈(κ2 −∆
)
X(s), φ

〉∣∣ < ∞ for some class of
functions φ ∈ V . Then, by Green’s first identity,〈(

κ2 −∆
)
X(s), φ

〉
=
〈
κ2X(s), φ

〉
+ 〈−∆X(s), φ〉 =

〈
κ2X(s), φ

〉
+ 〈∇X(s),∇φ〉 − 〈n · ∇X(s), φ〉Γ =: a(X,φ),

where 〈·, ·〉Γ denotes the inner product on the boundary of D, n(s) the normal
vector to the boundary at point s ∈ ∂D, and V is a function space of differen-
tiable functions. Note that a(·, ·) is a bilinear form, i.e., linear in both its first
and second argument. The bilinear form describes the differential operator in
a distributional sense. The weak solution to the PDE would be X ∈ U which
fulfills

a(X,φ) = 〈F, φ〉, ∀φ ∈ V. (4.3)

That is, the function X(s) in the function space U for which the LHS equals
the RHS for any choice of φ within V . Here, U is known as the trial space
and V as the test space. The choice of test- and trial spaces depends on a
and F , since both a(X,φ) and 〈F, φ〉 has to be well defined and bounded for
every choice of φ ∈ V and X ∈ U . The boundary conditions can be incorpo-
rated into the weak formulation, either by constraining the test space further
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(for Dirichlet boundary conditions) or implicitly through a modification of
the bilinear form (for Neumann boundary conditions). Note that if a strong
solution exists it is also a weak solution.

We here considered the dampened heat equation since this will be of im-
portance in Papers III and IV. For other PDEs the weak solution can be
defined in a similar fashion where a(·, ·), U, and V will depend on the PDE,
the boundary conditions, and the spatial domain, D.

4.2 Finite element method

PDEs occur in many forms and on all kinds of spatial domains. Often, an
explicit solution is not available. Instead, we are forced to resort to numerical
methods to approximate the true solution. One class of numerical approxi-
mations to solutions of PDEs are the finite element methods (FEM). These
approximations are based on the weak formulation of the problem. The test-
and trial spaces are in most problems infinite dimensional and therefore hard
to handle practically. The Galerkin method can be used to reduce dimension-
ality. Here, the test- and trial-spaces are reduced to the same finite dimen-
sional subspace, i.e., Uh = Vh ⊂ V . In words, instead of forcing the equality
of Equation (4.3) to hold for all possible choices of φ ∈ V , it is only required
to hold for all φ in a subspace, Vh. Also, the solution should be found within
the class of functions, Vh.

Since Vh is a finite dimensional space, the weak solution of Equation (4.3)
is reduced to a system of linear equations,

NU∑
i=1

zia(φi, φj) = 〈F, φj〉 ,∀j ∈ {1, ..., N} ⇔ KZ = Fh. (4.4)

Here, {φi}Ni=1 are basis functions of Vh and {zi}Ni=1 are the coefficients yielding

the approximate solution, Xh =
∑N
i=1 ziφi. The solution, Xh, exists and

is unique if a(·, ·) is bounded, symmetric, and coercive and Vh is a closed
subspace of the Hilbert space considered (Brenner and Scott, 2008, theorem
2.5.6).

Obviously, the true solution will fulfill Equation (4.4) if X ∈ Vh. If X /∈ Vh,
the approximate solution, Xh, will not be identical to X and ‖X −Xh‖ > 0.
Galerkin’s method has an important orthogonality property,

a(X −Xh, φ) = a(X,φ)− a(Xh, φ) = 〈F, φ〉 − 〈F, φ〉 = 0.
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φi

Figure 4.1: Example of a test function for node i on a 2-dimensional mesh.

Furthermore, even though ‖X −Xh‖ will not necessarily minimize the error
among all functions in Vh, the error will be proportional to the minimum error
(Brenner and Scott, 2008, Céa’s lemma 2.8.1).

In the finite element method, the function space, Vh, and corresponding
basis, {φi}Ni , are chosen in a clever way. The aim is to acquire a sparse system
matrix, K, and a Vh that can approximate reasonably smooth solutions. For
this thesis we are concerned with Vh being the space of continuous and piece-
wise linear functions on D—other piecewise polynomial functions are often
considered in FEM applications and are constructed similarly.

By dividing the spatial domain, D, into a triangular mesh (in two dimen-
sions, tetrahedral mesh in three dimensions and so on), Vh can be characterized
as the space spanned by a certain type of basis functions—each basis function
exclusively identified by a node on the mesh. For a node indexed by i, the
basis function, φi, is defined as a function that is linear in each triangular sub
domain, has value 1 in node i and value 0 in all other nodes in the mesh. Such
a function is sketched in Figure 4.1, it is easy to see why they are often referred
to as “pyramid functions”. Since each basis function has compact support,
and hence only overlaps with a small number of other basis functions, K will
be a sparse matrix. By making the mesh finer, Vh increases in dimensionality
but will also approximate smooth functions in V better.

The main computational costs associated with FEM are the cost of solving
the linear system of equations in Equation (4.4) and the cost of creating the
triangular mesh. Both operations will have a computational cost that depends
on the number of nodes in the mesh. The cost of solving the linear system will
also be affected by the sparsity of K. A smaller number of nodes and a sparser
K leads to less computations. However, a mesh with more nodes yields better
accuracy. As can be seen, there is a trade-off between low computational cost
and high accuracy.
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Figure 4.2: Mesh of the north Atlantic ocean considered in Paper IV. Region
of interest (blue triangles) and extension region (pink triangles).

4.3 The SPDE approach to Matérn fields

In the same way as a SDE was acquired by introducing stochasticity into an
ODE, a stochastic partial differential equation (SPDE) is acquired by intro-
ducing stochasticity into a PDE. In this thesis we are concerned with the
SPDE acquired from feeding the dampened heat equation of fractional power
with Wiener noise,

Lα/2X(s) :=
(
κ2 −∆

)α/2
X(s) =W(s), (4.5)

where W(s) is a Wiener noise, as explained in Chapter 2. For integer valued
powers, α/2 ∈ Z+, the power operator should be interpreted as a composition
of the same operator over and over, e.g., L2X(s) := L (LX(s)). On Rd this
definition can be extended to any α > d/2 using the Fourier transform,

Lα/2X(s) := F−1
[
λ(ω)α/2X̂(ω)

]
(s),

where F denotes the Fourier transform, λ is the spectrum of L and X̂(ω) is
the Fourier transform of X(s). It should be noted that for the differential
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operator of Equation (4.5), λ(ω) =
(
κ2 + ‖ω‖2

)
(Whittle, 1954). Hence, on

Rd we can solve Equation (4.5) using the Fourier method,(
κ2 + ‖ω‖2

)α/2 F [X] (ω) = F [W] (ω)

⇔ X(s) = F−1
[(
κ2 + ‖ω‖2

)−α/2 Ŵ] (s),

where Ŵ is the Fourier transform of the Wiener noise—which is also a Wiener
noise. From Sections 2.1.2 and 2.1.3 we see that the spectral density of the ran-

dom field is
(
κ2 + ‖ω‖2

)−α
(2π)−d. Hence, X is a centered Gaussian random

field with a Matérn covariance function with parameters, ν = α− d/2, κ = κ,

and σ2 = Γ(ν)
Γ(ν+d/2)(4π)d/2κ2ν .

The interpretation of the correlation structure by the operator L is in-
teresting since L models dampened diffusion. In other words, the family of
Matérn Gaussian random fields have a correlation structure which behaves
qualitatively the same as heat dissipation under dampening. Since L acts
locally, the family of Matérn correlation structures can be generalized to non-
stationary random fields by letting κ be spatially varying, this is used in Pa-
per III and IV. The SPDE approach can also be used to define Matérn covari-
ance on arbitrary Riemannian manifolds by a generalization of the Laplacian,
the Laplace-Beltrami operator.

Lindgren et al. (2011) realized that the dampening, κ, is decorrelating
points far away in space in a solution to Equation (4.5). Therefore, by ex-
tending D to a much larger spatial domain, D̂, such that the boundary of
D̂ will be far away from any point in D, the boundary conditions will have
virtually no impact on X inside D—yielding a Matérn correlation structure
on D.

Using the finite element method and the properties of the Wiener noise,
Lindgren et al. (2011) constructed a finite dimensional approximation of the
solution to Equation (4.5) for α = 2. The FEM solution, see Equation (4.4),
corresponds to the system of linear equations, KZ = 〈W, φj〉. This yields,

Xh ∼ N(0,K−1CK−T ), Cij = E[〈W, φi〉〈W, φj〉] = 〈φi, φj〉.

Furthermore, Bolin and Kirchner (2018) introduced a method for acquiring
FEM solutions for arbitrary α > d/2 using the K- and C matrices, this is
used in Paper IV.

The methods where FEM is used to acquire a finite dimensional approxi-
mation of a spatially continuous random field has become known as the “SPDE
approach” in the spatial statistics community. Figure 4.2 portrays a mesh cre-
ated for the SPDE approach in Paper IV. The blue colored triangles belong
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to the spatial domain of interest. The pink colored triangles belong to the
extension regions used to get rid of boundary condition artifacts (Lindgren
et al., 2011).

Compared to standard, covariance-function-based, methods of working
with Matérn fields, the SPDE approach provides some useful properties such
as

• Generalizing Matérn GRFs to arbitrary smooth Riemannian manifolds
embedded in Rd.

• Allowing non-stationary and anisotropic models.

• Control of the approximation error.

• Xh is a Gaussian Markov random field, see Section 2.2.2.



Chapter 5

Estimation and inference

Statistical inference is the art of drawing conclusions based on the available
data with the aid of some probabilistic model. In spatial statistics, this is
usually associated with estimating parameter values of a model or acquiring
some prediction based on such parameters. There are two main inference
philosophies, the Bayesian and the frequentist.

From a frequentist’s perspective there exists some true parameter values
of the model. The aim is to find the best estimate of these parameters given
the observed data. Once the parameters have been estimated, prediction
can be made using the model. From a Bayesian perspective, the parameters
themselves are not absolute but considered to be random variables. Instead of
finding the “true” parameter values, Bayes theorem can be applied in order to
acquire a conditional distribution of the parameter values given the observed
data.

Which choice, Bayesian or frequentist, depends on the purpose of the
analysis, computational restrictions, and to some degree personal preference.
Broadly speaking, Bayesian methods should be chosen when some informa-
tion is known about the parameters, and we want this information to guide
the analysis. Bayesian methods also often give a clearer understanding about
uncertainties in the parameter estimation. However, it can be easier to intro-
duce involuntary bias in a Bayesian setting, because of the need of specifying
a prior distribution. Also, the methods are often more computationally costly
than a frequentist approach.

38
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5.1 Maximum likelihood estimation using the
EMG algorithm

Maximum likelihood (ML) estimation is a common frequentist approach to pa-
rameter estimation. The ML estimates are obtained as, Θ̂ML = arg maxθ L(Θ;x),
where L is the likelihood function, Θ are the parameters, and x the observed
data. The ML estimators are consistent, asymptotically unbiased and asymp-
totically most efficient among all estimators (Olofsson and Andersson, 2012).
Sometimes it is possible to find explicit analytical solutions to ML estimators
but often numerical methods are required. The Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) is an iterative method for finding a
local maximum of the likelihood function. This method is commonly used for
finding Θ̂ML when no analytic solution is available due to missing information
such as latent variables. Mixture models, as presented in Section 2.3, could
be viewed as latent models where the classification values are the missing in-
formation. Hence, the EM algorithm is often utilized to find ML estimates of
mixture models.

The EM algorithm starts with some initial parameters values, Θ(0). Then,
in each iteration, an E-step is performed followed by a M-step. The E-step
corresponds to computing the expected value of the latent variables given
the current parameter values. The ensuing M-step maximizes the likelihood
conditioned on the latent variables being equal to their expectation found in
the E-step. The method has been shown to converge for a very general class
of problems (Wu, 1983).

In Paper I, the EM algorithm could not be applied since the M-step was
not computationally feasible to perform, or even approximate. Instead, the
EM gradient (EMG) algorithm (Lange, 1995) was utilized. This method is
based on the same idea as EM but the M-step is replaced with one step of the
Newton-Raphson method, i.e,

Θ(i+1) = Θ(i) +H−1(Θ(i))E
[
∇ logL(Θ(i))

]
,

where H is the Hessian matrix. That is, the M-step is replaced by one step
of an iterative optimization algorithm. Any strict local maximum of the like-
lihood locally attracts the EM and EMG algorithm at the same rate of con-
vergence. Hence, EMG can be a good alternative when the M -step of the
EM-algorithm is unavailable.
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5.2 Bayesian inference

The maximum likelihood approach to parameter estimation yields a point esti-
mate of the “true” value of the assumed model. From the Bayesian perspective
there is no “true” value. Instead, probability distributions of possible parame-
ter values has to be incorporated, the so called prior distribution. Then, given
data and the prior distribution it is possible to acquire a probability distribu-
tion of the parameter values. A strong point in the Bayesian approach is that
prior knowledge about parameter values can be included in the estimation of
parameter values. On the other hand, some choice of prior has to be chosen.
If the assumption of the prior do not hold, the estimated parameter values
might be strongly biased.

Given the data and the prior distribution, inference can be drawn from
the, so called, posterior probability distribution. The posterior probability
distribution is the probability distribution of the parameters conditioned on
the observed data. From Bayes’ theorem,

f(Θ|X = x) =
f(X = x|Θ)f(Θ)

f(X = x)
∝ f(X = x|Θ)f(Θ),

where f denotes PDF:s, x the data, and Θ the parameters. Bayes’ theorem
can be generalized to handle more abstract probability spaces where no PDF:s
exist, see for instance (Stuart, 2010).

The posterior probability distribution is not only a point estimate but a
whole probability distribution. Hence, more information is given since ques-
tions about uncertainties in the parameter estimation can be answered as
well as several choices of point estimates (mean, median, mode, etc). How to
choose the prior distribution depends on what is known about the problem. If
nothing can be assumed there are two philosophies, either to choose an unin-
formative prior or to chose a prior that penalizes the complexity of the model
(Simpson et al., 2017). The first philosophy, choosing an uninformative prior,
will let the data explain the posterior distribution as much as possible in lack
of known information. The second philosophy, penalized complexity prior (PC
prior), assumes that a simpler model is better since it is more easily under-
stood and is less prone to overfitting. In lack of information indicating the
opposite, the simpler model should be preferred according to this philosophy.
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5.3 Monte Carlo simulation

Through Bayes’ theorem, the posterior distribution is known as a function of
marginal and conditional distributions. the normalizing constant, f(X = x),
is often not explicitly available. Obtaining it through analytical integration
is usually impossible and Θ can be high dimensional, i.e., also numerical in-
tegration becomes troublesome. In spatial statistics in particular, Θ often
includes latent random fields and is high dimensional, or even infinite dimen-
sional. The high dimensionality makes numeric integration computationally
infeasible but Monte Carlo (MC) integration is often a viable alternative.

Monte Carlo integration is a method of approximating expected values
by simulating samples from the probability distribution and computing the
sample mean as a proxy for the true expectation. For instance, the probability
of finding Θ ∈ A can be written as an expectation and be estimated using MC
simulation as

P (Θ ∈ A|X = x) = E [I (Θ ∈ A)|X = x] ≈ 1

N

N∑
i=1

I
(
x(i) ∈ A

)
,

where x(i) are sampled from the distribution of Θ|X = x. Hence, the posterior
distribution can be approximated arbitrarily well if it is possible to generate
a large enough sample from it.

MC simulation is not only useful for Bayesian inference. For instance, in
Paper I, MC simulation was used in the EMG algorithm to approximate expec-
tations related to the Markov random field. However, in Bayesian statistics,
the problem with approximating the normalizing constant is so common that
Bayesian inference has become more or less synonymous with MC simulations.

5.3.1 The Metropolis-Hastings algorithm

We saw that MC simulation can be used to approximate the posterior distri-
bution as long as it is possible to sample from the true posterior distribution.
This is a rather strong requirement. For Bayesian analysis, it is often the case
that we are not able to sample from the posterior directly. However, it is often
possible to create Markov chains with the correct stationary distribution.

A Markov chain Monte Carlo (MCMC) simulation is a MC simulation
where the sample points are generated dependent on each other. Each sample
point is dependent on the closest former sample point, i.e., the sample is
generated from a Markov chain. This Markov chain is constructed such that its
stationary probability distribution equals the target distribution. Here, target
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distribution refers to the probability distribution which we would want to
sample from in a MC simulation; typically a posterior probability distribution.

It might sound strange to generate highly dependent data in order to
estimate expectations. Of course, if it was possible, we would like to generate
independent data instead, then we would have just a regular MC simulation.
However, if the dependency between consecutive sample points diminish fast
enough compared to the sample size of the MCMC simulation, the MCMC
integration will produce consistent estimates of the true expectation.

The main archetype of MCMC algorithms is the Metropolis-Hasting (MH)
algorithm. It is based on proposing a new sampled value, y, distributed accord-
ing to some given probability distribution conditioned on the most recently
sampled value, x(i−1). This probability distribution is known as the proposal
probability distribution and we denote its PDF as q(y|x(i−1)). The value y is
not necessarily chosen as the next sampled value in the Markov chain, x(i).
Instead, it has to go through a trial where it is chosen as x(i) with a proba-
bility α. If not chosen, x(i) = x(i−1). This trial is known as the accept/reject
step and α is known as the acceptance probability and is given by

α = min

{
f(y)

f(x(i−1))

q(x(i−1)|y)

q(y|x(i−1))
, 1

}
.

Here, f denotes the PDF of the target distribution. Of course, f is often known
only up to a normalizing constant. However, it turns out that this provides
no obstacle since the normalizing constants are canceled out in the expression
anyway, i.e., we use the expression without the normalizing constant instead
of f in the formula. The first ratio in α weights how probable y is compared to
x(i−1) with respect to the target distribution. Since there might be a higher
probability of realizing y conditioned on x(i−1) than vice versa, the second
ratio balances this.

Due to the Markov structure, the initial value of the samples, x(0), will
affect the distribution at later iterations. The first couple of iterations can
be highly dependent on x(0) and the iterations until the dependency on the
initial value has become insignificant are known as the burnin phase. How
many iterations the Markov chain spends in the burnin phase varies upon the
choice of initial value, the target distribution, and the proposal distribution.
It is important that the chain is run for sufficiently many iterations as to leave
the burnin phase. Furthermore, after leaving the burnin phase, it has to have
been run for enough further iterations to yield a reasonable MC estimate. This
creates a common dilemma since it is not always obvious when the Markov
chain leaves the burnin phase. Typically, the burnin phase is identified visually
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Figure 5.1: Example of a parameter path during MCMC simulation.

using plots of the parameter paths for some of the parameters. When a
parameter path no longer show a clear trend, as it does in the beginning, it
is assumed that it has passed the burnin phase. Figure 5.1 shows an example
of a parameter path during a MCMC simulation. By visual inspection we
would conclude that the Markov chain passed the burnin phase after about
400 iterations. The samples from the burnin phase are typically removed
before computing the expectations—this is important since the burnin could
otherwise bias the estimation.

An efficient MCMC chain should have as low dependency between con-
secutive samples as possible in order to make efficient use of the number of
iterations available. This is known as quick mixing, as compared to slow mix-
ing where there are significant dependencies between samples in the Markov
chain even when separated by a large number of iterations. Quick mixing
requires small dependencies on the prior sample in the proposal distribution
while still allowing for a high acceptance probability. These are usually com-
peting requirements that are hard to satisfy simultaneously.

A common proposal distribution for the MH algorithm is the Gaussian

proposal centered at x, i.e., q(y|x) ∝ exp
(
− (y−x)TΣ−1(y−x)

2δ

)
for some chosen

covariance Σ. Here, δ controls the stochastic step length. Note that this is
a symmetric proposal since q(y|x) = q(x|y). MH methods with this specific
class of proposal distributions are known as random walk Metropolis-Hastings
algorithms, since the proposals would have behaved like a random walk if the
accept/reject step had not been present.
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Gibbs sampler

An important special case of the MH algorithm, that even predates MH, is
the Gibbs sampler. Suppose that the random variable is two-dimensional,
x = [x1, x2]. If the conditional probabilities are known, i.e., the distribution
of x1|x2 and x2|x1, it is possible to use these conditional distributions as
proposals. Hence, the acceptance probability of the MH algorithm becomes

α = min
{
f(x1)
f(x2)

f(x2|x1)
f(x1|x2) , 1

}
= min

{
f(x1,x2)
f(x1,x2) , 1

}
= 1. Since the acceptance

probability is always 1, the accept/reject step is not necessary. That means

that if we sample first from x
(i)
1 |x

(i−1)
2 and then from x

(i)
2 |x

(i)
1 , in each iteration,

the corresponding sample path will be a realization of a Markov chain with
stationary distribution equivalent to the target distribution. This holds for
x, x1, and x2 of arbitrary dimensionality.

It is also possible to mix the Gibbs samplers and general MH algorithms
such that disjoint subsets of parameters for the target distribution are updated
separately using the conditional distributions and the Gibbs sampler. How-
ever, sampling from these conditional distributions does not need to be done
explicitly. Instead, one iteration of the MH algorithm can be used to sample
from the conditional distributions. This is known as Metropolis-within-Gibbs
MCMC and is utilized in Paper II.

MALA

The Metropolis adjusted Langevin algorithm (MALA) (Roberts and Tweedie,
1996) is a special case of the MH algorithm that, compared to the regular
MH algorithm with symmetric Gaussian proposals, make use of the target
distribution in designing the proposal distribution. This is achieved by using
the gradient of the target PDF. It is based on the SDE of Equation (4.2), i.e.,

dX(t) = Σ∇ log f(X(t))dt+
√

2Σ
1
2 dB(t), (5.1)

where ∇ is the gradient operator with respect to the dimensions of X(t), W (t)
is a Brownian motion of corresponding dimensionality, and Σ is the covari-
ance operator of the proposal distribution. The solution to equation (5.1)
has the target distribution as its invariant probability distribution. Hence, if
the sample path of the SDE would be available, taking samples at distances
sufficiently far apart would correspond to independent sampling from the tar-
get distribution. The MALA algorithm uses the Euler-Maryuama method to
acquire a discretization of a sample path from the SDE. However, the dis-
cretization introduces errors and an accept/reject step is necessary to enforce
sampling from the correct target distribution.
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The proposals generated from the regular random walk MH algorithm can
be considered as being Euler-Maryuama time discretizations of a Brownian
motion. The Brownian motion does not have the target distribution as its
stationary distribution and therefore it will yield more rejections than the
MALA algorithm, for comparable steps lengths. This means that the MALA
algorithm mixes better than the Random walk MH. However, sometimes the
computational overhead of computing the gradient is so high that the regular
random walk MH performs better anyway.

5.3.2 Crank-Nicholson MCMC

Cotter et al. (2013) remarked that the Euler-Maryuama scheme used for
MALA is not stable with respect to the step size and the number of di-
mensions of the random variable. With increased dimensionality, the step
length needs to be decreased in order to keep a constant acceptance probabil-
ity. That corresponds to a mixing of the MCMC chain that becomes slower
with increased dimensionality. This can be a problem when approximating
an infinite dimensional model by a finite dimensional approximation. Cotter
et al. (2013) noticed that if the target probability measure, µY , is absolutely
continuous with respect to a Gaussian probability measure, µ0, the SDE,

dX(t) = −KQX(t)dt+ γK∇ log f(X(t))dt+
√

2KdW (t),

has the probability measure µ0 as a stationary solution if γ = 0 and µY if
γ = 1. Here, K can be chosen either as the covariance operator of µ0 or
the identity operator. Q is the precision operator of µ0 and f is the Radon-
Nikodym derivative dµ

dµ0
.

Note that Cotter et al. (2013) are speaking in terms of function spaces, op-
erators, and Radon-Nikodym derivatives instead of random vectors, matrices,
and PDFs. This is because the framework of Cotter et al. (2013) is mainly
concerned with infinite dimensional random objects, or high dimensional ap-
proximations thereof.

By discretizing this SDE using a Crank-Nicholson approximation on the
linear part of the drift, stability is achieved and the discretization errors for
a chosen step length are no longer dependent on the number of dimensions.
This scheme can be written as(
I +

1

2
KQ

)
X(ti) =

(
I − 1

2
KQ

)
X(ti−1) + γK∇ log f(X(ti−1))δ +

√
2Kδε.
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The Crank-Nicholson MCMC method is a MH algorithm and the ensuing
accept/reject step is identical to the regular MH algorithm. The novelty with
the method, as compared to random walk MH and MALA for instance, is that
the discretization is based on the Crank-Nicholson finite difference method
and that it puts MCMC methods into a more general functional analytic
framework.

Note that K could be chosen either as the covariance operator of µ0 or
the identity operator. If it is possible to draw samples from µ0, the choice
should be made as K = C, i.e., setting K to the covariance operator of µ0.
However, if it is not possible to draw samples from µ0, K should be chosen as
the identity operator. In this case, (I + 1

2Q) has to be inverted, which is not
always possible.

Just as with MALA compared to a random walk MH, choosing γ = 1
requires evaluation of the gradient but will lead to a higher acceptance prob-
ability. The Crank-Nicholson MCMC scheme is particularly well-suited to
Bayesian spatial modeling including continuous Gaussian random fields. This
is because the posterior distribution of spatially continuous random fields are
generally not Gaussian even though their prior distribution is. Since these
posterior random fields are generally high dimensional, the step length’s in-
variance to the number of dimensions in the Crank-Nicholson MCMC algo-
rithms is important. This was utilized in Paper II in order to acquire an
efficient posterior sampler.



Chapter 6

Applications

Although this thesis is mainly focused on methods for statistical analysis of
spatial data, it is hard not to mention some applications for where it can be
used. The first paper as well as the third and fourth are specifically focused on
solving problems related to applications outside of the field of spatial statistics.
The following chapter will present some prerequisites that are needed in order
to make sense out of these appended papers.

6.1 Computed tomography

A standard X-ray projection image is acquired by exposing the region of inter-
est of a patient (or inanimate object) to X-ray radiation. A detector or film is
placed such that the patient is blocking the straight lines between the detector
and the emitter of the radiation. By measuring the amount of radiation at the
detector and comparing with the amount emitted, it is possible to compute
the amount of attenuation of X-ray radiation as it passed through the region
of interest. From the spatial extent of the detector surface a two dimensional
image of the X-ray attenuation in the region of interest is acquired.

Computed tomography (CT) imaging is a technique for acquiring three-
dimensional internal images of electron density within living organisms (or
inanimate objects). The method relies on acquiring X-ray projection images
at different angles. The Radon transform (Radon, 1986) relates the projected
attenuation at the detector for a X-ray beam to the two-dimensional and spa-
tially varying attenuation constant in a slice of the scanned region of interest.
Hence, by a carefully considered set of angles of X-ray projection images, it is
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possible to acquire a discretized Radon transform image of two dimensional
slices of the patient. Such images can in turn be transformed to Euclidean
space in order to approximate the spatially varying attenuation constants,
slice by slice.

The X-radiation is ionizing, i.e., it can ionize atoms and molecules along
their path by separating electrons. This ionization occurs either through
Compton scattering or the photoelectric effect (Haidekker, 2013). Such ioniza-
tion causes molecules to react with its surrounding, possibly breaking apart.
This in turn can lead to damaged cells and mutated DNA, increasing the risk
of cancer. This ionizing property can also be used in radiation therapy. Then,
the ionizing property of the high-energy X-ray photons are used to damage
cancerous tumors. However, for the most part, the ionization is an unwanted
side effect when scanning living beings. Since a CT scan will require a large
number of X-ray projection images it will expose the patient to a considerable
dose of X-radiation and hence a higher risk of dangerous ionization effects.
This issue is the motivation to the work of Paper I.

6.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is another three-dimensional and non-
invasive medical imaging technology. It measure tissue proton density and
magnetization properties. MRI is of great importance in medicine due to
its ability to detect differences in tissue even when the density of the tissue
does not change considerably (Farncombe and Iniewski, 2014). Hence, MRI
has outstanding soft tissue contrast compared to CT, which could mainly dif-
ferentiate between tissues of varying density such as soft tissue, bone, and
cavities. In Paper I we are concerned with acquiring CT-equivalent informa-
tion from a MR scan in order to avoid the ionizing radiation inherent to CT
imaging.

The MR scanner uses a strong magnet to produce a static magnetic field
and the patient is placed inside this magnetic field. The magnetic spins of
protons, mostly from hydrogen atoms, will align either parallel or orthogonal
to the external magnetic field. Since the parallel orientation has a lower energy
level than the orthogonal, more protons will align parallel to the external
magnetic field. The relative amount of the total number of protons that are
oriented parallel to the magnetic field is called the spin excess.

Besides the strong magnet, the MR scanner is equipped with coils able
to transmit RF pulses. By transmitting pulses with a certain frequency and
duration, the spin excess will flip from a parallel alignment to an alignment of
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chosen degree, θ, i.e., the flip angle. That is, a majority of the protons will be
oriented such that their spin vector has an angle of θ with the magnetization
vector of the external magnetic field. Moreover, an effect known as phase
coherence will make most of the spins direct themselves in the same direction
also in the plane orthogonal to the direction of the external magnetic field.
The spins will then rotate in their orthogonal direction while keeping the
angle, θ, from the external magnetic field, i.e., precessing around the axis of
the external field.

Once the RF pulse has been transmitted, the system will gradually return
to the original state. This occurs through two processes.

1. The phase coherence will gradually relax, i.e., less alignment among the
spin excess in the plane orthogonal to the external field. This process is
known as dephasing or T2-relaxation.

2. The spin excess will gradually go back to an alignment with the external
field. This is known as T1-relaxation.

T2-relaxation occurs at a smaller time scale (milliseconds) than that of
T1-relaxation. The time constant of the T2-relaxation is called T2 and, cor-
respondingly, the time constant of the T1-relaxation is called T1 (Haidekker,
2013). Both T1 and T2 are dependent on the tissue examined. Therefore,
knowing T1 and/or T2 give important information about the tissue.

It is possible to measure both T1 and T2 since the precessing excess spin
will emit RF signals as it relaxes. These signals can be measured by the MR
scanner. Since the MR scanner measures this relaxation in three dimensions
a three-dimensional image is acquired.

There are several parameters that can be modified in the MR scanner in
order to acquire slightly different images. For instance, the flip angle can be
chosen by modifying the RF pulse accordingly. In Paper I we are using images
from two different flip angles as well as both the T2 and T1 relaxations from
each flip angle. Hence, we acquired four three-dimensional images for each
patient scanned. In Paper I we are using this joint set of images in order to
acquire CT-equivalent information from the MR scanner.

6.3 Sea states

Papers III and IV of this thesis are concerned with modeling the spatial proba-
bility distribution of ocean waves on a large region of the north Atlantic ocean.
In order to understand the papers, this section present some key concepts of
ocean waves and their characterization.
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Figure 6.1: Qualitative sketch of the time series generated by a single sinu-
soidal wave as it propagates through a fixed point in space.

6.3.1 Local sea states

Ocean waves are dynamic motions of surface elevation. They are created by
the friction between the water surface and wind. The waves transfer energy
through the water away from the disturbance that introduced the energy
into the system. The pattern of wave evolution can be seen as a function in
time and space of the sea surface elevation, W (t, s). As such, we can define
local characteristics of the surface elevation, for instance wave crests (local
maxima), wave troughs (local minima), and points of zero elevation (zero
contour curves).

The simplest case of an ocean wave would be a monochromatic plane wave.
Such a wave can be characterized as

W (s, t) = A cos (ωt− k s ·x̂+ ε) ,

where x̂ is the unit vector in the direction of propagation of the wave, ω the
angular frequency, k the wave number, A the amplitude, and ε the phase.
Figure 6.1 shows a qualitative sketch of a monocromatic plane wave observed
as the sea elevation at a fixed point in space and as a function of time.

Due to gravity, the spatial propagation speed of the wave (phase velocity)
is controlled by the angular frequency. This means that the wave number is
k = g

ω , where g ≈ 9.81 is the gravitational acceleration. The phase velocity

becomes V = ω
k = ω2

g . Note that the phase velocity is dependent on the
angular frequency.

In reality, a sea surface cannot be modeled by a single monochromatic plane
wave. However, it can be decomposed into a sum of individual monochromatic



6.3. Sea states 51

t

w

Figure 6.2: A polycromatic waveform.

plane waves, i.e., a polychromatic wave. For a polychromatic wave, the sea
surface elevation can be described as

W (s, t) =

N∑
i=1

Ai cos

(
ωit−

ω2
i

g
s ·x̂i + εi

)
.

Here, N is the number of monochromatic waves that are being superimposed.
Note that the propagation direction, amplitude, angular frequency, and phase
all can vary between the individual monochromatic waves. An example of
a polychromatic waveform observed at a fixed point in space can be seen in
Figure 6.2. As can be seen, for a polycromatic wave, the concepts of wave
height and wave period is less clear. Furthermore, since the propagation speed
of monochromatic waves depend on their angular frequency, a polychromatic
wave, including sinusoids with varying angular frequency, will change shape
as time evolve.

The number of terms, N , might be large and we might ask ourselves how we
can characterize this apparently chaotic behavior of ever-changing waveforms?
The answer being, as a stochastic process, i.e., W (s, t) is a stochastic process
in space and time. The probability distribution of W (s, t) is known as the sea
state. A sea state typically concerns the behavior of W for a smaller region in
space during a smaller interval of time. Due to the changes in wind, current,
tides, etc., the probability distribution of W will not remain the same when
considering other time intervals or spatial regions.

If the water is deep enough, the surface elevation can be modeled by a
Gaussian process. This is due to the fact that deep water allows the individual
monochromatic waves to superimpose on each other without interacting. Since
the sea surface elevation can be explained as a large sum of non-interacting
sinusoidal waves of independent random amplitude, phase, and direction, the
central limit theorem implies Gaussianity. As a Gaussian stochastic process,
the properties can be completely characterized by a first order mean function
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and a second order covariance function. In this thesis we are mainly concerned
with the implications of the sea state to naval logistics. In most of these cases,
the mean value is not of any importance and we might for practical purposes
consider a centered Gaussian process—that is, we consider the mean function
to be zero everywhere. By considering a sufficiently small region in space and
time, the Gaussian process will be approximately stationary. Hence, for a
local sea state, W is completely characterized by its spectral density, S.

An important consequence of the dependency between propagation speed
and angular frequency of monochromatic waves is that the spatio-temporal
spectral density can be characterized by a function of only two variables, the
angular frequency, ω, and the direction, θ (Åberg et al., 2008). We will refer to
the spectrum on this form as the directional spectrum, S(ω, θ). The spectral
moments of W in the spatial direction 0◦ are then defined as

mij =

∫ ∞
0

∫ 2π

0

(
ω2

g
cos θ

)i
ωjS(ω, θ)dθdω.

If we would want to, the angle 0◦ can be redefined to any angle, τ , by just
translating cos θ to cos(θ − τ). The spectral moments give important charac-
terizations of the distribution of W as will become apparent in Papers III and
IV.

The temporal spectrum characterizes the stochastic process of sea elevation
in time for a fixed point in space, i.e., W (0, t) for a stationary process. The
temporal spectrum is defined as

S(ω) =

∫ ∞
0

S(ω, θ)dθ.

6.3.2 Significant wave height

For the monochromatic wave of Figure 6.1 the wave height was defined as the
elevation between the crest and trough. When characterizing a polychromatic
wave, this definition is not as useful since the wave height of individual waves
will be random. An important statistical quantity often used to characterize
the distribution of individual wave heights for a given sea state is the signif-
icant wave height. The significant wave height was originally defined as the
mean wave height among the highest third of the individual waves, denoted
as H1/3. This definition was intended to mathematically express the average
wave height as estimated by a “trained observer”. Even though H1/3 is clearly
defined it is not always easy to compute. Hence, when stochastic modeling
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was popularized, another definition became more practical. This newer def-
inition, denoted as Hs, is four times the marginal standard deviation of the
stochastic process W . That is,

Hs = 4σ = 4
√

Var[W (0, 0)] = 4
√
m00.

Under the narrow-band approximation (a spectral density with its main energy
in a narrow interval of frequencies) H1/3 ≤ Hs. For most practical problems
the inequality is close to sharp and Hs ≈ H1/3. Therefore the two definitions
are often used interchangeably.

The significant wave height is measured in units of height (typically me-
ters). Many important properties of the sea state can be derived simply from
Hs. In Paper III it is used to compute risks associated with naval logistics.

6.3.3 Wave period

Just as the significant wave height was a quantity summarizing the random
behavior of the wave heights, it is also possible to summarize the distribution
of individual wave periods. There are several such quantities in use, three of
these are the peak wave period (Tp), the mean zero-level crossing wave period
(Tz), and the mean wave period (T1). The peak wave period is defined as the
period which maximizes the spectral density, i.e.,

Tp := 2π
(

arg max
ω

S(ω)
)−1

.

The mean wave period is defined as the first moment of the normalized period
spectrum, i.e.,

T1 = 2π

∫∞
0
ω−1 S(ω)dω∫∞

0
S(ω)dω

.

The mean zero-level crossing period is defined as the mean time between
two consecutive zero upcrossings (or alternatively zero downcrossings). This
corresponds to

Tz = 2π

√ ∫∞
0
S(ω)dω∫∞

0
ω2 S(ω)dω

.

All three quantities are measured in units of time (typically seconds). The
notation T will, from here on, be used to specify a quantity of wave period
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distribution, without specifying which. Considering Hs together with a quan-
tity related to the wave periods gives more information than only considering
Hs. For instance, a very high wave is often as most dangerous when the wave
period yields wave lengths of the same order as the length of the ship. In
Paper IV, the joint information of both Hs and T1 are taken into account in
order to evaluate the risk of capsizing.

6.3.4 Wave velocity and direction

Both Hs and T can be defined from the temporal process W (0, t), i.e., without
concern of the wave direction. However, waves do have directional properties.
For a monochromatic wave, the concept of wave direction is clear. The crests
of a wave, or any other identifiable point of the wave, will move in a straight
line; we also know the propagation speed of the wave, i.e., the phase velocity.
For a polychromatic wave, the concepts of direction and speed become more
ambiguous. Just as with the wave period, several definitions of local wave
velocity are in use (Longuet-Higgins, 1957; Baxevani et al., 2003). Let us
consider one such definition, the zero-level curve velocity,

V (s, t) = −
[
Wt(s, t)

Wx(s, t)
,
Wt(s, t)

Wy(s, t)

]
,

where Wi denotes the partial derivative in direction i of the stochastic process
W . It should be noted that if W is a monochromatic wave, the velocity is
deterministic and corresponds to the phase velocity, g/ω. However, except for
monochromatic waves, the velocity varies randomly over time since it depends
on the stochastic process W .

A common approximation is that of a long crested sea, i.e., a unidirectional
waveform. For such a sea, the directional spectrum is reduced to S(ω, θ) =
S(ω)δ(θ − θ0), where θ0 is the direction of the waves and δ is the Dirac delta
function. For a long crested sea, the sea state can be characterized by the
temporal spectrum together with one single direction, θ0. A long crested sea
is generally a good approximation for severe sea states—the reason being that
big waves are created by strong wind blowing consistently in one direction for
a long time. Hence, most of the energy of the wave state will be focused in
one single direction, or a narrow band of directions.

The mean velocity is a vector valued quantity characterizing the mean
speed and direction of the waves,

Vm(s, t) := E [V (s, t)] .
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For a long crested sea, the mean wave velocity in the direction of wave prop-
agation can be given as a function of the spectral moments, i.e.,

Vm := −m11

m20
.

6.3.5 Parametric spectral densities

In the general case, the spectral density, S(ω, θ), can be infinite-dimensional.
Quantities such as Hs, T and Vm give limited information about the sea
state. However, in many cases, these quantities are all that is needed to
characterize the sea state completely. Typically, sea states are approximated
by some parametric family of spectral densities. There exists several such
families but one of the most popular, which is both relatively simple and
widely applicable, is the Bretschneider spectrum (Bretschneider, 1959; Ochi,
1998). It is a parametric family of temporal spectrums on the form

S(ω) = cω−5 exp(−1.25ω4
p/ω

4), c = 0.3125H2
sω

4
p, ωp = 2π /Tp.

When this spectrum characterizes W , all three definitions of wave period are
proportional to each other, Tp = 1.408 · Tz and Tp = 1.2965 · T1. Note that
the Bretschneider spectrum is completely characterized by Hs and T .

A Bretschneider spectrum only characterizes the temporal spectrum but
there are many applications where the directional distribution is of great im-
portance. Luckily, many of those applications concern severe seas, i.e., where
the waves are relatively high. We already know that the assumption of a long
crested sea generally is a good approximation for such sea states. Hence, only
the temporal spectrum and one single wave direction is needed.

When the wind has blown with a constant speed for long enough time and
over a long enough stretch of water (fetch), the waves will not grow any bigger.
This is called a fully developed sea. The amount of time and size of the fetch
needed to reach full development depends on the wind speed. The significant
wave height and mean wave period of the fully developed sea also depends
on the wind speed. Hence, for a fully developed sea there is a one-to-one
relationship between the wind speed, the significant wave height, and any of
the three definitions of wave period. This relationship can be used to simplify
the Bretschneider spectrum and remove the dependency on T . This spectrum
is known as the Pierson-Moskovitz spectrum and is a Bretschneider spectrum
where ωp = 0.4

√
g/Hs. While the Bretschneider spectrum can model a wide

variety of sea states on deep open ocean, the Pierson-Moskovitz spectrum is
restricted only to fully developed seas.
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6.3.6 Risks in naval logistics

In Papers III and IV we are concerned with three types of risks. These are
fatigue damage, extreme wave loads, and broaching-to.

A ship traversing the ocean is subjected to wear due to collisions with
waves. These collisions will create microscopic cracks in the hull of the ship.
With time and further exposure to the wave environment such cracks will
grow while new will form. If not repaired, the cracks will sooner or later grow
large enough for the hull to fail, ultimately sinking the ship. This type of wear
damage is called fatigue. A ship will accumulate a certain amount of fatigue
damage on any journey. However, the accumulated fatigue damage will vary
in severity depending on the sea states encountered en route.

In Paper III, the probability distribution of the significant wave height was
modeled spatially. From this model it is possible to compute the distribution of
accumulated fatigue damage on a planned journey. Knowing this distribution
makes it possible to plan the maintenance intervals as well as predicting the
life length and costs of maintaining a ship. Moreover, it can also aid in making
decisions about which route or mission for the ship to undertake.

If a ship encounters very high waves, severe damage to the hull can occur
from more direct forces than that of fatigue damage. Hence, it is also im-
portant to know the risks of encountering extreme wave loads. In Paper III,
a formula for computing the probability of encountering a significant wave
height above a certain threshold value (exceedance probability) is derived.
This can aid in deciding the route a ship should undertake and could save
lives.

Finally, a phenomenon known as “broaching-to” can cause a ship to cap-
size. Broaching-to occurs when a ship traveling at a certain speed is overtaken
from behind by a wave with an unfortunate combination of velocity, height,
and period. This can cause the ship to start sliding down the wave (surfrid-
ing), loosing control of steering, and making the ship “trip” on its own keel
and capsize. It can also cause the ship to turn quickly, angling it perpendicu-
larly to the oncoming waves, and hence leaving it more exposed to danger. In
Paper IV, we analyze the risk of capsizing due to broaching-to using the joint
spatial model of both Hs and T1.



Chapter 7

Summary of papers

The papers included in this thesis are concerned with three types of applica-
tions of spatial statistics. These are generation of substitue-CT images from
MRI, point processes for latent partitioning of spatial domains, and spatial
modeling of sea states. This chapter presents a brief summary of each of the
four papers.

7.1 Paper I: whole-brain substitute CT gener-
ation using Markov random field mixture
models

This paper models medical images from CT scans and MRI scans (of several
modalities) using a joint probabilistic model. The model is developed to pre-
dict CT images conditioned on the MR images. The incentives of this work
are the need for CT-equivalent information in medical applications while re-
ducing ionization damage. Two of these applications are PET imaging and
dose planning of radiation therapy.

Johansson et al. (2011) showed that it is possible to acquire a substitute
CT (s-CT) image from magnetic resonance imaging (MRI) using statistical
methods. Their model considered the value at a voxel for a set of aligned im-
ages (several MR images of different modalities and a CT image) distributed
as a multivariate Gaussian mixture model (GMM). The set of images por-
trayed the same scene and contained four MR modalities (two flip angles and
both T1 and T2 relaxation for each flip angle). Hence, the GMM for each
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(a) Binary mask (b) CT (c) First echo, 10◦

(d) Second echo, 10◦ (e) First echo, 30◦ (f) Second echo, 30◦

Figure 7.1: A two-dimensional profile slice of the three-dimensional image of
one of the subjects in the CT/MRI data. Binary data mask (panel a), CT
image (panel b), four MRI UTE sequences (panels c-f).

voxel was five-dimensional. An example of the dataset for one patient can be
seen in Figure 7.1, the images are three-dimensional but we can only show
one two-dimensional slice from the full three-dimensional image.

By considering a dataset of patients where all five images were available,
the parameters of the GMM could be estimated using the EM method. A
substitute-CT image was generated, given the set of the four MR images, as
the conditional mean of the probability distribution.

The model of Johansson et al. (2011) did not consider any spatial structure
of the images. Instead, they assumed each voxel to be independent of the
others. Clearly, both the MR- and CT-images have a dependency between
neighboring voxels. Particularly, neighboring voxels have a high probability
of portraying the same tissue type. Paper I extends on the Gaussian mixture
model by assuming a Markov random field for the class memberships of the
voxels, yielding a spatial mixture model as described in Section 2.3.
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Paper I also extends the model by replacing the Gaussian distributions in
the mixture model by the more flexible multivariate normal inverse Gaussian
(NIG) distribution. Hence, allowing for varying kurtosis and skewness.

Unfortunately, for datasets of realistic size, the normalizing constant of the
Markov random field is too expensive to compute. Hence, a probability mea-
sure of the joint distribution is only available up to a normalizing constant.
This makes ML estimation complicated since the likelihood function cannot
be computed explicitly. As an alternative, Paper I considered a pseudolikeli-
hood, L̃(Θ;x), where the joint likelihood is approximated as a product of all
conditional probabilities. Furthermore, even with the pseudolikelihood, the
M-step of the EM algorithm becomes computationally too costly on medical
images of realistic size. However, the gradient of the pseudolikelihood can
be approximated through Gibbs sampling. Therefore, the parameters can be
estimated using an EM gradient algorithm.

Variations of the proposed method are evaluated and compared with the
original model of Johansson et al. (2011) using cross-validation. The study is
performed using a dataset of brain scans from 14 different patients. The con-
clusion is that the spatial classification model clearly increases the predictive
ability. However, adding the NIG distribution did not show much improve-
ment. An example of classification for a slice of a head is shown in Figure
7.2. The classes represent: soft tissue (turquoise), bone (blue), air (red), and
a class representing small scale mixing between both bones and soft tissue
(green).

7.2 Paper II: Level set Cox processes

A popular point process model of non-interacting point observations, with spa-
tially varying and unknown intensity, is the log-Gaussian Cox process (LGCP).
A common assumption is assuming that the covariance function of the latent
Gaussian field is a member of a parametric family of stationary covariance
structures and the mean function includes a finite number of fixed effects.
Such a model is viable in many cases but the regularizing assumptions can
also be too strong. An example of this can be seen in Figure 7.3 which shows
a point pattern of observed locations of the tree Beilschmiedia pendula in a
region of Barro Colorado island, Panama. The figure show a pattern that
seems to be made up of two mutual exclusive subsets of the observational
window. One region of low intensity, and one region of higher, and spatially
varying, intensity.

Suppose that we knew the partition of the observational window into these
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Figure 7.2: Example classification using the proposed model. Here showing a
two-dimensional slice of a three-dimensional classification field on one of the
subjects in the CT/MRI data set. Each color denotes a class in the mixture
model.

two classes. It would then be reasonable to model the two regions separately
as two different point processes on two disjoint spatial domains. Typically,
a homogeneous Poisson process could be used for the low intensity regions
and a LGCP model for the region with higher and spatially varying intensity.
This is the idea of Paper II, where the latent structure of the LGCP model
is extended with an extra level with a classification field. The classification
field models the unknown partitioning of the spatial domain into the different
types of classes. Conditioned on the latent classification field, each region is
modeled separately by a LGCP model with a simple latent Gaussian random
field structure, in this paper a Matérn covariance. The model can be viewed
as a Cox process where the logarithm of the intensity surface is distributed
as a spatial mixture model between several classes of Gaussian random fields,
i.e.,

log λ(s) =

K∑
k=1

πk(s) Xk(s).

The spatially dependent classification probabilities, πk(s), are defined by ex-
cursion sets of a Gaussian random field, i.e., the level set approach described
in Section 2.3. The model is named the level set Cox process (LSCP) due to
this latent classification based on the level set approach.

The LSCP model is a latent Gaussian model since the intensity surface is



7.2. Paper II: Level set Cox processes 61

0 100 200 300 400 500 600 700 800 900 1000

0

50

100

150

200

250

300

350

400

450

500

Figure 7.3: Observations of the tree Beilschmiedia pendula on a 1000 × 500
square metres area of the Barro Colorado island of Panama.

completely defined by the realizations of latent Gaussian random fields, one
field for each mixture class as well as one field for the classification. Compared
to the Markov random field model of Paper I, the level set approach is defined
on a continuous spatial domain which makes the LSCP model continuous in
space.

Having a continuous point process model is important since point obser-
vations, most often, are observed in continuous space. However, in order to
practically work with the model, some finite-dimensional representation of
continuous space is required. In Paper II, the observational domain, D, is
discretized into a finite number of subregions on an equidistant lattice grid,
forming a partition of D. It is shown that the posterior probability measures
of the latent Gaussian fields of the finite-dimensional model converges to the
posterior measure of the continuous model under refinement of the lattice grid.

The data of Figure 7.3 concerns the distribution of trees in a forest. The
interest of a biologist would typically be to understand the distribution of
tree density, i.e., the distribution of the intensity function, λ(s). Most of
that information could be conveyed in the correlation range and dependence
on soil constituents. Hence, the biologist would want to know the values of
the parameters of the Matérn correlation and the fixed effects. To get an
understanding of this, Paper II uses a Bayesian approach with PC priors.

The posterior distributions of both parameters, latent Gaussian fields, and
the intensity surface can be acquired by Monte Carlo simulations. Since the
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model is, a priori, latent Gaussian and high dimensional, the Crank-Nicholson
MCMC method (Cotter et al., 2013) is ideal, see Section 5.3.2. Also, since the
finite-dimensional approximation of the random fields is a grid on a rectangu-
lar observational window, a spectral approach using fast Fourier transforms
(Lang and Potthoff, 2011) further speeds up inference.

The dataset of Figure 7.3 is used to evaluate different incarnations of the
proposed LSCP model. This example highlights the flexibility and potential
of the model. An important conclusion is that the standard LGCP model
yields biased inference on model parameters. A result that is relevant since
this particular dataset has been widely used in the point process literature,
often analyzed using LGCP models.

7.3 Paper III: Spatial modeling of significant
wave height using SPDEs

The theory of modeling sea states by the spectral density only holds if the
distribution is stationary. In Section 6.3 we stated that this is approximately
true as long as we are only concerned with the sea state over a small region
in space and a small interval of time. If we would be interested in large
regions, the assumption of stationarity does not hold anymore. On the other
hand, modeling the sea elevation spatially for large regions does not give much
more information than modeling the governing parameters of the local sea
states spatially. That is, instead of modeling the spatio-temporal stochastic
process of the elevation of the sea surface, we are satisfied with modeling the
parameters of the sea state spectrum spatio-temporally.

Remember that, for a fully developed sea, the significant wave height gave
all information about the distribution of W at a fixed point in space. Since Hs

is the single most important sea state parameter for most practical applica-
tions, Paper III is dedicated to modeling Hs spatially. It has been shown that
the logarithm of significant wave height at a fixed point in space in the north
Atlantic can be approximated by a normal distribution. It turns out that the
log-normality holds also for multivariate distributions of several points in the
north Atlantic simultaneously, i.e., logHs(s) is a Gaussian random field.

When modeling Hs on scales as large as the north Atlantic, the spatial
discretization needs to be high-dimensional. Therefore, it is important to use
a model that scales well with respect to dimensionality. Due to this, the
SPDE approach was used, see Section 4.3. The method is also advantageous
since the discretized model still models a continuous random field, and the
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Figure 7.4: Realization of anisotropic Gaussian random field using deforma-
tion method.

discretization does not necessarily have to increase with the number of spatial
locations of observations. However, the standard SPDE approach demands a
Matérn correlation structure, which is stationary and isotropic.

Data show that the true Gaussian random field is neither stationary nor
isotropic. Hence, the standard SPDE approach is not a reasonable model
for this problem. In Paper III we modify the SPDE approach such that
we can model a Gaussian random field that is both anisotropic and non-
stationary while maintaining the beneficial properties of the standard SPDE
approach (Lindgren et al., 2011). The modification is based on the defor-
mation method (Sampson and Guttorp, 1992). That is, to consider a dif-
feomorphism between the spatial domain of the north Atlantic, G, and some
spatial domain on a related Riemennian manifold, D. Even though the ran-
dom field X(s) = logHs(s) is neither stationary nor isotropic on G, it will
be on D. That is, given a differentiable bijective function F : D → G,
X̃(s̃) := X(F−1(s)) is a Matérn Gaussian random field.

By letting X̃ be a Matérn Gaussian random field modeled by the SPDE
of Equation (4.5) with unit dampening, we acquire a SPDE with X as its
solution. This SPDE is[

κ(s)
2
α−2

(
κ(s)2 −∇ ·H(s)∇

)]α/2
(τ(s)X(s)) =W(s), (7.1)

where κ(s) =
√
|J [F−1](s)|, J [F−1](s) is the Jacobian matrix of F−1(s), and

H = κ(s)2J [F−1]−1(s)J [F−1]−T (s). What is interesting to note is that the
Jacobian of F−1 defines both κ and H.

We parametrize the functions κ(s) and H(s) as low-dimensional basis ex-
pansions using cosine functions. The parameters are estimated on data with
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Figure 7.5: Atlantic route.

the maximum likelihood method using a numerical quasi-Newton method.
To evaluate the model, we use data of significant wave height for the month

of April for the years 1979-2017. The fitted model was shown to agree well
with the data. The model was also used to simulate the distribution of fatigue
damage accumulated by a ship traversing the north Atlantic route, see Figure
7.5. It was shown that the spatial dependency was important to represent the
correct fatigue damage probability distribution. Also, an upper bound on the
exceedance probability of encountered Hs on the journey could be formulated.
The bound was derived using Rice’s method and the proposed model. This
upper bound was shown to agree well with observations for threshold values
above 5 meters.

7.4 Paper IV: Joint spatial modeling of signif-
icant wave height and wave period using
SPDEs

Paper IV extends the work of Paper III. Here, not only the significant wave
height, Hs, but also the wave period, T , is modeled spatially. It turns out that
also the data of log T is explained well by a Gaussian random field. Hence, the
univariate spatial models of Hs and T independently are equivalent to that
of Paper III. That is, both logHs and log T independently can be modeled
as solutions to the same class of SPDEs, but with different parameter values.
Here, the FEM implementation is extended to allow for arbitrary smoothness
as well as considering the spatial domain to be on the sphere instead of on
the plane of longitude-latitude projections. That is, the mesh is created on a
subset of the sphere.
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Paper IV also introduces a bivariate random field model of logHs and
log T jointly. The model is constructed such that the marginal distribution
of the two, univariate, random fields independently is equivalent to the model
of Paper III. The dependency structure between the two random fields are
introduced by a system of coupled SPDEs (Bolin and Wallin, 2018; Hu and
Steinsland, 2016), √

1 + ρ2Lα/2X X − ρLβ/2Y Y =W

Lβ/2Y Y = V.

Here, X(s) = logHs(s) and Y (s) = log T (s). The differential operators,
LX and LY , are both of the class defined in Equation (7.1). The two spa-
tial Wiener noise fields,W and V, are identically distributed and independent.
The parameter ρ explains the cross-correlation structure between the two ran-
dom fields, X and Y . Since ρ is allowed to be spatially varying, it allows for a
flexible bivariate random field model. It should be noted that the parameter ρ
is not identical to the pointwise cross-correlation between the two fields. How-
ever, it is related and a negative ρ corresponds to a negative cross-correlation
and vice versa.

Just as for the model of Paper III, the bivariate model can be approxi-
mated by the finite element method. This gives the same important beneficial
properties as in the standard SPDE approach (Lindgren et al., 2011). Fig-
ure 7.6 shows a realization of such a bivariate random field with a negative
cross-correlation, and with different anisotropy structures and smoothness in
the two fields. As can be seen, even though the two realizations have quite
different structure, for instance elongated in directions perpendicular to each
other, the regions with high values in one of them tend to be regions with low
values in the other one. This is an effect of ρ < 0.

The univariate models for Hs and T independently were shown to agree
well with data of the north Atlantic during April month in the years 1979-
2018. For the joint model, some degree of model-misspecification is present in
the cross-correlation structure. This seems to be largely due to the dynamic
nature of the sea states in space and time. The spatial points at which the
maximum cross-correlation is reached between Hs and T are not aligned in
space. Since the model of cross-correlation structure assumes an alignment
between points of maximum cross-correlation, the ML estimates of the cross-
correlation structure do not yield agreement with data. However, by fitting
the cross-correlation structure as to explain the pointwise cross-correlation,
the fitted model could explain the joint distribution relatively well.
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Figure 7.6: Realization of a bivariate, anisotropic and stationary Gaussian
random field. The left field has a correlation range of 25 in the direction of
the principal axis at 45◦ and a correlation range of 14 in the perpendicular
direction. The right field has the principal direction at an angle of −45◦ with
the correlation range 30, the perpendicular direction has a range of 15. The
correlation between the fields are controlled by ρ = −5.

The fitted model was used to reevaluate the fatigue damage analysis of
Paper III. In Paper III, data for T was not available, instead, the fatigue
damage was computed using only Hs. By using a formula dependent on
both Hs and T , a better approximation of true fatigue damage is acquired.
In Paper IV, it is shown that the joint model explains the fatigue damage
distribution better than just using Hs. However, similar results could be
achieved by considering a univariate model of Hs and pointwise conditional
means, T |Hs.

Also, a method for analyzing the risk of capsizing due to broaching-to was
investigated. In the method, the intensity of encountering a “dangerous” wave
is derived as a function of the sea state and the ship path. Furthermore, the
risk of capsizing given a “dangerous” wave is evaluated as a log-linear function
of Hs, T , and constants associated with the ship design. Putting these two
components together, the risk of a capsizing event due to broaching-to for a
ship traversing a route can be evaluated.

The risk of capsizing due to broaching-to is evaluated for a fictitious ship
and the route of Figure 7.5. The risk is computed, both from the available
data and from the spatial model. The distribution of capsize-risk using the
bivariate spatial model compare well with the data.
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Future work

During research, some ideas turn out to be fruitful while others do not. It is
common that new aspects of a problem are discovered while working on it.
Therefore, after finishing a paper, the main problem is usually not completely
solved. Instead, part of the problem has been solved and several new questions
have arisen. Luckily, new ideas have often emerged as well. This section
presents my view on possible paths of continuing the work presented in the
appended papers.

8.1 Future work related to Paper I

The model of Paper I does only include spatial dependency in the classifi-
cation field. However, in reality, the spatial dependency will also be present
within the tissue types. Furthermore, it would be reasonable to model the
substitute-CT as spatially continuous. That is, even though a CT image is
spatially discrete, the attenuation it is measuring is rather spatially continu-
ous. It would therefore be interesting to model the within-class random field
as a spatially continuous Gaussian random field. The SPDE approach should
probably be used since the spatial domain will be a complex three-dimensional
region. This corresponds to the model used in (Bolin et al., 2019). Also, with
the SPDE approach, the mesh could be refined in the face region while kept
rather course in the larger brain region. This would make sense since more
fine-scale variations are present in the face and nasal cavities.

Due to the spatial Markov random field, the parameter estimation and
prediction relied on Monte Carlo simulations. Such methods will require some

67
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computational overhead as well as lacking explicit expressions for important
characteristics. It would be interesting to see if ideas from Paper II could be
used in order to replace the Markov random field classification with a field
based on level sets, such as in Paper II.

Since the level set model of Paper II requires an ordering between the
classes, it would be interesting to see if such a constraint is reasonable for
the CT/MR data. If not, would it be possible to define a level-set based
classification that does not require an ordering? Such a model could be derived
by considering a level set approach on a multivariate random field. However,
this could possibly introduce issues with identifiability.

8.2 Future work related to Paper II

The level set Cox process model could benefit analysis in many areas of re-
search and industry, e.g., biology, material science, epidemiology, and eco-
nomic geography. In order to make it popular among such users, inference
has to be fast and easy to perform without extended knowledge in mathemat-
ics .

The main drawback with the method of inference proposed in Paper II
is that it is based on MCMC simulations of high dimensional spatial func-
tions in two dimensions. This is computationally very costly—even when
using the proposed Crank-Nicholson MALA algorithm. A popular software
package for spatial statistical analysis is R-INLA (www.r-project.org). In this
package, a LGCP model can be fitted and evaluated quickly using the SPDE
approach and integrated nested Laplace approximations (INLA) (Rue et al.,
2009). However, INLA relies on the latent field’s link function to be linear.
This is not the case for the LSCP—where a probit link occurs in the second
layer of the latent Gaussian random fields.

Recently, the INLA-Bru package has been introduced (www.inlabru.org).
With this, it is possible to approximate many non-linear link functions within
the INLA framework. An approximation of the LSCP model could possibly
be implemented using INLA-Bru. This would yield lightning-fast inference
compared to the MCMC method used in Paper II. If such an implementation
turned out to be successful, it will be both fast and easy for an analyst to use
the LSCP model. Moreover, the user would not need to be an expert in neither
mathematics nor computer science to perform the analysis and interpret the
results.
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8.3 Future work related to Paper III and IV

The model of Papers III and IV considers a diffeomorphism, F−1, between the
observed spatial domain, G and the deformed space, D. We never parametrize
F−1 directly—instead we parametrized a matrix-valued function of the Jaco-
bian matrix of F−1. Although we have yet to find a satisfiable parametrization
of F−1, doing so would open up new possibilities. For instance, mapping data
into D in order to use methods applicable only to stationary processes.

A related issue is that of alignment between logHs and log T in Paper IV.
By considering the spatial domain of T to be deformed to a space where T
is aligned with Hs—the suggested model of cross-correlation from Paper IV
would explain the data better. This would probably be possible using the
asymmetric shifted covariance model of Li and Zhang (2011) as suggested
in Hu and Steinsland (2016). In fact, such a model would correspond to in-
cluding yet another deformation (Sampson and Guttorp, 1992) into the model.

In Papers III and IV we used the ERA-Interim reanalysis dataset. This
dataset was produced partly using atmospheric models. It would be interest-
ing to compare the fitted model with real observed data, for instance from
ships. Such real observations would be scattered irregularly in space. In this
setting, it would make sense to evaluate the conditional predictive power of
the model. That is, to use it for interpolation of measurements to continuous
space. If shown to fit, such an application would be ideal since conditional
distributions can be computed easily and with a low computational footprint
using the proposed model.

The work of Papers III and IV concerns purely spatial models of sea state
parameters. It is important to explain also the time evolution of the ran-
dom fields. Hence, a future extension would be to consider a spatio-temporal
model. Such a model would probably need to include the wave direction as
well. Two important components for spatio-temporal models would be adding
an advective term and to add time dependence into the SPDE. The spatio-
temporal models of Krainski (2018) could possibly be used in such a model.
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