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Abstract. We give an explicit formula for the L2 analytic torsion of the
finite metric cone over an oriented compact connected Riemannian manifold.
We provide an interpretation of the different factors appearing in this formula.
We prove that the analytic torsion of the cone is the finite part of the limit
obtained collapsing one of the boundaries, of the ratio of the analytic torsion
of the frustum to a regularising factor. We show that the regularising factor
comes from the set of the non square integrable eigenfunctions of the Laplace
Beltrami operator on the cone.

1. Introduction and statement of the main result.

Let (M, g) be a compact connected oriented Riemannian manifold without boundary

of dimension n with metric g. Let Δ denotes the Hodge–Laplace operator on M in the

metric g. Then, Δ has a non negative discrete spectrum SpΔ and the zeta function of Δ

is well defined by

ζ(s,Δ(q)) =
∑

λ∈Sp+Δ(q)

λ−s,

for Re(s) > n/2, and by analytic continuation elsewhere, and is regular at s = 0. The

analytic torsion T (M, g) of the pair (M, g) is defined by

log T (M, g) =
1

2

n∑
q=1

(−1)qqζ ′(0,Δ(q)).

If the manifoldM has a boundary ∂M , the Laplace operator is assumed to be defined

by suitable boundary conditions BC [18, Section 3]. In such a case, it is convenient to

split the logarithm of the analytic torsion into two parts, the first being a global term and

the second a local one, defined on a neighborhood of the boundary [4, Section 3]. The

first term coincides with the Reidemeister torsion [14] of either M of the pair (M,∂M),

with the Ray and Singer homology basis [18], by the Cheeger–Müller theorem [4], [15],

so
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log Tabs(M, g) = log τ(M, g) + log Tbound,abs(∂M),

log Trel(M, g) = log τ((M,∂M), g) + log Tbound,rel(∂M),
(1.1)

the second term splits as

log Tbound,BC(∂M) =
1

4
χ(∂M) log 2 +ABM,BC(∂M),

where χ is the Euler characteristic, and the last term is called the anomaly boundary

term, and was described in the more general case in [1] and [2].

It is clear that what is necessary in order to define the analytic torsion T (M, g) is that

the spectrum of the Hodge–Laplace operator satisfies some assumptions that guarantee

the possibility of defining the zeta function and of proving its regularity at s = 0. It is

also clear that this follows by some spectral properties of the Hodge–Laplace operator.

There are several approaches to describe these properties. We will follow the one of

Spreafico, introduced in [21] and [22]: so we require that Sp+(Δ) is a graded regular

sequence of spectral type (of non positive order), as defined in [22, Definitions 2.1, 2.6].

The fact that this is true for the Hodge–Laplace operator on a compact manifold is well

know.

The given definition of the analytic torsion extends easily considering forms with

values in some vector bundle Vρ associated to some orthogonal representation ρ of the

fundamental group ofW [18, Section 1]. Under our approach what is necessary is that the

spectrum of the resulting operator is a regular sequence of spectral type of non positive

order, and again this is well known. Since the results of this paper are independent of

these extensions, we will consider the simpler case of the Hodge–Laplace operator itself.

An other possible generalization of the given definition of analytic torsion, and this

is the case that we will consider here, is when the underlying space is no longer a compact

manifold, but some type of open manifold, or manifold with singularities. In this paper

we consider the case of the cone over a manifold C(W ), as defined below.

Definition 1.1. Let (W (m), g) be an oriented compact connected Riemannian

manifold of dimension m without boundary with metric g. Let 0 ≤ l1 ≤ l2 be real

numbers. Consider the space C[l1,l2](W ) = [l1, l2]×W with the metric (defined for x > 0

when l1 = 0)

dx⊗ dx+ x2g.

We call C[l1>0,l2](W ) the finite metric frustum over W ; we call C(0,l](W ) the finite

metric cone over W , and we denote it by Cl(W ).

It is clear that in order to obtain a suitable extension of the definition of the analytic

torsion to the cone, we need first a suitable definition of the Hodge–Laplace operator.

Spectral analysis on cones was developed by Cheeger [5], [6], that in particular showed

that the formal Hodge–Laplace operator Δ has a self adjoint extension on the space of

square integrable forms. A complete set of solutions of the eigenvalues equation for Δ can

be described in terms of a complete discrete resolution of the Hodge–Laplace operator

on the section of the cone, see Lemma 3.1 [5, Section 3]. Considering square integrable
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forms and applying the boundary conditions, we obtain an explicit description of the

spectrum of Δ in terms of the spectrum of the Hodge–Laplace operator on the section,

see Lemmas 3.2.

Remark 1.1. It is important to observe here that beside the usual (either absolute

or relative) boundary conditions, due to the presence of a non empty boundary, when

the section W has even dimension m = 2p, further boundary conditions, called ideal

boundary conditions, where introduced by Cheeger [5], as we recall here. Assume that

there exists a decomposition Hp(W ) = Va ⊕ Vr, where Va and Vr are maximal self

annihilating subspaces for the cup product paring. Then, a p dimensional form belongs

to the domain of the Laplace operator if its components in Va and Vr satisfy Neumann

and Dirichlet conditions respectively at x = 0 (see [5] pg. 580 for details). Observe

that our determination of the spectrum of the Laplace operator on the cone is obtained

assuming this decomposition and these conditions. Moreover, where ever not explicitly

stated, the above decomposition and the ideal conditions will be assumed. We conclude

this remark recalling that ideal boundary conditions are necessary to guarantee Poincaré

duality on the cone.

We can then prove that Sp+(Δ) is a regular sequence of spectral type and therefore

the analytic torsion of the cone is well defined. We are in the position of extending the

above definition of the analytic torsion to this setting, and we call the resulting object

the L2 analytic torsion of the cone, Tabs,ideal(Cl(W )) (we use the same notation and we

restrict to absolute BC, since the relative torsion follows by Poincaré duality [10, Section

4]). Of course it is not obvious at all if the invariant obtained in this way has some

geometric or topological meaning. Since the spaces of the L2 harmonic forms on W are

proved to be isomorphic to the intersection cohomology of W , the natural candidate for

the L2 analytic torsion is the intersection torsion. It was proved in [11] that indeed L2

analytic torsion and intersection torsion of the cone over an odd dimensional manifold

coincide. The case of an even dimensional section is not clear yet, due to some difficulty

in producing a natural definition for the intersection torsion in this case. There is work

in progress in this direction. Here we tackle the analytic side of the problem.

The main purpose of this work is to compute Tabs,ideal(Cl(W )), or more precisely

to give formulas for it in terms of other either geometric or spectral invariants, and

in particular invariants of the section (W, g). A key point here is the following. The

description of the spectrum of the Hodge–Laplace operator on the cone in terms of the

spectrum of the Hodge–Laplace operator on the section makes possible to express (or

decompose) all the spectral functions (in particular the zeta function and the logarithmic

Gamma function, see Subsection 5) on the cone in terms of the spectral functions on the

sections, and to apply the technique introduced in [22] in order to tackle the derivative

at zero of a class of double series. This is the main technical point, and in fact this is the

reason that permits to obtain the final results. We did follow the same approach first in

[9], where we gave the formula for the torsion of the cone over a sphere, and then in [10],

where we considered as section any compact connected manifold of odd dimension. These

results are superseded by the formulas obtained in the present work, where the section

can have any dimension. We stress the fact that, as observed in [10], the calculation
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are exactly the same and there is no more difficulty to deal with the even dimensional

section case that with the odd dimensional one. Moreover, while the formulas in the odd

dimensional section case have a clear geometric interpretation in terms of intersection

torsion, due to [12], the even dimensional section case is still quite obscure. However,

due to the recent interest in the subject (see [16]), we decided to present the formulas for

the general case and the details of the calculation. Indeed, the presentation followed in

this paper adds some insights in the possible interpretation of the result, as we explain at

the end of this section, but first we present our first main result in the following theorem.

Theorem 1.1. Let (W (m), g) be an oriented compact connected Riemannian man-

ifold of dimension m with metric g. The L2 analytic torsion Tabs,ideal(Cl(W )) of the cone

over W with absolute and ideal boundary conditions is as follows, where rq = rkHq(W ),

and mcex,q,n, αq and μq,n are defined in Lemma 3.1, p ≥ 1:

log Tabs(Cl(W
(2p−1))) =

1

2

p−1∑
q=0

(−1)q(2p− 2q)rq log l +
1

2
log T (W, g)

− 1

2

p−1∑
q=0

(−1)qrq log(2(p− q)) +ABM,abs(∂Cl(W )),

log Tabs,ideal(Cl(W
(2p))) =

(
1

2

p−1∑
q=0

(−1)q(2p− 2q + 1)rq + (−1)p 1
4
rp

)
log l

− 1

2

p−1∑
q=0

(−1)qrq log(2p− 2q + 1)((2p− 2q − 1)!!)2

+
1

2

p−1∑
q=0

(−1)q
∞∑

n=1

mcex,q,n log
1 + αq/μq,n

1− αq/μq,n

+
1

2
χ(W ) log 2 +ABM,abs(∂Cl(W )).

Next, we give an interpretation of the formulas given in Theorem 1.1. This is done

in two steps. In the first, described in whole details in Section 2, we show that all the

sums appearing in the formula of the torsion in the odd case, and some of these sums in

the even case, coincide with the determinant of the change of basis between the basis of

the harmonic forms on the cone and the basis of the harmonic forms on the sections, see

Theorem 2.1 of Section 2. This is a classical geometric contribution in the Reidemeister

torsion of the cone (see [12]), and therefore this interpretation clarifies completely the

appearance of these sums. In particular, this describes completely the L2-analytic torsion

of a cone over an odd dimensional manifold, and also suggests that the Euler part of the

boundary contribution is anomalous in the analytic torsion (see Remark 2.1 at the end

of Section 2). In the other case, i.e. for a cone over an even dimensional manifold, other

sums appear in the formula for the analytic torsion. An interpretation of these further

sums, collected into the two terms B1 and B2 in Theorem 2.1, is the second step of our

interpretation of the formula for the analytic torsion of the cone, and is presented in the



Analytic torsion of cones 315

final section of the paper. The interpretation is suggested after proving that the formula

for the torsion of the cone can be obtained as some limit case of the formula for the

torsion of the frustum. We postpone the discussion of these results to the last section.

We conclude this introductory section with a few remarks on the anomaly term

appearing in the even case. We observe that the anomaly term can be also written in

terms of residues of some spectral functions, see Subsection 8.1.2, or Theorem 1.1 of [9].

Formulas for particular sections, as spheres of discs, are given in [7] and [8], [9].

Remark 1.2. By duality:

1

2

p−1∑
q=0

(−1)q
∞∑

n=1

mcex,q,n log
1 + αq/μq,n

1− αq/μq,n
=

1

2

2p−1∑
q=0

(−1)q
∞∑

n=1

mcex,q,n log

(
1 +

αq

μq,n

)
.

Remark 1.3. Using Proposition 2.9 of [21] the first term in the last line of the

second formula in the theorem reads

1

2

p−1∑
q=0

(−1)q
∞∑

n=1

mcex,q,n log
1 + αq/μq,n

1− αq/μq,n
=

1

2

p−1∑
q=0

(−1)q
(
ζ ′q(0, αq)− ζ ′q(0,−αq)

)

=
1

2

p−1∑
q=0

(−1)q log
detζ

(
(Δ

(q)
(W,g) + α2

q)
1/2 − αq

)
detζ

(
(Δ

(q)
(W,g) + α2

q)
1/2 + αq

) ,
where Δ(W,g) is the Hodge–Laplace operator on the section of the cone (W, g), and

ζq(s, x) =

∞∑
n=1

mcex,q,n(μq,n + x)−s.

2. A geometric interpretation of the analytic torsion.

The spaces of harmonic forms on the frustum (with absolute an mixed BC) were

computed in [11]. The space of harmonic forms on the cone (with absolute and relative

BC) were compute [12]. In particular, in the even case m = 2p the result changes if we

assume the Cheeger ideal BC, as described in the introduction. A simple calculation,

proceeding as in the proof of Lemma 4.1 of [12], gives the following result.

Lemma 2.1. We have the following isomorphisms of vector spaces induced by the

extension of the inclusion of the forms :

Hq
abs(Cl(W )) =

{
Hq(W ), 0 ≤ q ≤ p− 1,

{0}, p ≤ q ≤ 2p− 1,
dimW = 2p− 1,

Hq
abs(Cl(W )) =

{
Hq(W ), 0 ≤ q ≤ p,

{0}, p+ 1 ≤ q ≤ 2p+ 1,
dimW = 2p,
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Hq
abs,ideal(ClW ) =

⎧⎪⎨⎪⎩
Hq(W ) if 0 ≤ q ≤ p− 1,

Va if q = p,

0 if p+ 1 ≤ q ≤ 2p+ 1,

dimW = 2p,

Hq
abs(C[l1,l2](W )) = Hq(W ).

Proceeding as in Section 3.5 of [11], we have the following commutative diagram of

isomorphisms of vector spaces (we give here the diagram for the cone, the one for the

frustum is in [11]), for 0 ≤ q ≤ [m/2],

Hq
abs(Cl(W ))

�Cl(W ) ��Hm−q+1
rel (Cl(W ))

Am−q+1
Cl(W ),rel ��Hm−q+1(Ĉl(W ), ̂∂Cl(W )) Hq(Cl(W ))

P��

Hq(W )
�W ��

(̈ )√
γq

��

Hm−q(W )
Am−q

W ��

(−1)qxm−2qdx∧√
γq

��

Hm−q(Ŵ )

��

Hq(W )
P��

(−1)q
√
γq

��

where A is the de Rham map on the cone, P Poincaré duality, 	 the Hodge isomorphism,

and the factor γq is the ratio between the L2 norm of the constant extension of a form

ω on the cone and the L2 norm of ω (the double dot indicates the constant extension):

γq =
‖ω̈Cl

‖2Cl(W )

‖ω‖2W
=

∫ l

0

xm−2qdx =
lm−2q+1

m− 2q + 1
.

The same analysis on the frustum gives (see [11, Section 3.5] for all definitions and

details)

Γq =
‖ω̈F ‖2C[l1,l2](W )

‖ω‖2W
=

∫ l2

l1

xm−2qdx=

⎧⎪⎨⎪⎩
1

m+1−2q

(
lm+1−2q
2 − lm+1−2q

1

)
ifm+1−2q �=0,

ln
l2
l1
, ifm+1−2q=0.

Note that for all q < [m/2],

lim
l1→0+,l2=l

Γq = γq.

Recall that for a real vector space V we denote ΛdimV V by detV , and we call this

line the determinant line of V (det0 := R). If v = {v1, . . . , vdimV } is a basis for V , we

use the notation detv for v1 ∧ · · · ∧ vdimV . For a finite dimensional graded vector space

V• = (Vq)q∈Z =
⊕

q∈Z Vq, set

Detmn V• :=
m⊗

q=n

(detVq)
†q ,

where V †
2p

= V and V †
2p+1

= V †. This one dimensional vector space is called the

determinant line of V•.
With this notation, if α is a (graded) basis for the harmonic forms on W , we have

that the ratio between the determinant of the homology graded basis induced by an
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harmonic basis of the frustum and of its section, and of the cone and of this section are,

respectively:

Detα̈F

Detα
=

m∏
q=0

Γ((−1)qrq)/2
q , absolute BC

Det
[(m−1)/2]
0 α̈Cl

Det
[(m−1)/2]
0 α

=

[(m−1)/2]∏
q=0

γ((−1)qrq)/2
q , absolute BC

Detp−1
0 α̈Cl

Detp−1
0 α

= γ((−1)prp)/4
p

p−1∏
q=0

γ((−1)qrq)/2
q , m = 2p, absolute, ideal BC.

For completeness we gave here also the result without ideal BC here, however in the

following the formulas are all given assuming ideal BC. A simple calculation completes

the proof of the following corollary of Theorem 1.1 (a similar formula holds in the case

m = 0).

Theorem 2.1. The analytic torsion of the cone reads:

log Tabs,ideal(Cl(W
(m))) =

1

2
log T (W, g) + log

Det
[(m−1)/2]
0 α̈

Det
[(m−1)/2]
0 α

+
1

4
χ(W ) log 2

+ABS,abs(∂Cl(W )) +B
(m)
1 (Cl(W )) +B

(m)
2 (Cl(W )),

where B
(m)
1/2 (Cl(W ) are the following anomaly terms (vanishing when m = 2p−1 is odd):

B
(2p)
1 (Cl(W ))=−

p−1∑
q=0

(−1)qrq log(2p−2q−1)!!+
1

2

p−1∑
q=0

(−1)q
∞∑

n=1

mcex,q,n log
1+αq/μq,n

1−αq/μq,n
,

B
(2p)
2 (Cl(W ))=

1

4
χ(W )log2.

The analytic torsion of the frustum reads:

log Tabs(C[l1,l2](W )) = log T (W, g) + log
Detα̈

Detα
+

1

2
χ(W ) log 2 +ABS,abs(∂C[l1,l2](W )).

Remark 2.1. As announced in the introduction, the formula in Theorem 2.1 com-

pletely describes the analytic torsion of a cone over an odd dimensional manifold in terms

of topological and geometric quantities. In particular, the splitting between global and

boundary terms is evident (compare with the formula in Equation (1.1) for a regular man-

ifold, and with the discussion in Section 6). In the even case, the same analysis suggests

the description of the torsion given in the formula, with two new anomaly terms, called

B1 and B2. If now we read the formula for the torsion in the even case looking for the

global and the boundary contributions, we find out that part of the boundary contribu-

tion can be interpret as anomalous. This is justified as follow. Recall that the boundary

term splits into two parts: one is the classical part, see the work of Lück [13] and depends

on the Euler characteristic of the boundary, the other is the anomaly boundary term,
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computed by Brüning and Ma [1], [2]. Then, we realise that (collecting together all the

terms where the Euler characteristic appears) the classical boundary term in the cone

coincides with the one of the frustum, even if the boundary is different. In other words,

it seems that the analytic torsion of the cone does not see that the boundary at x = 0

collapses to a point. Following this interpretation, we split this boundary term into two

parts: the first is

1

4
χ(W ) log 2,

and is the classical contribution of the boundary, the second one is B2(W ), and is un-

derstood as an anomaly boundary term.

3. Spectral properties of the Hodge–Laplace operator.

Consider the metric in Definition 1.1 either on the cone Cl(W ) or on the frustum

C[l1>0,l2](W ). Let ω ∈ Ωq(Cl(W )) ( ω ∈ Ωq(C[l1>0,l2](W ))), set

ω(x, y) = f1(x)ω1(y) + f2(x)dx ∧ ω2(y),

with smooth functions f1 and f2, and ωj ∈ Ω(W ). Then (we denote operators acting on

the section by a tilde),

	ω(x, y) = xm−2q+2f2(x)	̃ω2(y) + (−1)qxm−2qf1(x)dx ∧ 	̃ω1(y),

dω(x, y) = f1(x)d̃ω1(y) + ∂xf1(x)dx ∧ ω1(y)− f2(x)dx ∧ dω2(y),

d†ω(x, y) = x−2f1(x)d̃
†ω1(y)−

(
(m− 2q + 2)x−1f2(x) + ∂xf2(x)

)
ω2(y)

− x−2f2(x)dx ∧ d̃†ω2(y),

Δω(x,y)=
(
−∂2

xf1(x)−(m−2q)x−1∂xf1(x)
)
ω1(y)+x−2f1(x)Δ̃ω1(y)−2x−1f2(x)d̃ω2(y)

+dx∧
(
x−2f2(x)Δ̃ω2(y)+ω2(y)

(
−∂2

xf2(x)−(m−2q+2)x−1∂xf2(x)

+(m−2q+2)x−2f2(x)
)
−2x−3f1(x)d̃

†ω1(y)
)
.

Lemma 3.1 (Cheeger [5]). Let {ϕ(q)
har, ϕ

(q)
cex,n, ϕ

(q)
ex,n} be an orthonormal basis of

Ωq(W ) consisting of harmonic, coexact and exact eigenforms of Δ̃(q). Let λq,n denotes

the eigenvalue of ϕ
(q)
cex,n and mcex,q,n its multiplicity. Let Jν be the Bessel function of

index ν. Define

αq =
1

2
(1 + 2q −m), μq,n =

√
λq,n + α2

q .

Then, assuming that μq,n is not an integer, the solutions of the equation Δu = λ2u,

with λ �= 0, are of the following six types :

ψ
(q)
±,1,n,λ = xαqJ±μq,n

(λx)ϕ(q)
cex,n,



Analytic torsion of cones 319

ψ
(q)
±,2,n,λ = xαq−1J±μq−1,n

(λx)d̃ϕ(q−1)
cex,n + ∂x(x

αq−1J±μq−1,n
(λx))dx ∧ ϕ(q−1)

cex,n

ψ
(q)
±,3,n,λ = x2αq−1+1∂x(x

−αq−1J±μq−1,n
(λx))d̃ϕ(q−1)

cex,n

+ xαq−1−1J±μq−1,n
(λx)dx ∧ d̃†d̃ϕ(q−1)

cex,n

ψ
(q)
±,4,n,λ = xαq−2+1J±μq−2,n

(λx)dx ∧ d̃ϕ(q−2)
cex,n

ψ
(q)
±,E,λ = xαqJ±|αq|(λx)ϕ

(q)
har

ψ
(q)
±,O,λ = ∂x(x

αq−1J±|αq−1|(λx))dx ∧ ϕ
(q−1)
har .

When the index is an integer the − solutions must be modified including some loga-

rithmic term (see for example [23] for a set of linear independent solutions of the Bessel

equation).

Following [5] and [3], the formal Hodge–Laplace operator in Equation (3.2) defines

a concrete self adjoint operator with domain in the space of the square integrable forms

on the cone (see [9] for details). This operator (that we denote by the same symbol Δ)

has a pure point spectrum as described in the following lemmas, whose proof follows

applying BC and square integrability to the solutions described in Lemma 3.1 (see [12]

for details on the proof, and observe that more care is necessary in the even dimensional

case, where we must take into account also the ideal BC).

Lemma 3.2. The positive part of the spectrum of the Hodge–Laplace operator on

Cl(W ), with absolute boundary conditions on ∂Cl(W ) is as follows, where 0 ≤ q ≤ m+1.

If m = dimW = 2p− 1, p ≥ 1:

Sp+Δ
(q)
abs =

{
mcex,q,n : ĵ2μq,n,αq,k/l

2
}∞
n,k=1

∪
{
mcex,q−1,n : ĵ2μq−1,n,αq−1,k/l

2
}∞
n,k=1

∪
{
mcex,q−1,n : j2μq−1,n,k/l

2
}∞
n,k=1

∪
{
mcex,q−2,n : j2μq−2,n,k/l

2
}∞
n,k=1

∪
{
mhar,q : ĵ2|αq|,αq,k

/l2
}∞
k=1

∪
{
mhar,q−1 : ĵ2|αq−1|,αq,k

/l2
}∞
k=1

.

If m = dimW = 2p, p ≥ 1:

Sp+Δ
(q �=p,p+1)
abs,ideal =

{
mcex,q,n : ĵ2μq,n,αq,k/l

2
}∞
n,k=1

∪
{
mcex,q−1,n : ĵ2μq−1,n,αq−1,k/l

2
}∞
n,k=1

∪
{
mcex,q−1,n : j2μq−1,n,k/l

2
}∞
n,k=1

∪
{
mcex,q−2,n : j2μq−2,n,k/l

2
}∞
n,k=1

∪
{
mhar,q : ĵ2|αq|,αq,k

/l2
}∞
k=1

∪
{
mhar,q−1 : ĵ2|αq−1|,αq−1,k

/l2
}∞
k=1

,

Sp+Δ
(p)
abs,ideal =

{
mcex,p,n : ĵ2μp,n,αp,k/l

2
}∞
n,k=1

∪
{
mcex,p−1,n : ĵ2μp−1,n,αp−1,k/l

2
}∞
n,k=1

∪
{
mcex,p−1,n : j2μp−1,n,k/l

2
}∞
n,k=1

∪
{
mcex,p−2,n : j2μp−2,n,k/l

2
}∞
n,k=1

∪
{
1

2
mhar,p : j21/2/l

2

}∞
k=1

∪
{
1

2
mhar,p : j2−1/2/l

2

}∞
k=1
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∪
{
mhar,p−1 : ĵ2|αp−1|,αp−1,k

/l2
}∞
k=1

,

Sp+Δ
(p+1)
abs,ideal =

{
mcex,p+1,n : ĵ2μp+1,n,αp+1,k/l

2
}∞
n,k=1

∪
{
mcex,p,n : ĵ2μp,n,αp,k/l

2
}∞
n,k=1

∪
{
mcex,p,n : j2μp,n,k/l

2
}∞
n,k=1

∪
{
mcex,p−1,n : j2μp−1,n,k/l

2
}∞
n,k=1

∪
{
mhar,p+1 : ĵ2|αp+1|,αp+1,k

/l2
}∞
k=1

∪
{
1

2
mhar,p : j2−1/2/l

2

}∞
k=1

∪
{
1

2
mhar,p : j21/2/l

2

}∞
k=1

,

where the jμ,k are the positive zeros of the Bessel function Jμ(x), the ĵμ,c,k are the positive

zeros of the function Ĵμ,c(x) = cJμ(x)+xJ ′μ(x), c ∈ R, αq and μq,n are defined in Lemma

3.1.

Lemma 3.3. The positive part of the spectrum of the Hodge–Laplace operator on

C[l1,l2](W ), l1 > 0, with relative boundary conditions on ∂1C[l1,l2](W ) and absolute bound-

ary conditions on ∂2C[l1,l2](W ) is (0 ≤ q ≤ m+ 1):

Sp+Δ
(q)
rel ∂1,abs ∂2

=
{
mcex,q,n : f̂2

μq,n,αq,k(l1, l2)
}∞
n,k=1

∪
{
mcex,q−1,n : f̂2

μq−1,n,αq−1,k(l1, l2)
}∞
n,k=1

∪
{
mcex,q−1,n : f̂2

μq−1,n,−αq−1,k(l2, l1)
}∞
n,k=1

∪
{
mcex,q−2,n : f̂2

μq−2,n,−αq−2,k(l2, l1)
}∞
n,k=1

∪
{
mhar,q : f̂2

|αq|,αq,k
(l1, l2)

}∞
k=1

∪
{
mhar,q−1 : f̂2

|αq−1|,αq−1,k
(l1, l2)

}∞
k=1

,

where the f̂μ,c,k(a, b) are the zeros of the function

F̂μ,c(x; l1, l2) = Jμ(l1x)(cYμ(l2x) + l2xY
′
μ(l2x))− Yμ(l1x)(cJμ(l2x) + l2xJ

′
μ(l2x)),

with real c �= 0, and αq and μq,n as defined in Lemma 3.1.

Remark 3.1. Application of the BC in Lemma 3.1 would give the zeros of the

function

Jμ(l1x)(cJ−μ(l2x) + l2xJ
′
−μ(l2x))− J−μ(l1x)(cJμ(l2x) + l2xJ

′
μ(l2x))

= − sin(πμ)F̂μ,c(x; l1, l2),

however, for the following analysis, it is much more convenient to work with the function

Y instead that with the function J−.
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Lemma 3.4. The positive part of the spectrum of the Hodge–Laplace operator on

C[l1,l2](W ), l1 > 0, with absolute boundary conditions is (0 ≤ q ≤ m+ 1):

Sp+Δ
(q)
abs =

{
mcex,q,n : v̂2μq,n,αq,k

}∞
n,k=1

∪
{
mcex,q−1,n : v̂2μq−1,n,αq−1,k

}∞
n,k=1

∪
{
mcex,q−1,n : v2μq−1,n,k

}∞
n,k=1

∪
{
mcex,q−2,n : v2μq−2,n,k

}∞
n,k=1

∪
{
mhar,q : v̂2|αq|,αq,k

}∞
k=1

∪
{
mhar,q−1 : v̂2|αq−1|,αq−1,k

}∞
k=1

,

where the vμ,k are the zeros of the function

Υμ(x) = Jμ(l2x)Yμ(l1x)− Yμ(l1x)Jμ(l2x),

and the v̂μ,c,k are the zeros of the function

Υ̂μ,c(x) = (cJμ(l2x) + l2xJ
′
μ(l2x))(cYμ(l1x) + l1xY

′
μ(l1x))

− (cYμ(l2x) + l2xY
′
μ(l2x))(cJμ(l1x) + l1xJ

′
μ(l1x)),

with real c �= 0, and αq and μq,n as defined in Lemma 3.1.

4. Simplifying the torsion zeta function.

We define the torsion zeta function by

tM(n)(s) =
1

2

n∑
q=1

(−1)qqζ(s,Δ(q)),

and the analytic torsion is:

log T (M (n), g) = t′M(n)(0).

In this section, we consider the torsion zeta function for the cone with absolute

BC and for the frustum with mixed and absolute BC respectively. We proceed to some

simplifications of it. We present the proof in the case of the cone, the proof for the

frustum is analogous.

Lemma 4.1. The torsion zeta function of the cone is:

t
(m)
Cone(s) = t

(m)
0 (s) + t

(m)
1 (s) + t

(m)
2 (s) + t

(m)
3 (s),

with

t
(m)
0 (s) =

l2s

2

[m/2]−1∑
q=0

(−1)q
(
(Zq(s)− Ẑq,+(s)) + (−1)m−1(Zq(s)− Ẑq,−(s))

)
,

t
(2p−1)
1 (s) = (−1)p−1 l

2s

2

(
Zp−1(s)− Ẑp−1,0(s)

)
, t

(2p)
1 (s) = 0



322 L. Hartmann and M. Spreafico

t
(m)
2 (s) =

l2s

2

[m−1/2]∑
q=0

(−1)q+1mhar,q (zq−1,−(s) + (−1)mzq,−(s)) ,

t
(2p)
3 (s) = (−1)p+1mhar,p

l2s

4
(zp,+(s) + zp,−(s)) , t

(2p−1)
3 (s) = 0,

where Ẑq,0 denotes Ẑq,± with αq = 0, and

Zq(s) =
∞∑

n,k=1

mcex,q,nj
−2s
μq,n,k

, Ẑq,±(s) =
∞∑

n,k=1

mcex,q,nĵ
−2s
μq,n,±αq,k

, zq,±(s) =
∞∑
k=1

j−2s
±αq,k

.

Proof. Rearranging the sums and isolating the case q = p, αp = 1/2 when

m = 2p, we obtain: if m = 2p− 1,

t
(2p−1)
Cone (s) =

l2s

2

2p−1∑
q=0

(−1)q
∞∑

n,k=1

mcex,q,n

(
j−2s
μq,n,k

− ĵ−2s
μq,n,αq,k

)

+
l2s

2

2p−1∑
q=0

(−1)q+1
∞∑
k=1

mhar,q ĵ
−2s
|αq|,αq,k,

if m = 2p,

t
(2p)
Cone(s) =

l2s

2

2p−1∑
q=0

(−1)q
∞∑

n,k=1

mcex,q,n

(
j−2s
μq,n,k

− ĵ−2s
μq,n,αq,k

)

+
l2s

2

2p∑
q=0,q �=p

(−1)q+1
∞∑
k=1

mhar,q ĵ
−2s
|αq|,αq,k

+ (−1)p+1 l
2s

4

∞∑
k=1

mhar,p

(
j−2s
1/2,k + j−2s

−1/2,k

)
.

Using Hodge duality on coexact q-forms on the section, we obtain the following

identities:

mcex,q,n = mcex,m−1−q,n,

λq,n = λm−1−q,n,

αq = −αm−1−q,

μq,n = μm−1−q,n,

and hence the first term in the previous equations reads:

l2s

2

m−1∑
q=0

(−1)q
∞∑

n,k=1

mcex,q,n

(
j−2s
μq,n,k

− ĵ−2s
μq,n,αq,k

)
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=
l2s

2

[m/2]−1∑
q=0

(−1)q
∞∑

n,k=1

mcex,q,n

×
((

j−2s
μq,n,k

− ĵ−2s
μq,n,αq,k

)
+ (−1)m−1

(
j−2s
μq,n,k

− ĵ−2s
μq,n,−αq,k

))
+
(
term with q =

[m
2

])
, (4.1)

where the last term appears only if [m/2] is an integer, namely if m = 2p − 1 is odd,

and has the following form. Since when q = p − 1, m = 2p − 1, αp−1 = 0, (and

jν,0,k = λp−1,n = j′ν,k), then(
term with q =

[m
2

])
= (−1)p−1 l

2s

2

∞∑
n,k=1

mcex,p−1,n

(
j−2s
μp−1,n,k

− ĵ−2s
μp−1,n,0,k

)
.

The sign in front to the second term in Equation (4.1) is the key difference between

the even and the odd case.

Next consider the term involving the harmonics, i.e. the sums

k(2p−1)(s) =
1

2

2p−1∑
q=0

(−1)q+1
∞∑
k=1

mhar,q ĵ
−2s
|αq|,αq,k

,

k(2p)(s) =
1

2

2p∑
q=0,q �=p

(−1)q+1
∞∑
k=1

mhar,q ĵ
−2s
|αq|,αq,k

.

Consider the function

Ĵ|αq|,αq
(x) = αqJ|αq|(x) + lxJ ′|αq|(x).

Since

zZ ′μ(z) = −zZμ+1(z) + μZμ(z), and zZ ′μ(z) = zZμ−1(z)− μZμ(z),

where Z is either J+ or J−, it follows that

Ẑ−αq,αq (z) := αqZ−αq (z) + zZ ′−αq
(z) = −zZ−αq+1(z) = −zZ−αq−1(z),

Ẑαq,αq
(z) := αqZαq

(z) + zZ ′αq
(z) = zZαq−1(z) = zZαq−1

(z).

This permit to simplify Ĵ|αq|,αq
as follows. If αq is negative, then

Ĵ|αq|,αq
(x) = −xJ−αq−1

(x),

and this means that ĵ|αq|,αq,k = j−αq−1,k, for these q. If αq is positive, then

Ĵ|αq|,αq
(x) = xJαq−1

(x),

and this means that ĵ|αq|,αq,k = jαq−1,k, for these q. When αq = 0 (and this happens
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only if m = 2p− 1, q = p− 1), we have Ĵ0,0(x) = xJ±1(x), and hence we can use either

j1,k or j−1,k. Next, if m = 2p− 1, αq is negative for 0 ≤ q ≤ p− 2, αp−1 = 0, and αq is

positive for p ≤ q ≤ 2p− 1, whence

k(2p−1)(s)=
1

2

p−2∑
q=0

(−1)q+1
∞∑
k=1

mhar,q

j2s−αq−1,k

+
1

2
(−1)p

∞∑
k=1

mhar,1

j−2s
α1,k

+
1

2

2p−1∑
q=p

(−1)q+1
∞∑
k=1

mhar,q

j−2s
αq−1,k

,

if m = 2p, αq is negative for 0 ≤ q ≤ p− 1, and αq is positive for p ≤ q ≤ 2p− 1, whence

k(2p)(s) =
1

2

p−1∑
q=0

(−1)q+1
∞∑
k=1

mhar,q

j2s−αq−1,k

+
1

2

2p∑
q=p

(−1)q+1
∞∑
k=1

mhar,q

j−2s
αq−1,k

,

and since by Poincaré duality mhar,q = mhar,m−q, and αm−q = −αq−1, we have the thesis

(note that when m = 2p, αp = 1/2). �

For the frustum, we define (for c > 0) the function

Fν(x; l1, l2) = Jν(l1x)Yν−1(l2x)− Yν(l1x)Jν−1(l2x),

and let fν,k(l1, l2) denote its zeros. Then, we have the following result.

Lemma 4.2. The torsion zeta function of the frustum with mixed BC is

t
(m)
Frustum,mix(s) = w

(m)
0 (s) + w

(m)
1 (s) + w

(m)
2 (s) + w

(m)
3 (s),

with

w
(m)
0 (s) =

1

2

[m/2]−1∑
q=0

(−1)q
(
(D̂q,−(s; l2, l1)− D̂q,+(s; l1, l2))

+(−1)m−1(D̂q,+(s; l2, l1)− D̂q,−(s; l1, l2))
)
,

w
(2p−1)
1 (s) = (−1)p−1 1

2

(
D̂p−1,0(s; l2, l1)− D̂p−1,0(s; l1, l2)

)
, w

(2p)
1 (s) = 0,

w
(m)
2 (s) =

1

2

[(m−1)/2]∑
q=0

(−1)q+1 (dq(s; l2, l1) + (−1)mdq(s; l1, l2)) ,

w
(2p)
3 (s) = (−1)p+1 1

2
dp(s; l1, l2), w

(2p−1)
3 (s) = 0,

where D̂p−1,0 is given either by D̂p−1,+ or D̂p−1,−, since αp−1 = 0, when m = 2p − 1,

and

D̂q,±(s; l1, l2) =
∞∑

n,k=1

mcex,q,nf̂
−2s
μq,n,±αq,k

(l1, l2), dq(s; l1, l2) = mhar,q

∞∑
k=1

f−2s
−αq−1,k

(l1, l2).

Lemma 4.3. The torsion zeta function on the frustum with absolute BC reads
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t
(m)
Frustum,abs(s) = y

(m)
0 (s) + y

(m)
1 (s) + y

(m)
2 (s) + y

(m)
3 (s),

where:

y
(m)
0 (s) =

1

2

[m/2]−1∑
q=0

(−1)q
(
(Eq(s)− Êq,+(s)) + (−1)m−1(Eq(s)− Êq,−(s))

)
,

y
(2p−1)
1 (s) = (−1)p−1 1

2

(
Ep−1(s)− Êp−1,0(s)

)
, y

(2p)
1 (s) = 0,

y
(m)
2 (s) =

1

2

[(m−1)/2]∑
q=0

(−1)q+1mhar,q (eq−1,−(s) + (−1)meq,−(s)) ,

y
(2p)
3 (s) = (−1)p+1mhar,p

1

2
ep,−(s), y

(2p−1)
3 (s) = 0,

where Êq,0 denotes Êq,± with αq = 0, and

Eq(s)=

∞∑
n,k=1

mcex,q,nυ
−2s
μq,n,k

, Êq,±(s)=
∞∑

n,k=1

mcex,q,nυ̂
−2s
μq,n,±αq,k

, eq,−(s)=
∞∑
k=1

υ−2s
−αq,k

.

5. Zeta determinants.

We recall in this section the main points of the technique that we will use to compute

the derivative at s = 0 of the zeta functions appearing in the torsion zeta functions

introduced in Section 4. This section is essentially contained in Section 4 of [9], to which

we refer for details, and based on [22]. Given a sequence S = {an}∞n=1 of spectral type,

we define the zeta function by

ζ(s, S) =
∞∑

n=1

a−s
n ,

when Re(s) > e(S), and by analytic continuation otherwise, and for all λ ∈ ρ(S) = C−S,

we define the Gamma function by the canonical product,

1

Γ(−λ, S) =
∞∏

n=1

(
1 +

−λ
an

)
e

∑g(S)
j=1

(−1)j

j
(−λ)j

a
j
n . (5.1)

Given a double sequence S = {λn,k}∞n,k=1 of non vanishing complex numbers with

unique accumulation point at the infinity, finite exponent s0 = e(S) and genus p = g(S),

we use the notation Sn (Sk) to denote the simple sequence with fixed n (k), we call

the exponents of Sn and Sk the relative exponents of S, and we use the notation (s0 =

e(S), s1 = e(Sk), s2 = e(Sn)); we define relative genus accordingly.

Definition 5.1. Let S = {λn,k}∞n,k=1 be a double sequence with finite exponents

(s0, s1, s2), genus (p0, p1, p2), and positive spectral sector Σθ0,c0 . Let U = {un}∞n=1 be

a totally regular sequence of spectral type of infinite order with exponent r0, genus q,

domain Dφ,d. We say that S is spectrally decomposable over U with power κ, length
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� and asymptotic domain Dθ,c, with c = min(c0, d, c
′), θ = max(θ0, φ, θ

′), if there exist

positive real numbers κ, � (integer), c′, and θ′, with 0 < θ′ < π, such that:

(1) the sequence u−κ
n Sn = {λn,k/u

κ
n}
∞
k=1 has spectral sector Σθ′,c′ , and is a totally

regular sequence of spectral type of infinite order for each n;

(2) the logarithmic Γ-function associated to Sn/u
κ
n has an asymptotic expansion for

large n uniformly in λ for λ in Dθ,c, of the following form

log Γ(−λ, u−κ
n Sn) =

∑
h=0

φσh
(λ)u−σh

n +

L∑
l=0

Pρl
(λ)u−ρl

n log un + o(u−r0
n ), (5.2)

where σh and ρl are real numbers with σ0 < · · · < σ, ρ0 < · · · < ρL, the Pρl
(λ)

are polynomials in λ satisfying the condition Pρl
(0) = 0, � and L are the larger

integers such that σ ≤ r0 and ρL ≤ r0.

Define the following functions, (Λθ,c = {z ∈ C | | arg(z − c)| = θ/2}, oriented

counter clockwise):

Φσh
(s) =

∫ ∞

0

ts−1 1

2πi

∫
Λθ,c

e−λt

−λ φσh
(λ)dλdt. (5.3)

By Lemma 3.3 of [22], for all n, we have the expansions:

log Γ(−λ, Sn/u
κ
n) ∼

∞∑
j=0

aαj ,0,n(−λ)αj +

p2∑
k=0

ak,1,n(−λ)k log(−λ),

φσh
(λ) ∼

∞∑
j=0

bσh,αj ,0(−λ)αj +

p2∑
k=0

bσh,k,1(−λ)k log(−λ),
(5.4)

for large λ in Dθ,c. We set (see Lemma 3.5 of [22])

A0,0(s) =

∞∑
n=1

(
a0,0,n −

∑
h=0

′
bσh,0,0u

−σh
n

)
u−κs
n ,

Aj,1(s) =

∞∑
n=1

(
aj,1,n −

∑
h=0

′
bσh,j,1u

−σh
n

)
u−κs
n , 0 ≤ j ≤ p2,

(5.5)

where the notation
∑′

means that only the terms such that ζ(s, U) has a pole at s = σh

appear in the sum.

Theorem 5.1. Let S be spectrally decomposable over U as in Definition 5.1. As-

sume that the functions Φσh
(s) have at most simple poles for s = 0. Then, ζ(s, S) is

regular at s = 0, and

ζ(0, S) =−A0,1(0) +
1

κ

∑
h=0

Res1
s=0

Φσh
(s)Res1

s=σh

ζ(s, U),
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ζ ′(0, S) =−A0,0(0)−A′0,1(0) +
γ

κ

∑
h=0

Res1
s=0

Φσh
(s)Res1

s=σh

ζ(s, U)

+
1

κ

∑
h=0

Res0
s=0

Φσh
(s)Res1

s=σh

ζ(s, U) +

∑
h=0

′
Res1
s=0

Φσh
(s)Res0

s=σh

ζ(s, U),

where the notation
∑′

means that only the terms such that ζ(s, U) has a pole at s = σh

appear in the sum.

Remark 5.1. We call regular part of ζ(0, S) the first term appearing in the formula

given in the theorem, and regular part of ζ ′(0, S) the first two terms. The other terms

we call singular part.

Corollary 5.1. Let S(j) = {λ(j),n,k}∞n,k=1, j = 1, . . . , J , be a finite set of double

sequences that satisfy all the requirements of Definition 5.1 of spectral decomposability

over a common sequence U , with the same parameters κ, �, etc., except that the polyno-

mials P(j),ρ(λ) appearing in condition (2) do not vanish for λ = 0. Assume that some

linear combination
∑J

j=1 cjP(j),ρ(λ), with complex coefficients, of such polynomials does

satisfy this condition, namely that
∑J

j=1 cjP(j),ρ(λ) = 0. Then, the linear combination of

the zeta function
∑J

j=1 cjζ(s, S(j)) is regular at s = 0 and satisfies the linear combination

of the formulas given in Theorem 5.1.

We conclude recalling some formulas for the zeta determinants of some simple se-

quences. The results are known to specialists, and can be found in different places. We

will use the formulation of [19]. For positive real l and q, define the non homogeneous

quadratic Bessel zeta function by

z(s, ν, q, l) =
∞∑
k=1

(
j2ν,k
l2

+ q2

)−s

,

for Re(s) > 1/2. Then, z(s, ν, q, l) extends analytically to a meromorphic function in

the complex plane with simple poles at s = 1/2,−1/2,−3/2, . . . . The point s = 0 is a

regular point and

z(0, ν, q, l) = −1

2

(
ν +

1

2

)
, z′(0, ν, q, l) = − log

√
2πl

Iν(lq)

qν
. (5.6)

In particular, taking the limit for q → 0,

z′(0, ν, 0, l) = − log

√
πlν+(1/2)

2ν−(1/2)Γ(ν + 1)
. (5.7)

6. Decomposition of the torsion zeta function.

Inspection of the formulas in the lemmas of Section 4 shows that the torsion zeta

function is the finite sum of some simple and some double series:
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tCone,abs(s) = t0(s) + t1(s) + t2(s) + t3(s),

tFrustum,mixed(s) = w0(s) + w1(s) + w2(s) + w3(s),

tFrustum,abs(s) = y0(s) + y1(s) + y2(s) + y3(s),

where t0, t1, w0, w1, and y0, y1 are double series, and the others simple series. Simple

series can be treated by using the formulas appearing at the end of Section 5. In order

to deal with the double series, applying the spectral decomposition Theorem 5.1, the

derivative at zero of t0, t1, w0, w1, and y0, y1 decomposes into two parts, called regular

and singular contribution (see Remark 5.1), and this gives the following decomposition

of the analytic torsion (in the following we assume l1 > 0),

log Tabs,ideal(Cl(W )) = t′0,reg(0) + t′1,reg(0) + t′0,sing(0) + t′1,sing(0) + t′2(0) + t′3(0),

log Tmixed(C[l1,l2](W )) = w′0,reg(0) + w′1,reg(0) + w′0,sing(0) + w′1,sing(0) + w′2(0) + w′3(0),

log Tabs(C[l1,l2](W )) = y0,reg(s) + y1,reg(s) + y0,sing(s) + y1,sing(s) + y2(s) + y3(s).

On the other side, for the frustum, that is a manifold, we also have the decomposition

log Tmixed(C[l1,l2](W )) = log τ(C[l1,l2](W ), {l1} ×W )

+
1

4
χ(∂C[l1,l2](W )) log 2 +ABM,mixed(∂C[l1,l2](W )),

log Tabs(C[l1,l2](W )) = log τ(C[l1,l2](W ))

+
1

4
χ(∂C[l1,l2](W )) log 2 +ABM,abs(∂C[l1,l2](W )).

We will prove in Section 9 that

logτ(C[l1,l2](W ),{l1}×W )+
1

2
χ(W )log2=w′0,reg(0)+w′1,reg(0)+w′2(0)+w′3(0),

ABM,mixed(∂C[l1,l2](W ))=w′0,sing(0)+w′1,sing(0),
(6.1)

logτ(C[l1,l2](W ))+
1

2
χ(W )log2=y′0,reg(0)+y′1,reg(0)+y′2(0)+y′3(0),

ABM,abs(∂C[l1,l2](W ))=y′0,sing(0)+y′1,sing(0).
(6.2)

This suggests to introduce a similar decomposition for the cone

log Tabs,ideal(Cl(W )) = log Tglobal(Cl(W )) +
1

4
χ(∂Cl(W )) log 2 +ABM,abs(∂Cl(W )),

with

log Tglobal(Cl(W )) +
1

4
χ(∂Cl(W )) log 2 = t′0,reg(0) + t′1,reg(0) + t′2(0) + t′3(0),

ABM,abs(∂Cl(W )) = t′0,sing(0) + t′1,sing(0).
(6.3)

We will call the first term, namely global plus Euler, the regular part of the torsion,

and the second term the anomaly boundary term. We will prove in Section 10 that the

notation is justified by the fact that t′0,sing(0)+ t′1,sing(0) coincides with the term that we
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would obtain if we would apply the formula of Brüning and Ma for the cone as if it were

a regular manifold.

7. Calculations I: application of Definition 5.1.

In both the cases of the cone and of the frustum, we prove that the double series

are spectrally decomposable according to Definition 5.1 (see detail in [10]) on the same

simple sequence, that we discuss now. The simple sequence is Uq = {mq,n : μq,n}∞n=1.

This is a totally regular sequence of spectral type with infinite order, e(Uq) = g(Uq) =

m = dimW , and the associated zeta functions is

ζ(s, Uq) = ζcex

(s
2
, Δ̃(q) + α2

q

)
.

The possible poles of ζ(s, Uq) are at s = m− h, h = 0, 2, 4, . . . , and the residues are

completely determined by the residues of the function ζcex(s, Δ̃
(q)) [10, Lemma 5.2].

We give in this section complete calculations for the cone and for the frustum with

mixed BC, we omit the calculations for the frustum with absolute BC that are very

similar to ones for the frustum with mixed BC.

7.1. The cone.

We consider the double series

Zq(s) =

∞∑
n,k=1

mcex,q,nj
−2s
μq,n,k

, Ẑq,±(s) =
∞∑

n,k=1

mcex,q,nĵ
−2s
μq,n,±αq,k

,

appearing in Lemma 4.1. These are the zeta functions associated to the double sequences

Sq = {mcex,q,n : j2μq,n,k
} and Ŝq,± = {mcex,q,n : ĵ2μq,n,±αq,k

}. It is easy to see that these

sequences have power κ = 2. By Definition 5.1, the relevant spectral function associated

to Sq is the function (compare with Equation (5.1)):

log Γ(−λ, Sq) =− log

∞∏
k=1

(
1 +

(−λ)
j2μq,n,k

)
=− log Iμq,n(

√
−λ) + μq,n log

√
−λ− μq,n log 2− log Γ(μq,n + 1),

and the relevant spectral function associated to Ŝq,± is the function:

log Γ(−λ, Ŝq,±) =− log

∞∏
k=1

(
1 +

(−λ)
ĵ2μq,n,±αq,k

)
=− log Îμq,n,±αq

(
√
−λ) + μq,n log

√
−λ− log 2μq,nΓ(μq,n)

+ log

(
1± αq

μq,n

)
,

where (for −π < arg(z) ≤ π/2)

Îν,c(z) = e−(π/2)iν Ĵν,c(iz).



330 L. Hartmann and M. Spreafico

First, we need uniform asymptotic expansions of the function log Γ for large n. Such

expansions can be obtained from those of the Bessel function (see [10, Section 5.1] for

details). For large n, uniformly in λ, (compare with Equation (5.2))

logΓ(−λ,Sq/μ
2
q,n)= μq,n logμq,n

√
−λ− log2μq,nΓ(μq,n+1)−μq,n

√
1−λ

−μq,n log
√
−λ+μq,n log(1+

√
1−λ)+

1

2
log2πμq,n+

1

4
log(1−λ)

+
m∑
j=1

φq,j(λ)

μj
q,n

+O(μ−2p
q,n ), (7.1)

where φq,j(λ) is the coefficient of μ−j
q,n in the asymptotic expansion of (for the definition

of the function U and W see Lemma 7.1 below)

log

(
1 +

∞∑
k=1

Uk(λ)μ
−k
q,n

)
,

for large μq,n, i.e.

log

(
1 +

∞∑
k=1

Uk(λ)μ
−k
q,n

)
=

∞∑
j=1

φq,j(λ)μ
−j
q,n (7.2)

and

log Γ(−λ, Ŝq,±/μ2
q,n) = μq,n logμq,n

√
−λ− log 2μq,nΓ(μq,n + 1) + log

(
1± αq

μq,n

)
− μq,n

√
1− λ− μq,n log

√
−λ+ μq,n log(1 +

√
1− λ)

+
1

2
log 2πμq,n −

1

4
log(1− λ) +

m∑
j=0

ψ̂q,j,±(λ)
μj
q,n

+O(μ−2p
q,n ), (7.3)

where ψ̂q,j,±(λ) is the coefficient of μ−j
q,n in the asymptotic expansion of

log

(
1 +

∞∑
k=1

W±αq,k(λ)μ
−k
q,n

)
,

for large μq,n, i.e.

log

(
1 +

∞∑
k=1

W±αq,k(λ)μ
−k
q,n

)
=

∞∑
j=1

ψ̂q,j,±(λ)μ−j
q,n,

therefore the complete coefficient of μ−j
q,n in log Γ(−λ, Ŝq,±/μ2

q,n) is

φ̂q,j,±(λ) = ψ̂q,j,±(λ) +
(−1)j+1

j
(±αq)

j . (7.4)

Second, we need asymptotic expansions of the function log Γ and of the functions
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φq,j and φ̂q,j,± for large λ. The expansion of log Γ can be obtained from those of the

Bessel function [10, pp. 641, 642] (compare with Equation (5.4))

log Γ(−λ, Sq/μ
2
q,n) =

1

2
log 2π +

(
μq,n +

1

2

)
logμq,n − μq,n log 2− log Γ(μq,n + 1)

+
1

2

(
μq,n +

1

2

)
log(−λ) +O(e−μq,n

√−λ), (7.5)

log Γ(−λ, Ŝq,±/μ2
q,n) = μq,n

√
−λ+

1

2
log 2π +

(
μq,n −

1

2

)
logμq,n − log 2μq,nΓ(μq,n)

+
1

2

(
μq,n −

1

2

)
log(−λ) + log

(
1± αq

μq,n

)
+O(e−μq,n

√−λ).

(7.6)

About the functions φq,j(λ) and φ̂q,j,±(λ) we have the following facts.

Lemma 7.1. For j = 0,

φq,0(λ) =
1

2
log 2π +

1

4
log(1− λ),

φ̂q,0,±(λ) =
1

2
log 2π − 1

4
log(1− λ).

For j > 0, the functions φq,j(λ) and φ̂q,j,±(λ) are polynomial of order 3j in

1/
√
1− λ, whose parity only depends on the index j, and with minimal monomial of

degree j, and satisfy the following formulas:(
2φq,2k−1(λ)− φ̂q,2k−1,+(λ)− φ̂q,2k−1,−(λ)

)∣∣∣
λ=0

= 0,(
φ̂q,2k,−(λ)− φ̂q,2k,+(λ)

)∣∣∣
λ=0

= 0.

Proof. The case j = 0 follows by inspection of the formulas in Equations (7.1)

and (7.3). Next, assume j > 0. Recall the definition of the functions Uj(λ) and Vj(λ)

[17, (7.10) and Example 7.2]. Let

u0(w) = 1, uj+1(w) =
1

2
w2(1− w2)u′j(w) +

1

8

∫ w

0

(1− 5y2)uj(y)dy,

v0(w) = 1, vj+1(w) = uj+1(w)−
1

2
w(1− w2)uj(w)− w2(1− w2)u′(w),

then

Uj(λ) = uj

(
1√
1− λ

)
, Vj(λ) = vj

(
1√
1− λ

)
.

By these formulas, it is clear that the functions Uj and Vj are polynomials in

1/
√
1− λ with the stated properties. Since, ([10, pp. 639])
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W±αq,j(λ) = Vj(λ)±
αq√
1− λ

Uj−1(λ),

the same is true for Wj(λ). Whence the first part of the statement follows by the very

definition of the functions φq,j(λ) and φ̂q,j,±(λ), since in the functions φq,2k−1(λ) and

φ̂q,2k−1,±(λ) only U2k−1 and V2k−1 appear, and in the φq,2k(λ) and φ̂q,2k,±(λ) only U2k

and V2k appear. Next consider the situation in more details: by definition

log

(
1 +

∞∑
k=1

Uk(λ)μ
−k
q,n

)
=

∞∑
j=1

φq,j(λ)μ
−j
q,n, φ̂q,j,±(λ) = ψ̂q,j,±(λ) +

(−1)j+1

j
(±αq)

j ,

where

log

(
1 +

∞∑
k=1

(
Vk(λ)±

αq√
1− λ

Uk−1(λ)

)
μ−k
q,n

)
=

∞∑
j=1

ψ̂q,j,±(λ)μ−j
q,n.

Since, again by the very definition, Vj(0) = Uj(0) for all j, by comparing the

two formulas above, we realize that, if λ = 0, in each odd term of the expansion of

2φq,2k−1(λ)− φ̂q,2k−1,+(λ)− φ̂q,2k−1,−(λ) in μq,n, i.e. in the coefficient of each μj=2k−1
q,n ,

the two terms (coming from φ̂q,j,±(λ))

± αq√
1− λ

Uj−1(λ) +
(−1)j+1

j
(±αq)

j ,

cancel each other, while the term (coming from φq,j(λ))

2Uk(λ),

will cancel out by the two terms (coming from φ̂q,j,±(λ))

−2Vk(λ).

This prove the first formula in the last statement. The proof of the second one is

similar. �

Lemma 7.2. For j > 0, the following functions of Φq,j and Φ̂q,j,± are regular at

s = 0:

Res1
s=0

(
2Φq,2k−1(s)− Φ̂q,2k−1,+(s)− Φ̂q,2k−1,−(s)

)
= 0,

Res1
s=0

(
Φ̂q,2k,−(s)− Φ̂q,2k,+(s)

)
= 0.

Proof. The argument is the same for the functions Φ̂ and the function Φ, so just

consider the last ones. By Lemma 7.1

φq,j(λ) =

3j∑
k=j

ck
1

(1− λ)k/2
,
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and since (see [20])

∫ ∞

0

ts−1 1

2πi

∫
Λθ,c

e−λt

−λ
1

(1− λ)k/2
dλdt =

⎧⎨⎩0, k = 0,
Γ(s+ k)

Γ(k)s
, k �= 0,

we have that

Φq,j(s) =

3j∑
k=1

ck
Γ(s+ k)

Γ(k)s
,

and this means that

Res1
s=0

Φq,2h−1(s) =

3(2h−1)∑
k=j

ck = φq,2h−1(0),

Res1
s=0

Φq,2h(s) =

6h∑
k=j

ck = φq,2h(0). �

Applying the definition in Equation (5.5), we see that all relevant bσh,0,0/1 and

b̂σh,0,0/1 vanish. For j = σh = m − h, with h = 0, 2, 4, . . . , h �= m; and therefore when

j = 0, b0,0,0/1 and b̂0,0,0/1 do not appear in the sums, while when j > 0 there are neither

logarithmic terms nor constant terms in the expansion for large λ of the functions φq,j(λ)

and φ̂q,j,±(λ) by the previous lemmas. Thus,

A0,0,q(s) =

∞∑
n=1

mcex,q,na0,0,n,qμ
−2s
q,n , A0,1,q(s) =

∞∑
n=1

mcex,q,na0,1,n,qμ
−2s
q,n ,

Â0,0,q,±(s) =
∞∑

n=1

mcex,q,nâ0,0,n,q,±μ−2s
q,n , Â0,1,q,±(s) =

∞∑
n=1

mcex,q,nâ0,1,n,q,±μ−2s
q,n ,

(7.7)

where a0,0,n,q and a0,1,n,q are the constant and the logarithmic term in the expansion in

Equation (7.5), and â0,0,n,q,± and â0,1,n,q,± are the constant and the logarithmic term in

the expansion in Equation (7.6).

Third, concerning the singular term, the functions defined in Equation (5.3), are

Φq,j(s) =

∫ ∞

0

ts−1 1

2πi

∫
Λθ,c

e−λt

−λ φq,j(λ)dλdt,

Φ̂q,j,±(s) =
∫ ∞

0

ts−1 1

2πi

∫
Λθ,c

e−λt

−λ φ̂q,j,±(λ)dλdt,
(7.8)

where the φ and the φ̂ are given in Equations (7.2) and (7.4), respectively.

7.2. The frustum with mixed BC.

Consider the double series
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D̂q,±(s; l1, l2) =
∞∑

n,k=1

mcex,q,nf̂
−2s
μq,n,±αq,k

(l1, l2),

associated to the double sequence Θ̂q,±(l1, l2) = {mcex,q,n : f̂−2s
μq,n,±αq,k

(l1, l2)}. It is easy
to see that this sequence has power κ = 2. By Definition 5.1, the relevant spectral

function associated to Θ̂q,±(l1, l2) is the function (compare with Equation (5.1)):

log(−λ; Θ̂q,±(l1, l2)) =− log

∞∏
k=1

(
1 +

−λ
f̂2
μq,n,±αq,k

(l1, l2)

)
=− log Ĝμn,q,±αq

(
√
−λ; l1, l2)

+ log
1

π
+ log

((
l
μq,n

2

l
μq,n

1

+
l
μq,n

1

l
μq,n

2

)
± αq

μq,n

(
l
μq,n

2

l
μq,n

1

− l
μq,n

1

l
μq,n

2

))
,

where (for −π < arg(z) ≤ π/2)

Ĝμ,c(z; l1, l2) = F̂μ,c(iz; l1, l2).

We need (uniform) asymptotic expansions of the function log Γ for large n and

for large λ. Such expansions can be obtained from those of the Bessel function. A

long calculation gives the following results. For large n, uniformly in λ, (compare with

Equation (5.2))

log(−λ;Θ̂q,±(l1,l2)/μ2
q,n)=−μq,n

(√
1− l22λ−

√
1− l21λ

)
−μq,n log

l2(1+
√
1− l21λ)

l1(1+
√
1− l22λ)

− 1

4
log

(1− l21λ)

(1− l22λ)
−

m∑
j=1

ψ̂q,j,±(λ;l1,l2)
μj
q,n

+log

((
l
μq,n

2

l
μq,n

1

+
l
μq,n

1

l
μq,n

2

)
± αq

μq,n

(
l
μq,n

2

l
μq,n

1

− l
μq,n

1

l
μq,n

2

))
+O(μ1−m

q,n ),

where ψ̂q,j,±(λ; l1, l2) is the coefficient of μ−j
q,n in the asymptotic expansion for large μq,n,

i.e. of

log

(
1 +

∞∑
k=1

Ψq,k,±(l1, l2)μ−k
q,n

)
,

where

Ψq,k,±(l1, l2) = sgn(l1 − l2)
kUk(l1

√
−λ) + sgn(l2 − l1)

kW±sgn(l2−l1)αq,k(l2
√
−λ)

+
k−1∑
h=1

sgn(l1 − l2)
hsgn(l2 − l1)

k−hUh(l1
√
−λ)W±sgn(l2−l1)αq,k−h(l2

√
−λ).

In other words,
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log

(
1 +

∞∑
k=1

Ψq,k,±(l1, l2)μ−k
q,n

)
=

∞∑
j=1

ψ̂q,j,±(λ; l1, l2)μ−j
q,n,

therefore the complete coefficient of μ−j
q,n in log Γ(−λ, Θ̂q,±(l1, l2)/μ2

q,n) is

φ̂q,j,±(λ; l1, l2) = ψ̂q,j,±(λ; l1, l2) +
(−1)j+1

j
(sgn(l2 − l1)αq)

j . (7.9)

For large λ, (compare with Equation (5.4))

log Γ(−λ, Ŝμq,n,±αq,k(l1, l2)/μ
2
q,n) =− μq,n(l2 − l1)

√
−λ− 1

2
log

l2
l1

+ log

((
l
μq,n

2

l
μq,n

1

+
l
μq,n

1

l
μq,n

2

)
± αq

μq,n

(
l
μq,n

2

l
μq,n

1

− l
μq,n

1

l
μq,n

2

))
+O

(
1√
−λ

)
. (7.10)

Next consider the functions φ̂q,j,±(λ; l1, l2). By the following lemma we see that all

the results given in Lemmas 7.1 and 7.2 hold for these functions.

Lemma 7.3. The following relation holds :

φ̂q,j,±(λ; l1, l2) = sgn(l1 − l2)
jφq,j(l

2
1λ) + sgn(l2 − l1)

j φ̂q,j,±sgn(l2−l1)(l
2
2λ).

Proof. By definition in Equations (7.2) and (7.4)

log

(
1 +

∞∑
k=1

Uk(
√
−λ)μ−k

q,n

)
=

∞∑
j=1

φq,j(λ)μ
−j
q,n

and

φ̂q,j,±(λ) = ψ̂q,j,±(λ)±
(−1)j+1

j
αq,

where

log

(
1 +

∞∑
k=1

W±αq,k(
√
−λ)μ−k

q,n

)
=

∞∑
j=1

ψ̂q,j,±(λ)μ−j
q,n,

while by Equation (7.9)

φ̂q,j,±(λ; l1, l2) = ψ̂q,j,±(λ; l1, l2) +
(−1)j+1

j
(sgn(l2 − l1)αq)

j ,

where

log

(
1 +

∞∑
k=1

Ψq,k,±(l1, l2)μ−k
q,n

)
=

∞∑
j=1

ψ̂q,j,±(λ; l1, l2)μ−j
q,n,
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with

Ψq,k,±(l1, l2) = sgn(l1 − l2)
kUk(l1

√
−λ) + sgn(l2 − l1)

kW±sgn(l2−l1)αq,k(l2
√
−λ)

+
k−1∑
h=1

sgn(l1 − l2)
hsgn(l2 − l1)

k−hUh(l1
√
−λ)W±sgn(l2−l1)αq,k−h(l2

√
−λ).

Now,

log

(
1 +

∞∑
k=1

Ψq,k,±(l1, l2)μ−k
q,n

)

= log

(
1 +

∞∑
k=1

sgn(l1 − l2)
kUk(l1

√
−λ)μ−k

q,n

)

+ log

(
1 +

∞∑
k=1

sgn(l2 − l1)
kW±sgn(l2−l1)αq,k(l2

√
−λ)μ−k

q,n

)
,

and hence the thesis follows by the very definition. �

This means that the bσh,j,k in Equation (5.5) are all disappearing, and hence

A0,0,±(s; l1, l2) =
∞∑

n=1

mcex,q,na0,0,n,±(l1, l2)μ−2s
q,n ,

A0,1,±(s; l1, l2) =
∞∑

n=1

mcex,q,na0,1,n,±(l1, l2)μ−2s
q,n ,

where a0,0,n,±(l1, l2) and a0,1,n,±(l1, l2) are the constant and the logarithmic term in the

expansion in Equation (7.10).

Eventually, concerning the singular term, the functions defined in Equation (5.3) are

Φ̂q,j,±(s; l1, l2) =
∫ ∞

0

ts−1 1

2πi

∫
Λθ,c

e−λt

−λ φ̂q,j,±(λ; l1, l2)dλdt, (7.11)

where the φ̂ are given in Equation (7.9).

8. Calculation II: application of Theorem 5.1.

We now apply Theorem 5.1 and its corollary to compute the derivative at s = 0 of

the functions Z, D, and E appearing in Lemmas 4.1, 4.2, and 4.3. According to Remark

5.1 we split the result in the regular and singular parts, denoted by the obvious subscript.

In order to improve readability we will use in this section the simplified notation A and B

for the two terms A0,0 and A0,1 defined in Equation (5.5). We observe that, in all cases,

when computing the regular part, all the terms that are equal in Bq(0) and B̂q,±(0) and
in Aq(0) and Âq,±(0) respectively, cancel in the final formula for t

(m)
0,reg(0), and similarly

for the others. We thus introduce some regularized terms, denoted by a slashed letter,



Analytic torsion of cones 337

where only the relevant parts appear.

8.1. The cone.

We split the calculation into three parts: the regular contribution, the singular

contribution and the contribution of the harmonics. We give all details for the cone.

8.1.1. The contribution of the regular part.

By Theorem 5.1, we have

Zq,reg(0) = −Bq(0), Z ′q,reg(0) = −Aq(0)−B′q(0),

Ẑq,±,reg(0) = −B̂q,±(0), Ẑ ′q,±,reg(0) = −Âq,±(0)− B̂′q,±(0),

where, by Equation (7.7),

Aq(s) =

∞∑
n=1

mcex,q,n

(
1

2
log 2π +

(
μq,n −

1

2

)
logμq,n − log 2μq,nΓ(μq,n)

)
μ−2s
q,n ,

Bq(s) =
1

2

∞∑
n=1

mcex,q,n

(
μq,n +

1

2

)
μ−2s
q,n ,

B′q(s) = −
∞∑

n=1

mcex,q,n

(
μq,n +

1

2

)
μ−2s
q,n logμq,n,

Âq,±(s) =
∞∑

n=1

mcex,q,n

×
(
1

2
log 2π +

(
μq,n −

1

2

)
logμq,n − log 2μq,nΓ(μq,n) + log

(
1± αq

μq,n

))
μ−2s
q,n ,

B̂q,±(s) =
1

2

∞∑
n=1

mcex,q,n

(
μq,n −

1

2

)
μ−2s
q,n ,

B̂′q,±(s) = −
∞∑

n=1

mcex,q,n

(
μq,n −

1

2

)
μ−2s
q,n logμq,n.

This gives (in the following formulas we are taking the finite part)

Aq(0) =

∞∑
n=1

mcex,q,n

(
1

2
log 2π +

(
μq,n −

1

2

)
logμq,n − log 2μq,nΓ(μq,n)

)
,

Bq(0) =
1

2

∞∑
n=1

mcex,q,n

(
μq,n +

1

2

)
,

B′q(0) = −
∞∑

n=1

mcex,q,n

(
μq,n +

1

2

)
logμq,n,

Âq,±(0) =
∞∑

n=1

mcex,q,n

×
(
1

2
log 2π +

(
μq,n −

1

2

)
logμq,n − log 2μq,nΓ(μq,n) + log

(
1± αq

μq,n

))
,
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B̂q,±(0) =
1

2

∞∑
n=1

mcex,q,n

(
μq,n −

1

2

)
,

B̂′q,±(0) = −
∞∑

n=1

mcex,q,n

(
μq,n −

1

2

)
logμq,n.

Thus, considering first t
(m)
0,reg, by Lemma 4.1, we have

t
(m)
0,reg

′
(0)=

[m/2]−1∑
q=0

(−1)q
(
(Zq,reg(0)− Ẑq,+,reg(0))+(−1)m−1(Zq,reg(0)− Ẑq,−,reg(0))

)
log l

+
1

2

[m/2]−1∑
q=0

(−1)q
(
(Z ′q,reg(0)− Ẑ ′q,+,reg(0))+(−1)m−1(Z ′q,reg(0)− Ẑ ′q,−,reg(0))

)
and hence

t
(m)
0,reg

′
(0) =−

[m/2]−1∑
q=0

(−1)q
(
(Bq(0)− B̂q,+(0)) + (−1)m−1(Bq(0)− B̂q,−(0))

)
log l

− 1

2

[m/2]−1∑
q=0

(−1)q
(
Aq(0) +B′q(0)− Âq,+(0)− B̂′q,+(0)

)

− (−1)m−1 1

2

[m/2]−1∑
q=0

(−1)q
(
Aq(0) +B′q(0)− Âq,−(0)− B̂′q,−(0))

)
.

We observe that all the terms that are equal in Bq(0) and B̂q,±(0) and in Aq(0) and

Âq,±(0) respectively, cancel in the final formula for t
(m)
0,reg(0). This is because the final

formulas are

(Z ′q,reg(0)− Ẑq,+,reg(0))+(Z ′q,reg(0)− Ẑq,−,reg(0))=2Z ′q,reg(0)− Ẑq,+,reg(0)− Ẑq,−,reg(0),

(Zq,reg(0)− Ẑq,+,reg(0))+(Zq,reg(0)− Ẑq,−,reg(0))=2Zq,reg(0)− Ẑq,+,reg(0)− Ẑq,−,reg(0),

if m = 2p− 1 is odd, and

(Z ′q,reg(0)− Ẑq,+,reg(0))− (Z ′q,reg(0)− Ẑ ′q,−,reg(0)) = −Ẑ ′q,+,reg(0) + Ẑ ′q,−,reg(0),

(Zq,reg(0)− Ẑq,+,reg(0))− (Zq,reg(0)− Ẑq,−,reg(0)) = −Ẑq,+,reg(0) + Ẑq,−,reg(0),

if m = 2p is even. Therefore, we can rewrite

t
(m)
0,reg

′
(0) =−

[m/2]−1∑
q=0

(−1)q
(
(B/q(0)− B̂/q,+(0)) + (−1)m−1(B/q(0)− B̂/q,−(0))

)
log l

− 1

2

[m/2]−1∑
q=0

(−1)q
(
A/q(0) + B/

′
q(0)− Â/q,+(0)− B̂/

′
q,+(0)

)
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− (−1)m−1 1

2

[m/2]−1∑
q=0

(−1)q
(
A/q(0) + B/

′
q(0)− Â/q,−(0)− B̂/

′
q,−(0)

)
,

where

A/q(0) = 0,

B/q(0) =
1

4

∞∑
n=1

mcex,q,n =
1

4
ζcex(0, Δ̃

(q) + α2
q) =

1

4
ζ(0, Δ̃(q)),

B/
′
q(0) = −

1

2

∞∑
n=1

mcex,q,n logμq,n,

Â/q,±(0) =
∞∑

n=1

mcex,q,n log

(
1± αq

μq,n

)
,

B̂/q,±(0) = −
1

4

∞∑
n=1

mcex,q,n = −1

4
ζcex(0, Δ̃

(q) + α2
q) = −

1

4
ζcex(0, Δ̃

(q)),

B̂/
′
q,±(0) =

1

2

∞∑
n=1

mcex,q,n logμq,n,

and

∞∑
n=1

mcex,q,n = ζcex(0, Δ̃
(q) + α2

q), −2
∞∑

n=1

mcex,q,n logμq,n = ζ ′cex(0, Δ̃
(q) + α2

q).

Thus,

t
(m)
0,reg

′
(0)=− 1

2

[m/2]−1∑
q=0

(−1)q
(
ζcex(0,Δ̃

(q))+(−1)m−1ζcex(0,Δ̃
(q))

)
log l

+
1

2

[m/2]−1∑
q=0

(−1)q
( ∞∑

n=1

mcex,q,n log

(
1+

αq

μq,n

)
+

∞∑
n=1

mcex,q,n logμq,n

)

+(−1)m−1 1

2

[m/2]−1∑
q=0

(−1)q
( ∞∑

n=1

mcex,q,n log

(
1− αq

μq,n

)
+

∞∑
n=1

mcex,q,n logμq,n

)
.

(8.1)

Next, consider t
(2p−1)
1,reg . By Lemma 4.1, we have

t
(2p−1)
1,reg

′
(0) =− (−1)p−1

(
Bp−1(0)− B̂p−1,0(0)

)
log l

− 1

2

(
Ap−1(0) +B′p−1(0)− Âp−1,0(0)− B̂′p−1,0(0)

)
.

As above, all the terms that are equal in Bq(0) and B̂q,0(0) and in Aq(0) and Âq,0(0)

respectively, cancel in the final formula for t
(2p−1)
1,reg (0). Therefore, we can rewrite
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t
(2p−1)
1,reg

′
(0) =− (−1)p−1

(
B/p−1(0)− B̂/p−1,0(0)

)
log l

− 1

2

(
A/p−1(0) + B/

′
p−1(0)− Â/p−1,0(0)− B̂/

′
p−1,0(0)

)
,

where

Â/p−1,0(0) = 0,

B̂/p−1,0(0) = −
1

4

∞∑
n=1

mcex,p−1,n = −1

4
ζcex(0, Δ̃

(p−1) + α2
p−1) = −

1

4
ζcex(0, Δ̃

(p−1)),

B̂/
′
p−1,0(0) =

1

2

∞∑
n=1

mcex,p−1,n logμp−1,n.

Observing that αp−1 = (1 + 2p− 2− 2p+ 1)/2 = 0, μp−1,n = λp−1,n, and hence

ζcex(s, Δ̃
(p−1) + α2

p−1) = ζcex(s, Δ̃
(p−1)) =

∞∑
n=1

mcex,p−1,nλ
−2s
p−1,n,

and

B̂/
′
p−1,0(0) =

1

2

∞∑
n=1

mcex,p−1,n log λp−1,n = −1

4
ζ ′cex(0, Δ̃

(p−1)).

Thus,

t
(2p−1)
1,reg

′
(0) =− (−1)p−1 1

2
ζcex(0, Δ̃

(p−1)) log l − 1

4
(−1)p−1ζ ′cex(0, Δ̃

(p−1)). (8.2)

8.1.2. The contribution of the singular part.

By Lemma 7.2, the functions Φq,2j−1 and Φq,2j−1,± are regular at s = 0 when m is

odd, and the functions Φq,2j and Φq,2j,± are regular at s = 0 when m is even. By the

location of the poles of ζ(s, U) given at the beginning of Section 7, it follows that the

formula for the singular part in Theorem 5.1 reduces to the single sums (recall κ = 2 and

the zeta of U is regular at s = 0)

Zq,sing(0) = 0, Ẑq,±,sing(0) = 0,

Z ′q,sing(0) =
1

2

m∑
j=1

Φq,j(0)Res1
s=j

ζ(s, U), Ẑ ′q,±,sing(0) =
1

2

m∑
j=1

Φ̂q,j,±(0)Res1
s=j

ζ(s, U),

where the Φ are defined in Equation (7.8). Thus, considering first t
(m)
0,sing, by Lemma 4.1,

we have

t
(m)
0,sing

′
(0) =

1

2

[m/2]−1∑
q=0

(−1)q
(
(Z ′q,sing(0)− Ẑ ′q,+,sing(0))

+ (−1)m−1(Z ′q,sing(0)− Ẑ ′q,−,sing(0))
)
,
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and hence

t
(m)
0,sing

′
(0) =

1

4

[m/2]−1∑
q=0

(−1)q
m∑
j=1

(
(Φq,j(0)− Φ̂q,j,+(0))

+ (−1)m−1(Φq,j(0)− Φ̂q,j,−(0))
)
Res1
s=j

ζ(s, U).

Second, consider t
(2p−1)
1,sing

′
(0) as given in Lemma 4.1. We have

t
(2p−1)
1,sing

′
(0) = (−1)p−1 1

2

(
Z ′p−1,sing(0)− Ẑ ′p−1,0,sing(0)

)
,

and hence

t
(2p−1)
1,sing

′
(0) = (−1)p−1 1

4

m∑
j=1

(
Φp−1,j(0)− Φ̂p−1,j,0(0)

)
Res1
s=j

ζ(s, U).

8.1.3. The contribution of the harmonics.

The contribution of the harmonics can be computed using the formula in Equation

(5.7) at the end of Section 5. By the definition in Lemma 4.1, since

zq,±(s) = z(s,±αq, 0, 1),

we have

t
(m)
2 (s) =

l2s

2

[(m−1)/2]∑
q=0

(−1)q+1mhar,q (z(s,−αq−1, 0, 1) + (−1)mz(s,−αq, 0, 1)) ;

by Equations (5.7) and (5.6),

t
(m)
2

′
(0) =

[(m−1)/2]∑
q=0

(−1)q+1mhar,q (z(0,−αq−1, 0, 1) + (−1)mz(0,−αq, 0, 1)) log l

+
1

2

[(m−1)/2]∑
q=0

(−1)q+1mhar,q (z
′(0,−αq−1, 0, 1) + (−1)mz′(0,−αq, 0, 1))

=− 1

2

[(m−1)/2]∑
q=0

(−1)q+1mhar,q

((
−αq−1 +

1

2

)
+ (−1)m

(
−αq +

1

2

))
log l

+
1

2

[(m−1)/2]∑
q=0

(−1)q+1mhar,q

×
(
log

2−αq−1−1/2Γ(−αq−1 + 1)√
π

+ (−1)m log
2−αq−1/2Γ(−αq + 1)√

π

)
. (8.3)

On the other side,
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t
(2p)
3 (s) = (−1)p+1 l

2s

4
mhar,p (z(s, αp, 0, 1) + z(s,−αp, 0, 1)) .

Whence

t
(2p)
3

′
(0) = (−1)p+1mhar,p

1

2
(z(0, αp, 0, 1) + z(0,−αp, 0, 1)) log l

+ (−1)p+1mhar,p
1

4
(z′(s, αp, 0, 1) + z′(s,−αp, 0, 1))

=− (−1)p+1 1

4
mhar,p

((
αp +

1

2

)
+

(
−αp +

1

2

))
log l

+ (−1)p+1 1

4
mhar,p

(
log

2αp−1/2Γ(αp + 1)√
π

+ log
2−αp−1/2Γ(−αp + 1)√

π

)
= (−1)p 1

4
mhar,p log l + (−1)p+1 1

4
mhar,p log

αp

2 sin(παp)
.

Since αp = (1 + 2p− 2p)/2 = 1/2, this gives

t
(2p)
3

′
(0) = (−1)p 1

4
mhar,p log l + (−1)p 1

2
mhar,p log 2. (8.4)

8.2. The frustum with mixed BC.

We omit the details, since the calculations are similar to the one performed for the

cone. As above, we split into three parts.

8.2.1. The contribution of the regular part.

According to Theorem 5.1, we have

D̂′q,±,reg(0; l1, l2) = −Âq,±(0; l1, l2)− B̂′q,±(0; l1, l2),

where, according to Equation (7.10)

Â±(s; l1, l2) =
∞∑

n=1

mq,cex

×
(
−1

2
log

l2
l1

+ log

((
l
μq,n

2

l
μq,n

1

+
l
μq,n

1

l
μq,n

2

)
± αq

μq,n

(
l
μq,n

2

l
μq,n

1

− l
μq,n

1

l
μq,n

2

)))
μ−2s
q,n ,

B̂±(s; l1, l2) = 0,

and hence

Â±(0; l1, l2) =
∞∑

n=1

mq,cex

×
(
−1

2
log

l2
l1

+ log

((
l
μq,n

2

l
μq,n

1

+
l
μq,n

1

l
μq,n

2

)
± αq

μq,n

(
l
μq,n

2

l
μq,n

1

− l
μq,n

1

l
μq,n

2

)))
,

B̂±(0; l1, l2) = 0.

Now, note that
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Â−(0; l2, l1)− Â+(0; l1, l2) =

∞∑
n=1

mq,cex log
l2
l1

= ζcex(0, Δ̃
(q)) log

l2
l1
,

and hence, by Lemma 4.2,

w
(m)
0,reg

′
(0) =

1

2

[m/2]−1∑
q=0

(−1)q
(
(D̂′q,−,reg(0; l2, l1)− D̂′q,+,reg(0; l1, l2))

+(−1)m−1(D̂′q,+,reg(0; l2, l1)− D̂′q,−,reg(0; l1, l2))
)

= −1

2

[m/2]−1∑
q=0

(−1)q
(
(Âq,−(0; l2, l1)− Âq,+(0; l1, l2))

+(−1)m−1(Âq,+(0; l2, l1)− Âq,−(0; l1, l2))
)

= −1

2

(
log

l2
l1

) [m/2]−1∑
q=0

(−1)q(ζcex(0, Δ̃(q)) + (−1)m+1ζcex(0, Δ̃
(q))), (8.5)

and

w
(2p−1)
1,reg

′
(0) = (−1)p−1 1

2

(
D̂′p−1,0,reg(0; l2, l1)− D̂′p−1,0,reg(0; l1, l2)

)
= (−1)p 1

2
log

l2
l1
ζcex(0, Δ̃

(p−1)). (8.6)

8.2.2. The contribution of the singular part.

Since the functions Φq,2j−1 and Φq,2j−1,± are regular at s = 0, and by the location

of the poles of ζ(s, U) given at the beginning of Section 7, it follows that the formula for

the singular part in Theorem 5.1 reduces to the single sums (recall κ = 2 and the zeta

of U is regular at s = 0)

D̂q,±,sing(0; l1, l2) = 0, D̂′q,±,sing(0; l1, l2) =
1

2

m∑
j=1

Φ̂q,j,±(0; l1, l2)Res1
s=j

ζ(s, U),

where the Φ are defined in Equation (7.11). Thus, considering first w
(m)
0,sing, by Lemma

4.2, we have

w
(m)
0,sing

′
(0) =

1

2

[m/2]−1∑
q=0

(−1)q
(
(D̂′q,−,sing(0; l2, l1)− D̂′q,+,sing(0; l1, l2))

+(−1)m−1(D̂′q,+,sing(0; l2, l1)− D̂′q,−,sing(0; l1, l2))
)
,

and hence

w
(m)
0,sing

′
(0) =

1

4

[m/2]−1∑
q=0

(−1)q
m∑
j=1

(
(Φ̂q,j,−(0; l2, l1)− Φ̂q,j,+(0; l1, l2))
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+(−1)m−1(Φ̂q,j,+(0; l2, l1)− Φ̂q,j,−(0; l1, l2))
)
Res1
s=j

ζ(s, U). (8.7)

Second, for w
(2p−1)
1,sing

′
(0), we have

w
(2p−1)
1,sing

′
(0) = (−1)p−1 1

2

(
D̂′p−1,0,sing(0; l2, l1)− D̂′p−1,0,sing(0; l1, l2)

)
,

and hence

w
(2p−1)
1,sing

′
(0) = (−1)p−1 1

4

2p−1∑
j=1

(
Φ̂p−1,j,0(0; l2, l1)− Φ̂p−1,j,0(0; l1, l2)

)
Res1
s=j

ζ(s, U). (8.8)

8.2.3. The contribution of the harmonics.

In order to determinate the contribution of the harmonics, we use the technique

described in Section 2 of [22] to deal with (simple) sequences of spectral type (in fact

this was already in [21]). Recall that, by Lemma 4.2, we need d′q(0; l1, l2), where by

definition

dq(s; l1, l2) = mhar,q

∞∑
k=1

f−2s
−αq−1,k

(l1, l2),

and the f−2s
ν,k (l1, l2) are the positive zeros of the function

Fν(z; l1, l2) = Jν(l1z)Yν−1(l2z)− Yν(l1z)Jν−1(l2z).

Recalling the series definition of the Bessel functions, we obtain that near z = 0,

Fν(z) =
2

πz

lν−1
2

lν1
.

This means that the function Fν(z) is an even function of z. By the Hadamard

factorization Theorem, we have the product expansion

Fν(z) =
2

πz

lν−1
2

lν1

+∞∏
k=−∞

′(
1− z

fν,k(l1, l2)

)
,

and therefore

Fν(z) =
2

πz

lν−1
2

lν1

∞∏
k=1

(
1− z2

f2
ν,k(l1, l2)

)
.

Defining, for −π < arg(z) < π/2,

Gν(z) = −Fν(iz),

we have
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Gν(z) =
2

πz

lν−1
2

lν1

∞∏
k=1

(
1 +

z2

f2
ν,k(l1, l2)

)
.

By Equation (5.1), the logarithmic Gamma function associated to the simple se-

quence Θν(l1, l2) = {f2
ν,k(l1, l2)} is

log Γ(−λ,Θν(l1, l2)) = − log

∞∏
k=1

(
1 +

(−λ)
f2
ν,k

)

= − logGν(
√
−λ)− log

π

2
− log l2

√
λ+ ν log

l2
l1
.

Combining the asymptotic expansions of the Bessel functions, we obtain for large λ:

log Γ(−λ,Θν(l1, l2)) =

(
1

2
− ν

)
log

l1
l2

+ log 2− (l2 − l1)
√
λ+O

(
1√
λ

)
.

Therefore, by Theorem 2.11 of [22],

d′q(0; l1, l2) = −mhar,q

((
1

2
+ αq−1

)
log

l1
l2

+ log 2

)
,

and hence, by Lemma 4.2,

w
(m)
2

′
(0) =

1

2

[m/2]∑
q=0

(−1)q+1
(
d′q(0; l1, l2) + (−1)mdq(0; l2, l1)

)
=

1

2

[m/2]∑
q=0

(−1)qmhar,q

((
1

2
+ αq−1

)
log

l1
l2

+ log 2

+(−1)m
((

1

2
+ αq−1

)
log

l2
l1

+ log 2

))
. (8.9)

w
(2p)
3

′
(0) = (−1)p+1 1

2
d′p(0; l1, l2) = (−1)p 1

2
mhar,p

((
1

2
+ αp−1

)
log

l1
l2

+ log 2

)
= (−1)p 1

2
mhar,p log 2. (8.10)

8.3. The frustum with absolute BC.

8.3.1. The contribution of the regular part.

Proceeding as in Section 8, by Theorem 5.1, we have

E′q,reg(0) = −Aq(0)−B′q(0), Ê′q,±,reg(0) = −Âq,±(0)− B̂′q,±(0),

where,

Aq(s) =
∞∑

n=1

mcex,q,n

(
log

(
l
μq,n

2

l
μq,n

1

− l
μq,n

1

l
μq,n

2

)
+

1

2
log l1l2

)
μ−2s
q,n ,
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Bq(s) =
1

2

∞∑
n=1

mcex,q,nμ
−2s
q,n ,

B′q(s) = −
∞∑

n=1

mcex,q,nμ
−2s
q,n logμq,n,

Âq,±(s) =
∞∑

n=1

mcex,q,n

(
−1

2
log l1l2 + log

(
l
μq,n

2

l
μq,n

1

− l
μq,n

1

l
μq,n

2

)
+ log

(
1−

α2
q

μ2
q,n

))
μ−2s
q,n ,

B̂q,±(s) = −
1

2

∞∑
n=1

mcex,q,nμ
−2s
q,n ,

B̂′q,±(s) =
∞∑

n=1

mcex,q,nμ
−2s
q,n logμq,n.

This gives (in the following formulas we are taking the finite part)

Aq(0) =

∞∑
n=1

mcex,q,n

(
log

(
l
μq,n

2

l
μq,n

1

− l
μq,n

1

l
μq,n

2

)
+

1

2
log l1l2

)
,

Bq(0) =
1

2

∞∑
n=1

mcex,q,n,

B′q(0) = −
∞∑

n=1

mcex,q,n logμq,n,

Âq,±(0) =
∞∑

n=1

mcex,q,n

(
−1

2
log l1l2 + log

(
l
μq,n

2

l
μq,n

1

− l
μq,n

1

l
μq,n

2

)
+ log

(
1−

α2
q

μ2
q,n

))
,

B̂q,±(0) = −
1

2

∞∑
n=1

mcex,q,n,

B̂′q,±(0) =
∞∑

n=1

mcex,q,n logμq,n.

Thus, considering first y
(m)
0,reg, we have

y
(m)
0,reg

′
(0)=

1

2

[m/2]−1∑
q=0

(−1)q
(
(E′q,reg(0)− Ê′q,+,reg(0))+(−1)m−1(E′q,reg(0)− Ê′q,−,reg(0))

)
,

and hence

y
(m)
0,reg

′
(0) =− 1

2

[m/2]−1∑
q=0

(−1)q
(
Aq(0) +B′q(0)− Âq,+(0)− B̂′q,+(0)

)

− (−1)m−1 1

2

[m/2]−1∑
q=0

(−1)q
(
Aq(0) +B′q(0)− Âq,−(0)− B̂′q,−(0)

)
.
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We observe that all the terms that are equal in Bq(0) and B̂q,±(0) and in Aq(0) and

Âq,±(0) respectively cancel in the final formula for t
(m)
0,reg(0). This is because the final

formulas are

(E′q,reg(0)− Êq,+,reg(0))+(E′q,reg(0)− Êq,−,reg(0))=2E′q,reg(0)− Êq,+,reg(0)− Êq,−,reg(0),

if m = 2p− 1 is odd, and

(E′q,reg(0)− Êq,+,reg(0))− (E′q,reg(0)− Ê′q,−,reg(0)) = −Ê′q,+,reg(0) + Ê′q,−,reg(0),

if m = 2p is even. Therefore, we can rewrite

y
(m)
0,reg

′
(0) =− 1

2

[m/2]−1∑
q=0

(−1)q
(
A/q(0) + B/

′
q(0)− Â/q,+(0)− B̂/

′
q,+(0)

)

− (−1)m−1 1

2

[m/2]−1∑
q=0

(−1)q
(
A/q(0) + B/

′
q(0)− Â/q,−(0)− B̂/

′
q,−(0)

)
,

where

A/q(0) =
1

2
log l1l2

∞∑
n=1

mcex,q,n =
1

2
ζ(0, Δ̃(q)) log l1l2,

B/
′
q(0) = −

∞∑
n=1

mcex,q,n logμq,n,

Â/q,±(0) =
∞∑

n=1

mcex,q,n

(
−1

2
log l1l2 + log

(
1−

α2
q

μ2
q,n

))

= −1

2
ζ(0, Δ̃(q)) log l1l2 +

∞∑
n=1

mcex,q,n log

(
1−

α2
q

μ2
q,n

)
,

B̂/
′
q,±(0) =

∞∑
n=1

mcex,q,n logμq,n,

and

∞∑
n=1

mcex,q,n = ζcex(0, Δ̃
(q) + α2

q), −2
∞∑

n=1

mcex,q,n logμq,n = ζ ′cex(0, Δ̃
(q) + α2

q).

Thus,

y
(m)
0,reg

′
(0) =− 1

2

[m/2]−1∑
q=0

(−1)q
(
ζ(0, Δ̃(q)) + (−1)m−1ζ(0, Δ̃(q))

)
log l1l2

+
1

2

[m/2]−1∑
q=0

(−1)q
( ∞∑

n=1

mcex,q,n log

(
−

α2
q

μ2
q,n

)
+ 2

∞∑
n=1

mcex,q,n logμq,n

)
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+ (−1)m−1 1

2

[m/2]−1∑
q=0

(−1)q

×
( ∞∑

n=1

mcex,q,n log

(
1−

α2
q

μ2
q,n

)
+ 2

∞∑
n=1

mcex,q,n logμq,n

)
. (8.11)

Next, consider y
(2p−1)
1,reg . By Lemma 4.1, we have

y
(2p−1)
1,reg

′
(0) = −1

2

(
Ap−1(0) +B′p−1(0)− Âp−1,0(0)− B̂′p−1,0(0)

)
.

As above, all the terms that are equal in Bq(0) and B̂q,0(0) and in Aq(0) and Âq,0(0)

respectively cancel in the final formula for t
(2p−1)
1,reg (0). Therefore, we can write

y
(2p−1)
1,reg

′
(0) =− 1

2

(
A/p−1(0) + B/

′
p−1(0)− Â/p−1,0(0)− B̂/

′
p−1,0(0)

)
,

where

A/p−1(0) =
1

2
ζ(0, Δ̃(p−1)) log l1l2, B/

′
p−1(0) = −

∞∑
n=1

mcex,q,n logμq,n,

Â/q,±(0) = −
1

2
log l1l2ζ(0, Δ̃

(q)), B̂/
′
q,±(0) =

∞∑
n=1

mcex,q,n logμq,n.

Observing that αp−1 = (1 + 2p− 2− 2p+ 1)/2 = 0, and μp−1,n = λp−1,n, we have

ζcex(s, Δ̃
(p−1) + α2

p−1) = ζcex(s, Δ̃
(p−1)) =

∞∑
n=1

mcex,p−1,nλ
−2s
p−1,n,

and

B̂/
′
p−1,0(0) =

∞∑
n=1

mcex,p−1,n log λp−1,n = −1

2
ζ ′cex(0, Δ̃

(p−1)).

Thus,

y
(2p−1)
1,reg

′
(0) =− (−1)p−1 1

2
ζcex(0, Δ̃

(p−1)) log l1l2 −
1

2
(−1)p−1ζ ′cex(0, Δ̃

(p−1)). (8.12)

8.3.2. The contribution of the harmonics.

The contribution of the harmonics can be computed directly, proceeding as in Section

8.1.3. We obtain (this formula holds for all cases in which αq �= 0, the particular case

only appears when m is odd and is described below)

e′q,−(0) = log(−αq)− log

(
l
−αq

2

l
−αq

1

− l
−αq

1

l
−αq

2

)
− 1

2
log l1l2,

and hence
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y
(m)
2

′
(0)=

1

2

[(m−1)/2]∑
q=0

(−1)q+1mhar,q

(
e′q−1,−(0)+(−1)me′q,−(0)

)
=

1

2

[(m−1)/2]∑
q=0

(−1)q+1mhar,q log

(
m−2q+1

2

)(
m−2q−1

2

)(−1)m

+
1

2

[(m−1)/2]∑
q=0

(−1)qmhar,q log

(
lm−2q+1
2 − lm−2q+1

1

(l1l2)(m−2q+1)/2

)(
lm−2q−1
2 − lm−2q−1

1

(l1l2)(m−2q−1)/2

)(−1)m

+
1

2

[(m−1)/2]∑
q=0

(−1)qmhar,q
1+(−1)m

2
log l1l2.

It is convenient to distinguish odd and even cases, as in Section 9.1. When, m =

2p− 1, we need to isolate the case q = p− 1, when the correct formula is

e′p−1,−(0) = − log log
l2
l1
− log 2− log

√
l1l2.

After some calculations, we obtain

y
(2p−1)
2

′
(0) =

1

2

p−1∑
q=0

(−1)qmhar,q log
l2p−2q
2 − l2p−2q

1

2p− 2q

− 1

2

p−2∑
q=0

(−1)qmhar,q log
l2p−2q−2
2 − l2p−2q−2

1

2p− 2q − 2

+
1

2

p−1∑
q=0

(−1)q+1mhar,q log l1l2 +
1

2
(−1)pmhar,p log log

l2
l1
.

By duality on the section:

p−2∑
q=0

(−1)q+1rq log
l2p−2−2q
2 − l2p−2−2q

1

2p− 2− 2q
=

2p−1∑
q=p+1

(−1)qmhar,q log
l2p−2q
2 − l2p−2q

1

2p− 2q

−
p−2∑
q=0

(−1)qrq log(l1l2)2p−2−2q,

and hence

y
(2p−1)
2

′
(0) =

1

2

2p−1∑
q=0,q �=p

(−1)q+1mhar,q log
l2p−2q
2 − l2p−2q

1

2p− 2q

+
1

2

p−1∑
q=0

(−1)q+1(2p− 1− 2q)mhar,q log l1l2 +
1

2
(−1)pmhar,p log log

l2
l1
.

(8.13)
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When m = 2p, we obtain

y
(2p)
2

′
(0) =

1

2

p−1∑
q=0

(−1)q+1mhar,q (log (2p− 2q + 1) + log (2p− 2q − 1)− 2 log 2)

+
1

2

p−1∑
q=0

(−1)q
(
mhar,q log

(
l2p−2q+1
2 − l2p−2q+1

1

)
+ log

(
l2p−2q−1
2 − l2p−2q−1

1

)
− (2p− 2q) log l1l2

)
+

1

2

p−1∑
q=0

(−1)qmhar,q log l1l2.

The last contribution is

y
(2p)
3

′
(0) = (−1)p+1 1

2
mhar,pe

′
p,−(0)

= (−1)p+1 1

2
mhar,p

(
− log 2− log

(
l
1/2
2

l
1/2
1

− l
1/2
1

l
1/2
2

)
− 1

2
log l1l2

)

= (−1)p 1
2
mhar,p (log(l2 − l1) + log 2) .

Collecting

y
(2p)
2

′
(0) + y

(2p)
3

′
(0) =

p−1∑
q=0

(−1)q log 2 + 1

2
(−1)pmhar,p log 2

+
1

2

p∑
q=0

(−1)qmhar,q log
l2p−2q+1
2 − l2p−2q+1

1

2p− 2q + 1

+
1

2

p−1∑
q=0

(−1)qmhar,q log
l2p−2q−1
2 − l2p−2q−1

1

2p− 2q − 1

+
1

2
log l1l2

p−1∑
q=0

(−1)q+1mhar,q(2p− 2q − 1).

Using duality on the section

p−1∑
q=0

(−1)qmhar,q log
l2p−2q−1
2 − l2p−2q−1

1

2p− 2q − 1

=

2p∑
q=p+1

(−1)qrq log
−1

2p− 2q + 1

(
1

l2p−2q+1
2

− 1

l2p−2q+1
1

)

=

2p∑
q=p+1

(−1)qrq log
l2p−2q+1
2 − l2p−2q+1

1

2p− 2q + 1
+

p−1∑
q=0

(−1)q+1rq(2p− 2q − 1) log l1l2,



Analytic torsion of cones 351

and hence

y
(2p)
2

′
(0) + y

(2p)
3

′
(0) =

1

2
χ(W ) log 2 +

1

2

2p∑
q=0

(−1)qmhar,q log
l2p−2q+1
2 − l2p−2q+1

1

2p− 2q + 1
. (8.14)

8.3.3. The contribution of the singular part.

The calculations show that the functions Φ appearing in the singular part are the

same appearing in the singular part for the cone and the frustum with mixed BC, as

described in Sections 7 and 8. We obtain the following result

Eq,sing(0) = 0, E′q,sing(0) =
1

2

m∑
j=1

ΦFrustum,abs
q,j (0)Res1

s=j
ζ(s, U),

Êq,±,sing(0) = 0, Ê′q,±,sing(0) =
1

2

m∑
j=1

Φ̂Frustum,abs
q,j,± (0)Res1

s=j
ζ(s, U).

Since,

y
(m)
0,sing

′
(0)=

1

2

[m/2]−1∑
q=0

(−1)q
(
(E′q,sing(0)− Ê′q,+,sing(0)) +(−1)m−1(E′q,sing(0)− Ê′q,−,sing(0))

)
,

we obtain

y
(m)
0,sing

′
(0) =

1

4

[m/2]−1∑
q=0

(−1)q
m∑
j=1

(
(ΦFrustum,abs

q,j (0)− Φ̂Frustum,abs
q,j,+ (0))

+(−1)m−1(ΦFrustum,abs
q,j (0)− Φ̂Frustum,abs

q,j,− (0))
)
Res1
s=j

ζ(s, U). (8.15)

If m = 2p− 1:

y
(2p−1)
0,sing

′
(0) =

1

4

p−2∑
q=0

(−1)q
2p−1∑
j=1

(
2ΦFrustum,abs

q,j (0)

− Φ̂Frustum,abs
q,j,+ (0)− Φ̂Frustum,abs

q,j,− (0)
)
Res1
s=j

ζ(s, U),

if m = 2p:

y
(2p)
0,sing

′
(0) =− 1

4

p−1∑
q=0

(−1)q
2p∑
j=1

(
Φ̂Frustum,abs

q,j,+ (0)− Φ̂Frustum,abs
q,j,− (0)

)
Res1
s=j

ζ(s, U).

For y
(2p−1)
1,sing

′
(0), we have

y
(2p−1)
1,sing

′
(0) = (−1)p−1 1

2

(
E′p−1,sing(0)− Ê′p−1,0,sing(0)

)
,

and hence
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y
(2p−1)
1,sing

′
(0) = (−1)p−1 1

4

m∑
j=1

(
ΦFrustum,abs

p−1,j (0)− Φ̂Frustum,abs
p−1,j,0 (0)

)
Res1
s=j

ζ(s, U). (8.16)

In particular, we have a result analogous to Lemma 7.3, that leads to the following

formula

ΦFrustum,abs
q,j (s)− Φ̂Frustum,abs

q,j,+ (s) + (−1)m−1(ΦFrustum,abs
q,j (s)− Φ̂Frustum,abs

q,j,− (s))

=
(
l2s2 + (−1)j l2s1

) (
Φq,j(s)− Φ̂q,j,+(s) + (−1)m−1

(
Φq,j(s)− Φ̂q,j,−(s)

))
,

and therefore, if m = 2p− 1,

2ΦFrustum,abs
q,j (0)− Φ̂Frustum,abs

q,j,+ (0)− Φ̂Frustum,abs
q,j,− (0)

=
(
1 + (−1)j

) (
2Φq,j(0)− Φ̂q,j,+(0)− Φ̂q,j,−(0)

)
,

if m = 2p,

Φ̂Frustum,abs
q,j,+ (0)− Φ̂Frustum,abs

q,j,− (0) =
(
1 + (−1)j

) (
Φ̂q,j,+(0)− Φ̂q,j,−(0)

)
.

Since in the odd case the relevant terms are those with odd index j, we have that

y
(2p−1)
0,sing

′
(0) + y

(2p−1)
1,sing

′
(0) = 0.

In the even case, we obtain

y
(2p)
0,sing

′
(0) = 2t

(2p−1)
0,sing

′
(0).

9. The regular part of the torsion.

We decompose the torsion in two parts, the regular part and the anomaly boundary

term, according to the formulas (6.1), (6.2), and (6.3) of Section 6. In this section we give

the formulas for the regular part, for the cone and for the frustum. As a consequence,

we have the proof of the formulas in Equations (6.1), and (6.2) namely that, in the case

of the frustum, the regular part of the torsion coincides with the Reidemeister torsion

plus the Euler part of the boundary contribution, and the singular part is precisely the

anomaly boundary contribution.

9.1. The regular part of the torsion for the cone.

We distinguish odd and even cases.

9.1.1. Odd case: m = 2p− 1.

[m/2]− 1 = p− 2, and hence, using Equation (8.1),

t
(2p−1)
0,reg

′
(0) =−

p−2∑
q=0

(−1)qζcex(0, Δ̃(q)) log l
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+
1

2

p−2∑
q=0

(−1)q
( ∞∑

n=1

mcex,q,n log

(
1−

α2
q

μ2
q,n

)
+

∞∑
n=1

mcex,q,n logμ
2
q,n

)
.

Since μ2
q,n − α2

q = λ2
q,n, we obtain

t
(2p−1)
0,reg

′
(0) =−

p−2∑
q=0

(−1)qζcex(0, Δ̃(q)) log l +
1

2

p−2∑
q=0

(−1)q
( ∞∑

n=1

mcex,q,n log λq,n

)

=−
p−2∑
q=0

(−1)qζcex(0, Δ̃(q)) log l − 1

2

p−2∑
q=0

(−1)qζ ′cex(0, Δ̃(q)).

Next, from Equation (8.2)

t
(2p−1)
1,reg

′
(0) = −(−1)p−1 1

2
ζcex(0, Δ̃

(p−1)) log l − (−1)p−1 1

4
ζ ′cex(0, Δ̃

(p−1)).

Eventually, the contribution of the harmonics is given in Equation (8.3)

t
(2p−1)
2

′
(0) =

1

2

p−1∑
q=0

(−1)q+1mhar,q (αq−1 − αq) log l

+
1

2

p−1∑
q=0

(−1)q+1mhar,q

(
log

2−αq−1Γ(−αq−1 + 1)

2−αqΓ(−αq + 1)

)
.

Since, by definition αq = (1+ 2q− 2p+1)/2 and αq−1 = (1+ 2q− 2− 2p+1)/2, we

obtain

t
(2p−1)
2

′
(0) =

1

2

p−1∑
q=0

(−1)qmhar,q log l +
1

2

p−1∑
q=0

(−1)q+1mhar,q log(2(p− q)).

Summing up, as in Equation (6.3), we obtain

log Tglobal(Cl(W ))

= t
(2p−1)
0,reg

′
(0) + t

(2p−1)
1,reg

′
(0) + t

(2p−1)
2

′
(0) + t

(2p−1)
3

′
(0)

=

(
1

2

p−1∑
q=0

(−1)qmhar,q −
p−2∑
q=0

(−1)qζcex(0, Δ̃(q))− (−1)p−1 1

2
ζcex(0, Δ̃

(p−1))

)
log l

+
1

2

p−2∑
q=0

(−1)q+1ζ ′cex(0, Δ̃
(q)) +

1

4
(−1)pζ ′cex(0, Δ̃(p−1))

− 1

2

p−1∑
q=0

(−1)qmhar,q log(2(p− q)).

Using Equations (A.4) and (A.1), this formula can be rewritten in terms of harmon-

ics:
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log Tglobal(Cl(W )) =
1

2

p−1∑
q=0

(−1)qmhar,q log
l2p−2q

2p− 2q
+

1

2
log T (W, g).

9.1.2. Even case: m = 2p.

[m/2]− 1 = p− 1, and hence, using Equation (8.1),

t
(2p)
0,reg

′
(0) =

1

2

p−1∑
q=0

(−1)q
∞∑

n=1

mcex,q,n

(
log

(
1 +

αq

μq,n

)
− log

(
1− αq

μq,n

))
.

Next, the contribution of the harmonics is given in Equation (8.3)

t
(2p)
2

′
(0) =− 1

2

p−1∑
q=0

(−1)q+1mhar,q (−αq−1 − αq + 1) log l

+
1

2

p−1∑
q=0

(−1)q+1mhar,q log
2−αq−1−αq−1Γ(−αq−1 + 1)Γ(−αq + 1)

π
.

Since, by definition αq = (1+2q− 2p)/2, and αq−1 = (1+2q− 2− 2p)/2, we obtain

t
(2p)
2

′
(0) =

1

2

p−1∑
q=0

(−1)qmhar,q(2p− 2q + 1) log l

+
1

2

p−1∑
q=0

(−1)q+1mhar,q log(2
−2((2p− 2q − 1)!!)2(2p− 2q + 1)).

Eventually, from Equation (8.4)

t
(2p)
3

′
(0) = (−1)p 1

4
mhar,p log l + (−1)p 1

2
mhar,p log 2.

Summing up, as in Equation (6.3), we obtain

log Tglobal(Cl(W )) +
1

4
χ(∂Cl(W )) log 2

= t
(2p)
0,reg

′
(0) + t

(2p)
1,reg

′
(0) + t

(2p)
2

′
(0) + t

(2p)
3

′
(0)

=

(
1

2

p−1∑
q=0

(−1)qmhar,q(2p− 2q + 1) + (−1)p 1
4
mhar,p

)
log l

+
1

2

p−1∑
q=0

(−1)q+1mhar,q log(2p− 2q + 1)((2p− 2q − 1)!!)2

+
1

2
χ(W ) log 2 +

1

2

p−1∑
q=0

(−1)q
∞∑

n=1

mcex,q,n log
1 + αq/μq,n

1− αq/μq,n
.
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9.2. The regular part of the torsion for the frustum with mixed BC.

By Equation (8.5),

w
(m)
0,reg

′
(0) = −1

2

(
log

l2
l1

) [m/2]−1∑
q=0

(−1)q(ζcex(0, Δ̃(q)) + (−1)m+1ζcex(0, Δ̃
(q))),

whence

w
(2p−1)
0,reg

′
(0) = − log

(
l2
l1

) p−2∑
q=0

(−1)qζcex(0, Δ̃(q)), w
(2p)
0,reg

′
(0) = 0;

by Equation (8.6),

w
(2p−1)
1,reg

′
(0) = (−1)p 1

2
log

(
l2
l1

)
ζcex(0, Δ̃

(p−1));

by Equation (8.9)

w
(m)
2

′
(0) =

1

2

[m/2]∑
q=0

(−1)qmhar,q

×
((

1

2
+ αq−1

)
log

l1
l2

+ log 2 + (−1)m
((

1

2
+ αq−1

)
log

l2
l1

+ log 2

))
,

and hence

w
(2p−1)
2

′
(0) =

p−1∑
q=0

(−1)q+1mhar,q

(
p− q − 1

2

)
log

l2
l1
, w

(2p)
2

′
(0) =

p∑
q=0

(−1)qmhar,q log 2.

By Equation (8.10),

w
(2p)
3

′
(0) = (−1)p 1

2
mhar,p log 2.

Thus, when m = 2p,

w
(2p)
0,reg

′
(0) + w

(2p)
2

′
(0) + w

(2p)
3

′
(0) =

p∑
q=0

(−1)qmhar,q log 2 + (−1)p 1
2
mhar,p log 2

=
1

2
χ(W ) log 2.

When m = 2p− 1, recalling Equations (A.2) and (A.3),

ζccl(0, Δ̃
(q)) = (−1)q

q∑
k=0

(−1)kζ(0, Δ̃(k)) = −(−1)q
q∑

k=0

(−1)kmhar,k,

since the dimension of W is odd; whence, after some calculation we obtain
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w
(2p−1)
0,reg

′
(0) + w

(2p−1)
2

′
(0) =

1

2
log

(
l2
l1

) p−1∑
q=0

(−1)q+1mhar,q,

w
(2p−1)
1,reg

′
(0) =

1

2
log

(
l2
l1

) p−1∑
k=0

(−1)kmhar,k,

and hence

w
(2p−1)
0,reg

′
(0) + w

(2p−1)
1,reg

′
(0) + w

(m)
2

′
(0) = 0.

Therefore, for any parity of m, the regular part of the torsion is

w
(m)
0,reg

′
(0) + w

(m)
1,reg

′
(0) + w

(m)
2

′
(0) + w

(m)
3

′
(0) =

1

2
χ(W ) log 2,

and this is equal to the Reidemeister torsion plus the Euler part of the boundary contri-

bution, i.e.

log τ(C[l1,l2](W ), {l1} ×W ) +
1

4
χ(∂C[l1,l2]o(W )) log 2

= w
(m)
0,reg

′
(0) + w

(m)
1,reg

′
(0) + w

(m)
2

′
(0) + w

(m)
3

′
(0),

and hence

ABM,mix(∂C[l1,l2](W )) = w
(m)
0,sing

′
(0) + w

(m)
1,sing

′
(0),

and this concludes the proof of the formulas in Equation (6.1).

9.3. The regular part of the torsion for the frustum with absolute BC.

By Equations (8.11) and (8.12),

y
(2p)
0,reg

′
(0) = 0,

y
(2p−1)
0,reg

′
(0) =−

p−2∑
q=0

(−1)qζ(0, Δ̃(q)) log l1l2 −
p−2∑
q=0

(−1)qζ ′cex(0, Δ̃(q)),

y
(2p−1)
1,reg

′
(0) =− (−1)p−1 1

2
ζcex(0, Δ̃

(p−1)) log l1l2 −
1

2
(−1)p−1ζ ′cex(0, Δ̃

(p−1)),

and, using Equation (A.4),

y
(2p−1)
0,reg

′
(0) + y

(2p−1)
1,reg

′
(0) =

p−1∑
q=0

(−1)qmhar,q(2p− 1− 2q) log l1l2 + log T (W, g).

By Equation (8.13)

y
(2p−1)
0,reg

′
(0) + y

(2p−1)
1,reg

′
(0) + y

(2p−1)
2

′
(0)
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= log T (W, g) +
1

2

2p−1∑
q=0,q �=p

(−1)q+1mhar,q log
l2p−2q
2 − l2p−2q

1

2p− 2q
+

1

2
(−1)pmhar,p log log

l2
l1
,

and by Equation (8.14)

y
(2p)
0,reg

′
(0) + y

(2p)
2

′
(0) + y

(2p)
3

′
(0)

=
1

2
χ(W ) log 2 +

1

2

2p∑
q=0

(−1)qmhar,q log
l2p−2q+1
2 − l2p−2q+1

1

2p− 2q + 1
.

Comparison with Proposition 3.3 of [11], proves the following formulas:

y
(m)
0,reg

′
(0) + y

(m)
1,reg

′
(0) + y

(m)
2

′
(0) + y

(m)
3

′
(0) = log τR(C[l1,l2](W

(m))) +
1

2
χ(W (m)) log 2,

and

y
(m)
0,sing

′
(0) + y

(m)
1,sing

′
(0) = ABM,abs(∂C[l1,l2](W ),

and this concludes the proof of the formulas in Equation (6.2).

10. The anomaly boundary term.

We show in this section that the anomaly boundary term of the frustum with mixed

BC is twice the one of the cone. This concludes the proof of Theorem 1.1.

By Equations (8.7) and (8.8),

w
(m)
0,sing

′
(0) =

1

4

[m/2]−1∑
q=0

(−1)q
m∑
j=1

(
(Φ̂q,j,−(0; l2, l1)− Φ̂q,j,+(0; l1, l2))

+(−1)m+1(Φ̂q,j,+(0; l2, l1)− Φ̂q,j,−(0; l1, l2))
)
Res1
s=j

ζ(s, U),

w
(2p−1)
1,sing

′
(0) = (−1)p−1 1

4

2p−1∑
j=1

(
Φ̂p−1,j,0(0; l2, l1)− Φ̂p−1,j,0(0; l1, l2)

)
Res1
s=j

ζ(s, U),

where (see Equation (7.11))

Φ̂q,j,±(s; l1, l2) =
∫ ∞

0

ts−1 1

2πi

∫
Λθ,c

e−λt

−λ φ̂q,j,±(λ; l1, l2)dλdt,

and the φ̂ are given in Equation (7.9). Let introduce the linear operator

T (f) =
∫ ∞

0

ts−1 1

2πi

∫
Λθ,c

e−λt

−λ f(λ)dλdt.

Note that
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T (f(a ))( ) = asT (f( ))( ),

and hence by Lemma 7.3

Φ̂q,j,±(s; l1, l2) = sgn(l1 − l2)
j l2s1 Φq,j(s) + sgn(l2 − l1)

j l2s2 Φ̂q,j,±sgn(l2−l1)(s).

Therefore,

(Φ̂q,j,−(0; l2, l1)− Φ̂q,j,+(0; l1, l2)) + (−1)m+1(Φ̂q,j,+(0; l2, l1)− Φ̂q,j,−(0; l1, l2))

= (1− (−1)j)Φq,j(0)− Φ̂q,j,+(0) + (−1)jΦ̂q,j,−(0)

+ (−1)m+1
(
(1− (−1)j)Φq,j(0)− Φ̂q,j,−(0) + (−1)jΦ̂q,j,+(0)

)
;

and

Φ̂p−1,j,0(0; l2, l1)− Φ̂p−1,j,0(0; l1, l2)) = (1− (−1)j)Φp−1,j(0)− (1− (−1)j)Φ̂p−1,j,0(0).

It is now convenient to distinguish odd and even cases. If m = 2p − 1 is odd, then

the relevant values of the index j are the odd ones, since the zeta function ζ(s, U) only

has poles at odd integers s, while if m = 2p is even, the relevant values for j are the even

ones, for similar reason. Thus, if m = 2p− 1,

(Φ̂q,2k−1,−(0; l2, l1)− Φ̂q,2k−1,+(0; l1, l2)) + (Φ̂q,2k−1,+(0; l2, l1)− Φ̂q,2k−1,−(0; l1, l2))

= 4Φq,2k−1(0)− 2Φ̂q,2k−1,+(0)− 2Φ̂q,2k−1,−(0),

and

Φ̂p−1,2k−1,0(0; l2, l1)− Φ̂p−1,2k−1,0(0; l1, l2) =2Φp−1,j(0)− 2Φ̂p−1,j,0(0),

if m = 2p is even,

(Φ̂q,2k,−(0; l2, l1)− Φ̂q,2k,+(0; l1, l2)) + (Φ̂q,2k,+(0; l2, l1)− Φ̂q,2k,−(0; l1, l2))

= 2Φ̂q,2k−1,−(0)− 2Φ̂q,2k−1,+(0).

Now, recalling the singular contribution for the cone given in Section 8.1.2

t
(2p−1)
0,sing

′
(0) =

1

4

p−2∑
q=0

(−1)q
p−2∑
j=1

(2Φq,2j−1(0)− Φ̂q,2j−1,+(0)− Φ̂q,2j−1,−(0)) Res1
s=2j−1

ζ(s, U),

t
(2p)
0,sing

′
(0) =

1

4

p−1∑
q=0

(−1)q
p−1∑
j=1

(Φ̂q,2j,−(0)− Φ̂q,2j,+(0))Res1
s=2j

ζ(s, U),

and

t
(2p−1)
1,sing

′
(0) = (−1)p−1 1

4

m∑
j=1

(
Φp−1,j(0)− Φ̂p−1,j,0(0)

)
Res1
s=j

ζ(s, U),
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and hence we have proved that

w
(m)
0,sing

′
(0) = 2t

(m)
0,sing

′
(0),

w
(2p−1)
1,sing

′
(0) = 2t

(2p−1)
1,sing

′
(0).

Now, by the final formula in the previous section, and by Lemma 4.1 of [11]

w
(m)
0,sing

′
(0) + w

(m)
1,sing

′
(0) = ABM,mix(∂C[l1,l2](W )) =

∫
W

B,

where B is defined in Section 4.3 of [11] (based on [1]). Therefore,

t
(m)
0,sing

′
(0) + t

(m)
1,sing

′
(0) =

1

2

∫
W

B,

and this is exactly the term that we would obtain applying the formula of [1], [2] on the

cone, as if it were a smooth manifold. This concludes the proof of Theorem 1.1.

11. The limiting case.

We address the following question: is there any relationship between the analytic

torsion of the frustum and that of the cone? In [11] we proved that, in the odd case

m = 2p−1, regularising the analytic torsion of the frustum with absolute BC (taking the

quotient by the suitable factor) and taking the limit for l1 → 0+ we obtained the torsion

of the cone. The results of the present paper permit a more explicit unified analysis for

all dimensions, and a possible interpretation for the regularising factor.

The idea is to consider the set of the formal eigenfunctions of the cone that are

not square integrable. If we proceed formally, applying the boundary conditions, these

eigenfunctions gives a new set of eigenvalues for the formal operator, that for simplicity we

call the negative part of the spectrum. We verify that the negative part of the spectrum

can be treated by the same method used for the positive part of the spectrum, up to some

technical points, that we describe in details. As a result, we obtain a new term, that we

call the negative part of the analytic torsion, and that we denote by log T−(Cl(W )). We

give a formula for this term in Proposition 11.1, that shows clearly the analogies and the

differences with the regular torsion. Next, in Proposition 11.2 we give the expansion for

the logarithm of the ratio of the analytic torsion of the cone to the negative torsion of

the cone (with l = l1), and eventually we show in Theorem 11.1 that the finite part of

this ratio coincides with the analytic torsion of the cone (with l = l2) up to a classical

boundary term (see Remark 2.1).

11.1. The “negative” analytic torsion of the cone.

We proceed with the notation of Section 3. The set S(q) of the eigenvalues of

the equation Δ(q)u = λ2u, with absolute BC and λ �= 0, is S(q) = S(q)
+ ∪ S(q)

− , where

S(q)
+ = Sp+Δ

(q)
abs, and S

(q)
− is the same set with μx,n replaced by −μx,n, x = q, q−1, q−2,

namely: if m = dimW = 2p− 1, p ≥ 1:
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S(q)
− =

{
mcex,q,n : ĵ2−μq,n,αq,k/l

2
}∞
n,k=1

∪
{
mcex,q−1,n : ĵ2−μq−1,n,αq−1,k/l

2
}∞
n,k=1

∪
{
mcex,q−1,n : j2−μq−1,n,k/l

2
}∞
n,k=1

∪
{
mcex,q−2,n : j2−μq−2,n,k/l

2
}∞
n,k=1

∪
{
mhar,q : ĵ2−|αq|,αq,k

/l2
}∞
k=1

∪
{
mhar,q−1 : ĵ2−|αq−1|,αq,k

/l2
}∞
k=1

;

if m = dimW = 2p, p ≥ 1:

S(q �=p,p+1)
− =

{
mcex,q,n : ĵ2−μq,n,αq,k/l

2
}∞
n,k=1

∪
{
mcex,q−1,n : ĵ2−μq−1,n,αq−1,k/l

2
}∞
n,k=1

∪
{
mcex,q−1,n : j2−μq−1,n,k/l

2
}∞
n,k=1

∪
{
mcex,q−2,n : j2−μq−2,n,k/l

2
}∞
n,k=1

∪
{
mhar,q : ĵ2−|αq|,αq,k

/l2
}∞
k=1

∪
{
mhar,q−1 : ĵ2−|αq−1|,αq−1,k

/l2
}∞
k=1

,

S(p)
− =

{
mcex,p,n : ĵ2−μp,n,αp,k/l

2
}∞
n,k=1

∪
{
mcex,p−1,n : ĵ2−μp−1,n,αp−1,k/l

2
}∞
n,k=1

∪
{
mcex,p−1,n : j2−μp−1,n,k/l

2
}∞
n,k=1

∪
{
mcex,p−2,n : j2−μp−2,n,k/l

2
}∞
n,k=1

∪
{
1

2
mhar,p : j21/2/l

2

}∞
k=1

∪
{
1

2
mhar,p : j2−1/2/l

2

}∞
k=1

∪
{
mhar,p−1 : ĵ2−|αp−1|,αp−1,k

/l2
}∞
k=1

,

S(p+1)
− =

{
mcex,p+1,n : ĵ2−μp+1,n,αp+1,k/l

2
}∞
n,k=1

∪
{
mcex,p,n : ĵ2−μp,n,αp,k/l

2
}∞
n,k=1

∪
{
mcex,p,n : j2−μp,n,k/l

2
}∞
n,k=1

∪
{
mcex,p−1,n : j2−μp−1,n,k/l

2
}∞
n,k=1

∪
{
mhar,p+1 : ĵ2−|αp+1|,αp+1,k

/l2
}∞
k=1

∪
{
1

2
mhar,p : j2−1/2/l

2

}∞
k=1

∪
{
1

2
mhar,p : j21/2/l

2

}∞
k=1

,

where the jμ,k are the positive zeros of the Bessel function Jμ(x), the ĵμ,c,k are the

positive zeros of the function Ĵμ,c(x) = cJμ(x) + xJ ′μ(x), c ∈ R, αq and μq,n are defined

in Lemma 3.1.

Remark 11.1. The above description of the negative spectrum is always valid

except that for the eigenvalues associated to the harmonics of the section in the odd case

m = 2p − 1. In such a case, the eigenfunctions associated to these eigenvalues are not

the Bessel function themselves, as observed at the end of Lemma 3.1. We will take care

of this difference explicitly when we treat the term of the analytic torsion associated to

these eigenvalues, in Subsection 11.1.3 below.

Note that the set S(q) satisfy all the same properties satisfied by the set S(q)
+ and used

in the previous sections in order to define and analyse the associated spectral functions.

Following this idea, and proceeding as in Section 6, we consider the functions
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Z−q (s) =

∞∑
n,k=1

mcex,q,nj
−2s
−μq,n,k

,

Ẑ−q,±(s) =
∞∑

n,k=1

mcex,q,nĵ
−2s
−μq,n,±αq,k

, zq,±(s) =
∞∑
k=1

j−2s
±αq,k

,

and

t
(m)
Cone,−(s) = t

(m)
0,− (s) + t

(m)
1,− (s) + t

(m)
2,− (s) + t

(m)
3,− (s),

where

t
(m)
0,− (s) =

l2s

2

[m/2]−1∑
q=0

(−1)q
(
(Z−q (s)− Ẑ−q,+(s)) + (−1)m−1(Z−q (s)− Ẑ−q,−(s))

)
,

t
(2p−1)
1,− (s) = (−1)p−1 l

2s

2

(
Z−p−1(s)− Ẑ−p−1,0(s)

)
, t

(2p)
1,− (s) = 0,

t
(m)
2,− (s) =

l2s

2

[(m−1)/2]∑
q=0

(−1)q+1mhar,q (zq−1,+(s) + (−1)mzq,+(s)) ,

t
(2p)
3,− (s) = (−1)p+1mhar,p

l2s

4
(zp,+(s) + zp,−(s)) , t

(2p−1)
3,− (s) = 0.

The aim of this section is to determine the quantity

log T−(Cl(W
(m))) = t

(m)
Cone,−(0).

11.1.1. The contribution of the regular part.

The functions t0,− and t1,− are double series as t0 and t1, and, up to solving some

technical problems, can be analysed by the same method used in Section 7. The relevant

sequences are now S−q = {mcex,q,n : j2−μq,n,k
}, and Ŝ−q,± = {mcex,q,n : j2−μq,n,±αq,k

}. We

obtain the following representation for associated logarithmic Gamma functions:

log Γ(−λ, S−q ) =− log

∞∏
k=1

(
1 +

(−λ)
j2−μq,n,k

)
=− log I−μq,n

(
√
−λ)− μq,n log

√
−λ+ μq,n log 2− log Γ(1− μq,n).

log Γ(−λ, Ŝ−q,±) =− log

∞∏
k=1

(
1 +

(−λ)
ĵ2−μq,n,±αq,k

)
=− log Î−μq,n,±αq

(
√
−λ)− μq,n log

√
−λ+ μq,n log 2

− log Γ(−μq,n) + log

(
1∓ αq

μq,n

)
.

Recalling

I−ν(z) =
2

π
sin νπKν(z) + Iν(z),
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substitution in the representations above of the logarithmic Gamma functions, and using

the known asymptotic expansions for the Bessel functions, shows that the asymptotic

expansions for the negative case may be deduced from the ones computed for the positive

case. We give here the relevant results, using the same notation as in Section 8, with an

added minus index.

t
(m)
0,reg,−

′
(0)=−

[m/2]−1∑
q=0

(−1)q
(
(B/q,−(0)− B̂/q,+,−(0))+(−1)m−1(B/q,−(0)− B̂/q,−,−(0))

)
log l

− 1

2

[m/2]−1∑
q=0

(−1)q
(
A/q,−(0)+B/

′
q,−(0)−Â/q,+,−(0)− B̂/

′
q,+,−(0)

)

−(−1)m−1 1

2

[m/2]−1∑
q=0

(−1)q
(
A/q,−(0)+B/

′
q,−(0)−Â/q,−,−(0)− B̂/

′
q,−,−(0)

)
,

where

A/q,−(0) = 0,

B/q,−(0) =
1

4

∞∑
n=1

mcex,q,n =
1

4
ζcex(0, Δ̃

(q) + α2
q) =

1

4
ζ(0, Δ̃(q)),

B/
′
q,−(0) = −

1

2

∞∑
n=1

mcex,q,n logμq,n,

Â/q,±,−(0) =
∞∑

n=1

mcex,q,n log

(
1± αq

μq,n

)
,

B̂/q,±,−(0) = −
1

4

∞∑
n=1

mcex,q,n = −1

4
ζcex(0, Δ̃

(q) + α2
q) = −

1

4
ζcex(0, Δ̃

(q)),

B̂/
′
q,±,−(0) =

1

2

∞∑
n=1

mcex,q,n logμq,n,

and

∞∑
n=1

mcex,q,n = ζcex(0, Δ̃
(q) + α2

q), −2
∞∑

n=1

mcex,q,n logμq,n = ζ ′cex(0, Δ̃
(q) + α2

q).

Thus,

t
(m)
0,reg,−

′
(0) = −1

2

[m/2]−1∑
q=0

(−1)q
(
ζcex(0, Δ̃

(q)) + (−1)m−1ζcex(0, Δ̃
(q))

)
log l

+
1

2

[m/2]−1∑
q=0

(−1)q
( ∞∑

n=1

mcex,q,n log

(
1− αq

μq,n

)
+

∞∑
n=1

mcex,q,n logμq,n

)
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+ (−1)m−1 1

2

[m/2]−1∑
q=0

(−1)q
( ∞∑

n=1

mcex,q,n log

(
1 +

αq

μq,n

)
+

∞∑
n=1

mcex,q,n logμq,n

)

= (−1)m+1t
(m)
0,reg,−

′
(0). (11.1)

Similar analysis gives

t
(2p−1)
1,reg,−

′
(0) = −(−1)p−1 1

2
ζcex(0, Δ̃

(p−1)) log l − 1

4
(−1)p−1ζ ′cex(0, Δ̃

(p−1)) = t
(2p−1)
1,reg

′
(0).

(11.2)

11.1.2. The contribution of the singular part.

It is easy to realise that the singular part coincides exactly with the singular part in

the positive case, namely:

t
(m)
0,sing,−

′
(0) = t

(m)
0,sing,−

′
(0),

t
(2p−1)
1,sing,−

′
(0) = t

(2p−1)
1,sing,−

′
(0).

(11.3)

11.1.3. The contribution of the harmonics.

This is the contribution coming from the simple series zq,+(s). Respect with the

harmonics for the positive torsion, where we studied the functions zq,−(s), there is now

a technical problem, since the values of αq appearing in the zq,−(s) are never negative

integers, while the values of the αq appearing in the zq,+(s) maybe negative integers.

This problem appears only when m = 2p− 1 is odd, that is treated below in details. In

the even case m = 2p, we can use the formulas in Equations (5.6) and (5.7) as in Section

8.1.3. For 0 ≤ q < p, αq = 1/2 + q − p, and we obtain:

zq,+(0) = −
1

2

(
αq +

1

2

)
= −1

2
(1 + q − p) = −zq,−(0)−

1

2
,

z′q,+(0) = log

√
π

2αq−1/2Γ(αq + 1)
= − log 2− log(2(p− q − 1)− 1)!!

= −z′q,−(0) + log(2p− 2q − 1)− 2 log 2.

This gives:

t
(2p)
2,−

′
(0) =− t

(2p)
2

′
(0)−

p−1∑
q=0

(−1)q+1rq log l

+
1

2

p−1∑
q=0

(−1)q+1rq log(2p− 2q − 1)(2p− 2q + 1)− 2

p−1∑
q=0

(−1)q+1rq log 2,

t
(2p)
3,−

′
(0) = t

(2p)
3

′
(0).

(11.4)

In the odd case, m = 2p− 1, since αq = 1+ q− p < 0 for 0 ≤ q ≤ p− 1, as observed

in Remark 11.1, the eigenfunctions of type E and O are not the Bessel function Jαq
of

negative index, but the functions Yαq
. Whence, function under study is the function is
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zq,+(s) =

∞∑
k=1

y−2s
αq,k

,

where S = {yαq,k} is the sequence of the zeros of the Bessel function Y−αq
. We proceed

as follows. Consider the series representation of the Bessel function Yn (n = −αq),

Yn(z)=
2

π
Jn(z)

(
log

z

2
+C

)
+

n−1∑
k=0

(n−k−1)!

πk!

(z
2

)2k−n

−
(z
2

)n 1

n!

n∑
k=1

1

πk
−zn

∞∑
k=1

an,k.

Since

lim
z→0

znYn(z) =
1

π

(n− 1)!

2−n
=

2n(n− 1)!

π
,

we have the product expansion

Gn(z) = znYn(z) =
2n(n− 1)!

π

+∞∏
k=−∞,k �=0

(
1− z

yn,k

)
.

Define

Υn(z) = (niz)n
(
Jn(iz)−H(1)

n (iz)
)
= zn

(
In(z)−

2

πi
Kn(z)

)
,

then

Υn(z) =
2n(n− 1)!

π

+∞∏
k=1

(
1 +

z2

y2n,k

)
,

and

log (−λ, S) = − log
∞∏
k=1

(
1− λ

y2n,k

)
= − logΥn(

√
−λ) + n log 2 + log(n− 1)!− log π.

Using the classical expansion for large z of In(z) and Kn(z),

log

(
In(z)−

2

πi
Kn(z)

)
∼ log In(z) +O(e−z).

This implies that

logΥn(
√
−λ) = n log

√
−λ+

√
−λ− 1

2
log 2π − 1

2
log
√
−λ

=
2n− 1

2
log
√
−λ+

√
−λ− 1

2
log 2π,

and

log (−λ, S) = −2n− 1

2
log
√
−λ−

√
−λ+

2n+ 1

2
log 2 + log(n− 1)!− 1

2
log π.
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Whence, for q �= p− 1,

zq,+(0) =
1

2

(
p− q − 1− 1

2

)
=

1

2

(
−αq +

1

2

)
− 1

2
= −zq,−(0)−

1

2
,

z′q,+(0) = − log
2(−1/2−q+p)(p− q − 2)!

π1/2
= − log

2−αq+1/2Γ(−αq)

π1/2

= −z′q,−(0)− log 2 + log(−αq),

zp−1,+(0) = zp−1,−(0),

z′p−1,+(0) = −zp−1,−(0)− log 2,

and

t
(2p−1)
2,−

′
(0) =− t

(2p−1)
2

′
(0) +

p−2∑
q=0

(−1)q+1rq log
p− q

p− q − 1
. (11.5)

11.2. Formula for the “negative” torsion and the limiting case l1 = 0.

Collecting the results of the previous subsections we have:

log T−(Cl(W
(2p−1))) = t

(2p−1)
0,reg,−

′
(0) + t

(2p−1)
2,−

′
(0) + t

(2p−1)
3,−

′
(0) + t

(2p−1)
0,sing,−

′
(0)

=− 1

2

p−1∑
q=0

(−1)qrq log
l2p−2q

2p− 2q
+

1

2
log T (W, g) + t

(2p−1)
0,sing

′
(0)

+

p−2∑
q=0

(−1)q+1rq log
p− q

p− q − 1
.

log T−(Cl(W
(2p))) = t

(2p)
0,reg,−

′
(0) + t

(2p)
2,−

′
(0) + t

(2p)
3,−

′
(0) + t

(2p)
0,sing,−

′
(0)

=− t
(2p)
0,reg

′
(0)− t

(2p)
2

′
(0) + t

(2p)
3

′
(0) + t

(2p)
0,sing

′
(0)

+

p−1∑
q=0

(−1)qrq log l −
1

2

p−1∑
q=0

(−1)qrq log(2p− 2q − 1)(2p− 2q + 1)

+ 2

p−1∑
q=0

(−1)qrq log 2

=− 1

2

p−1∑
q=0

(−1)qmhar,q log
l2p−2q+1

2p− 2q + 1

− 1

2

p−1∑
q=0

(−1)qrq log(2p− 2q − 1)(2p− 2q + 1) + (−1)p 1
4
mhar,p log l

+

p−1∑
q=0

(−1)qrq log l +
1

2

p−1∑
q=0

(−1)qmhar,q log((2p− 2q − 1)!!)2
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− 1

2

p−1∑
q=0

(−1)q
∞∑

n=1

mcex,q,n

(
log

(
1 +

αq

μq,n

)
− log

(
1− αq

μq,n

))

+

p−1∑
q=0

(−1)qrq log 2 + (−1)p 1
2
mhar,p log 2 + t

(2p)
0,sing

′
(0).

The previous formulas in the notation of Theorem 8.4 read:

Proposition 11.1.

log T−(Cl(W
(2p−1))) =

1

2
log T (W, g)− log

Detp−1
0 α̈Cl

Detp−1
0 α

+ABS,abs(∂Cl(W ))

−
p−2∑
q=0

(−1)qrq log
p− q

p− q − 1
;

log T−(Cl(W
(2p))) =− log

Detp−1
0 α̈Cl

Detp−1
0 α

+
1

4
χ(W ) log 2 +ABS,abs(∂Cl(W ))

−B
(2p)
1 (Cl(W )) +B

(2p)
2 (Cl(W ))

+

p−1∑
q=0

(−1)qrq log l −
1

2

p−1∑
q=0

(−1)qrq log(2p− 2q − 1)(2p− 2q + 1).

We are now able to study the constant part of the limit for l1 → 0+ of the difference

between the logarithms of the torsion of the frustum and the one of the negative torsion

with l = l1. For we need a few lemmas and a remark.

Lemma 11.1. For l1 → 0+, we have the expansions:

log
Detα̈F

Detα
=

(−1)p
2

rp log log
1

l1
+

1

2

p−2∑
q=0

(−1)qrq log l2p−2−2q
1

+ log
Detp−1

0 α̈Cl2

Detp−1
0 α

+
1

2

p−2∑
q=0

(−1)qrq log(2p− 2− 2q) +O(l1),

if m = 2p− 1, and

log
Detα̈F

Detα
=− 1

2

p−1∑
q=0

(−1)qrq log l2p−2q−1
1

+ log
Detp−1

0 α̈Cl2

Detp−1
0 α

− 1

2

p−1∑
q=0

(−1)qrq log(2p− 2q − 1)

+
1

4
(−1)prp log l2 +O(l1),

if m = 2p.
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Proof. When m = 2p− 1,

2p−1∑
q=p+1

(−1)qrq log
l2p−2q
2 − l2p−2q

1

2p− 2q
=

2p−1∑
q=p+1

(−1)qrq log
l2q−2p
2 − l2q−2p

1

(2q − 2p)(l1l2)2q−2p

=

p−2∑
q=0

(−1)q+1rq log
l2p−2−2q
2 − l2p−2−2q

1

(2p− 2− 2q)(l1l2)2p−2−2q

=

p−2∑
q=0

(−1)q+1rq log
1−

(
l1
l2

)2p−2−2q

2p− 2− 2q

+

p−2∑
q=0

(−1)qrq log l2p−2−2q
1 .

Whence,

log

2p−1∏
q=0

Γq =

2p−1∑
q=0,q �=p

(−1)qmhar,q log
l2p−2q
2 − l2p−2q

1

2p− 2q
+

(−1)p
2

rp log log
l2
l1

=

p−1∑
q=0

(−1)qmhar,q log
l2p−2q
2 − l2p−2q

1

2p− 2q
+

(−1)p
2

rp log log
l2
l1

+

p−2∑
q=0

(−1)q+1rq log
1−

(
l1
l2

)2p−2−2q

2p− 2− 2q
+

p−2∑
q=0

(−1)qrq log l2p−2−2q
1 .

When m = 2p,

log

2p∏
q=0

Γq =

2p∑
q=0

(−1)qmhar,q log
l2p−2q+1
2 − l2p−2q+1

1

2p− 2q + 1

=

p∑
q=0

(−1)qmhar,q log
l2p−2q+1
2 − l2p−2q+1

1

2p− 2q + 1

+

2p∑
q=p+1

(−1)qmhar,q log
l2p−2q+1
2 − l2p−2q+1

1

2p− 2q + 1

=

p−1∑
q=0

(−1)qmhar,q log
l2p−2q+1
2 − l2p−2q+1

1

2p− 2q + 1

+

2p∑
q=p+1

(−1)qmhar,q log
l2p−2q+1
2 − l2p−2q+1

1

2p− 2q + 1

+ (−1)prp log(l2 − l1).
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2p∑
q=p+1

(−1)qmhar,q log
l2p−2q+1
2 − l2p−2q+1

1

2p−2q+1
=

2p∑
q=p+1

(−1)qmhar,q log
(
l2p−2q+1
1 − l2p−2q+1

2

)

−
2p∑

q=p+1

(−1)qmhar,q log(2q−1−2p).

2p∑
q=p+1

(−1)qmhar,q log(2q−1−2p)=

p−1∑
q=0

(−1)qmhar,q log(2p−1−2q).

2p∑
q=p+1

(−1)qmhar,q log
(
l2p−2q+1
1 − l2p−2q+1

2

)
=

2p∑
q=p+1

(−1)qmhar,q log l
2p−2q+1
1

+

2p∑
q=p+1

(−1)qmhar,q log

(
1−

(
l1
l2

)2q−2p−1
)
.

�

Remark 11.2. Observe that the anomaly boundary term of the frustum is the

sum of two equal terms each defined as an integral over on of the two boundaries, so we

can write

ABS,abs(∂C[l1,l2](W )) = ABS,abs(∂Cl2(W )) +ABS,abs(∂Cl1(W )),

and this is true in all dimensions, see Lemma 4.1 of [11].

Proposition 11.2. For small l1, we have the expansions:

log Tabs(C[l1,l2](W
(2p−1)))− log T−(Cl1(W

(2p−1)))

=
(−1)p

2
rp log log

1

l1
+

p−1∑
q=0

(−1)qrq log l2p−1−2q
1 + log Tabs(Cl2(W )) +O(l1),

log Tabs(C[l1,l2](W
(2p)))− log T−(Cl1(W

(2p)))

= log Tabs,ideal(Cl2(W ))− 1

2
χ(W ) log 2 +O(l1).

Proof. Using the expansion in the previous lemma and the formulas in Theorem

2.1 we compute, in the odd case m = 2p− 1,

logTabs(C[l1,l2](W ))− logT−(Cl1(W ))

= logT (W,g)+log
Detα̈F

Detα
+ABS,abs(∂C[l1,l2](W ))− 1

2
logT (W,g)+log

Detp−1
0 α̈Cl1

Detp−1
0,l1

α

−ABS,abs(∂Cl1(W ))+

p−2∑
q=0

(−1)qrq log
p−q

p−q−1

=
(−1)p

2
rp loglog

1

l1
+

p−1∑
q=0

(−1)qrq log l2p−1−2q
1 +

1

2
logT (W,g)+log

Detp−1
0 α̈Cl2

Detp−1
0 α
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+ABS,abs(∂Cl2(W ))+O(l1).

In the even case m = 2p,

log Tabs(C[l1,l2](W ))− log T−(Cl1(W ))

= log
Detα̈F

Detα
+

1

2
χ(W ) log 2 +ABS,abs(∂C[l1,l2](W ))+ log

Detp−1
0 α̈Cl1

Detp−1
0 α

− 1

4
χ(W ) log 2

−ABS,abs(∂Cl1(W )) +B
(2p)
1 (Cl1(W ))−B

(2p)
2 (Cl1(W ))−

p−1∑
q=0

(−1)qrq log l1

+
1

2

p−1∑
q=0

(−1)qrq log(2p− 2q − 1)(2p− 2q + 1)

= log
Detp−1

0 α̈Cl2

Detp−1
0 α

+
1

4
(−1)prp log l2 +ABS,abs(∂C[l1,l2](W ))−ABS,abs(∂Cl1(W ))

+B
(2p)
1 (Cl2(W )) +O(l1). �

Theorem 11.1.

Res0
l1=0

(
log Tabs(C[l1,l2](W ))− log T−(Cl1(W ))

)
= log Tabs,ideal(Cl2(W ))− 1

2
χ(W ) log 2.

As announced in the introduction, we reobtained the formula for the torsion written

in Theorem 1.1 (or better 2.1) as a limit of a regularisation of the torsion of the frustum

(extending a result obtained in [11] for the odd case m = 2p − 1). Beside the intrinsic

interest of this result, this also shows that the anomaly term B1 appearing in the formula

for the analytic torsion of the cone (compare Theorem 2.1) is due to the fact that in

this approach to the problem of extending the definition of Ray and Singer of analytic

torsion to spaces with conical singularities, a set of eigenfunctions of the Laplace Beltrami

operator are missed (those that are not square integrable near the tip of the cone). As

a consequence, the spectrum changes, and the lost part of the spectrum is exactly the

one that produces a counter term to the anomaly term B1 in the analytic torsion (the

term we called the negative part of the torsion). Due to the symmetry of the problem,

that depends on the parity of the dimension, this cancelation happens in odd dimension,

but does not happens in even dimension. This emerges clearly by comparison of the

formulas given in this section for the different terms composing the negative torsion with

the formulas for the corresponding terms composing the regular (positive) torsion and

given in the previous sections.

Appendix A. Formulas for the zeta function of the Hodge–Laplace op-

erator.

Decomposing the zeta function of the Hodge–Laplace operator Δ on an m-

dimensional oriented compact connected Riemannian manifold (W, g), we have that

ζ(s,Δ(q)) = ζex(s,Δ
(q)) + ζcex(s,Δ

(q)).
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When m = 2p− 1 is odd, using duality, this gives

log T (W, g) =

p−2∑
q=0

(−1)q+1ζ ′cex(0,Δ
(q)) +

1

2
(−1)pζ ′cex(0,Δ(p−1)). (A.1)

Moreover, observing that

ζcex(s,Δ
(q)) = (−1)q

q∑
k=0

(−1)kζ(s,Δ(k)), (A.2)

and that

ζ(0,Δ(q)) = − dimkerΔ(q), (A.3)

using duality we have

p−2∑
q=0

(−1)qζcex(0,Δ(q))+
1

2
(−1)p−1ζcex(0,Δ

(p−1))=−1

2

p−1∑
q=0

(−1)q(2p−1−2q)rkHq(W ).

(A.4)
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