
P
o
S
(
C
O
R
F
U
2
0
1
8
)
0
7
2

Exact Correlators from Conformal Ward Identities in
Momentum Space and Perturbative Realizations
Open issues on conformal anomaly actions

Claudio Corianò∗

INFN Lecce, Dipartimento di Matematica e Fisica "Ennio De Giorgi",
Università del Salento and INFN-Lecce,
Via Arnesano, 73100 Lecce, Italy
E-mail: claudio.coriano@le.infn.it

Matteo Maria Maglio, Alessandro Tatullo, Dimosthenis Theofilopoulos
INFN Lecce, Dipartimento di Matematica e Fisica "Ennio De Giorgi",
Università del Salento and INFN-Lecce,
Via Arnesano, 73100 Lecce, Italy
E-mail: matteomaria.maglio@le.infn.it,
alessandro.tatullo@le.infn.it,dimosthenis.theofilopoulos@le.infn.it

The general solution of the conformal Ward identities (CWI’s) in momentum space, and their
matching to perturbation theory, allows to uncover some specific characteristics of the breaking
of conformal symmetry, induced by the anomaly. It allows to compare perturbative features of the
1-particle irreducible (1PI, nonlocal) anomaly action with the prediction of a similar (but exact)
nonlocal action identified by the CWI’s. The two predictions can be exactly matched at the level
of 3-point functions. The analysis of the T JJ and T T T shows that both approaches - based either
on 1PI or on the exact solutions of the CWI’s - predict massless (dynamical) scalar exchanges
in 3-point functions as the signature of the conformal anomaly. In a local formulation such 1PI
actions exhibit a ghost in the spectrum which may induce ghost condensation. We also discuss
alternative approaches, which take to Wess-Zumino forms of the action with an asymptotic dila-
ton, which should be considered phenomenological alternatives to the exact nonlocal action. If
derived by a Weyl gauging, they also include a ghost in the spectrum. The two formulations, non-
local and of WZ type, can be unified under the assumption that they describe the same anomaly
phenomenon at two separate (UV/IR) ends of the renormalization group flow, possibly separated
by a vacuum rearrangement at an intermediate scale. A similar analysis is presented for an N = 1
supersymmetric Yang-Mills theory. We comment on the possibile cosmological implications of
such quasi Nambu-Goldstone modes as ultralight dilatons and axions.
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1. Introduction

The breaking of conformal symmetry by the conformal anomaly is a fascinating topic which
has played a key role in d = 2 as well as in higher spacetime dimensions. It is an open issue whether
this phenomenon acquires a significant phenomenological meaning, indicating possible directions
in the search for physics beyond the Standard Model (SM). In this case the issue is far from being
trivial since a dilaton should be part of the spectrum of the scalars, while all the current data seem
to indicate that the Higgs field found at the LHC is correctly accounted for by a single fundamental
scalar. Therefore, the generation of the masses of the SM, which obviously break the conformal
symmetry of a purely quartic Higgs potential, seems to be correctly accounted for by the Higgs
mechanism.
However, there are several issues which remain unexplained, even with the tangible success of the
SM. For example, spontaneous symmetry breaking requires the introduction of a scale in the the-
ory, the Higgs vev v, but there is no specific theoretical reason, except phenomenological, why the
electroweak scale lays around 246 GeV. This is not the only open issue in the SM, as there are oth-
ers which remain unsolved. For instance, there is no simple explanation of the fact that the number
of fermion families is three, unless one considers very special extensions. A rare example is the
331 model [1], which is quite simple and unique, where the embedding of the third generation and
the constraints from anomaly cancelation select the number of families to be exactly three, at the
cost of breaking universality.

1.1 Conformal extension of the SM: the Higgs plus a fundamental dilaton

Given such shortcomings and the puzzle raised by the gauge hierarchy problem, the inclusion
of conformal symmetry may provide an alternative approach for answering at least some of these
puzzles. In a conformal extension motivated at a lower (TeV) scale, one can still envision the SM
with its current field content, preserving the fundamental nature of the Higgs field, but with an
electroweak scale generated by the vev of a second field (Σ), whose role is to enforce a larger
(conformal) symmetry in the classical Lagrangian.
In fact, it is possible - and quite simple - at tree level at least, to reconcile conformal symmetry and
the Higgs mechanism by the introduction of an extra scalar field Σ(x) in such a way to restore this
symmetry. In this case the role of the Higgs remains the usual one, but the new scalar can mix with
the Higgs, giving an ordinary mass eigenstate which would correspond to the SM Higgs, and to a
dilaton. The real problem, in this scenario, is how to break the new symmetry in a simple way. We
recall at this point that the dilaton (τ(x)) is related to Σ via a nonlinear realization with

Σ∼ Λexp(τ(x)/Λ), (1.1)

where Λ denotes the conformal symmetry breaking scale. While this is one possibility, in which
the dilaton is generated by enlarging the degrees of freedom of the SM, it is not the only one. A
dynamical solution is also possible, as we are going to elaborate, where the dilaton emerges from
the conformal dynamics in a specific way, as an effective degree of freedom. The arguments that
we bring forward towards a resolution of some conflicting issues related to this topic are not nec-
essarily advocated around the TeV scale, but may also reach very large scales, being generic and
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probably more of cosmological relevance than anything else.
In absentia of new physics at the LHC, and with the success of the SM, a way to explain the nat-
urality of the Higgs mass, according to ’t Hooft’ s principle, is to invoke a larger symmetry which
protects the small masses present in the SM from the large quadratic divergences of the scalar sec-
tor [2, 3].
In order to touch ground with the ordinary S-matrix formalism, it is necessary to promote the anal-
ysis of such conformal extensions to momentum space, where several non-perturbative tools, such
as the conformal Ward identities, the operator product expansion and the conformal algebra at op-
eratorial level, may allow to progress towards the analysis of multi-point correlation functions in a
systematic way. One of the advantages of a momentum space analysis is the possibility of identi-
fying new effective degrees of freedom in such theories, and this brings us directly to investigate
the form of the anomaly action, which is usually addressed within perturbation theory.
Given the obvious limitations of the perturbative approach, it is necessary to compare perturbative
and non-perturbative methods in order to shed light on the issue of the nonlocality of the confor-
mal anomaly action, which plays a key role in this context. This provides the main motivation for
turning to a non-perturbative discussion of 3-point functions in momentum space. In particular,
the statement that anomaly poles, which are the perturbative signature of the anomaly, do not cor-
respond to physical states, should be taken with extreme care and correctly interpreted in a wider
context, being a perturbative analysis probably insufficient to come to conclusions, given the com-
plex nature of the phenomenon.
We will argue that in the presence of conformal anomaly poles (and the same occurs for chiral
anomaly poles) a certain theory rearranges its vacuum structure in such a way that the dynamics
of such nonlocal interactions will generate an ordinary asymptotic state. Such a state would be a
quasi Nambu-Goldstone mode in a local effective action and would correspond to a dilaton.
We believe that in this way we can reconcile the two main formulations of the conformal anomaly
action - the nonlocal and the local one - the latter incorporating an asymptotic dilaton, which oth-
erwise appear to be unrelated. However, it is naturally expected that an intermediate potential will
provide a small mass for such Nambu-Goldstone mode. A similar hypothesis has been formulated
in the case of a Stückelberg field, which carries analogous properties, and that may be rendered
massive by a mechanism of misalignment as for an ordinary Peccei-Quinn axion. Our analysis is
driven by this analogy.

The goal of this review is to clarify some of the issues raised when comparing perturbative and
non-perturbative approaches in theories affected by the conformal anomaly. For 3-point functions,
the nonlocal structure of such action and its expression in terms of anomaly poles has been worked
out directly from the solution of the conformal Ward identities (CWI’s) in momentum space. For
this reason, the comparison between the two descriptions, whenever possible, plays an important
role. However, only in momentum space such combined analysis connect CFT’s with their par-
ticle interpretations and help in clarifying these aspects. We are going to briefly summarise our
arguments.

2. The conformal anomaly action

In a conformal theory in even spacetime dimensions, the conformal symmetry can be broken
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by the conformal anomaly. Anomalies are related to the field content of a given theory and though
apparently very different in their conformal and chiral versions, they are unified by the same phe-
nomenon: the emergence of an anomaly pole, i.e. of a massless exchange in those diagrams which
are held responsible for the origin of the anomaly, which are part of the 1PI (1-particle irreducible)
effective action. They can be identified in a given anomaly vertex if we keep all the tensor struc-
tures of the same vertex uncontracted. By taking a trace or a divergence of an anomaly vertex,
the pole is washed out, while only the residue at the pole remains in the interaction. Given the
perturbative nature of the 1PI action, and its simplicity, this behaviour may well be considered an
artifact of perturbation theory, deprived of any specific meaning.
One of the goals of our analysis will be to show that such effective interactions are present also if
we move away from perturbation theory and discuss the same anomalous vertices using completely
different methods.
In a CFT the CWI’s fix the 3-point functions almost completely, modulo few constants, and it is in
this case that the matching between the perturbative and non-perturbative approaches allows us to
come to conclusions in regards to the emergence of such massless interactions.

2.1 Wess-Zumino versus nonlocal actions

An anomaly action modifies the classical action by the anomaly contribution. For instance,
in the presence of an axial vector current, generated by an external gauge boson B, the anomaly
contribution triggers the transition of such off-shell current into two photons, or into two gluons by
a fermion loop, in QED and QCD respectively. Since an intermediate one-loop AVV interaction is
involved, it is part of a simple 1PI action, and a direct computation shows that the interaction that
ensues is mediated by the exchange of a massless pole [4–7] which takes to a nonlocal action, as
we will discuss in section 6.
However, on the other hand, it is sufficient to couple linearly an axion b(x) to the anomaly in order
to obtain an effective action which now includes a scale (M) and a dimension-5 operator

(b(x)/M)FF̃ (2.1)

to account for the anomaly, which takes to a local action. Operatorial terms of this type can also be
introduced as counterterms in order to restore a gauge symmetry if an anomalous gauge boson is
also part of the spectrum and not an external source for an axial-vector current.
As in the conformal case, where a similar coupling is present for the dilaton, in the local formu-
lation the axion field b(x) shifts under the local gauge symmetry as a typical Nambu-Goldstone
mode. In the case of an anomalous axial-vector coupling, this construction takes to Stückelberg
Lagrangians [8, 9], if the axial-vector gauge field is part of the dynamics. The Stückelberg field,
introduced to cancel a gauge anomaly, turns into a physical gauge invariant component after mixing
with the CP-odd phases of the Higgs sector. This is obtained by a mechanism of vacuum misalign-
ment.
There are some issues which need to be addressed in the analysis of a perturbative anomaly action
which is related to the choice of the regularization scheme, but it is clear that dimensional regular-
ization (DR) plays a special role in this context. Other (mass-dependent) regularization schemes
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do not preserve the conformal symmetry of the theory and as such are not optimal.
The appearance of an anomaly pole in perturbation theory in mass-dependent corrections for any
value of a correcting mass parameter mi is a feature which is typical of DR and not of other schemes.
Indeed, DR allows to separate the anomaly contribution from the explicit mass-dependent correc-
tions of a diagram in a very natural way for any value of the external momentum (p) running in
the loop. This holds even for p2 < 4m2, where m is the mass of the fermion in the loop, giving a
non-vanishing contribution to the β function of a given theory, and hence to the anomaly for any
value of the external momentum.
Wess-Zumino types of action, the other variant of the conformal anomaly actions, as clear from
the discussion above and from Eq. (2.1), enlarge the number of degrees of freedom by introducing
an axion or a dilaton in order to generate the same anomalies of the original theory. Obviously,
a dilaton is not part of the original Lagrangian, though it is part of the anomaly action, and one
has to view such actions as effective actions which need to be related to UV descriptions of the
same phenomenon using renormalization group/effective field theory arguments. Connecting the
two descriptions requires special care and while this is done by preserving the global symmetries
of a theory in its UV and IR phases, some aspects of this transition may not be easy to disentangle,
as in the case of QCD versus the chiral Lagrangian.

2.2 The compensator and a ghost

There are various ways to generate such actions, typically by the Noether method, where they
are obtained starting from a linear coupling of the dilaton to the anomaly (see for instance [10,11]).
A second approach is to use field-enlarging transformations, where the dilaton is introduced as a
compensator. A compensator is not a dynamical field, and for this reason usually, such actions
are modified by introducing by hand an (extra) kinetic term for the dilaton field. It is important to
observe that if we decided to generate such a term from the Weyl gauging [11, 12] of the Einstein
Lagrangian, the procedure would generate a kinetic term which is ghost-like.
Flipping the sign of this term is a standard procedure, which, however, needs to be motivated since
the inclusion of a Goldstone mode by hand, while possible, should be compared against the de-
scription of the same theory in the (UV) conformal phase. In the UV this degree of freedom is
completely absent and the violation of the conformal symmetry (i.e. the anomaly) appears as a
purely radiative effect. Clearly, the latter is a pure phenomenological approach which allows to
derive a possible final expression of the Lagrangian in a broken conformal phase without address-
ing the nature of the breaking itself. The closest example is the QCD chiral Lagrangian, where the
global symmetries of the two theories in the UV and IR are matched, but the intermediate dynamics
is essentially non-perturbative.
In order to shed some light on this, one possibility is to turn to exact methods, if these are available.
Up to 3-point functions, CFT’s fix the structure of their correlators in an essentially unique way,
except for few constants. It is then clear that the effective action built by combining the correlators
of 2- and 3-point functions - which are solutions of the conformal constraints - naturally determine
the simplest expression of the anomaly action of a certain theory. This action is specifically nonlo-
cal, but obviously, it is not unique. As we are going to discuss next, also in the case of a nonlocal
conformal anomaly action, as well as in the chiral case, once this is rewritten in a local form, it
manifests a kinetic mixing between two scalar degrees of freedom. In the chiral case, the scalars
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are replaced by pseudoscalars. If we try to decouple the two states we need to define a scale M at
which the decoupling takes place. It is then easy to realize that the new decoupled Lagrangian is
characterized by a ghost in its spectrum, at least at the level of trilinear interactions.
As emphasized in previous work, a simple analysis of this Lagrangian - in the case of a chiral theory
- [13] shows that the resolution of the kinetic mixing requires the inclusion of two axions, with one
of them being a ghost. In the unmixed case, a standard Coleman-Weinberg analysis of the potential
for the ghost term shows that the Lagrangian induces a ghost condensation, with the possibility of
a redefinition of the vacuum. We are going to briefly review such features. The analysis has been
done in the case of an external axial-vector coupling, although the result in the case of a dilaton
pole we expect it to be quite similar.

3. Conformal symmetry and its classical breaking

Let’s come to a brief description of the conformal invariant extension of the SM with a funda-
mental Higgs and a dilaton.
A scale invariant extension of a given Lagrangian can be obtained if we promote all the dimension-
ful constants to dynamical fields. It is natural to ask whether the new degree of freedom introduced
to restore the conformal symmetry of the theory can be generated dynamically, emerging from the
effective interactions which can be held responsible for the generation of an anomaly. We illustrate
this point in the case of a simple interacting scalar field theory incorporating the Higgs mechanism.
At a second stage, we will derive the structure of the dilaton interaction at order 1/Λ, where Λ

is the scale characterizing the spontaneous breaking of the dilatation symmetry and discuss some
possible phenomenological constraints on Λ.

The two equivalent forms of the scalar Higgs potential

V1(H,H†) = −µ
2H†H +λ (H†H)2 = λ

(
H†H− µ2

2λ

)2

− µ4

4λ

V2(H,H†) = λ

(
H†H− µ2

2λ

)2

(3.1)

generate two different scale-invariant extensions

V1(H,H†,Σ) = −µ2Σ2

Λ2 H†H +λ (H†H)2

V2(H,H†,Σ) = λ

(
H†H− µ2Σ2

2λΛ2

)2

, (3.2)

where H is the Higgs doublet, λ is its dimensionless coupling constant, while µ has the dimension
of a mass. The constant µ4 term present in V1 which in a non-scale invariant theory can be absorbed
by a redefinition of the Lagrangian, is clearly insignificant in flat space and generates two different
scale-invariant potential, where only the second one is stable.

L =
1
2
(∂φ)2−V2(φ) =

1
2
(∂φ)2 +

µ2

2
φ

2−λ
φ 4

4
− µ4

4λ
, (3.3)
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obeying the classical equation of motion

�φ = µ
2

φ −λ φ
3 . (3.4)

This theory is not scale invariant due to the appearance of the mass term µ , as one can easily notice
from the trace of the canonical (c) energy-momentum (EMT) tensor

T µν
c (φ) = ∂

µ
φ ∂

ν
φ − 1

2
η

µν

[
(∂φ)2 +µ

2
φ

2−λ
φ 4

2
− µ4

2λ

]
,

T µ
c µ

(φ) = −(∂φ)2−2 µ
2

φ
2 +λ φ

4 +
µ4

λ
. (3.5)

The EMT of a scalar field can be improved so that its trace is proportional only to the scale breaking
parameter, i.e. the mass µ . This can be achieved by adding an extra contribution T µν

I (φ ,χ) which
is symmetric and conserved

T µν

I (φ ,χ) = χ
(
η

µν�φ
2−∂

µ
∂

ν
φ

2) , (3.6)

where the χ parameter is specifically choosen. The combination of the canonical plus the improve-
ment EMT, T µν ≡ T µν

c +T µν

I has the off-shell trace

T µ
µ(φ ,χ) = (∂φ)2 (6χ−1)−2 µ

2
φ

2 +λ φ
4 +

µ4

λ
+6χφ �φ . (3.7)

Using the equation of motion (3.4) and selecting χ = 1/6, the trace relation given in the expression
above becomes proportional to the scale-breaking term µ

T µ
µ(φ ,1/6) =−µ

2
φ

2 +
µ4

λ
. (3.8)

The scale-invariant extension of the Lagrangian given in Eq.(3.3) is obtained by promoting the
mass terms to dynamical fields using the replacement

µ → µ

Λ
Σ(x), (3.9)

obtaining

L =
1
2
(∂φ)2 +

1
2
(∂Σ)2 +

µ2

2Λ2 Σ
2

φ
2−λ

φ 4

4
− µ4

4λ Λ4 Σ
4, (3.10)

where we have included a kinetic term for the dilaton Σ. The new Lagrangian is dilatation invariant,
as shown from the trace of the EMT

T µ
µ(φ ,Σ,χ,χ

′) = (6 χ−1) (∂φ)2 +
(
6χ
′−1

)
(∂Σ)2 +6χ φ �φ +6χ

′
Σ�Σ−2

µ2

Λ2 Σ
2

φ
2 +λ φ

4

+
1
λ

µ4

Λ4 Σ
4 , (3.11)

an expression that vanishes upon using the equations of motion for the Σ and φ fields,

�φ =
µ2

Λ2 Σ
2

φ −λ φ
3 ,

�Σ =
µ2

Λ2 Σφ
2− 1

λ

µ4

Λ4 Σ
3 , (3.12)
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and after setting the value of the χ,χ ′ parameters at the special value χ = χ ′ = 1/6, corresponding
to conformally coupled scalars. The scalar potential V2 triggers the spontaneous breaking of the
scale symmetry around a stable point of minimum. Expanding around the vacuum, parameterized
by the conformal scale Λ and the Higgs vev v respectively

Σ = Λ+ρ , φ = v+h (3.13)

one can describe the theory in the broken phase.
For our present purposes, it is enough to expand the Lagrangian (3.10) around the vev for the
dilaton field, as we are interested in the structure of the couplings of its fluctuation ρ

L =
1
2
(∂φ)2 +

1
2
(∂ρ)2 +

µ2

2
φ

2−λ
φ 4

4
− µ4

4λ
− ρ

Λ

(
−µ

2
φ

2 +
µ4

λ

)
+ . . . , (3.14)

where we have neglected terms of higher order in 1/Λ. It is clear, from (3.8) and (3.14), that one
can write a dilaton Lagrangian at order 1/Λ, as

Lρ = (∂ρ)2− ρ

Λ
T µ

µ(φ ,1/6)+ . . . , (3.15)

where we have used the equations of motion in order to re-express the trace of the energy momen-
tum tensor.
It is clear, from this simple analysis, that a dilaton, in general, does not couple to the anomaly, but
only to the sources of the explicit breaking of scale invariance, which are proportional to the mass
terms of the action. In V2 we parameterize the Higgs around the electroweak vev v as in Eq. (3.13),
and indicate with Λ the vev of the dilaton field Σ = Λ+ρ , with φ+ = φ = 0 in the unitary gauge.
Performing a diagonalization of the mass matrix we define the two mass eigenstates ρ0 and h0,
which are given by with the potential V2 exhibiting a massless mode due to the existence of a flat
direction. The Higgs and the dilaton will mix according to the mass matrix(

ρ0

h0

)
=

(
cosα sinα

−sinα cosα

)(
ρ

h

)
(3.16)

with
cosα =

1√
1+ v2/Λ2

sinα =
1√

1+Λ2/v2
. (3.17)

We denote with ρ0 the massless dilaton generated by this potential, while h0 denotes the Higgs
scalar whose mass is given by

m2
h0
= 2λv2

(
1+

v2

Λ2

)
with v2 =

µ2

λ
, (3.18)

and with m2
h = 2λv2 being the mass of the Standard Model Higgs. Notice that the Higgs mass, in

this case, is corrected by the new scale of the spontaneous breaking of the dilatation symmetry (Λ),
which remains a free parameter.

Obviously, the presence of a massless dilaton in the spectrum is troublesome, a problem which
send us back to the issue of how to select a single vacuum state from the underlying vacuum
degeneracy. This can be lifted by the introduction of extra (explicit breaking) terms which give a
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(a) (b) (c)

Figure 1: The triangle diagram in the fermion case (a), the collinear fermion configuration responsible for
the anomaly (b) and a diagrammatic representation of the exchange via an intermediate state (dashed line)
(c).

small mass to the dilaton field. To remove such degeneracy, one can introduce, for instance, the
term

Lbreak =
1
2

m2
ρρ

2 +
1
3!

m2
ρ

ρ3

Λ
+ . . . , (3.19)

where mρ represents the dilaton mass. The coupling of a dilaton to an anomaly is necessary, since
the dilaton is the pseudo Nambu-Goldstone mode of the dilatation symmetry and the anomaly is
a source of such breaking. Thus, this coupling has to be introduced by hand and the role of the
conformal anomaly action is to account for it.

4. Phenomenology of a classical scale invariant extension of the Standard Model

In the case of the SM, the dilaton interaction takes the form discussed above

Lint =−
1
Λ

ρT µ

µ SM. (4.1)

where T is the EMT of the SM. As usual, it can be easily derived by embedding the SM Lagrangian
in the background metric gµν

S = SSM +SI =
∫

d4x
√−gLSM +ξ

∫
d4x
√−gRH †H , (4.2)

where H is the Higgs doublet and R the scalar curvature of the same metric, and then defining

Tµν(x) =
2√
−g(x)

δ [SSM +SI]

δgµν(x)
, (4.3)

or, in terms of the SM Lagrangian, as

1
2
√−gTµν≡

∂ (
√−gL )

∂gµν
− ∂

∂xσ

∂ (
√−gL )

∂ (∂σ gµν)
. (4.4)

The complete expression of the energy-momentum tensor can be found in [14]. SI is responsible for
generating a term of improvement (I), which induces a mixing between the Higgs and the dilaton
after spontaneous symmetry breaking. As usual, we parameterize the vacuum H0 in the scalar
sector in terms of the electroweak vev v as

H0 =

(
0
v√
2

)
(4.5)
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ρ

(a)

W±

W±

W±

ρ

(b)

φ±

φ±

φ±

ρ

(c)

H

Z

H

ρ

(d)

ρ

(e)

W± W±

ρ

(f)

φ± φ±

ρ

(g)

W± φ±

ρ

(h)

Z H

ρ

(i)

W±ρ

(j)

Figure 2: Typical amplitudes of triangle and bubble topologies contributing to the ργγ , ργZ and ρZZ
interactions. They include fermion (F), gauge bosons (B) and contributions from the term of improvement
(I). Diagrams (a)-(g) contribute to all the three channels while (h)-(k) only in the ρZZ case.

and we expand the Higgs doublet in terms of the physical Higgs boson H and the two Goldstone
bosons φ+, φ as

H =

(
−iφ+

1√
2
(v+H + iφ)

)
, (4.6)

obtaining from the term of improvement of the stress-energy tensor the expression

T I
µν =−2ξ

[
∂µ∂ν −ηµν �

]
H †H =−2ξ

[
∂µ∂ν −ηµν �

](
H2

2
+

φ 2

2
+φ

+
φ
−+ vH

)
, (4.7)

which is responsible for a bilinear vertex

VI,ρH(k) =−
i
Λ

12ξ swMW

e
k2

where sW is the Weinberg angle. The trace takes contribution from the massive fields, the fermions
and the electroweak gauge bosons, and from the conformal anomaly in the massless gauge boson
sector, through the β functions of the corresponding coupling constants.
One can directly verify the the separation between the anomalous and the explicit mass-related
terms in the expression of the correlators responsible of the conformal anomaly. It has been verified
in QED and in the neutral sector of the SM [15,16] by explicit computations. Such separation does
not necessarily hold in other regularization schemes. The reason for such difference is related to the
special role of DR compared to other regularization schemes, which explicitly break the conformal
symmetry by introducing a cutoff. This point has been discussed by Bardeen [2] in the context
of ’t Hooft’s naturalness principle applied to the Higgs mass. Also in this case there are strong
arguments that convey a truly specials role to such regularization scheme compared to others. In
the case of the TVV vertex, for instance, by taking a trace one can derive an anomalous Ward
identity of the form

Γ
αβ (z,x,y)≡ ηµν

〈
T µν(z)V α(x)V ′β (y)

〉
=

δ 2A (z)
δAα(x)δAβ (y)

+
〈

T µ
µ(z)V α(x)V ′β (y)

〉
. (4.8)
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where A (z) is the anomaly functional, while Aα indicates the gauge fields coupled to the current
V α . Γαβ is a generic dilaton/gauge/gauge vertex, whose Feynman expansion takes a form depicted
in Fig. 2. It is obtained from the TVV ′ vertex by tracing the spacetime indices µν . A (z) is derived
from the renormalized expression of the vertex by tracing the gravitational counterterms in 4− ε

dimensions (see for instance [10, 11])

〈T µ

µ 〉= A (z), (4.9)

which in a curved background is given by the metric functional

A (z) =−1
8

[
2bC2 +2b′

(
E− 2

3
�R
)
+2cF2

]
, (4.10)

where b, b′ and c are parameters. For the case of a single fermion in an abelian gauge theory they
are given by b = 1/320π2, b′ = −11/5760π2, and c = −e2/24π2. C2 is the square of the Weyl
tensor and E is the Euler density given by

C2 = Cλ µνρCλ µνρ = Rλ µνρRλ µνρ −2RµνRµν +
R2

3
(4.11)

E = ∗Rλ µνρ
∗Rλ µνρ = Rλ µνρRλ µνρ −4RµνRµν +R2. (4.12)

In a flat metric background the expression of such functional reduces to the simple form

A (z) = ∑
i

βi

2gi
Fαβ

i (z)F i
αβ

(z), (4.13)

where βi are clearly the mass-independent β functions of the gauge fields and gi the corresponding
coupling constants. Obviously, for a theory which which is quantum conformal invariant, the βi

vanish. We refer to [17, 18] for more details concerning the phenomenology of such models of
direct LHC relevance.
It is possible, using such effective interaction which couples the dilaton to the anomaly, to address
some phenomenological issues which are can be studied at the LHC.
We show in Figs 3 and 4 some results of a phenomenological analysis of the production and decay
of a dilaton (ρ) as a function of its mass and branching ratios, together with some comparisons with
the Higgs. In particular Fig. 5 shows the results of an analysis of the bounds on Λ, the conformal
scale by a comparison with experimental data. In general it is possible to select a value of Λ in
the few TeV region in such a way that such additional interactions are in agreement with the SM
results. We refer to [18] for further details.

5. Wess Zumino actions with an asymptotic dilaton from a kinetic flip

The inclusion of an asymptotic dilaton, as done above, and the derivation of the corresponding
anomaly action can be performed in various ways. One possibility is to use the procedure of Weyl
gauging (see [12]). It is possible to generate such an action by the application of this procedure
to the anomaly counterterms. In this case one can also show that multiple traces of stress energy

11
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Figure 3: The mass dependence of the branching ratios of the dilaton (a) and of the Higgs boson (b).
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Figure 4: The mass dependence of the dilaton cross-section via gluon fusion (a) and vector boson fusion (b)
for three different choices of the conformal scale, Λ = 1,5,10 TeV respectively.

tensors are functionally dependent on the first 4 ones in d = 4, the first 6 ones in d = 6 and so on.
More details can be found in [10,11]. We briefly summarize the method in the case of d = 4, before
stressing one crucial aspect of this approach, i.e. the presence of a ghost in the procedure. The
method amounts to a field-enlarging transformation, with the removal of the ghost by flipping the
sign of the kinetic term. In the next sections, once we turn to the analysis of 1PI anomaly actions,
which are not constructed by this formal procedure, but are directly computed either in perturbation
theory or by solving the CWI’s in momentum space, we will point out a similar feature.

The metric tensor gµν(x), the vierbein Vaρ(x) and the fields Φ change under Weyl scalings
according to

g′µν(x) = e2σ(x) gµν(x) ,

V ′aρ(x) = eσ(x)Vaρ(x) ,

Φ
′(x) = edΦ σ(x)

Φ(x) , (5.1)

with σ(x) being a dimensionless function parameterizing a local Weyl transformation. Here dΦ is

12
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Figure 5: The mass bounds on the dilaton from heavy scalar decays to (a) ZZ, (b) W±W∓, (c) τ̄τ and (d) to
H H for three different choices of conformal scale, Λ = 1,5,10 TeV respectively.

the scaling dimension of the generic field Φ, the latin suffix a in Vaρ denotes the flat local index,
while the Greek indices are the curved indices of the spacetime manifold. A way to build a Weyl
invariant theory containing the fields in (5.1) consists in making the metric tensor, the vierbein and
the fields Φ, Weyl invariant through the substitutions

Vaρ(x) → V̂aρ(x)≡ e−
τ(x)

Λ Vaρ(x) ,

Φ(x) → Φ̂(x)≡ e−dΦ
τ(x)

Λ Φ (5.2)

and take the form of field-enlarging transformations.
Under a Weyl scaling (5.1), the dilaton τ is required to shift as a Goldstone mode

τ
′(x) = τ(x)+Λσ(x) . (5.3)

The Weyl invariant terms may take the form of any scalar contraction of R̂µνρσ , R̂µν and R̂
and can be classified by their mass dimension. Typical examples are

Jn ∼
1

Λ2(n−2)

∫
d4x
√

ĝR̂n, (5.4)

and so forth, with the case n = 1 describing the relevant operator in the infrared which reproduces
the kinetic term of the dilaton. These terms can be included into a local action of the metric,
Γ0[ĝ]≡ Γ0[g,τ], extended with the inclusion of τ(x).

Γ0[ĝ]∼∑
n

Jn[ĝ]. (5.5)
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The leading contribution to Γ0 is the kinetic term for the dilaton, which can be obtained in two
ways. The first method is to consider the Weyl-gauged Einstein-Hilbert term

∫
ddx
√

ĝ R̂ =
∫

ddx
√

ge
(2−d)τ

Λ

[
R−2 (d−1)

�τ

Λ
+(d−1) (d−2)

∂ λ τ ∂λ τ

Λ2

]
=
∫

ddx
√

ge
(2−d)τ

Λ

[
R− (d−1) (d−2)

∂ λ τ ∂λ τ

Λ2

]
, (5.6)

with the inclusion of an appropriate normalization

S
(2)

τ =−Λd−2 (d−2)
8 (d−1)

∫
ddx
√

ĝ R̂ , (5.7)

which reverses the sign in front of the Einstein term. Indeed, the extraction of a conformal factor
(σ̃ ) from the Einstein-Hilbert term from a fiducial metric ḡµν (gµν = ḡµνeσ̃ ) generates a kinetic
term for (σ̃ ) which is ghost-like.

An alternative method consists in writing down the usual conformal invariant action for a
scalar field χ in a curved background

S
(2)
χ =

1
2

∫
ddx
√

g
(

gµν
∂µ χ ∂ν χ− 1

4
d−2
d−1

R χ
2
)
. (5.8)

By the field redefinition χ ≡ Λ
d−2

2 e−
(d−2)τ

2Λ Eq. (5.8) becomes

S
(2)

τ =
Λd−2

2

∫
ddx
√

ge−
(d−2)τ

Λ

(
(d−2)2

4Λ2 gµν
∂µτ ∂ντ− 1

4
d−2
d−1

R
)
, (5.9)

which, for d = 4, reduces to the familiar form

S
(2)

τ =
1
2

∫
d4x
√

ge−
2τ

Λ

(
gµν

∂µτ ∂ντ− Λ2

6
R
)

(5.10)

and coincides with the previous expression (5.7), obtained from the formal Weyl invariant con-
struction.

In four dimensions we can build the following possible subleading contributions (in 1/Λ) to
the effective action which, when gauged, can contribute to the fourth order dilaton action

S
(4)

τ =
∫

d4x
√

g
(

α Rµνρσ Rµνρσ +β Rµν Rµν + γ R2 +δ �R
)
. (5.11)

The fourth term (∼ �R) is just a total divergence, whereas two of the remaining three terms can
be traded for the squared Weyl tensor F and the Euler density G. As

√
gF is Weyl invariant and G

is a topological term, neither of them contributes, when gauged according to (5.2), so that the only
non vanishing four-derivative term in the dilaton effective action in four dimensions is

S
(4)

τ = γ

∫
d4x
√

ĝ R̂2 = γ

∫
d4x
√

g
[

R−6
(
�τ

Λ
− ∂ λ τ ∂λ τ

Λ2

)]2

, (5.12)
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with γ a dimensionless constant. If we also include a possible cosmological constant term, S(0)τ , we
get the final form of the dilaton effective action in d = 4 up to order four in the derivatives of the
metric tensor

Sτ = S
(0)

τ +S
(2)

τ +S
(4)

τ + · · ·=
∫

d4x
√

ĝ
{

α− Λd−2 (d−2)
8 (d−1)

R̂+ γ R̂2
}
+ . . . , (5.13)

where the ellipsis refer to additional operators which are suppressed in 1/Λ. In flat space (gµν →
δµν ), (5.12) becomes

Sτ =
∫

d4x
[

e−
4τ

Λ α +
1
2

e−
2τ

Λ ∂
λ

τ ∂λ τ +36γ

(
�τ

Λ
− ∂ λ τ ∂λ τ

Λ2

)]
+ . . . (5.14)

This approach can be extended to the anomaly counterterms as well, by considering the renormal-
ized action Γren[g,τ]. This takes to a Wess-Zumino (WZ) action which consistently accounts for
the anomaly, at the price of including an extra dynamical degree of freedom and a kinetic flip. The
latter is obtained by the relation

ΓWZ[g,τ] = Γren[g,τ]− Γ̂ren[g,τ] (5.15)

and takes the WZ form

ΓWZ[g,τ] =
∫

d4x
√

g
{

βa

[
τ

Λ

(
F− 2

3
�R
)
+

2
Λ2

(
R
3

∂
λ

τ ∂λ τ +(�τ)2
)
− 4

Λ3 ∂
λ

τ ∂λ τ �τ +
2

Λ4

(
∂

λ
τ ∂λ τ

)2
]

+βb

[
τ

Λ
G− 4

Λ2

(
Rαβ − R

2
gαβ

)
∂ατ ∂β τ− 4

Λ3 ∂
λ

τ ∂λ τ �τ +
2

Λ4

(
∂

λ
τ ∂λ τ

)2
]}

.

(5.16)

This action is local and contains an asymptotic dilaton, but does not appear to be equivalent to the
nonlocal action (the Riegert action)

S
NL

anom[g] =
1
4

∫
d4x
√−gx

(
E− 2

3
�R
)

x

∫
dx′
√−gx′ D4(x,x′)

[
b′

2
(
E− 2

3
�R
)
+bC2

]
x′

(5.17)

where D4(x,x′) = (∆−1
4 )xx′ and

∆4 ≡ ∇µ

(
∇

µ
∇

ν +2Rµν − 2
3

Rgµν

)
∇ν =�2 +2Rµν

∇µ∇ν −
2
3

R�+
1
3
(∇µR)∇µ (5.18)

is the unique fourth order scalar kinetic operator that is conformally covariant

√−g∆4 =
√−ḡ ∆̄4 (5.19)

under the local conformal reparameterization gµν = e2σ ḡµν , for an arbitrary rescaling σ(x) [19,20].
Such second form of the anomaly action, without an asymptotic dilaton field, is what one rediscov-
ers both from a perturbative analysis and from the solution of the CWI’s for 3-point functions, as
we will be discussing below. We are going to emphasize one key feature of such two actions.

15



P
o
S
(
C
O
R
F
U
2
0
1
8
)
0
7
2

Exact Correlators from Conformal Ward Identities Claudio Corianò

6. Turning to general issues: The perturbative structure of 1PI anomaly actions for
chiral and conformal anomalies

The type of actions discussed above, which enlarge the spectrum of the SM by the inclu-
sion of an asymptotic dilaton field, are the most popular ones, and are justified within an ordi-
nary phenomenological approach. Obviously, they do not introduce a dilaton dynamically, but are
viable anyhow, as far as the issue of the explicit breaking of the dilaton mass is accepted on a
purely phenomenological basis. An alternative approach consists in starting from a given classi-
cally conformal invariant theory and investigate the quantum corrections which are responsible for
the generation of the conformal anomaly. In this case, the basic procedure for chiral and conformal
anomalies are quite similar, although for a chiral anomaly the approach is far simpler, since only
a linear coupling of a Nambu-Goldstone mode to the anomaly is sufficient in order to generate
the anomaly contribution. This type of approach is at the core of the Stückelberg mechanism for
the cancelation of the gauge anomalies generated by a certain anomalous gauge interaction (Bµ).
The method allows to obtain a physical axion only in the presence of a non-perturbative periodic
potential, which can be easily justified under the assumption that at a phase transition the instanton
sector can generate it. We refer to a recent review for a discussion of such a mechanism [9].

6.1 The chiral vertex

For a chiral anomaly, the main features of the 1PI effective actions have been discussed in
detail in [6, 7]. They are based on a perturbative representation of the anomaly vertex which is
equivalent to the original description in terms of 6 form factors found on textbooks, but formulated
in terms of longitudinal and transverse components, as we are going to illustrate.
We recall that the AVV amplitude with off-shell external lines is parameterized in the form

∆
λ µν

0 = V1(k1,k2)ε[k1,µ,ν ,λ ]+V2(k1,k2)ε[k2,µ,ν ,λ ]+V3(k1,k2)ε[k1,k2,µ,λ ]k1
ν

+ V4(k1,k2)ε[k1,k2,µ,λ ]kν
2 +V5(k1,k2)ε[k1,k2,ν ,λ ]k

µ

1 +V6(k1,k2)ε[k1,k2,ν ,λ ]k
µ

2

(6.1)

where ε[k1,µ,ν ,λ ] ≡ εαµνλ k1α , and so on, with k1 and k2 the momenta of the two vector lines.
The four invariant amplitudes Vi for i≥ 3 are finite and given by explicit parametric integrals [21]

V3(k1,k2) = −V6(k2,k1) =−16π
2I11(k1,k2), (6.2)

V4(k1,k2) = −V5(k2,k1) = 16π
2 [I20(k1,k2)− I10(k1,k2)] , (6.3)

where the general massive Ist integral is defined by

Ist(k1,k2) =
∫ 1

0
dw
∫ 1−w

0
dzwszt [z(1− z)k2

1 +w(1−w)k2
2 +2wz(k1k2)−m2]−1

, (6.4)

Both A1 and A2 are instead represented by formally divergent integrals, which can be rendered
finite only by imposing the Ward identities on the two vector lines, giving

V1(k1,k2) = k1 · k2V3(k1,k2)+ k2
2 V4(k1,k2), (6.5)

V2(k1,k2) = k2
1 V5(k1,k2)+ k1 · k2V6(k1,k2), (6.6)
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which allow to re-express the formally divergent amplitudes in terms of the convergent ones. The
Bose symmetry on the two vector vertices with indices µ and ν is fulfilled thanks to the relations

V5(k1,k2) = −V4(k2,k1) (6.7)

V6(k1,k2) = −V3(k2,k1). (6.8)

Coming to the second parameterization of the three-point correlator function, this is the one pre-
sented in [22]. One of the features of this parameterization is the presence of a longitudinal con-
tribution (i.e. of an anomaly pole), apparently for generic virtualities of the external momenta
of the two vector lines. For on-shell photons there is a single form factor with a 1/k2 behaviour
(k = k1 + k2) in the only longitudinal structure of the vertex. In the general off-shell case several
structures are affected by other poles in their transverse components as well, raising some doubts
about the significance of the longitudinal pole, for general kinematics. The various contributions
and parameterizations can be related one to the other by the Schoutens relations, as discussed in [6].
This second parameterization plays an important role in the description of the anomalous magnetic
moment of the muon [22]. For this reason we start by recalling the structure of such L/T parame-
terization, which separates the longitudinal (L) from the transverse (T) components of the anomaly
vertex, which is given by

W λ µν =
1

8π2

[
W Lλ µν −W T λ µν

]
, (6.9)

where the longitudinal component

W Lλ µν = wL kλ
ε[µ,ν ,k1,k2] (6.10)

(with wL =−4i/k2) describes the anomaly pole, while the transverse contributions take the form

W T
λ µν(k1,k2) = w(+)

T

(
k2,k2

1,k
2
2
)

t(+)
λ µν

(k1,k2)+ w(−)
T

(
k2,k2

1,k
2
2
)

t(−)
λ µν

(k1,k2)

+ w̃(−)
T

(
k2,k2

1,k
2
2
)

t̃(−)
λ µν

(k1,k2), (6.11)

with the transverse tensors given by

t(+)
λ µν

(k1,k2) = k1ν ε[µ,λ ,k1,k2] − k2µ ε[ν ,λ ,k1,k2] − (k1 · k2)ε[µ,ν ,λ ,(k1− k2)]

+
k2

1 + k2
2− k2

k2 kλ ε[µ,ν ,k1,k2] ,

t(−)
λ µν

(k1,k2) =

[
(k1− k2)λ −

k2
1− k2

2
k2 kλ

]
ε[µ,ν ,k1,k2]

t̃(−)
λ µν

(k1,k2) = k1ν ε[µ,λ ,k1,k2] + k2µ ε[ν ,λ ,k1,k2] − (k1 · k2)ε[µ,ν ,λ ,k]. (6.12)

taking to a parameterization of the vertex in the form

Γ
(3) = Γ

(3)
pole + Γ̃

(3) (6.13)

with the pole part, coupled to the external axial vector field Bµ given by

Γ
(3)
pole =−

1
8π2

∫
d4xd4y∂ ·B(x)�−1

x,y F(y)∧F(y) (6.14)
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and the rest (Γ̃(3)) given by a complicated nonlocal expression which contributes homogeneously
to the Ward identify of the anomaly graph.
All the terms in this parameterization are linked together, and the isolation of a single contribu-
tion from the rest is only possible for specific kinematics. Nevertheless, around the light-cone
(k2→ 0) the anomaly can be attributed to the pole-like behaviour of the longitudinal part. Notice
that the absence of the pole structure in Rosenberg’s formulation of the AVV [21] is due to the
redundancy of the latter. Poles can be removed and reinserted in a given parameterization by using
the Schoutens relations, but there is no way one can remove the anomaly pole of WL consistently.
One can naturally try to to unconver the meaning of such interactions. As we are going to see,
at least from the analysis of 3-point functions, the effective action shows the emergence of some
instabilities, signalling the possibility that the vacuum will be restructured in the presence of such
interactions. This feature is probably shared by the effective actions of both chiral and conformal
anomalies, which get unified in the context of supersymmetric theories. We are going to illustrate
this phenomenon in the chiral case, where it has been worked out in some detail.

6.2 A ghost in the spectrum

As an example we consider a gauge boson B coupled to a single chiral fermion which generates
a 1PI effective action of the form

L = ψ̄(i 6 ∂ +g 6 Bγ5)ψ−
1
4

F2
B + 〈∆BBBBBB〉+ c2∂B

1
�

FBF̃B + . . . (6.15)

where the ellipsis refer to additional transverse terms identified in the trilinear BBB vertex, which is
anomalous. We have isolated the longitudinal contribution related to the anomaly pole and we will
focus in this contribution. It is easy to show that the 1/� term can be generated by the introduction
of two pseudoscalar fields a and b which allow to remove the nonlocal contribution of the action

L = ψ (i 6 ∂ +g 6 Bγ5)ψ− 1
4

F2
B + 〈∆BBBBBB〉+ c3FB∧FB(a+b)

+
1
2
(
∂µb−M1Bµ

)2− 1
2
(
∂µa−M1Bµ

)2
, (6.16)

where both a and b shift under the gauge symmetry

δb = M1θB(x) δBµ = ∂µθB(x) (6.17)

and where θB(x) parameterizes a gauge transformation. The inclusion of two pseudoscalars which
acquire Stückelberg mass terms, given by the second line of the equation above, is a specific fea-
ture of this reformulation, with a Stückelberg mass M1. The equivalence between (6.15) and (6.16)
can be proven directly from the functional integral, integrating out both a and b, which gives two
gaussian integrations [23]. Notice that b has a positive kinetic term and a is ghost-like. A similar
behaviour obviously holds also in the case of an external axial-vector current coupled to a corre-
sponding classical gauge field if the fermion spectrum is anomalous. In this case the appearance of
a ghost in the effective action indicates the onset of an instability. Notice also that the inclusion of
a Stückelberg mass term indicates that we need to introduce a suitable scale in order to be able to

18



P
o
S
(
C
O
R
F
U
2
0
1
8
)
0
7
2

Exact Correlators from Conformal Ward Identities Claudio Corianò

define a local action.
There is a third equivalent formulation of the same action (6.16) which can be defined with the
inclusion of a kinetic mixing between the two pseudoscalars. This has been given for QED (with a
single fermion) coupled to an external axial-vector field Bµ [7] and takes the form

L = ∂µη∂
µ

χ−χ∂B+
e2

8π2 ηFF̃ , (6.18)

where F is the field strength of the photon Aµ while Bµ takes the role of a source. It is quite
straightforward to relate (6.16) and (6.18). This can be obtained by the field redefinitions

η =
(a+b)

M
,

χ = M(a−b), (6.19)

showing that indeed a mixing term is equivalent to the presence of either an anomaly pole or to two
pseudoscalars in the spectrum of the theory, one of them being a ghost, and the inclusion of a scale
at which to define their decoupling, which is the Stückelberg scale. Notice that in Eq. (6.19) χ is
gauge invariant while η is not.

7. The Coleman-Weinberg potential and ghost condensation at trilinear level

We have clarified that a Lagrangian containing a pole counterterm shows some nontrivial fea-
tures. In particular, the presence of the nonlocal ∂B�−1FF̃ interaction induced by an anomaly
pole, rewritten in a local version, allows to proceed with some further perturbative analysis which
sheds some light on the character of the effective potential of the ghost field a defined in (6.16).
We can use the Coleman-Weinberg approach, which indicates the presence of an instability in the
action, obtained after integration over all the remaining fields of the model. The instability is sig-
nalled by the presence of a ghost condensate at 1-loop level. To illustrate this formal result we
follow closely the analysis of [13].

Consider the gauge-fixed version of the Lagrangian in (6.16) given by

L = ψ̄(i 6 ∂ + e 6 Bγ5)ψ−
1
4

F2
B −

(∂µBµ)2

2α
+

e3

48π2M1
FB∧FB(a+b)

+
1
2
(∂µb−M1Bµ)

2− 1
2
(∂µa−M1Bµ)

2 (7.1)

where α is the gauge parameter. We shift the ghost field, separating the classical ghost background
(still denoted as a(x)), from its quantum fluctuating part on which we will integrate, A(x)

a(x)−→ a(x)+A(x). (7.2)

Dropping the linear terms in the quantum fluctuation field A(x) and taking just the quadratic part
of all the quantum fields we get the quadratic Lagrangian

Lquad = ψ̄i 6 ∂ψ− 1
4

F2
B −

(∂µBµ)2

2α
+

e3

48π2M1
aFB∧FB

+
1
2
(∂b)2−M1∂µbBµ − 1

2
(∂µA)2 +M1Bµ∂

µA, (7.3)
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from which we can determine, after an integration by parts, the contribution which is quadratic in
the anomalous gauge field B

1
2

∫
d4xBµ

[
gµν�−

(
1− 1

α

)
∂µ∂ν +

e3

24π2M1
∂αaε

µαρν
∂ρ

]
Bν . (7.4)

The one loop effective action in the background of the ghost a is obtained by integration over
all the quantum fields in the form

eiΓ[a] =
∫
[DA][Dψ][Dψ̄][DB][Db]×

exp{i
∫

d4x
[
ψ̄i 6 ∂ψ− 1

4
F2

B −
(∂µBµ)2

2α
+

1
2
(∂b)2−M1∂µbBµ − 1

2
(∂µA)2 +M1Bµ∂

µA

+
e3

48π2M1
FB∧FBa

]}
. (7.5)

The integration over the quantum fluctuations of the ghost field A gives

∫
[DA]exp

[
i
∫

d4x
(1

2
A�A−M1∂µBµA

)]
∝

exp
[
− 1

2

∫
d4xd4y

(
M1∂µBµ(x)DF(x− y)M1∂νBν(y)

)]
(7.6)

where

DF(x− y) =
∫ d4 p

(2π)4
−ieip(x−y)

p2− iε
(7.7)

is the propagator for the quantum fluctuations of the ghost field. The integration over the axion b
induces some cancelations of various terms giving

∫
[Db]exp

[
i
∫

d4x
(
−1

2
b�b+M1∂µBµb

)]
∝ exp

[
− 1

2

∫
d4xd4yM1∂µBµ(x)D1

F(x− y)M1∂νBν(y)
]
,

(7.8)

where we have introduced the propagator of the axion field

D1
F(x− y) =

∫ d4 p
(2π)4

ieip(x−y)

p2 + iε
. (7.9)

Notice that DF(x− y) +D1
F(x− y) vanishes in the limit ε → 0, thus the integration in A and b

eliminates the terms (7.6) and (7.8) from the action. Therefore we are just left with the expression

eiΓ[a]
∝

∫
[DB]exp

[
− 1

4
i
∫

d4x(FB)
2−

∫
d4x

(∂µBµ)2

2α
+ i

e3

24π2M1

∫
d4xaFB∧FB

]
. (7.10)

Defining

l ≡ e3

24π2M1
and φα ≡ ∂αa, (7.11)
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the effective action of the classical background ghost field is then given by

iΓ[a] =−1
2

Tr log
(
�gµ

ν −
(

1− 1
α

)
∂µ∂ν + lεµαρ

νφα∂ρ

)
(7.12)

where the trace Tr, as usual, must be taken in the functional sense.
To perform the calculation of (7.12) we use the heat kernel method and define the functional

determinant in (7.12) using a ζ function regularization. We take φα to be constant. We have

logdetQ =− lim
s→0

d
ds

µ2s

Γ(s)

∫ +∞

0
dt ts−1Tr(e−tQ) (7.13)

with the functional trace performed in the plane wave basis

Tre−tQ =
∫

d4x tr < x|e−tQ|x >=
∫

d4x tr
∫ d4k

(2π)4 e−ikxe−tQeikx, (7.14)

and with tr denoting the trace on the Lorentz indices. Further manipulations give

(e−ikxe−tQeikx)µ

τ
= gµ

τetk2
exp
(
−itlετ

ν
αρ

φαkρ

)
+(1− 1

α
)
kµkν

k2 (1− etk2
), (7.15)

where we have used the relation

e−tkµ kν = gµ

ν +
kµkν

k2 (e−tk2−1)

kµkτe−itlετ
ν

αρ
φα kρ = kµkν . (7.16)

We need to consider in (7.15) just the φ -dependent part. As usual, the Coleman-Weinberg potential
is gauge-dependent. In this case the dependence on the gauge-fixing parameter α can be assimilated
to the constant terms. The functional trace receives contributions only from the terms with n even,
and after some manipulations we obtain

tr(e−ikxe−tQeikx) = −2etk2
cosh tl

√
k2φ 2− (k ·φ)2 + const. (7.17)

Inserting (7.17) into (7.14) we get, apart from a constant factor of infinite volume, the expression
of the trace

Tre−tQ ∼−2
∫ d4k

(2π)4 etk2
cosh tl

√
k2φ 2− (k ·φ)2, (7.18)

giving an effective potential for the background φα of the form

V [φ ] =− lim
s→0

d
ds

µ2s

Γ(s)

∫ +∞

0
dt ts−1

∫ d4k
(2π)4 etk2

cosh tl
√

k2φ 2− (k ·φ)2. (7.19)

We can obtain the leading contribution of this effective potential by expanding the integrand in
l, i.e. in 1/M1. After performing the expansion and restoring the infinite space-time volume we
obtain the effective action

S =
∫

d3xdt
{(
−1

2
− 3l2

32π2

)
(∂a)2 +

5l4

256π2 (∂a)4
}

(7.20)
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which obviously can be rewritten as

S =
∫

d3xdt
{
−1

2
(∂a)2 +

5l4

256π2 (∂a)4
}
. (7.21)

Notice that the polynomial in the integrand

P(φ) =−1
2

φ
2 +

5l4

256π2 φ
4 (7.22)

has a minimum at

φ̄
2 ∼ 1

l2

√
128π2

5
> 0. (7.23)

To investigate the character of the minimum and of the fluctuations around this minimum, we select
a time-like frame, where the background takes the form

ā = φ̄ t. (7.24)

If we now consider small fluctuactions around this configuration of minimum, denoted as π

a = φ̄ t +π (7.25)

and expanding (7.21) we obtain the action

S =
∫

d3xdt

{
π̇

2 +

√
5

128π2 l2
π̇

3 +
5l4

512π2 π̇
4 +

5l4

512π2 π̇
4|∇π|4−

√
5

128π2 l2
π̇|∇π|2 + · · ·

}
.

(7.26)
This action has the same form as in [24] (see formula (4.2)). As in this previous analysis, we do not
get the term |∇π|2 since its coefficient is proportional to P′(φ̄) = 0. Clearly, the Lorentz symmetry
is broken, at least at 1-loop level, and is signalling an instability of the local model (6.15) generated
in the infrared region. Notice, in fact, that in the Coleman-Weinberg approach we are closing the
gauge boson loop and we are taking the long wavelength limit of the external background ghost
field. Finally, one should also notice that the dependence of the effective potential on M1, in this
approach, is recovered at higher orders. For instance, additional contributions, suppressed by 1/M2

1 ,
are obtained by the insertion of the self-energy of the anomalous gauge boson on the lowest order
contribution (the gauge boson loop). These features of actions containing Wess-Zumino terms have
been studied in the past with similar results [25] [26].
There are some conclusions that one can draw from this simple analysis. There are some indications
that the presence of an anomaly pole in a chiral theory, taken face value, generates a vacuum
instability which leads to ghost condensation, and a similar feature is expected from the analysis
of a conformal anomaly pole. It is natural to think that the vacuum gets redefined if the one loop
analysis can be trusted.

8. The 1PI for the T JJ in QED and QCD

The perturbative character of chiral and conformal anomalies is encoded in both cases in such
singularities, that we will describe jointly in the case of a supersymmetric N = 1 theory where they

22



P
o
S
(
C
O
R
F
U
2
0
1
8
)
0
7
2

Exact Correlators from Conformal Ward Identities Claudio Corianò

=

(a)

k

p

q

(b)

p + l

l − q

l

q

p

k

+ exch.

(c)

l l − q

 

k p

q

+ + exch.

Figure 6: The complete T JJ one-loop vertex (a) given by the sum of the 1PI contributions with triangle (b)
and pinched topologies (c).

i tµναβ

i (p,q)

1
(
k2gµν − kµkν

)
uαβ (p.q)

2
(
k2gµν − kµkν

)
wαβ (p.q)

3
(

p2gµν −4pµ pν
)

uαβ (p.q)
4

(
p2gµν −4pµ pν

)
wαβ (p.q)

5
(
q2gµν −4qµqν

)
uαβ (p.q)

6
(
q2gµν −4qµqν

)
wαβ (p.q)

7 [p ·qgµν −2(qµ pν + pµqν)]uαβ (p.q)
8 [p ·qgµν −2(qµ pν + pµqν)]wαβ (p.q)
9
(

p ·q pα − p2qα
)[

pβ (qµ pν + pµqν)− p ·q(gβν pµ +gβ µ pν)
]

10
(

p ·qqβ −q2 pβ
)[

qα (qµ pν + pµqν)− p ·q(gανqµ +gαµqν)
]

11
(

p ·q pα − p2qα
)[

2qβ qµqν −q2(gβνqµ +gβ µqν)
]

12
(

p ·qqβ −q2 pβ
)[

2 pα pµ pν − p2(gαν pµ +gαµ pν)
]

13
(

pµqν + pνqµ
)
gαβ + p ·q

(
gανgβ µ +gαµgβν

)
−gµνuαβ

−
(
gβν pµ +gβ µ pν

)
qα −

(
gανqµ +gαµqν

)
pβ

Table 1: The basis of 13 fourth rank tensors satisfying the vector current conservation on the external lines
with momenta p and q.

appear in a single anomaly multiplet. Before coming to that point, it is convenient to summarize
some basic findings concerning the structure of the 1PI anomaly action in the conformal case,
which allow to extend the considerations presented before in the AVV diagram to the new case.
Once we move to the analysis of the conformal anomaly, the diagrammatic expansion induces at 1-
loop level a trace contribution, identified at lowest order in the gravitational coupling in correlators
with a single insertion of a stress-energy tensor. The T JJ vertex, in QED, describes the coupling of
a graviton to two photons and provides the simplest realization of this phenomenon. The correlator
is shown in Fig. 7 for QED.
The anatomy of this vertex is due to Giannotti and Mottola [7], who have classified its possible
tensor structures in terms of 13 form factors. On this basis, which is built by imposing on the T JJ
vertex all the Ward identities derived from diffeomorphism invariance, gauge invariance and Bose
symmetry, the original 43 tensor structures can be reduced to this smaller number (see also the
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=

(a)
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q

(b)

p + l

l − q

l

q

p

k

+ exch.

(c)

l l − q

 

k p

q

+ + exch.

Figure 7: The complete T JJ one-loop vertex (a) given by the sum of the 1PI contributions with triangle (b)
and pinched topologies (c).

discussion in [15]. We report them in Table 1. The vertex can be written as

Γ
µ1ν1µ2µ3(p2, p3) =

13

∑
i=1

Fi(s;s1,s2,0) tµ1ν1µ2µ3
i (p2, p3), (8.1)

where the invariant amplitudes Fi are functions of the kinematic invariants s = p2
1 = (p2 + p3)

2,
s1 = p2

2, s2 = p2
3, and the tµ1ν1µ2µ3

i define the basis of the independent tensor structures.
The set of the 13 tensors ti is linearly independent for generic k2, p2,q2 different from zero.

Five of the 13 are Bose symmetric,

tµναβ

i (p,q) = tµνβα

i (q, p) , i = 1,2,7,8,13 , (8.2)

while the remaining eight tensors are Bose symmetric pairwise

tµναβ

3 (p,q) = tµνβα

5 (q, p) , (8.3)

tµναβ

4 (p,q) = tµνβα

6 (q, p) , (8.4)

tµναβ

9 (p,q) = tµνβα

10 (q, p) , (8.5)

tµναβ

11 (p,q) = tµνβα

12 (q, p) . (8.6)

In the set are present two tensor structures

uαβ (p,q)≡ (p ·q)gαβ −qα pβ , (8.7)

wαβ (p,q)≡ p2q2gαβ +(p ·q)pαqβ −q2 pα pβ − p2qαqβ , (8.8)

which appear in t1 and t2 respectively. Each of them satisfies the Bose symmetry requirement,

uαβ (p,q) = uβα(q, p) , (8.9)

wαβ (p,q) = wβα(q, p) , (8.10)

and vector current conservation,

pαuαβ (p,q) = 0 = qβ uαβ (p,q) , (8.11)

pαwαβ (p,q) = 0 = qβ wαβ (p,q) . (8.12)
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They are obtained from the variation of gauge invariant quantities FµνFµν and (∂µFµ

λ
)(∂νFνλ )

uαβ (p,q) =−1
4

∫
d4x

∫
d4y eip·x+iq·y δ 2{FµνFµν(0)}

δAα(x)Aβ (y)
, (8.13)

wαβ (p,q) =
1
2

∫
d4x

∫
d4y eip·x+iq·y δ 2{∂µFµ

λ
∂νFνλ (0)}

δAα(x)Aβ (y)
. (8.14)

All the ti’s are transverse in their photon indices

qαtµναβ

i = 0 pβ tµναβ

i = 0. (8.15)

t2 . . . t13 are traceless, t1 and t2 have trace parts in d = 4. With this decomposition, the two vector
Ward identities on the photon lines are automatically satisfied by all the amplitudes, as well as the
Bose symmetry.
Diffeomorphism invariance, instead, is automatically satisfied (separately) by the two tensor struc-
tures t1 and t2, which are completely transverse, while it has to be imposed on the second set
(t3 . . . t13).
In this way it is possible to extract from the 9 traceless tensor structures a (completely) transverse
and traceless set of 5 amplitudes, two of them related by the bosonic symmetry.
To summarize, from the original 13 tensor structures ti, split into a set of two transverse and trace
components and a remaining set of 11 partially transverse but traceless ones (in d = 4), one is left
with 7 form factors after imposing the pairing conditions (8.3).
Finally, by imposing the conservations WI’s these are reduced to 4, which are related to the 4 form
factors Ai’s introduced in a completely independent reconstruction method [27], based on the so-
lutions of the CWI’s, with no reference to the perturbative expansion. We will re-investigate this
different decomposition in a following section once we turn to the analysis of the CWI’s of 3-point
functions for the same TJJ vertex and for the T T T .
The Fi’s are functions of the kinematical invariants s = k2 = (p+q)2, s1 = p2, s2 = q2 and of the
internal mass m. Explicit expressions of these form factors are given in [15]. Also in the massive
case, as already pointed out, in DR one finds a neat separation between the anomaly contribution
and the mass dependent corrections.
In the massless case only few form factors survive and one gets

F1(s,0,0,0) = − e2

18π2s
, (8.16)

F3(s,0,0,0) = F5(s,0,0,0) =−
e2

144π2 s
, (8.17)

F7(s,0,0,0) = −4F3(s,0,0,0), (8.18)

F13,R(s,0,0,0) = − e2

144π2

[
12log

(
− s

µ2

)
−35

]
, (8.19)

where F13R is the only renormalized form factor (F13) of the entire amplitude.
The anomaly is entirely given by F1, which indeed shows the presence of an anomaly pole. Further
details on the organization of the effective action mediated by the trace anomaly can be found in
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[15]. Perturbative investigations of this correlator have shown that the pole contribution is described
in the 1PI effective action by the term

Spole =−
e2

36π2

∫
d4xd4y

(
�h(x)−∂µ∂νhµν(x)

)
�−1

xy Fαβ (x)F
αβ (y), (8.20)

where
R(1) =�h(x)−∂µ∂νhµν(x) (8.21)

is the linearized curvature and the background metric has been expanded as at first order in its
fluctuations hµν .

8.1 An example: The 1PI conformal anomaly action in perturbative QCD

A similar phenomenon, in perturbation theory, occurs in each gauge invariant sector of the
non-abelian TVV correlator, as shown in the case of QCD.
In fact, coming to QCD, the on-shell vertex (the two gluons are taken on-shell), which is the sum
of the quark and pure gauge contributions, can be decomposed by using three appropriate tensor
structures φ

µναβ

i , given in [4]. The anomaly pole appears in the expansion of quark (Γµναβ
q (p,q))

and gluon (Γµναβ
g (p,q)) subsets of diagrams

Γ
µναβ (p,q) = Γ

µναβ
g (p,q)+Γ

µναβ
q (p,q) =

3

∑
i=1

Φi(s,0,0)δ
ab

φ
µναβ

i (p,q) , (8.22)

with form factors defined as

Φi(s,0,0) = Φi,g(s,0,0)+
n f

∑
j=1

Φi,q(s,0,0,m2
j), (8.23)

where the sum runs over the n f quark flavors. They are given by

Φ1(s,0,0) = − g2

72π2 s
(2n f −11CA)+

g2

6π2

n f

∑
i=1

m2
i

{
1
s2 −

1
2s

C0(s,0,0,m2
i )

[
1− 4m2

i

s

]}
, (8.24)

Φ2(s,0,0) = − g2

288π2 s
(n f −CA)

− g2

24π2

n f

∑
i=1

m2
i

{
1
s2 +

3
s2 D(s,0,0,m2

i )+
1
s
C0(s,0,0,m2

i )

[
1+

2m2
i

s

]}
, (8.25)

Φ3(s,0,0) =
g2

288π2 (11n f −65CA)−
g2CA

8π2

[
11
6

BMS
0 (s,0)−BMS

0 (0,0)+ sC0(s,0,0,0)
]

+
g2

8π2

n f

∑
i=1

{
1
3
BMS

0 (s,m2
i )+m2

i

[
1
s
+

5
3s

D(s,0,0,m2
i )+C0(s,0,0,m2

i )

[
1+

2m2
i

s

]]}
,

(8.26)

with CA = NC. The scalar integrals BMS
0 , D and C0 are defined in [4]. Notice the appearance in the

total amplitude of the 1/s pole in Φ1, which is present both in the quark and in the gluon sectors,
and which saturates the contribution to the trace anomaly in the massless limit. In this case the
entire trace anomaly is just proportional to this component, which becomes

Φ1(s,0,0) =−
g2

72π2 s
(2n f −11CA) . (8.27)

26



P
o
S
(
C
O
R
F
U
2
0
1
8
)
0
7
2

Exact Correlators from Conformal Ward Identities Claudio Corianò

Further elaborations show that the effective action takes the form

Spole = − c
6

∫
d4xd4yR(1)(x)�−1(x,y)Fa

αβ
Faαβ

=
1
3

g3

16π2

(
−11

3
CA +

2
3

n f

) ∫
d4xd4yR(1)(x)�−1(x,y)Fa

αβ
Faαβ (8.28)

and is in agreement with the same action derived from the nonlocal gravitational action proposed
by Riegert long ago. Here R(1) denotes the linearized expression of the Ricci scalar

R(1)
x ≡ ∂

x
µ ∂

x
ν hµν −�h, h = ηµν hµν (8.29)

and the constant c is related to the non-abelian β function as

c =−2
β (g)

g
. (8.30)

The presence of such effective scalar interactions mediated by the anomaly diagrams show that
only one component of an entire anomaly vertex is responsible for the generation of the anomaly,
which, obviously, cannot be isolated from the entire vertex. It is not an artificial component intro-
duced by a specific decomposition of the same vertex, but it is simply the signature of the same
vertex.
We are going to see conclusively, at least from the point of perturbation theory, that such interac-
tions are generated by a region in the loop integration where the two intermediate particle emerg-
ing from the stress-energy tensor T (or from the axial- vector current JA, in the chiral case), move
collinearly before reaching the final state, made of two gluons, two photons or, more generally, two
stress-energy tensors, and describe a pairing. This pairing is what is identified Fig. 1 and it is de-
scribed by a spectral density whose support is on a single point in phase space, being proportional
to δ (s), with s being the invariant mass of the lines on which T or JA are inserted.
A similar pairing has been noticed in the case of topological insulators [28] and of Weyl semimet-
als [29], which are materials in which chiral and conformal anomalies play a significant role [30].

9. Non-perturbative solutions of the TJJ and TTT from the CWI’s

The same T JJ vertex andt its anomaly can be completely determined, up to few constants,
in a completely independent way just by solving the CWI’s of a general CFT in d = 4. The goal
of this section will be to show how the results coming from the perturbative analysis and the per-
turbative approach can be merged completely, bringing to conclusive evidence that such massless
interactions are genuinely present in any anomaly vertex. A similar result, in fact, will be shown
to hold also in the T T T case. The result is also in agreement with the prediction coming from a
nonlocal version of the conformal anomaly action given in Eq. (5.17), recently discussed in [31],
which accounts for the same anomaly structure which we are going to discuss here.

9.1 CWI’s in momentum space

An independent analysis of the features described above requires a momentum space approach
in the solution of the CWI’s. These have been discussed in several papers [32] [33] and several
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comparisons against the free field theory realizations of the same theories have been discussed
in [34–36]. A systematic discussion of how to move to momentum space from coordinate space in
the analysis of scalar and tensor correlators in CFT’s can be found in [35]. Here we just recall that
the dilatation and the special conformal transformations, in momentum space take the forms(

n

∑
j=1

∆ j− (n−1)d−
n−1

∑
j=1

pα
j

∂

∂ pα
j

)
Φ(p1, . . . pn−1, p̄n) = 0. (9.1)

n−1

∑
j=1

(
pκ

j
∂ 2

∂ pα
j ∂ pα

j
+2(∆ j−d)

∂

∂ pκ
j
−2pα

j
∂ 2

∂ pκ
j ∂ pα

j

)
Φ(p1, . . . pn−1, p̄n) = 0. (9.2)

The latter is the momentum space version of the differential constraint

n

∑
j=1

(
−x2

j
∂

∂xκ
j
+2xκ

j xα
j

∂

∂xα
j
+2∆ jxκ

j

)
Φ(x1,x2, . . . ,xn) = 0. (9.3)

Once we move to momentum space, one needs to select the independent momenta, which in our
conventions will be the first n−1, with the n−th as a dependent one p̄n =−(p1 + . . . pn−1).

9.2 Example: the scalar solution of the CWI’s and its hypergeometric origin

The simplest case, investigated in the conformal approach is the Φ = 〈OOO〉, corresponding
to the scalar 3-point function. Here we will sketch the derivation of the equations in this simpler
case. We refer to [32] for more details.
In the case of a scalar correlator all the anomalous conformal WI’s can be re-expressed in scalar

form by taking as independent momenta the magnitude pi =
√

p2
i as the three independent vari-

ables, the dilatation equation becomes(
∆−2d−

3

∑
i=1

pi
∂

∂ pi

)
Φ(p1, p2, p̄3) = 0. (9.4)

The relation above is derived using the chain rule

∂Φ

∂ pµ

i
=

pµ

i
pi

∂Φ

∂ pi
− p̄µ

3
p3

∂Φ

∂ p3
, (9.5)

where ∆ is the sum of of the scaling dimensions of each operator in the 3-point function. It is
a straightforward but lengthy computation to show that the special (non anomalous) conformal
transformation in d dimensions takes the form, for the scalar component

Kscalar
κ

Φ = 0 (9.6)

with

Kκ
scalar =

3

∑
i=1

pκ
i Ki (9.7)

Ki ≡
∂ 2

∂ pi∂ pi
+

d +1−2∆i

pi

∂

∂ pi
(9.8)
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with the expression (9.7) which can be split into the two independent equations

∂ 2Φ

∂ pi∂ pi
+

1
pi

∂Φ

∂ pi
(d +1−2∆1)−

∂ 2Φ

∂ p3∂ p3
− 1

p3

∂Φ

∂ p3
(d +1−2∆3) = 0 i = 1,2. (9.9)

The expressions of Kκ as given in (9.8) has been first defined in [33]. Similar results have been
obtained in [32] using a direct change of variables that reduces the special CWI to a hypergeometric
system of equations.
In the scalar case, defining

Ki j ≡ Ki−K j (9.10)

Eqs. (9.9) take the homogeneous form

Kκ
13Φ = 0 and Kκ

23Φ = 0. (9.11)

The solutions of such equations and their reduction to hypergeometric forms is obtained by the
ansatz

Φ(p1, p2, p3) = p∆−2d
1 xaybF(x,y) (9.12)

with x =
p2

2
p2

1
and y =

p2
3

p2
1
. Here we are taking p1 as "pivot" in the expansion, but we could

equivalently choose any of the 3 momentum invariants. Φ is required to be homogenous of degree
∆−2d under a scale transformation, according to (9.4), and in (9.12) this is taken into account by
the factor p∆−2d

1 . The use of the scale invariant variables x and y leads to the hypergeometric form
of the solution. One obtains

K21φ = 4p∆−2d−2
1 xayb

(
x(1− x)

∂

∂x∂x
+(Ax+ γ)

∂

∂x
−2xy

∂ 2

∂x∂y
− y2 ∂ 2

∂y∂y
+Dy

∂

∂y
+(E +

G
x
)

)
×F(x,y) = 0 (9.13)

with

A = D = ∆2 +∆3−1−2a−2b− 3d
2

γ(a) = 2a+
d
2
−∆2 +1

G =
a
2
(d +2a−2∆2)

E =−1
4
(2a+2b+2d−∆1−∆2−∆3)(2a+2b+d−∆3−∆2 +∆1). (9.14)

Similar constraints are obtained from the equation K31Φ= 0, with the obvious exchanges (a,b,x,y)→
(b,a,y,x)

K31φ = 4p∆−2d−2
1 xayb

(
y(1− y)

∂

∂y∂y
+(A′y+ γ

′)
∂

∂y
−2xy

∂ 2

∂x∂y
− x2 ∂ 2

∂x∂x
+D′x

∂

∂x
+(E ′+

G′

y
)

)
×F(x,y) = 0 (9.15)

with

A′ = D′ = A γ
′(b) = 2b+

d
2
−∆3 +1

G′ =
b
2
(d +2b−2∆3)

E ′ = E. (9.16)
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The exponents a and b, as shown in [35], are exactly those that allow to remove the 1/x and 1/y
terms in (9.15), which implies that

a = 0≡ a0 or a = ∆2−
d
2
≡ a1. (9.17)

From the equation K31Φ = 0 we obtain a similar condition for b by setting G′/y = 0, thereby fixing
the two remaining indices

b = 0≡ b0 or b = ∆3−
d
2
≡ b1. (9.18)

The four independent solutions of the CWI’s will all be characterised by the same 4 pairs of indices
(ai,b j) (i, j = 1,2). Setting

α(a,b) = a+b+
d
2
− 1

2
(∆2 +∆3−∆1) β (a,b) = a+b+d− 1

2
(∆1 +∆2 +∆3) (9.19)

then

E = E ′ =−α(a,b)β (a,b) A = D = A′ = D′ =−(α(a,b)+β (a,b)+1) , (9.20)

the solutions take the form

F4(α(a,b),β (a,b);γ(a),γ ′(b);x,y) =
∞

∑
i=0

∞

∑
j=0

(α(a,b), i+ j)(β (a,b), i+ j)
(γ(a), i)(γ ′(b), j)

xi

i!
y j

j!
(9.21)

where (α, i) = Γ(α + i)/Γ(α) is the Pochammer symbol. We will refer to α . . .γ ′ as to the first,. . .,
fourth parameters of F4.
The 4 independent solutions are then all of the form xaybF4, where the hypergeometric functions
will take some specific values for its parameters, with a and b fixed by (9.17) and (9.18). Specifi-
cally we have

Φ(p1, p2, p3) = p∆−2d
1 ∑

a,b
c(a,b,~∆)xayb F4(α(a,b),β (a,b);γ(a),γ ′(b);x,y) (9.22)

where the sum runs over the four values ai,bi i = 0,1 with arbitrary constants c(a,b,~∆), with
~∆ = (∆1,∆2,∆3). Eq. (9.22) is a very compact way to write down the solution, which can be made
more explicit. For this reason it is convenient to define

α0 ≡ α(a0,b0) =
d
2
− ∆2 +∆3−∆1

2
, β0 ≡ β (b0) = d− ∆1 +∆2 +∆3

2
,

γ0 ≡ γ(a0) =
d
2
+1−∆2, γ

′
0 ≡ γ(b0) =

d
2
+1−∆3 (9.23)

as the 4 basic (fixed) hypergeometric parameters. All the remaining solutions are defined by shifts
with respect to these. The 4 independent solutions can be re-expressed in terms of the parameters
above as

S1(α0,β0;γ0,γ
′
0;x,y)≡ F4(α0,β0;γ0,γ

′
0;x,y) =

∞

∑
i=0

∞

∑
j=0

(α0, i+ j)(β0, i+ j)
(γ0, i)(γ ′0, j)

xi

i!
y j

j!
(9.24)
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and

S2(α0,β0;γ0,γ
′
0;x,y) = x1−γ0 F4(α0− γ0 +1,β0− γ0 +1;2− γ0,γ

′
0;x,y) ,

S3(α0,β0;γ0,γ
′
0;x,y) = y1−γ ′0 F4(α0− γ

′
0 +1,β0− γ

′
0 +1;γ0,2− γ

′
0;x,y) ,

S4(α0,β0;γ0,γ
′
0;x,y) = x1−γ0 y1−γ ′0 F4(α0− γ0− γ

′
0 +2,β0− γ0− γ

′
0 +2;2− γ0,2− γ

′
0;x,y) .

Notice that in the scalar case, one is allowed to impose the complete symmetry of the correlator
under the exchange of the 3 external momenta and scaling dimensions, as discussed in [32]. This
reduces the four constants to just one.
We are going first to extend this analysis to the case of the A1−A4 form factors of the T JJ. In-
terestingly, this approach can be generalized to 4-point functions, showing that at large energy and
momentum transfers, scatterings at fixed angle are characterized by similar solutions, with some
generalizations, taking to Lauricella’s functions [37].

9.3 Transverse traceless basis for the T JJ and the matching to perturbation theory

The solution in the case of the T JJ is far more involved compared to the scalar case and it
requires a completely new approach. A way to solve the CWI’s for tensor correlators has been
formulated in [27]. In order to establish a link between the perturbative approach of the previous
sections and the non-perturbative one based on [27], we start by stating the special CWI satisfied
by this correlator

2

∑
j=1

[
2(∆ j−d)

∂

∂ pκ
j
−2pα

j
∂

∂ pα
j

∂

∂ pκ
j
+(p j)κ

∂

∂ pα
j

∂

∂ p jα

]
〈T µ1ν1(p1)Jµ2(p2)Jµ3(p̄3)〉

+4

(
δ

κ(µ1
∂

∂ pα1
1
−δ

κ
α1

δ
λ (µ1

∂

∂ pλ
1

)
〈T ν1)α1(p1)Jµ2(p2)Jµ3(p̄3)〉

+2

(
δ

κµ2
∂

∂ pα2
2
−δ

κ
α2

δ
λ µ2

∂

∂ pλ
2

)
〈T µ1ν1(p1)Jα2(p2)Jµ3(p̄3)〉= 0.

(9.25)

The first line in the equation above corresponds to the scalar action Kκ , while the second and
the third lines are the contributions coming from the spin parts. The correlator is decomposed into
its transverse traceless (〈tµ1ν1 jµ2 jµ3〉) and longitudinal (local) parts in the form

〈T µ1ν1 Jµ2 Jµ3〉= 〈tµ1ν1 jµ2 jµ3〉+ 〈T µ1ν1 Jµ2 jµ3
loc〉+ 〈T µ1ν1 jµ2

loc Jµ3〉+ 〈tµ1ν1
loc Jµ2 Jµ3〉

−〈T µ1ν1 jµ2
loc jµ3

loc〉−〈t
µ1ν1
loc jµ2

loc Jµ3〉−〈tµ1ν1
loc Jµ2 jµ3

loc〉+ 〈t
µ1ν1
loc jµ2

loc jµ3
loc〉 . (9.26)

with
T µν = tµν + tµν

loc (9.27)

with the longitudinal/trace terms given by

tµν

loc (p) =
pµ

p2 Qν +
pν

p2 Qµ − pµ pν

p4 Q+
πµν

d−1
(T − Q

p2 ) = Σ
µν

αβ
T αβ

Qµ = pνT µν , T = δµνT µν , Q = pν pµT µν . (9.28)
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The decompositon above allows to separate the equations into primary and secondary constraints,
the secondary ones involving equations with the inclusion of two-point functions.
At the core of the decomposition there is the transverse traceless sector, which is parameterized by
a minimal set of form factors, as proposed in [27].
It is possible to show that these amplitudes are in a one-to-one correspondence with the form
factors A j ( j = 1, . . .4) introduced in the parameterization of the T JJ correlator presented in [27].
In that work the full 3-point function is parameterized in terms of transverse (with respect to all the
external momenta) traceless components plus extra terms identified via longitudinal Ward identities
of the T JJ (the so-called local or semi local) characterised by pinched topologies

〈〈T µ1ν1 Jµ2 Jµ3〉〉= 〈〈tµ1ν1 jµ2 jµ3〉〉+ local terms. (9.29)

Here we have switched to a symmetric notation for the external momenta, with (p1, p2, p3) ≡
(k, p,q), and with the transverse traceless parts expanded in terms of a set of the form factors A j

mentioned above

〈tµ1ν1(p1) jµ2(p2) jµ3(p3)〉= Π1
µ1ν1
α1β1

π2
µ2
α2π3

µ3
α3

(
A1 pα1

2 pβ1
2 pα2

3 pα3
1 +A2 δ

α2α3 pα1
2 pβ1

2 +A3 δ
α1α2 pβ1

2 pα3
1

+A3(p2↔ p3)δ
α1α3 pβ1

2 pα2
3 +A4 δ

α1α3δ
α2β1
)
. (9.30)

The equation above provides the basic decomposition of the T JJ in terms of a minimal set of form
factors which can be mapped into the set of the F ′i s presented in the previous sections. We are going
to show that the 1/k2 behaviour found in the anomaly form factor (F1) is in agreement with the
explicit expressions obtained from the solutions of the CWI’s, which fix the Ai. But before coming
to this point, we briefly comment on the form of the equations obtained.
In this expression Π1

µ1ν1
α1β1

is a transverse and traceless projector built out of momentum p1, while
π2

µ2
α2 and π3

µ3
α3 denote transverse projectors with respect to the momenta p2 and p3.

Coming to the explicit form of the A j, they are extracted from the solution of the scalar CWI’s

0 = C̃11 = K21A1

0 = C̃12 = K21A2−2A1

0 = C̃13 = K21A3

0 = C̃14 = K21A3(p2↔ p3)+4A1

0 = C̃15 = K21A4 +2A3

0 = C̃21 = K31A1

0 = C̃22 = K31A2−2A1

0 = C̃23 = K31A3 +4A1

0 = C̃24 = K31A3(p2↔ p3)

0 = C̃25 = K31A4 +2A3(p2↔ p3),

(9.31)

which can be obtained in two ways. The approach of [27, 38,39] expresses such solutions in terms
of 3-K integrals, i.e. integrals of three Bessel functions, and can be related to specific combinations
of hypergeometric functions F4, also known as Appell functions. An equivalent method can be
formulated which allows to work out the explicit form of the solutions using properties of the
functions F4 [35]. The two approaches have been combined, more recently, in the analysis of scalar
4-point functions, with the introduction of 4K integrals [37].

9.4 Connection between the F and the A bases

We have taken into consideration two separate bases in the analysis of the T JJ. In the F basis
only one form factors needs to be renormalized, which is F13, by dimensional counting. We can
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show that the renormalization of F13 is responsible for the emergence of a 1/k2 pole in the insertion
of the T operator. Also, the singularities of F13 are mirrored by the singular behaviour of the Ai

form factors which contain such form factor, following the map shown below in Eq. (9.33).
Let’s see how these points can be proven, following the discussion of [34].

The T JJ correlator in QED is conformal in d dimension, with finite form factors which are
not affected by the conformal anomaly, being dimensionally regulated. We can use the F-basis of
the 13 form factors Fi introduced before and tensor structures ti to parameterize them.
Notice that the separation of these 13 structures into trace-free and trace parts is valid only in d = 4
for most of the structures, except for t9, t10, t11 and t12, which remain traceless in d dimensions.
conctractions with the metric tensor are, at this point, performed in d dimensions with a metric
gµν(d). The 4-dimensional metric, instead, will be denoted as gµν(4).
For example, a contraction of t1 and t2 in d- dimensions will give

gµν(d)t
µναβ

1 = (d−4)k2uαβ (p,q)

gµν(d)t
µναβ

2 = (d−4)k2wαβ (p,q), (9.32)

and similarly for all the other structures, except for those mentioned above, which are trace-free in
any dimensions.
Using the completeness of the F-basis we can identify the mapping between the form factors of
such basis and those of the A-basis which parameterize the transverse-traceless contributions in
the reconstruction method of [27]. They are conveniently expressed in terms of the momenta
(k, p,q)≡ (p1, p2, p3) in the form

A1 = 4(F7−F3−F5)−2p2
2F9−2p2

3F10

A2 = 2(p2
1− p2

2− p2
3)(F7−F5−F3)−4p2

2 p2
3(F6−F8 +F4)−2F13

A3 = p2
3(p2

1− p2
2− p2

3)F10−2p2
2 p2

3F12−2F13

A4 = (p2
1− p2

2− p2
3)F13, (9.33)

which are transverse and traceless, with A1, A2 and A4 symmetric.

9.5 The T JJ anomaly pole from renormalization

Starting from d-dimension and using the F-basis, we require that this correlator has no trace
(i.e. be anomaly free) in d dimensions. The anomaly will emerge in dimensional regularization as
we take the d→ 4 limit. The trace WI’s provide the two key conditions that we need. In fact we
obtain

F1 =
(d−4)

p2
1(d−1)

[
F13− p2

2 F3− p2
3 F5− p2 · p3 F7

]
(9.34)

and

F2 =
(d−4)

p2
1(d−1)

[
p2

2 F4 + p2
3 F6 + p2 · p3 F8

]
. (9.35)
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Both equations are crucial in order to understand the way the renormalization procedure works for
such correlator. From Eq. (9.35) it is clear that by sending d→ 4, F2 vanishes,

F2 =
ε

(d−1)p2
1

[
p2

2 F4 + p2
3 F6 + p2 · p3 F8

]
→ 0, (9.36)

since all the form factors F4,F6 and F8 are finite for dimensional reasons, and therefore F2 is indeed
zero in this limit, since the right-hand side of (9.35) has no poles in ε ≡ d−4.
At this stage, after the limiting procedure, at d = 4 we are left in the F−basis with 4 independent
combinations of form factors from the original seven, given in (9.33), which are sufficient to de-
scribe the complete transverse traceless sector of the theory, plus an additional form factor F1.
Therefore, by taking the d→ 4 limit, the F−set contains only one single tensor structure of nonzero
trace and associated form factor, which should account for the anomaly in d = 4. This result is ob-
viously confirmed in perturbation theory in QED [15].
As already mentioned, F13 is the only form factor that needs to be renormalized in the F-set and
it is characterized by the appearance of a single pole in 1/ε in dimensional regularization. The
fact that such singularity will be at all orders of the form 1/ε and not higher is a crucial ingredient
in the entire construction, and is due to conformal symmetry. Such assumption is consistent with
the analysis in conformal field theory since the only available counterterm to regulate the theory is
given by

1
ε

∫
d4x
√

gFµνFµν (9.37)

which renormalizes the 2-point function 〈JJ〉 and henceforth F13. An explicit computations in QED
gives the result

F13 = G0(p2
1, p2

2, p3
3)−

1
2
[Π(p2

2)+Π(p2
3)] (9.38)

with G0 being a lengthy expression which remains finite as d→ 4. Therefore, the origin of the sin-
gularity is traced back to the scalar form factor Π(p2) of the photon 2-point function. Concerning
the fact that the singularity in Π(p2) stops at 1/ε , we just recall that the structure of the two-point
function of two conserved vector currents of scaling dimensions η1 and η2 is given by [32]

Gαβ

V (p) = δη1η2 cV 12
πd/2

4η1−d/2

Γ(d/2−η1)

Γ(η1)

(
η

αβ − pα pβ

p2

)
(p2)η1−d/2 , (9.39)

with cV 12 being an arbitrary constant. It requires the two currents to share the same dimensions
and manifests only a single pole in 1/ε . In dimensional regularization, in fact, the divergence can
be regulated with d→ d−2ε . Expanding the product Γ(d/2−η)(p2)η−d/2, which appears in the
two-point function, in a Laurent series around d/2−η =−n (integer) gives the single pole in 1/ε

behaviour [32]

Γ(d/2−η) (p2)η−d/2 =
(−1)n

n!

(
−1

ε
+ψ(n+1)+O(ε)

)
(p2)n+ε , (9.40)

where ψ(z) is the logarithmic derivative of the Gamma function, and ε takes into account the
divergence of the two-point correlator for particular values of the scale dimension η and of the
space-time dimension d. Therefore, the divergence in F13 is then given by a single pole in ε is of
the form
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F13 =
1

d−4
F̄13 +F13 f (9.41)

In QED, for instance, one finds by an explicit computation that F̄13 = −e2/(6π2) at one-loop and
F̄13 f is finite [15] and gets renormalized into F13R only in its photon self-energy contributions [15]
(s = p2

1, s1 = p2
2, s2 = p2

3)

F13,R(s; s1, s2, 0) = −1
2
[ΠR(s1,0)+ΠR(s2,0)]+G0(s,s1,s2) (9.42)

with

ΠR(s,0) =−
e2

12π2

[
5
3
− log

(
− s

µ2

)]
, (9.43)

denoting the renormalized scalar form factor of the JJ correlator at one-loop and with G0 implicitly
defined in (9.38).

Inserting (9.41) into (9.34) we obtain

F1 =
(d−4)

p2
1(d−1)

(
1

d−4
F̄13 +F13 f − p2

2 F3− p2
3 F5− p2 · p3 F7

)
, (9.44)

which in the d→ 4 limit gives, in general

F1 =
F̄13

3p2
1

(9.45)

and specifically, in QED

F1 =−
e2

32π2s
, (9.46)

(s ≡ k2) showing that the anomaly pole in F1 is indeed generated by the renormalization of the
single divergent form factor F13. In the case of QED, the relation between the prefactor in front
of the 1/s pole and its relation to the QED β -function has been extensively discussed in [7, 15],
to which we refer for further details. In performing the limit we have used the finiteness of the
remaining form factors.
The analysis presented above proves the consistency of the conjecture concerning the origin of
the anomaly pole which is attributed to the renormalization of the T JJ correlator as we reach the
physical dimensions. At the same time, the agreement with perturbation theory, in QED, holds
only at 1-loop, where the theory is conformal. But this is sufficient to establish a link between a
general CFT result and a specific perturbative realization of a given correlator in free field theory.
The consistency between the results obtained in the F basis and the transverse-traceless one of the
Ai can be easily figured out from a cursory look at (9.33). One can show that the singularities of
the Ai are in direct correspondence with the presence of F13 in their relations to the F basis. For
instance A2,A3 and A4 need to be renormalized, while A1 does not.
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Figure 8: Typical one-loop scalar diagrams for the three-graviton vertex.

10. The 3-graviton vertex from the CWI’s

As we move to the T T T vertex, the analysis gets more involved but it remains substantially
unchanged. Similarly to the T JJ, the longitudinal/transverse-traceless decomposition takes the
form

〈T µ1ν1 T µ2ν2 T µ3ν3〉= 〈tµ1ν1 tµ2ν2 tµ3ν3〉+ 〈tµ1ν1
loc tµ2ν2 tµ3ν3〉+ 〈tµ1ν1 tµ2ν2

loc tµ3ν3〉+ 〈tµ1ν1 tµ2ν2 tµ3ν3
loc 〉

+ 〈tµ1ν1
loc tµ2ν2

loc tµ3ν3〉+ 〈tµ1ν1
loc tµ2ν2

loc tµ3ν3〉+ 〈tµ1ν1 tµ2ν2
loc tµ3ν3

loc 〉+ 〈t
µ1ν1
loc tµ2ν2

loc tµ3ν3
loc 〉

(10.1)

with the 〈tµ1ν1 tµ2ν2 tµ3ν3〉 parameterized by five form factors (Ai) in their transverse traceless sector.
All the primary CWI’s can be solved in terms of the general 3K integral

Iα{β1β2β3}(p1, p2, p3) =
∫

∞

0
dx xα

3

∏
j=1

pβ j
j Kβ j(p jx), (10.2)

where Kν is a Bessel K function. This integral depends on four parameters, namely the power α of
the integration variable x, and the three Bessel function indices β j.

α =
d
2
−1+N, β j = ∆ j−

d
2
+ k j, j = 1,2,3. (10.3)

Here we assume that we concentrate on some particular 3-point function and the conformal dimen-
sions ∆ j, j = 1,2,3 are therefore fixed. By defining

JN{k j} = I d
2−1+N{∆ j− d

2+k j}, (10.4)

with {k j}= {k1,k2,k3}, the solutions are expressed in the form [27, 39]

A1 = α1J6{000}, (10.5)

A2 = 4α1J5{001}+α2J4{000}, (10.6)

A3 = 2α1J4{002}+α2J3{001}+α3J2{000}, (10.7)

A4 = 8α1J4{110}−2α2J3{001}+α4J2{000}, (10.8)

A5 = 8α1J3{111}+2α2
(
J2{110}+ J2{101}+ J2{011}

)
+α5J0{000} (10.9)
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in terms of 3K integrals. One important issue is how to relate these explicit solutions to free-field
theory.

10.1 Matching the general CFT solution to free field theory

We can show that such solutions can be perfectly matched in perturbation theory by introduc-
ing three independent sectors, a scalar, a fermion and spin one [36].
Also in this case, as for the T JJ, one performs a parallel analysis of the decomposition of the cor-
relator in free field theory using each such three sectors. In d = 4 the complete correlation function
can then be written as

〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)〉= ∑
I=F,G,S

nI 〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)〉I . (10.10)

For the triangle V and contact topologies W , the latter take the form

〈tµ1ν1(p1)tµ2ν2(p2)tµ3ν3(p3)〉I = Π
µ1ν1
α1β1

(p1)Π
µ2ν2
α2β2

(p2)Π
µ3ν3
α3β3

(p3)

×
[
−V α1β1α2β2α3β3

I (p1, p2, p3)+
3

∑
i=1

W α1β1α2β2α3β3
I,i (p1, p2, p3)

]
(10.11)

where we have included all the three sectors (I). Both the longitudinal and the transverse sectors
are characterized by divergences in the forms of single poles in 1/ε (ε = (4− d)/2) which needs
to be removed by renormalization. The singular contributions of the Ai in DR take the form

ADiv
2 =

π2

45ε

[
26nG−7nF −2nS

]
(10.12a)

ADiv
3 =

π2

90ε

[
3(s+ s1)

(
6nF +nS +12nG

)
+ s2(11nF +62nG +nS)

]
(10.12b)

ADiv
4 =

π2

90ε

[
(s+ s1)

(
29nF +98nG +4nS

)
+ s2(43nF +46nG +8nS)

]
(10.12c)

ADiv
5 =

π2

180ε

{
nF
(
43s2−14s(s1 + s2)+43s2

1−14s1s2 +43s2
2
)

+2
[
nG
(
23s2 +26s(s1 + s2)+23s2

1 +26s1s2 +23s2
2
)
+2nS

(
2s2− s(s1 + s2)+2s2

1− s1s2 +2s2
2
)]}

(10.12d)

and are renormalized by the addition of two counterterms in the defining Lagrangian. In perturba-
tion theory the one loop counterterm Lagrangian is

Scount =−
1
ε

∑
I=F,S,G

nI

∫
ddx
√−g

(
βa(I)C2 +βb(I)E

)
(10.13)

corresponding to the Weyl tensor squared and the Euler density, omitting the extra R2 operator
which is responsible for the �R term in (4.13), having choosen the local part of anomaly (∼ βc�R)
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vanishing (βc = 0). More details concerning this point can be found in [40]. The corresponding
vertex counterterms are

〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)〉count =

=−1
ε

∑
I=F,S,G

nI

(
βa(I)V µ1ν1µ2ν2µ3ν3

C2 (p1, p2, p3)+βb(I)V µ1ν1µ2ν2µ3ν3
E (p1, p2, p3)

)
(10.14)

and can be separated in their transverse-traceless components and their longitudinal ones. The Ai’s
are renormalized by the first, while the second renormalize the longitudinal components of the
T T T . The approach has been detailed in [40]. The method consists in taking the transverse trace-
less projectors (with (open indices) as d-dimensional tensors and in expanding their d-dependence
as (d−4)+4, generating new tensors which are transverse traceless only in d = 4, plus a remainder.
All the index contractions are performed with a d-dimensional metric tensor, while the inclusion
of the counterterms generated by (10.13) allows to remove the 1/ε terms. At the final stage the
expression of the renormalized vertex is given only by the 4-dimensional component of such a final
tensor, which can be traced as an ordinary 4-d tensor, thereby generating an anomaly.
An extensive analysis shows that the entire 4-d solution of the CWI’s Ai can be reconctructed
just by a superposition of the three perturbative sectors mentioned above. In [33] the general 3K
solution is uniquely parameterized in terms of some constants α1,α2 and cT . If we choose, for
instance

α1 =
π3(nS−4nF)

480
, α2 =

π3 nF

6
, cT =

3π5/2

128
(nS +4nF), cg = 0 (10.15)

valid for d = 3, we can match perturbative and non-perturbative results in the same dimension. It
is then clear that, given the rather complex structure of the 3K integrals, the use of perturbation
theory and the matching allow to re-express such integrals in a very simple form, using only the
scalar 2- and 3-point functions of the ordinary Feynman expansion as a basis. This implies that
the general hypergeometric solution in d = 4 should drastically simplify, in order to agree with the
perturbative one. In d = 4 an explicit match as in d = 3, for instance, can be worked out only at
numerical level, since the procedure developed for the renormalization of such integrals is rather
involved. The general expressions of the Ai in d = 4, valid non-perturbatively, can be found in [36].
It is interesting to observe how the structure of the anomalous contributions of the correlator appear
in this formulation. They are associated to terms which develop a nonvanishing single, double and
triple trace, with massless exchanges in the three separate legs of the correlator, as shown in Fig. 9,
which generalizes the behaviour of Fig. 1. Such anomalous (〈..〉a) terms are given by
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Figure 9: The anomaly contribution in the TTT correlator due to massless exchanges on each separate leg,
represented by dashed lines.

〈T µ1ν1(p1)T µ2ν2(p2)T µ3ν3(p3)〉a =
π̂µ1ν1(p1)

3 p2
1
〈T (p1)T µ2ν2(p2)T µ3ν3(p3)〉a

+
π̂µ2ν2(p2)

3 p2
2
〈T µ1ν1(p1)T (p2)T µ3ν3(p3)〉a +

π̂µ3ν3(p3)

3 p2
3
〈T µ1ν1(p1)T µ2ν2(p2)T (p3)〉a

− π̂µ1ν1(p1)π̂
µ2ν2(p2)

9 p2
1 p2

2
〈T (p1)T (p2)T µ3ν3(p3)〉a−

π̂µ2ν2(p2)π̂
µ3ν3(p2)

9p2
2 p2

3
〈T µ1ν1(p1)T (p2)T (p3)〉a

− π̂µ1ν1(p1)π̂
µ3ν3(p̄3)

9p2
1 p2

3
〈T (p1)T µ2ν2(p2)T (p3)〉a +

π̂µ1ν1(p1)π̂
µ2ν2(p2)π̂

µ3ν3(p̄3)

27p2
1 p2

2 p2
3

〈T (p1)T (p2)T (p̄3)a.

(10.16)

As shown in [31], they can be reobtained from the nonlocal anomaly action (5.17) .

11. Moving to supersymmetry: Anomalies and sum rules for the anomaly
supermultiplet

The kinematical features characterizing chiral and conformal anomalies become standard once
we turn to consider a supersymmetric context. Supersymmetry, indeed, provides a unification of the
phenomenon discussed above, identified in perturbation theory, as shown in the case of an N = 1
super Yang-Mills theory.
In the 1PI anomaly action of this theory, one identifies three specific contributions which are re-
sponsible for the generation of the anomaly supermultiplet, in the form of three poles in the three
separate channels. Conformal and chiral anomalies are then unified by the same perturbative be-
haviour. We are going to summarize this result, based on the analysis presented in [41].
There is a related phenomenon in this case, which can be identified by moving away from the con-
formal limit. This can be achieved by the inclusion of mass terms in the Lagrangian at a first stage,
which can be used to discuss the structure of the anomaly vertices as a function of m. As in the
previous cases, we will adopt dimensional regularization.
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Figure 10: Typical contributions to the one-loop perturbative expansion of the 〈RVV 〉 〈SV F〉 〈T JJ〉 dia-
grams

The anomaly form factors are characterized by a unique function (χ) for which one can write down
a spectral representation in terms of a spectral density ρ(s,m2) supported by a single branch cut

χ(k2,m2) =
1
π

∫
∞

4m2

ρχ(s,m2)

s− k2 ds (11.1)

corresponding to the ordinary threshold at k2 = 4m2, with

ρχ(s,m2) =
1
2i

Disc χ(s,m2) =
2πm2

s2 log

(
1+
√

τ(s,m2)

1−
√

τ(s,m2)

)
θ(s−4m2). (11.2)

A crucial feature of these spectral densities is the existence of a sum rule, given by

1
π

∫
∞

4m2
dsρχ(s,m2) = 1, (11.3)

where the right hand side has been normalized to 1. In general, it equals the anomaly. Generically,
it is given in the form

1
π

∫
∞

0
ρ(s,m2)ds = f , (11.4)

with the constant f independent of any mass (or other) parameter which characterizes the thresholds
or the strengths of the resonant states eventually present in the integration region (s > 0).
It is quite straightforward to show that Eq. (11.4) is a constraint on the asymptotic behaviour of
the related form factor. The proof is obtained by observing that the dispersion relation for a form
factor in the spacelike region (Q2 =−k2 > 0)

F(Q2,m2) =
1
π

∫
∞

0
ds

ρ(s,m2)

s+Q2 , (11.5)
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once we expand the denominator in Q2 as 1
s+Q2 = 1

Q2 − 1
Q2 s 1

Q2 + . . . and make use of Eq. (11.4),
induces the following asymptotic behaviour on F(Q2,m2)

lim
Q2→∞

Q2F(Q2,m2) = f . (11.6)

The F ∼ f/Q2 behaviour at large Q2, with f independent of m, shows the pole dominance of F for
Q2→ ∞. Indeed, the resonant (pole) behaviour of such spectral density is obtained in the m→ 0
limit

lim
m→0

ρχ(s,m2) = lim
m→0

2πm2

s2 log

(
1+
√

τ(s,m2)

1−
√

τ(s,m2)

)
θ(s−4m2) = πδ (s), (11.7)

where ρ converges to a delta function. Clearly, it is the region around the light cone (s∼ 0) which
dominates the sum rule and it amounts to a resonant contribution.
Therefore, the presence of a 1/Q2 term in the anomaly form factors is a property of the entire
flow which converges to a localized massless state (i.e. ρ(s)∼ δ (s)) as m→ 0, while the presence
of a non vanishing sum rule guarantees the validity of the asymptotic constraint illustrated in Eq.
(11.6). Notice that although for conformal deformations driven by a single mass parameter the
independence of the asymptotic value f on m is a simple consequence of the scaling behaviour of
F(Q2,m2), it holds quite generally even for a completely off-shell kinematics [7].

11.1 The case of an N = 1 theory

To illustrate this result, let’s consider the Lagrangian of an N = 1 theory

L = −1
4

Fa
µνFa µν + iλ a

σ
µDab

µ λ̄
b +(Dµ

i j φ j)
†(Dik µφk)+ iχ jσµDµ †

i j χ̄i

−
√

2g
(

λ̄
a
χ̄iT a

i jφ j +φ
†
i T a

i jλ
a
χ j

)
−V (φ ,φ †)− 1

2
(χiχ jWi j(φ)+h.c.) , (11.8)

where the gauge covariant derivatives on the matter fields and on the gaugino are defined respec-
tively as

Dµ

i j = δi j∂
µ + igAa µT a

i j , Dac
µ = δ

ac
∂

µ −gtabcAb
µ , (11.9)

with tabc the structure constants of the adjoint representation, and the scalar potential is given by

V (φ ,φ †) = W †
i (φ †)Wi(φ)+

1
2

g2
(

φ
†
i T a

i jφ j

)2
. (11.10)

For the derivatives of the superpotential we have been used the following definitions

Wi(φ) =
∂W (Φ)

∂Φi

∣∣∣∣ , Wi j(φ) =
∂ 2W (Φ)

∂Φi∂Φ j

∣∣∣∣ , (11.11)

where the symbol | on the right indicates that the quantity is evaluated at θ = θ̄ = 0.
Having defined the model, we can introduce the Ferrara-Zumino hypercurrent

JAȦ = Tr
[
W̄ȦeVWAe−V ]− 1

3
Φ̄

[←
∇̄Ȧ eV

∇A− eV D̄Ȧ∇A+
←
∇̄Ȧ

←
DA eV

]
Φ , (11.12)
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Figure 11: Representatives of the family of spectral densities ρχ
(n)

π
(s) plotted versus s in units of m2. The

family "flows" towards the s = 0 region becoming a δ (s) function as m2 goes to zero.

where ∇A is the gauge-covariant derivative in the superfield formalism whose action on chiral
superfields is given by

∇AΦ = e−V DA
(
eV

Φ
)
, ∇̄ȦΦ̄ = eV D̄Ȧ

(
e−V

Φ̄
)
. (11.13)

The conservation equation for the hypercurrent JAȦ is

D̄ȦJAȦ =
2
3

DA

[
− g2

16π2 (3T (A)−T (R))TrW 2− 1
8

γ D̄2(Φ̄eV
Φ)+

(
3W (Φ)−Φ

∂W (Φ)

∂Φ

)]
,

(11.14)

where γ is the anomalous dimension of the chiral superfield.
The first two terms in Eq. (11.14) describe the quantum anomaly of the hypercurrent, while the last
is of classical origin and it is entirely given by the superpotential. In particular, for a classical scale
invariant theory, in which W is cubic in the superfields or identically zero, this term identically
vanishes. If, on the other hand, the superpotential is quadratic, the conservation equation of the
hypercurrent acquires a non-zero contribution even at classical level. This describes the explicit
breaking of the conformal symmetry. By projecting the hypercurrent JAȦ defined in Eq.(11.12)
onto its components we get the explicit expressions of the three anomaly equations.
The lowest component is given by the Rµ current, the θ term is associated with the supercurrent
Sµ

A , while the θθ̄ component contains the energy-momentum tensor T µν . In the N = 1 super
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Rµ(k)
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λ̄b
Ḃ
(q)

Sµ
A(k)
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Ab β(q)

T µν(k) +

Aa α(p)

Ab β(q)

T µν(k)

Figure 12: The collinear diagrams corresponding to the exchange of a composite axion (top right), a dilatino
(top left) and the two sectors of an intermediate dilaton (bottom). Dashed lines denote intermediate scalars.

Yang-Mills theory described by the Lagrangian in Eq. (11.8), these three currents are defined as

Rµ = λ̄
a
σ̄

µ
λ

a +
1
3

(
−χ̄iσ̄

µ
χi +2iφ †

i Dµ

i j φ j−2i(Dµ

i j φ j)
†
φi

)
, (11.15)

Sµ

A = i(σνρ
σ

µ
λ̄

a)AFa
νρ −

√
2(σν σ̄

µ
χi)A(D

ν
i jφ j)

†− i
√

2(σ µ
χ̄i)W

†
i (φ †)

− ig(φ †
i T a

i jφ j)(σ
µ

λ̄
a)A +Sµ

I A , (11.16)

T µν = −Fa µρFaν
ρ +

i
4

[
λ̄

a
σ̄

µ(δ ac
→
∂

ν −gtabcAbν)λ c + λ̄
a
σ̄

µ(−δ
ac
←
∂

ν −gtabcAbν)λ c +(µ ↔ ν)

]
+ (Dµ

i j φ j)
†(Dν

ikφk)+(Dν
i jφ j)

†(Dµ

ik φk)+
i
4

[
χ̄iσ̄

µ(δi j

→
∂

ν +igT a
i jA

aν)χ j

+ χ̄iσ̄
µ(−δi j

←
∂

ν +igT a
i jA

aν)χ j +(µ ↔ ν)

]
−η

µνL +T µν

I , (11.17)

where L is given in Eq.(11.8) and Sµ

I and T µν

I are the terms of improvement in d = 4 of the
supercurrent and of the EMT respectively. As in the non-supersymmetric case, these terms are
necessary only for a scalar field and therefore receive contributions only from the chiral multiplet.
They are explicitly given by

Sµ

I A =
4
√

2
3

i
[
σ

µν
∂ν(χiφ

†
i )
]

A
, (11.18)

T µν

I =
1
3
(
η

µν
∂

2−∂
µ

∂
ν
)

φ
†
i φi . (11.19)

The terms of improvement are automatically conserved and guarantee, for W (Φ) = 0, upon
using the equations of motion, the vanishing of the classical trace of T µν and of the classical
gamma-trace of the supercurrent Sµ

A . The anomaly equations in the component formalism, which
can be projected out from Eq. (11.14), are

∂µRµ =
g2

16π2

(
T (A)− 1

3
T (R)

)
Fa µν F̃a

µν , (11.20)

σ̄µSµ

A = −i
3g2

8π2

(
T (A)− 1

3
T (R)

)(
λ̄

a
σ̄

µν
)

A Fa
µν , (11.21)

ηµνT µν = − 3g2

32π2

(
T (A)− 1

3
T (R)

)
Fa µνFa

µν . (11.22)

43



P
o
S
(
C
O
R
F
U
2
0
1
8
)
0
7
2

Exact Correlators from Conformal Ward Identities Claudio Corianò

The first and the last equations are respectively extracted from the imaginary and the real part of
the θ component of Eq.(11.14), while the gamma-trace of the supercurrent comes from the lowest
component.

We define the three correlation functions, Γ(R), Γ(S) and Γ(T ) as

δ
ab

Γ
µαβ

(R) (p,q) ≡ 〈Rµ(k)Aaα(p)Abβ (q)〉 〈RVV 〉 ,
δ

ab
Γ

µα

(S)AḂ(p,q) ≡ 〈Sµ

A(k)Aaα(p) λ̄
b
Ḃ(q)〉 〈SV F〉 ,

δ
ab

Γ
µναβ

(T ) (p,q) ≡ 〈T µν(k)Aaα(p)Abβ (q)〉 〈TVV 〉 , (11.23)

with k = p+q and where we have factorized, for the sake of simplicity, the Kronecker delta on the
adjoint indices. These correlation functions have been computed at one-loop order in the dimen-
sional reduction scheme (DRed) using the

Γ
µαβ

(R) (p,q) =−i
g2 T (R)

12π2
kµ

k2 ε[p,q,α,β ] , (11.24)

The correlator in Eq.(11.24) satisfies the vector current conservation constraints and the anomalous
equation of Eq.(11.20)

ikµ Γ
µαβ

(R) (p,q) =
g2 T (R)

12π2 ε[p,q,α,β ] . (11.25)

Therefore, in the on-shell case and for massless fermions we recover the usual structure of the
〈AVV 〉 diagram. In general we obtain

Γ
µαβ

(R) (p,q) = i
g2 T (A)

4π2
kµ

k2 ε[p,q,α,β ] , (11.26)

Γ
µα

(S) (p,q) = i
g2T (A)
2π2 k2 sµα

1 + i
g2T (A)
64π2 V (k2)sµα

2 , (11.27)

Γ
µναβ

(T ) (p,q) =
g2 T (A)
8π2 k2 tµναβ

1 (p,q)+
g2 T (A)

16π2 V (k2) tµναβ

2 (p,q) , (11.28)

where

V (k2) =−3+3B0(0,0)−3B0(k2,0)−2k2 C0(k2,0) . (11.29)

and with B0(k2,0) and C0(k2,0) denoting the scalar 2- and 3-point functions computing in the
massless case. Notice that the two vector lines are kept on-shell for simplicity. The structure of the
correlators is then given by

Γ
µαβ

(R) (p,q) = i
g2 T (R)

12π2 Φ1(k2,m2)
kµ

k2 ε[p,q,α,β ] , (11.30)

Γ
µα

(S) (p,q) = i
g2T (R)
6π2 k2 Φ1(k2,m2)sµα

1 + i
g2T (R)
64π2 Φ2(k2,m2)sµα

2 , (11.31)

Γ
µναβ

(T ) (p,q) =
g2 T (R)
24π2 k2 Φ1(k2,m2) tµναβ

1S (p,q)+
g2 T (R)

16π2 Φ2(k2,m2) tµναβ

2S (p,q) , (11.32)
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with

Φ1(k2,m2) = −1−2m2 C0(k2,m2) ,

Φ2(k2,m2) = 1−B0(0,m2)+B0(k2,m2)+2m2C0(k2,m2), (11.33)

and with the anomalous broken Ward identities taking the form

ikµ Γ
µαβ

(R) (p,q) = −g2T (R)
12π2 Φ1(k2,m2)ε[p,q,α,β ] , (11.34)

σ̄µ Γ
µα

(S) (p,q) = −g2T (R)
4π2 Φ1(k2,m2)σ̄αβ pβ , (11.35)

ηµν Γ
µναβ

(T ) (p,q) =
g2T (R)

8π2 Φ1(k2,m2)uαβ (p,q) . (11.36)

A similar result holds also for the Konishi current

J f
µ = χ̄

f
σ̄µ χ

f + iφ
f †(Dµφ

f )− i(Dµφ
f )†

φ
f (11.37)

Γ
µαβ

(J f )
(p,q) =−i

g2 T (R f )

4π2 Φ1(k2,m2)
kµ

k2 ε[p,q,α,β ] , (11.38)

with Φ1(k2,m2) given in Eq. (11.33), in full analogy with the result for the correlator of the R
current.
Defining

χ(k2,m2)≡Φ1(k2,m2)/k2, (11.39)

the discontinuity of the anomalous form factor χ(k2,m2) is then given by

Disc χ(k2,m2) = χ(k2 + iε,m2)−χ(k2− iε,m2) =−Disc
(

1
k2

)
−2m2Disc

(
C0(k2,m2)

k2

)
(11.40)

giving

Disc χ(k2,m2) = 4iπ
m2

(k2)2 log
1+
√

τ(k2,m2)

1−
√

τ(k2,m2)
θ(k2−4m2). (11.41)

The total discontinuity of χ(k2,m2), as seen from the result above, is characterized just by a single
cut for k2 > 4m2, since the δ (k2) (massless resonance) contributions cancel between the first and
the second term of Eq. (11.40). This result proves the decoupling of the anomaly pole at k2 = 0 in
the massive case due to the disappearance of the resonant state. In the conformal limit, it is clear
that the partially on-shell action takes the form

Sanom = Saxion +Sdilatino +Sdilaton (11.42)
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UV

IR

(a)

Figure 13: The UV/IR RG flow with a possible intermediate non-perturbative potential for the generation
of ultralight masses for axions and dilatons

where

Saxion = − g2

4π2

(
T (A)− T (R)

3

)∫
d4zd4x∂

µBµ(z)
1
�zx

1
4

Fαβ (x)F̃
αβ (x)

Sdilatino =
g2

2π2

(
T (A)− T (R)

3

)∫
d4zd4x

[
∂νΨµ(z)σ µν

σ
ρ

←
∂ρ

�zx
σ̄

αβ
λ̄ (x)

1
2

Fαβ (x)+h.c.
]

Sdilaton = − g2

8π2

(
T (A)− T (R)

3

)∫
d4zd4x

(
�h(z)−∂

µ
∂

νhµν(z)
) 1
�zx

1
4

Fαβ (x)F
αβ (x).

(11.43)

The complete symmetry of the massless exchange present in each channel is evident.

12. Comments

There are obvious questions that one can ask, by looking at these results. One of them concerns
the possible physical meaning of such massless exchanges, which have motivated our analysis. The
presence of ghosts in each anomaly channel seems to indicate that a mechanism of ghost conden-
sation could take place, which causes a redefinition of the vacuum. On the other hand, there are
limitations to our analysis, the first being that it relies on the computation of a simple Coleman-
Weinberg potential. The second one is its limitation to 3-point functions, i.e. at trilinear level,
although at this level all the features of the anomaly functional are reproduced by the candidate
action, at least in d = 4, except for non anomalous contributions which require higher point func-
tions.
The physical excitations that emerge from such a vacuum rearrangement would be ultralight and
should play a role in cosmology, especially in the context of dark matter and/or dark energy stud-
ies, for being Nambu-Goldstone modes which are dynamically generated by the superconformal
anomaly. Obviously, such a speculative hypothesis requires further investigations in order to pro-
vide solid predictions. We stress once again that this picture allows to reconcile two different
approaches in the analysis of anomaly actions, the nonlocal one, based on a variational solution of
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the anomalous Ward identities, and the local one, based on the inclusion of a Nambu-Goldstone
mode to account for the broken symmetry.
In a supersymmetric context, this extension is realized by the inclusion of a supermultiplet, with
an axion, an axino and a dilaton in the spectrum of the 1PI anomaly action. Lagrangians with such
field content have been discussed in the past [42–44]. In general, one expects a mechanism of vac-
uum misalignment to take place at a large scale in the generation of ultralight particles [9, 45] and
it is conceivable that a similar mechanism could be induced also by the conformal anomaly, due
to the presence of a topological contribution. This scenario would then be summarized as in Fig.
13. The UV and IR descriptions at the two upper and lower ends of this figure would correspond
to the two versions of the anomaly action that we have analyzed, with an intermediate dynamical
potential generated non-perturbatively at an intermediate scale, and connected by an RG flow. Such
potential would be responsible for generating a mass for the dilatons. For instance, an ultralight
axion/dilaton pair would be of remarkable cosmological significance and would define a new pos-
sibility for gravitational physics in the far infrared, although other scenarios a‘t this stage cannot be
excluded. In the case of Stuckelberg models, for instance, such potential is generated by a vacuum
misalignment and can be attributed to instanton effects at a certain phase transition [9], which can
be tiny in its size. This and other challenging aspects of such class of models are left for future
investigations.
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