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ABSTRACT KEYWORDS
Naturalistic cycling data are increasingly available worldwide traffic safety; near-crash
and promise ground-breaking insights into road-user behavior analysis; crash risk;
and crash-causation mechanisms. Because few, low-severity ~ €XPosure; blackspots
crashes are available, safety analyses of naturalistic data often

rely on near crashes. Nevertheless, the relation between near

crashes and crashes is still unknown, and the debate on

whether it is legitimate to use near crashes as a proxy for

crashes is still open. This paper exemplifies a methodology

that combines crashes from a crash database and near crashes

from naturalistic studies to explore their potential relation.

Using exposure to attribute a risk level to individual crashes

and near crashes depending on their temporal and spatial dis-

tribution, this methodology proposes an alternative to black-

spots for crash analysis and compares crash risk with near-

crash risk. The novelty of this methodology is to use exposure

with high time and space resolution to estimate the risk for

specific crashes and near crashes.

1. Introduction

Crashes do not randomly occur across time and space; on the contrary, they
are more likely to happen at specific occasions (e.g., rush hours; Dozza,
2016) and locations (e.g., urban intersections; Wang & Nihan, 2004). These
locations are often labeled as “blackspots” to warn about their potential dan-
ger (Geurts & Wets, 2003; Hauer, 1996; Nguyen, Taneerananon, Koren, &
Luathep, 2014). However, exposure (e.g. ,number of road users or kilometers
traveled) confounds blackspot locations (Higle & Witkowski, 1988), because
the more road users transit a specific location, the larger the likelihood of a
crash. Hence, blackspots are more likely to exist whenever and wherever traf-
fic flow is more intense (i.e., a larger number of vehicles transits the area).
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Figure 1. A hypothetical Heinrich’s triangle for traffic safety, showing a possible relation
between crashes and near-crashes. Please notice that the numbers are arbitrary and strongly
depend on the definition of injury, damage, and near crash.

Risk, the ratio between number of crashes and exposure, is a better safety
indicator than crash number alone, because exposure can vary greatly in
time and space, thus influencing crash timing and locations (Elvik, 2007).
For instance, by taking into account the fact that Dutch citizens cycle lon-
ger distances than French citizens, a risk analysis may show that bicycling
is safer (per distance travelled) in Holland than in France, despite both
countries report a similar number of bicycle crashes every year.

To enable comparisons, risk is often calculated statistically over large
populations and/or long time intervals. For instance, to compare safety
across European countries, road fatalities are often divided by the number
of inhabitants (CARE', Eurostat’) to estimate crash risk. Travel surveys
may also estimate exposure; however, because of the human observers, the
collected data have a limited coverage and resolution in time and in space.
Recent advances in technology make it possible to monitor traffic flow
nonstop and with very high time and space resolutions. Therefore, crash
risk can now be calculated on smaller time- and space-scales than ever
before. In this study, we used cycling flow data to calculate risk of individ-
ual crashes, taking into account the specific time and location where each
crash happened. This paper introduces a new term, trickyspots, which is
based on individual crash risk and expands on the concept of blackspots by
taking exposure with high time resolution into account when defining dan-
gerous locations. Although previous spatial analyses created risk maps with
low spatial resolution (e.g., entire stretches of a road segment; Lynam,
Hummel, Barker, & Lawson, 2004) and/or used larger time scales (e.g., traf-
fic volume over a year time; Lynam et al., 2004) our methodology can esti-
mate risk for very specific locations (a few squared meters) and takes into
account how exposure changes over the hours of a day, the days of a week,
and the months of a year (Dozza, 2016).

In this paper, we use individual crash risk to explore the relation
between crashes and near crashes. A large body of literature promotes near
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crashes as surrogates for crashes. Furthermore, the assumption that crashes
follow some sort of Heinrich’s law (Heinrich, 1941) similar to the one
speculated in Figure 1 is largely accepted, though yet to be proven for traf-
fic safety. Proving the Henrich’s law in traffic safety is hard for several rea-
sons, for instance crash under-reporting makes it hard to estimate the
number of crashes leading to minor or no injuries (Wegman, Zhang, &
Dijkstra, 2012). Also, we still lack an objective and operational definition of
what a near crash is (Dozza & Gonzélez, 2013). Nevertheless, a direct rela-
tion between crashes and near crashes is often taken for granted in natural-
istic data analysis when estimating crash risk (e.g., Dingus et al., 2006;
Dozza, 2012; Victor, Dozza, Bargman, Boda, et al.,, 2014) and this assump-
tion affects policymaking. For instance, Hanowski, Olson, Hickman, and
Bocanegra (2009) used a combination of crashes and near crashes to show
that texting results in a 23-fold risk increase, triggering a ban on cellphone
use for all federal employees from the president of the United States in
2009. For naturalistic cycling studies, near crashes are even more important,
because these studies have so far been small and, consequently, only a few
crashes have been collected (Dozza & Werneke, 2014; Petzoldt, Schleinitz,
Heilmann, & Gehlert, 2016). Although some studies have argued that near
crashes are indeed a solid proxy for crashes (Guo, Klauer, McGill, & Dingus,
2010), more recent studies (Dingus et al, 2016), leveraging on the largest
naturalistic data set available today, have expressed serious concerns about
the use of near crashes for traffic safety analyses. This paper contributes to
this debate by presenting a methodology to assess the relation between
crashes and near crashes. The new methodology (1) tests whether near-crash
occasions and locations are indeed related to crash risk, (2) uses cycling data
as an example, and (3) can be ported to data collected from any vehicle.

2. Methods
2.1 Data

The Swedish accident database, STRADA (Swedish Traffic Accident Data
Acquisition), was queried for all single-bicycle crashes from 2012 to 2014
(inclusive) inside the area defined according to the World Geodetic System
1984 with latitude: 57.68-57.735 and longitude: 11.90-12.01, corresponding
to downtown Goteborg. Of the 481 cases reported, 468 came from hospital
reports and 20 from police reports (seven cases were found in both reports).
Six cases occurred at an unknown hour of the day and were therefore
excluded from the analysis. Exposure data was obtained from 11 stations
which continuously measured cyclist flow and saved these data in 15-minute
increments for the years 2012 to 2014 (inclusive). All stations were located
in downtown Goteborg. This study also included naturalistic data, in
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Figure 2. Critical and baseline events from BikeSAFE.

particular 30 critical and 77 baseline events from the BikeSAFE data set
(Dozza & Werneke, 2014). Event selection depended on the availability of spa-
tial and temporal coordinates. Critical events corresponded to near crashes
whereas baseline events represented a random distribution of cycling events.
Thus, the geographical location of the baseline events depended directly on
the spatial exposure of the BikeSAFE data set. Figure 2 shows the critical and
baseline events from the data set. Both types of events are concentrated in the
city center because that is where the project participants cycled most.

2.2 Analysis

Crashes were clustered according to their location to identify blackspots
(see analytical description in Section 2.3). Crash risk (defined as the ratio
between number of crashes and number of cyclists on the road within a 1-
h time window; see Section 2.3 for the analytical definition) was estimated
for each crash to identify trickyspots (see Section 2.3). The crash and the
cycling flow (i.e., the number of cyclists transiting a certain area at a spe-
cific time, which indicates exposure) databases were combined to create a
risk map (Figure 3). On the risk map, crash risk was estimated for all
crashes comparing weekdays and weekends. The cycling flow from the 11
stations was averaged. Thus, the risk map includes a spatial representation
of the crash risk for all the crashes in STRADA, which depend on the tem-
poral distribution of exposure (see Section 2.3). The risk map estimated the
crash risk for each near crash and baseline event depending on their loca-
tion: each near crash and baseline event received a crash risk equal to the
average risk of all the crashes that happened within a specific area where
the near crash or baseline event occurred. Two different area sizes were
considered: 12 by 20 m (small) and 36 by 60 m (large).
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Figure 3. Analysis phases.

As summarized in Figure 3, crash risk was calculated on an hourly inter-
val comparing weekdays and weekends as the number of crashes divided
by the cyclist flow. Subsequently, near crashes and baseline events were
assigned a crash risk depending on their geographical position and its
proximity to crashes. Finally, the hypothesis that crash risk is higher for
near crashes than baseline events was verified with a ¢ test.

To demonstrate visually how crash risk is distributed geographically,
this study used choropleth maps, which use color palettes to illustrate
how a variable (such as number of crashes or crash risk) changes in a
geographical region. In this paper, we used a full-spectrum color pro-
gression; warm colors (such as red or orange) indicate high values and
cool colors (such as blue or green) low values. Thus, in a choropleth
map showing crash numbers, the warmest regions indicate the blackspots
(i.e., the locations where most crashes happen; see Section 2.3).
Consequently, in a choropleth map showing crash risk, the warmest
regions indicate the trickyspots (i.e. the locations where risk is highest;
see Section).

Because only 475 crashes were available (and because crashes do not
happen everywhere), the risk map did not cover all locations in downtown
Goteborg; when a near crash or a baseline event happened in an area
where a crash had never happened, it was not possible to compute crash
risk. Odds ratios (OR; Rothman, 2012) compared the number of near
crashes and baseline events for which crash risk could be computed to the
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Figure 4. Crashes, flow, and risk over the 24 h for weekdays and weekends.

number for which it could not be computed. In other words, ORs consid-
ered the odds that near crashes and baseline events occurred in a location
where a crash from STRADA had also happened.

2.3 Analytical description

A blackspot is a site where an unusually high number of crashes occurs.
Blackspot locations are ranked by counting all crashes in different areas
and then sorting the areas accordingly. A threshold value can then set the
border between blackspots and nonblackspot sites. If K indicates this
threshold and C, indicates the total number of crashes in an area a, then
the Boolean condition for a blackspot is:

Blackspot, = C,> K (1

The value for K may be set so that only a predetermined number of
areas would satisfy the definition; Figure 5 shows blackspots with K=4.

Similarly, a trickyspot is a location with an overall crash risk larger than
a threshold Y. When Y is the average crash risk, trickyspots would indicate
areas where risk is above average. Like K, Y may also be set so that only a
predetermined number of areas satisfy the definition

The Boolean trickyspot condition for an area a is defined by the logic
Equation (2):

Trickyspot, = R,> Y (2)

Figure 5 shows trickyspots with Y =6.

The overall risk in an area a, R, in Equation 2, depends on how the risk
for each individual crash (R.) is computed. R, may be defined as the aver-
age risk of all crashes taking place in a, and is independent of R.. In
Equation 3, C, indicates the number of crashes which took place in a.

YR

Rq
Ca

©)
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Figure 5. Geographical maps of Goteborg with heat maps coding for crash number (A) and
crash risk (B).

In general, individual crash risk, R. in Equation 2, depends on the flow
in the area a at the time of each individual crash c.

Equation 4 offer a simplified definition of crash risk that takes time (spe-
cifically, hour of the day and whether it is a weekday/weekend), but not
geography, into account. This paper used this definition to demonstrate
how the proposed methodology may help assess the relation between near
crashes and crashes. According to this definition, the overall risk of a crash
in an area a may be generally described as:

Rc - R(ha dc) (4)

Where, R(h.d.), the risk for the hour and the day when the crash ¢
occurred (h, and d,, respectively), can be defined as the ratio between (1)
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the proportion of crashes happening on the same day and hour as the
crash and (2) the proportion of cyclists in traffic on the same day and hour
(Equation 5).

R(he,d.) = ) (5)

The numerator in Equation 5 is the percentage of crashes happening on
the same day and hour when the crash ¢ occurred compared to all crashes
happening on the same day and hour as crash ¢, but on the other days.
The denominator is the percentage of cyclists in traffic at the same hour
and day when the crash ¢ occurred compared to cyclists in traffic at the
same hour as crash ¢, but on different days.

§o e i
c=0 %
R, = c. (6)

Equation 6, derived by combining Equations 3-5, is only defined when
exposure is different from zero for any day of the week and hour of the
day, when at least one crash occurred in the area a. It is worth noting that
this is not necessarily a limitation. It is merely a logic consequence of the
definition of risk; in fact, when no traffic is present no crash should (can)
happen. Interestingly, omitting the denominator in Equation 6 corresponds
to calculating the cumulative risk instead of the relative risk in an area a.
This cumulative risk, the simplest method for combining trickyspots and
blackspots, is addressed in the Discussion.

3. Results
3.1 Phase 1: Creating a risk map from STRADA and cycling flow data

In general, when more cyclists were in traffic, more single-bicycle crashes
occurred (Figures 4A-B). Crashes happened more often on weekdays than
on weekends. Cyclist flow and crash numbers followed a different pattern
over time for weekends compared to weekdays; in fact, during weekdays,
rush hours modulated cyclist flow and crash numbers, whereas during
weekends cyclist flow and crash numbers were highest in the afternoon (as
previously found in Dozza, 2016). Figure 4 shows crash data, cycling flow
data, and crash risk distributed across hours of the day, comparing week-
days to weekends. Risk was higher after midnight than during the day, and
on weekends than on weekdays (Figure 4C). Risk at commuting time
(when cycling flow and crashes were most prevalent) was lower than aver-
age (Figure 4C).
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Table 1. Comparison between near-crashes and baseline events: Odds ratio (OR) and
crash risk.

Small areas Large areas
Where a Where a
crash Where no OR crash Where no
also crash (confidence also crash
happened happened intervals [CI])  happened happened OR (Cl)  Risk M £SD
Near crashes 4 26 1.3 [0.1, 3.6] 12 18 1.1 [0.5, 2.6] 1.30+0.49
Baseline 8 69 29 47 1.18+0.48

events

Blackspots and trickyspots appeared in different locations. The top three
blackspots had nine, eight, and five crashes (Figure 5A). The top four trick-
yspots had crashes on weekend nights when risk was highest; Figure 5B).

3.2 Phase 2: Using the risk map to estimate risk for near crash and
baseline events

More often than baseline events, near crashes took place in areas where
crashes also happened (Table 1). As the size of these areas increased from
small to large, the number of near crashes and baseline events which took
place in them also increased (Table 1), while their proportion evened up.
OR analysis revealed that the probability of an event taking place in an
area where a crash also happened was higher for near crashes than for
baseline events, being 1.3 times higher for small areas and 1.1 times higher
for large areas (Table 1). For small areas, it was not possible to statistically
compare crash risk between near crashes and baseline events because the
data sample was too small. However, when crash risk was computed from
large areas, near crashes showed a higher crash risk than baseline events;

nevertheless, this difference was not statistically significant from a ¢ test
(Table 1).

4, Discussion

This paper combines crash databases, naturalistic data, and cycling flow
data to demonstrate a methodology assessing the relation between crashes
and near crashes to help determine the ecological validity of analyses using
crash surrogates. Crash surrogates are not only used in naturalistic studies
to assess safety for all kinds of road users (Dozza, Bianchi Piccinini, &
Werneke, 2016; Olson, Hanowski, Hickman, & Bocanegra, 2009; Petzoldt
et al., 2016; Victor, Dozza, Bargman, Engstrom, et al., 2014) but are also
the basis for conflict techniques such as the Swedish traffic conflict tech-
nique (Hydén, 1996), the Dutch conflict technique DOCTOR (van der
Horst & Kraay, 1986), and the probabilistic surrogate measures of safety
technique from Canada (Saunier, Sayed, & Ismail, 2010). Using crash
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surrogates is particularly important for cycling safety analyses because
bicycle crashes are largely under-reported and crash databases include very
little information on bicycle crashes. The methodology presented in this
paper can determine whether near crashes are a sound proxy for crashes,
to what extent specific types of near crashes predict specific types of
crashes, and which factors may change the relation between crashes and
near crashes.

It is worth noticing that, though naturalistic datasets are continuously
growing in size, the number of crashes in naturalistic datasets is still
very limited; the largest naturalistic driving data set, collected by the
second Strategic Highway Research Program (SHRP2) (Campbell, 2013),
contains about 900 crashes, including all crash scenarios, environmental
conditions, and road users. As soon as an analyst filters these crashes by
incident type, weather conditions, or demographics, it may be necessary
to include near crashes to achieve statistical significance of the results.
Additionally, though it is true that naturalistic data sets continue to
grow, near crashes will always be more numerous than crashes and have
the intrinsic potential to improve the timely prediction of safety issues.
In other words, if near crashes are indeed related to crashes, waiting to
collect enough crash data to perform safety analyses may be inefficient
and unethical.

The results presented in this paper hint to a possible relation between
crashes and near crashes, because near crashes were more likely to happen
in a location where a crash also happened than baseline events were, and
the crash risk was larger for near crashes than for baseline events.
Furthermore, the fact that OR decreased as the areas expanded is in line
with our assumption that the higher spatial and temporal resolution in the
risk map, the closer the relation between crashes and near crashes.
Nevertheless, none of the results in this paper reached statistical signifi-
cance and, because the data was very limited, some simplifications were
necessary to perform the analysis. The main simplifications came from (1)
averaging cyclists’ flow across measuring stations, and (2) averaging crash
and exposure data across years. Minor simplifications included using a low
geographical resolution (relatively large areas) to estimate risk. It is indeed
surprising that, with such a small data set and these simplifications, the
results could still show the expected trends. The following list of recom-
mendations shows how the analysis in this paper might be improved to
show sound evidence about the relation between crashes and near crashes.
The methodology might also be able to answer new questions, such as, “To
what extent do specific types of near crashes predict specific types of
crashes?” and “Which factors may change the relation between crashes and
near crashes?” thus contributing to an objective definition of what a near-
crash is (Dozza & Gonzalez, 2013). The items in this list are often
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independent from each other and may be equally important for obtaining
significant results.

1. More crashes and near crashes should be included. As naturalistic data
sets grow, it may be possible to use a larger geographical area and lon-
ger intervals of data collection. Crashes from insurance companies (e.g.,
Isaksson-Hellman, 2012), may also be included to increase the data set
and control at least in part for underreporting in crash databases
(Wegman et al., 2012).

2. Cycling flow should be calculated on an individual street level. New
models, such as the one proposed by Loidl, Traun, and Wallentin
(2016) who explored different spatial scales for the analysis of urban
bicycle crashes, may help increase cycling flow resolution without neces-
sarily monitoring all streets.

3. The spatial resolution of the risk map should be higher. As the data
sample increases, aggregation areas smaller than the small one presented
in this paper (12 m by 20 m) should be considered. The current GPS
resolution (about 6 m in naturalistic data sets) sets a clear lower limit
on the size of these areas, which will hopefully be overcome when better
positioning technology is available.

4. The time resolution of the risk map should be higher. This study used a
1-h resolution; however, when more crashes and near crashes become
available, using the native resolution of cycling flow data (15min) seems
more appropriate because cycling flow may change during one hour.
Furthermore, the higher the time resolution the more likely it is for
cyclists to be double counted, because they may pass several measuring
stations within the time interval.

5. The individual year and day of the week of the crashes and near crashes
should also be considered. In this study, data was averaged across years
and divided into weekdays and weekends. As more data becomes avail-
able, it may be possible to average crashes and near crashes differently
across time. However, as crashes and near crashes are not continuously
happening in all locations, some level of time aggregation will always
be necessary.

6. Factors other than exposure should be included in the risk map to help
identify the relation between crashes and near crashes while also serving
to identify the main contributing factors for crash causation. Several fac-
tors, such as weather and infrastructure, are already coded in crash
databases and naturalistic data sets and could be used to determine how
these factors mediate the relation between crashes and near crashes.

7. The potential effect of underreporting should be taken into account.
Less severe crashes are also less likely to be reported, so it may be hard
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to determine the values for the middle layers of the Heinrich’s triangle
in Figure 1, and near crashes that can only predict minor severity
crashes may be underestimated.

8. Motorized vehicle flow should also be considered and other crash types
than single-bicycle crashes should be included. In this paper, we only
selected single-bicycle crashes because our measure of exposure was
cycling flow; crashes between a bicycle and a motorized vehicle may
depend also on motorized-vehicle flow and were therefore excluded.
Nevertheless, the extent to which motorized vehicles may have contrib-
uted to the single-bicycle crashes (and/or the near crashes) used in this
study is unknown.

As future analyses increase temporal and spatial resolution of the risk
map, they may also suffer to a larger extent from regression to the mean
(Hauer, 1986) and accident migration (Elvik, 1997) than the present analy-
ses. Nevertheless, current models to adjust for such effects may be ported
to this methodology to weight risks.

This study defined trickyspots based on the spatial distribution of crash
risk. This metric is particularly sensitive to those locations where crashes
happen despite few cyclists transiting them. In contrast, blackspots identify
where most crashes happen and may still be a reasonable indicator for geo-
graphically prioritizing countermeasures. However, trickyspot analysis may
help identify locations where simple interventions (such as improving
deceptive infrastructure or signage) could have a large safety impact. In
fact, while blackspots may occur simply because of a large traffic flow,
trickyspots require some unusual rate of crashes and road users. Although
it was not the case in this study, it is possible for a blackspot to also be a
trickyspot, in which case the potential safety benefit from crash reduction
in that location would be particularly high. Thus, combining trickyspot
analysis with blackspot analysis may help the ranking and selection phase
of the analysis. (Section 2.3 provides a simple equation combining the ana-
lysis of blackspots and trickyspots.) Let us keep in mind that what really
matters for safety are the causes of a crash; trickyspot analysis may high-
light locations where these causes are particularly odd, possibly making the
causes easier to identify.

4, Conclusions

The relation between crashes from crash databases and near crashes from
naturalistic data can be assessed by comparing the spatial-temporal distri-
butions of crashes and near crashes. This paper proposes a methodology
for the comparison and applies the methodology to cycling data in
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Goteborg. The methodology leverages on cycling flow to estimate individ-
ual crash risk and create a risk map that represents crash risk with a high
temporal and spatial resolution. The novelty of this methodology is to use
exposure with high time and space resolution for the estimation of risk for
specific bicycle crashes and near crashes.

Although the results presented in this paper may suggest that there is
indeed a relation between crashes and near crashes, the main contribution
of this paper is the methodology itself. In fact, the results in this study suf-
fer from the small data sets available, which required some oversimplifica-
tion of the analysis. When larger data sets become available, this
methodology may provide results that are significant and answer further
questions on the relation between crashes and near crashes.

This study also proposes the concept of trickyspots as a complement to
blackspots for the selection and ranking of dangerous locations. Although
defining trickyspots may not be straightforward for all crash types because
exposure may be difficult to define and obtain, doing so may highlight
locations where crashes happen for unusual reasons, reasons that may be
easier to identify and control because of their oddity.

Notes

1. http://ec.europa.eu/transport/road_safety/specialist/statistics/index_en.htm
2. http://ec.europa.eu/eurostat/statistics-explained/index.php/Transport_accident_
statistics#Road_accident_statistics
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