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ON A THIN FILM MODEL WITH INSOLUBLE SURFACTANT

GABRIELE BRUELL AND RAFAEL GRANERO-BELINCHÓN

Abstract. This paper studies the existence and asymptotic behavior of global weak solutions
for a thin film equation with insoluble surfactant under the influence of gravitational, capillary,
and van der Waals forces. We prove the existence of global weak solutions for medium sized
initial data in large function spaces. Moreover, exponential decay towards the flat equilibrium
state is established, where an estimate on the decay rate can be computed explicitly.

1. Introduction

Surfactant is the short form for surface active agent and is a substance which – in contact
with a fluid – reduces surface tension. The induced dynamic is twofold: On the one hand, the
resulting surface tension gradients influence the evolution of the thin film; on the other hand, the
surfactant speads along the surface. The latter effect is known as Marangoni effect. Naturally,
the surfactant induced dynamics are of particular interest in connection with thin fluid films,
where surface tension forces have a very important impact. In particular, the interest in thin
film equations with a layer of surfactant on the surface is motived by various applications. For
instance coating flow technology, film drainage in emulsions, foams and medical treatment of
lungs of premature infants.

The present work studies the dynamics of a viscous, incompressible, Newtonian thin film over a
flat bottom equipped with a layer of insoluble surfactant on the free surface. Thus, to study the
full problem on has to consider a free boundary problem for the Navier-Stokes equations coupled
with an advection-diffusion equation on the free surface. As this is a challenging issue, a common
approach to simplify the problem is to consider the lubrication approximation to derive evolution
equations for the film height and the surfactant concentration which capture the behavior and the
main properties of the full free boundary problem. Pioneering works in this direction in absence
of surfactant effects are due to Greenspan [32], Constantin, Dupont, Goldstein, Kadanoff, Shelley
& Zhou [13], Bernis & Friedman [4], Beretta, Bertsch & Dal Passo [3] and Bertozzi & Pugh [5].
Also, Escher, Matioc & Matioc [23] considered the flow in porous media (see also Escher &
Matioc [25], Matioc [39], Escher, Laurençot & Matioc [21], Laurençot & Matioc [35–38] and
Bruell & Granero-Belinchón [10]) while the Stokes flow was considered by Escher, Matioc &
Matioc [24] (see also Escher & Matioc [26] and Bruell & Granero-Belinchón [10]). A more recent
reference is Pernas-Castaño & Velázquez [40], where the authors study the evolution of the
interface between two different fluids in two concentric cylinders when the velocity is given by
the Navier-Stokes equation and one of the fluids is thin.

Some of the main works on the evolution of a thin film with insoluble surfactant are the ones
by Borgas & Grotberg [6], Gaver & Grotberg [29] and Jensen & Grotberg [34]. Under certain
assumptions, Jensen & Grotberg [34] applied the lubrication approximation and cross-sectional
averaging to derive the following system of evolution equations for the film height h = h(t, x)
and the surfactant concentration Γ = Γ(t, x):
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Figure 1. Scheme of a thin film flow with insoluble surfactant

Here, ΩT := (0, T )×Ω denotes the time-space domain for the unknown functions h and Γ, with
Ω ⊂ R being an open, bounded interval. The system (1) is supplemented with initial conditions

h(0, x) = h0(x) and Γ(0, x) = Γ0(x) for all x ∈ Ω,

where h0 and Γ0 are given functions and boundary conditions

∂xh = ∂xΓ = 0, S∂3
xf = 0 for all x ∈ ∂Ω.

The appearing parameters represent a modified gravitational constant (G), surface tension coef-
ficient (S), Hamaker constant (A), which corresponds to the effects of van der Waals forces, and
surface diffusion coefficient (D). Moreover, σ is the constitutive equation of state relating the
surface tension to the surfactant concentration. As the presence of surfactant reduces surface
tension, σ is assumed to be positive and nonincreasing. A commonly used description for the
dependence of the surface tension on the surfactant is given by (cf. [6, 29,42])

σβ(s) := (β + 1)

[
1− s+

(
β + 1

β

) 1
3

s

]−3

− β, s ∈ [0, 1]

for β ∈ (0,∞). For simplicity reasons, in the present work, we assume that σ is given by the
limit for β →∞ in σβ, that is

σ(s) = 1− s, s ∈ [0, 1].

This assumption is also used in applications and numerical investigations; see for instance [1,2,
33,44,45].
Let us mention that the scaling Jensen and Grotberg used for the surfactant concentration is
given by

Γ(t, x) 7→ Γ−1
m Γ(t, x),

where Γm > 0 is the so-called critical micelle concentration. If the surfactant concentration
Γ exceeds the value Γm, the molecules form micelles and thus there is no further decrease of
surface tension to perceive. Consequently, it is natural to assume that the initial surfactant
concentration Γ0 satisfies 0 ≤ Γ0 ≤ 1.

From the analytical point of view, the system (1) includes many challenges. Notice that the
evolution equations in (1) form a system of two strongly coupled, degenerate, parabolic partial
differential equations. Under the assumption that all the appearing parameters G,S,A, and
D are positive, the degeneracy occurs in the equation for the film height, when h approaches
zero, i. e. when the surface touches the bottom. Moreover, (1) is a coupled system of mixed
orders having cross diffusive terms. While the equation for the surfactant concentration Γ is an
avection-diffusion equation of second order, the equation for the film height h is of fourth order.
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Notice that, if capillary effects are neglected (S = 0), then the system is of second order in both
equation. In our considerations, we are going to consider both cases: The gravity driven film
(S = 0) and the capillary driven film (S > 0).

Even if during the last decades modeling as well as numerical investigations for the thin film
equation with surfactant have attracted lots of attention (see for instance [1, 2, 16, 29, 33, 34, 44]
and the references therein), the rigorous analytical studies have started recently. Existence of
local solutions for a thin film equation with insoluble surfactant driven by Marangoni forces
only (G = S = A = D = 0) has been studied by Renardy [41]. In absence of capillary
and van der Waals forces (S = A = 0), the authors Escher, Hillairet, Laurençot & Walker
[18] used lubrication approximation to derive a system of differential equations describing the
evolution of a thin film with soluble surfactant under the influence of Marangoni and gravitational
forces. Moreover, they proved local well-posedness in the space of square integrable functions
L2 by means of semigroup theory as well as asymptotic stability with exponential decay of the
equilibrium. We would like to emphasize that their stability result is stated for positive initial
data in the L2-based Sobolev space H2. The result shows in particular, that starting with H2

data close to the flat steady state there exists a unique global strong solution. A similar result for
a two-phase thin film equation with insoluble surfactant was shown by Bruell [7] for the gravity
(S = A = 0) as well as for the capillary driven film (G = A = 0). Due to the degeneracy of the
equation with respect to the film height, it is natural to expect that in general strong solutions
exist only locally in time. The existence of nonnegative global weak solutions for the thin film
equation with insoluble surfactant was proved by Escher, Hillairet, Laurençot & Walker [17] for
the gravity driven thin film (S = A = 0), and [19] for the corresponding capillary driven film
(G = A = 0) and by Bruell [8] for the two-phase thin film equation with insoluble surfactant
under the influence of capillary forces (see also [12,28]). The main ingredient in all these works
concerning the existence of global weak solutions is a regularization argument to overcome the
degeneracy, followed by a two-step compactness argument based on a priori estimates provided
by an energy functional for the system. Finally, we would like to mention that traveling wave
solutions of a gravity thin film equation with insoluble surfactant (S = A = 0) were studied by
Escher, Hillairet, Laurençot & Walker [20] (see also [22]).

1.1. Aim and outline of the present paper. The aim of the present work is to prove the
existence of global weak solutions of (1) under fairly low regularity assumptions with respect
to the initial data. Similar as in the companion paper [10], we work in scales of Wiener spaces.
Exploiting the algebra inequality verified by the norms of the underlying spaces, we show a priori
energy estimates in Wiener algebra, which guarantee the existence of global weak solutions and
imply the exponential decay towards the flat equilibrium state. Moreover, the decay rate can be
bounded by explicit constants, which depend on the parameters of the system and the size of the
initial data. In addition we prove uniqueness of the weak solutions provided that they belong to
a (slightly) higher regularity class. A similar approach has been employed before for the Muskat
problem [14,15,27] (and the references therein) for the doubly parabolic Keller-Segel system [11],
PDEs modelling small steepness porous flow [31] and the evolution of crystal surfaces [30]. We
consider two cases: The gravity driven film, where surface tension effects are neglected (S = 0),
which leads to a coupled system of second order equations; and the capillary driven film, where
we take surface tension effects into account (S > 0). In the latter case the evolution equations
(1) build a coupled system of mixed orders. Let us emphasize that in our work we take all acting
forces (gravity, surface tension, van der Waals) into account. To the best of our knowledge this
is the first analytical existence result for the full system (1) where G,S,A,D > 0. The outline
of the paper is as follows: We start in Section 2 with some preliminaries and auxiliary results
concerning the scale of Wiener spaces. In Section 3 we reformulate the problems in terms of the
distance to the (flat) equilibrium and state our main results. Eventually Sections 4 and 5 are
devoted to the proofs of the main theorems for the gravity (S = 0) and capillary (S > 0) driven
flow, respectively.
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2. Preliminaries

We start by introducing the functional analytical framework. Let T := [−π, π). For n ∈ N we
denote by

Wn,p(T) =
{
u ∈ Lp(T) such that ‖u‖pWn,p(T) := ‖u‖pLp + ‖∂nxu‖

p
Lp <∞

}
(2)

the standard Lp-based Sobolev spaces on T. We recall the expression of the k−th Fourier
coefficient and the Fourier series of a 2π−periodic integrable function u,

û(k) =
1

2π

∫
T
u(x)e−ixkdx, u(x) =

∑
k∈Z

û(k)eixk.

We introduce the Wiener spaces Ȧs(T) as

Ȧs(T) =

{
u ∈ L1(T) such that ‖u‖Ȧs(T) :=

∑
k∈Z
|k|s|û(k)| <∞

}
. (3)

We note that Ȧ0(T) = A(T) is a Banach algebra and {Ȧs(T) | s ≥ 0} form a Banach scale.
Furthermore, the following inequalities hold true:

• Let p ≥ q ≥ 0, then

‖f‖Ȧq ≤ ‖f‖Ȧp for all f ∈ Ȧp(T). (4)

• Let s ∈ {0} ∪ [1,∞) be a fixed parameter and f, g ∈ Ȧs(T), then, due to the convexity
of xs in this range,

‖fg‖Ȧs ≤ 2s−1
∥∥f‖Ȧs‖g‖Ȧ0 + ‖f‖Ȧ0‖g‖Ȧs

)
≤ 2s‖f‖Ȧs‖g‖Ȧs , (5)

while, as a consequence of subadditivity of xs, for s ∈ (0, 1), we have

‖fg‖Ȧs ≤ 2‖f‖Ȧs‖g‖Ȧs .
• Due to the Hölder inequality, we have the following interpolation inequality

‖f‖Ȧsθ ≤ ‖f‖
1−θ
Ȧ0
‖f‖θ

Ȧs
for all 0 < θ < 1. (6)

3. Reformulation of the problem and main results

3.1. Reformulation. In what follows we assume that σ(s) = 1− s. Then, system (1) is given
by

∂th = −∂x
[
−h

2

2
∂xΓ− G

3
h3∂xh+

S
3
h3∂3

xh+A∂xh
h

]
, in ΩT (7a)

∂tΓ = −∂x
[
Γ

(
−h∂xΓ− G

2
h2∂xh+

S
2
h2∂3

xh+
3A
2

∂xh

h2

)
−D∂xΓ

]
, in ΩT , (7b)

with initial conditions

h(0, x) = h0(x) and Γ(0, x) = Γ0(x) for all x ∈ Ω,

and boundary conditions

∂xh = ∂xΓ = 0, S∂3
xf = 0 for all x ∈ ∂Ω. (8)

The problem is posed on a spatial interval Ω = (0, L) with the above lateral boundary conditions.
However, without lossing generality, instead of considering an interval and no-flux boundary
conditions, we are going to consider periodic solutions h,Γ of (7) on a flat torus T (which can be
identified with [−π, π)). This generalization actually simplifies our approach and it was already
used in [10] for similar problems. Let us explain why our formulation in the flat torus is actually
equivalent to the original problem posed on the interval (0, L). If (h0,Γ0) are the initial data on
an interval Ω = [0, L] satisfying the boundary conditions (8), we set

h̄0(x) := h0(|x|), Γ̄0(x) := Γ0(|x|) for x ∈ [−L,L].
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In view of the symmetry of (7), the evenness of initial data is preserved and any solution of (7)
on [0, L] with initial data (h0,Γ0) satisfying the boundary conditions (8), can be identified with
the corresponding solution to even initial data (h̄0, Γ̄0) on the periodic cell [−L,L] restricted to
the half-domain [0, L]. In the sequel we drop the bar notation and consider periodic solutions
of (7) defined on T with initial conditions

h(0, x) = h0(x) and Γ(0, x) = Γ0(x) for all x ∈ T,

where h0,Γ0 are given periodic functions. It follows immediately from the structure of the
equations (7) that the initial mass is preserved in time:

Lemma 1 (Conservation of mass). Let (h,Γ) be a solution of (7) on a time interval [0, T ), then∫
T
h(t, x) dx =

∫
T
h0(x) dx and

∫
T

Γ(t, x) dx =

∫
T

Γ0(x) dx for all t ∈ [0, T ).

If (h0,Γ0) are nonnegative bounded initial data, we set

h] =
1

2π

∫
T
h0(x)dx and Γ] =

1

2π

∫
T

Γ0(x)dx.

The constants h] and Γ] represent the mean of the initial data and they are a steady state of
the system (7). In our studies we consider the evolution of the distance of a solution (h,Γ) to
the steady state (h],Γ]). For this purpose, we define new unknowns

f = h− h], Θ = Γ− Γ], (9)

which have zero mean. In the new variables (9), the system (7) can be rewritten as

∂tf −
h2
]

2
∂2
xΘ +

(
A
h]
− G

3
h3
]

)
∂2
xf +

S
3
h3
]∂

4
xf =

4∑
j=1

Nj , in (0, T )× T (10a)

∂tΘ− (h]Γ] +D) ∂2
xΘ +

(
3AΓ]
2h2

]

− G
2

Γ]h
2
]

)
∂2
xf +

S
2

Γ]h
2
]∂

4
xf =

8∑
j=5

Nj , in (0, T )× T (10b)

with initial conditions

f(0, x) = f0(x) and Θ(0, x) = Θ0(x) for all x ∈ Ω,

where f0(x) = h0(x) − h] and Θ0(x) = Γ0(x) − Γ] are the initial displacement functions from
the flat states h] and Γ], respectively. The nonlinear terms Ni, i = 1, . . . , 8, on the right hand
side of (10) are defined as

N1 = ∂x

[(
f2

2
+ fh]

)
∂xΘ

]
,

N2 = ∂x

[
G
3

(
3h2

]f + 3f2h] + f3
)
∂xf

]
,

N3 = −∂x
[
S
3

(
3h2

]f + 3f2h] + f3
)
∂3
xf

]
,

N4 = ∂x

A f

h2
] (1 + f

h]
)
∂xf

 ,
N5 = ∂x [(Γ]f + Θh] + Θf) ∂xΘ] ,

N6 = ∂x

[
G
2

(
Γ]f

2 + 2Γ]h]f + Θh2
] + Θf2 + 2Θh]f

)
∂xf

]
,

N7 = −∂x
[
S
2

(
Γ]f

2 + 2Γ]h]f + Θh2
] + Θf2 + 2Θh]f

)
∂3
xf

]
,
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N8 = ∂x

[
Θ

3A
2h2

]

(f2 + 2h]f)∂xf

(h] + f)2
+ Γ]

3A
2h2

]

(f2 + 2h]f)∂xf

(h] + f)2
−Θ

3A
2h2

]

∂xf

]

= ∂x

[
3A
2

2fΓ]h] + f2Γ] −Θh2
]

h2
] (f + h])2

∂xf

]
.

Note that, for |r| < 1, we have

1

1 + r
=
∞∑
j=1

(−1)j+1rj−1, (11)

1

(1 + r)2 =
∞∑
j=1

j(−1)j+1rj−1, (12)

1

(1 + r)3 =
1

2

∞∑
j=2

j(j − 1)(−1)jrj−2. (13)

Consequently, under the assumption that

‖f‖L∞ ≤ ‖f‖Ȧ0 < h], (14)

we can use (11) and (12) and write

N4 = A
[(

f

h2
]

∂2
xf +

(
∂xf

h]

)2
) ∞∑
j=1

(−1)j+1

(
f

h]

)j−1

− f

h3
]

(∂xf)2
∞∑
j=1

j(−1)j+1

(
f

h]

)j−1 ]
.

(15)

Similarly, invoking (12) and (13) we have that

N8 = ∂x

[
3A
2

2fΓ]h] + f2Γ] −Θh2
]

h2
] (f + h])2

∂xf

]

=
3A
2h4

]

2fΓ]h] + f2Γ] −Θh2
](

f
h]

+ 1
)2 ∂2

xf +
2∂xfΓ]h] + 2f∂xfΓ] − ∂xΘh2

](
f
h]

+ 1
)2 ∂xf


− 3A
h4
]

2fΓ]h] + f2Γ] −Θh2
](

f
h]

+ 1
)3

(∂xf)2

h]


=

3A
2h4

]

[(
2fΓ]h] + f2Γ] −Θh2

]

)
∂2
xf +

(
2∂xfΓ]h] + 2f∂xfΓ] − ∂xΘh2

]

)
∂xf

] ∞∑
j=1

j(−1)j+1

(
f

h]

)j−1

− 3A
h4
]

[(
2fΓ]h] + f2Γ] −Θh2

]

) (∂xf)2

h]

]
1

2

∞∑
j=2

j(j − 1)(−1)j
(
f

h]

)j−2

. (16)

We fix the initial data h0, Γ0 for problem (7). Thereby, the constants h] and Γ] are uniquely
determined and we are going to state our results in terms of f ,Θ for (10).

3.2. Main results. In what follows the constants G,A, representing the gravitational and van
der Waals forces as well as the diffusion coefficient D are assumed to be strictly positive.

Definition 1. Set ζ = 3 for the capillary driven flow (S > 0) and ζ = 1 for the gravity driven

flow (S = 0).We say that (f,Θ) ∈
(
L1(0, T ;W ζ,1(T))

)2
is a weak solution of (10) on [0, T )
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corresponding to initial data (f0,Θ0) if and only if

−
∫
T
f0φ(0)dx−

∫ T

0

∫
T
f∂tφdxdt+

∫ T

0

∫
T
∂2
xφ

(
−
h2
]

2
Θ +

(
A
h]
− G

3
h3
]

)
f

)
dxdt

+

∫ T

0

∫
T
∂4
xφ
S
3
h3
]fdxdt+

4∑
j=1

∫ T

0

∫
T
∂−1
x Nj∂xφdxdt = 0

and

−
∫
T

Θ0ψ(0)dx−
∫ T

0

∫
T

Θ∂tψdxdt+

∫ T

0

∫
T
∂2
xψ

(
− (h]Γ] +D) Θ +

(
3AΓ]
2h2

]

− G
2

Γ]h
2
]

)
f

)
dxdt

+

∫ T

0

∫
T
∂4
xψ
S
2

Γ]h
2
]fdxdt+

8∑
j=5

∫ T

0

∫
T
∂−1
x Nj∂xψdxdt = 0

for all (φ, ψ) ∈ C∞c ([0, T )× T), where ∂−1
x denotes the operator given by ∂̂−1

x u(n) = − i
n û(n).

Let r, s ≥ 0. For (f,Θ) : [0, T )→ Ȧr(T)× Ȧs(T), we define the following functional:

E r
s (f,Θ) : [0, T )→ [0,∞), E r

s (f,Θ)(t) := ‖f(t)‖Ȧr + ‖Θ(t)‖Ȧs . (17)

We start by formulating our main result for the gravity driven flow, that is when S = 0. To this
end, let us define

Λ1(t) := h] +
19h2

]G
3

+
A
h2
]

(
1− E 0

0 (f,Θ)(t)

h]

)−1 [
2 +

(
1− E 0

0 (f,Θ)(t)

h]

)−1 ]
+ Γ]

+ G
(
4Γ]h] + 5h2

]

)
+

3A
2h3

]

(
1− E 0

0 (f,Θ)(t)

h]

)−2 {
7Γ] +

3

2
h] +

(
1− E 0

0 (f,Θ)(t)

h]

)−1

4Γ]

}
,

(18)

Λ2(t) :=
13

2
h] + 2Γ] + Gh2

] +
3A
2h3

]

(
1− E 0

0 (f,Θ)(t)

h]

)−2
h]
2
, (19)

and the constants

C1 :=
G
3
h3
] −
A
h]
−

∣∣∣∣∣3AΓ]
2h2

]

− Γ]h
2
]

G
2

∣∣∣∣∣ , (20)

C2 := h]Γ] +D −
h2
]

2
. (21)

Then, we have the following result:

Theorem 1 (Global existence for S = 0). Let f0 ∈ Ȧ0(T),Θ0 ∈ Ȧ0(T) be nontrivial initial data
for (10) such that

E 0
0 (f0,Θ0) < min{h],Γ]}.

Assume that C1,C2 > 0. If

γ1 := C1 − Λ1(0)E 0
0 (f0,Θ0) > 0,

γ2 := C2 − Λ2(0)E 0
0 (f0,Θ0) > 0,

then there exists at least one global solution (f,Θ) of (10) in the sense of Definition 1 with
regularity

(f,Θ) ∈
(
L

2
r (0, T ;W r,∞(T)) ∩ L1

(
0, T ;C1+α(T)

)
∩ L2(0, T ;H2(T))

)2
,
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for any r ∈ [0, 2), α ∈ [0, 1
2) and T > 0. Moreover, the weak solution satisfies the following

exponential decay:

‖f(t)‖L∞ + ‖Θ(t)‖L∞ ≤ E 0
0 (f0,Θ0)e−δt,

where

δ = min{γ1, γ2} > 0. (22)

Furthermore, if the solution (f,Θ) satisfies the regularity

(f,Θ) ∈
(
L1
(

0, T ; Ȧ2(T)
))2

,

then the weak solution is unique.

Remark 1. The condition E 0
0 (f0,Θ0) < min{h],Γ]} in Theorem 1 implies in particular that

‖f‖L∞ < ‖f0‖Ȧ0 < h] and ‖Θ‖L∞ < ‖Θ0‖Ȧ0 < Γ].

This corresponds to a positivity condition of h0 and Γ0 and ensures that (14) is initially satisfied.

Remark 2. Note that the size restriction is explicitly computable and that the initial data do
not need to be small in Sobolev spaces (one should compare the results in this paper with the
global result in [9]). In particular, we prove the existence global weak solutions and their decay
towards the flat state for highly oscillating initial data. Let us further explain this with an explicit
example. Consider the case where van der Waals forces are neglected, that is A = 0 and set
G = D = 1. We choose the initial data (h0,Γ0) to be

h0(x) = 1 + µ sin(1000x) and Γ0(x) =
1

2
+ µ cos(1000x),

for 0 < µ < 1
4 . Then,

h] = 1, Γ] =
1

2
, E 0

0 (h0 − h],Γ0 − Γ]) = 2µ,

and the constants C1,C2,Λ1(0), and Λ2(0) are given by

C1 =
1

12
, C2 = 1, Λ1(0) =

89

6
, Λ2(0) =

17

2
.

Then, for µ < 1
356 ∼ 0.003, this family of initial data satisfies the hypotheses and Theorem 1

guarantees the existence of a global weak solution (h,Γ) corresponding to the initial data (h0,Γ0).
Moreover the solution decays exponentially towards the flat equilibrium and

‖h(t)− h]‖L∞ + ‖Γ− Γ]‖L∞ ≤ 2µe−δt,

where δ = 1
12 −

89
3 µ. Furthermore, observe that

‖h0‖Ċ1 = ‖Γ0‖Ċ1 = O(1) while ‖h0‖H2 = ‖Γ0‖H2 = O(103).

Next we formulate our main theorem for the capillary driven flow, that is for the full system (7)
with S > 0. In addition to (18)–(21), we define

Λ3 :=
S
2

(14h]Γ] + 4h2
] ) +

19

3
Sh2

] , (23)

C3 :=
S
3
h3
] − Γ]h

2
]

S
2
. (24)

Then, we have the following result:
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Theorem 2 (Global existence for S > 0). Let f0 ∈ Ȧ0(T),Θ0 ∈ Ȧ0(T) be nontrivial initial data
for (10) such that

E 0
0 (f0,Θ0) < min{h],Γ]}.

Assume that C1,C2,C3 > 0. If

γ1 := C1 − Λ1(0)E 0
0 (f0,Θ0) > 0,

γ2 := C2 −

(
Λ2(0) +

Sh2
]

2

)
E 0

0 (f0,Θ0) > 0,

γ3 := C3 − Λ3E
0
0 (f0,Θ0) > 0,

then there exists at least one global solution (f,Θ) of (10) in the sense of Definition 1 with
regularity

f ∈L
4
s (0, T ;W s,∞(T)) ∩ L1

(
0, T ;C3+α(T)

)
∩ L2

(
0, T ;H2(T)

)
, s ∈ [0, 4),

Θ ∈L
4
r (0, T ;W r,∞(T)) ∩ L1

(
0, T ;C1+α(T)

)
∩ L2

(
0, T ;H1(T)

)
, r ∈ [0, 2)

for any T and 0 ≤ α < 1
2 . Moreover, the weak solutions satisfies the following exponential decay:

‖f(t)‖L∞ + ‖Θ(t)‖L∞ ≤ E 0
0 (f0,Θ0)e−δt,

where
δ = min{γ1, γ2, γ3} > 0. (25)

Furthermore, if the solution (f,Θ) satisfies the regularity

(f,Θ) ∈ L1
(

0, T ; Ȧ4(T)
)
× L1

(
0, T ; Ȧ2(T)

)
,

then the weak solution is unique.

The remainder or this paper is devoted to the proof of the above theorems.

4. Proof of Theorem 1: Global existence and decay when S = 0

Let us start by outlining the steps of the proof. First, we provide in Subsection 4.1 some a

priori estimates of a solution (f,Θ) ∈
(
C1(0, T ; Ȧ0(T))

)2
of (10). Under the assumptions on

the initial data in Theorem 1, which in particular require that

E 0
0 (f0,Θ0) < min{h],Γ]},

we will show that the solution (f,Θ) preserves this estimate, that is

E 0
0 (f,Θ)(t) < min{h],Γ]} for all 0 < t < T.

Notice that the above inequality implies that

‖f(t)‖Ȧ0 ≤ E 0
0 (f,Θ)(t) < min{h],Γ]} < h] for all 0 < t < T,

‖Θ(t)‖Ȧ0 ≤ E 0
0 (f,Θ)(t) < min{h],Γ]} < Γ] for all 0 < t < T.

Hence, the positivity conditions for h and Γ,

‖f(t)‖L∞ ≤ ‖f(t)‖Ȧ0 < h], ‖Θ(t)‖L∞ ≤ ‖Θ(t)‖Ȧ0 < Γ]

are preserved for all t ∈ [0, T ). Then we obtain that, for small enough initial energy E 0
0 (f0,Θ0),

the following inequality holds:

d

dt
E 0

0 (f,Θ)(t) + δE 2
2 (f,Θ)(t) ≤ 0

for some δ > 0 dependent on the initial data. This inequality implies that a local solution
(f,Θ) can not leave a ball in (L∞((0, T ); Ȧ0(T)) ∩ L1(0, T ; Ȧ2(T)))2; thus, there is no finite
time singularity in these functional spaces. In Subsection 4.2 we implement a standard Galerkin
approximation argument to prove the existence of global weak solutions. The existence of a
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classical local solution of the Galerkin approximated sytem is guaranteed by the Picard–Lindelöf
Theorem. These approximated solutions (fM ,ΘM )M∈N are analytic. In particular, they satisfy

(fM ,ΘM ) ∈
(
C1([0, TM ); Ȧ0(T))

)2
,

where TM > 0 denotes the maximal time of existence of (fM ,ΘM ). The a priori estimates from
before ensure the global existence of the approximated solutions and provide the necessary a
priori bounds in order to use compactness arguments and pass to the limit M → ∞, which
yields a global weak solution of (10) in the sense of Definition 1. Now, let (fM ,ΘM ) be such
approximate solution corresponding to the initial data (f0,Θ0), which satisfy the hypothesis of
Theorem 1, then, in view of the Poincaré-like inequality in (4), we see that E 0

0 (fM ,ΘM )(t) is a
Lyapunov functional, i.e., that

d

dt
E 0

0 (fM ,ΘM )(t) + δE 0
0 (fM ,ΘM )(0) ≤ 0 for all 0 < t <∞.

The latter implies the exponential decay towards the equilibrium (f∗,Θ∗) = (0, 0) for the global
weak solution (see Subsection 4.3). Eventually, in Subsection 4.4 it is shown that a global weak
solution in (

L1(0, T ; Ȧ2(T))
)2

is unique.

4.1. A priori estimates in Ȧ0(T): Let T ∈ (0,∞] and

(f,Θ) ∈
(
C1([0, T ), Ȧ(T))

)2

be a local solution of (10) with initial data

(f0,Θ0) ∈
(
Ȧ(T)

)2

satisfying the condition

E0
0 (f0,Θ0) < min{h],Γ]}.

By continuity there exists 0 < t∗ ≤ T such that the above estimate is satisfied on [0, t∗), that is

E0
0 (f,Θ)(t) < min{h],Γ]} for all t ∈ [0, t∗). (26)

Let us moreover assume that t∗ is the maximal time such that (26) holds true on [0, t∗). Hence,
either

E0
0 (f,Θ)(t∗) = min{h],Γ]} (27)

or t∗ = T . Notice that the restriction (14) holds true on the time interval [0, t∗). In the following
let t ∈ [0, t∗). We compute

∂t|f̂(k)| =
Re
(

¯̂
f(k)∂tf̂(k)

)
|f̂(k)|

,

so, using that S = 0,

d

dt
‖f‖Ȧ0 ≤

h2
]

2
‖Θ‖Ȧ2 +

(
A
h]
− G

3
h3
]

)
‖f‖Ȧ2 + ‖N1‖Ȧ0 + ‖N2‖Ȧ0 + ‖N4‖Ȧ0 , (28)

d

dt
‖Θ‖Ȧ0 ≤ − (h]Γ] +D) ‖Θ‖Ȧ2 +

∣∣∣∣∣3AΓ]
2h2

]

− Γ]h
2
]

G
2

∣∣∣∣∣ ‖f‖Ȧ2 + ‖N5‖Ȧ0 + ‖N6‖Ȧ0 + ‖N8‖Ȧ0 (29)

We recall that

ûv(k) =
∑
j∈Z

û(j)v̂(k − j)
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and by the hypothesis of the theorem

‖f‖Ȧ0 ≤ h], ‖Θ‖Ȧ0 ≤ Γ].

Using the algebra property of the Wiener space As(T), i.e.

‖fg‖Ȧs ≤ 2s‖f‖Ȧs(T)‖g‖Ȧs(T), for all f, g ∈ Ȧs(T), s ∈ N,

together with the interpolation inequality

‖f‖Ȧsθ(T) ≤ ‖f‖
1−θ
Ȧ0(T)

‖f‖θ
Ȧs(T)

, for all 0 < θ < 1, s ≥ 0,

the contribution of the nonlinear terms Nk, k = 1, 2, and 4, can be estimated as

‖N1‖Ȧ0 ≤

(
‖f‖2

Ȧ0

2
+ ‖f‖Ȧ0h]

)
‖Θ‖Ȧ2 +

(
‖f‖Ȧ1‖f‖Ȧ0 + ‖f‖Ȧ1h]

)
‖Θ‖Ȧ1

≤
(

3

2
‖f‖Ȧ0h] + h]‖Θ‖Ȧ0

)
‖Θ‖Ȧ2 + h]‖f‖Ȧ0‖f‖Ȧ2

≤ E 0
0 (f,Θ)

5

2
h]‖Θ‖Ȧ2 + h]E

0
0 (f,Θ)‖f‖Ȧ2 ,

‖N2‖Ȧ0 ≤
G
3

[(
3h2

]‖f‖Ȧ0 + 3‖f‖2
Ȧ0h] + ‖f‖3

Ȧ0

)
‖f‖Ȧ2

+
(

3h2
]‖f‖A1 + 6‖f‖Ȧ1‖f‖Ȧ0h] + 3‖f‖2

Ȧ0‖f‖Ȧ1

)
‖f‖Ȧ1

]
≤

19h2
]G

3
‖f‖Ȧ0‖f‖Ȧ2

≤
19h2

]G
3

E 0
0 (f,Θ)‖f‖Ȧ2 ,

and

‖N4‖Ȧ0 ≤ A
[(
‖f‖Ȧ0

h]

‖f‖Ȧ2

h]
+

(
‖f‖Ȧ1

h]

)2
) ∞∑
j=1

(
‖f‖Ȧ0

h]

)j−1

+
‖f‖Ȧ0

h]

(
‖f‖Ȧ1

h]

)2 ∞∑
j=1

j

(
‖f‖Ȧ0

h]

)j−1 ]

≤ A
[(
‖f‖Ȧ0

h]

‖f‖Ȧ2

h]
+

(
‖f‖Ȧ1

h]

)2
)(

1−
‖f‖Ȧ0

h]

)−1

+
‖f‖Ȧ0

h]

(
‖f‖Ȧ1

h]

)2(
1−
‖f‖Ȧ0

h]

)−2 ]
≤ A
‖f‖Ȧ0

h]

‖f‖Ȧ2

h]

(
1−
‖f‖Ȧ0

h]

)−1 [
2 +

(
1−
‖f‖Ȧ0

h]

)−1 ]
≤ AE 0

0 (f,Θ)

h]

‖f‖Ȧ2

h]

(
1−
‖f‖Ȧ0

h]

)−1 [
2 +

(
1−
‖f‖Ȧ0

h]

)−1 ]
,

where we used the convergence of the geometric series
∑∞

j=1 r
j−1 for |r| < 1, and

∞∑
j=1

jrj−1 = ∂r

∞∑
j=1

rj =
1

(1− r)2
, |r| < 1.

Similarly, the nonlinear terms Nj , j = 5, 6, and 8 are bounded by

‖N5‖Ȧ0 ≤
(
Γ]‖f‖Ȧ0 + (4h] + Γ]) ‖Θ‖Ȧ0

)
‖Θ‖Ȧ2 + Γ]‖f‖Ȧ0‖f‖Ȧ2



12 G. BRUELL AND R. GRANERO-BELINCHÓN

≤ E 0
0 (f,Θ) (4h] + 2Γ]) ‖Θ‖Ȧ2 + Γ]E

0
0 (f,Θ)‖f‖Ȧ2 ,

‖N6‖Ȧ0 ≤ G
[(

4Γ]h]‖f‖Ȧ0 + 4‖Θ‖Ȧ0h
2
]

)
‖f‖Ȧ2 + h2

]

(
‖Θ‖Ȧ0‖Θ‖Ȧ2 + ‖f‖Ȧ0‖f‖Ȧ2

)]
≤ GE 0

0 (f,Θ)
[(

4Γ]h] + 4h2
]

)
‖f‖Ȧ2 + h2

]

(
‖Θ‖Ȧ2 + ‖f‖Ȧ2

)]
,

‖N8‖Ȧ0 ≤
3A
2h4

]

[ (
3‖f‖Ȧ0Γ]h] + ‖Θ‖Ȧ0h

2
]

)
‖f‖Ȧ2

+

(
4‖f‖Ȧ0Γ]h]‖f‖Ȧ2 +

h2
]

2

[
‖Θ‖Ȧ0‖Θ‖Ȧ2 + ‖f‖Ȧ0‖f‖Ȧ2

])] ∞∑
j=1

j

(
‖f‖Ȧ0

h]

)j−1

+
3A
h3
]

[
2Γ]‖f‖Ȧ0‖f‖Ȧ2

] ∞∑
j=2

j(j − 1)

(
‖f‖Ȧ0

h]

)j−2

≤ 3A
2h3

]

[ (
3‖f‖Ȧ0Γ] + ‖Θ‖Ȧ0h]

)
‖f‖Ȧ2

+

(
4‖f‖Ȧ0Γ]‖f‖Ȧ2 +

h]
2

[
‖Θ‖Ȧ0‖Θ‖Ȧ2 + ‖f‖Ȧ0‖f‖Ȧ2

]) ](
1−
‖f‖Ȧ0

h]

)−2

+
3A
h3
]

[
2Γ]‖f‖Ȧ0‖f‖Ȧ2

](
1−
‖f‖Ȧ0

h]

)−3

.

Grouping terms, we find that

‖N8‖Ȧ0 ≤
3A
2h3

]

(
1−
‖f‖Ȧ0

h]

)−2 {
7Γ]‖f‖Ȧ0‖f‖Ȧ2 +

1

2
h][‖f‖Ȧ0‖f‖Ȧ2 +

h]
2
‖Θ‖Ȧ0‖Θ‖Ȧ2 ]

+ h]‖Θ‖Ȧ0‖f‖Ȧ2 +

(
1−
‖f‖Ȧ0

h]

)−1

4Γ]‖f‖Ȧ0‖f‖Ȧ2

}
≤ 3A

2h3
]

E 0
0 (f,Θ)

(
1−
‖f‖Ȧ0

h]

)−2 {
7Γ]‖f‖Ȧ2 +

1

2
h][‖f‖Ȧ2 +

h]
2
‖Θ‖Ȧ2 ]

+ h]‖f‖Ȧ2 +

(
1−
‖f‖Ȧ0

h]

)−1

4Γ]‖f‖Ȧ2

}
.

We recall the definition (20) and (21), then we add equations (28) and (29), use the previous
estimates for Nj , j = 1, 2, 4, 5, 6, and 8 and obtain that

d

dt
E 0

0 (f,Θ)(t) ≤ −
(
C1 − Λ1(t)E 0

0 (f,Θ)(t)
)
‖f(t)‖Ȧ2 −

(
C2 − Λ2(t)E 0

0 (f,Θ)(t)
)
‖Θ(t)‖Ȧ2 (30)

for t ∈ [0, t∗), with Λ1 and Λ2 defined in (18) and (19), respectively. Using the hypothesis of the
Theorem 1, we have that

d

dt
E 0

0 (f,Θ)(t)

∣∣∣∣
t=0

< 0,

so, there exists a time 0 < t0 ≤ t∗ such that

E 0
0 (f,Θ)(t) ≤ E 0

0 (f0,Θ0) for all t ∈ [0, t0]. (31)

Let us assume that t0 is the maximal times such that (31) holds true on [0, t0] We want to
propagate this decay for all times, that is, we aim to show that t0 = t∗, which in turn implies
that t0 = t∗ = T , by (27). Let us emphasize that E 0

0 (f,Θ)(t) ≤ E 0
0 (f0,Θ0) for t ∈ [0, t0]

guarantees that

Λj(t) ≤ Λj(0), j = 1, 2 for all t ∈ [0, t0]. (32)
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Thereby, for any t ∈ [0, t0] we have that

C1 − Λ1(t)E 0
0 (f,Θ)(t) ≥ C1 − Λ1(0)E 0

0 (f0,Θ0) = γ1 > 0,

C2 − Λ2(t)E 0
0 (f,Θ)(t) ≥ C2 − Λ2(0)E 0

0 (f0,Θ0) = γ2 > 0.

In particular, we obtain that

d

dt
E 0

0 (f,Θ)(t) < 0 for all t ∈ [0, t0).

Assume that t0 < t∗. By continuity, we deduce that E 0
0 (f,Θ)(t0) = E 0

0 (f,Θ)(0), but this implies
that, again,

d

dt
E 0

0 (f,Θ)(t)

∣∣∣∣
t=t0

≤ 0,

and that contradicts the assumption t0 < t∗. Thus, we have shown that in fact

E 0
0 (f,Θ)(t) ≤ E 0

0 (f0,Θ0) for all t ∈ [0, t∗) (33)

and thereby t∗ = T , in view of (27). Then,

d

dt
E 0

0 (f,Θ)(t) ≤ −γE 2
2 (f,Θ)(t) for all t ∈ [0, T ), (34)

where δ := min{γ1, γ2}. Eventually, the energy estimate for the gravity driven equation (S = 0)
reads

E 0
0 (f,Θ)(t) + δ

∫ t

0
E 2

2 (f,Θ)(τ) dτ ≤ E 0
0 (f0,Θ0)

and ∫ t

0
‖∂tf(τ)‖Ȧ0 + ‖∂tΘ(τ)‖Ȧ0 dτ ≤ c,

for all t ∈ [0, T ), where c > 0 is a constant depending on the initial data.

4.2. Existence of global weak solutions. We use a standard Galerkin approximation to
obtain in the limit a global weak solution of (10) where surface tension effects are neglected,
i. e. S = 0. Let us fix M ∈ Z+. Set

fM (t, x) :=
∑
|k|≤M

f̂(t, k)eikx and ΘM (t, x) :=
∑
|k|≤M

θ̂(t, k)eikx

and the initial data

fM (0, x) :=
∑
|k|≤M

f̂0(k)eikx and ΘM (0, x) :=
∑
|k|≤M

θ̂0(k)eikx

to coincide with the Fourier truncation of the f0 and Θ0, respectively. Recall that the conver-
gence of the Fourier series of the initial data is guaranteed by the assumption that f0,Θ0 ∈ Ȧ0(T).
We consider the Galerkin approximated problems:

∂tfM −
h2
]

2
∂2
xΘM +

(
A
h]
− G

3
h3
]

)
∂2
xfM +

S
3
h3
]∂

4
xfM =

∑
j=1,2,4

NM
j , in (0, T )× T

∂tΘM − (h]Γ] +D) ∂2
xΘM +

(
3AΓ]
2h2

]

− G
2

Γ]h
2
]

)
∂2
xfM +

S
2

Γ]h
2
]∂

4
xfM =

∑
j=5,6,8

NM
j , in (0, T )× T

where the nonlinearities NM
j are given by

NM
1 = ∂xPM

[(
f2

2
+ fh]

)
∂xΘ

]
,
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NM
2 = ∂xPM

[
G
3

(
3h2

]f + 3f2h] + f3
)
∂xf

]
,

NM
4 = APM

[(
f

h2
]

∂2
xf +

(
∂xf

h]

)2
)

M∑
j=1

(−1)j+1

(
f

h]

)j−1

− f

h3
]

(∂xf)2
M∑
j=1

j(−1)j+1

(
f

h]

)j−1 ]
,

NM
5 = ∂xPM [(Γ]f + Θh] + Θf) ∂xΘ] ,

NM
6 = ∂xPM

[
G
2

(
Γ]f

2 + 2Γ]h]f + Θh2
] + Θf2 + 2Θh]f

)
∂xf

]
,

NM
8 =

3A
2h4

]

PM
[(

2fΓ]h] + f2Γ] −Θh2
]

)
∂2
xf +

(
2∂xfΓ]h] + 2f∂xfΓ] − ∂xΘh2

]

)
∂xf

] M∑
j=1

j(−1)j+1

(
f

h]

)j−1

− 3A
h4
]

PM

[(
2fΓ]h] + f2Γ] −Θh2

]

) (∂xf)2

h]

]
1

2

M∑
j=2

j(j − 1)(−1)j
(
f

h]

)j−2

.

Here, the operator PM denotes the Fourier truncation operator

PMg(x) =
∑
|k|≤M

ĝ(k)eikx for any g ∈ Ȧ0(T).

The Picard–Lindelöf Theorem ensures the existence of classical solutions

fM ,ΘM ∈ C1([0, TM );C∞(T)),

where TM > 0 is the maximal existence time. Furthermore, the approximated problems provide
the same a priori bounds as in the previous sections. Consequently the Galerkin solutions
(fM ,ΘM )M∈N exist globally and for any T > 0 we have the bounds:

(fM ,ΘM )M∈N is uniformly bounded in
(
L∞

(
0, T ; Ȧ0(T)

)
∩ L1

(
0, T ; Ȧ2(T)

))2
(35)

and

(∂tfM , ∂tΘM )M∈N is uniformly bounded in
(
L1
(

0, T ; Ȧ0(T)
))2

. (36)

Following the lines in [10], the above uniform regularities of the Galerkin approximations (fM ,ΘM )M∈N
guarantee the existence of a weakly convergent subsequences (not relabeled) such that

(fM ,ΘM )
∗
⇀ (f,Θ) in (L∞(0, T ;L∞(T)))2.

Similarly, using interpolation in Wiener spaces, the finite measure of the spatial domain and
the fact that Ȧr(T) ⊂ Ẇ r,∞(T) for any r ≥ 0, we obtain the existence of a subsequence (not
relabeled), such that

(fM ,ΘM ) ⇀ (f,Θ) in
(
L

2
r (0, T ; Ẇ r,p(T))

)2
, 0 ≤ r < 2, 1 ≤ p <∞. (37)

From the previous fact we can infer that actually

(f,Θ) ∈
(
L

2
r (0, T ; Ẇ r,∞(T))

)2
, 0 ≤ r < 2.

Furthermore (35), (36) imply that

(fM ,ΘM )M∈N is uniformly bounded in
(
L2(0, T ;H1(T))

)2
,

which is due to Ȧs(T) ⊂ Ḣs(T) for any s ≥ 0 and an interpolation inequality for fractional
Sobolev spaces. Eventually, as a consequence of (35),(36) and a compactness argument as
in [43, Corollary 4], we obtain (up to a subsequence) that

(fM ,ΘM )→ (f,Θ) in
(
L1(0, T ;C1+s(T))

)2
, 0 ≤ s < 1

2
.
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Passing to the limit in the weak formulation of the Galerkin approximation yields the existence
of a global weak solution of (10) in the sense of Definition 1.

4.3. Exponential trend to equilibrium. Using (30) and the definition of δ > 0 in (25), we
have that

d

dt
E 0

0 (fM ,ΘM )(t) ≤ −δE 2
2 (fM ,ΘM )(t) for all t ≥ 0. (38)

Using the Poincaré-like inequality (4), we also conclude that

d

dt
E 0

0 (fM ,ΘM )(t) ≤ −δE 0
0 (fM ,ΘM )(t) for all t ≥ 0,

which in turn implies the exponential decay towards the equilibrium:

E 0
0 (fM ,ΘM )(t) ≤ E 0

0 (f0,Θ0)e−δt for all t ≥ 0.

Using (37) and the lower semi-continuity of the weak−∗ convergence, we have that

‖f(t)‖L∞(T) + ‖Θ(t)‖L∞(T) ≤ lim inf
k→∞

E 0
0 (fM ,ΘM )(t) ≤ E 0

0 (f0,Θ0)e−δt.

4.4. Uniqueness. The proof follows a standard contradiction argument. For the sake of brevity,
we only sketch the idea. Assume that there exist two different solutions (f1,Θ1) and (f2,Θ2)
starting from the same initial data

(f0,Θ0) ∈
(
Ȧ0(T)

)2
.

Assume also that these solutions satisfy

(fi,Θi) ∈
(
L1(0, T ; Ȧ2(T))

)2
.

Using the smallness of the initial data, the same estimates as in Subsection 4.1 yield that

d

dt

(
‖f1 − f2‖Ȧ0 + ‖Θ1 −Θ2‖Ȧ0

)
≤ C

[
‖f1 − f2‖Ȧ0 + ‖Θ1 −Θ2‖Ȧ0

] (
‖f1‖Ȧ2 + ‖f2‖Ȧ2 + ‖Θ1‖Ȧ2 + ‖Θ2‖Ȧ2 + 1

)
.

Now the statement is a consequence of Gronwall’s inequality and the fact that (f1,Θ1)(0) =
(f2,Θ2)(0).

5. Proof of Theorem 2: Global existence and decay when S > 0

The proof essentially follows the arguments in the previous section, the main difference relying
in the fact that for S > 0 we have that (10) is a system of mixed orders. Thereby the energy
estimates require some additional investigation. The existence of local solutions of the approx-
imated Galerkin systems are straightforward due to Picard–Lindelöf’s theorem (see Subsection
4.2). The energy estimates then ensure that the approximated solutions exist globally. Fur-
thermore, the energy estimates provide the necessary a priori bounds to pass to the limit in
the Galerkin approximation; thereby guaranteeing the existence of a global weak solution in the
sense of Definition 1. In view of the weak lower semicontinuity of the norm, the global weak
solution inherits the energy estimates for the approximated solutions and we can conclude the
regularity and exponential decay of the solution.
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5.1. A priori estimates in Ȧ0(T): To perform our energy estimates let us assume that there
exists a local solution

(f,Θ) ∈
(
C1([0, T ), Ȧ0(T))

)2

of the fourth-order system (10) where S > 0, corresponding to initial data (f0,Θ0), satisfying

E 0
0 (f0,Θ0) < min{h],Γ]}.

Similar as before, we have that

d

dt
‖f‖Ȧ0 ≤

h2
]

2
‖Θ‖Ȧ2 +

(
A
h]
− G

3
h3
]

)
‖f‖Ȧ2 −

S
3
h3
]‖f‖Ȧ4 +

4∑
j=1

‖Nj‖Ȧ0 , (39)

d

dt
‖Θ‖Ȧ0 ≤ − (h]Γ] +D) ‖Θ‖Ȧ2 +

∣∣∣∣∣3AΓ]
2h2

]

− Γ]h
2
]

G
2

∣∣∣∣∣ ‖f‖Ȧ2 +
S
2
h2
]Γ]‖f‖Ȧ4 +

8∑
j=5

‖Nj‖Ȧ0 . (40)

Keeping in mind the definitions of Ci, i = 1, 2, 3, in (20), (21), and (24), we take the sum of the
two inequalities above and obtain that

d

dt
E 0

0 (f,Θ) + C1‖f‖Ȧ2 + C2‖Θ‖Ȧ2 + C3‖f‖Ȧ4 ≤
8∑
j=1

‖Nj‖Ȧ0 .

Recalling (30), we have that

d

dt
E 0

0 (f,Θ) + C3‖f‖Ȧ4

≤ ‖N3‖Ȧ0 + ‖N7‖Ȧ0 −
(
C1 − Λ1(t)E 0

0 (t)
)
‖f(t)‖Ȧ2 −

(
C2 − Λ2(t)E 0

0 (t)
)
‖Θ(t)‖Ȧ2 ,

where Λ1 and Λ2 are defined in (18) and (19), respectively. Thus we are left to estimate the
remaining terms ‖N3‖Ȧ0 and ‖N7‖Ȧ0 . Similarly as before, using the interpolation inequality in
Wiener spaces, we estimate

‖N3‖Ȧ0 ≤
19

3
Sh2

]E
0
0 (f,Θ)‖f‖Ȧ4 ,

and

‖N7‖Ȧ0 ≤
S
2

(
6Γ]h]‖f‖Ȧ0 + h2

]‖Θ‖Ȧ0

)
‖f‖Ȧ4

+
S
2

(
8Γ]h]‖f‖A1 + 4‖Θ‖A1h2

]

)
‖f‖Ȧ3 .

Note that by Young’s inequality, we have that

‖Θ‖Ȧ1‖f‖Ȧ3 ≤ ‖Θ‖Ȧ1‖f‖
1
4

Ȧ0
‖f‖

3
4

Ȧ4
≤ ‖Θ‖Ȧ1

(
1

4ε
‖f‖Ȧ0 +

3ε

4
‖f‖Ȧ4

)
,

for any ε > 0. In particular, as Θ and f are nonzero (provided the initial data are nontrivial),
we can take

ε =
E 0

0 (f,Θ)

‖Θ‖Ȧ1

.

Thus,

‖Θ‖Ȧ1‖f‖Ȧ3 ≤
‖Θ‖2

Ȧ1

4E 0
0 (f,Θ)

‖f‖Ȧ0 +
3E 0

0

4
‖f‖Ȧ4 ≤

‖Θ‖Ȧ2E 0
0 (f,Θ)

4
+

3E 0
0 (f,Θ)

4
‖f‖Ȧ4 .

Then, we conclude that

‖N7‖Ȧ0 ≤
S
2

(
(14h]Γ] + 4h2

] )E
0
0 (f,Θ)‖f‖Ȧ4 + h2

]E
0
0 (f,Θ)‖Θ‖Ȧ2

)
.
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Using (23), we can group terms as follows:

d

dt
E 0

0 (f,Θ)(t) ≤ −
(
C1 − Λ1(t)E 0

0 (f,Θ)(t)
)
‖f(t)‖Ȧ2 −

(
C2 −

(
Λ2(t) +

Sh2
]

2

)
E 0

0 (f,Θ)(t)

)
‖Θ(t)‖Ȧ2

−
(
C3 − Λ3E

0
0 (f,Θ)(t)

)
‖f(t)‖Ȧ4 .

Repeating the argument from Section 4, we conclude that

E 0
0 (f,Θ)(t) ≤ E 0

0 (f0,Θ0)e−δt (41)

where δ is defined in (25). The energy estimate for the capillary driven thin film (S > 0) reads

E 0
0 (f,Θ)(t) +

∫ t

0
δE 4

2 (f,Θ)(τ) dτ ≤ E 0
0 (f0,Θ0)

and ∫ t

0
‖∂tf(τ)‖Ȧ0 + ‖∂tΘ(τ)‖Ȧ0 dτ ≤ c,

for all t ∈ [0, T ), where c > 0 is a constant depending on the initial data.

5.2. Existence of global weak solutions. In a similar way as in Subsection 4.2, we obtain
the existence of a sequence of global Galerkin approximations (fM ,ΘM )M∈N. Then, the energy
estimates from above guarantee that for any T > 0:

(fM )M∈N is uniformly bounded in L∞(0, T ;A0(T)) ∩ L1(0, T ;A4(T)) ⊂ L2(0, T ;H2(T))

and

(ΘM )M∈N is uniformly bounded in L∞(0, T ;A0(T)) ∩ L1(0, T ;A2(T)) ⊂ L2(0, T ;H1(T)).

Moreover, the time derivatives satisfy

(∂tfM , ∂tΘM )M∈N is uniformly bounded in
(
L1(0, T ;A0(T))

)2
for any T > 0. Consequently, we obtain the existence of a subsequence (not relabeled) such that

fM ⇀ f in L
4
s (0, T ;W s,p(T)), 0 ≤ s < 4, 1 ≤ p <∞

ΘM ⇀ Θ in L
2
r (0, T ;W r,p(T)), 0 ≤ r < 2, 1 ≤ p <∞.

(42)

Moreover,

fM → f in L1(0, T ;C3+α(T)), 0 ≤ α < 1

2
,

fM ⇀ f in L2(0, T,H2(T))

and

ΘM → Θ in L1(0, T ;C1+α(T)), 0 ≤ α < 1

2
,

ΘM ⇀ Θ in L2(0, T,H1(T)).

Equipped with these convergences we can pass to the limit in the weak formulation and conclude
the global existence of a weak solution of (10) for S > 0 in the sense of Definition 1.
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5.3. Exponential trend to equilibrium. The proof follows the same ideas as in Subsec-
tion 4.3. The sequence of Galerkin approximation (fM ,ΘM )M∈N satisfies the energy estimates.
In particular, we have the exponential decay towards the equilibrum in (41):

E 0
0 (fM ,ΘM )(t) ≤ E 0

0 (f0,Θ0)e−δt for all t ≥ 0,

where δ > 0 is defined in (25). Using (42) and the lower semi-continuity of the weak−∗ conver-
gence, we have that

‖f(t)‖L∞(T) + ‖Θ(t)‖L∞(T) ≤ lim inf
k→∞

E 0
0 (fM ,ΘM )(t) ≤ E 0

0 (f0,Θ0)e−δt

for all t ≥ 0, which proves the claim.

5.4. Uniqueness. Also the proof for the conditional uniqueness is similar to the one in Sub-
section 4.4. Assume that there exist two different solutions (f1,Θ1) and (f2,Θ2) starting from
the same initial data

(f0,Θ0) ∈
(
Ȧ(T)

)2
.

Moreover, we suppose that the solutions satisfy the additional regularity

(fi,Θi) ∈
(
L1(0, T ; Ȧ4(T))× L1(0, T ; Ȧ2(T))

)2

for i = 1, 2. Similar as for the energy estimate we compute that

d

dt

(
‖f1 − f2‖Ȧ0 + ‖Θ1 −Θ2‖Ȧ0

)
≤ C

[
‖f1 − f2‖Ȧ0 + ‖Θ1 −Θ2‖Ȧ0

]
×
(
‖f1‖Ȧ2 + ‖f2‖Ȧ2 + ‖f1‖Ȧ4 + ‖f2‖Ȧ4 + ‖Θ1‖Ȧ2 + ‖Θ2‖Ȧ2

)
.

Now the assertion follows by applying Gronwall’s inequality and recalling that the solutions
(fi,Θi), i = 1, 2 share the same initial data.
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