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Abstract 

When water diffuses into silica glass it reacts chemically with the glass 
forming nanometre sized pores that change the physical properties of the 
glass. In earlier papers and reports, we discussed the effect of 
water/silica reaction on the strength via volume swelling, and showed by 
use of damage mechanics that the water reaction reduces Young’s 
modulus E and intrinsic strength in thin surface layers. In this paper, the 
dependency between hydroxyl concentration and damage will be derived 
for the full damage range by using experimental results from literature. 
For small water concentrations, we used sound velocity measurements 
from literature. The suggested relations describe the dependence between 
the hydroxyl concentration and the Young’s modulus for the damaged 
glass and allow the strength decrease due to hydroxyl generation to be 
computed. From an example of application, it can be concluded that 
damage by hydroxyl generation has little effect on strength even in the 
case of completely damaged surface region so far the water-affected 
surface zone is much thinner than the bulk material. 
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1 Motivation 

Water diffuses into silica glass as a molecule, occasionally reacting with the silica 
network according to the following equation: 

 Si-O-Si +H2O  SiOH+HOSi. (1) 

The concentration of the hydroxyl water S = [SiOH] is usually expressed in terms of 
the OH-concentration, [OH], whereas the concentration of the molecular water is given 
by C = [H2O]. This type of diffusion, i.e., reaction-diffusion, was studied extensively 
by Doremus [1]. 

When water reacts with silica glass, clear evidence for volume swelling has been 
reported by Brückner [2,3], Shackelford [4], and Shelby [5], who showed that the 
density of the silica glass due to reaction (1) decreased, even though the water content 
of the glass increased. Consequently, the volume also must have increased. 

In vitreous solids that have thin surface layers, expansion of the surface layer parallel 
to the surface of the solid is constrained by the bulk glass.  This constraint results in 
compressive stresses parallel to the surface of the solid; these must be overcome in any 
strength test, resulting in an increase in the strength of the solid. 

On the other hand, the generation of hydroxyl groups destroys the original silica 
network und must reduce the intrinsic load capability of the network. A question of 
interest is whether any strength-increasing effect is counteracted by local damage 
caused by creation hydroxyl groups. This problem was handled in our earlier paper 
and will be summarized here. 

When hydroxyl groups have been formed, silica rings are broken and the mechanical 
cohesion is weakened. The effect of such “defects” in the glass structure can be treated 
by using the damage variable D of continuum damage mechanics (Kachanov [6], 
Lemaitre [7, 8]). This parameter is proportional to the density of micro-defects, D(S). 
Their regions of influence are symbolized in Fig. 1 by the circles of radius R [9]. The 
number of defects intersecting the prospective crack plane is then proportional to the 
number of defects in the volume element.  

The damage variable D describes the part of the material cross-section that can no 
longer transmit forces [7]. The area that can carry load, AD, is reduced to  

  )1(0 DAAD   (2) 

where A0 denotes the total geometrical cross section subsuming damaged and 
undamaged regions. 
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Fig. 1 Volume element of silica showing damage by bond breaking due to the water/silica reaction, 
third dimension ignored (from [9]). 

According to Lemaitre [7], the effective elastic modulus of the damaged glass, ED, 
decreases with increasing damage  

  )1(0 DEED   (3) 

where E0 is the modulus of the undamaged glass. The damage variable D can be 
determined from modulus measurements via eq. (3).  
Apart from the equi-triaxial loading case with x = y = z, the elastic modulus must 
become a tensor with components depending on the degree of multiaxial loading. This 
possibility would make the further treatment very difficult [7] and non-transparent. 
Therefore, we assume in the following considerations that the damage stays isotropic 
and is of a scalar nature. This is equivalent to the assumption of randomly orientated 
pore-like defects, in which case, E is isotropic. Therefore, the nano-pores in SiO2, 
caused by hydroxyl group generation, behave like normal pores in SiO2. 

2 Experimental evidence for modulus reduction in silica 
In the literature, there is experimental evidence for a modulus decrease with increasing 
hydroxyl content, as reported by Fraser [10] and by LeParc [11]. Both investigators 
used measurements of longitudinal sound velocity in silica specimens with different 
water content. Individual least-squares fits were made resulting in the following 
equations, namely   

  (m/s)in)185.41(5974 Sv , (4) 

For the data set by Fraser [10] and 

prospective 
crack plane 

H Si O 
damaged  
region  
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  (m/s)in)34.51(5959 Sv . (5) 

for the data set by LeParc et al. [11]  

When we normalize the results of the two test series on their individual values for S=0, 
we get the representation in Fig. 2a. A common straight-line fit of these data yields 

  SB1
0v

v
 (6) 

with the parameter B=5.04 [4.23, 5.85] (90% confidence interval in brackets).  

Eq. (6) is given in Fig. 2a as a straight line. The longitudinal sound velocity depends 
on Young’s modulus E, Poisson’s ratio , and density  via the following equation:  

  
)21)(1(

1




 



E

v  (7) 

For not too large damage (D<0.5) the Poisson’s ratio doesn’t change more than 10% 
and can for our purpose assumed as a constant [12]. 

  S
E

ED   1)/(/ 2
00

0

vv  (8) 

with =10.6 [8.7, 12.5]. This value holds for isotropic damage since the natural OH-
content doesn’t show any preference for a special direction.  

Measurements on porous silica were performed by Adachi and Sakka [13] (see also 
Yu et al. [14]). The results are shown in Fig. 2b as the circles. The curve shows the 
best fitting curve according to eq.(10). 

A comparable effect on E holds for porosity in ceramics as has been shown by many 
investigators. Measurements on alumina were compiled very often (Knudsen [15], 
Wang [16]). Results for hot-pressed silicon nitride (HPSN) with MgO and CeO2 were 
reported by Phani and Niyogi in [17] and for reaction sintered Si3N4 in [18]. An 
overview on references is given in [18]. 
Mostly, the experimental data could be represented in dependence of porosity P by 
exponential functions of the general type [19] 

  )]...(exp[ 2
21

0

n
n

D PbPbPb
E

E
  (9) 

from which for small P follows: ED/E0=1-b1P. A description by eq.(9) must of course 
fail for large porosities since then the requirement of E=0 for a finite critical porosity, 
at least for P=1 cannot be fulfilled. 
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Fig. 2 a) Longitudinal sound velocity in silica with different OH-content (blue circles: results by 
Fraser [10], red circles: results by LeParc et al. [11]), b) results of porosity on Young’s modulus for 
silica by Adachi and Sakka [13], curve: best fit according to eq.(10).  

Analytical computations on the reduction of Young’s modulus with porosity were 
carried out by Wang [19] for spherical pores of equal size. The results showing an 
upper limit of porosity, are given as sets of tabulated data and were expressed by 
appropriate fitting relations in [20].  

A simpler pore model was proposed by Phany and Niyogi [21] with the result  

  
nD aP

E

E
)1(

0

  (10) 

By fitting the data of Adachi and Sakka [13], we obtain best representation for the 
parameter set: 

  n=2, a=1.19 (11a) 

Application of the eq.(10) to the hydroxyl damage gives for n=2 the parameter set 

  n=2, a=/2=5.3 (11b) 

The maximum hydroxyl concentration that results in disappearing Young's modulus is 
Smax=2/=0.188. Consequently, the modulus can be described by 

0.2 0.4 0.6 0.8

ED 
E0

P 

1

0.8

0.6

0.4

0.2

Pmax
b) 

0.10 0.20 0.30

0.985 

0.99 

0.995 

1 

vl/vl,0 

OH-content  (wt %)

a) 



 5

  
2

0

)3.51( S
E

ED   (12) 

Figure 3 shows all measurements from Figs. 2a and 2b in a normalized representation. 
The dashed line illustrates a linear extension of the small-concentration data. 

 

  
Fig. 3 Young’s modulus as a function of hydroxyl concentration and porosity in normalized 

representation. 

3. Strength of a surface-damaged fiber 
The hydroxyl-damage in the material also affects the load-bearing capacity of any area 
element, since it reduces its net cross-section, eq.(2). When c,0 denotes the strength in 
the absence of hydroxyl damage, and c,D the strength in the hydroxyl-damaged state, 
it results  

  )1(0,, DcDc   (13) 

Let us now consider the strength of silica fibers. First, the water distribution may be 
replaced by C=C0=const. over the thickness b indicated in the inset of Fig. 4. The total 
cross section area of the fiber with radius R is 

   2RA  (14a) 

that of the inner circle of radius R-b 

  2)( bRAinn   (14b) 
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and the ring-shaped area is 

  bbRbRRAb  )2()( 22   (14c) 

Failure in the undamaged fiber occurs at the surface, when the stress reaches the 
strength c,0. The force P0 at failure is then 

   2
0,0 RP c  (15) 

 
Fig. 4 Strength of a fiber for differently damaged surface regions as a function of layer thickness b. 

When the surface is damaged by an amount of D, the strength in the layer b decreases 
to c,D according to eq.(13). Since the Young’s modulus decreases in the same way, 
eq.(3), it is clear that the critical strain c remains unaffected 

  
0

0,

0

0,,
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)1(

EDE

D

E
cc

D

Dc
c


 




  (16) 

The Bernoulli Theorem tells us that plane cross sections must remain plane. It implies 
that the strain in the damaged and undamaged parts of the fiber must be the same.  
This again implies that at failure =c,0 is in the inner area Ainn and =D=c,0(1-D) in 
the surface layer. The total load PD of the damaged fiber at failure is the sum of the 
load in the inner (undamaged) area and the load in the damaged ring-shaped zone, i.e. 

   bbRDbRP ccD )2)(1()( 0,
2

0,   (17) 

The reduction of the fracture load follows from eqs.(15) and (17) 
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and is plotted in Fig. 4 for several damage values D as a function of the layer thickness. 
It becomes clear, that for small ratios of b/R<0.02, the strength (computed from the 
load PD) is hardly affected as has been outlined in [9]. 
In the special case of thin layers, R>>b, it results approximately 

  D
R

b

P

PD 2
1

0

  (19) 

Figuratively speaking, it can be said that even in the absence of any contribution from 
the stresses in the surface layer, D=1, the strength of the entire fiber is hardly affected. 

Summary: 

We studied the effect of hydroxyl generation accompanied by damaging the initial 
SiO2 ring structure. For the mathematical treatment, the damage variable D was used 
that describes the effective reduction of the load-carrying cross section as suggested by 
Lemaitre [7]. For small damage, results from literature on sound velocity were 
transformed into a relation between the Young’s modulus for the damaged glass and 
the hydroxyl concentration. Results for large damage were obtained from literature on 
the effect of pores on E. 
The effect on strength is briefly addressed. We showed in an example of application 
that the influence of damage is negligible as long as the water layer is about b/R<0.02. 
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