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Abstract: Recently, a cosmological model based on smooth open 4-manifolds admitting non-standard
smoothness structures was proposed. The manifolds are exotic versions of R4 and S3 ×R. The model
has been developed further and proven to be capable of obtaining some realistic cosmological
parameters from these exotic smoothings. The important problem of the quantum origins of
the exotic smoothness of space-time is addressed here. It is shown that the algebraic structure
of the quantum-mechanical lattice of projections enforces exotic smoothness on Rn. Since the
only possibility for such a structure is exotic R4, it is found to be a reasonable explanation of the
large-scale four-dimensionality of space-time. This is based on our recent research indicating the
role of set-theoretic forcing in quantum mechanics. In particular, it is shown that a distributive
lattice of projections implies the standard smooth structure on R4. Two examples of models valid for
cosmology are discussed. The important result that the cosmological constant can be identified with
the constant curvature of the embedding (exotic R4)→ R4 is referred. . The calculations are in good
agreement with the observed small value of the dark energy density.

Keywords: cosmology and lattice of projections in QM; forcing; exotic 4-smoothness; cosmological
constant

1. Introduction

It is rather widely accepted that our Universe evolved from an initial quantum state, giving rise
to the large scale classical world described by general relativity (GR). The large-scale smoothness of
the observed universe is usually taken for granted as some distinguished feature of the classical world.
Could the large-scale smoothness be deduced from—or connected with—the initial quantum state?
This question is motivated partly by mathematics, where in dimension four there exist a plethora of
nonequivalent smoothness structures on open manifolds. Let us mention only the case of the simplest
4-manifold R4 on which one finds continuum many nondiffeomorphic different smoothness structures.
On any other Rn (n 6= 4), there exists a unique smoothness structure. Since space-time coordinates
are described by the (real smooth functions of) real numbers R, we study the possibility that the
real line used in cosmology is an emergent concept and can be described as undergoing several
changes during the evolution of the Universe. Thus, we show how R in the present macroscale
form could follow from the formalism of quantum mechanics (QM). The promising mathematical
picture formalizing stages of this evolution of parameter space R is set-theoretic forcing taking place in
Boolean-valued models of Zermelo–Fraenkel set theory (ZFC). These particular models are built from
quantum-mechanical lattices of projections. An important by-product of this scenario is the change
of the smooth geometry of space-time at large scales. Finally, we establish how the above results fit
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with the evolution of the Universe in a cosmological model and help to approach the cosmological
constant problem. In particular, a cosmological constant value is calculated in a purely topological
way based on deep results in the differential topology of exotic 4-manifolds.

2. Classical Large-Scale Coordinates from Quantum Regime

There are many ways in which QM formalism refers to the line of real numbers. One reason is
simple: QM describes quantum systems in spacetime. A free particle in the one-dimensional space R
is a good example. A more quantum-mechanical instance would be the continuous spectrum of an
operator like the position operator Q̂. It is the real line R. The Hilbert space is L2(R, µ), where µ is
the Lebesgue measure on R again. This follows from the fact that the position operator is unbounded
and defined on a separable complex Hilbert space H which has to be infinite dimensional if we
want the standard uncertainty relations of position and momentum to be fulfilled. Thus, the only
non-empty spectrum of Q̂—as the operator of multiplication by x in L2(R1)—is continuous and equals
R. In the case of three-dimensional space R3, the spectrum of the position factorizes into R×R×R
according to the components of the position operator Q̂ = {Q̂i, i = 1, 2, 3}. The Hilbert space now
reads L2(R3) = L2(R)⊗ L2(R)⊗ L2(R). All the instances of R above reflect the obvious fact that we
have just “the same” real line R (up to natural isomorphisms) in every such context. This real line R
is obviously the same (diffeomorphic) as that used in GR for parametrizing the large-scale Universe.
In this paper, we demonstrate that some important mathematical facts intervene here. In particular,
there exists an interesting relationship between the large and microscale differential structures of
spacetime. They can differ non-trivially, and the information about it is encoded in QM formalism.

There is yet another consequence of our analysis. It is the presence of set-theoretic forcing which
changes the structure of the real line. Forcing in QM is not quite a new topic. Namely, Wesep [1]
and Boos [2] made extended analyses of the local hidden variables program (LHV). It follows that
the implementation of LHV requires adding the special “generic filters”. Generic filters are precisely
those which are known in formal set theory and the technique of forcing. Whenever a nontrivial
generic filter G is added to a model ZFC M, it leads to another model of ZFC, M[G], extended by
forcing. However, such forcing extensions change the real line R in M into the extended real line R[G]

in M[G]. This change of the real line is what matters to us here. By Kochen–Specker theorem LHV
cannot be realized in QM for Hilbert spaces of dimensions greater than two [3]. We do not meet these
constraints here, since our results do not rely in any sense on the realizability of the LHV program.
Moreover, forcing can be regarded as a technique for exploring the structure of the real line rather than
proving independence results in formal set theory. Set-theoretic forcing as a tool in QM has already
been identified and used by several authors, such as P. Benioff [4], G. Takeuti [5], M. Ozawa [6,7],
W. Boos [2], R. Van Wesep [1], and the present authors [8–12].

In the next section we will show that QM formalism on Hilbert spaces refers to models of ZFC
and that the models support non-trivial forcing. In Section 4, we identify the forcing as random
forcing defined on atomless measure algebras Bor(Rn)/N of Borel sets in Rn modulo measure zero
sets. This forcing is always present when passing from micro QM realm into the large-scale structure
of the Universe. The real line is changed by the forcing such that we have the mechanism for canceling
the vacuum energy contributions from the zero-modes of quantum fields. In Section 5 we show that
the models of ZFC localized at the lattice of projections determine the necessary exotic smoothness
on Rn at macroscales. It is possible only for n = 4, which is the reason for the dimensionality of the
large-scale spacetime emerging from the QM regime. Section 6 presents an example of a Schwarzschild
black hole which is described on exotic Kruskal manifold S2 ×R2 [13]. In Section 7, we give a rough
presentation of our recent findings on topological calculations of some cosmological parameters like
the value of cosmological constant or rate of inflation in the model where smoothness of spacetime
is exotic. The calculations are rooted in the special role of hyperbolic three- and four-dimensional
geometry involved in the very structure of exotic smooth 4-manifolds.
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3. The Lattice of Projections L

Let H be a separable Hilbert space. The set of all projections on closed linear subspaces of H
gives rise to an atomic complete orthomodular lattice (L(H),∧,∨) ≡ L, where P1 ∧ P2 is defined to
be M1 ∩M2 and P1 ∪ P2—the least closed subspace containing M1 ∪M2. Here M1, M2 are subspaces
corresponding to P1, P2 [5]. Since L is not distributive if dimH > 1, it has been recognized that
L cannot serve as a source of classical propositional logic [14].

One of the possible strategies is to proceed with the set BSub(L) of Boolean subalgebras B ⊆ L,
partially ordered by set inclusion. Since BSub(L) can be provided a meet-semilattice structure [15],
every chain is well-ordered in particular, and by Zorn’s lemma, every B ∈ BSub(L) is contained
in a maximal B′ ∈ BSub(L). Moreover, every maximal B′ ∈ BSub(L) is complete, since it is
subcomplete [16]. Such complete maximal Boolean subalgebras (later also called blocks) of L play an
essential role in constructing Boolean-valued models upon L [5]. The versatility of the above approach
relies on the general properties of self-adjoint operators in the following sense.

Lemma 1. ([5] Lemma 1.1 p. 8) For every family {Aα|α ∈ I} of self-adjoint pairwise commuting operators,
there exists a complete Boolean algebra of projections B such that given the spectral decompositions of each Aα

Aα =
∫

λdEα
λ ,

it holds that ∀α ∈ I(dEα
λ ∈ B).

In what follows, a self-adjoint operator is said to be in a Boolean algebra B when its spectral
decomposition is a subset of B. Then, as a consequence of Lemma 1 and Zorn’s lemma, every family
{Aα|α ∈ I} of self-adjoint pairwise commutable operators is contained in at least one block B ⊆ L.

Let us provide some examples for the above remarks.1

Proposition 1. LetH = L2(R, dx), and let BQ ⊆ L be the block containing a position operator Q onH. Then,
BQ is atomless.

Proof. It can be shown that Q is multiplicity-free, hence it defines a maximally commuting system
of observables on L2(R, dx) [17]. Thus, every self-adjoint operator A that commutes with Q is a
measurable function of Q (i.e., A = f (Q)). As a consequence of the spectral theorem, the spectral
decomposition of f (Q) coincides with {Qλ}. However, {Qλ} = {χ∆} with measurable ∆ ⊆ R, and
{χ∆} is isomorphic to the measure algebra on R; i.e., Bor(R)/N [5], which proves {Qλ} to be an
atomless block.

Equivalently, the same holds for the block containing a momentum operator P on L2(R, dx).
The following fact shows that given a self-adjoint operator A, the atomicity of a block containing A is
not an invariant of A in general.

Proposition 2. Let H = L2(R3, d3x) and let BH ⊆ L be a block containing a free-particle Hamiltonian
H = P2

1 + P2
2 + P2

3 . Then, B is either atomless or contains an atom.

Proof. Since H commutes with components Pi of momentum operator and {Pi|i = 1, 2, 3} define a
maximally commuting system of observables onH = L2(R3, d3x), H is contained in an atomless block.
On the other hand, as a consequence of [18], (Theorem II.4)—provided H does not set the maximally
commuting system—there is a self-adjoint operator A with pure point spectrum such that {H, A} is

1 We would like to thank Valter Moretti for helpful discussion on this subject.
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already commuting and maximal. In this case, H is contained in a block with atoms corresponding to
one-dimensional spectral projections of A.

4. The Physics of Forcing

The equivalence of the method of forcing in formal set theory as a method of proving independence
results with its formulation in Boolean-valued models VB (B is a complete Boolean algebra) was
established by Scott and Solovay soon after the invention of forcing [19] (p. 18). The following fact gives
the necessary condition for forcing with a Boolean algebra B to be nontrivial (i.e., to extend the ground
ZFC universe V properly), and explains the importance of non-atomicity of B.

Lemma 2. ([20] Proposition 2.1) Suppose there exists a generic ultrafilter U on B over V. Then, U /∈ V if and
only if B is atomless.

Let H be a separable Hilbert space on which position Q and momentum P operators are
represented in the usual way. Let BQ, BP ⊆ L—blocks containing Q and P, respectively. Obviously,
P /∈ BQ and Q /∈ BP. The real numbers RQ, RP in Boolean-valued models of ZFC Sh(BQ), Sh(BP) are
in 1− 1 correspondence with self-adjoint operators in BQ, BP, respectively. This is the important result
of Takeuti [5]. We call RQ, RP the Boolean quantum real numbers.

Proposition 1 states that the algebras BQ, BP are atomless, and hence by Lemma 2 they support a
nontrivial forcing. Suppose there exist generic ultrafilters UlQ, UlP on BQ, BP over universes VQ, VP,
respectively. The following factorizations lead to two-valued models of ZFC (e.g., [19,20]):

Sh(BQ)/UlQ = VQ[UlQ], Sh(BP)/UlP = VP[UlP] ,

and UlQ /∈ VQ, UlP /∈ VQ. Then, R[UlQ], R[UlP] are objects of real numbers in the above two-valued
models (quantum real numbers).

Proposition 2 shows that free-particle energy H possibly lives in a block BH ⊂ L that contains at
least one atom. From Lemma 2 it follows that forcing in the case of Boolean-valued model Sh(BH) is
trivial; i.e.,

Sh(BH)/UlH = VH[UH] = VH, R[UlH] = RH

for every generic ultrafilter in BH over VH. This simply means that UlH ∈ VH and forcing has to be
trivial, even if UlH would be generic over Sh(BH).

Let us suppose that (large-scale) gravitational fields propagate in the spacetime which is
parametrized by real numbers in a model extended by a nontrivial forcing. The case of the energy
operator discussed above shows that some forms of energy—namely those whose self-adjoint
operators give rise to the non-atomless Boolean algebras as in Proposition 2—propagate in spacetime
parametrized by the reals not extended by forcing. This cosmological model was indeed recently
studied [8–10], where it was proposed that zero-energy modes of energy of quantum fields propagate
in spacetime which is parametrized in a ZFC model not extended by forcing. Here, however, BQ, BP
lead to the nontrivial extension of the model and the real line. We propose GR to describe gravity
living and propagating in such models. This discrepancy has important physical consequences.

First we recognize general forcing appearing above as random forcing; i.e., the Boolean algebras
in question are in fact measure algebras Bor(Rn)/N , where Bor(Rn) are Borel subsets of Rn andN is
an ideal of measure zero sets. It holds that

Theorem 1. BQ ' Bor(Rn)/N for some n ∈ N.

Proof. The isomorphism of BQ and Bor(X)/N was established in [5], where (X, µ) is some measure
space. This is the direct consequence of the spectral theorem [5] (Th. 6.1, p. 68), where the Hilbert space
representing a family of commuting self-adjoint operators as multiplication by measurable function
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operators is L2(X, µ). This Hilbert space is separable and infinite dimensional, and so it is isometric
isomorphic to a L2(Rn, dnx) for some n ∈ N, as follows from the Riesz theorem. From Proposition 1 we
know that BQ is atomless in L2(Rn, dnx). The isomorphism of Hilbert spaces preserves the maximal
Boolean algebras of projections.

Next we quote some known properties of random forcing (e.g., [21]).

Lemma 3. Bn = Bor(Rn)/N is atomless for every n ∈ N. Every nontrivial forcing extension of the real line
R in V to R[Ul] in V[Ul], for Ul ∈ Bn generic over Sh(Bn) ' VBn is such that all measurable subsets of R in
the extended model V[Ul] have measure zero.

Recall that zero-energy modes of quantum fields propagate in the ZFC model V, while both
higher modes of quantum fields and large-scale gravity propagate in the extended model V[Ul]. This is
the reflection of the fact that zero-energy modes have pure quantum-mechanical origin (i.e., they
vanish classically), while higher modes give rather classical contributions (e.g., [22] (p. 28)). Namely,
the vacuum energy density has two components in quantum field theory: bare density without any
quantum corrections and quantum zero-energy modes fluctuations of all quantum fields. The total
zero-energy modes contribution of any quantum field reads ∑i

1
2 ωi. In the continuum limit, one

gets the energy density of zero-energy modes of a free field as
∫
R3

d3k
(2π)3

√
k2+m2

2 . Without any cutoff
imposed, this integral is UV-divergent. However, in our model, it holds that [8,9]

Theorem 2. Zero-energy modes of quantum fields have vanishing contributions to the gravitational
vacuum energy.

Proof. From Lemma 3, we see that every integral
∫

R3(·)dx[Ul]3 calculated in the extended model
V[Ul] vanishes (V 3 R ⊂ R[Ul] ∈ V[Ul]). The reason is that every measurable subset of R3 has
measure 0 in R[Ul]3, and R is a meagre subset of R[Ul]. In particular, given a particle of mass
m, its zero-energy modes contributions to the energy density are given by the vanishing integral∫

R3⊂R[Ul]3
d3k
(2π)3

√
k2+m2

2 [8,9].

The above result means that in our forcing-based model the cosmological constant derived
from zero-energy modes of quantum fields has to vanish, contrary both to quantum field-theoretic
calculations [23] and to experimental facts [24]. However, in what follows we will see that the relation
of quantum-mechanical lattice L and large-scale world gives rise to a surprising solution.

5. Macroscopic Smoothness from L

Let R be a set of all real numbers. It is a Dedekind complete ordered field, and as such all its
(Archimedean) models are isomorphic. This explains an unambiguity of the symbol R (up to the
isomorphisms). The Dedekind completeness is a second-order property—unlike all the axioms of ZFC,
which are first-order. So far, we have considered a change of models of ZFC due to the random forcing.
In this section, we want to analyse yet another modification of real numbers. The real numbers inside
first-order models of ZFC are now replaced by R—the Dedekind complete, ordered, second-order field.
This operation is to be derived from the lattice of projections L. The following definitions clarify the
terminology.

Definition 1.

(a) The substitutions R[UlQ]→ R and R[UlP]→ R are called large-scale classical limits of (quantum)
real numbers R[UlQ] and R[UP], respectively. We write R/R[UlQ] and R/R[UlP] for the substitutions.

(b) Similarly, the substitution R[UlA]→ R is a large-scale classical limit of the real numbers R[UlA] from
the model Sh(BA)/UlA for a self-adjoint operator A; i.e., R/R[UlA].
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(c) The substitution R[UlA]
n → Rn is the classical large-scale limit of R[UlA]

n; i.e., Rn/R[UlA]
n.

Note that given any self-adjoint operator A on a (separable) Hilbert space, its maximal complete
Boolean algebra of projections BA generally need not be atomless. In this case, a generic ultrafilter
which is not in the ground model need not exist. Then, taking any ultrafilter UlA on BA over V, the
factorization reads Sh(BA)/UlA ' V[UlA] ' V, since UlA ∈ V. This is the direct consequence of
Lemma 2. Consequently, R[UlA] ' R. Again, the substitution R→ R is the classical limit of R.

Let IL be the set where each α ∈ IL is some complete Boolean algebra Bα of projections from L.
Let ba(L) be a set of all such maximal complete Boolean algebras. It holds that ba(L) ⊂ IL.

Let Uα
diff.→ Rn, α ∈ ba(L) be a local regular open cover of an n-dimensional topological manifold

Mn
L, and each Uα is the classical large-scale limit of some Rn

α . We require the cover U = {Uα|α ∈ ba(L)}
of Mn

L to have the following properties:

∃U∀Uα ∈ U∃α ∈ ba(L)}(Uα
diff.→ Rn/Rn

α), (1)

∀K an open cover of Mn
L(U ⊂ K ⇒

⋃
U /∈ K), (2)

∃α, β ∈ ba(L)(Uα, Uβ ∈ U ⇒ Uα ∪Uβ /∈ U ). (3)

Recall that the lattice L ≡ L(H) has to be defined over infinite dimensional Hilbert space H in
order to represent the position-momentum uncertainty relations. Hence, L is not distributive and
cannot be reduced to any single Boolean algebra of projections. For that reason, one can take α = BQ
and β = BP in (3).

Definition 2. If {Uα, α ∈ ba(L)} as above is a smooth regular open cover of a smooth n-dimensional
manifold Mn

L, then the pair (Mn
L, {Uα, α ∈ ba(L)}) is called a smooth manifold large-scale classical

limit (or classical limit for short) of the lattice L.

It is obvious that many different smooth manifolds Mn (in various dimensions) generally exist as
candidates for large-scale classical limits of L. However, one case is distinguished—namely, Mn = Rn.
It also distinguishes the physical dimension four.

Theorem 3. If Rn is a (smooth manifold large-scale) classical limit of the QM lattice L, then it has to be an
exotic R4.

Proof. Let K be a regular topological open cover of the smooth Rn large enough to contain the
subcover U ⊂ K. We will show that U , being a smooth cover of Rn and fulfilling Equations (1)–(3)
has to be exotic smooth. Each Uα ∈ U is diffeomorphic to Rn, which resulted as a substitution Rn/Rn

α

(Equation (1)). Here Rn
α is the n-product of the real line in the two-valued model Sh(α)/Ul for some

ultrafilter in α, α is a maximal complete Boolean algebra of projections in L. Properties (2) and (3)
require that for some subfamily A = {αi|i ∈ J ⊂ ba(L)} ⊂ U , it holds

⋃A /∈ U . It follows that indeed⋃U /∈ U . However,
⋃U top

' Rn, since U is a topological cover of Rn. It follows that
⋃U 6' Rn as smooth

manifolds. However,
⋃U is a smooth manifold which is topologically Rn and nondiffeomorphic to Rn.

Thus,
⋃U is exotic smooth Rn. The only possibility is exotic R4.

Note that the conditions (2) and (3) are fulfilled automatically for any compact Mn,
since

⋃U ' Mn /∈ U and every Uα ∈ U is diffeomorphic to Rn.

Corollary 1. The QM lattice of projections L is the source of a non-vanishing large-scale curvature on R4.
This curvature cannot be removed by any coordinate diffeomorphism of R4.

Proof. Every exotic R4 has to be curved Riemannian smooth manifold topologically equivalent to R4,
because if R4 were flat, it would be diffeomorphic to a one-patch R4, which is the standard smooth R4.
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Since any exotic R4 is not diffeomorphic to the standard 4-space, there does not exist any coordinate
diffeomorphism resulting in the standard flat R4.

We call the lattice L of projections Boolean whenever it is reduced to a single maximal
complete Boolean algebra. Obviously, a Boolean lattice is distributive and cannot represent the
position-momentum uncertainty relations.

Theorem 4. Let the lattice L be Boolean. Then, the smoothness structure of its manifold classical large-scale
limit Rn is the standard one (including the n = 4 case).

Proof. ba(L) is a one-element set; i.e., {α} = ba(L). Since Uα
diff.' Rn is also the only element of U ,

it follows that the conditions (2) and (3) are not fulfilled and
⋃U ' Uα ∈ U . Hence, the standard

smooth Rn is a possible choice.

We see that the nondistributivity of the lattice L and its non-boolean quantum structure is crucial
for the large-scale exotic 4-smoothness. It also indicates the dimension four as the dimension of a
smooth large-scale world.

In the following sections we will demonstrate how the modification of differential large scale
structure of spacetime by QM works in two physical models. The models deal with cosmological
singularities, both having quantum-gravitational character; therefore, QM is involved here. One is
the singularity of a Schwarzschild black hole, the other—the initial singularity in the simplified
Friedmann–Lemaître–Robertson–Walker (FLRW) cosmology.

6. Schwarzschild Solution and Exotic S2 ×R2

Let us consider the Schwarzschild metric around a black hole in the Kruskal presentation

ds2 =
2M3e−r/2M

r
(−du2 + dv2) + r2dΩ2 ,

where dΩ2 = dθ2 + sin2 θdφ2 is the standard spherical metric on S2, and
( r

2M − 1
)(

er/2M) = v2 − u2

are coordinates on R2. Thus, the Kruskal coordinates describe the manifold S2 ×R2 = {(u, v, (θ, φ)) :
u2 − v2 < 1, (θ, φ) ∈ S2}.

From the point of view of GR, the singularity of the Schwarzschild black hole is Weyl-type, since
the Weyl tensor diverges [25] (p. 146). The consistent complete description of the singularity requires a
theory of quantum gravity (QG). Certainly, we do not yet have such full such quantum gravitational
description; still, it is natural to assume that the singularity cannot be completely described only within
GR. The form of energy and matter due to this QG regime follows the QM rules. Our analysis of the
previous sections thus applies. The QM formalism on a Hilbert space modifies the entire large-scale
smoothness structure of the spacetime in which the Schwarzschild solution is considered.

First, note that S2 ×R2 is a submanifold of R4; i.e.,

S2 ×R2 = R4 \ D3 ×R , (4)

where D3 is a 3-disk. Thus, we have a formal representation of the Schwarzschild singularity as placed
in the complement of D3 ×R in R4.

Second, let certain energy/matter from the singular region have usual QM description on a
Hilbert space of states. It is a minimal quantum requirement for such singularity present in classical
spacetime whose description, however, transcends it. So, let H be a Hilbert space of states for such
energy-matter with L the lattice of projections. Again, ba(L) is the set of all complete Boolean algebras
of projections from L. The smooth cover of R4 which is determined by L fulfills the conditions (1)–(3).
Then, Theorem 3 gives the modification of the large-scale smoothness structure of R4, which agrees
with the presence of such quantum sources.



Universe 2017, 3, 31 8 of 11

Note that in GR, energy–matter sources modify the stress energy tensor Tµν, and the corresponding
curvature modification of spacetime follows. The presence of QM sources as above also modifies the
smoothness of spacetime at large scales in such a way that it cannot be diffeomorphic to the initial
smoothness.

Given the Kruskal coordinates manifold S2 ×R2 ⊂ R4, the modified exotic smoothness of R4

enforces the exotic smoothness on S2 × R2 according to the results in the previous section. It is a
mathematical fact that such exotic S2 ×R2’s exist. These exotic S2 ×R2’s were analysed in [13,26,27],
and are called exotic Schwarzschild black holes. The peculiar feature of black holes with exotic Kruskal
manifold is their non-global product S2 × R2. This means that backward prolongation of smooth
Kruskal coordinates meets obstructions which usually are interpreted as, for example, additional
external sources [13]. This change of smoothness structure in 4D is the result of taking together the
spacetime description with unavoidable QM one.

7. FLRW Cosmology with Initial Singularity

Let us consider the cosmological model of the evolution of the Universe based on the spacetime
S3 ×R. It is a classical model of the FLRW closed universe where the initial singularity is situated in
the region (point) where S3 shrinks to zero size. In fact, any FLRW model with ordinary matter with
pressure p and density ρ gives rise to the Ricci singularity [25] (p. 146). Certainly, a full and consistent
physical and mathematical description of the singularity must refer to QM and QG. Even outside
of the singularity, still in the Planck epoch, one cannot neglect quantum description. Large-scale
homogenous and smooth spacetime evolves entirely from the singularity. So, whenever we apply the
standard formalism of QM based on the Hilbert space and the lattice L, then, according to Section 5,
the large-scale smooth structure is modified. The resulting smoothness in this case is exotic S3 ×R.
For our purposes it can be seen as induced by exotic R4 so the analysis of Section 5 is valid. To see
this, note that S3 ×R is a smooth submanifold of R4. Simply it holds S3 ×R ' R4 \ {pt.}. In the case
of exotic S3 ×R, it can still be considered as smoothly embedded in exotic R4. This embedded exotic
S3 ×R is the exotic topological end of some exotic R4 [28].

One important feature of an exotic open 4-manifold is the radical modification of the smooth time
evolution. The cross-sections S3 × {ti}, ∀ti ∈ R are replaced by wildly embedded S3 at t0 evolving
smoothly into the cross-section Σt1 ⊂ S3 ×Σ R; i.e., a smooth 3-manifold non-homeomorphic to S3.
Here S3×Σ R denotes the exotic S3×R with the cross-section indicated. As shown by Freedman, this is
the defining property of exotic S3 ×R where Σ is some homology 3-sphere [28]. These modifications
allow for direct calculation of certain cosmological effects of exotic smoothness structures on R4 via
exotic smoothness of S3 ×R ⊂ R4 [29].

In [29], we considered one exotic S3 ×R with two topology changes of the 3-manifold S3 ×Σ R:

wild S3 1→ Σ 2→ P#P. Here P is the Poincare 3-homology sphere and P#P the direct sum of two copies
of them. This topology change is a modification of the three-dimensional spatial spaces, while the
4-manifold has constant topology with an exotic smoothness structure. In this model, one is able to
calculate cosmological parameters which are usually not determined in the standard ΛCDM (Lambda
cold dark matter) model [29].

For that purpose, we use the defining property of a small exotic R4. These exotic R4’s are all
embeddable as open subsets in the standard R4. As we already noted in Section 5, the Riemann tensors
of R4’s for any metric do not vanish. However, curvature is not a diffeomorphism invariant, and thus
varies for different embeddings R4 ↪→ R4. In particular, every embedding realizes a relatively constant
negative scalar curvature of some R4 embedded in R4. The constancy of the curvature is also known
as Mostow rigidity [29,30]. Then, we have one Friedmann equation (ȧ/a)2 = const > 0, which defines
a cosmological constant (CC).
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The 3-homology sphere Σ can be chosen as the Brieskorn sphere Σ(2, 5, 7). It is a three-dimensional
submanifold of C3 defined as follows:

Σ(2, 5, 7) = {(x, y, z) ∈ C3|x2 + y5 + z7 = 0, |x|2 + |y|2 + |z|2 = 1}.

Then, as shown in [29], topology change S3 → Σ(2, 5, 7) is described by the scalar field φ given by
the Lagrangian

L = R + ∂µφ∂µφ +
1

8α
(1− exp(−φ))2 ,

which is transformed to the usual Starobinsky Lagrangian [31]

L = R + α · R2.

Here R is the scalar curvature of (part of) S = S3 ×Σ(2,5,7) R. Now, performing some smooth
1, 2-handles cancellation in the exotic S, due to the change S3 → Σ(2, 5, 7), one gets an expansion

a = a0 · exp
(

θ

2

)
,

where θ is a parameter which will be determined as a topological invariant, a0 is the diameter of
S3, and a is the characteristic length of the hyperbolic sphere Σ(2, 5, 7). Considering the second
topology change Σ(2, 5, 7) → P#P and a0 ∼ LP—the Planck length, one calculates the expansion
purely topologically:

a = LP · exp
(

3
2 · CS(Σ(2, 5, 7))

+
3

2 · CS(P#P)

)
' LP · 2, 2 · 1059 ' 109ly.

Here CS(·) refers to the Chern–Simons invariant of the hyperbolic 3-manifolds, which in our
case read

CS(Σ(2, 5, 7)) =
9

280
, CS(P#P) =

1
60

.

This is a realistic expansion scale for the inflation which agrees with the Planck mission.
The topological calculation of the value of the cosmological constant as the constant curvature of the
embedding R4 ↪→ R4 follows

CC =
1
a2 = L−2

P exp
(
− 3

CS(Σ(2, 5, 7))
− 3

CS(P#P)

)
.

This value expressed as a fraction of the critical density (taking the recent value of the Hubble
constant H0 from the Planck mission [24]) reads:

ΩΛ(CC) = 0.6836 ,

which is significantly close to the Planck result ΩΛ = 0.6911± 0.0062.

8. Discussion

We have presented a cosmological model which coherently allows the derivation of some
cosmological parameters. The model is based on the natural supposition that the evolution of the
Universe begins with the quantum regime described by the Hilbert space formalism of QM. The lattice
of projections L serves as the initial data of the model. We showed that for infinite dimensional Hilbert
spaceH, the lattice L determines the line of real numbers and set-theoretic forcing which modifies this
line. The forcing is recognized as the random forcing. These data are usually omitted in cosmological
model-buildings. However, as we showed, the random forcing changes the structure of the real line
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when passing from the micro to the macroscales of the Universe. The extension of the line results in
the vanishing of the contributions of the zero-points energies of quantum fields to the vacuum energy.

Another change of the structure of the real line occurs during the switch of descriptions from
the first-order ZFC theory to the second-order theory of complete ordered fields. This results in the
appearance of the large-scale smoothness of the Universe. In the case of Rn, the only possibility is
exotic smooth R4. In this way we found an inherent reason for the 4-dimensionality of the Universe at
large scales.

We applied these methods to the spacetime around a Schwarzschild black hole. Due to the
unavoidable GR singularity present and QM description required, the smoothness of the solution is
modified at large scales. In Kruskal coordinates it results in an exotic black hole as originally discussed
in [13]. Finally, we give a concise derivation of the small observed value of the cosmological constant
and the expansion rate of the Universe. The Starobinsky Lagrangian is derived from the handle–body
structure of exotic S3 ×Σ R, Σ = Σ(2, 5, 7). The calculations are purely topological, which reflects the
power of three- and four-dimensional hyperbolic geometry.
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21. Bartoszyński, T.; Judah, H. Set Theory: On the Structure of the Real Line; A.K. Peters: Wellesley, MA, USA, 1995.
22. Li, M.; Li, X.-D.; Wang, S.; Wang, Y. Dark Energy. In Peking University-World Scientific Advance Physics Series;

World Scientific: Singapore, Singapore, 2015; Volume 1.
23. Rugh, S.E.; Zinkernagel, H. The Quantum vacuum and the cosmological constant problem. Stud. Hist.

Phil. Sci. 2002, 33, 663–705.
24. Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.;

Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results XIII. Cosmological parameters. Astron. Astrophys. 2016,
594, A13.

25. Ellis, G.F.R.; Maartens, R.; Maccallum, M.A.H. Relativistic Cosmology; Cambridge University Press:
Cambridge, UK, 2012.

26. Asselmeyer-Maluga, T.; Brans, C.H. Letter: Cosmological anomalies and exotic smoothness structures.
Gen. Rel. Grav. 2002, 34, 1767–1771.

27. Asselmeyer-Maluga, T. Smooth quantum gravity: Exotic smoothness and quantum gravity. In At the Frontier
of Spacetime; Asselmeyer-Maluga, T., Ed.; Fundamental Theories of Physics; Springer: Cham, Switzerland,
2016; Volume 183, pp. 247–308.

28. Freedman, M.H. A fake S3 ×R. Ann. Math. 1979, 110, 177–201.
29. Asselmeyer-Maluga, T.; Król, J. Inflation and topological phase transition driven by exotic smoothness.

Adv. High Energy Phys. 2014, 2014, 867460.
30. Asselmeyer-Maluga, T.; Król, J. On the Origin of Inflation by Using Exotic Smoothness. Arxiv 2016,

arXiv:1301.3628.
31. Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. 1980,

91, 99–102.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Classical Large-Scale Coordinates from Quantum Regime
	The Lattice of Projections L
	The Physics of Forcing
	Macroscopic Smoothness from L
	Schwarzschild Solution and Exotic S2R2
	FLRW Cosmology with Initial Singularity
	Discussion



