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Ultrasound experiments on acoustical activity in
chiral mechanical metamaterials
Tobias Frenzel1, Julian Köpfler1,2, Erik Jung1, Muamer Kadic1,2,3 & Martin Wegener1,2

Optical activity requires chirality and is a paradigm for chirality. Here, we present experi-

ments on its mechanical counterpart, acoustical activity. The notion “activity” refers the

rotation of the linear polarization axis of a transversely polarized (optical or mechanical)

wave. The rotation angle is proportional to the propagation distance and does not depend on

the orientation of the incident linear polarization. This kind of reciprocal polarization rotation

is distinct from nonreciprocal Faraday rotation, which requires broken time-inversion sym-

metry. In our experiments, we spatiotemporally resolve the motion of three-dimensional

chiral microstructured polymer metamaterials, with nanometer precision and under time-

harmonic excitation at ultrasound frequencies in the range from 20 to 180 kHz. We

demonstrate polarization rotations as large as 22° per unit cell. These experiments pave the

road for molding the polarization and direction of elastic waves in three dimensions by

micropolar mechanical metamaterials.
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An object is geometrically chiral if it lacks centrosymmetry,
mirror symmetries, and rotation-reflection symmetries1–3.
Chirality, or handedness, has played an important role in

physics, optics, chemistry, biology, and medicine for decades
already. Examples are optical activity4–7 and circular
dichroism8,9, exclusively right-handed DNA double-helix
strands10, exclusively left-handed neutrinos11, chiral topological
fermions12, stereochemistry13, and the effect of drugs depending
on the handedness of the underlying molecules14.

Surprisingly, chirality did not play a major role in the context
of mechanics for many years. This has started to change recently.
For example, geometrical chirality is important in plant seedpod
mechanics15. Chirality has enabled topological effects at finite
frequencies16,17, and has opened degrees of freedom beyond
Cauchy elasticity in the stationary regime18,19. Handedness in
shearing auxetics has created rigid and compliant structures20.
The reviews21–25 provide an overview on the status of the field of
mechanical metamaterials in general. Chiral phonons in quasi
two-dimensional monolayers of noncentrosymmetric tungsten
diselenide crystals have only recently been inferred from optical
spectroscopy26. However, one of the paradigms of chirality,
namely “activity” has so far only been a theoretical possibility for
generalized elastic continua27–29.

In the presence of optical activity4,7 or acoustical activity27–29,
an incident transverse linear polarization of a propagating wave
rotates: the eigenpolarizations of the chiral medium are not linear
but rather circular, with a lifted degeneracy between left- and
right-handed circular modes. Therefore, a linear incident polar-
ization must be decomposed into the two circular-polarization
eigenmodes, which propagate with different phase velocities. The
resulting phase difference accumulated during propagation leads
to a continuous rotation of the linear polarization axis versus the
propagation coordinate. Optical and acoustical activity therefore
allow, for example, to convert an incident linear polarization into
the orthogonal one. Both are reciprocal effects, hence distinct
from the nonreciprocal Faraday effect, which requires broken
time-reversal symmetry, yet does not need chirality7. Regarding
mechanics, yet a different kind of mode conversion has recently
been observed in two-dimensional centrosymmetric metamater-
ials30. There, the conversion between in-plane longitudinal

(compression) and in-plane transverse (shear) modes did not
require chirality.

In this Letter, we report the experimental observation of the
phenomenon of acoustical activity in three-dimensional (3D)
chiral polymer metamaterials by direct spatiotemporal imaging at
ultrasound frequencies, using cross-correlations of optical
microscopy images taken under synchronized stroboscopic illu-
mination. The experimental results agree well with numerical
phonon band-structure calculations and simulations for the
considered experimental geometry using finite-size samples.

Results and discussion
Beyond Cauchy elasticity. Let us start by recalling that effects of
chirality are neglected in mechanics on the level of textbook linear
Cauchy elasticity31. Plainly speaking, Cauchy continuum
mechanics can be seen as “point mechanics”32–34. Therefore,
Cauchy elasticity becomes exact if the wavelength of an elastic
wave, λ, is much larger than the crystal lattice constant, a, and if
the sample size, L, is much larger than a, too. Therefore, at least
one of the two conditions, λ/a≫1 and L/a≫1, needs to be vio-
lated to observe acoustical activity. Violating both conditions
simultaneously is expected to yield larger effects. This means that
we need to investigate the phonon band structure in the middle
between the Γ-point and the Brillouin-zone edge (by symmetry
the bands are degenerate at the Brillouin-zone edge) for beams of
finite and infinite lateral extent Lx= Ly, with the number of unit
cells Nx=Ny= Lx/a= Ly/a in the two directions perpendicular to
the wave propagation along z.

Band-structure analysis. Figure 1a shows a snapshot of a cal-
culated chiral phonon eigenmode (at wave number kz= π/(4a),
hence angular frequency ω1≈2π × 107 kHz) propagating in an
infinitely extended 3D chiral micropolar metamaterial with Nx=
Ny=Nz→∞ in the linear elastic regime. For clarity, the dis-
placements are largely exaggerated. The behavior is qualitatively
similar for other parameters. Panel b exhibits a simplified
representation and panel c the underlying chiral metamaterial
crystal unit cell (also see ref. 19), with geometrical parameters
indicated.
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Fig. 1 Chiral phonon eigenmode and unit cell. a Snapshot of a calculated chiral phonon eigenmode with eigenfrequency ω1 propagating along the z-direction
in an infinitely extended 3D chiral micropolar metamaterial crystal. For clarity, all unit cells except for one column along the propagation axis (z-axis) are
shown semitransparent and the displacements are largely exaggerated. b Simplified representation only showing the behavior of the unit cells’ centers of
mass, forming a helix that is moving along the z-axis versus time. An animation of a and b is shown in Supplementary Video 1. c Single-unit cell (cf. ref. 19).
Geometrical parameters are cubic lattice constant a= 250 μm, d/a= 0.06, r1/a= 0.32, r2/a= 0.4, and δ= 34.8°. For the bulk constituent polymer
material we have chosen the Young’s modulus E= 4.18 GPa, mass density ρ= 1.15 g cm−3, and Poisson’s ratio ν= 0.4. The wave number is kz= π/(4a)
and the angular frequency is ω1= 2π × 107 kHz, equivalent to a/λ0= 0.0095, with the wavelength λ0 of pressure waves in the bulk constituent polymer
material (cf. Fig. 2)
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Figure 2 gives an overview on the theoretical expectations for
the corresponding band structures ωn= ωn(kz)= ωn(−kz), with
the angular frequencies ωn (n= 1,2,…) and the wave number kz.
All statements concerning the character of the bands made below
are based on an investigation of the associated eigenmodes. Here,
we assume Bloch-periodic boundary conditions along the
z-direction and open boundaries of the beams along the x- and
y-direction for finite Nx=Ny (left and center column in Fig. 2).
For the limit Nx=Ny→∞ (right column in Fig. 2), we assume
Bloch-periodic boundary conditions along the x- and y-direction
as well. For a finite square-shaped cross-section Nx ×Ny, four
different bands emerge from the Brillouin-zone center. All other
bands (n ≥ 5) are of lesser importance here and are hence plotted
in gray for clarity. The lowest two modes (n= 1,2) shown in red
correspond to flexural waves with transverse circular polarization.
Here, the center of mass of any given unit cell rotates clockwise or
counter-clockwise around the wave vector k, respectively, in
circles around its rest position (cf. Fig. 1). In other words, these
modes are chiral phonons (upper row of Fig. 2). As usual for thin
plates and beams35, the flexural modes start from the Γ-point
with a parabolic dispersion. The behavior changes toward a linear
dispersion if the cross-section of the beam is successively
increased.

The absolute and the relative splitting between these two chiral
phonon bands tends to zero near the Γ–point and, by symmetry,
is also zero at the edge of the first Brillouin zone at |kz|= π/a.
Thus, maximum splitting occurs roughly around the middle of
the one-dimensional Brillouin zone, where |kz|= π/(2a) or λ/a=
4 with |kz|= 2π/λ. In analogy to optical activity, for a given
frequency ω= ω1= ω2, the splitting in wave number, Δkz, leads
to a polarization rotation angle Δφ due to acoustical activity over

propagation distance Lz given by Δφ= ΔkzLz/2. The maximum
splitting in Fig. 2 decreases with increasing beam cross-section
Nx=Ny= Lx/a= Ly/a, but remains finite in the limit Nx=
Ny→∞. This behavior is in line with our above intuitive reasoning
starting from Cauchy elasticity as well as with our previous static
experiments19. In the remainder of this Letter, we will focus on
these two chiral phonon bands, i.e., on n= 1,2.

Our analysis of phonons based on micropolar cubic-symmetry
continua32 yields that these two transverse bands live in a
subspace orthogonal to the other two bands (n= 3,4). This
statement is true for wave vectors along the three cubic principal
directions, e.g., for the z-direction. We, therefore, find several
crossings of these bands (rather than avoided crossings). Without
chirality, the character of the third (black) and fourth (blue)
bands in Fig. 2 would be that of a pure twist and that of a pure
compression wave, respectively. In the presence of chirality, their
characters are mixed. This band mixing is the direct dynamic
counterpart of our recent static experiments on metamaterials
with cubic symmetry19, in which an axial force imposed onto a
beam led to a twist of the beam. In the limit Nx=Ny→∞, the
twist mode (black) is absent because it is disallowed for Bloch-
periodic boundary conditions along the x-, y-, and z-directions.

Connection to acoustical activity. The slopes of all four modes
depend on the beam cross-section, hence on Nx=Ny. This
behavior is the counterpart of the fact that the effective Young’s
modulus in the stationary case of micropolar materials is no
longer a constant “material parameter”, but rather depends
strongly on the geometry, i.e., on the ratio Nx=Ny= Lx/a=
Ly/a18. If we switch off chirality (δ= 0 in Fig. 1a) as a control
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Fig. 2 Calculated phonon band structures for chiral metamaterial beams. The left vertical scales are in absolute units, the right scales, a/λ0, are normalized
and scalable to other parameters (cf. Fig. 1). We consider wave propagation with wave number kz in a beam which is infinitely extended along the
z-direction and which contains Nx × Ny unit cells (with Nx= Ny) in the two orthogonal directions. The three panel columns correspond to Nx= Ny= 1, 3, and
∞, respectively. The upper row is for chiral (δ= 34.8°) metamaterials beams, the lower row for achiral (δ= 0) ones. Transverse or shear-like bands are
shown in red (a lifting of degeneracy reflects acoustical activity), pressure-like modes in blue, and twist-like modes in black. The latter are absent for Nx=
Ny=∞. For clarity, higher bands not relevant here are plotted in gray. The insets illustrate the corresponding geometries. The spatial mode depicted in
Fig. 1 is highlighted by a circle. Parameters are as in Fig. 1
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calculation and use otherwise identical geometrical and con-
stituent material parameters (cf. Fig. 1), the behavior becomes
ordinary again and the slopes no longer change very much (see
lower row in Fig. 2).

For example, on the basis of the data shown for Nx=Ny= 1 in
the upper row of Fig. 2, we estimate from the wave number
splitting at about |kz|= π/(2a) an acoustical activity of 17° per
unit cell. We have confirmed this estimate by independent
numerical calculations for samples with a finite extent along the
z-direction (see Supplementary Fig. 1). Here, we excite a linearly
polarized transverse wave at the bottom of the metamaterial
beam. Nz unit cells upwards, a plate with markers allows for
monitoring the local displacement vectors versus time. Clearly,
the open end of the sample leads to reflections of the elastic
waves. However, on the way back, the polarization rotation is
reversed due to time-reversal symmetry (unlike for the Faraday
effect, see section “Introduction”). Therefore, standing waves
along the beam axis do not change the polarization rotation at the
top of the beam. Standing waves may well influence the amplitude
of the displacements at the top though. As the z-axis has fourfold
rotational symmetry, the polarization rotation does not depend
on the orientation of the incident linear polarization (see
Supplementary Fig. 2).

Measurement setup. We have designed our experiments based
on these calculations. We fabricate the polymer samples by 3D
laser nanoprinting as described previously19. The dedicated
home-built measurement setup has not been described pre-
viously: time-harmonic transverse flexural waves are excited by a
piezoelectric transducer (Physik Instrumente, PICMA Chip
Actuator). The samples are directly glued onto a dedicated holder,
which has been 3D printed onto the transducer (see electron
micrograph in Fig. 3 and Supplementary Fig. 3). The samples are
imaged from the top by a microscope objective lens (Carl Zeiss,
LD Achroplan 20×, NA= 0.4). They are stroboscopically illu-
minated by two infrared (850 nm center wavelength) light-
emitting diodes (Vishay, VSLY 3850), the current through which
is pulsed with a constant duty cycle of 1.5% (e.g., corresponding
to 125 ns pulse duration for a frequency of 120 kHz), and syn-
chronized with respect to the sinusoidal piezoelectric excitation.
In this fashion, we take snapshots of the displaced structure
versus time. By varying the time delay between excitation and
illumination, we acquire slow-motion movies of the markers on
top of the plate or at the side of the bottom of the sample. The
latter serve to control the incident wave polarization and beha-
vior. Using image cross-correlation analysis36, we detect dis-
placements that are much smaller than the wavelength of the light
used for illumination and which are much smaller than one pixel
of the complementary metal–oxide–semiconductor black/white
camera (FLIR Systems BFLY-PGE-50S5M-C) used to record the
images.

Experimental data. Example measurements merged into an
oblique-view scanning electron micrograph of a metamaterial
structure are shown in Fig. 3. The red (blue) scale bar refers to the
measured displacement vectors in the middle of the top plate (at
the side of the bottom of the sample). These data are shown for
five consecutive oscillation periods, demonstrating the reprodu-
cibility of the measurements. In this particular example, we derive
a polarization rotation of 44° (also see Supplementary Fig. 4).
These and further results are summarized in Fig. 4 (full dots) and
compared with results from the band-structure calculations
(dashed curves) and results from frequency-domain finite-sample
calculations (solid curves) already discussed above. The overall
agreement between experiment and theory is very good. All

qualitative trends are reproduced (as can be seen in Fig. 4a–c), the
rotation angle generally increases with increasing frequency. This
increasing deviation from Cauchy elasticity is expected based on
our reasoning that the fixed unit cell size increases with respect to
the wavelength with increasing frequency, moving away from the
limit of “point mechanics”. This behavior must not be mis-
interpreted in terms of a resonance. It also occurs in generalized
continuum theories27–29, which do not account for resonances.
Figure 4a additionally demonstrates that the rotation angle is
maximum for slender beams composed of only a single-unit cell
in the cross-section (Nx=Ny= 1). It decreases toward a certain
finite level versus increasing beam cross-section toward a 3D bulk
metamaterial (Nx=Ny= L/a≫ 1). The rotary power stays finite
in the bulk (see dashed black curve) because the unit cell size a is
finite compared to the wavelength λ, again deviating from the
limit of “point mechanics”. Figure 4b, c shows that the rotation
angle increases versus beam length or height Nz, regardless of the
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Fig. 3 Oblique-view electron micrograph with overlaid measurement. The
sample contains Nx= Ny= 3 and Nz= 12 unit cells (scale bar: 400 μm). A
piezoelectric transducer excites the sample bottom. Top-view optical
micrographs are taken under delayed stroboscopic illumination versus time
delay. Displacement vectors are extracted by using image cross-correlation
analysis. Results for the bottom side of the sample (blue, multiplied by a
factor of 5 × 103) and for the middle of the top of the sample (red,
multiplied by a factor of 104) are blended into the electron micrograph. For
both cases, five oscillation periods are depicted to emphasize the
reproducibility of the experiments (also see Supplementary Fig. 4). From
these data, we derive a rotation of linear polarization due to acoustical
activity of 44°. Here, the excitation frequency is 160 kHz, all other
parameters are as in Figs. 1 and 2. Results from many different similar
experiments on different samples are summarized in Fig. 4
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beam cross-section (which is different in b and c). This behavior
is analogous to the rotation angle in optical activity increasing
proportionally with the propagation coordinate.

Comparison with theory. The calculations for finite metama-
terial samples shown by the solid curves in Fig. 4 exhibit weak
wiggles superimposed on a monotonous behavior. We have
traced their origin back to mass-spring wobbling resonances, with
the mass given mainly by the top plate. The wobbling eigen-
frequency decreases with increasing total weight of the top plate,
hence it decreases with increasing beam cross-section. Due to the

sample chirality, the wobbling motion induces an additional
polarization rotation, which is an artifact in the sense that it does
not occur in the band-structure calculations (which refer to
Nz→∞). The behavior near the wobbling resonances depends on
whether damping is accounted for. In the calculations shown in
Fig. 4, we have added a finite imaginary part to the polymer’s
Young’s modulus according to E= E'+ iE''= 4.18 GPa+ i0.20
GPa. This complex value has been obtained from independent
experiments on tuning forks made by the same 3D laser nano-
printing process under comparable conditions and measured at
comparable excitation frequencies (see Supplementary Fig. 5). For
comparison, Supplementary Fig. 6 shows computations for E''=
0. Apart from the vicinity of the artifact resonances, the observed
polarization rotation does not depend on E''. Intuitively, damping
reduces the amplitudes of all polarization components alike;
therefore, it changes neither the polarization state nor its evolu-
tion, making acoustical activity a robust phenomenon.

In conclusion, we have experimentally demonstrated the
phenomenon of acoustical activity, the mechanical counterpart
of optical activity. Based on generalizations of Cauchy elasticity,
acoustical activity in chiral continua has previously been
predicted theoretically. Our ultrasound experiments on 3D chiral
mechanical metamaterials reveal linear polarization rotations as
large as 22° per metamaterial unit cell. These chiral degrees of
freedom provide an unprecedented control of the polarization of
elastic waves in three dimensions. By scaling the metamaterial
lattice constant a, a large range of operation frequencies is
accessible.

Methods
Sample fabrication. We fabricate the polymer samples by 3D laser nanoprinting
(Nanoscribe GmbH, Photonics Professional GT) using a commercially available
photoresist (IP-S, Nanoscribe GmbH). During the printing process a 25× objective
lens (numerical aperture NA= 0.8, Carl Zeiss) was dipped directly into the pho-
toresist. Underlying 3D models were created in STL-file format using COMSOL
Multiphysics (COMSOL Inc.) and further processed using Describe (Nanoscribe
GmbH). Therein, the 3D models were split into lines with a horizontal distance
between adjacent lines of 0.3 μm and a vertical distance of 0.7 μm between adjacent
planes. The scanning of the galvanometric mirrors led to a laser focus speed of
0.1 ms−1, and the laser power was set to 45% of the maximum output power. To
remove the unexposed photoresist, the samples were first placed in a bath of mr-
Dev 600 (20 min), followed by a bath of acetone (2 min) and finally placed in a
bath of isopropanol (20 min). Afterwards, the sample was ultraviolet cured for
20 min.

Finite-element method (FEM) band-structure and eigenmode calculations. For
the finite-element band-structure calculations ω(kz), we solved the eigenvalue
problem using COMSOL multiphysics. We used a three-dimensional model typi-
cally meshed into a few million tetrahedra and applied second-order ansatz
functions (MUMPS solver). In the case of the infinite crystal (Nx=Ny=Nz=∞),
the cubic unit cell as shown in Fig. 1c was implemented with Bloch-periodicity on
all sides of the cube. In the cases of finite footprints (Nx=Ny= 1,2,3,5 and Nz=∞)
Nx ×Ny × 1 unit cells were implemented. Bloch boundary conditions were only
applied along the z-direction, whereas all other boundaries were left open (i.e.,
traction free). A linear elastic material was assumed with Young’s modulus E=
4.18 GPa, a Poisson’s ratio ν= 0.4, and a mass density ρ= 1.15 g cm−3. In order to
isolate the structural properties of the unit cell from the ones of the constituent
material (Young’s modulus, Poisson’s ratio, and mass density), the left vertical
frequency scale f was converted to a/λ0 (right vertical scale). Here, λ0 is the
wavelength of the constituent’s longitudinal mode, given by c/f, with c being the

phase velocity of the longitudinal mode c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð1�νÞ
ρð1�2vÞð1þνÞ

q

.

Finite-structure FEM calculations. We deduced the polarization rotation angle of
the finite structures containing Nx ×Ny ×Nz unit cells by solving the eigenvalue
problem for a given frequency ω using COMSOL multiphysics. As in the experi-
ment, a plate with the same footprint Nxa ×Nya as the structure and with a
thickness of 10 μm was attached to the top. We prescribed a displacement at the
bottom of the metamaterial structure. All other boundaries were left open (i.e.,
traction free). The polarization of the eigenmode was calculated by averaging the
displacement field components ux and uy over a square with side length 3

4 ´ a at the
center of the top plate. This averaging size is comparable to the distance between
the positions of the markers tracked in the experiment. A linear elastic material was

0

100

200

R
ot

at
io

n 
an

gl
e 

in
 °

Frequency f in kHz

0

100

200

300

400

R
ot

at
io

n 
an

gl
e 

in
 °

400

0

50

100

150

200

R
ot

at
io

n 
an

gl
e 

in
 °

Band-structure calculations

Finite-structure FEM calculations

Measurement chiral/achiral structure

b

a

c

0 50 100 150 200

300

Nx = Ny = 1

Nz = 6

Nz = 12

Nz = 18

Nz = 6

Nz = 12

Nz = 18

Nx = Ny = 2

Nx = Ny = 3

Nx = Ny = 5

Nx = Ny = ∞

Fig. 4 Measurements and calculations of acoustical activity. The rotation
angle of an incident linear polarization upon propagation of a transverse
elastic (flexural) wave is obtained from measurements (full dots)
analogous to the example shown in Fig. 3 and plotted versus excitation
frequency f. Results from band-structure calculations (cf. Fig. 2) are
additionally shown as dashed curves, results from frequency-domain finite-
sample calculations as solid curves (here E= E'+ E''= 4.18 GPa+ i0.20
GPa). a Rotation angle versus excitation frequency f for different beam
cross-sections Nx= Ny and fixed beam height Nz= 12. b Same as a, but for
fixed beam cross-section Nx= Ny= 3 and different heights Nz. c As b, but
Nx=Ny= 1. The miniatures on the right-hand side, which are colored
according to the experimental data points, illustrate the parameter
variations. The largest measured rotation is 22° per unit cell for Nx=Ny= 1
and f=ω/2π= 180 kHz. Achiral control samples show zero polarization
rotation within the experimental error (see open blue dots in (b))
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assumed with a complex-valued Young’s modulus E= 4.18 GPa+ i0.20 GPa, a
Poisson’s ratio ν= 0.4, and a mass density ρ= 1.15 g cm−3. The only exception are
the dots in Fig. S6, where we have used E= 4.18 GPa (with zero imaginary part) for
comparison.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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