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Abstract—While ASICs are efficient in terms of area utiliza-
tion, performance, and power dissipation, ASIC design requires
significant development resources. We compare two approaches
to implementing ASIC correlators for interferometric imagers
and spectrometers: The first approach, custom design, gives
very high performance and area utilization, but is complex and
time consuming. The second approach, cell-based design, reduces
design time, but leads to lower performance and area utilization.
In our evaluation, we consider two different correlator archi-
tectures: Autocorrelators for spectrometry, and cross-correlators
for synthetic aperture imaging. Based on both 65-nm CMOS
and 28-nm FD-SOI process technologies, our results show that
for implementations for a limited number of channels, the cell-
based approach may prove useful since it offers relatively short
development time while still providing acceptable area utilization
and performance. For larger designs, however, the area overhead
of cell-based design becomes a major concern, especially for
autocorrelator architectures.

I. INTRODUCTION

Signal processing is a vital part of interferometric spectrom-

etry and imaging systems. To make these applications truly

useful it is, however, imperative to design signal processing

circuits that are able to handle an increasing channel count at

very high speed. In addition, while also important for ground-

based observations, it is critical to consider power dissipation

constraints when dealing with space-borne systems.

In order to maximize area utilization, performance, and

power efficiency, signal processing systems are often im-

plemented as application-specific integrated circuits (ASICs).

Field-programmable gate arrays (FPGAs) are competitive from

the point of view of their rapid development flow, but they

cannot compete with ASICs as far as area and power efficiency

and, ultimately, the capacity to handle many channels. Digital

ASICs can be designed using two different approaches; custom

or cell-based design. While the former, thanks to its flexibility

in crafting layouts at the transistor level, leads to maximal

performance and area efficiency, it requires extensive develop-

ment resources. In contrast, cell-based design, which relies on

predesigned logic gates and therefore has less degrees of de-

sign freedom, offers shorter development time. The downside

of cell-based designs, however, is less efficient usage of chip

area, lower performance and higher power dissipation [1], [2],

which impacts, e.g., the number of signal processing elements

that can be implemented on one chip.

In this paper, we will consider two important applications

in the fields of interferometric spectrometry and imaging,

and how they can be effectively implemented in ASIC-based

signal processing systems. In essence, we wish to answer the

following question: How do we best design and implement

future autocorrelator and cross-correlator ASICs given an

increasing need for channel capacity?

II. ASIC DESIGN APPROACHES

Digital ASIC design involves the creation of high-density

layouts of transistors and wires. Today, digital ASIC often

is synonymous with cell-based design approaches, where the

ASIC designer is supported by a library of standard cells

pre-designed at an IC foundry. Here, ASIC design entails

developing register-transfer level (RTL) code using hardware

description languages such as VHDL or Verilog, synthesizing

this RTL code to gate netlists that are made up by a selection

of the provided standard cells, and finally performing physical

design where the cells are placed and routed. Since this design

approach to a large degree is supported by design software

tools, cell-based ASIC implementation is a rational approach

which saves time and reduces risks over custom design.

While the custom approach is the main paradigm for analog

design, it is also used when area utilization, performance and

power efficiency are critical to digital ASICs. In a custom

design approach, the designer develops logic circuits at the

transistor level; first as a transistor schematic, then as a layout.

The booming complexity of digital ASICs has, however,

largely prohibited custom approaches; unless some kind of

circuit hierarchy can be enforced, the design time increases

exponentially with complexity. The correlator architectures

that we consider here are highly regular, and more importantly,

as we increase the number of channels on the chip, there is

a possibility to maintain the regularity. This can be used in

a custom-design approach, where logic cells and wire routes

are customized for the application and where the intrinsic

correlator hierarchy allows for cells (including wiring) to be

instantiated for different channel counts1.

So while correlator architectures may be well suited to

custom design approaches, there is still this issue of design

time. The bottom-up approach of custom design puts a serious

strain on ASIC development resources and this begs the

question if cell-based approaches can offer an intermediate

solution that gives high enough “electrical” efficiency while

reducing development costs.

1While this resembles the concept of memory compilers, correlator archi-
tectures do not display as regular organization as, e.g., SRAM arrays.
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III. CORRELATOR ASIC ARCHITECTURES

Cross-correlation is an operation performed between two

signals, f and g. The signals are multiplied and summed, with

a different time delay, n, applied to one of them, according to

(f ⋆ g)[n]
def
=

∞∑

m=−∞

f∗[m] g[m+ n] (1)

where f∗ denotes the complex conjugate of f . While

autocorrelation of a signal is the cross-correlation with itself

(f = g), the implementations have significant differences at an

architectural level, which is due to the different usages of the

correlator operation. Autocorrelation is used for spectrometers

in the field of remote sensing [3]. Here a high spectral

resolution is of interest and this is achieved by implementing

many delay steps, or lags, in the correlation function.

Cross-correlation is extensively used for signal processing

in aperture-synthesis-based radio astronomy and is currently

being considered also for remote sensing applications [4], [5]

as well as security scanning applications [6], [7]. In these

applications, the main driver for processing power is imaging

resolution. Instead of implementing many lags, the cross-

correlation is kept simple, usually without lags altogether

(n = 0). However, the cross-correlation has to be calculated

for a very large number of different signal pairs or baselines.

Previously we have reported on a custom cross-correlator

ASIC [8], but we have now also implemented an autocor-

relator, based on experience from both the cross-correlator

and earlier autocorrelation spectrometer development [9]. The

correlators investigated share a number of features such as

buffered readout, serial interface, dynamic multipliers, and

similar integrators. In this section we will first describe the

two ASIC architectures and then delve deeper into differences

and similarities at circuit level.

A. Cross-Correlator

Cross-correlation, as used in aperture synthesis, has to be

performed pair-wise for a large number of baselines from an

array of receivers. Thus, the routing of a large number of

signals in a cross-coupled network is a major challenge for

these designs. The cross-correlator previously reported [8] uses

a routing scheme shown in Fig. 1. Here, the correlator clock

and data are routed together; one clock for each input channel.

The channels are split into two separate paths; one going

straight and one diagonally. At each intersection, a cross-

correlator block including a synchronizer is placed. The two

clocks are synchronized using a C-element, while the data is

synchronized with this combined clock. The fabricated ASIC

has 96 single-bit inputs and can operate as either a 96-channel

2-level or as a 48-channel 3-level cross-correlator.

B. Autocorrelator

The autocorrelator implementations investigated in this pa-

per all implement a time-division factor of four (TDM4). This

means that the sampler operates at a sampling frequency four

times the correlator clock and that each signal sampled is
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Fig. 1. Routing architecture of a 8-channel full-custom cross-correlator.

presented on four parallel inputs. The reason for employing

this time division is to increase the available bandwidth. Each

input is also represented as in-phase I and quadrature Q, with

3-level (2-bit) precision. Thus, the total number of 1-bit data

inputs is 16. The inputs are then split into two paths where

one is progressively time-delayed. For each lag, see Fig. 2,

the I × I∆, I × Q∆, Q × I∆, and Q × Q∆ products are

calculated four times, i.e., one for each time division. The four

time-divided multiplications are then merged and accumulated.

Note that the width of the data routing lines is two bits,

representing the 3-level samples. The data of the delay path

are finally delayed by an additional sample clock cycle (one

4th of a correlator clock) by reordering the four signals, and by

delaying one of them by one correlator clock cycle. Between

each lag, synchronization of data and clock is also performed

but this is not shown in the figure.
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Fig. 2. A single lag of the TDM4 autocorrelator. Note that all paths are
2-bit/3-levels.

The autocorrelator may also be operated as a real-valued

correlator, if needed, by replacing the quadrature phase sam-

pling with an opposite phase sampling. By this method the

number of “lags” in Fig. 2 is actually two, however, the num-

ber of resolved spectral channels and the bandwidth remain

the same; two spectral channels are provided for each of these

blocks. In Section VI we compare a range of autocorrelators

based on the number of spectral channels they provide.

C. Full-Custom vs Cell-Based Circuits

For fair comparisons, we have, as far as the tools allow

us, tried to keep features from the full-custom ASICs in the



synthesized versions of the designs. All correlator implemen-

tations investigated have similar integrators, using chained tog-

gle flip-flops, which are then buffered to a secondary storage

for readout. This means the next integration can be performed

simultaneously with the reading out of previous integration

data. The readout is performed through a serial interface, using

a secondary clock, operating at a lower frequency.

In the cell-based versions, the clocking of the input data

routing is completely synchronous. Here, clock trees are

synthesized for the correlator clock and readout clock regions.

In the full-custom versions of both the cross-correlator and the

autocorrelator, the correlator clock instead flows together with

data along the datapaths, thus making the full-custom architec-

tures row-wise synchronous and column-wise asynchronous.
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Fig. 3. Pulse joining circuits handling the TDM4 signal merging before
integrators.

The dynamic multipliers used throughout all designs gen-

erate pulses of the same width as the correlator clock. In

the autocorrelator, additional modifications had to be made in

order to handle the data merging after multiplication, before

integrators. The first merge is performed by using these pulses

to clock a toggle flip-flop, or prescaler stage, as shown in

Fig. 3a. By toggling half of the flop-flops on the positive and

the other half on the negative edge, the two data signals can

not change state at the same time, and so the first merge

can be done by using a simple XOR gate. For the second

merging the two remaining signals may have positive and

negative edges simultaneously with each other, hence this

stage cannot use the same simple circuit. In the full-custom

case, a circuit employing an arbiter and SR-flip-flops is used,

shown in Fig. 3b. Here, the pulse widths and delays through

this circuit can be finely tuned. The synthesis tools used for

cell-based design, however, were not able to deal with the

asynchronous circuits correctly, hence, another approach was

devised. Here, the correlator clock is halved in frequency and

used to skew the signals before they enter the XOR gate, as

in Fig. 3c. This means additional circuitry has to be driven by

the correlator clock.

IV. MANY-CHANNEL CORRELATOR IMPLEMENTATIONS

The cross-correlation products increase as (n · (n − 1))/2,

where n is the number of inputs. This means a 96-channel

cross-correlator has 4560 products. In addition to the cor-

relation products, the fabricated 96-channel correlator [8]

includes one monitor per input and one clock counter, but

for simplicity reasons these monitors are not included in the

cell-based counterpart. The monitors are each equal in size to

a correlation product, thus, we consider the custom 96-channel

correlator as a 4657-product correlator in the comparisons.

An autocorrelator design, featuring 8624 spectral channels,

implemented in a 28-nm fully-depleted silicon-on-insulator

(FD-SOI) process technology serves as the custom comparison

case here. Similarly to the custom 96-channel cross-correlator,

in addition to the spectral channels, the custom autocorrelator

features two monitor blocks, not implemented in the cell-

based counterparts of the autocorrelator. Each monitor block is

equal in size to 8 spectral channels, thus, in the comparisons

presented, we consider the custom autocorrelator as a 8640

channel unit.

Layouts of two autocorrelators are shown in Fig. 4. Even

though each employs 8640 spectral channels, they are very

different in terms of area usage and implementation structure.

To make routing visible, only metal layers 3-5 are displayed,

since most of the datapath routing is done on these layers.

While the full-custom layout is routed in a regular pattern

with ten straight folds, the synthesis tools make the cell-based

implementation display a more “organic” appearance.

(a) Cell-based. (b) Full-custom.
Fig. 4. 8640-channel cell-based and full-custom 28-nm autocorrelator layouts
(relative scaling shown).

The fixed channel count of a fabricated ASIC does not

necessarily limit the channel count of a correlator system. Ex-

tending the number of channels, by utilizing multiple ASICs,

does however effect system complexity. The impact, however,

is different for autocorrelator and cross-correlator systems.

For an autocorrelator, there are basically two options for

extending the frequency resolution: Parallelization or serializa-

tion, as illustrated in Fig. 5. Connecting autocorrelator ASICs

in parallel means the frequency spectrum has to be divided into

bands for each ASIC, using filter banks and power splitters. By

instead connecting the ASICs in series, one can omit this extra



circuitry, however, the ASIC will then require four times as

many data pins, adding non-delayed signal outputs and delayed

signal inputs and outputs.
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Fig. 5. System architectures for connecting multiple autocorrelators (AC) in
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While the number of required autocorrelator ASICs grows

linearly with required number of channels, the cross-correlator

architecture is not as amenable to channel up-scaling. In fact,

the required number of ASICs for the cross-correlator system,

assuming all signal pairs are to be correlated, grows as ⌈N/n ·
2⌉·⌈N/n·2−1⌉/2, where N is the required number of channels

for the system and n is the number of channels per ASIC,

mirroring the arithmetic describing the number of correlation

products within the ASIC. An example of such a scheme,

building a 144-channel system out of three 96-channel ASICs,

is shown in Fig. 6.PSfrag replacements
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Fig. 6. System architectures for connecting multiple cross-correlators (CC).

With both these system architectures in mind, a clear case

can be made for the advantage of incorporating a large number

of channels in a single ASIC to minimize system complexity

and power consumption.

V. ASIC IMPLEMENTATIONS

In our evaluations, we implement the correlators in both

65-nm CMOS and 28-nm FD-SOI process technologies. As

previously reported [8], the 65-nm cross-correlator ASIC is

fabricated using a mix of low threshold voltage (VT) gen-

eral purpose (LVTGP) transistors and high VT low power

(HVTLP) transistors. Input routing, clocks, multipliers, and

first prescaler stages are implemented in LVTGP, while in-

tegrators and most readout logic use HVTLP. For the cell-

based implementations, the same mix of transistor options

were used in the 65-nm case, however, the tools heuristically

handle which cells are used for what purpose, with the goal

to minimize total area while meeting an overall timing con-

straint. The 28-nm FD-SOI process does not allow the same

amount of flexibility for transistor selections, as these have

to be separated into different regions. To avoid wasting chip

area on region borders, the 28-nm implementations only use

one transistor type throughout: Low threshold voltage (LVT)

transistors.

The synthesis tools optimize the designs for meeting a 1-

GHz correlator and a 100-MHz readout clock target across an

operating range between slow and fast corners, including vari-

ation in temperature, supply voltage and device spread. For the

full-custom design, simulations were performed using Monte-

Carlo-based methods for device spread at typical temperature

and supply voltage for target frequencies of up to 3 and 4 GHz

for the cross-correlator and autocorrelator, respectively.

VI. EVALUATION

In this study we compare the power consumption and chip

area implications of the two ASIC design approaches, for the

two different correlator types. While other metrics, such as

possible top speed or ASIC development time, are also of

interest, they were not within the scope of the performed

study. Area comparisons will not include pad frame, but only

active logic regions. The cell-based designs are synthesized

using Cadence Genus, and place and route is performed by

Cadence Innovus, which also extracts wiring RC parasitics.

Power estimation for the cell-based designs is performed

by simulating the circuits, using Cadence Incisive, and then

performing power estimation, using Cadence Genus, on the

RC-extracted netlists.

A. Chip Area Usage

The cross-correlator implementations differ significantly in

terms of chip area as shown in Fig. 7. Remarkably, the 65-nm

full-custom implementation is almost identical in area to the

28-nm cell-based version, with the full-custom design being

even slightly more compact. For all different channel-count

versions evaluated, the area used for the cell-based approaches

lies at about three times the 65-nm full-custom case.
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Fig. 7. Comparison of logic area between cell-based (CB) and full-custom
(FC) cross-correlators.

For the autocorrelators, the area difference is even greater.

Since the autocorrelator designs require much more logic than

the cross-correlators, it does not make sense to consider these

in a 65-nm process technology; hence, these are only evaluated

in 28 nm. For the versions evaluated, the cell-based designs

are about seven times larger than the full-custom designs as

shown in Fig. 8.
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In summary, architectures with fewer across-chip inter-

connects (autocorrelator) are more suitable for full-custom

implementation than those with a significant number of such

interconnects (cross-correlator). A similar observation was

made more than 15 years ago, using much less sophisticated

ASIC design tools [10].

B. Power Dissipation

The cross-correlator implementations differ in power dissi-

pation, as shown in Fig. 9. We use µW/prod/GHz as a power-

efficiency metric to compare the implementations. The in-

creased drive strength required to meet the timing requirement

(1 GHz) for larger designs means a slightly increasing trend

with increasing channel count can be observed. For the full-

custom implementation, only the measured efficiency when

operating at 1.5 GHz from [8] is displayed. Notably, the 65-

nm full-custom power efficiency lies about halfway between

65- and 28-nm cell-based figures.

For the autocorrelator, a similar comparison of efficiency

can be made, however, here the numbers are based only on

simulations. For the full-custom implementation, the power

dissipation of one RC-extracted lag using typical corner is

simulated. A comparison of power dissipation per lag and GHz

shows that while the full-custom lag dissipates only 40 µW at

1 GHz, the cell-based versions all come in between 470 and

480 µW, which is more than a magnitude higher.

One reason for the much wider gap between efficiencies of

full-custom vs cell-based in the autocorrelator as compared to

the cross-correlator implementations is the rather costly clock-

ing scheme implemented in the full-custom cross-correlator.

A large part of the power is dissipated by routing a clock

path for every input signal throughout the ASIC and by the

synchronizing C-elements used. In the autocorrelator case,

there is much less power spent on clock distribution.

A major contributor to the difference in power efficiency

for the autocorrelators is the merging of the four time divided

signals after multiplication. Since the full-custom correlator

handles this with asynchronous logic, it dissipates much less

power for performing this function as opposed to the syn-

chronous version implemented for the cell-based design, where

the high-speed correlator clock has to drive considerably more

logic. Also, the requirement of synchronicity cannot be relaxed

until after this merging.
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Fig. 9. Comparison of power efficiency between the cell-based (CB) and
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VII. CONCLUSION

In our evaluation of two different ASIC design approaches

for two different correlator architectures we found that auto-

correlators, whose logic interconnections to a large extent are

local, should be developed using a full-custom approach since

this significantly increases the number of channels one ASIC

can support. In the context of cross-correlators, while full-

custom approaches offer less of an area and power dissipation

advantage over cell-based approaches, these also significantly

benefit from full-custom design. Our conclusion is that the

full-custom approach to implementing correlators will be

important for meeting the future demand of an increasing

number of spectral channels or higher baseline count.
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