
Scheduling and Routing of Truck Drivers
Considering Regulations on

Drivers’ Working Hours

Zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von
Dipl.-Inf. Alexander Kleff

Tag der mündlichen Prüfung:
Referent:
Korreferent:

29. Mai 2019
Prof. Dr. Stefan Nickel

Prof. Dr.-Ing. Kai Furmans

Karlsruhe, 2019

iii

Abstract
Scheduling and Routing of Truck Drivers Considering Regulations on

Drivers’ Working Hours

by Alexander KLEFF

In many countries, truck drivers are obliged by law to take a break or a rest regu-
larly. In the European Union, for example, this is governed by Regulation (EC) No.
561/2006. It states that, after 4.5 hours of driving a truck, it is prohibited to conti-
nue driving until a 45-minute break is taken. After accumulating a driving time of
9 hours, a rest of 11 hours is mandatory. These are only two rules of a considerably
longer list of break rules set out in this regulation, and it is only one of many regula-
tions there are worldwide. Such breaks and rests have to be planned into the work
schedules of the drivers. In general, the task of a dispatcher is to find routes and
schedules for the truck drivers such that every customer is served in time. With the
regulations on drivers’ working hours, both the routing and the scheduling parts of
the task become more challenging.

In this thesis, we study several optimization problems that arise in the context of
drivers’ working hours. One is known as the truck driver scheduling problem. Here, a
sequence of customers is given, and the task is to find a schedule for a driver such
that every customer is visited within one of the customer’s time windows and the
applicable break rules are complied with. Depending on the regarded break rules,
we get different variants of the truck driver scheduling problem. Little is known
about the complexity of the individual problem variants. One of the two focal points
of this thesis is to present polynomial-time algorithms for different variants of the
problem, for which polynomial-time algorithms are not yet known. With this, we
can falsify the NP-hardness conjecture of Xu et al. (2003) for an important special
case of their considered problem variant.

But this thesis is not only about scheduling, it is also about routing. This con-
stitutes the second focal point of this thesis. We present an integrated approach for
the vehicle routing and truck driver scheduling problem. Here, a route refers to the order
in which the customers are visited. However, the meaning of route is twofold. In
another studied problem, the truck driver scheduling and routing problem, it means the
sequence of road segments that the driver takes to drive from one customer to the
other. In this problem, we take into account that, before taking a break, truck drivers
need to head for a rest area or at least a spot where their vehicle can be parked. We
even consider the time-dependent scenario in which driving times on road segments
vary over the day due to rush hours. Both an exact approach and a heuristic for this
problem are presented, and both are evaluated on a recent road network instance of
Germany. It turns out that the heuristic is at least two orders of magnitude faster but
still hardly worse than the exact approach.

Our main motivation is the application in practice. It is our aim – and this is
especially true for the second focal point – to provide helpful algorithms that may
find their way into software products for dispatchers, like the described approach for
the vehicle routing and truck driver scheduling problem is already integrated into
the vehicle route planning tools of a commercial provider of logistics optimization
software.

v

Contents

Abstract iii

1 Introduction 1
1.1 Problem Descriptions . 2
1.2 Scope of Thesis . 4

1.2.1 Truck Driver Scheduling . 5
1.2.2 Truck Driver Scheduling and Routing 6
1.2.3 Vehicle Routing and Truck Driver Scheduling 7

1.3 Organization and Main Contributions 8

2 Fundamentals and Preliminaries 11
2.1 Regulations Affecting Drivers’ Working Hours 11

2.1.1 European Union . 12
2.1.2 United States . 15

2.2 Related Work . 16
2.3 Classification of Break Rules . 19

2.3.1 Basic Terminology . 20
2.3.2 Types of Break Rules . 21

2.4 Basic Definitions and Notation . 23
2.4.1 Truck Driver Scheduling Problem Template 23
2.4.2 Examples of Concrete Truck Driver Scheduling Problems 25
2.4.3 Convenient Definitions . 27

3 Truck Driver Scheduling with Multiple Time Windows 29
3.1 Introduction . 29
3.2 Problem Definition . 30

3.2.1 Definition of a Truck Driver Schedule 31
3.2.2 Problem Characteristics . 33

3.3 Solution Approach . 35
3.3.1 Driver States Label . 35
3.3.2 Outline and Initialization of the Algorithm 36
3.3.3 Steps of Algorithm in Detail . 38
3.3.4 Deriving a Schedule . 48
3.3.5 Complexity Analysis . 48

3.4 Discussion of the Extension by Break Splits 50
3.4.1 Driver States Label Extension . 51
3.4.2 Outline and Initialization of the Algorithm 52
3.4.3 Steps of Algorithm in Detail . 52
3.4.4 Complexity Analysis . 56

3.5 Conclusion and Outlook . 58

vi

4 Truck Driver Scheduling with Minimum Duration Objective 59
4.1 Introduction . 59
4.2 Problem Definition . 60

4.2.1 Problem Characteristics . 60
4.3 Solution Approach . 63

4.3.1 Driver States Label . 64
4.3.2 Outline and Initialization of the Algorithm 65
4.3.3 Step Setup in Detail . 66
4.3.4 Other Steps in Detail . 73
4.3.5 Complexity Analysis . 74

4.4 Discussion of a Problem Variant with Minimum Idle Cost Objective . . 82
4.5 Conclusion and Outlook . 83

5 Truck Driver Scheduling with Two Types of Breaks 85
5.1 Introduction . 85
5.2 Problem Definition . 86
5.3 Problem Characteristics . 89
5.4 Solution Approach . 90

5.4.1 Driver States Label . 91
5.4.2 Outline and Initialization of the Algorithm 91
5.4.3 Steps of Algorithm in Detail . 93
5.4.4 Deriving a Schedule . 100
5.4.5 Complexity Analysis . 100

5.5 Discussion of a Non-restrictive Break Policy 107
5.6 Conclusion and Outlook . 108

6 Vehicle Routing and Truck Driver Scheduling with Multiple Time Win-
dows 111
6.1 Introduction . 111
6.2 Problem Definition . 114
6.3 Integrated Approach . 115

6.3.1 Driver States Label . 115
6.3.2 Outline of Propagation Scheme and Initialization 117
6.3.3 Forward Propagation . 118
6.3.4 Backward Propagation . 122
6.3.5 Feasibility Check of a Neighboring Solution 124

6.4 Conclusion and Outlook . 125

7 Truck Driver Routing on Time-Dependent Road Networks 127
7.1 Introduction . 127
7.2 Problem Statement and Preliminaries 129
7.3 Solution Approach . 131

7.3.1 Acceleration by Narrowing Down Searches 131
7.3.2 Acceleration by Contraction Hierarchies 134
7.3.3 Heuristic Acceleration . 135

7.4 Experiments . 135
7.5 Enhancement to Multiple Stops . 140
7.6 Conclusion and Outlook . 140

vii

8 Truck Driver Scheduling and Routing on Time-Dependent Road Networks143
8.1 Introduction . 143
8.2 Problem Definition . 146
8.3 Scheduling Part of the Exact Approach 148

8.3.1 Initialization . 149
8.3.2 Steps of Algorithm in Detail . 149
8.3.3 Complexity Analysis . 156
8.3.4 Schedule and Route Deduction 158

8.4 Routing Part of the Exact Approach . 159
8.4.1 Computing Bounds on Earliest Arrival Time at Next Customer 160
8.4.2 Profile Range Queries . 162

8.5 Heuristic . 162
8.5.1 Basic Heuristic . 163
8.5.2 Enhancement of the Heuristic . 164

8.6 Experiments . 166
8.6.1 Test Setup . 168
8.6.2 Experimental Analysis . 169

8.7 Discussion of an Additional Constraint on the Total Driving Time . . . 174
8.8 Conclusion and Outlook . 175

9 Conclusion and Outlook 177
9.1 Conclusion . 177

9.1.1 Truck Driver Scheduling . 177
9.1.2 Vehicle Routing and Truck Driver Scheduling 178
9.1.3 Truck Driver Scheduling and Routing 179

9.2 Outlook . 180

Bibliography 181

ix

List of Figures

2.1 Example of a waiting time function W. Function in red and dashed.
Time windows in the background. 27

3.1 In this example, taking an early break is beneficial. 34
3.2 In this example, prolonging a break is beneficial. 35
3.3 Two schedules, each with a different end of the last break. 36
3.4 Example instance and two significant (partial) schedules. 38
3.5 Driver states label Ldriven

1 . Functions Ddriven
1 (blue) and Tdriven

1 (red)
are both the same. Limits limitD (blue, dotted) and limitT (red, dash-
dotted), and time windows of current customer in the background. . . 39

3.6 Driver states label Lsetup
2 . 40

3.7 Driver states label Lwaited
2 = Lserved

2 . Functions are - if at all - only
defined within the time window of the second customer. 43

3.8 Driver states label Ldriven
2 . Prolongation of the due breaks en route

have been taken into account. 47
3.9 Example instance and three significant schedules. 47
3.10 Example instance and three significant schedules in case of allowed

break splits. 51
3.11 D̂driven

1 (blue, dashed), T̂driven
1 (red, solid). 52

3.12 Driver states label Lsetup
2 . 54

3.13 Driver states label Lwaited
2 = Lserved

2 . 55
3.14 Driver states label Ldriven

2 . 57

4.1 Calculating the earliest finish time does not directly help find the mi-
nimum duration. Here, break = 2, limitD = 2, limitT = ∞, all driving
times are 1 and all service times are 0. 61

4.2 Four significant start times. Time t = 10 is covered by four different,
non-dominated schedules. 62

4.3 Example. Driving time between customers is 1 each, break = 3 and
limitD = 1.5. Both schedules do not dominate each other. The red
schedule has slack of two time units, the blue schedule only 0.5 time
units. The red schedule could be shifted to the right so that it still
starts earlier but ends later than the blue schedule. 62

4.4 Example of Figure 4.3 with both schedules shifted to the right by the
respective maximum slack value. 63

4.5 Example of section 4.3.3. Situation after step Drive of first iteration.
Blue schedules relate to the set S+1 = {1, 6, 10, 18}, green schedules
relate to the set S0

1 = {5, 8, 13, 19}. 67
4.6 The three cases in which tout is considered as a significant arrival time. 69
4.7 Example of section 4.3.3. Situation after step Setup of second iteration. 73
4.8 Example instance. Significant schedules created in the first three ite-

rations. 75

x

4.9 Example instance. Significant schedules created in the first four itera-
tions. 75

4.10 Start time tree after the first four iterations corresponding to the in-
stance from Figures 4.8 and 4.9. 76

4.11 Worst case. The number of significant start times grows from 1 to 11. . 81

5.1 Four different schedules, not dominating each other. 90
5.2 Two schedules, each with the last short break at the same customer. . . 90
5.3 Dependency graph as introduced in section 5.4.2. The red highlighted

nodes are the break nodes. 92
5.4 Schedule view of example instance. 93
5.5 Function view: After step Drive in iteration 1. 94
5.6 Function view: After step Setup in iteration 1. 96
5.7 Function view: After step Wait in iteration 2. 97
5.8 Function view: After step Serve in iteration 2. 98
5.9 Function view: After step Drive in iteration 2. 99
5.10 Two different diagonal pieces in Tsetup

4,4 (right) correspond to two dif-
ferent schedules (left). Both pieces are assigned to the same end of a
time window at the second customer. Parameter setting is limitDshort =
2, breakshort = 1, breaklong = 3. 102

5.11 Four different diagonal pieces in Tsetup
8,8 (right) correspond to four dif-

ferent schedules (left). All four pieces are assigned to the same end
of a time window at customer 4. Parameter setting is limitDshort = 4,
breakshort = 1, breaklong = 4. 106

5.12 Two different horizontal pieces in Tsetup
6,6 (right) correspond to two dif-

ferent schedules (left). Both pieces are assigned to different time win-
dows and different nodes. Parameter setting is limitDshort = 1.5, breakshort =
3, breaklong > 8. 106

5.13 Three different horizontal pieces in Tsetup
6,6 (right) correspond to three

different schedules (left). Parameter setting is limitDshort = 1.5, breakshort =
0, limitDlong = 1.5, breaklong = 3. 106

6.1 Example of a 2-opt* (also known as crossover) move. Two links (dot-
ted black) are removed and replaced by two others (solid red). 112

6.2 Dependency graph, bidirectional propagation. 116
6.3 Forward waiting time function

−→
W in red and dashed. Backward wai-

ting time function
←−
W in blue. These functions correspond to the time

windows in the background (gray). Here, a service time of 1 is assumed.119
6.4 Both drivers must wait before the service at the fourth customer. But

the driver state of the red driver would be dominated by the blue
driver after waiting for the time window to open. 120

7.1 The set sequences Blue1 ⊃ Blue2 ⊃ Blue3 and Red1 ⊃ Red2 ⊃ Red3 ⊃
Red4. The two sets Blue1 and Red1 are disjoint. 133

7.2 The left image shows all available parking lots in Germany, the right
image shows the reduced set with only big parking lots. 136

7.3 Run-time of each s-d-query in the default scenario (left) and accor-
ding to restricted waiting policy (right), lbMin(ψs,d) on abscissa and
run-time in seconds on ordinate (on a logarithmic scale). Points are
colored by category. Scales differ. 138

xi

7.4 Sample query from Hamburg to Dresden in the default scenario (left)
and in the parking subset scenario (right). Different parking lots (P)
are selected. The largest squares represent the sets Blue3 and Red3. . . . 139

8.1 Example road graph with parking locations. 145
8.2 Example graph with three customers and one parking location. Free-

flow driving times are written on edges. 149
8.3 Function of accumulated driving times Dsetup

2 150
8.4 Function of accumulated driving times Dwaited

2 151
8.5 Function of accumulated driving times Dserved

2 152
8.6 Function of accumulated driving times Dsetup2

2 152
8.7 Inverse driving time function Pc2,c3 for a drive from customer c2 to

customer c3. 154
8.8 Inverse driving time function valid both for the drive from customer

c2 to parking location p and from there to customer c3. 154
8.9 Function of accumulated driving times Ddriven

2 155
8.10 ”Pareto front” of parking locations. The closer a parking location is to

c1, the shorter is the detour but the longer is the remaining drive to c2. 157
8.11 Pareto front corresponding to Figure 8.10. Driving time between cus-

tomers via a parking location on x-axis and driving time from parking
location to next customer on y-axis. The left-most data point corre-
sponds to the parking location p1, the right-most to p7. 157

8.12 The parking locations sets P ′ ⊃ P ′0 ⊃ P ′α and P ′′. 162
8.13 Run-time histograms for exact approach on random (left) and real-

world (right) queries. Run-time in seconds. 170
8.14 Histograms on total travel time and on number of customers with

respect to the real-world queries. 171
8.15 Run-time in seconds of exact approach (left) and of heuristic (right)

on solvable real-world queries by number of customers in a route.
Blue squares for RW-1 queries, red circles for RW-1 queries, and cyan
triangles for RW-3 queries. 172

8.16 Histograms on the number of parking locations with respect to the
heuristic on the random query set. 173

8.17 Example road graph with three customers and two parking locations.
Time-independent (and positive) driving times written on edges. . . . 175

xiii

List of Tables

2.1 Parameters of Truck Driver Scheduling Template. 24

3.1 Results from literature on polynomial time bounds (EF-TDSP). 30
3.2 Driver states label summary (EF-TDSP). 37
3.3 Derived schedules for tdep@c

3 ∈ {13, 16, 18}. 49

4.1 Driver states label summary (MD-TDSP). 66
4.2 Start times added during loop over arrival times within time windows. 70
4.3 Start times added during loop over arrivals outside of time windows. . 71
4.4 Start time intervals and function intervals computed in the first four

iterations. 77

5.1 Example parameter sets. Values in hours. 89
5.2 With breaks en route, there can be many non-dominated driver states

on arrival at the next customer. 108

6.1 Driver states label summary (EF-TDSP-2B). 117

7.1 Key figures of the input data used for the experiments. TD Edges
denotes the relative number of edges with a time-dependent and not
constant driving time function. 136

7.2 Number of truck driver route queries per category. 137
7.3 Mean run-time per category in seconds for different scenarios. 137
7.4 Comparison of solution quality for different scenarios. Mean and

maximum deviation is in seconds over all queries that are legal but
not optimal. 139

8.1 Truck driver schedule as returned by Algorithm 10 in case of the ex-
ample graph as input. The truck driver route isR = [(c1, c2), (c2, c3)]. . 159

8.2 Key figures of the road network Germany 2017 and the set of parking
locations, where % TD denotes the percentage of edges with a time-
dependent (i.e. not constant) driving time function. 166

8.3 Properties of test query sets: Mean number of customers and number
of queries per test query set. 169

8.4 Properties of test query sets: Service time (minimum, median, (arithme-
tic) mean, maximum) in seconds (rounded). 169

8.5 Properties of test query sets: Time window length (minimum, me-
dian, (arithmetic) mean, maximum) in hh:mm (rounded). 169

8.6 Mean run-time of different algorithms on different query sets (in se-
conds). 174

9.1 Main results of this thesis regarding polynomial-time bounds of truck
driver scheduling problems with multiple time windows per custo-
mer (compare Table 3.1). 178

xv

List of Algorithms

1 Generic truck driver scheduling algorithm 37
- Function Setup(Ldriven

i−1) . 40
- Function Wait(Lsetup

i) . 42
- Function Serve(Lwaited

i) . 44
- Function Drive(Lserved

i) . 46
2 Schedule deduction (EF-TDSP) . 49

- Function SetupMDfixed(Ldriven
i−1) . 71

- Function SetupMDshiftable(Ldriven
i−1) . 72

3 Generic truck driver scheduling algorithm - variant 91
4 Schedule deduction (EF-TDSP-2B) . 101
5 Index triple assignment . 104

6 2-opt* neighborhood search . 112
7 Basic local search based algorithm . 113
8 Bidirectional label propagation . 118

9 Generic truck driver scheduling and routing algorithm 149
10 Schedule and route deduction . 158
- Function BTHeuristic . 165

xvii

List of Abbreviations

CH Contraction Hierachies
CMV Commercial Motor Vehicle
EF-TDSP Earliest Finish (Time) Truck Driver Scheduling Problem
FIFO First In First Out
HOS Hours Of Service
MD-TDSP Minimum Duration Truck Driver Scheduling Problem
TCH Time-Dependent Contraction Hierachies
TDSP Truck Driver Scheduling Problem
TDSP-2B Truck Driver Scheduling Problem with 2 Types of Breaks
VRP Vehicle Routing Problem
VRTDSP Vehicle Routing and Truck Driver Scheduling Problem

xix

List of Symbols

n number of customers
wi number of time windows of customer i
W j

i j-th time window of customer i
servicei service time at customer i
drivei driving time from customer i to customer i + 1
H planning horizon

break minimum break period after which a driver is rested
break1st minimum duration of a first split break
break2nd minimum duration of a second split break
limitD limit on accumulated driving time
limitT limit on accumulated travel time

w total number of time windows
Wi time windows of customer i
W j

i j-th waiting interval at customer i
Wi waiting time function of customer i

⊥ special value to be read as undefined
α maps an interval to its beginning

or a time-dependent function to its first defined point
ω maps an interval to its end

or a time-dependent function to its last defined point
id identity function that maps a time to itself

� link operation for driving time profiles
⊕ merge operation for driving time profiles

xxi

Für Simeon, der es nicht abwarten wollte

1

Chapter 1

Introduction

“We’re only here for so long. Be happy, man. You could get hit by a truck tomorrow.”
— Timothee Chalamet1

Every traffic accident is one too many. This is all the more true in view of acci-
dents involving trucks. Due to their size and weight the consequences are particu-
larly severe. The risk of dying in a truck crash is significantly higher for the other
road users than for the truck occupants. On German roads in the year 2016, there
were 29 353 traffic accidents with the participation of a goods road transport vehicle
in which persons were harmed, according to the German Federal Statistical Office
(Statistisches Bundesamt (Destatis), 2017). 9 483 occupants of such trucks and 30 774
other road users were injured in these accidents. Of the 745 who died, only 133 were
truck occupants.

One of the causal factors for accidents is fatigue of the drivers. In their effort
to counteract driver fatigue and eventually increase road safety, many governments
have established legal limits on drivers’ working hours. Simply put, truck drivers
are obligated to take breaks on a regular basis. For instance, the Regulation (EC)
561/2006 of the European Union stipulates a break of at least 45 minutes after at
most 4.5 hours of driving (European Parliament and Council of the European Union,
2006). But this rule is only the tip of the iceberg. The complete set of rules that Eu-
ropean truck drivers have to abide by is long and complex. (A more comprehensive
description can be found in section 2.1.)

Generally speaking, such legal provisions restrict the time the driver is allowed
to drive or work. For instance, this may mean a limit on the continuous driving time
without break. Or it may mean a limit on the total driving time within a certain
time span such as a day, a week, or even longer periods of time. Besides constraints
on maximum driving or working times, they demand minimum requirements in
respect of breaks like their minimum duration in order to make sure the truck driver
can rest sufficiently.

These provisions leave the truck drivers and dispatchers alike with the problem
of planning breaks into the drivers’ work schedules such that the applicable break
rules are respected. In this thesis, we investigate the question of how to help them
out. To this end, we develop algorithms tailored to different variants of the planning
problems that emerge in the context of drivers’ working hours.

In order to enable drivers and dispatchers to make use of these algorithms, they
need to be implemented and integrated into some software suite. At PTV2, we create
various software products for logistics optimization. It is this practical application
of the algorithms that is a driving motivation behind our research.

1https://www.wmagazine.com/story/actor-timothee-chalamet-prodigal-son (accessed on
2018-06-28)

2https://www.ptvgroup.com/

https://www.wmagazine.com/story/actor-timothee-chalamet-prodigal-son
https://www.ptvgroup.com/

2 Chapter 1. Introduction

1.1 Problem Descriptions

Let us have a deeper look at some of the planning problems that drivers and dispat-
chers are confronted with.

Truck Driver Scheduling Truck drivers deliver goods to customers and/or collect
goods from them. Typically, everyone of these customers demands this to happen
within certain time windows. For a given sequence of customers, a truck driver
needs to find a schedule such that not only every customer is visited within one
of these time windows but also the break rules stated in all applicable regulations
concerning drivers’ working hours are respected. This problem is referred to as the
truck driver scheduling problem (inter alia, Goel (2010)).

Since such regulations may vary from country to country, it is rather a family of
problems. Apart from this, we find different problem variants in the literature as
not always all relevant regulations and not always all break rules specified therein
are taken account of. Unfortunately, there is no agreed upon basic version of the
problem. The simplest variants that are still relevant in practice are characterized by
a single break rule. As an example, a break rule may enforce a break of some mini-
mum duration (say 45 minutes) after the driver has accumulated a certain driving
time since the last break (say 4.5 hours). This break rule (and its parameter setting)
is derived from the Regulation (EC) 561/2006 mentioned above.

In the literature, truck driver scheduling problems are sometimes formulated
as decision problems, deciding whether or not a feasible truck driver schedule exists
within a given planning horizon. A truck driver schedule is deemed feasible if it is
in line with the regarded break rules and all customers are served in time. If they are
formulated as optimization problems, the goal is usually to find the minimum duration
of a feasible schedule. But also other optimization goals with a focus on actual costs
have been studied (Xu et al., 2003; Koç et al., 2016; Bernhardt et al., 2017).

The truck driver scheduling problem is about determining the succession and
duration of driver activities like when to drive, when to load/unload the vehicle
at a customer, or when to take a break. It may happen that a break becomes due
when the driver is en route between two customers. In this case, it is not part of the
problem to also decide where to take that break. So it is assumed implicitly that the
location of the break plays a negligible role.

Truck Driver Routing But in how far is this the case in practice? What are the
implications when we ignore the break locations? Certainly, the driver needs to
park the truck in order to take a break, and such wide and long vehicles cannot be
parked everywhere. Let us assume for the moment that, whenever a truck driver
arrives at a parking area, he3 finds an available parking spot there. Still two things
are not taken account of when break locations are ignored: One is the detour that it
takes to get there and back again. Parking areas may not be located directly aside
the computed optimal route between two consecutive customers. For instance, a so-
called “Autohof” may be up to a kilometer away from the junction of the autobahn
in Germany.

The other issue is that there may simply not be a suitable parking area around
when it is needed. In such a case, the break has to be taken some time before it
becomes due. The implications can be severe when the total driving time on a route

3For the sake of a simpler notation, we only speak of male drivers throughout this thesis. The legal
provisions and the mathematical findings in this thesis also hold for female drivers.

1.1. Problem Descriptions 3

is close to a multiple of the maximum driving time without break. Let us take the
above mentioned EU regulation as example: Suppose the total driving time is close
to 9 hours. Then one break may suffice, but only as long as it can be taken after
not much less than exactly 4.5 hours of driving. That is, there is only little margin,
it is crucial that there is a parking spot available right when it is needed. Should
there be no parking spot available at that time, then the break must be scheduled
earlier, and thus a second break becomes mandatory, shortly before the end of the
route. And that additional second break has presumably an even greater impact
on the schedule than the detour. In both cases, time windows may be missed or
some provisions regarding working hours may be violated in practice if the break
locations are disregarded and there is not enough buffer in the schedule.

Taking the break locations into account becomes all the more relevant in practice,
the more limited the truck driver is when in search of a spot to park the truck. For
instance, this is the case when a secure, monitored parking space is needed; or when
hazardous goods are transported; or when the driver has certain demands regar-
ding the offered amenities (showers, restaurants, . . .); or when information about
the occupancy status of parking areas becomes available.

We learn that it is worthwhile to take parking locations and the underlying road
network into account. This motivates us to introduce the truck driver routing problem.
In this setting, we assume a long-haul driver who needs to drive from a source to a
destination, and we want to find a shortest feasible route in the road network that
leads from the source to the destination via some parking locations (if necessary or
beneficial). Here, a route is considered as feasible if a feasible schedule exists where
the breaks are only taken at parking locations.

Truck Driver Scheduling and Routing While parking locations and the under-
lying road network are disregarded in the truck driver scheduling problem, the truck
driver routing problem is to find a feasible route in the road network only between
a source and a destination. Here, more than two customers and their time windows
are not an issue. In the truck driver scheduling and routing problem, these two pro-
blems are combined. On the one hand, we want to find a route in the road network
that leads from the first to the last customer via the other customers of a given se-
quence and, if need be, some parking locations. On the other hand, we want to find
a corresponding schedule such that every service starts within a time window of
the respective customer, the provisions on working hours are respected, and every
break is taken either at a parking location or at a customer.

Vehicle Routing In the truck driver scheduling problem, the sequence of custo-
mers is supposed to be given. However, the problem of finding a good if not optimal
sequence is everything but simple. In the vehicle routing problem (here: with multiple
time windows), we are given a fleet of vehicles and a large number of customers that
all demand a certain service. Every customer states one or several time windows in
which the service is allowed to begin. The problem is now to assign every customer
to a vehicle on the one hand, and determine the sequence of customers for every
vehicle on the other. Typically, the objective is to use as few vehicles as possible and,
as second criterion, to minimize the mileage.

There is a tremendous amount of literature on the vehicle routing problem and
seemingly every facet of this problem has already been explored (see Braekers, Ra-
maekers, and Nieuwenhuyse (2016) for classification and review, as well as the sur-
veys of Vidal et al. (2013) and Lahyani, Khemakhem, and Semet (2015) particularly

4 Chapter 1. Introduction

on rich or multi-attribute vehicle routing problems). Just like the truck driver sche-
duling problem, the vehicle routing problem is rather a family of problems as it has
been extended into so many different directions.

Vehicle Routing and Truck Driver Scheduling In one of these directions, we find
the vehicle routing and truck driver scheduling problem. As the name suggests, it com-
bines the vehicle routing problem and the truck driver scheduling problem. That is,
one wants to find vehicle routes that also comply with the applicable rules on dri-
vers’ working hours, though under the simplifying assumption that breaks can be
taken anywhere.

We might as well view the truck driver scheduling problem as a (non-trivial)
subproblem of the vehicle routing and truck driver scheduling problem in which
the subproblem has to be solved for every vehicle route. And yet, the truck driver
scheduling problem also arises as a standalone problem in practice. Then, the se-
quence of customers is determined externally, for instance by the dispatcher. This is
true especially in a real-time scenario. Here, driving and service times can only be
estimated at the beginning of the route, and better estimates become available in the
course of time. Even though the real-time scenario is not directly addressed in this
thesis, it is a constant motivation for our studies.

It should be noted that the term route is ambiguous. In the truck driver schedu-
ling and routing problem, the sequence of customers is fixed, and so the term refers
to the sequence of road segments between consecutive customers. On the contrary,
in the vehicle routing and truck driver scheduling problem, the sequence of road
segments between two customers is supposed to be known, and so the term refers to
the sequence of customers. For the sake of clarity, we may use the terms truck driver
route and vehicle route, respectively – unless there is no danger of confusion. Going
to the extreme, we could even think of a vehicle routing and truck driver scheduling
and routing problem, which combines both problems and in which both definitions of
routes are unified. But this would be far beyond the scope of this thesis.

1.2 Scope of Thesis

In this thesis, we analyze the aforementioned combinatorial optimization problems and
develop algorithms to solve them. Before we expand upon these problems in detail,
we outline the scope of this thesis and raise three major research questions.

At first, let us be clear that it is beyond the scope to question the legal provisi-
ons. We assume throughout this thesis that a driver is never fatigued when he is
on a schedule that complies with the rules. Hence, a model of fatigue itself is not
incorporated by our problem definitions. A variant of the truck driver scheduling
problem that includes fatigue monitoring is introduced by Bowden and Ragsdale
(2018). An optimization-based assessment of international regulations can be found
in the paper of Goel and Vidal (2014).

There are two general notes regarding the input data. One is that we assume
complete knowledge of all relevant information, that is, we only deal with offline pro-
blems. In a real-time scenario, it may happen that a problem instance changes over
time. This fact remains disregarded in this thesis. However, a rather trivial way of
coping with this would be to re-optimize the problem instance every time new infor-
mation is gained. Apart from the assumption of complete knowledge, all relevant
information needed to solve the problem at hand is modeled as deterministic in this
thesis. For instance, driving times between customers or on segments of the road

1.2. Scope of Thesis 5

network are assumed to be known exactly. But this does not mean that we ignore
the fact that driving times may vary during the day. Time-dependent driving times are
considered in connection with the truck driver routing problem as well as the truck
driver scheduling and routing problem.

Regarding the working hours of drivers, we restrict our studies to a single driver
behind the wheel. This note is important because different rules may apply when
multiple drivers take turns. Besides, we completely ignore the possibility of a driver
change along a route. Our main focus are the provisions that are valid throughout
the European Union. But we also shed light on the US provisions. Additional (or
more restrictive) rules may apply in individual member states of the EU or other
countries in the world. But such rules are rather only touched in this thesis for the
sake of conciseness.

As far as the various problem definitions are concerned, we always allow multi-
ple time windows per customer. In the literature, most often only one time window
per customer is permitted (see section 2.2). We consider the break rule parameter
setting (like 45 minutes and 4.5 hours) to be a part of each problem instance and not
part of the problem itself. This is not self-evident as only certain parameter settings
are of practical relevance. When we study the complexity of some problems, we
will not make any assumptions about the setting of the break rule parameters and
concentrate on statements that are independent of the setting.

Let us have a look at the scope of the individual problems and the major research
questions.

1.2.1 Truck Driver Scheduling

A wide range of different truck driver scheduling problem variants has been discus-
sed in the literature. And while both exact and heuristic solution methods have been
proposed, little is known about the complexity of these problems. For rather simple
problem variants it is known that they can be solved in polynomial time (Archetti
and Savelsbergh, 2009; Goel and Kok, 2012b; Goel and Kok, 2012a). For far more
complex problem variants, NP-hardness is conjectured (Xu et al., 2003; Drexl and
Prescott-Gagnon, 2010). But, to the present day, these conjectures are neither proven
nor falsified. Hence, a large part of this thesis is motivated by the question:

Which problem variants of the truck driver scheduling problem can (still) be solved in
polynomial time - and how?

To be precise, we are interested to find algorithms that run in strongly polynomial
time, where the run-time only depends on the number of customers and the number
of time windows. In contrast, this means that their run-time does not depend on
the length of the intervals (such as the customers’ time windows or the planning
horizon), the driving time between the customers, or the parameter setting of the
break rules (such as the minimum break duration).

The problem variants that we examine are enhancements of the problems stu-
died by Archetti and Savelsbergh (2009), Goel and Kok (2012b), and Goel and Kok
(2012a). Their problems have in common that there is only one type of break and
there are two conditions under which a break of this type becomes mandatory. One
is that the driver has accumulated a certain driving time since the end of the last
break (as regarded before). The other is that simply a certain time has elapsed since
the end of the last break. For now, let us call this truck driver scheduling problem
variant basic as it lies the foundation of several problems considered in this thesis.
In the basic problem, each customer may only specify a single time window. It is a

6 Chapter 1. Introduction

decision problem, so the objective is to find out whether a feasible schedule exists or
not. As shown by the authors just mentioned, this basic problem is solvable in poly-
nomial time. More precisely, it is solvable in a time that is quadratic in the number
of customers. In this thesis, we enhance the basic variant into four directions:

1. Truck driver scheduling with multiple time windows per customer: As menti-
oned, each customer may only specify a single time window in the basic pro-
blem. The first enhancement is thus to allow the customers to specify multiple
time windows. We consider the variant in which the objective is to find a sche-
dule with earliest finish time, that is, the earliest completion time of the last
service.

2. Truck driver scheduling with multiple time windows per customer and break
splits: In the second enhancement, it is allowed to split a break in two parts,
that is, to take two shorter breaks instead of one long break. This is motivated
by a corresponding rule that is laid down in the Regulation (EC) 561/2006 of
the European Union. Optimization goal is again the earliest finish time.

3. Truck driver scheduling with multiple time windows per customer and mini-
mum duration objective: As third enhancement, we are interested in finding a
feasible schedule for which the duration from the beginning of the first service
to the end of the last service is minimum. This optimization goal turns out to
be harder than the earliest finish time.

4. Truck driver scheduling with multiple time windows per customer and two
types of breaks: In the fourth enhancement, we distinguish two break types, a
short break and a long break. This means there is a set of break rules regarding
the short break and another set of break rules regarding the long break. Again,
optimization goal is the earliest finish time.

In general, it depends on the length of the planning horizon how many diffe-
rent types of breaks need to be distinguished. For a planning horizon of one
day, only one type of break has to be considered. Let us call breaks of this type
“lunch breaks”. For a planning horizon of up to one week, both lunch breaks
and “daily rest breaks” need to be scheduled, and for a planning horizon of
several weeks even, this holds for lunch breaks, daily rest breaks, and “weekly
rest breaks”. The official terms of the break types depend on the regulation.
Details follow in the next chapter.

Drexl and Prescott-Gagnon (2010) study a very complex problem variant and
conjecture that their problem at hand is NP-complete. So there is a gap between
variants that can be solved in strongly polynomial time on one hand and those that
are conjectured to be NP-hard on the other. This raises the question where the end
of the line is, that is:

Which variants can no longer be solved in strongly polynomial time?

However, this is only a subordinate research question.

1.2.2 Truck Driver Scheduling and Routing

Taking also parking locations into account can be viewed as another extension. But
our research has a different focus when we turn towards the truck driver routing
problem and the combined truck driver scheduling and routing problem. The moti-
vation is no longer to find more and more problem variants that can still be solved

1.2. Scope of Thesis 7

in strongly polynomial time. Instead, it is the practical application that motivates
us. Our aim is a “proof of concept”. This means we want to develop algorithms that
could be the basis of a future product feature of PTV.

The main feature we are interested in is not so much the consideration of par-
king locations alone. It is rather the consideration of parking locations together with
time-dependent driving times. In practice, it is of high importance to take the incre-
ased driving times during rush hours into account. According to the ADAC (2018),
723 000 traffic jams were recorded on German autobahns in 2017, and these had a
total length of 1 448 000 km. The time the road users had to spent in these traffic
jams sums up to 457 000 hours. And these numbers are increasing from year to year.

When the driving time along road segments is regarded as time-dependent, then
it makes sense to also consider parking locations. Let us give an example why. Sup-
pose a driver has to drive from customer c1 to customer c2, and we have no know-
ledge about parking locations (but breaks en route are still allowed). Instead we are
only given a function over time that maps a departure time from c1 to the driving
time to c2. In our example, the driver is forced to take a break somewhere between
the two customers (regardless of the departure time). While the driver is taking a
break, the roads ahead to the next customer become more an more congested. What
will be the remaining driving time to the next customer after the break? We can-
not tell because we only know the driving time for the case that the driver does not
stop for a break between the two customers. We could tell only if we had not only
scheduled the time of the break but also the place and if we had such a driving time
function on every edge of the road graph.

With time-dependent driving times, the truck driver (scheduling and) routing
problem is computationally a lot harder to solve (see Foschini, Hershberger, and
Suri, 2014). As compensation, we restrict our studies in two ways. One is that we
only consider the truck driver (scheduling and) routing problem with just one break
rule (instead of two as with the truck driver scheduling problem). This break rule
demands a break after the driver has accumulated a certain driving time since the
last break. The other restriction is that we only take at most one parking location
between two customers into consideration. In practice, both are not a limitation for
a planning horizon of one day in the EU.

Here, the research question can be stated as follows:

Given real-world data like a road graph representing the German road network and infor-
mation on predictable congestion, how quickly can optimal truck driver routes and schedules
be computed, and what is a good trade-off between run-time and solution quality (and me-
mory consumption)?

1.2.3 Vehicle Routing and Truck Driver Scheduling

The literature on the vehicle routing problem is so immense that even survey papers
can only cover a fraction of it and typically concentrate on certain aspects or variants
of the problem. Equally high is the number of suggested solution approaches, may
they be exact or heuristic (or matheuristic). And so it is not surprising that also both
exact and heuristic approaches have already been proposed for the vehicle routing
and truck driver scheduling problem (see section 2.2 for related work). Most of the
heuristic approaches are based on local search in some way or the other.

In this thesis, we do not describe yet another algorithm for this problem. At least,
this is not in the focus. Instead, it is about how solving the scheduling sub-problem,

8 Chapter 1. Introduction

that is, checking the feasibility of routes, can be integrated into a given local search
based heuristic. Formulated as research question:

How can the feasibility in respect of drivers’ working hours be checked efficiently within
local search based heuristics for the vehicle routing and truck driver scheduling problem?

This part is motivated to a large extent by the needs of the commercial vehi-
cle routing software of PTV. Besides solution quality, fast response times are key in
practice, and so an efficient implementation is crucial. Concerning the considered
rules, we concentrate on the rules that are effective in the EU for a planning horizon
of one day.

1.3 Organization and Main Contributions

Now that we have set out the scope, we give an overview of the chapters and sum-
marize the main contributions of each chapter. The first two lay the foundations of
the main parts of the thesis.

1 Introduction: This chapter.

2 Fundamentals and Preliminaries: In the second chapter, we present legal re-
gulations affecting drivers’ working hours. We give detailed descriptions of
the provisions effective in the EU and in the US. Based on these, we describe
our classification of the break rules and also introduce some basic terminology
and some notation that is used in this thesis. In addition, we present the lite-
rature regarding the optimization problems that are covered in this thesis.

The next three chapters belong together and constitute the first major part. Here, the
focus lies on the truck driver scheduling problem and its complexity. These chapters
form the part on polynomial-time algorithms for various variants of this problem.
To the best of our knowledge, we develop the first algorithms that are proven to run
in polynomial time (polynomial in the number of customers and/or in the number
of time windows) for the following variants of this problem:

3 Truck Driver Scheduling with Multiple Time Windows: In this chapter, we
present the first polynomial-time algorithm for the truck driver scheduling
problem with multiple time windows per customer. Furthermore, we show
that the same bound can be achieved when it is allowed to split a break in two
parts.

4 Truck Driver Scheduling with Minimum Duration Objective: In this chapter,
we present the first polynomial-time algorithm for the truck driver scheduling
problem with multiple time windows per customer and minimum duration
objective. With this, we can falsify the NP-hardness conjecture of Xu et al.
(2003) for an important special case of their problem.

5 Truck Driver Scheduling with Two Types of Breaks: In this chapter, we study
the truck driver scheduling problem with multiple time windows per custo-
mer and two types of break. For the case that it is only allowed to take breaks
at customers and not en route between them, we present the first polynomial-
time algorithm for this variant. However, the general case is harder. Here, we
show that the number of non-dominated states may not solely depend on the
number of customers and time windows. Hence, we conjecture that a strongly
polynomial-time algorithm does not exist in the general case.

1.3. Organization and Main Contributions 9

The next chapter is the only one about the combined vehicle routing and truck driver
scheduling problem. In principle, any algorithm for the truck driver scheduling
problem could be plugged “as is” into the feasibility check of an algorithm for the
vehicle routing problem. A drawback of this approach is that information about
partial solutions is not cached and likely to be computed multiple times. In contrast,
the next chapter is on an integrated approach, where such information is cached,
making this approach more efficient.

6 Vehicle Routing and Truck Driver Scheduling with Multiple Time Windows:
In this chapter, we present an approach how to integrate an exact feasibility
check into a local search based heuristic for the vehicle routing and truck dri-
ver scheduling problem with multiple time windows. This feasibility check is
tailored to the rules that are effective in the EU for a planning horizon of one
day and has not been described before.

Besides the chapters 3, 4, and 5, the chapters 7 and 8 constitute the second major
part, where we present our findings concerning the truck driver (scheduling and)
routing problem on time-dependent road networks. To the best of our knowledge,
both problems have not been studied before, apart form the bachelor thesis of Bräuer
(2016).

7 Truck Driver Routing on Time-Dependent Road Networks: We present both
an exact and heuristic solution approaches for it. For the exact method, we
describe acceleration techniques and prove their effectiveness. Our proposed
heuristics turn out to be much faster while preserving a very good quality
level.

This chapter is an (almost) exact quote of the article by Kleff et al. (2017).

8 Truck Driver Scheduling and Routing on Time-Dependent Road Networks:
Again, we present both exact and heuristic solution approaches. Here, the pro-
posed heuristic is up to three orders of magnitude faster, finding the optimal
solution in most of the cases.

Most chapters end with a section that sums up the findings of the respective chapter.
Analogously, this thesis is concluded by a chapter that sums up the findings of all
chapters.

9 Conclusion and Outlook: Here, we refer back to the research questions raised
in the previous section.

11

Chapter 2

Fundamentals and Preliminaries

The most fundamental pieces of information that the reader is missing up to now are
details about the regulations that affect the drivers’ working hours. This information
is finally given in section 2.1. With this, it is a lot easier to appraise the related
work that we outline afterwards in section 2.2. In the subsequent section 2.3, we
introduce our classification of the relevant break rules. In section 2.4, we present
basic definitions and notation.

2.1 Regulations Affecting Drivers’ Working Hours

The role of driver fatigue in road safety is complex and subject to research. Summa-
rizing earlier research findings, the European Transport Safety Council (2001) comes
to the conclusion that driver fatigue is a significant factor in approximately 20% of
commercial road transport crashes and that over 50% of long haul drivers have at
some time fallen asleep at the wheel. A detailed, more recent report on how incre-
ases in hours of service are linked to increases in fatigue, and how this in turn is
linked to increases in crash risk for truck drivers is given by the National Acade-
mies of Sciences, Engineering, and Medicine (2016). Similarly, they assume that up
to 20% of the truck and bus crashes with fatalities on US American roadways may
have involved fatigued drivers.

In this thesis, we focus on regulations effective in the European Union and the
United States. Both the European Union and the United States have a long history
of regulations limiting the hours of work of truck (and bus) drivers. Due to the on-
going research, the rules have been adapted over the years to reflect recent findings.
This is particularly true if misuse of rules is detected or if rules do not have the
expected or desired effect. Since rules can change, it will be all the more important
to us to describe the problems at hand as generally as possible and only as concretely
as necessary.

In this section, we present the regulations affecting drivers’ working hours in
the European Union (section 2.1.1) and the United States (section 2.1.2) in greater
but not in every detail. However, we will explicitly state where there are gaps in
our presentation. There may be equivalent regulations in other countries such as
Canada, Australia, or South Africa. But these are not described here for the sake
of conciseness. At least for the truck driver scheduling problems in Canada and
Australia, literature exists, so we refer the reader to these works (Goel and Rousseau
(2012) concerning Canadian provisions and Goel, Archetti, and Savelsbergh (2012)
concerning Australian provisions).

12 Chapter 2. Fundamentals and Preliminaries

2.1.1 European Union

In the European Union, the first community-wide drivers’ hours rules were introdu-
ced in 1969 with Regulation (EEC) 543/69. In 1985, this regulation was repealed by
Council Regulation (EEC) 3820/85, which in turn was repealed by Regulation (EC)
No 561/2006 in 2006. This is the regulation that is currently effective.

But the current regulation does not only repeal an older regulation on drivers’
working hours, it also amends Council Regulation (EEC) No 3821/85 on recording
equipment in road transport, in which technical matters in connection with installa-
tion and inspection of tachographs are settled. These tachographs make the necessary
recordings that are crucial when it comes to checking compliance with the rules.
Today, digital tachographs are mandatory.

In the following, we present the most important drivers’ hours rules of Regula-
tion (EC) No 561/2006. These rules are supplemented by those stated in Directive
2003/88/EC and Directive 2002/15/EC, which we outline thereafter. Even though
our presentation of the rules is already comprehensive, it is not complete. Examples
of rules that we ignore are given in the respective subsection.

2.1.1.1 Regulation (EC) No 561/2006

Regulation (EC) No 561/2006 applies “to the carriage by road of goods where the
maximum permissible mass of the vehicle, including any trailer, or semi-trailer, ex-
ceeds 3.5 tonnes” (European Parliament and Council of the European Union, 2006).
In special cases, vehicles and drivers are exempt from this regulation. For instance
in case of non-commercial carriage of goods, it only applies to drivers of vehicles with
a maximum permissible mass of more than 7.5 tonnes. The rules laid down in the
regulation do not only apply to truck drivers but also to bus drivers whenever they
are at the wheel of a bus that is large enough to carry more than nine persons in-
cluding the driver. However, the carriage of passengers is not in the focus of our
research.

The regulation does not only apply to routes within or between EU member sta-
tes. Since the provisions of the European Agreement Concerning the Work of Crews of
Vehicles Engaged in International Road Transport (AETR) are in line with this regulation
(at least to the extent covered in this work), they also apply to routes to or through
all signatory countries of the AETR. So roughly speaking, they are relevant all over
Europe.

Not only drivers can be made liable for infringements but also the employing
transport undertakings. It is in their responsibility to organize the work of drivers
in a way such that these are able to comply with the regulation. Additionally, they
have to make regular checks to ensure the compliance. But it is not only on the
transport undertakings. Also “consignors, freight forwarders, tour operators, prin-
cipal contractors, subcontractors and driver employment agencies shall ensure that
contractually agreed transport time schedules respect this Regulation” (ibidem).

As already mentioned, we only present the most important rules. Journeys in-
volving ferry or train transport, for instance, are beyond our scope. Here, exceptions
from the rules may apply.

Breaks and Rests From a legal perspective, we need to distinguish breaks from rest
periods. While a break is defined to be a period of time during which a driver may
not carry out any work and which is used exclusively for recuperation, a rest period
is defined to be an “uninterrupted period during which a driver may freely dispose

2.1. Regulations Affecting Drivers’ Working Hours 13

of his time” (ibidem). The difference in the meaning may seem petty. But it matters
in a multi-manning scenario for instance. Suppose there are two drivers in the vehicle
to do the driving, and these drivers take turns. Then one driver may take a break
while the other is driving but he may not take a rest. In order to take a rest, the truck
must be stationary because a driver cannot freely dispose of his time in a moving
truck.

Also, there are daily and weekly rest periods. While the definition of a rest period
is the same in both cases, there is a major difference between a day and a week, and it
is not (only) about their time span. A day is defined to be a 24-hour period, whereas
a week “means the period of time between 00.00 on Monday and 24.00 on Sunday”
(ibidem), that is, in contrast to a week, a day is only characterized by its duration.
Since a day does not have to be a calendar day, there is a certain degree of freedom
when it comes to scheduling breaks and rests.

A regular daily rest period is a rest period of at least 11 hours, and a regular weekly
rest period is a rest period of at least 45 hours. By this definition, a regular weekly
rest can also be considered as a regular daily rest, and both rest periods also count
as break. In this work, the difference in the definitions does not play a role as we
will focus on a single driver and a planning horizon of at most a few days. So in the
following, a rest period can be viewed as a very long break.

When a Break Becomes Due A driver must take an uninterrupted break of at least
45 minutes after he has accumulated a driving time of 4.5 hours since the last such
break. However, a break may be split in exactly two parts which we call the first
split break and the second split break. Only after the second split break, the driver is
allowed to drive for another 4.5 hours. A first split break needs to be at least 15
minutes long, a second split break at least 30 minutes. That is, a break split is not
penalized in terms of total break duration.

When a Daily Rest Becomes Due There are two cases in which a daily rest beco-
mes due. One is that the driver has accumulated a certain driving time since the
last daily rest, and this maximum driving time per day is 9 hours. However, twice
a week, a driver is allowed to drive for up to 10 hours before he is prohibited from
driving without taking a daily rest. The other case is due to the fact that there must
be a daily rest every day, which is relevant if the driver has to spend a significant
amount of time doing other work than driving. To be precise, not later than 24 hours
after the end of a daily rest period, the driver must be rested again with respect to
a daily rest period. With a regular daily rest period of 11 hours for example, this
means that only 13 hours may elapse between the end of a daily rest period and the
beginning of a new one.

The latter rule may seem to be defined in a rather cumbersome way. This can be
explained by the fact that a driver is allowed to take only a reduced daily rest period of
9 hours three times a week (between any two weekly rest periods, to be precise). So
if the driver is still entitled to take a reduced daily rest period, up to 15 hours may
elapse between the end of a daily rest and the beginning of a new one.

Like breaks, daily rests may be split in two parts. The first split rest must be at
least 3 hours long, whereas the second split rest must be at least 9 hours long. That is,
unlike a break split, a rest split is penalized in terms of total rest duration. Only after
the second split rest, the driver is considered as (completely) rested with respect to
a daily rest.

14 Chapter 2. Fundamentals and Preliminaries

Should two drivers team up and drive together, both drivers must be rested only
30 hours (instead of 24 hours) after the end of the last daily rest. And instead of 11
hours, a daily rest of 9 hours suffices in such a scenario.

When a Weekly Rest Becomes Due A driver must take a weekly rest period no
later than at the end of six 24-hour periods from the end of the last weekly rest
period. And a driver may accumulate a maximum driving time per week of 56
hours. However, the maximum driving time accumulated in any two consecutive
weeks is 90 hours. After the driver has driven for the maximum time, he must no
longer drive. As already mentioned, a regular weekly rest is at least 45 hours long.
However, due to the definition of a week as a calendar week, the driver is still not
allowed to drive before 24.00 on Sunday in case the 45 hours of a weekly rest end
earlier.

The notion of a reduced weekly rest period exists (at least 24 hours long) but such a
reduced rest must be compensated adequately. Here, we omit the details of how this
shall be done. In any two consecutive weeks a driver shall take at least two weekly
rests, one of which must not be reduced. A weekly rest cannot be split in two parts
like a daily rest.

2.1.1.2 Directive 2003/88/EC

Unlike a regulation, a directive is not self-executing but requires implementing mea-
sures by the member states of the EU. For example, the German “Arbeitszeitgesetz”
implements the provisions of Directive 2003/88/EC, also known as working time di-
rective (European Parliament and Council of the European Union, 2003). It is way
beyond the scope of this thesis to address the national legislation of all EU member
states.

According to the working time directive, every worker is entitled to

• a rest break, provided that the working day is longer than six hours,

• a daily rest period of at least 11 consecutive hours per 24-hour period, and

• an uninterrupted rest period of at least 24 hours plus the 11 hours daily rest
per each seven-day period.

In addition, the average working time for each seven-day period, including over-
time, shall not exceed 48 hours. Here, we neglect that also certain aspects of night
work, shift work and patterns of work are laid down in the directive. Considering
night work aspects is beyond the scope of this work.

2.1.1.3 Directive 2002/15/EC

Directive 2002/15/EC is on the “organisation of the working time of persons per-
forming mobile road transport activities” (European Parliament and Council of the
European Union, 2002). It applies to all mobile workers employed by undertakings
established in a EU member state as well as to self-employed drivers. It contains
more specific provisions than the working time directive:

• A mobile worker shall not “work for more than six consecutive hours without
a break. Working time shall be interrupted by a break of at least 30 minutes, if
working hours total between six and nine hours, and of at least 45 minutes, if
working hours total more than nine hours” (ibidem).

2.1. Regulations Affecting Drivers’ Working Hours 15

• “Breaks may be subdivided into periods of at least 15 minutes each” (ibidem).

• The average weekly working time in road transport may not exceed 48 hours.
The maximum weekly working time may be extended to 60 hours only if an
average of 48 hours per week is not exceeded within a period of four months.

This directive also contains night work provisions that we ignore again as it is out of
scope of this thesis.

2.1.2 United States

In the United States, regulations concerning drivers’ working hours are issued by
the Federal Motor Carrier Safety Administration (FMCSA) as “Hours of Service of
Drivers”. Hence, they are commonly referred to as HOS (Hours Of Service) rules.
Comparable to the EU equivalent, these rules limit the driving and working hours
of truck drivers and anyone else operating a commercial motor vehicle (CMV) in the
United States.

The first rules date back as far as 1938, whereas the most recent change to the
rules is from 2014 (temporary suspension of enforcement of some provisions of the
final rule of 2011). In the following, we present the most notable rules effective
today, again focusing on property-carrying vehicles only. For a brief history of the
HOS rules, we refer to the Federal Motor Carrier Safety Administration (2000).

2.1.2.1 Hours of Service of Drivers (Final Rule 76-FR-81134)

The most recent final rule on the hours of service of drivers was published in 2011
(Federal Motor Carrier Safety Administration, 2011). The terms and definitions of
this regulation differ from the EU counterpart. Here, every part of the work schedule
of a truck driver is assigned to one of four different times: Driving time, on-duty time,
off-duty time, and sleeper berth time. On-duty time comprises driving time and time
spent for all other work. This includes the time when the driver is waiting to be
dispatched, unless he has been relieved from duty by the motor carrier. Off-duty
time is any time not spent on-duty or in the sleeper berth. As the name suggests,
sleeper berth time is time spent resting in the sleeper berth of a truck, given that the
truck provides one. It can be thought of as more restful than off-duty time. Due
to this, time spent in a sleeper berth is treated slightly different in the regulation
than time being simply off-duty. However, we will ignore this and assume in the
following that the truck at hand does not have a sleeper berth. This means, the
driver cannot benefit from the so-called “sleeper berth provision” that relaxes some
constraints and allows a certain flexibility in regard to when and how to take a daily
rest.

When a Break Becomes Due A driver is required to take a break of 30 minutes. To
be precise, a driver may drive a CMV only if at most 8 hours have elapsed since the
end of the last off-duty period of at least half an hour. It should be noted that this
“lunch break rule” is fairly new and only entered into force in 2013.

When a Daily Rest Becomes Due Here, let a daily rest denote a consecutive off-
duty period of at least 10 hours. Such a daily rest becomes due after 11 hours of
driving or after 14 hours have passed since the end of the last daily rest. Strictly
speaking, only driving a CMV is prohibited then, doing other work is still allowed.

16 Chapter 2. Fundamentals and Preliminaries

This is unlike in the EU, where it is enforced that drivers maintain a circadian rhythm
of at most 24 hours.

When a Weekly Rest Becomes Due There is no HOS rule that directly compares
to the weekly rules of the European Union. Unlike in the EU, a weekly rest never
becomes due but it may well become beneficial.

There is a rule regarding the maximum on-duty time per week. For this rule, it
is distinguished whether the employing motor carrier operates CMV every day of
the week or not. In the former case, the maximum on-duty time per 8 day period
is limited to 70 hours (average of 8.75 hours per day), whereas in the latter case,
the maximum on-duty time per 7 day period is limited to 60 hours (average of 8.57
hours per day). After the maximum weekly on-duty time is exceeded, the driver is
no longer allowed to drive a CMV until the next day. That means, as long as the
driver is on duty for not longer than 8.57 hours per day, the rule does not prohibit
driving a CMV every day of the year.

However, a concept exists that is similar to the weekly rules of the EU, and it
is commonly referred to as the “34-hour restart provision”. Let us call an off-duty
period of at least 34 hours a weekly rest. Then, the 34-hour restart provision says
that after a weekly rest, the driver is considered as completely rested, and the accu-
mulated on-duty time is reset to zero. The history before that weekly rest no longer
counts.

In the original regulation of 2011, it is stated that a weekly rest must span two
periods that include 1 a.m. to 5 a.m., and that a restart after a weekly rest may only
be considered once every 168 hours. This restriction is currently suspended (United
States House Committee on Rules, 2014).

2.2 Related Work

This section gives an overview over the literature on planning problems related to
drivers’ working hours. Since the truck driver (scheduling and) routing problem is
only introduced in this thesis, there is no literature on this, apart from some master
theses and some rather remotely related literature. This literature will be reviewed
in the respective chapters. In the following, we focus on the literature regarding the
truck driver scheduling problem and the vehicle routing and truck driver schedu-
ling problem. In each subsequent chapter, we may once again present some of the
literature as far as it is relevant in the scope of the respective chapter.

Truck Driver Scheduling A polynomial-time algorithm for a truck driver schedu-
ling problem (TDSP) is first described by Archetti and Savelsbergh (2009) (as “trip
scheduling problem”). As already mentioned in section 1.2.1, they study a problem
where there are two conditions under which a break becomes due. It is motivated
by the US rules of that time, and the objective is simply to find a feasible schedule
if one exists. The authors show that their problem at hand can be solved in O(n3)
time in the case of a single time window per customer (with n being the number of
customers).

Goel and Kok (2012b) improve this bound to O(n2). They also show that the
same bound can be achieved in the presence of multiple time windows per customer
if these time windows are at least as far apart as the minimum break duration. For
the problem with multiple and arbitrarily distributed time windows, they “doubt

2.2. Related Work 17

that a polynomial bound on the number of schedules generated” can be stated for
their scheduling algorithm.

As far as a similar problem variant is concerned (motivated by EU rules this
time), Goel and Kok (2012a) present an O(n2) algorithm for the single time window
case. They even study the problem that arises when the standard daily driving time
limit may be raised a certain number of times. This is motivated by the EU rule that
allows the driver to drive for 10 hours instead of 9 hours per day, but only twice a
week. The authors conclude that an O(n2) bound can still be achieved. However,
they regard the setting of the break rule parameters like the daily driving time limit,
the break duration, and even the planning horizon as a characteristic of the problem
itself, and hence the maximum number of breaks within the planning horizon as
a constant. For the general case in which the parameter setting is a part of each
problem instance, there is no result 1.

To the best of our knowledge, these three papers are the only ones that contain
a polynomial-time algorithm. The first paper to consider the hours of service of
a driver in the United States is the one by Xu et al. (2003). The authors solve a
practical pickup and delivery problem with a variant of the TDSP with multiple time
windows as subproblem. In fact, their objective is to minimize the total cost where
the cost of a single route is a linear combination of the following components: a fixed
part, mileage cost, cost for the break periods, and cost for the residual waiting time.
The first two components are irrelevant for the subproblem. For the case that the last
two components are equally weighted, their subproblem coincides with the problem
variant that asks for the minimum duration. They conjecture that their subproblem
is NP-hard.

Goel (2010) solves a TDSP with two different break types but only with a single
time window per customer. This research is motivated by the rules in the EU, where
both breaks and daily rest periods have to be scheduled for a planning horizon of
several days. It is also taken account of by the author that both breaks and daily
rests are allowed to be split in two parts. The number of partial schedules created
during the suggested algorithm may grow exponentially. Dominance rules are given
to reduce the number of partial schedules in memory, but still no polynomial bound
on the number of non-dominated partial schedules is stated.

Drexl and Prescott-Gagnon (2010) investigate the break rules of the EU compre-
hensively, though only for the single time window case as well. Since they regard a
planning horizon of more than a week, three types of break must be distinguished.
Their labeling algorithm finds a legal schedule if one exists. It can even be used to
construct a route in case the sequence of customers is not given. But even if it is,
again the number of created labels grows exponentially for the exact approach. The
authors conjecture that the variant of the TDSP that they study, i.e., a variant with a
comprehensive set of EU drivers’ rules, is NP-complete.

1 It appears that the complexity analysis in both papers (Goel and Kok, 2012a; Goel and Kok, 2012b)
is incomplete. Goel and Kok (2012a) show that the number of iterations of their algorithm is in O(n2)
but they omit to make a statement on the time complexity of each iteration. Here, each iteration com-
prises a step in which dominated schedules are removed from a set of schedules for a partial route. In
their other paper (Goel and Kok, 2012b), the authors prove that the number of non-dominated schedu-
les that their algorithm generates is in O(n2). However, they again disregard the time it takes to check
for dominated schedules. In fact, if checking for dominated schedules implies that different schedules
with respect to the same partial route are compared pairwise, then each iteration of the algorithm by
Goel and Kok (2012a) may take linear time in the worst case. And in their other algorithm (Goel and
Kok, 2012b), the dominance check that is invoked n times may take O(n2) time. So we conjecture that
both algorithms have a time complexity of only O(n3). However, in the remainder of this thesis, we
will assume that the authors are right and that their time complexity statements are correct.

18 Chapter 2. Fundamentals and Preliminaries

The only approach we are aware of that tries to tackle both the US and the EU va-
riants of the TDSP with a unified approach is developed by Goel (2012c). The author
introduces a flexible model that can be configured for several types of breaks, diffe-
rent rulesets and a planning horizon of more than a week. Multiple time windows
are also included in the model, and the objective is to find a feasible schedule with
minimum duration. However, a severe limitation is that all breaks can only be taken
at customers, either before or after service but never en route between customers,
unless parking locations are explicitly added to the route as “dummy customers”.
(In chapter 5, we will call this the “no-break-en-route policy”.) Both a MIP formu-
lation and a dynamic programming approach are presented. The number of partial
solutions generated by the DP algorithm may grow exponentially, even when the
dominance criterion is applied.

For other MIP-based approaches, the same limitation applies: Kok, Hans, and
Schutten (2011) regard a variant of the TDSP with one type of break (and for two
types of breaks with an extension of the model) where the driving times are consi-
dered to be time-dependent. The objective is again to minimize the total duration.
Koç et al. (2016) introduce a variant of the TDSP where the objective is to minimize
operational and emissions costs. They even include real-world data of parking lots
(here: interstate rest areas in the US) into their experimental analysis. A MIP mo-
del without the limitation that breaks en route are disallowed is given by Bernhardt
et al. (2016). Also included in this model are “soft” time windows, that is, penalties
for missed time windows are considered. Based on this work, Bernhardt et al. (2017)
present a model which integrates gas stations along the route and decisions about
refueling.

Besides the rulesets according to the provisions of the US and the EU, the pro-
visions of other countries have been studied, in particular those of Canada by Goel
and Rousseau (2012) and Goel (2012b) as well as those of Australia by Goel, Archetti,
and Savelsbergh (2012) and Goel (2012a). Many papers that deal with the provisions
in the US were written before the most recent final rule entered into force 2013. This
US rule change is explicitly treated by Goel (2014), and an algorithm is proposed
(single time window, minimum duration objective, two types of break). Yet again,
for the suggested exact algorithms, the number of partial schedules generated may
grow exponentially. In another paper, the same author focuses on the impact of night
work provisions in the EU, which is not considered in previous works and also not
in this thesis (Goel, 2018).

Vehicle Routing and Truck Driver Scheduling In many papers, the truck driver
scheduling problem is not treated independently but seen as a subproblem of the
vehicle routing problem (VRP) and therefore solved together. But due to the com-
plexity of the combined problem, called the vehicle routing and truck driver sche-
duling problem (VRTDSP), the scheduling subproblem is usually only solved heu-
ristically but often for a planning horizon of several days. Heuristic approaches for
the VRTDSP have been proposed by Xu et al. (2003) and Rancourt, Cordeau, and
Laporte (2013) for US provisions (and multiple time windows) as well as by Zäpfel
and Bögl (2008), Goel (2009), Prescott-Gagnon et al. (2010), Kok et al. (2010), De-
rigs, Kurowsky, and Vogel (2011), and Drexl et al. (2013) for different subsets of EU
provisions (and the single time window case).

Goel and Vidal (2014) describe how to integrate the exact scheduling approaches
for US (Goel and Kok, 2012b; Goel, 2014), Canadian (Goel and Rousseau, 2012), EU
(Goel, 2010), and Australian (Goel, Archetti, and Savelsbergh, 2012) provisions into
the hybrid genetic vehicle routing algorithm of Vidal et al. (2012). According to their

2.3. Classification of Break Rules 19

computational experiments on benchmark instances for the EU rules, 103 of 112 best
known solutions were obtained or even improved by their proposed method.

Goel and Irnich (2017) solve the VRTDSP with respect to the current US rules
(single time window, two types of break) to optimality by a branch-and-price appro-
ach. Based on this, Tilk (2016) describes a faster branch-and-price-and-cut method.
Koç, Jabali, and Laporte (2017) introduce a variant of the VRTDSP where - like in
the paper by Koç et al. (2016) before - the objective is to minimize operational and
emissions costs. Schiffer et al. (2017) study the VRTDSP for electric vehicles and
investigate the impact of synchronizing breaks and recharging operations.

It should be noted that Schiffer et al. (2017) claim that their algorithm takes ac-
count of both the EU and the US provisions. However, their paper is flawed as far
as the presentation of the US hours of service regulation is concerned. In the US,
driving is not permitted when more than 8 hours have passed since the end of the
last off-duty period of at least 30 minutes (see previous section). In contrast, their
proposed algorithm only takes a break after a certain accumulated driving time into
account like it is needed for the EU regulation. For instance, a break after 8 hours of
accumulated driving time may be too late with respect to US rules if the driver does
not only drive but also performs service or has to wait. This means, their algorithm
is only correct with regard to EU rules and a planning horizon of one day.

Worth mentioning are those papers that do not relate to a legal regulation but
still take lunch breaks or even night breaks into account. In some cases, such as in
the paper by Ceselli, Righini, and Salani (2009), the regarded break rules resemble
the ones of the EU. In other cases, the regarded break rules demand a break of a
certain duration within a given interval. In case of night breaks, it is common to also
consider a selection of sleeping locations. Solution approaches can be found in the
works of Savelsbergh and Sol (1998), Sahoo et al. (2005), Beaudry et al. (2010), Vidal
et al. (2014), and Coelho et al. (2016), amongst others. Also worth mentioning is the
work of Bartodziej et al. (2009) who solve combined vehicle and crew scheduling
problems with rest constraints. In the dissertation of Meyer (2011), the vehicle rou-
ting and truck driver scheduling problem is investigated from a distributed decision
making perspective.

Shortly before publishing this thesis, we got to know a very recent technical re-
port by Goel, Vidal, and Kok (2019). They give answers to the question under which
circumstances it may be advantageous to assign two drivers to one vehicle.

2.3 Classification of Break Rules

There is a certain gap between a legal text on the one hand and a mathematical
optimization problem on the other. And it may not be possible to bridge that gap
in every respect due to the very different nature of the two sides. Nevertheless,
we present some formalism in this section that we need in order to bring the legal
aspects of drivers’ working hours (as presented in section 2.1) and the definition of
a template for different variants of the truck driver scheduling problem together (as
it will be presented in section 2.4).

This section is about classifying the rules laid out in the regulations presented in
section 2.1. In some respect, the rules are similar to each other, and in other respects
they are very different. Due to the high complexity and diversity of the rules, this
classification is far from being complete. It has a clear focus on the rules that our
algorithms will be able to take into account. And it helps the reader to see through

20 Chapter 2. Fundamentals and Preliminaries

the jungle of provisions. It could even be used for a classification and a review of the
related literature, even though that is beyond the scope of this thesis.

Our model resembles the one given by Goel (2012c). His paper is the first and
the only one so far to contain an approach to classify the diverse constraints. The
algorithm presented therein is based on this model and flexible enough to cover
both EU and US provisions on breaks.

In section 2.3.1, we first introduce our basic terminology before we then turn
towards the major part of this section, the classification of break rules (section 2.3.2).

2.3.1 Basic Terminology

In the following, we present our basic terminology which is again different from
both the EU and the US. It is tailored to serve our mathematical model.

Driving Time, Service Time, and Idle Time In our model, not more than three dif-
ferent driver activities need to be distinguished. While driving time does not require
an explanation, service time is the usual term in the literature to subsume other work
like loading, unloading, and any paperwork. And then there is time during which
the driver is neither driving nor performing service. Let us call this time idle time.

For our mathematical model, we assume that whenever the driver neither drives
nor performs service, then he does not carry out any other work, can freely dispose
of his time, decides to use the time for recuperation, and is relieved from duty by the
motor carrier. This assumption includes the definitions of a break, of a rest period
(both according to EU legislation), and of off-duty time (according to US legislation).
We have to make this general assumption for the sake of conciseness.

Working Time and Travel Time Working time and travel time are cumulative times.
In the following, any driving time and any service time is working time. Travel time
denotes the total of driving time, service time, and idle time, i.e., the time of all three
driver activities. In other words, the travel time accumulated by the driver since a
certain point in time coincides with the time elapsed since then.

Breaks, Types of Breaks, and Waiting Time A break is a period of idle time, and
it always refers to a type of break. Due to our assumption from above, there is only
a single attribute that characterizes a type of break in our model: the minimum
duration of idle time after which the driver can be considered as (completely) rested
with respect to this type of break. Should we have to distinguish more than one type
of break (it is only chapter 5 in which we deal with two), we give these types names
such as “lunch break” and “sleep break”, or “short break” and “long break” to be
able to tell the break types apart. We refrain from being too close to the terms used
in a regulation to emphasize the abstract level of the mathematical model.

A period of idle time that has (at least) the required length qualifies as a break
of this type. For a shorter notation, a break of a certain type, say “lunch break”, is
simply called a lunch break. If breaks are allowed to be split, even shorter periods
of time may count as break or, to be precise, as a part of a split break. (Splitting rules
are treated in the next section 2.3.2.) However, a period of idle time may be too short
to even be a part of a split break. In the EU for instance, an idle time of less than
15 minutes does not qualify as a break. Such idle time is called waiting time in this
thesis as it only occurs when the driver has to wait for a customer time window to
open. Since such waiting time is not a break, it may count as working time from a

2.3. Classification of Break Rules 21

legal point of view. However, in our model, this distinction can be neglected as far
as the scope of our work is concerned.

2.3.2 Types of Break Rules

Maybe the most important term is the notion of break rules. First of all, there are
two kinds of break rules: restricting rules and relaxing rules. The restricting rules
laid out in the regulations have certain similarities: there are some limit values, and
whenever a limit is reached, driving (and in some cases even working) is no longer
allowed. We distinguish two basic types of restricting rules, namely recuperation-
based and horizon-based break rules. They differ in what the driver has to do in order
to be allowed to drive (or work) again. Among the relaxing rules, we solely focus on
the break splitting rules.

2.3.2.1 Break Splitting Rules

There are two prominent splitting rules, namely the first-second-split and the minimum-
length-split rule. The latter rule allows a split of a break into arbitrarily many parts
as long as each part has a minimum duration (see Directive 2002/15/EC). The first-
second-split rule means a break may be split in exactly two parts, a first split break and
a second split break (in this order). After the first split break, the driver is partially
rested, after the second he is completely rested (with respect to the type of break). To
qualify as a second split break, there has to be a first split break before. In the EU
for instance, the minimum duration of a daily rest (that is, a break of type “daily
rest”) is 11 hours, and the splitting rule says that there may be a first split break of at
least 3 hours and a second split break of at least 9 hours. Of the two splitting rules
mentioned here, the first-second-split rule is the only one that we will have a closer
look at in this thesis (see section 3.4).

2.3.2.2 Recuperation-Based Break Rules

A recuperation-based rule relates to a certain type of break. It states that after the
driver has accumulated certain activity times since the end of the last break of the
corresponding type (like accumulated driving time or travel time), the driver needs
to recuperate again, i.e., another break of that type must be taken (or completed in
case of break splits). Without such a break, the recuperation-based rule prohibits
drivers from driving or even working. On the other hand, once the driver is con-
sidered as completely rested with respect to the corresponding type, history can be
forgotten, and the accumulated times (with respect to the rule at hand) can be reset
to zero.

An example from the EU: Only after a break of at least 45 minutes, the driver is
allowed to drive for another 4.5 hours. By the end of a 45-minute break, the history
before the break becomes irrelevant for this rule. And only after a daily rest of at
least 11 hours, the driver is allowed to drive for another 9 hours and to travel for
another 13 hours. By the end of a 11-hour rest, the history before the rest becomes
irrelevant for this rule.

To sum up, a recuperation-based break rule is characterized by

• the activity times that are accumulated and observed,

• their limit values,

• the activities that are forbidden once a limit is reached, and

22 Chapter 2. Fundamentals and Preliminaries

• the type of the break that resets the accumulated times.

2.3.2.3 Horizon-Based Break Rules

A horizon-based rule states that after a certain event (like the beginning of a week,
the beginning of a day, or the end of a break), a period of fixed length begins in
which certain activity times (like driving time or working time) are observed. They
may only be accumulated up to certain limits. When a limit is reached, the horizon-
based rule prohibits drivers from driving or even working until the observation period
ends.

For one and the same rule, there can be several such observation periods, and
these periods may overlap. Once an observation period has ended, we can stop
accumulating times for this period. Other observation periods may still be on-going
though.

Some examples: In the EU, the driving time per calendar week is limited. The ob-
servation period starts at midnight between Sunday and Monday and ends a week
later. Once the maximum driving time per week is reached, the driver has to wait
until the end of the observation period to be allowed to drive again. On that date,
the accumulated driving time per week is reset to zero, and the history (accumula-
ted driving time of last week) can be forgotten. Also, the driving time within two
consecutive calendar weeks is limited. Here, two observation periods overlap. In
the US, the on-duty time per 7 (or 8) day period needs to be observed. Accordingly,
there are 7 (or 8) overlapping observation periods. The history prior to 7 (or 8) days
in the past may be forgotten.

To sum up, a horizon-based break rule is characterized by

• the event that triggers the beginning of an observation period,

• the length of the observation period,

• the activity times that are accumulated and observed,

• their limit values, and

• the activities that are forbidden once a limit is reached.

2.3.2.4 Activity Combinations

Both recuperation-based and horizon-based rules share common attributes, namely
the activity times that are accumulated and observed and the activities that are for-
bidden once a limit is reached. We use a certain short form to write these common
rule attributes down. In this thesis, we distinguish the following three activity com-
binations:

• drive until driven: driving is only allowed until the driver has accumulated a
certain driving time,

• drive until traveled: driving is only allowed until the driver has accumulated a
certain travel time,

• work until traveled: working is only allowed until the driver has accumulated a
certain travel time.

2.4. Basic Definitions and Notation 23

2.3.2.5 Interdependent Break Rules

We may call the recuperation-based and the horizon-based rules basic. As we have
already learned from the “34-hour restart provision”, rules exist that are merely a
mix of the two types. This provision gives the driver the option to take a weekly
rest in order to reset the accumulated times but the driver might as well wait until
the next day when one of the observation periods ends. Or let us take an example
from the EU: Twice a week, a driver is allowed to drive for 10 hours per day instead
of only 9 hours. Again, this is rather a mix of a horizon-based rule (counting the
number of times the driver has already driven for more than 9 hours a day, reset at
the beginning of each week) and a recuperation-based rule (prohibiting the driver
from driving as soon as the driving limit is reached).

This highlights the complexity of the provisions in both the EU and the US in ge-
neral and makes clear that these two basic types of rules are not sufficient to describe
all of them. However, these two types are sufficient to describe the rules studied in
this thesis.

In the EU and the US, horizon-based break rules come into play when the plan-
ning horizon spans roughly a week or more. In this thesis, we study rather elemen-
tary truck driver scheduling (and routing) problems and stick to a planning horizon
of only a few days at most. In this scenario, we can concentrate on recuperation-
based break rules.

2.4 Basic Definitions and Notation

Now that we have presented our classification of rules, we continue with the defini-
tion of the truck driver scheduling problem template and its parameters (section 2.4.1).
This template must be complemented by rulesets. Dependent on the applicable ru-
lesets, additional problem parameters come into play. In section 2.4.2, we give ex-
amples of rulesets relevant in practice. Finally in section 2.4.3, we introduce some
more definitions that will turn out to be helpful.

2.4.1 Truck Driver Scheduling Problem Template

Given is a sequence of n different customers. Everyone of these requests a certain
service that takes servicei time and has to begin within one of wi disjoint, arbitrarily
distributed time windowsW j

i (for 1 ≤ j ≤ wi and 1 ≤ i ≤ n). The service is performed
by a truck driver who has to comply with provisions on breaks when visiting the
customers in the given order. The driving time between consecutive customers is also
given: Let drivei denote the driving time from customer i to i + 1 (for 1 ≤ i ≤ n− 1).
In addition, the driver only operates within a time intervalH, called planning horizon.
This means the service at the last customer must be completed before the planning
horizon ends. W.l.o.g., the driver is assumed to be located at the first customer when
the planning horizon begins, and all customer time windows are assumed to lie
within the planning horizon. A summary of parameters is given in Table 2.1.

Every service at a customer must not be interrupted. Apart from that, the driver
may wait or take a break at any time. There may be multiple types of breaks that need
to be distinguished. The conditions under which a driver is obligated to take breaks
are specified by a collection of rulesets, one per type of break. Here, a ruleset is a
collection of break rules that all apply to the same type of break. Different rulesets
yield different variants of the truck driver scheduling problem. So such rulesets

24 Chapter 2. Fundamentals and Preliminaries

complement this problem template and define a specific truck driver scheduling
problem.

TABLE 2.1: Parameters of Truck Driver Scheduling Template.

n number of customers
servicei service time demanded by customer i (1 ≤ i ≤ n)
wi number of time windows of customer i (1 ≤ i ≤ n)
W j

i j-th time window of customer i (1 ≤ i ≤ n, 1 ≤ j ≤ wi)
drivei driving time from customer i to customer i + 1 (1 ≤ i ≤ n− 1)
H planning horizon

Break Rule Parameters Without break rules, a truck driver scheduling problem is
incomplete. In this thesis, we study four different rules. One is the break splitting
rule first-second-split. The other three are all recuperation-based rules. As already men-
tioned, there are three different activity combinations of interest. Accordingly, we
regard three corresponding rules in this thesis. The names of the rules are adopted
from those of the combinations, that is, we consider the drive until driven rule, the
drive until traveled rule, and the work until traveled rule.

Break rules as well as the types of breaks are parameterized. In the case that there
is only one type of break, let break be the parameter that denotes the minimum break
duration until the driver is considered as rested with respect to this type of break.
Should we have to distinguish several break types, then we add the name of the
break type as subscript to this parameter (and all the other respective parameters).
For instance, we could write breakshort and breaklong to tell the minimum length of a
short break and a long break apart.

In the following, we assume only one type, so we leave out the subscript. Sup-
pose that a break of this one type is allowed to be split according to the first-second-
split rule. Then we need two more parameters: Let break1st and break2nd be the pa-
rameters that denote the minimum duration of the first split break and the second
split break, respectively. W.l.o.g., we demand both periods of time to be smaller than
break and, conversely, their sum break1st + break2nd not to be smaller. However, the
sum of the parts may be greater than break in order to penalize the split.

Now let us turn towards the recuperation-based break rules. We introduce two
more parameters:

1. Rule drive until driven: After limitD accumulated driving time since the last
(i.e., most recent) break, the driver must no longer drive until he is completely
rested.

2. (a) Rule drive until traveled: If limitT time has elapsed since the end of the
last break, i.e., the driver has traveled for limitT time, the driver must no
longer drive until he is completely rested.

(b) Rule work until traveled: If limitT time has elapsed since the end of the
last break, i.e., the driver has traveled for limitT time, the driver must no
longer drive or perform service until he is completely rested. Since the
service must not be separated, we assume w.l.o.g. that servicei ≤ limitT
holds for all customers i whenever this rule is applicable.

Again, should we have to distinguish several break types, then we add the name of
the break type as subscript to the parameter. Even though there are three rules, it

2.4. Basic Definitions and Notation 25

suffices to distinguish only two different parameters limitD and limitT because, as
far as the scope of this thesis is concerned, we do not need to consider the rules drive
until traveled and work until traveled at the same time.

Optimization Goal Apart from the rulesets, also different optimization goals are
of interest and complement the problem template. In this thesis, we investigate two
different objectives:

• Earliest finish time: Here, we look for the earliest point in time at which the
service at the last customer can be completed. We may speak of an EF-TDSP to
denote a truck driver scheduling problem with this objective.

• Minimum duration: Here, we want to find the minimum time span between
start and finish time, that is, between the beginning of service at the first cus-
tomer and the end of the service at the last customer. Such a problem may be
called an MD-TDSP (see Goel, 2012c).

Of course, such a time can only be returned if a feasible schedule exists after all. For
the case that there is none, we introduce the special value ⊥ that is to be read as
“undefined”. In practice, an algorithm for (a variant of) the truck driver scheduling
problem should not only return a time (earliest finish time or minimum duration)
but also a feasible schedule that corresponds to that time.

2.4.2 Examples of Concrete Truck Driver Scheduling Problems

Now how are the problems in practice related to this problem template or, more
concretely, for which problem variant do we need an algorithm in order to solve a
practical problem? Let us have a look at some meaningful examples of rulesets (and
their interplay with the planning horizon and the optimization goal). In all these
cases we expect the driver to be completely rested (with respect to all relevant types
of breaks) at the beginning of the planning horizon.

• Suppose a dispatcher needs to plan trips for single days within the European
Union. According to the Regulation (EC) No. 561/2006 of the EU (see section
2.1.1.1), a driver (of a vehicle with a total mass exceeding 3.5t) must no longer
drive after an accumulated driving time of limitD = 4.5h. The accumulated
driving time is reset after a break of at least break = 0.75h. It is allowed to split
the break in two. The first split break must be at least break1st = 0.25h long and
the second split break at least break2nd = 0.5h long. In practice, it may be okay
to not consider a break split. In this case, an algorithm for the ruleset {drive until
driven } is sufficient to find a feasible schedule. But a shorter schedule may be
found by an algorithm for the ruleset {drive until driven, first-second-split }.

However, this is only half the truth because we have not yet taken two relevant
provisions of the regulation into account. And it remains in the responsibility
of the dispatcher to check these as well. First, there is a limit on the maximum
driving time between two daily rests. This means the dispatcher has to check
beforehand whether the sum of driving times ∑n

i=1 drivei exceeds that limit or
not. And second, there is a limit on the maximum travel time between two
daily rests. Here, the dispatcher has two options: Either he restricts the length
of the planning horizon to the limit value a priori. Or he calls an algorithm
with the objective to find a schedule with minimum duration. In this case, he
checks whether the minimum duration meets the limit a posteriori.

26 Chapter 2. Fundamentals and Preliminaries

• According to the most recent hours-of-service regulation of the United States
(see section 2.1.2.1), a driver must no longer drive after an accumulated travel
time of limitT = 8h. The accumulated travel time is reset after a break of at least
break = 0.5h. So for a planning horizon of a single day in the US, the ruleset
{drive until traveled } is sufficient.

But as before, two more checks remain in the responsibility of the dispatcher.
Again, this is because there is a limit on the maximum driving time and the
maximum travel time between two daily rests. The only difference is that ac-
cording to US law, the driver is still allowed to perform service after the max-
imum travel time is reached. To exploit this, the travel time check could be
adjusted a little. Let us assume that we have an algorithm for the minimum
duration variant, that the driving time to the last customer is greater than zero,
and that a time window at the last customer is open when the planning ho-
rizon closes (the last two assumptions are without loss of generality). In this
case, the dispatcher could create a modified problem instance in which the last
customer is always open and requests no service. Then there is a feasible solu-
tion for the original instance if there is one for the modified instance that meets
the travel time limit.

• According to an older hours-of-service regulation of the United States (Federal
Motor Carrier Safety Administration, 2008, meanwhile extended by the provi-
sion on rest breaks as mentioned above), a driver must no longer drive after
an accumulated driving time of limitD = 11h or an accumulated travel time
of limitT = 14h. The accumulated times are reset after a break of at least
break = 10h. So for a planning horizon of one week in the US, the ruleset
{drive until driven, drive until traveled } used to be sufficient. We mention this
problem variant because it was studied in the literature before the “rest break
provision” entered into force in 2013. Again, there remains an additional a pri-
ori check for the dispatcher. He has to make sure that no more than 60 or 70
hours of on-duty time are assigned to the driver within the planning horizon.

• In case of multi-manning, two drivers take turns. One driver may take a
lunch break while the other is driving. According to the Regulation (EC) No.
561/2006 of the European Union (see again section 2.1.1.1), both drivers must
no longer drive after an accumulated driving time of limitD = 18h and not
even work after an accumulated travel time of limitT = 21h. The accumulated
times are reset after a break of at least break = 9h. So for a planning horizon of
roughly a week in the EU, an algorithm for the ruleset {drive until driven, work
until traveled } suffices in case of a doubly-manned vehicle.

However, it is up to the dispatcher to take care that the maximum driving time
in two consecutive weeks is not exceeded and that the planning horizon is no
longer than 6 · 24 hours such that enough time for a weekly rest remains.

• Let us stick to a planning horizon of at most 6 · 24 hours and the provisions
of the EU regulation but suppose that there is only a single driver on board.
Then we have to distinguish two kinds of breaks which we call “short” and
“long” in the following. At least, we need an algorithm for the two rulesets
{drive until driven}short and {drive until driven, work until traveled}long, where we
set the two minimum break periods to be breakshort = 0.75h and breaklong = 11h,
and set the limit values as follows: limitDshort = 4.5h, limitDlong = 9h, and
limitTlong = 13h.

2.4. Basic Definitions and Notation 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

Planning horizon

W
ai
ti
n
g
ti
m
e

FIGURE 2.1: Example of a waiting time function W. Function in red
and dashed. Time windows in the background.

Since both the short and the long break are allowed to be split, it would be even
better to have an algorithm for the two rulesets {drive until driven, first-second-
split }short and {drive until driven, work until traveled, first-second-split}long. In this
case, we have to set break1st

short = 0.25h and break2nd
short = 0.5h as well as break1st

long =

3h and break2nd
long = 9h in addition. The check of the maximum bi-weekly dri-

ving time can be conducted beforehand.

2.4.3 Convenient Definitions

Waiting Intervals For the sake of simplicity and w.l.o.g., we assume that time elap-
ses in discrete steps (e.g., in seconds). For the presentation of the algorithms and the
examples, we suppose that the step size is 0.1 time units. This means we expect all
input time values like the driving and service times to be (non-negative) multiples
of 0.1. It also means that for two points in time t and t′, the open interval (t, t′) and
the closed interval [t + 0.1, t′ − 0.1] contain the same points in time. We expect two
consecutive time windows of the same customer to be at least 0.2 time units apart,
because otherwise they could be aggregated. For any time interval, let α and ω map
it to the first and the last contained point in time, respectively. For instance, α(H)
denotes the beginning of the planning horizon.

For every time window, there is a time interval that precedes it. Precisely, for the
sequence of time windows of customer i, let

W1
i := [α(H), α(W1

i)) andW j
i := (ω(W j−1

i), α(W j
i)) for 2 ≤ j ≤ wi

define the sequence of the time periods before and between the time windows of
customer i. We call these waiting intervals as the driver has to wait for a time window
to open when he arrives at a customer within such an interval, unless he takes a
break.

Waiting Time Functions It is convenient to let Wi denote two things: an interval
set and a multi-interval. In both cases,Wi contains the time windows of customer i.
But depending on context, it allows us to writeW j

i ∈ Wi orW j
i ⊂ Wi for 1 ≤ j ≤ wi,

whichever feels more natural in the context. An analogue statement holds for W i,
the interval set (or multi-interval) containing the waiting intervals.

With this, we introduce another notation: For a point in time t, let Wi[t] be the
time window that contains t if t ∈ Wi, and letWi[t] be the time window that follows
t if t ∈ W i. We use this notation to define the time-dependent function Wi that can

28 Chapter 2. Fundamentals and Preliminaries

be derived from the time windows of customer i. The waiting time function Wi(t)
maps a time t inside a waiting interval to the duration until the next time window
begins, a time within a time window to 0, and a time after the last time window to ∞.
Precisely, we set

Wi(t) :=

0, t ∈ Wi

α(Wi[t])− t, t ∈ W i

∞, otherwise

An example of a waiting time function that is derived from three time windows is
shown in Figure 2.1.

29

Chapter 3

Truck Driver Scheduling with
Multiple Time Windows

3.1 Introduction

The truck driver scheduling problem (TDSP) is the problem of scheduling a given route
of a driver in a way that all customers along the route are visited within their time
windows and the provisions in the appropriate regulations are observed. This chap-
ter is the first of three in each of which we present a polynomial-time algorithm for
some variants of this problem. In this chapter, we regard three variants of a TDSP
with respect to one type of break and multiple, arbitrarily distributed time windows
per customer. To be precise, we assume that there are two conditions under which a
break becomes mandatory. One is that the driver has accumulated a certain driving
time since the end of the last break. The other is that simply a certain time has elap-
sed since the end of the last break. In a third variant, we allow a break to be split in
two parts. For all three variants, we present a polynomial-time algorithm.

Let us shortly recall the most relevant literature (see also section 2.2) to assess
our contribution. Archetti and Savelsbergh (2009), Goel and Kok (2012b), and Goel
and Kok (2012a) each describe a truck driver scheduling problem with one type of
break. To the best of our knowledge, these variants are the only truck driver sche-
duling problems currently known to be solvable in polynomial time – in the single
time window case. The considered rulesets differ only slightly among each other.
Archetti and Savelsbergh (2009) and Goel and Kok (2012b) study the ruleset {drive
until driven, drive until traveled } (please recall our notation introduced in section 2.4).
Their research is motivated by the provisions effective in the United States before
the year 2013. At that time, a 30-minute lunch break was not mandatory, and thus
the considered ruleset was sufficient for a planning horizon of several days. In the
paper by Goel and Kok (2012a), the ruleset {drive until driven, work until traveled } is
regarded. This, in turn, is motivated by those provisions of the European Union that
are applicable in a multi-manning scenario. If two drivers take turns, one driver can
take the mandatory 45-minute lunch break while the other is driving. Again, the
planning horizon could be several days long.

In the following, we also consider these two rulesets. We will refer to the ru-
leset {drive until driven, drive until traveled } as RulesetUS and to the ruleset {drive
until driven, work until traveled } as RulesetEU. As a third variant, we discuss the ru-
leset RulesetEU together with the splitting rule first-second-split. For this variant, a
polynomial-time algorithm has not been proposed so far, to the best of our know-
ledge.

In the above mentioned papers, the authors introduce their respective problem as
a decision problem. The question to be answered is whether a schedule exists that
is in accordance with the respective ruleset. However, we regard an optimization

30 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

problem, where the goal is to find a feasible solution with earliest finish time, that is,
a feasible schedule with the earliest completion time of the last service, if a feasible
schedule exists after all. It should be noted that the algorithms described in the three
mentioned papers can easily be adjusted accordingly. The regarded optimization
problem is not (asymptotically) harder than the decision problem variant.

Table 3.1 summarizes the findings from the literature in respect of a polynomial
time bound for the RulesetUS-EF-TDSP and the RulesetEU-EF-TDSP (see also section
2.2). The bound found by Archetti and Savelsbergh (2009) was later improved by
Goel and Kok (2012b) and is therefore not in the list. As we can conclude from
this table, there is currently no result in case of multiple, arbitrarily distributed time
windows per customer, whereas there is a result in the special case that the time
windows are at least break apart. However, we question this result. For a given point
in time at some customer i, it takes O(log wi) time to find a matching time window in
a sorted list. This time is disregarded here. We doubt that a time bound can be given
that is completely independent from the number of time windows, at least without
further assumptions. However, if we assumed a maximum length of the planning
horizon, then this would imply – together with the assumption that consecutive time
windows are at least break apart – that the number of time windows of each customer
is bounded from above.

TABLE 3.1: Results from literature on polynomial time bounds (EF-
TDSP).

Source Ruleset Limitation Bound

Goel and Kok, 2012b RulesetUS single time window per customer O(n2)
Goel and Kok, 2012b RulesetUS time windows are at least break apart O(n2)
Goel and Kok, 2012a RulesetEU single time window per customer O(n2)

Contribution and Outline We present the first polynomial-time algorithm for both
the RulesetUS-EF-TDSP and the RulesetEU-EF-TDSP as well as the RulesetEU+-EF-
TDSP in the presence of multiple (and arbitrarily distributed) time windows per cu-
stomer. Besides the use cases described in the original papers, there are some more
use cases of interest. For instance, this algorithm can cover the truck driver schedu-
ling problem as it occurs both in the EU and in the US for a planning horizon of one
day (see the examples given in section 2.4.2). Thus, it is the only polynomial-time
algorithm that is designed to handle the provisions of more than just one regulation.

The problem definition is given in section 3.2. The description of our solution
approach follows in sections 3.3 and 3.4 (for the extension by break splits), before we
conclude in section 3.5.

3.2 Problem Definition

The problem definition is based on the template introduced in section 2.4.1. Since
we only deal with one type of break, we can leave out a subscript on the break
rule parameters that would otherwise be necessary to denote the type. There are
three break rule parameters with which we can cover the three break rules drive until
driven, drive until traveled, and work until traveled: The parameter break denotes the
minimum break duration after which the driver is considered as (completely) rested.
The two limit values limitD and limitT denote the maximum accumulated driving

3.2. Problem Definition 31

time and the maximum accumulated travel time without a break, respectively. It is
w.l.o.g. when we assume that limitD ≤ limitT holds. When the planning horizon
begins, we expect the driver to be rested.

The only thing missing now is a formal definition of a truck driver schedule. It is
time to catch up on this in the next section 3.2.1. In section 3.2.2, we investigate the
characteristics of this problem.

3.2.1 Definition of a Truck Driver Schedule

In this section, we give a formal definition of a truck driver schedule and state con-
straints that a feasible schedule needs to satisfy. In the following, let a truck driver
schedule be a sequence(

(tarr@c
i , tstart

i , tdep@c
i , t f b@r

i , bi, tlb@r
i)

)
1≤i≤n

of n tuples, one for each customer. The first three values of the i-th tuple refer to
points in time at customer i. The arrival time at the customer is denoted by tarr@c

i ,
the start time of the service by tstart

i , and the time of departure by tdep@c
i . The other

three values refer to the route between customer i and customer i+ 1. The time when
the first break en route begins is t f b@r

i , the number of breaks scheduled en route is
bi, and finally, tlb@r

i is the time when the last of the bi breaks ends. For the sake of
consistency, we expect the time values t f b@r

i and tlb@r
i to be given even if bi = 0 and

also for i = n. For instance, they could be set equal to tdep@c
i in these cases. Overall,

a truck driver schedule is feasible only if the following basic conditions hold:

α(H) ≤ tarr@c
1 (3.1)

tarr@c
i ≤ tstart

i for all i ≤ n (3.2)

tstart
i ∈ Wi for all i ≤ n (3.3)

tdep@c
i − tstart

i ≥ servicei for all i ≤ n (3.4)

0 ≤ t f b@r
i − tdep@c

i ≤ limitD for all i ≤ n (3.5)

tlb@r
i − t f b@r

i ≥ bi · break for all i ≤ n (3.6)

bi = 0⇒ tlb@r
i − t f b@r

i < break for all i ≤ n (3.7)

0 ≤ tarr@c
i+1 − tlb@r

i ≤ limitD for all i ≤ n− 1 (3.8)

bi ≤ 1⇒ (t f b@r
i − tdep@c

i) + (tarr@c
i+1 − tlb@r

i) ≥ drivei for all i ≤ n− 1 (3.9)

bi ≥ 2⇒ (t f b@r
i − tdep@c

i) + (tarr@c
i+1 − tlb@r

i)+

min{tlb@r
i − t f b@r

i − bi · break, (bi − 1) · limitD} ≥ drivei

for all i ≤ n− 1 (3.10)

tlb@r
n ≤ ω(H) (3.11)

Constraints 3.6 and 3.7 ensure consistency of t f b@r
i and tlb@r

i with bi. With Constraint
3.7, it is guaranteed that the waiting time between t f b@r

i and tlb@r
i counts as break

(that is, bi > 0) when it is at least as long as break. Constraints 3.9 and 3.10 enforce
that enough driving time is scheduled. If there is at most one break en route, the
scheduled driving time between two customers is the time between departure and
arrival less the time spent for the break. In case of at least two breaks, we have to
add the maximum possible driving time between those breaks. Between t f b@r

i and

32 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

tlb@r
i , the driver cannot drive for more than tlb@r

i − t f b@r
i − bi · break and not more than

(bi − 1) · limitD without violating rule drive until driven.
The constraints above are not sufficient to check compliance with the rules com-

pletely. Before we present the remaining constraints, we introduce three sequences
in order to simplify notation. The first one is the sequence of arrival times A. It con-
tains not only the arrival times tarr@c

i for every i but also the break start times t f b@r
i

en route, which can be thought of as the arrival times at some implicit parking areas.
These are all points in time at which a break may begin (apart from those implicit
breaks en route if bi > 1). The sequence of departure times D is defined in an ana-
logue way as A. It contains not only the departure times tdep@c

i for every i but also
the break end times tlb@r

i en route, so to say the departure times from some implicit
parking areas. The third sequence B contains all tstart

i and all tlb@r
i . These are all

points in time at which a break may end (apart from those implicit breaks en route if
bi > 1). Should there be a break scheduled right after service, we treat this break as
a break en route. So in this case t f b@r

i equals tdep@c
i . This also means that the period

from tstart
i to t f b@r

i is considered to never contain a break. All these sequences contain
2n points in time each.

A := (tarr@c
1 , t f b@r

1 , tarr@c
2 , t f b@r

2 , . . .)

B := (tstart
1 , tlb@r

1 , tstart
2 , tlb@r

2 , . . .)

D := (tdep@c
1 , tlb@r

1 , tdep@c
2 , tlb@r

2 , . . .)

For the sake of simplicity, let the truck driver be completely rested at the begin-
ning of the planning horizon. Then, for the rule drive until driven, we constrain in
addition to the basic conditions:

`

∑
k′=j
A[k′ + 1]−D[k′] > limitD⇒

∃k : j < k ≤ ` ∧ B[k]−A[k] ≥ break

for all j, ` : j < ` < 2n (3.12)

The time from D[k′] to A[k′ + 1] for some index k′ < 2n is a driving period. Whe-
never the sum of consecutive driving periods, say from some index j to some index
`, exceeds the driving time limit, then there must be a break scheduled in between,
that is, there must be an index k with j < k ≤ ` such that there is enough buffer for
a break between A[k] and B[k].

For the rule drive until traveled, we have to make sure that the driver does not
drive when the travel time limit is exceeded. This time we need two more con-
straints:

tdep@c
i < t f b@r

i ⇒ t f b@r
i − tstart

i ≤ limitT for all i ≤ n (3.13)

D[`] < A[`+ 1] ∧A[`+ 1]−B[j] > limitT ⇒
∃k : j < k ≤ ` ∧ B[k]−A[k] ≥ break

for all j, ` : j < ` < 2n (3.14)

Constraint 3.13 is an analogue of constraint 3.5. Since there cannot be a break bet-
ween tstart

i and t f b@r
i , the time in between must not exceed the travel time limit unless

there is no driving time before t f b@r
i . Constraint 3.14 resembles Constraint 3.12. Whe-

never there is a non-degenerate driving period fromD[`] toA[`+ 1] for some ` < 2n
and, for some earlier j < `, the travel time from the (potential) end of a break B[j] to
the (potential) beginning of a breakA[`+ 1] exceeds the travel time limit, then there

3.2. Problem Definition 33

must be a break scheduled in between.
For the rule work until traveled, we again need two more constraints in order to

ensure that the driver does not work when the travel time limit is exceeded:

t f b@r
i − tstart

i ≤ limitT for all i ≤ n (3.15)

B[`] < A[`+ 1] ∧A[`+ 1]−B[j] > limitT ⇒
∃k : j < k ≤ ` ∧ B[k]−A[k] ≥ break

for all j, ` : j < ` < 2n (3.16)

In contrast to the Constraints 3.13 and 3.14, the Constraints 3.15 and 3.16 must hold
even if the driving time immediately before some arrival is 0. Similar to Constraint
3.14, Constraint 3.16 says that whenever there is work scheduled beforeA[`+ 1] and
the travel time from B[j] toA[`+ 1] for some j < ` exceeds the travel time limit, then
there must be a break scheduled in between.

With our definition, only the beginning of the first break and the end of the last
break en route is determined. If more than one break becomes due en route, the start
and end times of all these breaks can be computed recursively: 1. Every break other
than the last ends break time units later than it begins. 2. Every break other than the
first begins limitD time units later than the previous break ends unless tlb@r

i − t f b@r
i <

bi · break+ (bi− 1) · limitD. In this case, the next break may have to begin earlier than
after limitD time.

It is our aim to describe an algorithm that is polynomial time bound regardless of
the setting of the parameters limitD, limitT, break, and H. To this end, it is crucial to
only determine tlb@r

i , t f b@r
i , and bi and not the beginning and end of each and every

break en route because the recursion above may not be polynomial in the input size.
Suppose we had break = 1 and limitD = limitT = 1 and H = [0, ∞), and let drive1
tend towards infinity. Then the run-time of an algorithm that specifies all start and
end times of breaks is not polynomial in the input size. Accordingly, the algorithm
presented by Goel and Kok (2012b) is only polynomial if we regard the setting of the
parameters limitD, limitT, break and H as problem immanent constants so that there
is a maximum number of breaks that can be scheduled en route.

3.2.2 Problem Characteristics

Before we describe an algorithm, we shed light on the characteristics of the problem.
To this end, we look at the problem from the perspective of a single driver and con-
sider one important question: What are the decisions that the driver has to make
and, on the other hand, when is it clear for the driver what to do next because any
alternative action would have no advantage? Here, we characterize the state of a
driver by the following attributes:

• the progress along the route, i.e., how much of the work (driving and service)
has been accomplished,

• the current point in time,

• the accumulated driving time and the accumulated travel time since the end
of the last break.

Let us accompany the driver from one customer to another. For a start, let us
suppose the driver has just arrived at a customer. Then he has to decide whether to
take a break immediately or not, even if a break is not yet due. We call such a break
an early break. The decision for an early break is certainly sensible if otherwise the

34 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

0 1 2 3 4 5 6 7 8

2

2

Planning horizon
D
ri
vi
n
g
ti
m
e

FIGURE 3.1: In this example, taking an early break is beneficial.

driver had to wait for the opening of a time window and the waiting time was at
least as long as the minimum break period. But it may also be beneficial even if the
waiting time was shorter than the minimum break period.

An example is depicted in Figure 3.1. Let limitD = limitT = 3, break = 3, both
driving times be 2, the service times at the first and second customer be 0, and the
service time at the third customer be 0.5. The driver arrives at the second customer
at time 2, begins a break at the same time, and arrives at the third customer before
the time window closes. If the driver had waited until time 4 and scheduled the
break only when it becomes due, he would have missed that time window. But on
the other hand, an early break would not be beneficial at all if the driving time from
the second to the third customer was only 0.5 because then a break would simply be
unnecessary.

If the driver decides to take an early break, there is another decision to be made.
Due to the rules drive until traveled and work until traveled, it is always preferable to
schedule the end of a break as late as possible, that is, it may be a good idea to not
only take a break of minimum duration but to prolong the break. It is always best
to not end a break as long as no time window is open. But even if a time window is
already open, it may still be beneficial to extend the break even further.

Figure 3.2 shows an example. Let the parameters be the same as in the previous
example. The driver arrives at the second customer at time 3, begins a break at the
same time, but ends this break only at time 8 in order to arrive at the third customer
at time 10. If the driver had left the second customer immediately after the minimum
break period, the rule work until traveled would have forced him to take a second
break before the service at the third customer due to inevitable waiting time, so the
service could not start before time 11.

As a next step, the driver has to wait for the beginning of the next time window
if there is currently no time window open. It is not worthwhile to wait even longer.
Should there be no next time window, the partial schedule of the driver cannot be
continued in a feasible way. After waiting, the driver is ready to perform the reque-
sted service. But in case of the rule work until traveled, he has to make sure that the
service can be completed before a break becomes due. And if it cannot be comple-
ted, the partial schedule cannot feasibly be continued. In this case, the driver should
have decided to take an early break before. In all other cases, the driver begins with
the service immediately.

After service, the driver departs from the customer. En route from one customer
to the next, the driver takes a break only when it becomes due. Before arrival at the
next customer, it is not advantageous to wait or to take an early break because it is

3.3. Solution Approach 35

0 1 2 3 4 5 6 7 8 9 10 11

2

2

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 3.2: In this example, prolonging a break is beneficial.

sufficient to take all that into account when the driver arrives there. But as before, it
may be beneficial to prolong a break, once it must be taken. So again, the driver has
then to decide when to end the break.

Let us summarize our findings: If we want to find a feasible schedule for the
driver, we have to take an early break immediately on arrival at the next customer
into account, and we have to consider every possible (or at least every relevant) end
of a scheduled break. Apart from that, the next action of the driver can simply be
derived from his current state. But still, the number of nodes in a decision tree may
explode, so a sophisticated approach is crucial.

3.3 Solution Approach

We now turn towards the EF-TDSP, i.e., we seek to find a feasible truck driver sche-
dule with earliest finish time. In 3.3.1, we introduce the notion of a driver states label
and define its content. The algorithm is then presented in two subsequent sections.
In 3.3.2, we give an overview on the algorithm that finds the earliest finish time of a
feasible truck driver schedule. In 3.3.3, we describe the main part of the algorithm
in greater detail. In 3.3.4, we show how to derive a schedule that accomplishes this
finish time. In 3.3.5, we analyze the algorithm and prove the polynomial time bound.

3.3.1 Driver States Label

In many truck driver scheduling algorithms from the literature, there is a label for
every feasible state of a driver. In our algorithm, this is different as we store all
feasible driver states with the same progress in the same label. To be precise, a
driver states label L comprises two time-dependent functions D and T. For a point in
time t, D(t) denotes the minimum accumulated driving time and T(t) the minimum
accumulated travel time since the end of the last (i.e., most recent) break among all
feasible driver states with the same progress. As we will see, the functions D and T
are piecewise constant.

For a point in time t, it is sufficient to store only one pair of values (D(t), T(t)).
Suppose there are two drivers with the same progress at the same time t but one of
the drivers has a lower accumulated driving time and a higher accumulated travel
time compared to the other driver. This situation is depicted in Figure 3.3. Here, the
wavy lines indicate that the exact course of the schedule does not matter. The end of
the last break in the blue schedule is at time t1, whereas the end of the last break in
the red schedule is at time t2. But the break in the blue schedule may be prolonged

36 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

t1 t2 t3 t
Travel time

D
ri
vi
n
g
ti
m
e

FIGURE 3.3: Two schedules, each with a different end of the last
break.

until t3. This means, a blue-red schedule exists that coincides with the beginning of
the blue schedule until t1 and the end of the red schedule from t3. In between, the
break is extended. This schedule is feasible because the driver is completely rested
at time t3. And the state of a driver that follows the blue-red schedule dominates the
states of the other two drivers, so it is sufficient to store the accumulated times of
only that driver at time t.

On the other hand, for one and the same progress, it is not necessary to store a
pair of values for every point in time. This is certainly true for every point in time
before the planning horizon begins, but not only. Since the driver is always allowed
to wait and the accumulated times are supposed to be minimum, it follows that
D(t1) ≥ D(t2) and T(t1) + t2 − t1 ≥ T(t2) must hold for two points in time t1 < t2.
But if equality holds in both cases, there is no need to store the accumulated times
for t2 because they could be derived from those of t1. So we introduce the special
value ⊥ to indicate this. This special value is to be read as “undefined”. That is, we
say a time-dependent function like D or T is undefined at time t if this function is in
fact defined to be ⊥ at this time. In our algorithm, D(t) = ⊥ if and only if T(t) = ⊥.
For a driver states label L = (D, T), let α(L) be the first and ω(L) be the last point
in time for which the two functions D and T are defined, or ⊥ if there is none.

3.3.2 Outline and Initialization of the Algorithm

Our algorithm works in a breadth-first-like manner and goes through as many itera-
tions as there are customers, so n iterations. Then again we subdivide every iteration
into four steps, based on our observations in section 3.2.2:

1. In step Setup, we consider an early break and its prolongation.

2. In step Wait, we regard the time windows of the current customer and schedule
waiting time if necessary.

3. In step Serve, we make sure that the service can be completed in time.

4. In step Drive, we schedule due breaks en route to the next customer if neces-
sary. We also take their prolongation into account.

So the progress of a driver can be characterized by the iteration and the comple-
ted step. Accordingly, our algorithm computes labels Lstep

i = (Dstep
i , Tstep

i) in every
iteration i, where the superscript step is one of the following: setup, waited, served,

3.3. Solution Approach 37

or driven. How this is done is described in section 3.3.3. Table 3.2 summarizes the
contents of a label in case of the EF-TDSP.

Algorithm 1: Generic truck driver scheduling algorithm

Input : Ldriven
0

Output: obj(Lserved
n)

1 forall i = 1 . . . n do
2 Lsetup

i := Setup (Ldriven
i−1);

3 Lwaited
i := Wait (Lsetup

i);
4 Lserved

i := Serve (Lwaited
i);

5 if i = n then
6 return obj (Lserved

n);

7 Ldriven
i := Drive (Lserved

i);

In order to convey the big picture, we first present pseudo-code of the generic
truck driver scheduling algorithm in Algorithm 1. This algorithm requests the driver
states label Ldriven

0 as input. We need to set this input parameter according to the
state of the driver when the planning horizon begins. For the sake of simplicity and
without loss of generality, let us assume that the driver is completely rested at that
time, that is, the accumulated times are then both 0. But not only then. Our assump-
tion implies that the driver must have started a break at least break time before. And
this implicit break can be prolonged beyond the beginning of the planning horizon.
To take that into account, we set the accumulated times to 0 for every point in time
within the planning horizon:

Ldriven
0 (t) :=

{
(0, 0), for t ∈ H
(⊥,⊥), otherwise

Having set Ldriven
0 , we then apply Algorithm 1. In case of the EF-TDSP, the ob-

jective of this algorithm is to return the earliest finish time or the information that
there is no feasible schedule. To this end, we simply set obj(Lserved

n) := α(Lserved
n),

that is, we set it to the earliest point in time for which a feasible driver state after
the service at the last customer exists (or ⊥ if there is none). Algorithm 1 does not
provide an actual driver schedule that corresponds to the earliest finish time. How
to deduce one from the computed driver states labels is described in section 3.3.4.

TABLE 3.2: Driver states label summary (EF-TDSP).

step one of {Setup, Wait, Serve, Drive }
Dstep

i time-dependent function mapping points in time at the end
of step step in iteration i to minimum accumulated driving
times since the end of the last break

Tstep
i time-dependent function mapping points in time at the end

of step step in iteration i to minimum accumulated travel
times since the end of the last break

Lstep
i the pair (Dstep

i , Tstep
i) of two functions comprising all fea-

sible (and non-dominated) driver states at the end of step
step in iteration i

38 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2.5

3.5

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 3.4: Example instance and two significant (partial) schedules.

3.3.3 Steps of Algorithm in Detail

In this section, we describe the steps of the algorithm that finds the earliest finish
time and illustrate these steps by means of an example. Let the example instance
be as follows: The driver starts completely rested at the first customer and needs
to visit two more customers within the planning horizon [0, 20]. The driving times
are drive1 = 3.5 and drive2 = 2.5, and for the sake of simplicity, the service times
are all 0. Let the time windows be W1 = ([1.5, 2], [6.5, 10]),W2 = ([8, 12]), and
W3 = ([12, 20]). This instance is depicted in Figure 3.4. For the example we choose
the break parameters to be break = 5.5, limitD = 4.5, and limitT = 6.5. (This means
half of the usual values in hours in the EU.) Since service times are 0, the rules drive
until traveled and work until traveled coincide. Figure 3.4 shows not only the example
instance but also two different (partial) schedules: The driver departs from customer
1 as soon as either the first or the second time window opens. A break does not
become due en route.

Figure 3.5 shows the driver states label Ldriven
1 in case of this example instance.

It contains the minimum accumulated driving and travel times for a driver that has
just arrived at customer 2. Since the driving time from customer 1 is 3.5, so are the
minimum accumulated times. And the label is only defined over those intervals that
correspond to the time windows of the first customer shifted by 3.5 to the right.

In the following sections, we present every step of the algorithm in two different
ways. One is a rather mathematical formulation that describes a driver states label
as a pair of two time-dependent functions (see section 3.3.1). The other formulation
is closer to an implementation. Here, a driver states label is represented by a sorted
sequence of pieces, where a piece comprises a time interval and a pair of two values
that correspond to the values of the functions over that interval. For the k-th piece of
a label, we use the short notation D[k] and T[k] to denote the two stored values, the
minimum accumulated driving time and the minimum accumulated travel time of
the piece, respectively. Furthermore, let α[k] and ω[k] denote the beginning and the
end of the interval of the k-th piece of the label. The intervals of the pieces do not
overlap so the chronological sorting of the pieces is well-defined. For the pseudo-
code we do not need the special value⊥ because a piece is simply missing where the
value of the two functions is ⊥. Using this alternative formulation, the label Ldriven

0
is initialized by adding exactly one piece to the (initially empty) sequence of pieces,
and that piece is defined over the same interval as the planning horizon and has the

3.3. Solution Approach 39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of step Drive in iteration 1

A
cc
u
m
u
la
te
d
ti
m
es

si
n
ce

b
re
ak

FIGURE 3.5: Driver states label Ldriven
1 . Functions Ddriven

1 (blue) and
Tdriven

1 (red) are both the same. Limits limitD (blue, dotted) and limitT
(red, dash-dotted), and time windows of current customer in the

background.

value (0, 0).

3.3.3.1 Step Setup

In this step, Lsetup
i is computed from Ldriven

i−1 . So initially, we know the driver states
for every (significant) point in time at which the driver may arrive at customer i in
a feasible way. Immediately after arrival, the driver may take an early break before
he starts with the service in order to avoid unproductive waiting time. This break
may even be prolonged if beneficial. In this step, we take such an early break into
account.

The earliest time of arrival at customer i is α(Ldriven
i−1). If the driver starts a break

immediately, the driver can be considered as completely rested break later at time
t∗ := α(Ldriven

i−1) + break. So we can set the minimum accumulated times since the end
of the last break to (0, 0) for that point in time. And since a break may be prolonged,
we set the driver states label to (0, 0) for every point in time thereafter until the
planning horizon ends:

Dsetup
i (t) :=

Ddriven

i−1 (t), for t < t∗

0, for t∗ ≤ t ≤ ω(H)

⊥, otherwise

Tsetup
i (t) :=

Tdriven

i−1 (t), for t < t∗

0, for t∗ ≤ t ≤ ω(H)

⊥, otherwise

This label gives us the minimum accumulated times for every point in time at
which the driver can start with the service at customer i, not regarding the custo-
mer’s time windows though.

Function Setup shows pseudo-code to compute the pieces ofLsetup
i . Like α(Ldriven

i−1),
α[1] is when the first piece of the input label begins. Due to the assumption that time
elapses in discrete steps of 0.1 time units, endOfFirstPeriod is the last point in time

40 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of step Setup in iteration 2

A
cc
u
m
u
la
te
d
ti
m
es

si
n
ce

b
re
ak

FIGURE 3.6: Driver states label Lsetup
2 .

up to which pieces of Ldriven
i−1 are copied. After that, another piece with value (0, 0) is

appended, provided that the planning horizon does not end earlier.
As far as our example instance is concerned, the input label Ldriven

i−1 is depicted in
Figure 3.5, and the output label Lsetup

2 looks like as in Figure 3.6. The only difference
is that both functions are now 0 from time 10.5 onwards.

Function Setup(Ldriven
i−1)

1 Lsetup
i := ∅;

2 endOfFirstPeriod := min{α[1] + break− 0.1, ω(H)};
3 forall pieces k of Ldriven

i−1 in chronological order do
4 if endOfFirstPeriod < α[k] then
5 break;

6 append piece from α[k] to min{ω[k], endOfFirstPeriod} with value
(D[k], T[k]) to Lsetup

i ;

7 if α[1] + break ≤ ω(H) then
8 append piece from α[1] + break to ω(H) with value (0, 0) to Lsetup

i ;

9 return Lsetup
i ;

3.3.3.2 Step Wait

In this step, Lwaited
i is computed from Lsetup

i . As described, the time windows of
customer i are ignored in the previous step. Considering them in this step means
two things: First, we make sure that Lwaited

i is undefined for every point in time
outside of the time windows, so that it is only defined for those points in time at
which the driver can actually start with the service at customer i. Second, we add a
waiting time to the accumulated travel time if waiting for the next time window at
customer i may be beneficial.

Let t be a point in time for which Lsetup
i is defined. If t is inside a time window,

there is no need to wait. If it is outside, Wi(t) gives the waiting time until the next
time window opens (please recall the definition of the waiting time function Wi(t)

3.3. Solution Approach 41

in section 2.4.3). It is not worthwhile to wait longer than that. But is waiting ad-
vantageous at all? It is not if there is a later point in time t′ > t for which Lsetup

i
is also defined and that is mapped to the beginning of the same time window, i.e.,
t+Wi(t) = t′+Wi(t′), provided that Lsetup

i (t′) is minimum. Because from this, it fol-
lows that Dsetup

i (t) ≥ Dsetup
i (t′) and Tsetup

i (t) + (t′ − t) ≥ Tsetup
i (t′) holds. So waiting

from time t has no advantage over waiting from the later time t′.
With this in mind, we introduce an auxiliary function Hshift by means of which

we shift the pieces accordingly. It has the following properties: If a given point in
time t is inside a time window and also Lsetup

i (t) is defined, Hshift simply maps t to
itself. If a given t is the beginning of a time window, say t = α(W j

i) for some j, but
Lsetup

i (t) is undefined, then Hshift maps to the latest t′ in the waiting intervalW j
i for

which Lsetup
i (t′) is defined, if such a t′ exists. If not and in all other cases, Hshift maps

to ⊥. Especially, Hshift(t) is ⊥ for all t outside of the time windows of the current
customer. So we define Hshift as follows:

Hshift(t) := max{t′ | t = t′ + Wi(t′) ∧ L
setup
i (t′) 6= (⊥,⊥)}

for all t for which the set {t′ | t = t′ +Wi(t′)∧L
setup
i (t′) 6= (⊥,⊥)} is not empty, and

⊥ for all other t. We observe that Hshift(t) ≤ t holds unless Hshift(t) is undefined.
With this auxiliary function, we shiftLsetup

i = (Dsetup
i , Tsetup

i) accordingly, and also
add the waiting time t− Hshift(t) to the travel time. So we set

Dwaited
i (t) := Dsetup

i

(
Hshift(t)

)
Twaited

i (t) := Tsetup
i

(
Hshift(t)

)
+ (t− Hshift(t))

for all t with Hshift(t) 6= ⊥, and Lwaited
i (t) := (⊥,⊥) for all other t.

Let us have a look at the driver states label Lwaited
2 in Figure 3.7. Compared to the

labelLsetup
2 in Figure 3.6, there are two changes: One is that the piece over the interval

[10.5, 20] is shortened to [10.5, 12] to fit the time window of the customer. The other
is that the piece over the interval [5, 5.5] is both shifted according to the auxiliary
function and shortened to the degenerate interval [8, 8]. This is because Lsetup

2 is not
defined at time 8 when the time window of the second customer opens. The latest
point in time in the waiting interval, for which Lsetup

2 is defined, is 5.5, so Hshift(8) =
5.5, and hence Dwaited

2 (8) = Dsetup
2 (5.5) = 3.5 and Twaited

2 (8) = Tsetup
2 (5.5) + (8 −

5.5) = 6.
Function Wait shows pseudo-code to compute the pieces of Lwaited

i . It resembles
a sweep-line algorithm to find the intersections of two (sorted) interval sets, yet with
one small but important modification. Whenever the interval of the current piece k
ends before the current time windowW j

i opens, we store the waiting time between
the end of piece k and the beginning ofW j

i in the variable waiting. If the next piece
k + 1 also happens to end before the still current time windowW j

i opens, we update
the waiting time. Otherwise, if the next piece does not end before, the beginning
α(W j

i) of the current time window may be either covered by the piece k + 1 or not.
If it is covered, we reset the waiting time to 0. But if it is not covered, we have to
append a piece that is only defined at α(W j

i) and has the driving time of the previous
piece k and the travel time of this piece plus the stored waiting time.

42 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

Function Wait(Lsetup
i)

1 Lwaited
i := ∅;

2 j = k = 1;
3 waiting = 0;
4 while k-th piece of label Lsetup

i and time windowW j
i exist do

5 if α[k] ≤ α(W j
i) then

6 if ω[k] ≥ α(W j
i) then

7 waiting = 0;
8 append piece from α(W j

i) to min{ω[k], ω(W j
i)} with value

(D[k], T[k]) to Lwaited
i ;

9 if ω(W j
i) ≤ ω[k] then

10 j++;

11 if ω(W j
i) ≥ ω[k] then

12 k++;

13 else
14 waiting = α(W j

i)−ω[k];
15 k++;

16 else
17 if waiting > 0 then
18 append piece from α(W j

i) to α(W j
i) with value

(D[k− 1], T[k− 1] + waiting) to Lwaited
i ;

19 waiting = 0;

20 if α[k] ≤ ω(W j
i) then

21 append piece from α[k] to min{ω[k], ω(W j
i)} with value

(D[k], T[k]) to Lwaited
i ;

22 if ω(W j
i) ≤ ω[k] then

23 j++;

24 if ω(W j
i) ≥ ω[k] then

25 k++;

26 else
27 j++;

28 ifW j
i exists and waiting > 0 then

29 append piece from α(W j
i) to α(W j

i) with value
(D[k− 1], T[k− 1] + waiting) to Lwaited

i ;

30 return Lwaited
i ;

3.3. Solution Approach 43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of steps Wait and Serve in iteration 2

A
cc
u
m
u
la
te
d
ti
m
es

si
n
ce

b
re
ak

FIGURE 3.7: Driver states label Lwaited
2 = Lserved

2 . Functions are - if at
all - only defined within the time window of the second customer.

3.3.3.3 Step Serve

In this step, we take the duration of the service at customer i and its indivisibility
into account. The label Lserved

i is computed from Lwaited
i and shall hold the minimum

accumulated times for every point in time at which the driver may finish the service
at customer i. In this step, we have to distinguish the two rules drive until traveled
and work until traveled.

In case of the rule drive until traveled (as in the ruleset RulesetUS), performing
service is allowed even if the travel time since last break has exceeded the limit. In
this special case, we stop further accumulating travel time. So we set

Dserved
i (t) := Dwaited

i (t− servicei)

Tserved
i (t) := min{Twaited

i (t− servicei) + servicei, limitT}

for all t ∈ Hwith Lwaited
i (t− servicei) 6= (⊥,⊥) and Lserved

i (t) := (⊥,⊥) for all other t.
In case of the rule work until traveled (as in the ruleset RulesetEU), service must

not be performed if it cannot be finished before the travel time limit is exceeded. So
we set

Dserved
i (t) := Dwaited

i (t− servicei)

Tserved
i (t) := Twaited

i (t− servicei) + servicei

for all t ∈ H with both Lwaited
i (t − servicei) 6= (⊥,⊥) and Twaited

i (t − servicei) +
servicei ≤ limitT, and Lserved

i (t) := (⊥,⊥) for all other t. It should be noted that the
travel time limit may already be exceeded while waiting before service. So strictly
speaking, we allow this limit to be exceeded in step Wait. We do so for the sake of
not having to distinguish both rules in the previous step, too.

For the sake of simplicity, all service times are 0 in our example instance, soLserved
2

equals Lwaited
2 here. Again, we present pseudo-code. Function Serve shows how to

compute the pieces of Lserved
i .

44 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

Function Serve(Lwaited
i)

1 Lserved
i := ∅;

2 if drive until traveled then
3 forall pieces k of Lwaited

i in chronological order do
4 if α[k] + servicei ≤ ω(H) then
5 append piece from α[k] + servicei to min{ω[k] + servicei, ω(H)}

with value (D[k], min{T[k] + servicei, limitT}) to Lserved
i ;

6 else if work until traveled then
7 forall pieces k of Lwaited

i in chronological order do
8 if α[k] + servicei ≤ ω(H) ∧ T[k] + servicei ≤ limitT then
9 append piece from α[k] + servicei to min{ω[k] + servicei, ω(H)}

with value (D[k], T[k] + servicei) to Lserved
i ;

10 return Lserved
i ;

3.3.3.4 Step Drive

In this step, we compute Ldriven
i from Lserved

i by adding the driving time drivei to
the minimum accumulated driving and travel times and by scheduling inevitable
breaks. For instance, if Dserved

i (t) + drivei > limitD holds for a point in time t for
which Lserved

i (t) is defined, a break becomes due en route after limitD − Dserved
i (t)

driving time in order to not violate rule drive until driven. An analogue statement
holds for the rule drive until traveled or the rule work until traveled. Finally, the label
Ldriven

i shall hold the minimum accumulated times for every (significant) point in
time at which the driver may feasibly arrive at the next customer i + 1. And these
times should never exceed their respective limit limitD or limitT. Be reminded that
we do not need to take an early break en route into account because it is simply not
advantageous. It is sufficient to consider it on arrival at the next customer, as we do
in step Setup.

Let us assume for now that drivei is shorter than limitD and limitT, so that at
most one break can become due en route. The general case is treated at the end of
this section. We need two auxiliary functions. One is the excess function Hexc. For
a given departure time t from customer i, Hexc(t) tells us by how much the driving
time drivei exceeds the time that the driver is still allowed to drive at that time. Hexc

is defined as follows:

Hexc(t) := drivei −min{limitD− Dserved
i (t), limitT− Tserved

i (t)}

for all t ≤ ω(H)− drivei for which Lserved
i (t) is defined, and Hexc(t) := ⊥ for all other

t. If Hexc(t) ≤ 0 for some point in time t (this shall imply that Hexc(t) is defined),
the driver who leaves customer i at time t could arrive at customer i + 1 at time
t + drivei without having to take a break en route, so having accumulated a driving
and a travel time of another drivei time. On the other hand, if Hexc(t) is positive, the
same driver could arrive at customer i + 1 only at time t + drivei + break but with an
accumulated driving and travel time of only Hexc(t) ≤ drivei.

Let t+ be the first point in time for which Hexc is positive, or ∞ if this is never
the case. And let t∗ := t+ + drivei + break be the earliest point in time at which a
driver that has to take a due break arrives at the next customer. The driver may
arrive at time t∗ with an accumulated driving and travel time of Hexc(t+) each. But

3.3. Solution Approach 45

the driver may also arrive at any later point in time with the same accumulated
times by prolonging the due break en route. In order to take the prolongation of due
breaks into account, we introduce a second auxiliary function Hacc that specifies the
accumulated driving and travel time on arrival at the next customer:

Hacc(t) := min{Hexc(t′) | t′ ≤ t− break− drivei ∧ Hexc(t′) > 0}

for all t from t∗ to ω(H), and Hacc(t) := ⊥ for all other t. The function Hacc can be
decomposed into two periods overH: It is undefined in the first period until t∗, and
it is a monotonically decreasing, positive step function in the second period from t∗.
Just like Hacc, we may also see Ldriven

i as separated into two periods:

1. In the first period, i.e., for all t < t∗, Hacc(t) is undefined. If Hexc(t− drivei) ≤ 0
for some time t < t∗, we set

Ddriven
i (t) := Dserved

i (t− drivei) + drivei

Tdriven
i (t) := Tserved

i (t− drivei) + drivei

This is the case if and only if customer i + 1 can be reached at time t without
having to take a due break en route when leaving customer i at time t− drivei
or any point before.

In every other case, i.e. if Hexc(t) > 0 or undefined for some time t < t∗,
Ldriven

i (t) remains undefined:

Ddriven
i (t) := Tdriven

i (t) := ⊥

2. If Hacc(t) is defined for some point in time t, this means some time t′ ≤ t −
break− drivei exists such that a break becomes due en route when the driver
leaves customer i at time t′. Then, Hacc(t) is the minimum accumulated driving
and travel time since the end of that due break, taking a prolongation of it into
account. So once Hacc(t) is defined for some t, we set for this t and every point
in time thereafter:

Ddriven
i (t) := Tdriven

i (t) := Hacc(t)

So the second period of Ddriven
i and Tdriven

i is identical to the one of Hacc.

We summarize:

Ddriven
i (t) :=

Dserved

i (t− drivei) + drivei, t < t∗ ∧ Hexc(t− drivei) ≤ 0
Hacc(t), t ≥ t∗

⊥, otherwise

Tdriven
i (t) :=

Tserved

i (t− drivei) + drivei, t < t∗ ∧ Hexc(t− drivei) ≤ 0
Hacc(t), t ≥ t∗

⊥, otherwise

Again, we present pseudo-code to compute the pieces of Ldriven
i , see Function

Drive on page 46. And again, let us have a look at the example instance and how
the driver states label Ldriven

2 in Figure 3.8 is created from the label Lserved
2 in Figure

3.7. We observe that Hexc(8) = 2.5− 0.5 = 2 > 0 and hence t+ = 8. So a driver
that leaves customer 2 at time 8 has to take a break en route. But on the other hand,

46 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

a driver who departs within the interval [10.5, 12] does not because that driver is
completely rested and Hexc(10.5) < 0. And so the piece over the interval [10.5, 12]
from Lserved

2 is shifted to the right and raised by the driving time drive2 = 2.5 alone.
At time t∗ = t+ + drivei + break = 8 + 2.5 + 5.5 = 16, the first period ends.

In the second period of Ldriven
2 , there are two pieces. These originate from the ot-

her two pieces of Lserved
2 , shifted to the right by drive2 + break = 8. Both accumulated

times are set to the corresponding value of Hacc: For 16 ≤ t < 18, Hacc(t) = 2, and
for 18 ≤ t ≤ ω(H), Hacc(t) = 1.5. Both pieces are longer than the original pieces to
take account of a prolongation of the due break. The last piece ends together with
the planning horizon at time 20.

Since there is no service time at customer 3 and all three pieces are within the time
window, there is nothing to do in the next steps. So we have finally computed the
minimum accumulated driving and travel times at the end of the route. Figure 3.9
depicts the example instance again but also three different schedules. We observe
that the three pieces in Figure 3.8 correspond to the three schedules in Figure 3.9.
For the first schedule (blue), the driver departs as soon as possible from customer 1,
takes an early break before the service at customer 2, and arrives earliest possible at
customer 3. For the second schedule (green), the driver departs when the first time
window of customer 1 closes, waits for the opening of the time window at customer
2, and takes a due break en route to customer 3. It is the rule drive until traveled that
enforces this break. For the third schedule (red), the driver departs when the second
time window of customer 1 opens and also takes a due break en route from customer
2 to customer 3. But here, it is the rule drive until driven that demands this break.

Function Drive(Lserved
i)

1 Ldriven
i := ∅;

2 endOfFirstPeriod := ω(H);
3 forall pieces k of Lserved

i in chronological order do
4 if α[k] + drivei > endOfFirstPeriod then
5 break;

6 excess := drivei −min{limitD− D[k], limitT− T[k]};
7 if excess ≤ 0 then
8 append piece from α[k] + drivei to min{ω[k] + drivei, endOfFirstPeriod}

with value (D[k] + drivei, T[k] + drivei) to Ldriven
i ;

9 else if α[k] + drivei + break− 0.1 < endOfFirstPeriod then
10 endOfFirstPeriod := α[k] + drivei + break− 0.1;

11 excessmin = ∞;
12 forall pieces k of Lserved

i in chronological order do
13 if α[k] + drivei + break > ω(H) then
14 break;

15 excess := drivei −min{limitD− D[k], limitT− T[k]};
16 if 0 < excess < excessmin then
17 excessmin := excess;
18 set end of last piece of Ldriven

i to at most α[k] + drivei + break− 0.1;
19 append piece from α[k] + drivei + break to ω(H) with value

(excess, excess) to Ldriven
i ;

20 return Ldriven
i ;

3.3. Solution Approach 47

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of step Drive in iteration 2

A
cc
u
m
u
la
te
d
ti
m
es

si
n
ce

b
re
ak

FIGURE 3.8: Driver states labelLdriven
2 . Prolongation of the due breaks

en route have been taken into account.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2.5

3.5

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 3.9: Example instance and three significant schedules.

Now what if the driving time drivei exceeds the driving time limit limitD (as-
suming w.l.o.g. that limitD ≤ limitT)? In this case, Hexc is positive wherever it is
defined. We introduce another auxiliary function H# that counts the number of ad-
ditional mandatory breaks en route:

H#(t) := dHexc(t) / limitDe − 1

for the same t for which Hexc is defined. We observe that Hexc(t) > H#(t) · limitD ≥ 0
holds. With this, we re-define the function Hacc and set:

Hacc(t) := min{Hexc(t′)− H#(t′) · limitD | t′ + drivei + (H#(t′) + 1) · break ≤ t
∧ Hexc(t′) > 0}

for all t from t∗ + H#(t∗) · break to ω(H), and Hacc(t) := ⊥ for all other t. The rest
of step Drive remains as before. This approach is based on the observation that it is
sufficient to prolong at most one of the breaks en route. All other breaks adhere to
the minimum break period.

48 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

3.3.4 Deriving a Schedule

Before we explain how we derive a schedule from the computed labels, we recall the
definition of a truck driver schedule.

Algorithm 2 creates such a truck driver schedule, given the computed driver
states labels Lstep

i for all iterations i and all steps. Although the earliest finish time
can be computed even if some driving and service times are zero, we expect them to
be strictly positive for Algorithm 2 to always work correctly. This is just for the sake
of a simpler notation.

Input of the algorithm is a time tdep@c
n for which Lserved

n is defined. For every
iteration i, time tstart

i is computed from tdep@c
i by subtracting the service time servicei.

Since Lserved
i is defined at time tdep@c

i , so are Lwaited
i and Lsetup

i at time tstart
i := tdep@c

i −
servicei. If Lsetup

i (tstart
i) is (0, 0), there must be an early break scheduled before service

at customer i, exploiting the assumption that the driving time to customer i is greater
than zero. Due to a possible prolongation of this early break, Ldriven

i−1 might not be
defined at time tstart

i − break, in which case we go even further back in time until
we find a time for which Ldriven

i−1 is defined. If otherwise Lsetup
i (tstart

i) is not (0, 0),
Lwaited

i (tstart
i) may incorporate waiting time at customer i. So to derive tarr@c

i from
tstart
i , we might need to go back in time until we find a time for which Ldriven

i−1 is
defined.

If and only if Tdriven
i−1 (tarr@c

i) is greater than drivei−1, there is no break scheduled en
route, given that the service time at customer i − 1 is positive. So bi−1 := 0. Since
there is no appropriate point in time to be set for t f b@r

i−1 and tlb@r
i−1 , we set both to the

same value tdep@c
i−1 . In case Tdriven

i−1 (tarr@c
i) ≤ drivei−1, at least one break is scheduled

after service at customer i− 1, and so Ddriven
i−1 (tarr@c

i) and Tdriven
i−1 (tarr@c

i) are equal. The
end of the last break must be Ddriven

i−1 (tarr@c
i) earlier than tarr@c

i and the total number
of breaks bi−1 scheduled after service at customer i and before arrival at customer
i + 1 must be

⌊
(drivei−1 − Ddriven

i−1 (tarr@c
i)) / limitD

⌋
+ 1 (assuming w.l.o.g. limitD ≤

limitT). When deriving tdep@c
i−1 from tarr@c

i , we need to go back in time by at least
drivei−1 + bi−1 · break. But again due to a possible prolongation of the due break(s),
we might need to go even further back in time until we find a time for which Lserved

i−1

is defined. Finally, we set t f b@r
i−1 by adding the maximum allowed driving time at

time tdep@c
i−1 to tdep@c

i−1 . This concludes one loop of Algorithm 2.
Let us have a look at our example of section 3.3.3 again. We apply Algorithm

2 for tdep@c
3 ∈ {13, 16, 18}, even though the service times are zero here. We get the

results as shown in Table 3.3.

3.3.5 Complexity Analysis

Let us repeat the arguments that constitute the correctness of the algorithm. First,
we repeat some observations already discussed in section 3.2.2. In our algorithm, we
do not have to consider every possible action of the driver at any point in time. Even
though the driver may wait at any time, it does not need to be taken account of most
of the time. It is sufficient to consider waiting only on arrival at a customer, only if
the arrival time is within a waiting interval, and only until the next time window
opens. And even though the driver may take a break at any time, it is sufficient to
regard one in only two situations: Either when it becomes due on the way from one
customer to another, i.e., after service at the one and before arrival at the other. Or

3.3. Solution Approach 49

TABLE 3.3: Derived schedules for tdep@c
3 ∈ {13, 16, 18}.

Customer i tarr@c
i tstart

i tdep@c
i t f b@r

i bi tlb@r
i

1 1.5 1.5 1.5 1.5 0 1.5
2 5 10.5 10.5 10.5 0 10.5
3 13 13 13 13 0 13
1 2 2 2 2 0 2
2 5.5 8 8 8.5 1 14
3 16 16 16 16 0 16
1 6.5 6.5 6.5 6.5 0 6.5
2 10 10 10 11 1 16.5
3 18 18 18 18 0 18

Algorithm 2: Schedule deduction (EF-TDSP)

Input : tdep@c
n for which Lserved

n (tdep@c
n) is defined

Output:
(
(tarr@c

i , tstart
i , tdep@c

i , t f b@r
i , bi, tlb@r

i)
)

i≤n

1 tlb@r
n := t f b@r

n := tdep@c
n ;

2 bn := 0;

3 tstart
n := tdep@c

n − servicen;
4 forall i = n− 1 . . . 1 do
5 if Lsetup

i+1 (tstart
i+1) = (0, 0) then

6 tarr@c
i+1 := max{t | t ≤ tstart

i+1 − break ∧ Ldriven
i (t) 6= (⊥,⊥)};

7 else
8 tarr@c

i+1 := max{t | t ≤ tstart
i+1 ∧ Ldriven

i (t) 6= (⊥,⊥)};
9 if Tdriven

i (tarr@c
i+1) > drivei then

10 tdep@c
i := tarr@c

i+1 − drivei;

11 tlb@r
i := t f b@r

i := tdep@c
i ;

12 bi := 0;

13 else
14 tlb@r

i := tarr@c
i+1 − Ddriven

i (tarr@c
i+1);

15 bi :=
⌊
(drivei − Ddriven

i (tarr@c
i+1)) / limitD

⌋
+ 1;

16 tdep@c
i := max{t | t ≤ tarr@c

i+1 − drivei − bi · break ∧ Lserved
i (t) 6= (⊥,⊥)};

17 t f b@r
i := tdep@c

i + min{limitD− Dserved
i (tdep@c

i), limitT− Tserved
i (tdep@c

i)};

18 tstart
i := tdep@c

i − servicei;

19 tarr@c
1 := tstart

1 ;

50 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

just when the driver arrives at a customer, before beginning the service, even if it is
not yet due. However, a prolongation of a break needs to be considered in any way.

We observe that the steps of the algorithm (section 3.3.3) are laid out to reflect
these observations. It follows from the construction of the algorithm that the custo-
mers’ time windows, the service and driving times as well as the limits on accumu-
lated driving and travel times are respected. In section 3.3.1, we have argued why it
is sufficient to only store one pair of minimum accumulated times for a given point
in time, and why we do not need to store such a pair for every point in time within
the planning horizon. We observe that the accumulated times stored in a driver sta-
tes label after each step are indeed minimum (leaving early breaks en route aside as
mentioned above).

We turn towards proving that this algorithm has a polynomial time bound.

Lemma 3.3.1. After iteration i, the two functions of a driver states label consist of at most
1 + ∑i

j=1 wj pieces each.

Proof. Initially, both functions consist of one piece each (constant zero). In step Setup,
one constant zero piece may be added to each function. In step Wait, the number of
pieces added depends on the number of time windows wi at customer i. Suppose
there is a piece in Lsetup

i that spans parts of two time windows of customer i. Then
the shift function Hshift ensures that Lwaited

i is undefined over the waiting interval
between the two time windows. And so two pieces are created from one. For the
general case, suppose Hshift(α(W j

i)) is defined for the beginning of a time window
other than the first, i.e., 2 ≤ j ≤ wi. Then an additional piece is created if Lsetup

i is
defined over the end of the previous time window and both points in time belong to
the same piece in Lsetup

i . In total, the number of pieces in both functions may grow
at most by wi − 1 each in iteration i.

In steps Serve and Drive, the number of pieces cannot increase: In step Serve, the
pieces are only shifted and raised. In step Drive, every piece is shifted by either the
driving time only or the driving time plus the break period. The function values
on these pieces and their length may change but their number cannot grow. So
altogether, up to wi many pieces might be added to each function in iteration i.

So the space complexity is O(nw) where w := ∑n
j=1 wj is the total number of all

time windows. But O(nw) is also the time complexity because all function operati-
ons described can be implemented in a time that is linear in the number of pieces.
For the special case of one time window per customer, we get the O(n2) bound alre-
ady known from the literature.

Theorem 3.3.1. The time complexity of the two considered variants of the EF-TDSP is in
O(nw).

3.4 Discussion of the Extension by Break Splits

In this section, we discuss how the algorithm could be enhanced to also support
break splits according to the break splitting rule first-second-split (see section 2.3.2.1).
Such a rule applies in the European Union. In the following, we regard the ruleset
{drive until driven, work until traveled, first-second-split }, or RulesetEU+ in short, and
show how the algorithm could be adapted accordingly. From the literature, it is not
known how the additional relaxing rule affects the complexity of the problem. We
claim that the enhanced version remains a polynomial-time algorithm and outline

3.4. Discussion of the Extension by Break Splits 51

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2.5

3.5

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 3.10: Example instance and three significant schedules in
case of allowed break splits.

a proof of this claim. In general, we keep the presentation short and do not go into
every detail.

From Regulation (EC) No. 561/2006 of the EU, it is not clear if a completely
rested driver has to drive for a certain period of time before he is allowed to take the
first part of a split break, or if this period may be arbitrarily small (e.g., 0 seconds) so
that a first split break may follow a (second split) break directly. In the remainder of
this section, we will assume the latter for the sake of a concise mathematical problem
formulation. The same assumption can be found in the papers by Goel (2010) and
Goel (2012c). It should be noted that this interpretation may not be correct or may
be considered as abusive from a legal perspective. In the end, this thesis is about
mathematical problems and not legal issues.

As a motivating example, we refer to Figure 3.10. It shows the same problem
instance as in Figure 3.9 but this time, break splits are allowed with break1st = 1.5
and break2nd = 4.5. Since break = 5.5 as before, this means a split is penalized by 0.5
time units. We find that with split breaks, the earliest finish time of each of the three
schedules is 1 time unit earlier than before. In case of the green schedule, the first
split break can be taken before the service at the second customer. In the other two
cases, it is taken before the service at the first customer.

3.4.1 Driver States Label Extension

For every point in time, we need to distinguish and store exactly two states of the
driver. Either the driver is already partially rested or not. So in the following, let
the driver states label Lstep

i in step step of iteration i be a pair (F step
i , F̂ step

i) of two
function pairs. The function pair F step

i stands for the case that no first split break is
taken since the last time the driver was fully rested. In contrast, the function pair
F̂ step

i stands for the case that the first split break is already taken since then, so the
driver is considered as partially rested. Both F step

i := (Dstep
i , Tstep

i) and F̂ step
i :=

(D̂step
i , T̂step

i) are each a pair of two time-dependent functions as before. That is,
Dstep

i and D̂step
i each map a time to the minimum accumulated driving time since the

last time the driver was completely rested, and Tstep
i and T̂step

i each map a time to
the minimum accumulated travel time since the last time the driver was completely
rested.

52 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of step Drive in iteration 1

A
cc
u
m
u
la
te
d
si
n
ce

co
m
p
le
te

re
st

FIGURE 3.11: D̂driven
1 (blue, dashed), T̂driven

1 (red, solid).

3.4.2 Outline and Initialization of the Algorithm

The basic algorithm is the same as before, so for an outline, we refer to Algorithm 1.
This algorithm returns obj(Lserved

n). In the break split case here, we set obj(Lserved
n) =

α(Lserved
n), which is the same as α(F served

n). We again assume that the driver is com-
pletely rested when the planning horizon begins. So the first function pair F driven

0 =
(Ddriven

0 , Tdriven
0) of the label Ldriven

0 is initialized by setting

Ddriven
0 (t) := 0

Tdriven
0 (t) := 0

for every t ∈ H. For every other t, we set F driven
0 (t) := (⊥,⊥).

In the current case with break splits, we have to be a little more precise with
respect to when exactly the driver becomes completely rested. Here, we assume
that the planning horizon begins as soon as the driver becomes completely rested.
This implies that the driver can be considered as partially rested break1st later. So
the second function pair F̂ driven

0 = (D̂driven
0 , T̂driven

0) of the label Ldriven
0 is initialized as

follows:

D̂driven
0 (t) := 0

T̂driven
0 (t) := break1st

for every t with α(H) + break1st ≤ t ≤ ω(H). For every other t, we again set
F̂ driven

0 (t) := (⊥,⊥).

3.4.3 Steps of Algorithm in Detail

We start with the description of step Setup. F driven
1 is the same as in Figure 3.5. F̂ driven

1
is depicted in Figure 3.11.

3.4.3.1 Step Setup

In step Setup, we again take account of an early break. This may mean to take either
a complete break of length break or – in case the driver is already partially rested –
a second split break of length break2nd. Let t∗ := min{α(F driven

i−1) + break, α(F̂ driven
i−1) +

3.4. Discussion of the Extension by Break Splits 53

break2nd} be the first point in time when the driver can be completely rested. With
this re-definition of t∗, the function pair F setup

i is defined just like in section 3.3.3.1.
Precisely, we set for every point in time t:

F setup
i (t) :=

F driven

i−1 (t), for t < t∗

(0, 0), for t∗ ≤ t ≤ ω(H)

(⊥,⊥), otherwise

Before we show how to set F̂ setup
i , we introduce the auxiliary function pair F ′i =

(D′i , T′i). It consists of the two functions that we get from F driven
i−1 when we take an

early first split break into account. For every t, it is defined as follows:

D′i(t) := Ddriven
i−1 (t− break1st)

T′i (t) := Tdriven
i−1 (t− break1st) + break1st

Now in order to set F̂ setup
i , we merge the function pairs F ′i and F̂ driven

i−1 :

F̂ setup
i (t) :=

min{F ′i (t), F̂ driven

i−1 (t)}, for t < t∗ + break1st

(0, break1st), for t∗ + break1st ≤ t ≤ ω(H)

(⊥,⊥), otherwise

That minimum operation is not yet defined. Here, let the minimum operation
min{F (t), F̂ (t)} for two function pairs F = (D, T) and F̂ = (D̂, T̂) as well as a
point in time t be defined as follows:

min{F (t), F̂ (t)} :=

{
F (t), if T(t) < T̂(t)
F̂ (t), otherwise

Here, let ⊥ be treated just like ∞. That is, if one of the two functions T and T̂ is
defined at time t and the other one is not, the function defined at t is considered to
be less. However, if both are undefined, neither of the two is less than the other.

By definition, we only compare the accumulated travel times, not the accumula-
ted driving times. For a justification of this definition, let us have a look at Figure 3.3
again. We have learned from this figure that for one point in time and the same
progress, we only need to store one driver state. And we can conclude from this
figure that D(t) < D̂(t) implies T(t) < T̂(t) and, conversely, D(t) > D̂(t) implies
T(t) > T̂(t).

As far as the example is concerned, the function pairs of the label Lsetup
2 are de-

picted in Figure 3.12.

3.4.3.2 Steps Wait and Serve

The steps Wait and Serve are more or less unchanged compared to the same steps in
sections 3.3.3.2 and 3.3.3.3. The only difference is that we now deal with two function
pairs. But both pairs F and F̂ can be treated separately.

Since the service time is 0 at the second customer, the function pairs after step
Wait and after Serve are the same. They are depicted in Figure 3.13.

54 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of step Setup in iteration 2

A
cc
u
m
u
la
te
d
si
n
ce

co
m
p
le
te

re
st

(A) F setup
2 = (Dsetup

2 , Tsetup
2).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of step Setup in iteration 2

A
cc
u
m
u
la
te
d
si
n
ce

co
m
p
le
te

re
st

(B) F̂ setup
2 = (D̂setup

2 , T̂setup
2).

FIGURE 3.12: Driver states label Lsetup
2 .

3.4. Discussion of the Extension by Break Splits 55

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of steps Wait and Serve in iteration 2

A
cc
u
m
u
la
te
d
si
n
ce

co
m
p
le
te

re
st

(A) Fwaited
2 = F served

2 .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of steps Wait and Serve in iteration 2

A
cc
u
m
u
la
te
d
si
n
ce

co
m
p
le
te

re
st

(B) F̂waited
2 = F̂ served

2 .

FIGURE 3.13: Driver states label Lwaited
2 = Lserved

2 .

56 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

3.4.3.3 Step Drive

Step Drive is again slightly different. The driver may have to take a break en route
between the customers, and that break may either be a full break or only the second
part of a split break. In this presentation, we focus on the case in which the driving
time between two customers does not exceed limitD because then, it is never man-
datory to schedule more than one break en route. An important observation is that
it is never beneficial to schedule a break en route of which the period is longer than
necessary. Especially, a first split break en route has no advantage over a first split
break at the next customer.

Analogously to section 3.3.3.4, we first compute the excess functions Hexc and
Ĥexc before we then set the points in time t+, t̂+, t∗, and t̂∗. Finally, we determine the
auxiliary functions Hacc and Ĥacc. The only adjustment worth mentioning is that we
have to replace break with break2nd in the definitions of t̂∗ and Ĥacc, that is,

t̂∗ := t̂+ + drivei + break2nd and

Ĥacc(t) := min{Ĥexc(t′) | t′ ≤ t− break2nd − drivei ∧ Ĥexc(t′) > 0}.

With all these auxiliary functions we have everything together to set the function
pairs F driven

i = (Ddriven
i , Tdriven

i) and F̂ driven
i = (D̂driven

i , T̂driven
i). In step Setup, some

pieces of F driven
i−1 were merged together with F̂ driven

i−1 to create F̂ setup
i . Now in step

Drive, some pieces of F̂ served
i are merged together with F served

i to create F driven
i . This

is because when a driver takes a due second split break en route, the driver is com-
pletely rested after the break, and an early first split break right after that is not
beneficial. So pieces that need due breaks en route are moved from F̂ served

i to F driven
i .

The function pair F̂ driven
i only contains pieces without due breaks en route. No ad-

ditional pieces are created in this step. The four functions are set as follows:

Ddriven
i (t) :=

Dserved

i (t− drivei) + drivei, t < min{t∗, t̂∗} ∧ Hexc(t− drivei) ≤ 0
min{Hacc(t), Ĥacc(t)}, t ≥ min{t∗, t̂∗}
⊥, otherwise

Tdriven
i (t) :=

Tserved

i (t− drivei) + drivei, t < min{t∗, t̂∗} ∧ Hexc(t− drivei) ≤ 0
min{Hacc(t), Ĥacc(t)}, t ≥ min{t∗, t̂∗}
⊥, otherwise

D̂driven
i (t) :=

{
D̂served

i (t− drivei) + drivei, Ĥexc(t− drivei) ≤ 0
⊥, otherwise

T̂driven
i (t) :=

{
T̂served

i (t− drivei) + drivei, Ĥexc(t− drivei) ≤ 0
⊥, otherwise

After this step, the function pairs from the example are as shown in Figure 3.14.

3.4.4 Complexity Analysis

What is the number of pieces of the function pairs? In section 3.3.5, we have ana-
lyzed their number step by step, literally. But with break splits, there are interde-
pendencies between the two function pairs of a label that make this approach rather
unpromising. Particularly in step Setup, we compute min{F ′i (t), F̂ driven

i−1 (t)} over a

3.4. Discussion of the Extension by Break Splits 57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of step Drive in iteration 2

A
cc
u
m
u
la
te
d
si
n
ce

co
m
p
le
te

re
st

(A) Fdriven
2 .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

Time at end of step Drive in iteration 2

A
cc
u
m
u
la
te
d
si
n
ce

co
m
p
le
te

re
st

(B) F̂driven
2 .

FIGURE 3.14: Driver states label Ldriven
2 .

58 Chapter 3. Truck Driver Scheduling with Multiple Time Windows

period of time, and this function pair may have as many pieces as the two input
pairs together. This means for some pieces of F driven

i−1 , a copy may be created in F̂ setup
i

– a “twin” of a piece in F setup
i . Even though it is true that no additional pieces are

created in step Drive, some pieces – those with Ĥexc(t− drivei) > 0 – are moved from
F̂ served

i to F driven
i , where they may then induce twin pieces in F̂ setup

i+1 in the worst case.
Due to these interdepedencies, a polynomial bound on the number of pieces is not
obvious.

A more promising approach to show such a bound is the one that we are going
to pursue in the complexity analysis section of chapter 5. The main idea is that every
piece can be assigned to a time window. To be precise, every piece can be assigned to
a partial schedule that starts at the end of the last break, and this partial schedule, in
turn, can be assigned to the end of a time window. It is the end of the time window
that the partial schedule hits on when we prolong the last break and shift the partial
schedule further to the right. We leave out the details here. They can be found in
section 5.4.5, albeit in the context of two types of breaks and not break splits.

We claim that no more than two pieces are assigned to the same end of a time
window. This is because there are exactly two different driver states that we need
to distinguish at the end of an assigned time window: Either the driver is partially
rested at its end or not. We conclude that the number of pieces per label is asympto-
tically the same as in the case without break splits, namely it is in O(w). Again, we
claim that the algorithm can be implemented to run in linear time in the number of
created pieces. It follows that the enhanced algorithm for the RulesetEU+ still runs
in O(nw) time.

3.5 Conclusion and Outlook

We have studied three variants of a truck driver scheduling problem with one type
of break and multiple time windows per customer. These variants differ in the consi-
dered rulesets. As the names suggest, the rulesets RulesetEU and RulesetEU+ as well
as RulesetUS are relevant in the European Union and the United States, respectively,
at least for a planning horizon of a day. In contrast to the ruleset RulesetEU, the
ruleset RulesetEU+ even allows a break to be taken in two parts.

We have presented an algorithm for all three variants. As it is shown, it runs
in polynomial time, independent of the break rule parameter setting. In case of
the rulesets RulesetEU and RulesetUS, this is the first polynomial-time algorithm in
presence of multiple (and arbitrarily distributed) time windows per customer. To
the best of our knowledge, a polynomial-time algorithm for the ruleset RulesetEU+
has not been known before, even in the single time window case.

This is the only chapter in which we regard a break splitting rule. In section
2.3.2.1, we have introduced the minimum-length-split rule. One of the questions we
leave open is how this rule could be integrated into an algorithm for the TDSP and
how this rule affects the complexity of the problem.

59

Chapter 4

Truck Driver Scheduling with
Minimum Duration Objective

4.1 Introduction

Different optimization goals have been proposed for the truck driver scheduling
problem (TDSP). It is most common to look for the earliest finish time (EF-TDSP) or
the minimum duration (MD-TDSP) of a feasible schedule (see also section 2.4.1). An
algorithm for the EF-TDSP has already been described in the previous chapter 3. In
this chapter, we study the MD-TDSP. To be precise, we study the same two problem
variants as in the previous chapter – apart from the optimization goal. That is, there
is one type of break and there are two different rulesets, denoted as RulesetUS and
RulesetEU. As throughout this thesis, customers may each have multiple (and arbi-
trarily distributed) time windows. In the next sections, we present an algorithm for
the corresponding variants of the MD-TDSP and prove a polynomial-time bound. It
is based on the algorithm that we have described previously in chapter 3.

Related Work Apart from the earliest finish time and the minimum duration, also
other optimization goals have been regarded in the literature. For instance, in the
case that a feasible schedule does not exist, it is worthwhile to consider two lexi-
cographically ordered objectives, minimizing lateness as the first criterion, and the
earliest finish time or the minimum duration as second criterion (Bernhardt et al.,
2016). Another example is the optimization goal considered by Xu et al. (2003). They
distinguish the time spent solely for waiting and the time spent for taking a break.
In their model, these times may induce different costs. The authors regard a linear
combination of these costs as objective function. For the case that both times are
equally weighted in the function, their problem coincides with the variant that asks
for the minimum duration because the sum of driving and service times are a con-
stant. They conjecture that their problem - in the presence of multiple time windows
per customer - is NP-hard.

For a very special case of a TDSP, namely the unrestricted case without any break
rules, a polynomial time bound is known. It is proven by Jong, Kant, and Vliet
(1996) that the minimum duration in the case with multiple time windows can be
computed in O(w log n) time if there are no break rules that need to be respected
(where w is the total number of time windows and n, as before, is the number of
customers). However, no polynomial-time bound is known in case there are break
rules to be observed.

Contribution and Outline Our algorithm is the first for the RulesetUS-MD-TDSP
and the RulesetEU-MD-TDSP that runs in polynomial time. After all, it is the first

60 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

polynomial-time algorithm for any variant of an MD-TDSP (except for the trivial
case without any rules). With this, the conjecture of Xu et al. (2003) can be falsified,
at least when waiting cost and cost for the break periods are equally weighted.

The problem at hand is defined in section 4.2. Our solution approach including
its analysis is described in section 4.3. In section 4.4, we shortly discuss the minimum
idle cost objective. Finally, a conclusion follows in section 4.5.

4.2 Problem Definition

The problem at hand is defined almost exactly as in section 3.2 of the previous chap-
ter. So again, we study a problem with one type of break and the rulesets RulesetUS =
{drive until driven, drive until traveled } and RulesetEU = {drive until driven, work until
traveled }. Still, the minimum break duration is denoted by break, and the two limits
on the accumulated driving and travel time are limitD and limitT, respectively. The
conditions to identify a feasible truck driver schedule are the same as in section 3.2.1.
We again assume that the driver is rested when the planning horizonH begins, that
is, there is an implicit break right beforeH.

The only difference between the two problem variants is the optimization goal.
Instead of looking for a feasible schedule with earliest finish time tdep@r

n , we would
now like to find one with shortest duration tdep@r

n − tarr@c
1 . In section 4.2.1, we argue

why the MD-TDSP is harder than the EF-TDSP.

4.2.1 Problem Characteristics

An algorithm for the MD-TDSP can also solve the EF-TDSP by modifying the origi-
nal instance. However, we have to be careful. For instance, we can not just fix the
start time, that is, the start of service at the first customer, because then we would be
unable to further prolong the implicit break at the beginning, even though this may
be necessary. Instead, we add a customer 0 to the front of the route that is limitD
away from customer 1 and needs no service. W.l.o.g. the first time window of the
originally first customer opens at the beginning of the planning horizon. We shift
the beginning of the planning horizon by limitD + break backward in time. Let the
only time window of the newly created customer 0 open and close at the new be-
ginning of the planning horizon, so limitD + break before the first time window of
the next customer opens. With this modification, a feasible schedule allows for a
break before the first time window of customer 1. The new beginning of the plan-
ning horizon plus the minimum duration of a feasible truck driver schedule is equal
to the earliest finish time of both the original and the modified instance. There is no
corresponding transformation the other way round.

Finding the minimum duration is harder than finding the earliest finish time.
This is already true in the single time window case, as is shown by the example in
Figure 4.1. Let break = 2, limitD = 2, limitT = ∞, all driving times be 1 and all service
times be 0. Here, the minimum duration of 5 is only achievable when departing at
time 1 (blue schedule). For a schedule with the earliest finish time of 5.5, a waiting
time of 0.5 is inevitable (red schedule). For symmetry reasons, this also holds for a
schedule with the latest start time of 1.5. So calculating the earliest finish time (or
analogously the latest start time) does not directly help find the minimum duration,
even in the single time window case.

In the case with multiple time windows per customer, the problem of finding
the minimum duration becomes even more challenging. With this problem, it is

4.2. Problem Definition 61

0 1 2 3 4 5 6 7 8

Planning horizon

D
ri
vi
n
g
ti
m
e

1

1

1

FIGURE 4.1: Calculating the earliest finish time does not directly help
find the minimum duration. Here, break = 2, limitD = 2, limitT = ∞,

all driving times are 1 and all service times are 0.

no longer sufficient to store one driver state per point in time. To illustrate this,
imagine the situation that is depicted in Figure 4.2. It shows the time windows of
the first four customers of a route and four partial schedules. Let all driving times be
1 and all service times be 0, let the minimum break period be 5 and limitD > 3 non-
restrictive. The driver has (at least) four options when to leave the first customer.
One is to start the route at time 7 and to service all customers without ever taking a
break. Other options are to depart right away at time 0 or at time 1 or at time 2. In
all of these cases, the driver takes an early break before service at a customer.

To find the earliest finish time, we only have to keep the information that it is
possible to arrive at customer 4 at time 10 and that the minimum accumulated dri-
ving and travel time at that time is 0. We achieve this when the driver starts at time
0, so there is no need to consider the later start times.

This is different in the MD-TDSP case. Here, there are two criteria of interest, the
(total) duration and the accumulated times since the end of the last break as before.
A schedule dominates another with the same finish time only if it is better in terms of
one of these two criteria and at least as good in terms of the other criterion compared
to the other schedule. In Figure 4.2, the partial schedules and their corresponding
driver states do not dominate each other because either a schedule is better in terms
of duration (the later the start time, the shorter the duration) or better in terms of
accumulated times since the end of the last break (the earlier the start time, the lo-
wer the accumulated times). So we have to store the information of all four partial
schedules in a driver states label.

Now let us have a look at the example in Figure 4.3. Let again all driving times
be 1 and all service times be 0, but let the minimum break period be 3 and limitD =
limitT = 1.5. In this example, the earliest finish time is 9. To achieve this finish
time, the driver has to depart at time 0 and to take an early break at customer 2.
Without the early break, the driver could not service customer 3 within the first time
window. But due to the early break, a second break becomes inevitable en route
between customers 3 and 4. The second schedule proves that a feasible schedule
with only one break exists. It has the minimum duration. However, the finish time
of the second schedule is not earliest possible. So this is another example where
computing the earliest finish time does not help find the minimum duration.

But there is more to this example. A dotted arrow in Figure 4.3 indicates how

62 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

0 1 2 3 4 5 6 7 8 9 10 11 12

Planning horizon

D
ri
vi
n
g
ti
m
e

1

1

1

FIGURE 4.2: Four significant start times. Time t = 10 is covered by
four different, non-dominated schedules.

0 1 2 3 4 5 6 7 8 9 10 11 12

1

1

1

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 4.3: Example. Driving time between customers is 1 each,
break = 3 and limitD = 1.5. Both schedules do not dominate each
other. The red schedule has slack of two time units, the blue schedule
only 0.5 time units. The red schedule could be shifted to the right so

that it still starts earlier but ends later than the blue schedule.

4.3. Solution Approach 63

0 1 2 3 4 5 6 7 8 9 10 11 12

1

1

1

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 4.4: Example of Figure 4.3 with both schedules shifted to the
right by the respective maximum slack value.

much slack there is in the schedule, i.e., how far the schedule could be shifted to
the right such that every service remains within its associated time window. In the
example, the slack values are 2 and 0.5, and it is the time windows of customer 3
that limit the slack to these values. Figure 4.4 shows both schedules again, shifted
to the right by the respective slack values. That is, all time values of a schedule are
increased by the respective slack value.

Let us go back to Figure 4.3 and recall the EF-TDSP algorithm: The minimum
accumulated driving and travel times on arrival at customer 4 are stored in Ldriven

3 .
The value of both functions is 0.5 over the interval from 9 to the end of the plan-
ning horizon because the due break en route could be prolonged indefinitely. Now
with the minimum duration objective and in contrast to before, there is no reason to
prolong the break as long as there is still slack in the schedule. Instead, it is always
better to shift the schedule accordingly. This is because shifting it does not change
its duration as opposed to prolonging the break. So in a MD-TDSP algorithm, we
need to keep track of how much slack there is in a schedule and make use of it as
much as possible.

There are some more important observations. One is that there is no more slack
in a schedule if and only if some service starts exactly at the end of a time window.
Another is that whenever a schedule comprises slack, it is disadvantageous to let
the driver wait. Shifting a schedule is neutral to accumulated times since last break
and the schedule duration, whereas waiting lets both the accumulated travel time
and the schedule duration increase. A third observation is that a driver who starts
earlier may still finish later. That is, the so-called first-in-first-out property does not
hold. An example of this is given in Figure 4.4.

4.3 Solution Approach

Now we address a solution approach and show how to find the minimum duration
of a feasible schedule if one exists. In section 4.3.1, we redefine the contents of a
driver states label, before we then turn towards the description of an algorithm for
this problem (sections 4.3.2 through 4.3.4). Finally, it is shown in section 4.3.5 that
this algorithm has a polynomial time bound.

64 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

4.3.1 Driver States Label

The rough idea of the MD-TDSP algorithm is to call the EF-TDSP algorithm for every
significant point in time. We call a start time significant if a non-dominated schedule
starts at that time, where the schedule must have one of the following properties,
additionally:

• At least one service commences exactly at the beginning of the associated time
window.

• At least one service commences exactly at the end of the associated time win-
dow.

• At least one early break commences exactly at the beginning of a waiting in-
terval.

For every schedule without that property, there is an equivalent schedule with that
property. We obtain this by shifting it to the left or to the right until the boundary of
a time window (or the beginning of a waiting interval) is reached. For the algorithm,
it is sufficient to consider only the start times of such representative schedules.

However, we do not know these points in time beforehand. So we will have to
find out during the course of the algorithm. For the MD-TDSP algorithm, let the set
of the significant start times known in iteration i be denoted by Si. This set may only
change from iteration to iteration but remains the same between steps.

Since the algorithm distinguishes schedules with slack from those without, the
set Si = S+i ∪ S0

i is decomposed into two subsets, the set of shiftable start times S+i
and the set of fixed start times S0

i . A start time s is contained in S+i and considered
as shiftable if there is slack in the schedule that begins at time s and that makes the
start time significant. This means no service commences at the end of a time window
(otherwise there would be no slack) whereas some service starts at the beginning of
a time window or an early break commences at the beginning of a waiting interval
(otherwise the start time would not be significant). Accordingly, S0

i comprises the
start times of non-dominated schedules where some service starts at the end of the
respective time window, so there is no slack. Thus it turns out that the two sets are
disjoint. In the example of Figure 4.2, the start times 2 and 7 are contained in S+4 ,
whereas 0 and 1 are contained in S0

4 .
Like in the driver states label of the EF-TDSP algorithm, we again store a pair of

two time-dependent functions in a label, but not just one. This time, we need to store
such a function pair for every significant start time. So let F step

i,s := (Dstep
i,s , Tstep

i,s) be a
pair of two time-dependent functions that hold the minimum accumulated driving
time and the minimum accumulated travel time since the end of the last break with
respect to start time s. For the MD-TDSP algorithm, a driver states label is defined
as follows:

Lstep
i =

(
S+i ,S0

i , (F step
i,s)s∈Si

)
where i is the current iteration and step is one of {setup, waited, served, driven} and
(F step

i,s)s∈Si is a sequence of function pairs.

By construction of the algorithm, the function pair F step
i,s has different properties

depending on whether the start time s is from S+i or from S0
i . If s ∈ S+i , there is

still slack in the corresponding schedule, that is, we could add an ε > 0 to every
time value of the schedule without making the schedule infeasible. In this case,
the functions in F step

i,s comprise exactly one piece each, and the length of that piece

4.3. Solution Approach 65

equals the slack value. If s ∈ S0
i , the functions are like in the EF-TDSP algorithm

and can comprise several pieces (at most 1 + w). And there is no slack, that is, if the
driver started an ε later, he would miss a time window.

But the difference between the function pairs for s from S+i or from S0
i is not

only about the number of pieces, it is also about how the minimum accumulated
times are related to a start time. As opposed to the EF-TDSP algorithm, the start
time of a schedule that achieves the minimum accumulated times at a given point
in time is relevant now. Suppose we had a function pair for a start time s that is
defined over the interval from αs to ωs. If s is in S0

i and hence considered as fixed,
the minimum accumulated times stored at time αs and ωs and any time in between
refer to a schedule that starts at time s. However, if s is from S+i , then the minimum
accumulated times stored at some time αs ≤ t ≤ ωs refer to a schedule that starts at
time s + (t− αs) because the slack is exploited.

To give an example even before we describe the algorithm, let us use Figure 4.2
again. One of the significant start times in S+4 is s = 7. For this start time, the
minimum accumulated driving and travel time is 3 at time αs = 10 in iteration
4. Since the schedule that corresponds to start time 7 still has slack, the minimum
accumulated driving and travel time is also 3 at time t = 11. But an accumulated
travel time of 3 at time 11 is only possible if the driver starts at time s + (t− αs) = 8.

The algorithm not only ensures that the sets S+i and S0
i alone are disjoint, but

also that the start time intervals [s, s + ωs − αs) for all s ∈ S+i and [s, s] for all s ∈ S0
i

are all disjoint.

4.3.2 Outline and Initialization of the Algorithm

Before the first iteration, no significant start times are known. For the initialization
of the algorithm, we consider the beginning of the planning horizon as significant,
and so we set S+0 := {α(H)} and S0

0 := ∅. For the start at α(H), we again assume
that the driver is completely rested and so the function pair F driven

0,α(H) is set to

F driven
0,α(H)(t) :=

{
(0, 0), for t ∈ H
(⊥,⊥), otherwise

Having initializedLdriven
0 , we then apply Algorithm 1 again and iterate over the num-

ber of customers. The main differences between the EF-TDSP and the MD-TDSP al-
gorithm are limited to step Setup. It is explained in section 4.3.3. The differences in
the other steps are only minor and treated in section 4.3.4.

Finally, we check if at least one of the function pairs in the sequence (F served
n,s)s∈Sn

is defined for some point in time, so if a feasible schedule exists. If it does, we
let the function obj(Lserved

n) of Algorithm 1 return a pair of the minimum duration
among all feasible schedules on the one hand, and the set of start times to achieve
this minimum duration on the other:

obj(Lserved
n) :=

 min
s∈Sn :α(F served

n,s) 6=⊥
α(F served

n,s)− s, arg min
s∈Sn :α(F served

n,s) 6=⊥

(
α(F served

n,s)− s
)

Should there be no feasible schedule, then obj(Lserved
n) is set to (⊥, ∅).

The simplest way to find a corresponding schedule is to pick one of the optimal
start times from the set and call the EF-TDSP algorithm of section 3.3 on a problem

66 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

instance where the time windows of the first customer do not begin before the cho-
sen optimal start time.

TABLE 4.1: Driver states label summary (MD-TDSP).

step one of {Setup, Wait, Serve, Drive }
Si disjoint union of shiftable start time set S+i and fixed start

time set S0
i in iteration i

F step
i,s the pair (Dstep

i,s , Tstep
i,s) of two functions comprising all fea-

sible (and non-dominated) driver states at the end of step
step in iteration i for start time s ∈ Si

Lstep
i the tupel

(
S+i ,S0

i , (F step
i,s)s∈Si

)
at the end of step step in ite-

ration i

4.3.3 Step Setup in Detail

At the beginning of this step in iteration i, the start time sets S+i and S0
i are empty.

In order to fill them (and step Setup is the only step in which these sets are filled),
the algorithm iterates once over all start times in S+i−1 (section 4.3.3.1) and once over
those in S0

i−1 (section 4.3.3.2).
As before, we want to go through this step by means of an example. Figure 4.5

shows the time windows of the first two customers of a route. Let the service time
at the first customer be 0, the driving time to the second customer be 1, the break
rule parameters be break = 0.5 and limitT = limitD > 1 be non-restrictive, and the
planning horizon be [0, 25]. Initially, S+0 := {0} and S0

0 := ∅. Since some parts of the
step Setup cannot be exemplified if we only look at the first iteration, our example
covers the first two iterations, even if that means that we preempt the results of the
first iteration of the algorithm.

The situation at the end of the first iteration is depicted in the figure. The set
S+1 contains the start times {1, 6, 10, 18}, which correspond to the times when the
time windows of the first customer open. Analogously, S0

1 contains the start times
{5, 8, 13, 19}, which correspond to the times when these time windows close. To
every start time s in the sets, there is an associated function pair F driven

1,s . All these
functions have exactly one piece. While the functions in F driven

1,s for any s in S0
i have

a degenerate piece of length zero, the length of each piece of the functions in F driven
1,s

for any s in S+i corresponds to the length of the time window that starts at time s.
This length is indicated by the dotted arrows in the figure.

For this section, we need some more definitions to simplify notation. From the
previous iteration we are given F driven

i−1,s , a pair of two functions. In this section we
just write αs and ωs in short for α(F driven

i−1,s) and ω(F driven
i−1,s), respectively. That is, for a

given start time s ∈ Si−1, αs (ωs) denotes the first (last) defined point of the functions
in F driven

i−1,s (and ⊥ if there is none). In the example, α1 is 2 and ω1 is 6 in step Setup
of iteration 2. We call αs (ωs) the earliest (latest) arrival time with respect to s. Besides
this short notation, we introduce a new function ηs that maps a start time s to the
minimum of the earliest arrival times with respect to all later start times in Si−1,
which we call the next earliest arrival time with respect to s:

ηs := min
s′∈Si−1 :s′>s∧αs′ 6=⊥

αs′

4.3. Solution Approach 67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 4.5: Example of section 4.3.3. Situation after step Drive of
first iteration. Blue schedules relate to the set S+1 = {1, 6, 10, 18},

green schedules relate to the set S0
1 = {5, 8, 13, 19}.

where the minimum over the empty set is supposed to be ∞. In our example, the
earliest arrival time with respect to s = 1 is α1 = 2 and the next earliest arrival time
is η1 = 6, which we achieve when departing at s′ = 5. Be aware that due to early
breaks, ηs may be earlier than αs. We have already seen this in the example of Figure
4.4, where α2 = 11 and η2 = 10.5.

The definition of the next earliest arrival time helps us to not store dominated
driver states. A driver state F driven

i−1,s (t) for a start time s is dominated at time t if a
later start time yields the same (or better) accumulated times since last break. So
F driven

i−1,s (t) does not have to be defined for any t ≥ ηs + break because we know that it
is possible to start later and be completely rested at time ηs + break.

We present the details of step Setup in two parts. In the next subsection 4.3.3.1,
we have a closer look at the shiftable start times only. We describe how we can make
use of the slack and shift the start times profitably. In section 4.3.3.2, when we iterate
over the fixed start times, the algorithm behaves very much like in step Setup of the
EF-TDSP algorithm for each of the fixed start times. Functions SetupMDshiftable
(page 72) and SetupMDfixed (page 71) show pseudo-code of this step.

4.3.3.1 Loop over Shiftable Start Times

We begin with the loop over S+i−1. In the following, let s be an arbitrary start time
from S+i−1. As a preprocessing step is necessary in case of the ruleset RulesetEU, we
focus on the ruleset RulesetUS for the time being, and defer the description of that
step until the end of this section. Both functions in F driven

i−1,s have exactly one piece
each, and that piece is defined over the (non-degenerate) interval from αs to ωs. For
s = 1 from S+1 in the example, this is the interval from 2 to 6. This means the driver
may arrive at the current customer i at every point in time between αs and ωs. But
different from start times in S0

i−1, we can defer the start time depending on how
much later than αs we want the driver to arrive. That is, in order to arrive at time t∗

sometime between αs and ωs, it is best (and feasible) for the driver to depart at time
s + t∗ − αs.

The algorithm finds all significant start times within the interval [s, s + ωs − αs)
and adds them to either S+i or S0

i . By construction of the algorithm, the start time
s + ωs − αs is already contained in S0

i and therefore treated within the loop over the
fixed start times (section 4.3.3.2). In the example, the set S0

1 contains the start time 5,
and the corresponding function pair is defined over the degenerate interval from 6
to 6.

68 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

We differentiate two cases: The arrival of the driver within a time window and
the arrival within a waiting interval, i.e., outside of a time window. Accordingly,
the first thing we do (see Identifying the Significant Arrival Times) is to fill two
disjoint sets T in

i,s and T out
i,s of arrival times that are significant with respect to start

time s, where T in
i,s contains the significant arrival times within the time windows

of customer i, and T out
i,s those within the waiting intervals. Once we know all the

significant arrival times, there is a second round (see Loop over Arrivals within Time
Windows and Loop over Arrivals outside of Time Windows) in which we loop over
these significant arrival times in order to find significant start times.

Identifying the Significant Arrival Times We first describe the significant arrival
times within the time windows. For our purposes, an arrival time tin within the
interval [αs, ωs) is called significant if one of the following conditions is satisfied:

• tin = αs and tin is within a time window

• tin is the beginning of a time window

Precisely, we set

T in
i,s :=

wi⋃
j=1

{min{αs ≤ tin < ωs | tin ∈ W j
i }} \ {∞}

where the minimum over the empty set is supposed to be ∞. In the example, T in
2,1 =

{2, 4}, T in
2,6 = {8}, T in

2,10 = {12}, and T in
2,18 = {}.

It may only be beneficial to arrive within a waiting interval if the driver starts
an early break immediately on arrival and if that break ends within one of the time
windows. Remember that a break is not prolonged as long as there is slack. Also
keep in mind that for dominance reasons, we want the break to end before ηs + break.
So an arrival time tout within the interval [αs, min{ωs, ηs}) is also called significant if
one of the following conditions is fulfilled:

• tout = αs and tout is within a waiting interval, and tout + break is within a time
window

• tout is the beginning of a waiting interval, and tout + break is within a time win-
dow

• tout is within a waiting interval, and tout + break is the beginning of a time win-
dow

These three cases are also illustrated in Figure 4.6.
If the value of the (defined) piece of F driven

i−1,s is (0, 0), then there is no need to take
a break and no reason to arrive outside of a time window. So we set T out

i,s := ∅ in
this case. Otherwise we set

T out
i,s :=

wi⋃
j=1

wi⋃
k=j

{min{αs ≤ tout < min{ωs, ηs} | tout ∈ W j
i ∧ tout + break ∈ W k

i }} \ {∞}

whereW i are the waiting intervals as defined in section 2.4.3. In the example, T out
2,1 =

{3.5}, T out
2,6 = {7.5}, T out

2,10 = {11.5}, and T out
2,18 = {}.

4.3. Solution Approach 69

αs = tout tout + break

(A) Case 1

αs < tout tout + break

(B) Case 2

αs < tout tout + break

(C) Case 3

FIGURE 4.6: The three cases in which tout is considered as a significant
arrival time.

Loop over Arrivals within Time Windows We do the following for every tin ∈
T in

i,s . By construction, tin is within a time window, namely Wi[tin], and ω(Wi[tin])

denotes the end of that time window (recall definition ofWi[tin] in section 2.4.3). If,
in turn, this end is before ωs, we learn in this iteration that s′ := s + ω(Wi[tin])− αs
must be a significant start time because a (non-dominated) schedule exists such that
some service begins at the end of a time window. And so we add s′ to S0

i and set

F setup
i,s′ (t) :=

{
F driven

i−1,s (t), for t = ω(Wi[tin])

(⊥,⊥), otherwise

so the function pair is only defined at the end of that time window. In the example,
the start times 2, 4 and 12 are added to S0

2 in this case (green schedules in Figure 4.7).
Table 4.2 helps comprehend the auxiliary calculations.

If ω(Wi[tin]) < ωs and in addition tin < ω(Wi[tin]), i.e., tin is not at the end of
its associated time window, s′ := s + tin − αs must be a significant start time, too. If
tin is the beginning of a time window, this follows directly from the definition of a
significant start time. However, if tin equals αs, then the claim follows by induction.
So we add s′ to S+i and set

F setup
i,s′ (t) :=

{
F driven

i−1,s (t), for tin ≤ t ≤ ω(Wi[tin])

(⊥,⊥), otherwise

In the example, the start times 1, 3 and 11 are added to S+2 in this case (blue schedu-
les, lengths of pieces (≡ slack) are indicated by dotted arrows as before).

Otherwise, if ω(Wi[tin]) ≥ ωs, it is ωs that limits the length of the function pair
pieces. By the same argument as before, we add s′ := s + tin − αs to S+i and set

F setup
i,s′ (t) :=

{
F driven

i−1,s (t), for tin ≤ t ≤ ωs

(⊥,⊥), otherwise

In the example, the start time 7 is added to S+2 in this case (blue schedule).
Also s + ωs − αs may be a significant start time. But even if it is, there is no

need to consider it here because this would have already been learned in a previous
iteration, and so it would have been added to the set of fixed start times before.

Let us summarize: In this loop, F setup
i,s′ is copied from F driven

i−1,s but only over a
subinterval from [αs, ωs]. The start time s′ is deferred by as much as we truncate in
the front of the piece of F driven

i−1,s . By construction, the intervals [α(F setup
i,s′), ω(F setup

i,s′)]

with s′ := s + tin − αs are pairwise disjoint for all tin ∈ T in
i,s because they are all

subsets of different time windows. For every tin, at most one start time is added to
S+i , at most one to S0

i , and at least one to either of the two sets.

70 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

TABLE 4.2: Start times added during loop over arrival times within
time windows.

s [αs, ωs) tin ω(Wi[tin]) S+i S0
i

1 [2,6) 2 3 1 2
4 5 3 4

6 [7,9) 8 10 7 -
10 [11,14) 12 13 11 12

Loop over Arrivals outside of Time Windows We do the following for every tout ∈
T out

i,s . By definition, tout is outside of a time window, and tout + break is inside a time
window. To emphasize this, we set tin := tout + break as short notation, even though
this tin may not be contained in T in

i,s . As before, ω(Wi[tin]) is the time when the
time window of tin closes. As far as the arrival time tout is concerned, we want
the early break to begin not only before the latest arrival time ωs and before the
next earliest arrival time ηs but also before the next time window opens at time
α(Wi[tout]). For convenience, we set slack(tin) := ω(Wi[tin])− tin and slack(tout) :=
min{ωs, ηs, α(Wi[tout])} − tout, and we observe that 0 < slack(tout) ≤ break holds.

If slack(tin) < slack(tout), we can see that s′ := s + tout − αs + slack(tin) is a
significant start time because a (non-dominated) schedule exists such that - after an
early break - the service at customer i begins at the end of time window Wi[tin].
Accordingly, we add s′ to S0

i and set

F setup
i,s′ (t) :=

{
(0, 0), for t = ω(Wi[tin])

(⊥,⊥), otherwise

If besides slack(tin) < slack(tout) also slack(tin) > 0 holds, s′ := s + tout − αs is
a significant start time as well. This results from the definition of a significant start
time and the construction of T out

i,s because either tin is when a time window opens,
or tout is when a waiting interval begins, or tout equals αs, in which case the claim
follows by induction. So we add s′ to S+i and set

F setup
i,s′ (t) :=

{
(0, 0), for tin ≤ t ≤ ω(Wi[tin])

(⊥,⊥), otherwise

If slack(tin) ≥ slack(tout), we add s′ := s + tout − αs to S+i , too (by the same
argument as above). However, we set

F setup
i,s′ (t) :=

{
(0, 0), for tin ≤ t ≤ tin + slack(tout)

(⊥,⊥), otherwise

In the example, the start times {2.5, 6.5, 10.5} are added to S+2 in this case (red sche-
dules in Figure 4.7). Again, the auxiliary calculations can be reproduced more easily
with the help of Table 4.3.

Let us summarize: In this loop, F setup
i,s′ is set to (0, 0) over a subinterval from

[αs, ωs], shifted to the right by the minimum break period. Analogously to T in
i,s ,

the intervals [α(F setup
i,s′), ω(F setup

i,s′)) with s′ := s + tout − αs are pairwise disjoint for
all tout ∈ T out

i,s . This is because for two such intervals either the two intervals are

4.3. Solution Approach 71

TABLE 4.3: Start times added during loop over arrivals outside of
time windows.

s [αs, ωs) tout tin slack(tout) slack(tin) S+i S0
i

1 [2,6) 3.5 4 0.5 1 2.5 -
6 [7,9) 7.5 8 0.5 2 6.5 -
10 [11,14) 11.5 12 0.5 1 10.5 -

subsets of different time windows, or the two intervals are, if shifted to the left
by break, subsets of different waiting intervals, or both. In fact, even the intervals
[α(F setup

i,s′), ω(F setup
i,s′)] are pairwise disjoint.

But there is more to the half-open intervals [α(F setup
i,s′), ω(F setup

i,s′)): They are pair-
wise disjoint not only for all tout ∈ T out

i,s and one start time s but also for all s ∈ S+i−1.
For an explanation, let s′1 and s′2 be the associated shifted start times for two start
times s1 < s2 from S+i−1. It is ensured that the interval for s′1 ends before ηs1 + break,
whereas the interval for s′2 does not begin earlier than αs2 + break ≥ ηs1 + break. This
observation will later be exploited in the analysis.

As mentioned in the beginning of section 4.3.3.1, a preprocessing step is ne-
cessary in case of the ruleset RulesetEU. This is because the rule work until traveled
of this ruleset necessitates to check whether the service at customer i can be com-
pleted before a break becomes due. A compulsory break (in contrast to an early
break) may begin inside a time window. To take account of this, we check whether
Tdriven

i−1,s (αs) + servicei ≤ limitT holds at the very beginning of the loop. And if this
is not the case, we shift the piece of both functions of F driven

i−1,s by the break period
and reset the values to (0, 0) before we continue with the loop, provided that at least
servicei ≤ limitT.

4.3.3.2 Loop over Fixed Start Times

We continue with the loop over S0
i−1. So let s be an arbitrary start time from S0

i−1 in
the following. If αs is defined, we set S0

i := S0
i ∪ {s} and

F setup
i,s (t) :=

F driven

i−1,s (t), for αs ≤ t < min{αs, ηs}+ break
(0, 0), for αs + break ≤ t < ηs + break ∧ t ≤ ω(H)

(⊥,⊥), otherwise

If αs = ⊥, we can simply discard s. In the example, the start times {5, 8, 13, 19} are
added to S0

2 (green schedules). Of these, the start times 5 and 19 will be discarded in
the next iteration because F setup

2,5 (t) = F setup
2,19 (t) = (⊥,⊥) for all t.

Function SetupMDfixed(Ldriven
i−1)

1 forall start times s in S0
i−1 do

2 if αs 6= ⊥, then add s to S0
i , copy pieces in range from αs to

min{αs, ηs}+ break− 0.1 from F setup
i−1,s to F setup

i,s , and append piece from

αs + break to min{ηs + break− 0.1, ω(H)} with value (0, 0) to F setup
i,s ;

3 return
(
S0

i , (F setup
i,s)s∈S0

i

)
;

72 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

Function SetupMDshiftable(Ldriven
i−1)

1 forall start times s in S+i−1 do
2 k = 1;
3 forall time windowsW j

i of customer i in chronological order do
4 if αs > ω(W j

i) then
5 continue;

6 shift := max{α(W j
i)− αs, 0};

7 if shift < ωs − αs then
8 if ω(W j

i) < ωs then
9 add s + ω(W j

i)− αs to S0
i , and append piece from ω(W j

i) to
ω(W j

i) with value F setup
i−1,s(αs) to F setup

i,s+ω(W j
i)−αs

;

10 if αs + shift < ω(W j
i) then

11 add s + shift to S+i , and append piece from αs + shift to
ω(W j

i) with value F setup
i−1,s(αs) to F setup

i,s+shift;

12 else
13 add s + shift to S+i , and append piece from αs + shift to ωs with

value F setup
i−1,s(αs) to F setup

i,s+shift;

14 while k ≤ j do
15 minShift := max{α(W j

i)− (αs + break), α(W k
i)− αs, 0};

16 if αs + minShift > ω(W k
i) then

17 k++;
18 continue;

19 maxShift := ω(W j
i)− (αs + break);

20 if minShift > maxShift∨minShift ≥ ωs − αs then
21 break;

22 latest := min{ωs + break, ηs + break, α(W k
i) + break};

23 if ω(W j
i) < latest then

24 add s + maxShift to S0
i , and append piece from ω(W j

i) to
ω(W j

i) with value (0, 0) to F setup
i,s+maxShift;

25 if minShift < maxShift then
26 add s + minShift to S+i , and append piece from

αs + break + minShift to ω(W j
i) with value (0, 0) to

F setup
i,s+minShift;

27 else
28 add s + minShift to S+i , and append piece from

αs + break + minShift to latest with value (0, 0) to F setup
i,s+minShift;

29 if ω(W k
i)− αs > maxShift then

30 break;

31 k++;

32 return
(
S+i ,S0

i , (F setup
i,s)s∈S+i ∪S0

i

)
;

4.3. Solution Approach 73

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 4.7: Example of section 4.3.3. Situation after step Setup of
second iteration.

4.3.4 Other Steps in Detail

In step Wait, hardly any changes need to be made compared to the same step of the
EF-TDSP algorithm in section 3.3.3.2. For all s ∈ S+i , there is nothing to do because
by construction, each piece is only defined within a time window. For all s ∈ S0

i ,
we proceed very similar to before. The only difference is that we do not want the
driver to wait until after ω(F setup

i,s) for dominance reasons. So when we loop over all
s ∈ S0

i , we redefine Hshift each time:

Hshift(t) := max{t′ | t = t′ + Wi(t′) ∧ F
setup
i,s (t′) 6= (⊥,⊥)}

only for all t ≤ ω(F setup
i,s) for which the maximum is taken from a non-empty set,

and ⊥ for all other t. The remainder of each loop is as before.
In step Serve, nothing has to be changed compared to section 3.3.3.3. For all

s ∈ Si, we proceed as before.
In step Drive, we compute F driven

i,s for all s ∈ S0
i as in section 3.3.3.4. For all

s ∈ S+i , the calculation is similar to before, but as long as there is slack in a schedule,
we do not prolong a break. So let s be from S+i in the following, and let t be a point
in time for which the piece of F served

i,s is defined. Then

h := drivei −min{limitD− Dserved
i,s (t− drivei), limitT− Tserved

i,s (t− drivei)}

is the part of the driving time that exceeds the time that the driver is allowed to
drive. If h ≤ 0, a break en route is not necessary, so we set

F driven
i,s (t) :=

(
Dserved

i,s (t− drivei) + drivei, Tserved
i,s (t− drivei) + drivei

)
for all t ∈ H for which F served

i,s (t− drivei) 6= (⊥,⊥) holds, and F driven
i,s (t) := (⊥,⊥)

for all other t. On the other hand, if 0 < h ≤ limitD, we set

F driven
i,s (t) := (h, h)

for all t ∈ H for which F served
i,s (t− drivei − break) 6= (⊥,⊥) holds, and F driven

i,s (t) :=
(⊥,⊥) for all other t. Should h even exceed limitD, more than one break becomes
mandatory en route, so we have to calculate the number of additional breaks first,
before we shift and raise F driven

i,s accordingly (analogue to the approach in section
3.3.3.4).

74 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

4.3.5 Complexity Analysis

We claim that the MD-TDSP algorithm has a polynomial time bound. For the proof,
we find that some arguments of the corresponding proof for the EF-TDSP algorithm
(section 3.3.5) can be re-used. Again, we observe that the algorithm can be imple-
mented in a way such that it runs in a time that is linear in the overall number of
pieces stored in the function pairs of the labels created during the algorithm. And
we can also re-use the argument why the number of pieces per function pair (and
thus per significant start time) is in O(w), where w is the total number of time win-
dows. So a proof mainly boils down to answering one question: How can we know
that the number of significant start times found during the algorithm is bounded by
a polynomial?

Before we go into the details of the proof, we give an example of how the set of
significant start times evolves from iteration to iteration (section 4.3.5.1). With the
help of this example, it is a lot easier to comprehend the idea behind the proof set
out in section 4.3.5.2. But even before that example, we need to introduce some more
notation.

Function Intervals and Start Time Intervals The characteristic of the shiftable start
times in S+i is that the associated functions are only defined over a single interval.
For this section, let I step

i,s := [α(F step
i,s), ω(F step

i,s)) be the (half-open) function interval

over which the function pair F step
i,s is defined for a step in iteration i and a start time

s ∈ S+i . Moreover, let J step
i,s := [s, s + ω(F step

i,s)− α(F step
i,s)) be the start time interval

for iteration i and start time s ∈ S+i . The following observations are essential:

• The start time intervals J step
i,s do not change from step to step within the same

iteration, so we can leave the superscript out and simply write Ji,s.

• By construction, the start time intervals Ji,s are pairwise disjoint for any two
start times from S+i in iteration i.

• However, the function intervals I step
i,s may overlap for two start times from S+i ,

and not only partially. There are cases in which a function interval overlaps
another entirely, as is the case in Figures 4.3 and 4.4. Here, the function interval
for start time 0 spans from 9 to 11 and the function interval for start time 4
spans from 10 to 10.5.

For the proof of the polynomial time bound, it is crucial that not all function in-
tervals overlap. In fact, for an iteration i, a partition of the set of all function intervals
I step

i,s exists such that the intervals in the subsets are pairwise disjoint. Before we pre-
sent the proof(s) in section 4.3.5.2, we turn towards an example in the next section
4.3.5.1. Here, we also introduce the start time tree for illustration purposes.

4.3.5.1 How the Set of Significant Start Times Evolves

A key to understanding the algorithm and our analysis is to have a look at the start
time tree. It visualizes how the sets of significant start times evolve from iteration to
iteration. We first introduce another example instance, one with more customers but
fewer time windows. Figure 4.8 shows the time windows of the first five customers
of a route that are all a driving time of 1 apart. Only customer 4 has two time win-
dows, all other customers have a single time window. The service times are all 0, the
planning horizon is from 0 to “open end”, break = 5, and limitD = 2.5. So customer

4.3. Solution Approach 75

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

1

1

1

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 4.8: Example instance. Significant schedules created in the
first three iterations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

1

1

1

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 4.9: Example instance. Significant schedules created in the
first four iterations.

76 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

0

0

0

0

0 0.5 1 1.1

2

2

2 2.5

4

4

16

15

14

13

0

1

2

3

4

FIGURE 4.10: Start time tree after the first four iterations correspon-
ding to the instance from Figures 4.8 and 4.9.

4.3. Solution Approach 77

4 cannot be reached without a break. Also three schedules are depicted in Figure 4.8.
They correspond to the start times 0, 2, and 4 in S+3 . In addition, Figure 4.9 displays
the schedules for the start times in S+4 .

The start time tree that refers to the instance of Figures 4.8 and 4.9 is depicted
in Figure 4.10. The tree has several levels, one for each iteration. The numbers in
the nodes of level i represent the significant start times in the start time set Si. So
every node is identified by the iteration/level and the start time. On every level, the
nodes for the start times in S0

i are gray, those for the start times in S+i are colored.
The different colors correspond to the schedules in Figures 4.8 and 4.9 of the same
color. The schedules for the start times in S0

i are not shown in these figures for better
clarity. There is an edge from node v1 on level i− 1 to node v2 on level i if the start
time of v2 emerges from the start time of v1, i.e., v2 is inserted into Si when the loop
has reached the start time of v1. Such an edge is dashed if the start times of the
incident nodes are shiftable, and an early break (or that implicit break before the
planning horizon begins) is taken right before service at customer i.

Gray nodes of fixed start times can have at most one successor node, and that
successor node is gray again and has the same start time. Colored nodes of shiftable
start times can have multiple successors. So in order to know how many nodes are
at most on one level (i.e. how many significant start times are at most contained
in the corresponding set), it is sufficient to find out how many successor nodes the
colored nodes (i.e. shiftable start times) can have. For the sake of simplicity, we may
also speak of successors (and predecessors) of start times instead of nodes in the
following.

It is notable that the number of leaves in the tree doubles from iteration 3 to
iteration 4. Likewise, the number of schedules in Figure 4.9 are twice as many as in
Figure 4.8. It is obvious that this increase has to do with the fact that customer 4 has
two time windows instead of one like the other customers. But it is not obvious how
and why it is polynomial bounded.

Table 4.4 shows the start times, the start time intervals, and the function intervals
computed in the first four iterations of the algorithm. It shows the start time intervals
Ji,s for each start time in S+i , the start times in S0

i , and the function intervals I step
i,s

for the steps Setup and Drive and each start time in S+i .

TABLE 4.4: Start time intervals and function intervals computed in
the first four iterations.

Iteration i Ji,s : s ∈ S+i s ∈ S0
i I setup

i,s : s ∈ S+i Idriven
i,s : s ∈ S+i

0 [0,∞) - - [0,∞)
1 [0,16) 16 [0,16) [1,17)
2 [0,2) 15 [6,8) [7,9)

[2,15) [3,16) [4,17)
3 [0,2) 14 [7,9) [8,10)

[2,4) [9,11) [10,12)
[4,14) [6,16) [12,22)

4 [0,0.5) 1, 13 [13,13.5) [14,14.5)
[0.5,1) [8.5,9) [9.5,10),
[1.1,2) [14.1,15) [15.1,16)
[2,2.5) [15,15.5) [16,16.5),
[2.5,4) [10.5,12) [11.5,13)
[4,8) [12,16) [13,17)

78 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

Now let us go through the example instance iteration by iteration.

0. Initially, only 0 is considered as a significant start time and added to S+0 . Since
the planning horizon has an open end, both J0,0 and Idriven

0,0 are [0, ∞).

1. In iteration 1, the time window [0, 16] of the first customer is regarded. 0 is
again added to the shiftable start times, 16 is added to the fixed start times.

2. In iteration 2, start times 0 (arrival outside of time window) and 2 (arrival
within time window) are added to S+2 . Start time 15 is added to S0

2 , start time
16 is discarded.

3. In iteration 3, the number of shiftable start times grows by 1 again. Start time
2 is added to S+3 (arrival outside of time window), as well as 0 and 4 (arrival
within time window). 14 is added to S0

3 , 15 is discarded.

4. In Iteration 4, it is the first time that two time windows ([8.5, 9] and [10.5, 16])
need to be regarded. We learn from the start time tree which start times emerge
from which start times on level i − 1. Start times 0, 1.1 (assuming that time
elapses in discrete steps of 0.1 time units), and 2 are added to S+4 (arrival out-
side of time window, hence the dashed edges), as well as 0.5, 2.5, and 4 (arrival
within time window). 1 and 13 are added to S0

4 , 14 is discarded.

4.3.5.2 Partitioning the Set of Shiftable Start Times

At first, let us give an outline of the proof because some parts will be rather technical.
As we have already pointed out in the beginning, the time complexity is the same as
the space complexity, so we again count the number of created pieces. We already
know that the functions associated with a shiftable start time have exactly one piece
whereas those associated with a fixed start time can have O(w) many pieces. How
many fixed start times can there be?

A fixed start time can have only one child in the start time tree, and it is itself
always a descendant (not necessarily direct descendant) of a shiftable start time. So
to prove a polynomial bound on the number of fixed start times, it is sufficient to
focus on the number of shiftable start times.

Here, a myopic approach does not work. When the function interval associa-
ted with a shiftable start time from S+i−1 is intersected with the wi time windows of
customer i, this may lead to O(wi) new shiftable start times. That would not be a
polynomial bound. The problem is that function intervals may overlap. We have to
find a partition of the shiftable start times such that the associated function intervals
in every subset of the partition are pairwise disjoint. Such a partition with at most
i subsets exists. This leads to O(wi) new shiftable start times per subset of the par-
tition (and not per each and every shiftable start time). Putting everything together
then results in a polynomial time bound.

Notation It is convenient to introduce the following notation: Let S rested
i ⊂ S+i be

the shiftable start times such that the driver is completely rested before service at
customer i, i.e., for an s ∈ S rested

i , F setup
i,s (t) := (0, 0) for all t for which the function

pair is defined. Initially, S rested
0 := S+0 and also S rested

1 := S+1 . Whenever a start time
is added to S+i in the loop over the arrivals within waiting intervals (section 4.3.3.1)
in a subsequent iteration i, this start time is also inserted into S rested

i .

4.3. Solution Approach 79

For a start time s ∈ S+i in iteration i, let pred(s) ∈ S+i−1 be the predecessor start
time of s in iteration i − 1. We enhance this definition recursively and also write
pred0(s) := s and predk(s) := predk−1(pred(s)) ∈ S+i−k for an s ∈ S+i and a k from 1
to i. For convenience, we introduce s(k) as short notation for the predecessor start
time predi−k(s) in iteration k ≤ i of a start time s ∈ S+i .

We find that for an s ∈ S+i , s(1) is included in S rested
1 and so there is always a k

such that s(k) ∈ S rested
k holds. We make use of this when we define the set S+i,j for

every j ≤ i to be the set of shiftable start times in iteration i with the property that
there is no larger value than j such that s(j) is included in S rested

j , i.e.,

S+i,j := {s ∈ S+i | max{k ≤ i | s(k) ∈ S rested
k } = j}

We observe that S+i,i = S rested
i , and that the S+i,j are pairwise disjoint. In fact, the set

S+i is a disjoint union of S+i,j for all j ≤ i. In the example, S+4,4 := {0, 1.1, 2},S+4,3 :=
{2.5},S+4,2 := {0.5}, and S+4,1 := {4}.

Now, let us recall two important findings of previous sections.

1. For a shiftable start time s from S+i−1, the intervals I setup
i,s′ with s′ := s + tin −

α(F driven
i−1,s) are pairwise disjoint for all tin ∈ T in

i,s (see section 4.3.3.1). In other

words: The intervals I setup
i,s′ are pairwise disjoint for all shiftable start times s′

from S+i \ S rested
i for which the predecessor start time is the same.

2. The intervals I setup
i,s′ with s′ := s + tout − α(F driven

i−1,s) are pairwise disjoint for all
tout ∈ T out

i,s and all shiftable start times s from S+i−1 (see section 4.3.3.1). In other

words: The intervals I setup
i,s′ are pairwise disjoint for all shiftable start times s′

from S rested
i .

We complement these by some observations that help us prove Lemma 4.3.1.

3. If for two shiftable start times s and t from S+i the intervals I setup
i,s and I setup

i,t

are disjoint but the accumulated times of F setup
i,s and F setup

i,t are equal, then the

intervals I step
i,s and I step

i,t are also disjoint and the accumulated times from F step
i,s

and F step
i,t are still equal. This holds for all step ∈ {Wait, Serve, Drive}. In step

Wait, nothing is to be done for start times from S+i . And in step Serve resp.
Drive, both intervals are shifted by the service time resp. the driving time and,
if need be, equally by the minimum break duration because the accumulated
times are the same.

4. If for two shiftable start times s and t from S+i \ S rested
i the intervals Idriven

i−1,s(i−1)

and Idriven
i−1,t(i−1) are disjoint, then by construction I setup

i,s ⊂ Idriven
i−1,s(i−1) and I setup

i,t ⊂
Idriven

i−1,t(i−1), so the intervals I setup
i,s and I setup

i,t are also disjoint. The accumulated

times of F driven
i−1,s(i−1) and F setup

i,s (as well as F driven
i−1,t(i−1) and F setup

i,t) are the same.

With the help of the observations 1 through 4, we can easily prove the following
lemma.

Lemma 4.3.1. For every iteration i, every previous iteration j ≤ i, and every step ∈
{setup, waited, served, driven}, the intervals I step

i,s and I step
i,t are disjoint and the accumu-

lated times of F step
i,s and F step

i,t are the same for any two distinct start times s and t from the
set S+i,j .

80 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

Proof. For some i and j ≤ i, let two distinct start times s and t from S+i,j be gi-
ven. The predecessor start times of s and t in iteration j are denoted by s(j) and
t(j). By definition of S+i,j , s(j) and t(j) are contained in S rested

j , so the accumulated

times of F setup
j,s(j) and F setup

j,t(j) are the same, namely (0, 0) wherever the functions are de-

fined. If s(j) 6= t(j), it follows from observation 2 that the intervals I setup
j,s(j) and I setup

j,t(j)
are disjoint. However, if s(j) = t(j), let k be the earliest iteration after j such that
s(k) 6= t(k). Then it follows from observation 1 that the intervals I setup

k,s(k) and I setup
k,t(k)

are disjoint. In both cases, the accumulated times associated with the start times are
the same, i.e., the accumulated times of F setup

j,s(j) and F setup
j,t(j) as well as F setup

k,s(k) and F setup
k,t(k)

are the same. So it follows from observations 3 and 4 that also I step
i,s and I step

i,t must
be disjoint.

For two interval sets I and J that are each pairwise disjoint, let the intersection
I eJ be defined elementwise: I eJ := {I ∩ J | I ∈ I , J ∈ J , I ∩ J 6= ∅}. I eJ is
again a pairwise disjoint interval set. To prove Lemma 4.3.3, the following lemma is
very helpful:

Lemma 4.3.2. For two pairwise disjoint interval sets I and J , I e J contains at most
|I|+ |J | − 1 intervals, unless both sets are empty.

Proof. W.l.o.g. let J be non-empty. I e J contains an element for every element in
I that covers at least a part of an interval from J (at most |I| many). In addition,
I e J contains an element for every gap (including the endpoints of the enclosing
intervals) between two intervals from J that is covered in full by an element from I
(at most |J | − 1 many). Further elements are not contained in I eJ .

For the following lemma, we again introduce a short notation and just write
I(S+i,j) instead of {Idriven

i,s | s ∈ S+i,j} for some j ≤ i. Trivially, |I(S+i,j)| = |S
+
i,j |.

According to Lemma 4.3.1, I(S+i,j) is a set of pairwise disjoint intervals.
We are interested in at most how many more start times can be contained in S+i

compared to S+i−1.

Lemma 4.3.3. For every j ≤ i − 1, at most |S+i−1,j| + 3wi − 2 shiftable (or fixed) start
times with a predecessor start time in S+i−1,j are added to S+i (or S0

i) in step Setup of some
iteration i > 1.

Proof. On one hand, a start time is added to S+i (or S0
i) for every interval in the

intersection of I(S+i−1,j) with the wi time windows of customer i, that is, for every
interval in I(S+i−1,j) eWi (arrival within time windows). On the other hand, a start
time is added to S+i (or S0

i) for every interval in the set that we get when we first
intersect I(S+i−1,j) with the wi waiting intervalsW i, shift the outcome to the right by
the minimum break duration, and then intersect it again with the time windowsWi
(arrival within waiting intervals). In this case, the final interval set contains at most
wi − 1 more intervals than there are elements in I(S+i−1,j)eW i, according to Lemma

4.3.2. Since the sets Wi and W i are disjoint, |I(S+i−1,j) eWi| + |I(S+i−1,j) eW i| +
wi − 1 = |I(S+i−1,j)e (Wi ∪W i)|+ wi − 1 holds. And since the interval setWi ∪W i

contains exactly 2wi elements, we conclude that |I(S+i−1,j) e (Wi ∪W i)|+ wi − 1 ≤
|I(S+i−1,j)|+ 3wi − 2, once again according to Lemma 4.3.2.

4.3. Solution Approach 81

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1

Planning horizon

D
ri
vi
n
g
ti
m
e

FIGURE 4.11: Worst case. The number of significant start times grows
from 1 to 11.

Figure 4.11 shows a worst case example that proves that this bound is tight. Here,
the first customer has only one very long time window, while the second customer
has four short time windows. The minimum break duration is 7.5. In step Setup of
the second iteration, the number of significant start times grows from |S+1 | = 1 to
11 in accordance with the formula |S+1,1|+ 3w2 − 2 of Lemma 4.3.3 with w2 = 4 and
|S+1,1| = 1.

Theorem 4.3.1. The time and space complexity of the MD-TDSP algorithm is in O(n3w2),
where n is the number of customers and w := ∑n

j=1 wj is the total number of all time win-
dows.

Proof. In step Setup of some iteration i > 1, at most ∑i−1
j=1 |S

+
i−1,j|+ 3wi − 2 = |S+i−1|+

(i− 1)(3wi− 2) shiftable start times are added to S+i . This follows from Lemma 4.3.3
and the fact that the set {S+i−1,1, . . . , S+i−1,i−1} is a partition of S+i−1. We conclude that
the cardinality of S+n is in O(nw). During the loop over the shiftable start times, also
at most |S+i−1|+ (i− 1)(3wi − 2) fixed start times are inserted into S0

i , according to
Lemma 4.3.3. During the loop over the fixed start times, at most another |S0

i−1| start
times are added. So |S0

i | ≤ |S0
i−1|+ |S

+
i−1|+ (i − 1)(3wi − 2). This means that the

cardinality of S0
n is in O(n2w). From Lemma 3.3.1 we can conclude that the number

of pieces stored in all function pairs in all n iterations is in O(n3w2), and so is the
space complexity of the MD-TDSP algorithm. The algorithm can be implemented in
a way that it takes a time that is linear in the number of pieces.

Some more remarks on an implementation: As the pseudo-code of SetupMDs-
hiftable suggests, it is possible to iterate over the time windows (and waiting inter-
vals) just once for a start time in S+i in step Setup. We could further improve the
asymptotic run-time of this part by exploiting the idea of Lemma 4.3.3: Instead of
iterating over all start times in S+i independently, we could process all start times
in S+i,j within the same loop over all j ≤ i. However, this does not affect the total
asymptotic run-time as it is dominated by the loop over the fixed start times.

The start time sets could be maintained in sorted order at no additional costs. As
side effect of sorted start times, determining the next earliest arrival times ηs for all
start times s ∈ Si in every iteration i takes only linear time in the number of start
times.

We do not claim that the bound given in Theorem 4.3.1 is best possible. A more
thorough analysis of the algorithm (or even an improved version thereof) may reveal
a lower asymptotic bound for the MD-TDSP.

82 Chapter 4. Truck Driver Scheduling with Minimum Duration Objective

4.4 Discussion of a Problem Variant with Minimum Idle Cost
Objective

The MD-TDSP is a special case of the following problem: Suppose two non-negative
cost coefficients cb and cw are given with which the total idle time that counts as
break (break time in the following) and the total idle time that does not count as
break (waiting time) are weighted, respectively. Now we seek to find a feasible sche-
dule such that the sum of costs for waiting and breaks are minimum.

This objective function corresponds to the one regarded by Xu et al. (2003) for a
given sequence of customers. For easier reference, we will call it the minimum idle
cost objective and speak of the MIC-TDSP, accordingly. If the coefficients cw and cb
are the same, it coincides with the MD-TDSP. As already shown, this problem can be
solved in polynomial time. But what if cw > cb or cw < cb holds?

Prefer Break over Waiting In fact, the driver may be paid less for taking a break
than for waiting (if at all), so the case that break time costs less than waiting time
may be relevant in practice. In this case, we claim that the MIC-TDSP is not har-
der (asymptotically) than the MD-TDSP. According to our terminology (see section
2.3.1), an idle time that is at least as long as break is deemed to be a break. This is
because not considering it as a break would not have any benefit. Our algorithm for
the MD-TDSP is based on the principle to always turn waiting time into break time
if this is possible, i.e., to rather prolong a previous break instead of waiting for the
opening of a time window. With cw > cb, this is still beneficial.

So all we have to do to turn our MD-TDSP algorithm into an MIC-TDSP algo-
rithm is to add another function to F step

i,s . Precisely let F step
i,s now be a function triple

(Dstep
i,s , Tstep

i,s , Cstep
i,s), where Cstep

i,s is a piecewise linear function that maps a time t to
the accumulated idle costs since start of the route for given i, s, and step. This additional
function is for reporting only. The algorithm itself does not change significantly. The
same driver states are computed. But this time, we know the idle costs for every
driver state in addition.

We leave out the details here. Finally, the algorithm returns a pair of the mini-
mum idle cost itself and those start times that yield this cost:

obj(Lserved
n) :=

 min
s∈Sn :α(F served

n,s) 6=⊥
min

t
{Cserved

n,s (t)}, arg min
s∈Sn :α(F served

n,s) 6=⊥
min

t
{Cserved

n,s (t)}

So in this setting, the optimal finish time given a start time may not be the earliest
finish time but one for which a schedule with more break time and less waiting time
exists, even if that means a longer total duration.

Since the number of pieces is the same for all functions in the triple F , the MIC-
TDSP is not harder (asymptotically) than the MD-TDSP. So for the special case cw ≥
cb, we have falsified the conjecture by Xu et al. (2003) who claimed that this problem
could be NP-hard.

In the end, we may not only be interested in the idle costs but also the times
themselves. The total waiting time can simply be calculated as the sum of the wai-
ting times tstart

i − tarr@c
i over all customers i for which tstart

i − tarr@c
i is less than break,

plus the sum of waiting times en route tarr@c
i+1 − tdep@c

i − drivei over all i < n for which

tarr@c
i+1 − tdep@c

i − drivei is less than break. On the other hand, the total break time is the
sum of break times tstart

i − tarr@c
i over all customers i for which tstart

i − tarr@c
i ≥ break,

4.5. Conclusion and Outlook 83

plus the sum of break times en route tarr@c
i+1 − tdep@c

i − drivei over all i < n for which

tarr@c
i+1 − tdep@c

i − drivei ≥ break.

Prefer Waiting over Break However if cw < cb, a different approach is necessary
because the basic principle “taking a break is better than waiting” is no longer valid.
We can no longer tell by the duration of an idle period whether it is meant to be
a break or not. We have to leave the question concerning the complexity of this
problem open.

4.5 Conclusion and Outlook

We have described an algorithm for a truck driver scheduling problem that is able
to find a schedule with minimum duration if a feasible schedule exists. It contains
the algorithm presented in the previous chapter as a subroutine and calls it for every
significant start time. These significant start times are not known in advance but
found as the algorithm progresses. As in the previous chapter, we have considered
a single type of break and the two corresponding rulesets RulesetUS and RulesetEU.
Furthermore, we have regarded the unrestricted break policy, that is, breaks en route
between two customers are allowed (compare Goel (2012c)). As in the whole thesis,
we have studied the case with multiple time windows per customer. The main con-
tribution is the proof that it is a polynomial-time algorithm. Even in the single time
window case, a polynomial-time algorithm for the two considered problem variants
had not been proposed before.

We have shortly discussed the minimum idle cost objective and outlined how
to adjust the algorithm such that breaks can be preferred over waiting time even
more. So if cw ≥ cb holds for the cost coefficients, the MIC-TDSP can be solved in
polynomial time. This falsifies the conjecture of Xu et al. (2003) in this case. If cw < cb
holds though, the complexity of the problem remains an open question. However, it
is at least not apparent to us in how far a longer schedule would be preferred over
a shorter schedule, just because it contains less break time but more waiting time.
Unfortunately, Xu et al. (2003) do not motivate this scenario. For future research, it
may be an interesting question how to consider an objective function that is a linear
combination of three terms, two for the idle time costs as before and another that
induces a fixed cost for every break (to take account of the cost of overnight stays,
for example).

85

Chapter 5

Truck Driver Scheduling with Two
Types of Breaks

“A change is as good as a rest.”
— British saying

5.1 Introduction

For a planning horizon of one day, it is sufficient to schedule a lunch break and
make sure that the total driving time and the total travel time do not exceed their
respective limit. However, a long-haul truck driver may be en route for several days
or even longer than a week. For such a driver, sufficiently long rest breaks must be
scheduled at the end of each day in order to ensure that the driver can get enough
sleep. In general, the longer the planning horizon is, the more types of breaks and the
more rules in regard to driving and travel time limits come into play and need to be
respected. In the European Union for instance, a truck driver has to take a so-called
“daily rest period” of 11 hours after at most 9 hours of driving or 13 hours have
elapsed since the end of the last daily rest period (European Parliament and Council
of the European Union, 2006). In the United States, similar rules apply. Here, a
truck driver must be off-duty for at least 10 hours after an accumulated driving
time of 11 hours or being on-duty for at most 14 hours (Federal Motor Carrier Safety
Administration, 2011). In both cases, these rules are effective in addition to the lunch
break rules already considered in previous chapters.

In this chapter, we investigate the complexity of truck driver scheduling pro-
blems with two types of breaks. Roughly speaking, this means that the driver has to
take a short break after a short period of driving or traveling and a long break after
a long period of driving or traveling. In our model, we suppose that short and long
breaks only differ in their duration, and thus every long break also counts as short
break. As in the two previous chapters, we regard two different rulesets per break
type, one that is derived from the rules in the US and one that is derived from the
rules in the EU. We propose a polynomial-time algorithm for two problem variants
where taking a break of any of the two types is only allowed at customers. This
algorithm is again based on the one that we have described before in chapter 3.

To decide whether a feasible schedule exists or not constitutes the truck driver
scheduling problem with two types of breaks (TDSP-2B). In this chapter, we consider the
earliest finish time objective, i.e., we search for a feasible schedule with the earliest
finish time if a feasible schedule exists (EF-TDSP-2B).

86 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

No-break-en-route policy We obtain an important special case of the problem if
we do not allow the driver to take a break when he is en route between two custo-
mers. We call this the no-break-en-route policy. This policy leaves the driver only the
two options to either take a break before or after the service at a customer. It is for the
sake of simplicity and without loss of generality when we allow the driver to take a
break only before the service. If we wanted to also allow the other option, we could
simply adapt the problem instance by inserting a “shadow” customer right after
each (original) customer other than the last. These dummy customers demand zero
service, have a non-restrictive time window, and the driving times to their preceding
customers are all zero. In an analogue way, we could even add dummy customers
that do not represent real customers but rest areas along the route (see Goel (2012c)
or Kok, Hans, and Schutten (2011)). This may alleviate the negative effects that the
restriction to breaks only at customers may have.

Related Work In this chapter, we focus on the EF-TDSP-2B under the no-break-
en-route policy. This problem could be solved by the algorithm presented by Goel
(2012c), for instance. However, to the best of our knowledge, no polynomial-time al-
gorithm is known for this problem, so we are the first to present one. For the general
EF-TDSP-2B with a non-restrictive break policy, we know of no result – or conjecture
even – regarding the complexity of this problem. In a sense, it can be thought of as
a subproblem of the problem studied by Drexl and Prescott-Gagnon (2010). And
these authors conjecture that their problem at hand is NP-complete. However, they
consider only a single time window per customer and only the parameter setting as
it is valid in the EU, not an arbitrary break rule parameter setting as we do.

Contribution We regard both the variant with respect to the no-break-en-route po-
licy and the variant with respect to a non-restrictive break policy. The main contri-
bution is to present a polynomial-time algorithm for the EF-TDSP-2B under the no-
break-en-route policy. In addition, we show that in the general case – due to early
long breaks en route – the number of non-dominated driver states does not only de-
pend on the number of customers and time windows but also depends on the rule
parameter setting and the driving times. This brings us to conjecture that a strongly
polynomial-time algorithm does not exist in the general case.

Outline In section 5.2, we give a formal definition of the EF-TDSP-2B under the
no-break-en-route policy. In section 5.3, we describe characteristics of this problem.
A polynomial-time algorithm for it is presented in section 5.4. In section 5.5, we
discuss the general case in which breaks en route are allowed. Finally, in section 5.6,
we conclude and give an outlook.

5.2 Problem Definition

This chapter deals with the truck driver scheduling problem with two types of breaks. The
general setting of the problem is as before: A sequence of n customers is given, and
each customer i may have wi ≥ 1 time windowsW1

i , . . . ,Wwi
i in which the requested

service of length servicei may start. The driving time between consecutive customers
i and i + 1 is known to be drivei. The driver works only within a given planning
horizon H. Without loss of generality, we expect all time windows to lie within
this horizon. Furthermore, we distinguish two types of breaks. It is also without
loss of generality when we assume that the duration of one type is shorter than the

5.2. Problem Definition 87

duration of the other, so we can call them short break and long break, respectively. Let
the duration of these be breakshort and breaklong, respectively.

For each of the two break types, there is a corresponding ruleset. In this work,
we discuss two problem variants, differing in these rulesets. In one variant, the two
corresponding rulesets are RulesetUSshort and RulesetUSlong, respectively. In the other
variant, the corresponding ruleset of the short break is RulesetEUshort and the one
corresponding to the long break is RulesetEUlong. Here, we use the short notation
RulesetUS for the ruleset {drive until driven, drive until traveled } and RulesetEU for
the ruleset {drive until driven, work until traveled }, as introduced in chapter 3. Accor-
dingly, we are given four time limits:

• limitDshort, the maximum accumulated driving time since the end of the last
short break

• limitDlong, the maximum accumulated driving time since the end of the last
long break

• limitTshort, the maximum accumulated travel time since the end of the last short
break

• limitTlong, the maximum accumulated travel time since the end of the last long
break

It is again without loss of generality when we assume that limitDshort ≤ limitDlong and
limitTshort ≤ limitTlong as well as limitDshort ≤ limitTshort and limitDlong ≤ limitTlong
holds.

We only allow breaks, no matter if short or long, before service at customers and
not en route between them. In this scenario, let a truck driver schedule be a sequence(

(tarr
i , tstart

i , tdep
i)

)
i≤n

of n triples of points in time, one triple for each customer. The three values denote
the arrival time, the start time of service, and the departure time from customer i, re-
spectively. A truck driver schedule is feasible only if the following basic conditions
hold:

α(H) ≤ tarr
1 (5.1)

tarr
i ≤ tstart

i for all i ≤ n (5.2)

tstart
i ∈ Wi for all i ≤ n (5.3)

tdep
i − tstart

i ≥ servicei for all i ≤ n (5.4)

drivei ≤ tarr
i+1 − tdep

i ≤ limitDshort for all i ≤ n− 1 (5.5)

tdep
n ≤ ω(H) (5.6)

Conditions 5.2 and 5.4 and 5.5 ensure that the sequence of points in time is mo-
notonously increasing. Conditions 5.1 and 5.6 make sure that all points in time are
within the planning horizon. Condition 5.3 demands that each service must begin
within one of the respective customer’s time windows. Conditions 5.4 and 5.5 ens-
ure that enough time is scheduled for service and driving, respectively.

Apart from condition 5.5, there is no constraint in respect of the two rulesets. In
addition to the basic constraints above and in order to consider the drive until driven

88 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

rules, we also demand that whenever the sum of consecutive driving times exceeds
a limit, the respective break is scheduled at one of the customers in between:

`

∑
k=j

tarr
k+1 − tdep

k > limitDtype ⇒

∃k : j < k ≤ ` ∧ tstart
k − tarr

k ≥ breaktype

j < `, ` < n, type ∈ Types (5.7)

where Types := {short, long}.
In the first problem variant, i.e., in respect of the two drive until traveled rules, we

have to make sure that the driver does not drive (be aware that a driving time of zero
is allowed in the input) when the travel time limit is exceeded unless the respective
break is scheduled at one of the customers in between:

tdep
i < tarr

i+1 ⇒ tarr
i+1 − tstart

i ≤ limitTshort i < n (5.8)

tdep
` < tarr

`+1 ∧ tarr
`+1 − tstart

j > limitTtype ⇒
∃k : j < k ≤ ` ∧ tstart

k − tarr
k ≥ breaktype

j < `, ` < n, type ∈ Types (5.9)

This means that even if a travel time limit is exceeded, the driver is still permitted to
drive for zero time units.

In the second problem variant, i.e., in respect of the two work until traveled rules,
we have to make sure that the driver does neither drive nor perform service when
the travel time limit is exceeded unless the respective break is scheduled at one of
the customers in between:

tarr
i+1 − tstart

i ≤ limitTshort i < n (5.10)

tdep
n − tstart

n ≤ limitTshort (5.11)

tstart
` < tarr

`+1 ∧ tarr
`+1 − tstart

j > limitTtype ⇒
∃k : j < k ≤ ` ∧ tstart

k − tarr
k ≥ breaktype

j < `, ` < n, type ∈ Types (5.12)

tdep
n − tstart

j > limitTtype ⇒
∃k : j < k ≤ n ∧ tstart

k − tarr
k ≥ breaktype

j < n, type ∈ Types (5.13)

This concludes our constraint based problem formulation (for a MIP formulation
of a related problem, see for instance Goel (2012c)). In this chapter, the objective is
to find a feasible schedule with earliest finish time, i.e., with tdep

n being minimum
(EF-TDSP-2B).

Now, which practical problems can we solve with this? We give two examples.

• For a planning horizon of several days in the United States, we need the sub-
sets {drive until traveled}short and {drive until driven, drive until traveled}long of
the rulesets of the first problem variant. We set the break rule parameters ac-
cording to the first row of Table 5.1. The parameter of the rule we do not need
(drive until driven with respect to a short break) is set to a non-restrictive value.

• For a planning horizon of several days in the European Union, we need the
subsets {drive until driven}short and {drive until driven, work until traveled}long of
the rulesets of the second problem variant if we want to take account of Regu-
lation (EC) No. 561/2006 (European Parliament and Council of the European
Union, 2006). The break rule parameters can be set as in the second row of
Table 5.1.

5.3. Problem Characteristics 89

TABLE 5.1: Example parameter sets. Values in hours.

Example breakshort limitDshort limitTshort breaklong limitDlong limitTlong

US 0.5 8 8 10 11 14
EU 0.75 4.5 13 11 9 13

5.3 Problem Characteristics

With two types of breaks, a driver state can the thought of as a collection of values of
these attributes:

• the progress along the route, i.e., how much of the work (driving and service)
has been accomplished by the driver,

• the current point in time,

• the driving time and travel time accumulated since the end of the last short
break,

• the driving time and travel time accumulated since the end of the last long
break.

For one and the same progress, how many driver states do we need to distin-
guish per point in time? Figure 5.1 gives a hint to an answer. In this example, let
breakshort = 1 and breaklong = 3, and let all limits be non-restrictive. It shows four
different schedules. The wavy line shall imply that the exact course of the schedules
before time 1 is irrelevant. At time 1, a break starts, so at time 4, the driver is com-
pletely rested with respect to the long and thus also the short break. From this point
on, the schedules begin to differ. In the left-most schedule, the driver leaves the first
(top-most) customer at time 4 and takes a (prolonged but still) short break at the
fourth customer. In contrast, the long break at the first customer is further extended
in the other three schedules. In the right-most schedule, the driver departs from the
first customer only at time 6 and does not take a break at any subsequent customer.

We notice that the four driver states at time 9 that correspond to these four sche-
dules do not dominate each other. That is, no matter which two schedules we com-
pare, either the accumulated travel time since last short break is lower, or this holds
for the accumulated travel time since last long break. And so we need to store four
driver states for time 9. Precisely, the four pairs of accumulated travel time since the
end of the last (short, long) break that we need to store for time 9 are (0, 5), (1, 4.5),
(2, 4), and (3, 3).

In fact, it is sufficient to store at most as many driver states per point in time as
there are customers. For a justification of this claim, suppose there are two schedules
with the same finish time t and with the last short break at the same customer. This
is illustrated in Figure 5.2. Instead of wavy lines, here, thin dashdotted lines imply
that the exact course does not matter. The two schedules do not dominate each other
because the end of the last long break is later in case of the red schedule, and the end
of the last short break is later in case of the blue schedule (solid lines refer to the
breaks). However, another schedule exists that dominates both. At first, it follows
the blue schedule until the end of the last long break, but then this break is further
prolonged (dotted) until it hits on the red schedule. The middle part until the end of
the last short break is adopted from the red schedule, and the final part is again taken
from the blue schedule. This new blue-red-blue schedule is feasible if the original

90 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

0 1 2 3 4 5 6 7 8 9 10

Planning horizon

D
ri
vi
n
g
ti
m
e

1

1

1

FIGURE 5.1: Four different schedules, not dominating each other.

t1 t2 t3 t4 t
Travel time

D
ri
vi
n
g
ti
m
e

FIGURE 5.2: Two schedules, each with the last short break at the same
customer.

schedules are because the accumulated times can never be worse – neither when we
switch from the blue to the red schedule nor when we switch back.

Generally speaking, whenever there are two different schedules that end at the
same point in time and where the last short break is taken at the same customer,
then either one schedule dominates the other or a third schedule must exist that
dominates both. In other words, there is only one non-dominated driver state per
point in time and per customer already visited.

There is another important observation that we are going to exploit. Suppose
the driver will begin another short break at time t. In this case, the accumulated
times since last short break become irrelevant. If we are thus only interested in the
accumulated times since last long break, then there is only one driver state that is
relevant for us.

5.4 Solution Approach

We begin with the definition of the contents of a driver states label in section 5.4.1.
In section 5.4.2, we outline the algorithm. We present it in more detail thereafter in

5.4. Solution Approach 91

section 5.4.3. We show how to derive a schedule in section 5.4.4. Finally, in section
5.4.5, we analyze the complexity of the algorithm.

5.4.1 Driver States Label

As in previous chapters, our algorithm for the EF-TDSP-2B computes a label Lstep
i

of driver states in every iteration i and every step step within the current iteration,
where step is from the set STEP := {setup, waited, served, driven}. Based on the latter
observation (section 5.3), we conclude that it suffices to store the information about
minimum accumulated times for every point in time and for every customer already
visited. Accordingly, a driver states label Lstep

i is a sequence of i tuples (F step
i,j)j≤i.

Here, the second index j ≤ i indicates at which customer the last – short or long –
break was taken. Every such tuple F step

i,j is a quadruple (Ḋstep
i,j , Ṫstep

i,j , Dstep
i,j , Tstep

i,j) of
four time-dependent, piecewise linear functions that may be “undefined” – that is,
defined to be ⊥ – over some points in time.

Ḋstep
i,j and Ṫstep

i,j contain the minimum accumulated driving times and travel times

since the end of the last short break, respectively. Analogously, Dstep
i,j and Tstep

i,j state
the minimum accumulated driving times and travel times since the end of the last
long break, respectively. Recall that every long break also counts as short break. The
two functions with the minimum accumulated driving times must be monotonously
decreasing because the driver is allowed to wait. The two functions with the mini-
mum accumulated travel times are monotonously decreasing only if we subtract the
identity function before. This is because the time that the driver waits counts to-
wards the travel time. In other words, Tstep

i,j (t1)− t1 ≥ Tstep
i,j (t2)− t2 must hold for

any two points in time t1 < t2 over which the travel time function is defined.

5.4.2 Outline and Initialization of the Algorithm

An outline of the algorithm is given with Algorithm 3. It is a variant of Algorithm 1
introduced in chapter 3. The only difference is the sequence of the four steps.

Algorithm 3: Generic truck driver scheduling algorithm - variant

Input : Lsetup
1

Output: obj(Lserved
n)

1 forall i = 1 . . . n do
2 Lwaited

i := Wait (Lsetup
i);

3 Lserved
i := Serve (Lwaited

i);
4 if i = n then
5 return obj (Lserved

n);

6 Ldriven
i := Drive (Lserved

i);
7 Lsetup

i+1 := Setup (Ldriven
i);

Dependency Graph As already explained, a driver states label Lstep
i is a sequence

of i tuples (F step
i,j)j≤i, which implies there is a tuple more with every iteration i. To

illustrate the course of the algorithm in general and the dependencies of the tuples
among each other in particular, a (rooted) directed acyclic graph is pictured in Figure
5.3, called dependency graph in the following. There is a pair (i, j) of two indices

92 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

1, 1

2, 1 2, 2

3, 1 3, 2 3, 3

4, 1 4, 2 4, 3 4, 4

FIGURE 5.3: Dependency graph as introduced in section 5.4.2. The
red highlighted nodes are the break nodes.

written inside every node, the first of which specifies the current customer (equals
the current iteration). The second index j ≤ i indicates the customer at which the
last break was taken. Every node (i, j) in the graph represents all tuples F step

i,j , that
is, we subsume the tuples regarding the steps for the sake of simplicity. In total, the
number of nodes is ∑n

i=1 i ∈ O(n2).
Every inner node (i, j) has exactly two outgoing edges. These correlate with the

two options the driver has on arrival at a customer: to take a break before service
(dashed edge to (i + 1, i + 1)) or not to take a break before service (solid edge to
(i + 1, j)). The nodes (i, j) with j = i are special and therefore highlighted. These
are the “break nodes”. They have i− 1 (dashed) incoming edges, whereas all other
nodes (with j < i) have only one (solid) incoming edge. The edges indicate depen-
dencies. The tuples represented by node (i, j) with j < i can be calculated from those
represented by node (i− 1, j) alone. However, the computation of the tuples repre-
sented by node (i, j) with j = i needs the knowledge of the tuples represented by the
nodes (i− 1, k) for all k from 1 to i− 1.

What does this tell us? For instance, Ḋdriven
i,j (t) must be exactly ∑i

k=j drivek for
every t for which it is defined because we know that the last short break is taken at
customer j. And Ddriven

i,j (t) must have at least that value because we know that there
is no break after leaving customer j. However, the value may be higher if there is
only a short break scheduled immediately before service at that customer.

Initialization We assume that the driver is completely rested with respect to the
long break (and thus also the short break) when the planning horizon begins. The
driver has thus not accumulated any driving or travel time since the end of the last

5.4. Solution Approach 93

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Planning horizon

D
ri
vi
n
g
ti
m
e

1

1

FIGURE 5.4: Schedule view of example instance.

long break. And so we initialize all four functions with zero over the whole planning
horizonH.

F setup
1,1 (t) :=

{
(0, 0, 0, 0), for t ∈ H
(⊥,⊥,⊥,⊥), otherwise

Finalization Finally, after running the algorithm, we need to compute obj(Lserved
n).

To this end, we check whether at least one of the tuples of label Lserved
n has a de-

fined point, i.e., whether a feasible schedule exists. If it does, we let the function
obj(Lserved

n) of Algorithm 3 return a pair of the first defined point over all tuples on
the one hand, and the set of tuple indices to achieve this earliest finish time on the
other:

obj(Lserved
n) :=

(
min
j≤n

α(F served
n,j), arg min

j≤n
α(F served

n,j)

)
Should there be no feasible schedule, then obj(Lserved

n) is set to (⊥, ∅).

5.4.3 Steps of Algorithm in Detail

When we explain the four steps in detail, we will always refer to the same example.
It is depicted in Figure 5.4. We see the first three customers of a possibly longer
route. The driving time between consecutive customers is 1, as well as the service
time at the second customer. All other service times are 0. Let the break parameters
be limitDshort = 1.5, breakshort = 2, limitDlong = 3, limitTlong = 5.5, and breaklong = 5.
So by construction, the third customer cannot be reached without at least a short
break. In our example, let limitTshort be non-restrictive. Besides the customers’ time
windows, Figure 5.4 also shows two feasible schedules. In one case, the driver takes
a long break (blue), in the other, the driver takes a short break (red) before the service
at the second customer (service is highlighted in gray).

We do not describe the steps in the same order as in Algorithm 3. Instead, we
start with step Setup in section 5.4.3.1. We do so because of our example instance.
Here, not much of interest is happening to the functions of the label in the very first
steps of the algorithm. So let us jump right to the end of the step Drive of the first ite-
ration. In Figure 5.5, we present the functions of F driven

1,1 . We see the time windows of
the first customer in the background and two horizontal lines representing the pie-
ces of Ḋdriven

1,1 , Ṫdriven
1,1 , Ddriven

1,1 , and Tdriven
1,1 in the foreground. In fact, all four functions

are the same. The minimum accumulated driving time as well as the accumulated

94 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

Time when current step is completed

A
cc
u
m
u
la
te
d
ti
m
es

FIGURE 5.5: Function view: After step Drive in iteration 1.

travel time since the end of both the short and the long break is 1. And the functi-
ons are only defined over those intervals that correspond to the time windows when
shifted to the right by 1.

5.4.3.1 Step Setup

When the driver arrives at a customer, he may take a break. In step Setup, we take
account of this. Taking a break may be beneficial because otherwise one of the next
customers may not be reachable without exceeding one of the time limits. But it also
may be disadvantageous, either because a favorable time window is missed this
way or because it leads to a later finish time of the route. So we keep the two options
separate. In our example, we create two function quadruples F setup

2,1 and F setup
2,2 from

F driven
1,1 . In general, we create a F setup

i+1,j for every j ≤ i, and another tuple F setup
i+1,i+1 in

addition, where i is the current iteration. The latter function quadruple stands for
the case that a break is taken before the service at customer i + 1.

Let us begin with the other case, that is, we create a F setup
i+1,j for every j ≤ i. For

this case, not much has to be done. We introduce three significant points in time. Let
t0 := minj≤i α(F driven

i,j) be the first defined point over all function quadruples F driven
i,j .

With this, let t1 := t0 + breakshort be a short break later, and let t2 := t0 + breaklong
be a long break later. Since taking a break is disregarded when j ≤ i, we prune the
functions and cut off everything later than t2 because at that time, the driver could be
completely rested with respect to the long break. And so these driver states would
be dominated by those in F setup

i+1,i+1. Specifically, we set:

Ḋsetup
i+1,j(t) := Ḋdriven

i,j (t)

Ṫsetup
i+1,j (t) := Ṫdriven

i,j (t)

Dsetup
i+1,j(t) := Ddriven

i,j (t)

Tsetup
i+1,j(t) := Tdriven

i,j (t)

for all t < t2, and F setup
i+1,j (t) := (⊥,⊥,⊥,⊥) for all other t.

Now let us turn to how F setup
i+1,i+1 is created. Taking a long break into account is

rather simple. By definition of t2, the driver may be completely rested at that time.
And he is also rested at any time later because the long break is further prolonged

5.4. Solution Approach 95

accordingly. So we set all four functions to 0 from time t2 onwards until the planning
horizon ends.

But how do we take account of a short break, that is, how do we set the functions
between t1 and t2? In regard of the minimum accumulated times since the end of the
last short break, this is also not too difficult. The functions Ḋsetup

i+1,i+1(t) and Ṫsetup
i+1,i+1(t)

can be set to 0 between t1 and t2, too. By doing so, we again exploit that a short
break may be prolonged. However, the case of the minimum accumulated times
since the end of the last long break, that is, how to set Dsetup

i+1,i+1(t) and Tsetup
i+1,i+1(t) for

t1 ≤ t < t2, needs a little more thinking because these functions are not reset to 0
when only a short break is taken.

What if we just set Dsetup
i+1,i+1(t) := minj≤i{Ddriven

i,j (t− breakshort)} and Tsetup
i+1,i+1(t) :=

minj≤i{Tdriven
i,j (t− breakshort)}+ breakshort? In general, the four functions of each quad-

ruple may contain gaps, that is, intervals over which the functions are not defined
(as in Figure 5.5). Hence, for some j ≤ i and a time t1 ≤ t < t2, the four functions
of F driven

i,j may be undefined at time t − breakshort. However, since a break may be
prolonged, we may be able to close these gaps. To this end, we define an auxiliary
function Hsp

i,j for every j ≤ i that maps a time t to the most recent point in time t′ that

is at least breakshort earlier than t and at which F setup
i,j (t′) is defined:

Hsp
i,j(t) := max{t′ | t′ ≤ t− breakshort ∧ F

setup
i,j (t′) 6= (⊥,⊥,⊥,⊥)}

Here, let the maximum over the empty set be ⊥.
Then, Dsetup

i+1,i+1(t) is the minimum of Ddriven
i,j at time Hsp

i,j(t) over all j ≤ i for which
Hsp

i,j(t) is defined. For a time t ≥ t1, such a j must exist (by the definition of t1). In

case of the minimum accumulated travel times Tsetup
i+1,i+1(t), we proceed analogously,

though we need to add the time for the (possibly prolonged) break to the travel time.
Putting all this together, we set the functions as follows:

Ḋsetup
i+1,i+1(t) :=

0, for t1 ≤ t < t2

0, for t2 ≤ t ≤ ω(H)

⊥, otherwise

Ṫsetup
i+1,i+1(t) :=

0, for t1 ≤ t < t2

0, for t2 ≤ t ≤ ω(H)

⊥, otherwise

Dsetup
i+1,i+1(t) :=

min

j:j≤i,Hsp
i,j (t) 6=⊥

{Ddriven
i,j

(
Hsp

i,j(t)
)
}, for t1 ≤ t < t2

0, for t2 ≤ t ≤ ω(H)

⊥, otherwise

Tsetup
i+1,i+1(t) :=

min

j:j≤i,Hsp
i,j (t) 6=⊥

{Tdriven
i,j

(
Hsp

i,j(t)
)
+
(

t− Hsp
i,j(t)

)
}, for t1 ≤ t < t2

0, for t2 ≤ t ≤ ω(H)

⊥, otherwise

By construction, all four functions of F setup
i+1,i+1 never contain any gaps between t1 and

ω(H), i.e., F setup
i+1,i+1(t) 6= (⊥,⊥,⊥,⊥) for all t1 ≤ t ≤ ω(H). Over all steps of an

96 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

0 1 2 3 4 5 6 7 8 9 101112
0
1
2
3
4
5
6

Time when current step is completed

A
cc
u
m
u
la
te
d
ti
m
es

(A) Ḋsetup
2,1 and Ṫsetup

2,1 red,

Ḋsetup
2,2 and Ṫsetup

2,2 blue

0 1 2 3 4 5 6 7 8 9 101112
0
1
2
3
4
5
6

Time when current step is completed

A
cc
u
m
u
la
te
d
ti
m
es

(B) Dsetup
2,1 and Tsetup

2,1 red,

Dsetup
2,2 blue dashed, Tsetup

2,2 blue solid

FIGURE 5.6: Function view: After step Setup in iteration 1.

iteration, it is an invariant that, for one and the same point in time, all four functi-
ons are either defined or undefined. (For correctness, please recall the observation
mentioned at the very end of section 5.3, referring to Figure 5.2.)

Figure 5.6 shows the functions of both F setup
2,1 (red) and F setup

2,2 (blue). In our ex-
ample, t0 = 1, t1 = 3, and t2 = 6. When we compare this figure with Figure 5.5, we
notice that the second (red) piece is pruned. So the functions Ḋsetup

2,1 , Dsetup
2,1 , Ṫsetup

2,1 , and

Tsetup
2,1 contain exactly one (red) piece each. They are still all the same and constantly 1

where they are defined.
For F setup

2,2 , the minimum accumulated driving and travel times since the end of

the last short break Ḋsetup
2,2 and Ṫsetup

2,2 are 0 from t1 = 3 until the end of H (blue, left

figure). In the right figure, we see that Dsetup
2,2 (dashed, blue) is 1 not only from 3 to

5 but also from 5 to 6(= t2) because the gap is closed. And Tsetup
2,2 (solid, blue) is 3

(driving time plus break time) until time 5. When closing the gap between 5 and 6,
inevitable waiting time must be added to the travel time, thus a diagonal piece with
gradient 1 is introduced. From 6 until the planning horizon ends, all functions of
F setup

2,2 are zero, where the dashed blue line is hidden by the solid blue line.

5.4.3.2 Step Wait

In the following, let i be the current iteration. The first step of each iteration is Wait.
In this step, the time windows of customer i are taken into account. As in earlier
chapters, this means three things:

• We ensure that every function stored in label Lwaited
i is undefined outside of the

time windows of the current customer.

• We shift the pieces of the functions by the waiting time whenever necessary.

• We add waiting time to the accumulated travel times whenever necessary.

But when exactly is waiting necessary? It is necessary if the driver is not able to
arrive right at the beginning of a time window but is at least able to arrive within
the waiting interval before that time window.

5.4. Solution Approach 97

0 1 2 3 4 5 6 7 8 9 101112
0
1
2
3
4
5
6

Time when current step is completed

A
cc
u
m
u
la
te
d
ti
m
es

(A) Ḋwaited
2,1 and Ṫwaited

2,1 red,
Ḋwaited

2,2 and Ṫwaited
2,2 blue

0 1 2 3 4 5 6 7 8 9 101112
0
1
2
3
4
5
6

Time when current step is completed

A
cc
u
m
u
la
te
d
ti
m
es

(B) Dwaited
2,1 and Twaited

2,1 red,
Dwaited

2,2 blue dashed, Twaited
2,2 blue solid

FIGURE 5.7: Function view: After step Wait in iteration 2.

Accordingly, we define an auxiliary function Hshift
i,j for every j ≤ i as follows (cp.

section 3.3.3.2):

Hshift
i,j (t) := max{t′ | t = t′ + Wi(t′) ∧ F

setup
i,j (t′) 6= (⊥,⊥,⊥,⊥)}

Here, let the maximum over the empty set be ⊥. (The waiting time function Wi(t) is
introduced in section 2.4.3.)

With this auxiliary function, we set

Ḋwaited
i,j (t) := Ḋsetup

i,j

(
Hshift

i,j (t)
)

Ṫwaited
i,j (t) := Ṫsetup

i,j

(
Hshift

i,j (t)
)
+ (t− Hshift

i,j (t))

Dwaited
i,j (t) := Dsetup

i,j

(
Hshift

i,j (t)
)

Twaited
i,j (t) := Tsetup

i,j

(
Hshift

i,j (t)
)
+ (t− Hshift

i,j (t))

for all t with Hshift
i,j (t) 6= ⊥, and Fwaited

i,j (t) := (⊥,⊥,⊥,⊥) for all other t.
Now let us turn towards the example. In the background of Figure 5.7, we see the

time windows of the second customer. First of all, we find that both tuples Fwaited
2,1

(red) and Fwaited
2,2 (blue) are indeed undefined outside of the time windows. When

comparing this figure with Figure 5.6, we notice that Ḋwaited
2,1 (t) = Dwaited

2,1 (t) and
Ṫwaited

2,1 (t) = Twaited
2,1 (t) are defined for t = 4. Here, waiting from 3 to 4 is considered,

and also one unit of waiting time is added to Ṫwaited
2,1 (4) = Twaited

2,1 (4) = 2. This illus-
trates that in step Wait, gaps between time windows may induce gaps in functions.

5.4.3.3 Step Serve

This step is the only one in which we have to distinguish the two problem variants
that we study in this chapter. In case both types of breaks are subject to the rule drive

98 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

0 1 2 3 4 5 6 7 8 9 101112
0
1
2
3
4
5
6

Time when current step is completed

A
cc
u
m
u
la
te
d
ti
m
es

(A) Ḋserved
2,1 red dashed, Ṫserved

2,1 red solid,
Ḋserved

2,2 blue dashed, Ṫserved
2,2 blue solid

0 1 2 3 4 5 6 7 8 9 101112
0
1
2
3
4
5
6

Time when current step is completed

A
cc
u
m
u
la
te
d
ti
m
es

(B) Dserved
2,1 red dashed, Tserved

2,1 red solid,
Dserved

2,2 blue dashed, Tserved
2,2 blue solid

FIGURE 5.8: Function view: After step Serve in iteration 2.

until traveled, we cap the minimum accumulated travel times. We set

Ḋserved
i,j (t) := Ḋwaited

i,j (t− servicei)

Ṫserved
i,j (t) := min{Ṫwaited

i,j (t− servicei) + servicei, limitTshort}

Dserved
i,j (t) := Dwaited

i,j (t− servicei)

Tserved
i,j (t) := min{Twaited

i,j (t− servicei) + servicei, limitTlong}

for all t ∈ H with Fwaited
i,j (t− servicei) 6= (⊥,⊥,⊥,⊥), and F served

i,j (t) := (⊥,⊥,⊥,⊥)
for all other t.

In case of the rule work until traveled, we make sure that service is only performed
when allowed, and set

Ḋserved
i,j (t) := Ḋwaited

i,j (t− servicei)

Ṫserved
i,j (t) := Ṫwaited

i,j (t− servicei) + servicei

Dserved
i,j (t) := Dwaited

i,j (t− servicei)

Tserved
i,j (t) := Twaited

i,j (t− servicei) + servicei

for all t ∈ H with Fwaited
i,j (t − servicei) 6= (⊥,⊥,⊥,⊥) as well as both Ṫwaited

i,j (t −
servicei) + servicei ≤ limitTshort and Twaited

i,j (t− servicei) + servicei ≤ limitTlong; for all
other t, we set F served

i,j (t) := (⊥,⊥,⊥,⊥).
Figure 5.8 helps comprehend how the functions in the example change in this

step. Every function piece is shifted to the right by the service time, which is 1 in the
example. The pieces of the travel time functions are also raised by this service time.
In the figure, the function pieces of F served

2,1 are red, and those of F served
2,2 are blue. The

pieces of the driving time functions like Ḋserved
2,j and Dserved

2,j are displayed as dashed
lines, whereas those of the travel time functions Ṫserved

2,j and Tserved
2,j are displayed as

solid lines (1 ≤ j ≤ 2).

5.4. Solution Approach 99

0 1 2 3 4 5 6 7 8 9 101112
0
1
2
3
4
5
6

Time when current step is completed

A
cc
u
m
u
la
te
d
ti
m
es

(A) Ḋdriven
2,2 dashed, Ṫdriven

2,2 solid

0 1 2 3 4 5 6 7 8 9 101112
0
1
2
3
4
5
6

Time when current step is completed

A
cc
u
m
u
la
te
d
ti
m
es

(B) Ddriven
2,2 dashed, Tdriven

2,2 solid

FIGURE 5.9: Function view: After step Drive in iteration 2.

5.4.3.4 Step Drive

Either the next customer i + 1 can be reached without taking a break - or not. To
tell whether the former or the latter is the case, we introduce an auxiliary function
Hexc

i,j (t), mapping a time t to the maximum allowed driving time when departing
from customer i at time t:

Hexc
i,j (t) := min{

limitDshort − Ḋserved
i,j (t), limitTshort − Ṫserved

i,j (t),

limitDlong − Dserved
i,j (t), limitTlong − Tserved

i,j (t)
}

Here, we again treat ⊥ like ∞, i.e., we define Hexc
i,j (t) to be −∞ whenever F served

i,j (t) is
undefined.

With this auxiliary function set up, it is easy to define the four functions of the
tuple F driven

i,j :

Ḋdriven
i,j (t) := Ḋserved

i,j (t− drivei) + drivei

Ṫdriven
i,j (t) := Ṫserved

i,j (t− drivei) + drivei

Ddriven
i,j (t) := Dserved

i,j (t− drivei) + drivei

Tdriven
i,j (t) := Tserved

i,j (t− drivei) + drivei

for all t ∈ H with Hexc
i,j (t− drivei) ≥ drivei, and we set F driven

i,j (t) := (⊥,⊥,⊥,⊥) for
all other t.

Figure 5.9 shows the pieces of the functions inF driven
2,1 andF driven

2,2 . By construction
of the example, it is not possible to reach customer 3 without taking at least a short
break at the second customer. Accordingly, the auxiliary function Hexc

2,1 (t) is less than
drivei for all t, and hence F driven

2,1 (t) is undefined for all t.
The pieces of the functions of F driven

2,2 are shifted to the right and raised by the
driving time drive2 = 1. In addition, a gap between 7.5 and 8 is introduced in all four
functions because it is not possible for the driver to arrive in that interval without
violating the limit limitTlong = 5.5. The pieces of the driving time functions Ḋdriven

2,2
and Ddriven

2,2 are displayed as dashed lines, whereas those of the travel time functions
Ṫdriven

2,2 and Tdriven
2,2 are displayed as solid lines.

100 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

5.4.4 Deriving a Schedule

To finally derive a schedule
(
(tarr

i , tstart
i , tdep

i)
)

i≤n
from the computed labels, we can

use Algorithm 4. For this algorithm to work correctly, we expect the service times
and the driving times to be positive values. Input to the algorithm is the earliest
finish time tdep

n and a node index j such that F served
n,j (tdep

n) is defined at that time.

Beginning at the bottom of the dependency graph with the finish time tdep
n , we derive

all the other points in time as we make our way upwards in the graph. Deriving tdep
i

from tarr
i+1 and tstart

i from tdep
i is simple – we just have to subtract the driving time and

the service time, respectively. Deriving tarr
i+1 from tstart

i+1 is a little harder, so let us focus
on this.

At the beginning of each iteration i of Algorithm 4, we are given a start time
of service tstart

i+1 and a node index j such that Fwaited
i+1,j (t

start
i+1) is defined. If j < i + 1,

then F setup
i+1,j is not necessarily defined at time tstart

i+1 because there may be waiting time
before the service at customer i + 1. So tarr

i+1 is set to the latest point in time that is not
later than tstart

i+1 such that F setup
i+1,j (t

arr
i+1) and thus F driven

i,j (tarr
i+1) is defined.

However, if j = i + 1, we have reached a break node. F setup
i+1,j must be defined at

time tstart
i+1 because there are no gaps in F setup

i+1,j in this case. We need to determine not
only tarr

i+1 but also a new node index k such that F driven
i,k (tarr

i+1) is defined and matches

with F setup
i+1,j (t

start
i+1). We distinguish the short break case from the long break case. In

the latter case, a long break is scheduled before the service at customer i + 1. It
suffices to look for a t ≤ tstart

i+1 − breaklong and a node index k such that F driven
i,k (t) is

defined. In the short break case, we look for a t ≤ tstart
i+1 − breakshort and a node index

k such that F driven
i,k (t) is defined and Tdriven

i,k (t) + (tstart
i+1 − t) = Tsetup

i+1,i+1(t
start
i+1) holds.

In both cases, the general idea is to always choose the latest such time in order
to eventually find a rather late start time tarr

1 of the schedule. But as with Algorithm
2, there is no guarantee that we find the latest possible start time for the given finish
time tdep

n .

5.4.5 Complexity Analysis

We claim that the presented algorithm runs in polynomial time. As in other chap-
ters of this thesis, a major step towards a proof is counting the number of pieces of
the piecewise linear functions in each label. At first, we concentrate on the function
Tsetup

i+1,i+1 and the number of pieces it consists of. Counting its pieces is not straightfor-
ward as the dependency graph (Figure 5.3) indicates. Just like every node has two
outgoing edges in this graph, a piece may induce another piece in each of the two
successor nodes. In step Setup of iteration i + 1, the function Tsetup

i+1,i+1 is calculated
from i different functions Tdriven

i,j (j ≤ i). It is not obvious how many pieces are do-
minated when computing the minimum of these functions. Even if we proved that
the minimum cannot have more pieces than the input functions together, then this
would still not lead to a polynomial bound on the number of pieces. Hence, we need
a different approach in order to show that the number of pieces of Tsetup

i+1,i+1 is indeed
bounded by a polynomial.

In this thesis, we speak of piecewise linear functions even though we assume that
time passes in discrete time steps. As mentioned in section 2.4.3, we expect all input
values to be multiples of 0.1 time units. In this chapter, we assume that the time step

5.4. Solution Approach 101

Algorithm 4: Schedule deduction (EF-TDSP-2B)

Input : tdep
n and an index j for which F served

n,j (tdep
n) is defined

Output:
(
(tarr

i , tstart
i , tdep

i)
)

i≤n

1 tstart
n := tdep

n − servicen;
2 forall i = n− 1 . . . 1 do
3 if j < i + 1 then
4 tarr

i+1 := max{t | t ≤ tstart
i+1 ∧ F

setup
i+1,j (t) 6= (⊥,⊥,⊥,⊥)};

5 else if F setup
i+1,j (t

start
i+1) = (0, 0, 0, 0) then

6 set tarr
i+1 to the maximum t ≤ tstart

i+1 − breaklong such that an index k
exists with F driven

i,k (t) is defined;
7 set j to such a k;

8 else
9 set tarr

i+1 to the maximum t ≤ tstart
i+1 − breakshort such that an index k

exists with Tdriven
i,k (t) + (tstart

i+1 − t) = Tsetup
i+1,i+1(t

start
i+1);

10 set j to such a k;

11 tdep
i := tarr

i+1 − drivei;

12 tstart
i := tdep

i − servicei;

13 tarr
1 := tstart

1 ;

size is even shorter and that these 0.1 time units are in turn a multiple of the time
step size. Let us denote this step size by ε in the following. With this assumption,
degenerate pieces of length 0 are only introduced in step Wait.

A general observation is that the functions Ḋstep
i,j , Ṫstep

i,j , and Dstep
i,j only consist of

horizontal pieces (gradient 0). The function Tstep
i,j is the only one of the four functions

that may contain also diagonal pieces (gradient 1) besides horizontal ones. Another
important observation is that all four functions of the same quadruple are either
defined or undefined over one and the same point in time.

Before we go into the details of the proof in section 5.4.5.2, let us motivate the
basic idea of the proof by some examples.

5.4.5.1 Motivational Examples

The function Tdriven
i,j maps the arrival time at customer i + 1 to the minimum accu-

mulated travel time since the end of the last long break. It contains only horizontal
(gradient 0) and diagonal (gradient 1) pieces. On a horizontal piece, the later the ar-
rival, the later is the corresponding end of the last long break, otherwise the function
value could not remain the same over this piece. On a diagonal piece however, the
later the arrival, the higher is the function value, and so it is the corresponding end
of the last long break that remains the same. Let us have another look at our exam-
ple in Figure 5.4 (schedule view) and Figure 5.9 (function view). When completing
step Drive of the second iteration at a time t between 6 and 7 (horizontal piece), the
function value is 5, and the corresponding end of the last long break is t − 5. Ho-
wever, when completing this step at a time t between 7 and 7.5 (diagonal piece), the
function value is t− 2, and the corresponding end of the last long break is 2. This is
also the time when the first time window of the first customer closes.

102 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

0 1 2 3 4 5 6 7 8

Planning horizon

D
ri
vi
n
g
ti
m
e

1

1

1

(A) Schedule view.

5 6 7 8 9
0

1

2

3

4

5

6

Finish time

A
cc
u
m
u
la
te
d
tr
av
el

ti
m
e

(B) Function view.

FIGURE 5.10: Two different diagonal pieces in Tsetup
4,4 (right) corre-

spond to two different schedules (left). Both pieces are assigned to
the same end of a time window at the second customer. Parameter

setting is limitDshort = 2, breakshort = 1, breaklong = 3.

This is not a coincidence. In general, to every diagonal piece, there is a corre-
sponding end of a time window. It is the time window that would be missed if the
last long break was further prolonged. Or, in other words, it is the time window that
prevents us from shifting the corresponding partial schedule since the end of the last
long break to the right. And just like for every diagonal piece, there is also a corre-
sponding end of a time window for every horizontal piece, defined analogously. In
our example, the horizontal piece from 6 to 7 is associated with the end of the first
time window of customer 1 just like the subsequent diagonal piece, whereas the ho-
rizontal piece from 8 to 12 is associated with the end of the second time window of
customer 2. Like that, we assign (an end of) a time window to every piece. Should
it happen that more than one time window would be missed at the same time, we
assign the last of these time windows to the piece.

For the time being, let us focus on the diagonal pieces. It may happen that mul-
tiple diagonal pieces are associated with the same time window. In Figure 5.10a,
two schedules are depicted. Both schedules have the same time window assigned to
them, it is the one of the second customer. Figure 5.10b shows the corresponding two
pieces of the travel time function Tsetup

4,4 . How many diagonal pieces can be assigned
to the same time window at most?

Suppose the assigned time window is of customer k. Then we claim that there
cannot be more than k diagonal pieces assigned to this time window. Figure 5.11a
shows four different schedules that all go through the very same end of a time win-
dow, namely the degenerate time window of the fourth customer at time 6. The
argument why there cannot be more than k diagonal pieces assigned to the time
window is basically the same as the one that we used to justify why it is sufficient
to store at most as many driver states per point in time as there are customers. Look
again at Figure 5.2. There can be at most k non-dominated driver states at the end of
the time window. While there can be a diagonal piece for every such driver state, no
two diagonal pieces can be assigned to the same non-dominated driver state at cu-
stomer k. Since two different diagonal pieces refer to different ends of the last long
break, they must also belong to either two different driver states or two different

5.4. Solution Approach 103

time windows.
For horizontal pieces, an analogous argument applies. We now continue with

the proof and introduce some formalism.

5.4.5.2 Proof, Continued

As with other proofs before, we start by having a look at the space complexity, that
is, we count the number of pieces in the piecewise linear functions. For the most
part of the proof, we will only have a look at the function Tsetup

x+1,x+1 that is created

in iteration x + 1. Every piece in Tsetup
x+1,x+1 is at least ε (time step size) long, unless

t2 = ω(H). (In the following, t1 and t2 always refer to the points in time as they are
defined in section 5.4.3.1.) That is, after step Setup, there are no degenerate pieces
of length 0 anymore which may have been introduced in step Wait, and so there is
no need for special treatment of such pieces. Furthermore, every piece of Tsetup

x+1,x+1
is either horizontal (gradient 0) or diagonal (gradient 1), and it has a beginning. A
point in time t is the beginning of a horizontal piece if and only if

Tsetup
x+1,x+1(t− ε) 6= Tsetup

x+1,x+1(t) = Tsetup
x+1,x+1(t + ε)

holds. Analogously, a point in time t is the beginning of a diagonal piece if and only
if

Tsetup
x+1,x+1(t− ε) + ε 6= Tsetup

x+1,x+1(t) = Tsetup
x+1,x+1(t + ε)− ε

holds.
For the remainder of the proof, we need another definition: Let ω∗(T, t) be a

mapping that assigns a point in time t to the earliest point in time t′ ≥ t with

T(t) = T(t′) 6= T(t′ + ε).

For instance, if t is on a horizontal piece of T, this function maps t to the end of that
piece. A point in time on a diagonal piece is mapped to itself.

The proof consists of four parts. At first, we define how to assign every beginning
of a piece to an index triple (section 5.4.5.3). Then, we show that every beginning
of a diagonal piece is assigned to a different index triple (section 5.4.5.4). After that,
we demonstrate that the number of horizontal pieces cannot be significantly larger
that the number of diagonal pieces (section 5.4.5.5). Finally, we argue why these ob-
servations are sufficient to prove a polynomial-time bound of the algorithm (section
5.4.5.6).

5.4.5.3 How to Assign an Index Triple to the Beginning of a Piece

The first step of the proof is to assign an index triple (i, j, k) to every beginning of a
piece in Tsetup

x+1,x+1 that is between t1 and t2. We call i ≤ x the customer index, j ≤ i
the node index, and k ≤ wi the time window index where the time window is one
of customer i. The node index j denotes the customer at which the last short break
is taken after the end of the last long break and before the end of the assigned time
window. Note that there are no more than O(nw) index triples. In the following, let
z be the beginning of a piece, and let t1 ≤ z < t2. How we assign an index triple
(i, j, k) to z is shown in Algorithm 5 (here, with z = tsetup

x+1). Output of the algorithm
is not only this triple but also a sequence of points in time that constitutes a partial
schedule between customers i and x. In the main loop of the algorithm, the points in

104 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

time tdriven
l , tserved

l , twaited
l , and tsetup

l are set for every i ≤ l ≤ x and in this order since
we go in reverse.

First, we consider step Setup. If the current node index j equals i + 1, then we
have to look for a suitable predecessor node. There must be a j ≤ i such that
Hsp

i,j(t
setup
i+1) is defined and Tsetup

i+1,i+1(t
setup
i+1) = Tdriven

i,j (Hsp
i,j(t

setup
i+1))+ (tsetup

i+1 −Hsp
i,j(t)) holds,

provided that tsetup
i+1 does not lie on the constant-zero piece of Tsetup

i+1,i+1. Such a node in-
dex may not be unique. We choose to always set j to the highest such index. In addi-
tion, we set tdriven

i := Hsp
i,j(t

setup
i+1). However, in case j ≤ i, we set tdriven

i := tsetup
i+1 . In this

case, node index j remains unchanged. In both cases, it is assured that Tdriven
i,j (tdriven

i)

is defined.
To take account of steps Drive and Serve, we subtract both the driving and the

service time from tdriven
i . Again, it is assured that Twaited

i,j (twaited
i) is defined. This also

means that twaited
i lies within a time window of customer i. Regarding step Wait, we

set tsetup
i := Hshift

i,j (twaited
i). If then tsetup

i = twaited
i holds, this means it is not neces-

sary to wait for a time window at customer i on arrival at time tsetup
i . If in addition

ω∗(Twaited
i,j , twaited

i) equals the end of a time window of customer i, then the algorithm
terminates and returns (i, j, k), where k is the index of that time window.

An important observation is that tsetup
i never lies on the constant-zero piece that

is introduced in step Setup. This is because the condition in line 11 would have
been fulfilled in the iteration before. Here, we use the prerequisite that every time
window lies within the planning horizon. By the same argument, we can conclude
that the algorithm returns an index triple for i = 1 at the latest.

Algorithm 5: Index triple assignment

Input : A customer index x and a point in time tsetup
x+1

Output: A triple (i, j, k) consisting of a customer index i, a node index j, and
a time window index k, as well as a sequence of points in time(
(tsetup

l , twaited
l , tserved

l , tdriven
l)

)
l=i,...,x

1 j := x + 1;
2 for i = x . . . 1 do
3 if j = i + 1 then
4 set j to the highest index such that j ≤ i, Hsp

i,j(t
setup
i+1) is defined, and

Tsetup
i+1,i+1(t

setup
i+1) = Tdriven

i,j (Hsp
i,j(t

setup
i+1)) + (tsetup

i+1 − Hsp
i,j(t

setup
i+1)) holds;

5 tdriven
i := Hsp

i,j(t
setup
i+1);

6 else
7 tdriven

i := tsetup
i+1 ;

8 tserved
i := tdriven

i − drivei;
9 twaited

i := tserved
i − servicei;

10 tsetup
i := Hshift

i,j (twaited
i);

11 if tsetup
i = twaited

i and ω∗(Twaited
i,j , twaited

i) = ω(W k
i) for some k then

12 return (i, j, k);

Let us have a look at some more examples. In Figure 5.11, there are four diagonal
pieces corresponding to four schedules. All pieces are assigned to the same time

5.4. Solution Approach 105

window, namely the first (and only) time window of customer 4. They are assigned
to different index triples though. From left to right, the diagonal pieces are assigned
to (4, 4, 1), (4, 3, 1), (4, 2, 1), and (4, 1, 1). Figure 5.12 shows two horizontal pieces
that correspond to two different schedules. The characteristic of this example is that
the “blue driver” takes a break less that the “red driver”, and that the red piece is
truncated by the blue piece. Both pieces are assigned to different time windows.
The red piece is assigned to (4, 2, 1), the blue piece to (4, 3, 2). In the third example
(Figure 5.13), breakshort is 0, so all breaks we see in the schedule view are long breaks.
The three horizontal pieces are assigned to the same time window but not the same
node index. From left to right, they are assigned to (5, 3, 1), (5, 4, 1), and (5, 5, 1).

5.4.5.4 On the Number of Diagonal Pieces of Tsetup
x+1,x+1

In the second part of the proof, we show that two different diagonal pieces of Tsetup
x+1,x+1

must be assigned to two different index triples. So now, let z be the beginning of a
diagonal piece of Tsetup

x+1,x+1, and let again t1 ≤ z < t2. Suppose z is assigned to the
triple (i, j, k). Besides the triple, the algorithm also returns the point in time twaited

i ,
for which Twaited

i,j is defined. For z, we have

Tsetup
x+1,x+1(z) = Twaited

i,j (twaited
i) + (z− twaited

i). (5.14)

In the following, we use the short notation e := ω∗(Twaited
i,j , twaited

i) to denote the
end of the assigned time window. When the algorithm terminates, e must equal
twaited
i . This means the partial schedule that is created by the algorithm begins at

the end of a time window. If that was not the case, the driver could depart from
customer i later and likewise arrive at customer x + 1 later, though with the same
accumulated travel time since the end of the last long break. But then, z could not
be the beginning of a diagonal piece.

Let z′ > z be the beginning of another diagonal piece. Let us assume that z′ is
assigned to the same index triple (i, j, k). Then also e must be the same. So analo-
gously to equation 5.14, we have Tsetup

x+1,x+1(z
′) = Twaited

i,j (e) + (z′ − e), which in turn

equals Tsetup
x+1,x+1(z) + (z′ − z). But since Tsetup

x+1,x+1 only comprises horizontal or dia-
gonal pieces, z′ would have to be on the same diagonal piece that starts in z. This is
a contradiction to the assumption that z′ is the beginning of another diagonal piece.
Hence, z′ must be assigned to a different index triple. And since every beginning
of a diagonal piece is assigned to a different index triple, there cannot be more than
O(nw) diagonal pieces.

5.4.5.5 On the Number of Horizontal Pieces of Tsetup
x+1,x+1

In the third part, we regard the number of horizontal pieces. So now, let z be the
beginning of a horizontal piece of Tsetup

x+1,x+1. Again, let t1 ≤ z < t2 and z be assigned
to the triple (i, j, k). Besides the short notation e := ω∗(Twaited

i,j , twaited
i), we shortly

write ` := e− twaited
i .

By definition of the mapping ω∗ above, Twaited
i,j (t) is the same for all t between

twaited
i and e. The driver could depart from customer i up to ` later than twaited

i and
arrive at customer x + 1 by just as much later than z, with the same accumulated
travel time since the end of the last long break as at time z.

106 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Planning horizon

D
ri
vi
n
g
ti
m
e

1

1

1

1

1

1

1

(A) Schedule view.

10 11 12 13 14 15 16

8

9

10

11

12

Time when step Setup is completed

A
cc
u
m
u
la
te
d
ti
m
e

(B) Function view.

FIGURE 5.11: Four different diagonal pieces in Tsetup
8,8 (right) corre-

spond to four different schedules (left). All four pieces are assigned
to the same end of a time window at customer 4. Parameter setting is

limitDshort = 4, breakshort = 1, breaklong = 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.5

0.5

0.5

0.5

1

Planning horizon

D
ri
vi
n
g
ti
m
e

(A) Schedule view.

11 12 13 14 15 16 17

8

9

10

11

12

13

Time when step Setup is completed

A
cc
u
m
u
la
te
d
ti
m
e

(B) Function view.

FIGURE 5.12: Two different horizontal pieces in Tsetup
6,6 (right) cor-

respond to two different schedules (left). Both pieces are assigned
to different time windows and different nodes. Parameter setting is

limitDshort = 1.5, breakshort = 3, breaklong > 8.

0 1 2 3 4 5 6 7 8 9 10 11

0.5

0.5

0.5

0.5

1

Planning horizon

D
ri
vi
n
g
ti
m
e

(A) Schedule view.

8 9 10 11 12
0

1

2

3

4

5

Time when step Setup is completed

A
cc
u
m
u
la
te
d
ti
m
e

(B) Function view.

FIGURE 5.13: Three different horizontal pieces in Tsetup
6,6 (right) cor-

respond to three different schedules (left). Parameter setting is
limitDshort = 1.5, breakshort = 0, limitDlong = 1.5, breaklong = 3.

5.5. Discussion of a Non-restrictive Break Policy 107

As a consequence, the functional value of Tsetup
i+1,i+1 for any time between z and

z + ` can be less than or equal to the functional value at time z, but not greater.
Suppose z′ > z is the beginning of another horizontal piece. If the functional value
at any time t with z < t ≤ z′ is higher than at time z, then z′ must be greater than
z + `. Both if z′ > z + ` holds or if z′ ≤ z + ` and Tsetup

x+1,x+1(z
′) < Tsetup

x+1,x+1(z) holds,
then z′ must be assigned to a different index triple.

After these observations, let us count the number of horizontal pieces. There are
only two possibilities: Either a horizontal piece is contained in Tsetup

x+1,x+1 in its full
length (that is, it is ` long), or a horizontal piece is truncated by another piece. From
the above observations, it follows that it can only happen at most O(nw) times that
a piece is contained in full length. If the horizontal piece is truncated by another
piece with a smaller functional value, the other piece must be assigned to a different
triple. This may also happen only O(nw) times. We conclude that there cannot be
more than O(nw) horizontal pieces.

5.4.5.6 On the Time Complexity

We have shown that the number of pieces of Tstep
x+1,j with j = x + 1 and step = setup

is in O(nw). We observe that the same bound holds for any other j < x + 1 and
any other step. Furthermore, it is easy to see that among the four functions of a
quadruple F step

x+1,j, the function Tstep
x+1,j contains the most pieces. Since there are up to

n quadruples per label and up to n labels, it follows that the space complexity is in
O(n3w).

Most of the single operations of our solution approach can be implemented to
run in linear time (linear in the number of pieces). The only super-linear operation is
the minimum operation in step Setup. However, when we claim that every iteration
can be implemented to run in O(n2w) time, this run-time is already included. We
conclude that the time complexity is the same as the space complexity.

Theorem 5.4.1. The complexity of EF-TDSP-2B with no-break-en-route policy is in O(n3w).

5.5 Discussion of a Non-restrictive Break Policy

So far, the driver is assumed to be bound by the no-break-en-route policy. What if
we allowed the driver to take breaks en route between customers? Let us consider
the following problem instance: There are only two customers to be visited, and
these are always open. But now suppose they are very far apart, so multiple short
and long breaks en route are necessary. One of the factors that make the scheduling
problem with two types of breaks challenging is the fact that it may be advantageous
to prolong a due short break en route to an early (that is, not yet due) long break en
route. How many non-dominated driver states can there be on arrival at the second
and final customer, that is, after step Drive?

To give an example, let breakshort = 1, breaklong = 50, limitDshort = 250, limitDlong =
255, let both customers be a drive of drive1 = 12500 apart, and let all time units be
minutes for a better illustration. Here, a driver has to decide after 250 minutes of
driving whether to take a short break of only 1 minute in order to be allowed to drive
for another 5 minutes, or to take an early long break of 50 minutes immediately. The
driver cannot choose an early long break more often than ddrive1/limitDshorte − 1 =
49 times, provided that he always exhausts the maximum allowed driving time of
limitDshort between two long breaks.

108 Chapter 5. Truck Driver Scheduling with Two Types of Breaks

TABLE 5.2: With breaks en route, there can be many non-dominated
driver states on arrival at the next customer.

Number of Total break Accumulated driving time
early long breaks time since last (short, long) break

49 2450 (250, 250)
48 2451 (245, 245)
47 2452 (240, 240)
.
2 2497 (15, 15)
1 2498 (10, 10)
0 2499 (5, 5)

Table 5.2 shows that there are as many as 50 different driver states on arrival at
the second customer. We read from the first row of the table that, given that the
driver takes the maximum number of 49 early long breaks (first column), the total
time of all breaks en route is 49 · breaklong = 2450 minutes (second column). After the
49th early long break, there are still another drive1 − 49 · limitDshort = 250 minutes to
go to reach the second customer. This time matches with the accumulated driving
time since the end of the last long break as well as the last short break on arrival
there (third column). With every early long break less (subsequent rows), the driver
reaches the second customer a minute later (due to an additional short break) but
with 5 minutes less accumulated driving time (due to the difference limitDlong −
limitDshort). So all these driver states do not dominate each other.

After step Setup, the number even doubles because of early breaks before service
at the second customer. For instance, at time drive1 + 2451, the driver may have
an accumulated driving time since the last (short, long) break of either (245, 245)
minutes or of (0, 250) minutes. At time drive1 + 2500, the driver can be completely
rested with respect to both types of breaks.

We learn from this example that the complexity of a driver states label in the case
of two types of breaks does not solely depend on the number of customers and the
number of their time windows, as long as we do not make any assumptions on the
length of the planning horizon or any of the break rule parameters. However, in this
thesis, we focus on statements on complexity that are independent of these. Hence,
we do not further investigate the general case.

5.6 Conclusion and Outlook

We have investigated the truck driver scheduling problem with two types of breaks,
in which, roughly speaking, a truck driver is obliged to take a short break after a
short period of time and a long break after a long period of time, while also taking
into account the time windows of the customers to be visited. Precisely, we have
allowed for multiple time windows per customer and studied two variants of the
problem that differ in their rulesets. In one of these variants, the considered ruleset
for the short break is {drive until driven, drive until traveled}short and the one for the
long break is {drive until driven, drive until traveled}long.

5.6. Conclusion and Outlook 109

We have presented an exact algorithm for the problem variant in which bre-
aks are only allowed to be taken at customers and not en route between them (no-
break-en-route policy). It is shown to run in O(n3w) time, dependent on the num-
ber of customers n and the number of their time windows w. This makes it the
first polynomial-time algorithm for this problem. For the general case with a non-
restrictive break policy, we have demonstrated that the number of non-dominated
driver states is not only dependent on n and w but also the setting of the break rule
parameters and the driving times. We conjecture that a strongly polynomial-time
algorithm does not exist in this case.

The general case is beyond the scope of this thesis, and therefore, it remains
an interesting subject for further research. We would like to learn more about the
correlation between the break rule parameter settings and the exact number of non-
dominated driver states on arrival at the next customer. Particularly, there are im-
portant special cases. In the standard setting of the rule parameters in the EU, the
rule parameter limitDlong is set to twice as much as limitDshort (see Table 5.1). In
this scenario, it is never advantageous to schedule an early long break more than
once, no matter how long the driving time between two customers is. If in addi-
tion ddrive1/limitDshorte is odd, it is never beneficial at all, i.e., only due long breaks
need to be scheduled. So with the standard rules of the EU, there are at most two
non-dominated driver states on arrival at the next customer. It would be interes-
ting to investigate if this can be exploited. However, these are only the standard
rules. In the EU, the driver is allowed to drive for 10 hours instead of 9 hours twice
a week. With this rule considered, things change again, and there can be more than
two non-dominated driver states on arrival at the next customer.

As a compromise between the no-break-en-route policy and a non-restrictive
break policy, it may be worthwhile to examine the no-long-break-en-route policy, in
which short breaks are still allowed to be taken en route. But even if we stick to
the restrictive no-break-en-route policy, there is still an open research field. One di-
rection for research is to investigate in how far our polynomial-time approach could
be enhanced to solve the truck driver scheduling problem with three or even more
types of breaks. Another direction is to study in how far the ideas of chapter 4 re-
garding the minimum duration objective could be transferred in order to solve the
minimum duration truck driver scheduling problem with (at least) two types of bre-
aks. An exact dynamic programming based algorithm for the minimum duration
truck driver scheduling problem with multiple types of breaks already exists (Goel,
2012c) but a polynomial-time algorithm is not yet known.

111

Chapter 6

Vehicle Routing and Truck Driver
Scheduling with Multiple Time
Windows

6.1 Introduction

In this chapter, we deal with the vehicle routing and truck driver scheduling problem
(VRTDSP). As the name suggests, it combines the vehicle routing problem (here:
with multiple time windows) with the truck driver scheduling problem. That is,
a set of geographically dispersed customers needs to be visited within given time
windows, and a fleet of trucks is given in order to fulfill their demand. The objective
is to assign every customer to a truck and determine the sequence of customer visits
for every truck such that a feasible truck driver schedule exists for every truck. As
before, such a schedule is deemed feasible if all customers are served in time and the
provisions on breaks are respected. Here, we restrict ourselves to the rules that are
applicable in the EU for a planning horizon of one day. Other constraints, such as
capacity constraints, do not play a role in our setting. Among all feasible solutions,
we look for one with the minimum number of vehicles that have customers assigned
to them, and – as secondary optimization goal – with the least total duration of all
the vehicle routes.

As we have seen in previous chapters, checking the feasibility of a vehicle route
is a non-trivial task if break rules have to be regarded. In this chapter, we shed light
on the question how the feasibility of the routes can be checked efficiently within
local search based heuristics. That is, we show how redundant computations can be
avoided when certain neighborhoods of a solution are searched, particularly those
neighborhoods that build on the concatenation of two partial routes. To this end,
a pre-processing step is introduced in which some feasibility information regarding
partial routes is collected within a forward propagation and a backward propagation
phase. This pre-computed information is stored and used whenever the concatena-
tion of two partial routes is checked for feasibility.

As an example of such a neighborhood, we illustrate the so-called 2-opt* neighbor-
hood in Figure 6.1. It was first proposed by Potvin and Rousseau (1995) as a variant
of the 2-opt neighborhood introduced by Lin (1965). The transformation from one
solution to a neighboring solution is called a move. A 2-opt* move (also known as
a crossover move) means to first remove two links from two different vehicle routes,
thus splitting the routes in two parts each. Then, two new links are inserted, each re-
combining a first part with the other second part. In the example, the links (c13, c14)
and (c23, c24) are removed and replaced by (c13, c24) and (c23, c14).

112 Chapter 6. Vehicle Routing and Truck Driver Scheduling

c21 c22 c23 c24 c25 c26

c11 c12 c13 c14 c15 c16

FIGURE 6.1: Example of a 2-opt* (also known as crossover) move.
Two links (dotted black) are removed and replaced by two others (so-

lid red).

Algorithm 6 outlines one iteration of a local search with regard to the 2-opt*

neighborhood. Input to the algorithm is a feasible solution. For every pair of vehicle
routes R′ and R′′ in the solution, |R′ + 1| · |R′′ + 1| recombinations of two partial
routes are checked for feasibility, where |R| denotes the number of customers in
route R. Without loss of generality, we consider a problem variant in which the
initial and final locations of the vehicles – usually called depots – are disregarded.
In our setting, a vehicle route begins and ends with the visit of a customer, and it
is assumed that the driver has not accumulated any driving time when the service
begins at the first customer of the route. Only if the recombination of two partial
routes is feasible, the move is evaluated, that is, the value of the objective function
of the neighboring solution is calculated. Since one of the moves is the identity map,
Algorithm 6 always returns a feasible move.

Algorithm 6: 2-opt* neighborhood search
Input : A feasible solution

1 for every pair of vehicle routesR′ andR′′ in the solution do
2 for every number x′ between 0 and |R′| do
3 for every number x′′ between 0 and |R′′| do
4 check if the concatenation of the first x′ customers ofR′ and the

last |R′′| − x′′ customers ofR′′ is a feasible vehicle route;
5 check if the concatenation of the first x′′ customers ofR′′ and the

last |R′| − x′ customers ofR′ is a feasible vehicle route;
6 if both are feasible, evaluate the gain of this move;

7 return the move that is evaluated best;

Algorithm 7 outlines a general scheme of a local search based algorithm. The first
step is to create an initial solution. There is a trivial but feasible solution in which
every route is a singleton, that is, every customer is assigned to its own route. The
focus of this chapter is on the following pre-processing part of the algorithm. It is
explained in more detail in section 6.3. In the main loop, the neighborhood (possibly
even several neighborhoods) of the incumbent solution is sought for an improving
move. In this step, that pre-processed information is exploited to accelerate the fea-
sibility check and the evaluation of the moves.

If an improving move is found, it is implemented, that is, the corresponding
neighboring solution becomes the incumbent solution. Since some pieces of the pre-
processed information are invalidated by this move, they have to be updated accor-
dingly. If such a move is not found, the main loop is left. We take this as a stopping

6.1. Introduction 113

criterion and content ourselves with the first found local optimum. This is because
the overall solution approach to the VRTDSP is not in the focus of this chapter. The
purpose of Algorithms 6 and 7 is to put the presented speed-up technique into a
broader context.

Algorithm 7: Basic local search based algorithm

1 create an initial feasible solution;
2 pre-compute travel time information for every route;
3 repeat
4 search for an improving move in the neighborhood(s) (e.g., call

Algorithm 6);
5 if such an improving move exists then
6 update the incumbent solution accordingly;
7 update the pre-computed information accordingly;

8 until some stopping criterion is met;
9 return the incumbent solution;

Solution Framework Certainly, more sophisticated algorithms than Algorithm 7
exist. As mentioned in section 2.2, the algorithm by Goel and Vidal (2014) is arguably
the currently best heuristic approach. But even this approach could be accelerated
as the described implementation is based solely on forward propagation. However,
in contrast to their work, we restrict ourselves to the break rules of the EU that are
applicable within a planning horizon of one day.

Vidal et al. (2014) propose a unified solution framework for multi-attribute vehi-
cle routing problems (see Vidal et al. (2013) for a survey on heuristics for such pro-
blems). Our problem at hand can be thought of as such a multi-attribute problem
and thus their solution framework could be used to solve our problem. In their
framework, the key components of the feasibility and gain evaluation of a route are
five functions: three refer to phases of the pre-processing step (initialization, forward
propagation, backward propagation) and two refer to the actual route evaluations.
The authors call them Eval2 and EvalN. The function Eval2 evaluates the concatena-
tion of exactly two partial routes whereas EvalN takes an arbitrary number of partial
routes as input. Note that EvalN (R′,Rx,R′′) for three partial routes may be imple-
mented by as many successive forward propagation calls as there are customers in
the middle routeRx and finally one call to Eval2. According to this model, we show
in this chapter how to efficiently implement an Eval2 function for the concatenation
of two partial routes, evaluating gain and feasibility with respect to break rules in
the EU for a planning horizon of one day. This function could be plugged into the
solution framework described by Vidal et al. (2014).

Other Related Work Savelsbergh (1985), Savelsbergh (1992), and Campbell and
Savelsbergh (2004) describe efficient implementations of feasibility checks in case
of the vehicle routing problem with time windows (that is, allowing for a single
time window per customer). Ibaraki et al. (2005) and Hashimoto, Yagiura, and Iba-
raki (2008) present such efficient evaluations in case of the vehicle routing problem
with general time windows, in which – instead of time windows – a piecewise linear
service cost function is given per customer that expresses the inappropriateness of
service over time. Like we do, they all store meaningful information about partial
routes to accelerate the feasibility and gain evaluations of new routes.

114 Chapter 6. Vehicle Routing and Truck Driver Scheduling

In the context of the VRTDSP, we are only aware of three papers (Ceselli, Righini,
and Salani, 2009; Tilk, 2016; Schiffer et al., 2017) in which bidirectional labeling is per-
formed to speed up the checks. In all three cases, only the single time window case
is considered. Ceselli, Righini, and Salani (2009) develop a column generation algo-
rithm for a rich vehicle routing problem that includes a constraint on the maximum
driving time without break. Tilk (2016) presents an exact branch-and-price-and-cut
approach to solve the VRTDSP. Based on the branch-and-price approach of Goel and
Irnich (2017), the author develops a bidirectional labeling for the pricing problem.
Schiffer et al. (2017) assess the impact of break rules in case of electric vehicles that
may need to be recharged. They present a bidirectional feasibility check within an
adaptive large neighborhood search for the VRTDSP with electric vehicles.

Contribution With multiple time windows per customer, the scheduling part of
the VRTDSP becomes significantly harder. As a basis of an efficient implementation,
we present a bidirectional labeling for the VRTDSP with multiple time windows
per customer, considering the drive until driven rule as well as limits on the total
driving time and the total travel time of each route. The described technique could
be integrated into the framework of Vidal et al. (2014). And it has already been
integrated into the vehicle routing service of PTV xServer.

Outline A problem definition is given in section 6.2. The main part of this chap-
ter is the presentation of the integrated approach for the scheduling subproblem in
section 6.3. A conclusion and an outlook follow in section 6.4.

6.2 Problem Definition

We are given a set of n customers c1, . . . , cn. Every customer ci requests a service
of duration serviceci that shall begin within one of the wi time windows in the set
{W1

ci
, . . . ,Wwi

ci }. The driving time between every two customers ci and cj is suppo-
sed to be determined in advance. It is denoted by driveci ,cj . Also given is a planning
horizonH.

Let us call a sequence of customers that contains every customer at most once
a (vehicle) route. A vehicle route is feasible if a schedule exists such that not only
the customers’ time windows are respected but also the drivers’ working hours. In
this chapter, we focus on the break rules of the European Union that are applicable
for a planning horizon of one day. In this setting, we need to consider one rule
regarding a short break: drive until driven. That is, after limitDshort of driving, the
driver is prohibited from driving unless he takes a short break of duration break. The
duration of a long break does not play a role here as we do not want to be forced to
schedule such a long break. Instead, we take limitDlong and limitTlong as maximum
constraints, that is, we consider a route as infeasible if the total driving time on that
route exceeds limitDlong or if the total travel time exceeds limitTlong. Without loss
of generality, we expect serviceci ≤ limitTlong to hold for all customers, and that all
drivers are completely rested with respect to the long break when they commence
their work at each first customer of a route. It should be noted that, with drive until
driven as the only break rule, a break that is longer than break has no advantage over
a break that has only the minimum length.

Let us call a collection of vehicle routes a solution (of the VRTDSP) if every cus-
tomer is contained in exactly one route. It is feasible if all its routes are feasible. The
trivial solution {(c1), . . . , (cn)} in which all routes are singletons is feasible. Starting

6.3. Integrated Approach 115

from an initial feasible solution, the task is to find a local optimum with respect to
the 2-opt* neighborhood. The optimization goal is to minimize the number of routes
in the solution as first criterion, and the total duration of all the routes as second
criterion.

6.3 Integrated Approach

Let an initial feasible solution be given. That is, we are given a set of m ≤ n feasi-
ble vehicle routesR1, . . . ,Rm such that every given customer is contained in exactly
one vehicle route. The integrated approach relies on a pre-processing step (line 2 of
Algorithm 7). It is described in sections 6.3.1 through 6.3.4. First, we define the con-
tents of a driver states label (section 6.3.1). Initialization and the general scheme is
presented in section 6.3.2. Driver states labels are pre-computed for every customer
of a vehicle route in a forward (section 6.3.3) and a backward (section 6.3.4) propa-
gation phase. The actual feasibility check within the neighborhood search (line 4 of
Algorithm 7) is described in section 6.3.5.

6.3.1 Driver States Label

Let R be one of the given vehicle routes, and let R[i] be the i-th customer in the
sequence. Analogously to the algorithms in previous chapters, labels are computed
iteratively. There are as many iterations as there are customers in the sequence, and
every iteration is subdivided into the steps Wait, Serve, Drive, and Setup. In this chap-
ter, let a forward driver states label

−→L step
R[i] after step step of iteration i refer to the i-th

customer of the routeR. It comprises a scalar value
−→
dl step
R[i] that denotes the accumu-

lated driving time since the last long break on one hand, and a sequence (
−→F step
R[i],j)j≤i

of i tuples on the other hand (compare chapter 5). In turn, for some j ≤ i, such a
tuple

−→F step
R[i],j = (

−→
ds step
R[i],j,

−→
T step
R[i],j) comprises a scalar value

−→
ds step
R[i],j that denotes the

accumulated driving time since the last short break. And, like in previous chapters,
−→
T step
R[i],j is a time-dependent travel time function. But unlike before,

−→
T step
R[i],j(t) deno-

tes the minimum travel time at time t that the driver has accumulated since the last
long break and thus since the beginning of the route.

We have to take early short breaks at customers into account. The second index
j ≤ i indicates at which customer the last early short break was taken. As in previous
chapters, we will see that

−→
T step
R[i],j is piecewise constant, and that

−→
T step
R[i],j − id is mo-

notonously decreasing (aside from gaps), that is,
−→
T step
R[i],j(t1) + t2 − t1 ≥

−→
T step
R[i],j(t2)

holds for any two points in time t1 < t2 for which
−→
T step
R[i],j is defined.

Since we label bidirectionally, there is also a backward driver states label
←−L step
R[i].

Analogously to the forward label, it is a pair of a scalar value
←−
dl step
R[i] and a sequence

(
←−F step
R[i],j)j≤|R|−i+1 of |R| − i + 1 tuples, where |R| denotes the number of customers

in the sequenceR. Table 6.1 summarizes the contents of the two labels per customer.
Figure 6.2 depicts (a part of) the dependency graph (see chapter 5) in the bidirecti-
onal case. Every node in the graph represents a tuple. Here, a vehicle route with 7
customers is assumed. Depicted are only the nodes that correspond to the first four
forward labels and the last three backward labels.

116 Chapter 6. Vehicle Routing and Truck Driver Scheduling

1, 1

2, 1 2, 2

3, 1 3, 2 3, 3

4, 1 4, 2 4, 3 4, 4

7, 1

6, 1 6, 2

5, 1 5, 2 5, 3

FIGURE 6.2: Dependency graph, bidirectional propagation.

6.3. Integrated Approach 117

TABLE 6.1: Driver states label summary (EF-TDSP-2B).

step one of {Setup, Wait, Serve, Drive }
−→
dl step
R[i],
←−
dl step
R[i] driving time to the i-th customer of routeR, accumulated since

the last long break (in forward or backward direction)
−→
ds step
R[i],j,

←−
ds step
R[i],j driving time to the i-th customer of routeR, accumulated since

last short break, with the last early short break taken at the j-th
customer (in forward direction) or at the |R|− j+ 1-th customer
(in backward direction) of the same route

−→
T step
R[i],j,

←−
T step
R[i],j time-dependent function, mapping points in time at the end of

step step at the i-th customer to the minimum accumulated tra-
vel times since the end of the last long break, with the last early
short break taken at the j-th customer (in forward direction) or
at the |R| − j + 1-th customer (in backward direction) of the
same route

−→F step
R[i],j,

←−F step
R[i],j the pairs

(−→
ds step
R[i],j,

−→
T step
R[i],j

)
and

(←−
ds step
R[i],j,

←−
T step
R[i],j

)
−→L step
R[i],
←−L step
R[i] the pairs

(−→
dl step
R[i], (

−→F step
R[i],j)j≤i

)
and

(←−
dl step
R[i], (

←−F step
R[i],j)j≤|R|−i+1

)

6.3.2 Outline of Propagation Scheme and Initialization

Algorithm 8 outlines the forward and the backward propagation phase of the pre-
processing step (called in line 2 of Algorithm 7). It expects

−→L setup
R[1] and

←−L setup
R[|R|] as

input. We assume that the driver is completely rested with respect to the long break
when the planning horizon begins, and also that there is enough time for another
long break after the end of the planning horizon before the driver is engaged in work
again. We initialize

−→L setup
R[1] by setting

−→
dl setup
R[1] := 0,

−→
ds setup
R[1],1 := 0, and

−→
T setup
R[1],1(t) := 0

for all t ∈ H (undefined for all other t), and analogously we initialize
←−L setup
R[|R|] by

setting
←−
dl setup
R[|R|] := 0,

←−
ds setup
R[|R|],1 := 0, and

←−
T setup
R[|R|],1(t) := 0 for all t ∈ H (undefined

for all other t).
When a move is applied, two links are changed, and the pre-processed informa-

tion must be updated accordingly (line 7 of Algorithm 7). Suppose there is a new
link that connects customer ci with cj. Then we have to propagate the label

−→L served
R[ci]

forward until the end of the route. Analogously, we have to propagate the label
←−L served
R[cj]

backward until the beginning of the route.

Preliminaries For the description of our approach, we introduce two functions for
each customer ci, the forward waiting time function

−→
W ci and the backward waiting time

function
←−
W ci . For a given point in time t, the forward waiting time function denotes

the time the driver has to wait for the next time window to open. It is infinite after
the last time window. The backward waiting time function denotes the time by how
much the driver has missed the previous time window when we assume that all time
windows of customer ci were shifted to the right by the service time of customer ci.
We need to take account of the service time here because in this work (just like in
related works), it is only required that the service must start within a time window,

118 Chapter 6. Vehicle Routing and Truck Driver Scheduling

Algorithm 8: Bidirectional label propagation

Input :
−→L setup
R[1] ,
←−L setup
R[|R|]

1 forall i = 1 . . . |R| do
2

−→L waited
R[i] := Wait (

−→L setup
R[i]);

3
−→L served
R[i] := Serve (

−→L waited
R[i]);

4 if i = |R| then
5 break;

6
−→L driven
R[i] := Drive (

−→L served
R[i]);

7
−→L setup
R[i+1] := Setup (

−→L driven
R[i]);

8 forall i = |R| . . . 1 do
9

←−L waited
R[i] := Wait (

←−L setup
R[i]);

10
←−L served
R[i] := Serve (

←−L waited
R[i]);

11 if i = 1 then
12 break;

13
←−L driven
R[i] := Drive (

←−L served
R[i]);

14
←−L setup
R[i−1] := Setup (

←−L driven
R[i]);

that is, the time windows are not “symmetric”. The backward waiting time function
is infinite before the first time window. An example is given in Figure 6.3.

In section 2.4.3, we have introduced the notion of waiting intervals. Here we
distinguish forward and backward waiting intervals. For customer ci, the forward wai-
ting intervals are defined to be the time periods before (or between) the time win-

dows of customer ci, i.e.,
−→
W1

ci
:= [α(H), α(W1

ci
)) and

−→
W j

ci := (ω(W j−1
ci), α(W j

ci)) for

all 2 ≤ j ≤ wi.
−→
W ci denotes the union of the forward waiting intervals. Analo-

gously, the backward waiting intervals are defined as follows:
←−
Wwi

ci := (ω(Wwi
ci) +

serviceci , ω(H)] and
←−
W j

ci := (ω(W j
ci) + serviceci , α(W j+1

ci) + serviceci) for all 1 ≤ j ≤
wi − 1.

←−
W ci denotes their union.

6.3.3 Forward Propagation

In this section we describe the four steps Wait, Serve, Drive, and Setup of each itera-
tion. Both

−→
dl step
R[i] and

−→
ds step
R[i],j only change in step Drive. After the presentation of step

Setup, we revise step Wait slightly and show how to remove redundant driver states.

6.3.3.1 Step Wait

In this step of an iteration i ≤ |R|, we take account of the time windows of customer
ci. The scalar values remain unchanged in this step, that is,

−→
dl waited
R[i] :=

−→
dl setup
R[i] and

−→
dswaited
R[i],j :=

−→
ds setup
R[i],j for every j ≤ i. So in the following, it is all about determining

−→
T waited
R[i],j for every j ≤ i.

6.3. Integrated Approach 119

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

Planning horizon

W
ai
ti
n
g
ti
m
e

FIGURE 6.3: Forward waiting time function
−→
W in red and dashed.

Backward waiting time function
←−
W in blue. These functions corre-

spond to the time windows in the background (gray). Here, a service
time of 1 is assumed.

We proceed as in step Wait of previous chapters and first define an auxiliary
function for every j ≤ i:

Hshift
j (t) := max{t′ | t = t′ +

−→
WR[i](t

′) ∧−→T setup
R[i],j(t

′) 6= ⊥}

where the maximum over the empty set is supposed to be ⊥. Next, we treat the
cases j = i and j < i separately and begin with the former. By construction of the
algorithm, we know that dssetup

R[i],i = 0, that is, the driver is completely rested. In this

case, waiting coincides with prolonging the break. So with the help of Hshift
i (t), we

set
−→
T waited
R[i],i (t) as follows:

−→
T waited
R[i],i (t) :=

−→
T setup
R[i],i(Hshift

i (t)) + (t− Hshift
i (t))

for all t for which Hshift
i (t) is defined, and

−→
T waited
R[i],i (t) := ⊥ for all other t.

But what about
−→
T waited
R[i],j for a j < i? In this case, we have to be careful if we do

not want to create dominated driver states. For example, we should only allow to
wait for less than the minimum break duration break in this case because otherwise
the driver state after waiting would be dominated by a state contained in

−→F waited
R[i],i

already. But there is more, as Figure 6.4 suggests. Here, two schedules are depicted.
By construction of the example, both schedules cannot be shifted to the right, and so
a driver that follows either of these schedules has to wait until the time window of
the fourth customer opens. In the red schedule, there is an early break planned at
the second customer, whereas in the blue schedule, there is an early break planned at
the third customer. So the driver state at the end of the red schedule is contained in−→F setup
R[4],2, the other in

−→F setup
R[4],3. In this example, the state of a driver that follows the red

schedule would be dominated by the state of a driver following the blue schedule if
both drivers waited for the time window to open.

The rough idea how to further improve this step and not create dominated states
is the following: Suppose the tuples are sorted by dssetup

R[i],j in increasing order. Whe-
never we consider waiting for the beginning of a time window, we store the (best
known) travel time for that point in time. We only allow to create a driver state for
this point in time if the travel time is less than the previously stored value (initially
infinite).

120 Chapter 6. Vehicle Routing and Truck Driver Scheduling

0 1 2 3 4 5 6 7 8

Planning horizon

D
ri
vi
n
g
ti
m
e

1

1

1

FIGURE 6.4: Both drivers must wait before the service at the fourth
customer. But the driver state of the red driver would be dominated

by the blue driver after waiting for the time window to open.

Now in more detail: Let Q be a sequence of wi periods of time, that is, one for
every time window of customer ci. For every k from 1 to wi and thus for every
beginning t := α(W k

i) of a time window, we initially set Q[k] to
−→
T waited
R[i],i (t) if this

value is defined and to ∞ otherwise. For every j < i, in increasing order of dssetup
R[i],j,

and again every k from 1 to wi (in no particular order), we only allow to wait for
the beginning t := α(W k

i) of the k-th time window if the expected travel time
−→
T setup
R[i],j(Hshift

j (t)) + (t − Hshift
j (t)) is less than Q[k]. If it is, then we set Q[k] to this

lower value. Precisely, we set

−→
T waited
R[i],j (t) :=

−→
T setup
R[i],j(Hshift

j (t)) + (t− Hshift
j (t))

for all t for which Hshift
j (t) is defined and, should t equal the beginning of the k-th

time window, for which
−→
T setup
R[i],j(Hshift

j (t)) + (t − Hshift
j (t)) is less than Q[k]. Other-

wise we set
−→
T waited
R[i],j (t) := ⊥.

6.3.3.2 Step Serve

This step is again the simplest. All we have to do is to shift the pieces to the right
and raise them by the service time, that is, for all j ≤ i:

−→
T served
R[i],j (t) :=

−→
T waited
R[i],j (t− serviceR[i]) + serviceR[i]

for all t within the planning horizon, and
−→
T served
R[i],j (t) := ⊥ for all other points in time.

Again, the scalar values remain unchanged in this step.

6.3.3.3 Step Drive

In this step, we consider the driving time driveR[i],R[i+1] from customer R[i] to cus-
tomer R[i + 1] (this step is only called if i < |R|). In this section, we use the short
notation drivei for driveR[i],R[i+1]. The driving time rule may enforce a break (or even
multiple breaks) en route. To decide whether this is the case or not, we introduce an

6.3. Integrated Approach 121

auxiliary variable hexc
j for every j ≤ i that states by how much the driving time limit

would be exceeded if the driver did not take a break en route:

hexc
j :=

−→
ds served
R[i],j + drivei − limitDshort

If hexc
j ≤ 0, then the driver is able to arrive at the next customer without having to

take a break. We increase the scalar value concerning the accumulated driving time
since last break by drivei, and we shift (to the right) and raise the pieces of the travel
time function by the same value:

−→
dsdriven
R[i],j :=

−→
ds served
R[i],j + drivei

−→
T driven
R[i],j (t) :=

−→
T served
R[i],j (t− drivei) + drivei

However, if hexc
j > 0, then the driver must take a break en route after a dri-

ving time of limitDshort −
−→
ds served
R[i],j , otherwise the driving time rule would be violated.

Should even hexc
j > limitDshort hold, then additional breaks become due. In total, as

many as

h#
j :=

⌈
hexc

j /limitDshort

⌉
breaks must be taken en route. With this variable, we have everything we need to set
−→F driven
R[i],j in case hexc

j is greater than zero. The accumulated driving time
−→
dsdriven
R[i],j is set to

the driving time after the last break en route, which is hexc
j − (h#

j − 1) · limitDshort. The

travel time function
−→
T driven
R[i],j is shifted (to the right) and raised by the same time as

time passes between departure from customer ci and arrival at customer ci+1, which
is drivei + h#

j · break. To sum it up, we set:

−→
dsdriven
R[i],j := hexc

j − (h#
j − 1) · limitDshort

−→
T driven
R[i],j (t) :=

−→
T served
R[i],j

(
t− (drivei + h#

j · break)
)
+ (drivei + h#

j · break)

To conclude this step, we set
−→
dl driven
R[i] :=

−→
dl served
R[i] + drivei. Now,

−→L driven
R[i] contains

all significant states of a driver who has just arrived at the next customer.

6.3.3.4 Step Setup

Like step Drive, this step is only called if i < |R|. For all j ≤ i we set

−→F setup
R[i+1],j :=

−→F driven
R[i],j

The pair
−→F setup
R[i+1],i+1 represents the case that an early short break is taken at cu-

stomer R[i + 1]. Hence, we set
−→
ds setup
R[i+1],i+1 := 0. To set

−→
T setup
R[i+1],i+1, we need an

intermediate step. First, we introduce a function
−→
T ′R[i+1],i+1. It is defined to be the

minimum of all the
−→
T driven
R[i],j (j ≤ i), shifted (to the right) and raised by the minimum

break duration. That is, we set it as follows:

−→
T ′R[i+1],i+1(t) := min

j≤i

−→
T driven
R[i],j (t− break) + break

122 Chapter 6. Vehicle Routing and Truck Driver Scheduling

for all t ∈ H and
−→
T ′R[i+1],i+1(t) := ⊥ otherwise, where we treat ⊥ like ∞.

In order to guarantee that
−→
T setup
R[i+1],i+1 − id is monotonously decreasing (apart

from the gaps where it is undefined), we do the following (treat ⊥ like ∞):

−→
T setup
R[i+1],i+1(t) :=

{
⊥, ∃t′ < t :

−→
T ′R[i+1],i+1(t

′) + t− t′ ≤ −→T ′R[i+1],i+1(t)−→
T ′R[i+1],i+1(t), otherwise

As an example where this is necessary, let us have a look at Figure 4.4 on page
63 again. We see a red schedule with an early short break at the second customer,
and a blue schedule with an (implicit) early break at the first customer. Hence, the
red driver state is contained in

−→F driven
R[3],2, whereas the blue driver state is contained in

−→F driven
R[3],1. The latest time t for which

−→
T driven
R[3],1(t) is defined is t = 10.5.

−→
T setup
R[4],4(t) needs

to be set to ⊥ for every t > 10.5 + break in this example because for every such t it is
better to follow the blue schedule and wait than to take the red schedule.

This concludes the last of the four steps. But still there are potentially dominated
driver states contained in

−→
T setup
R[i+1],i+1. To remove them, we need the knowledge of

the time windows of the next customer. So this better fits into step Wait. Therefore,
we revise this step.

6.3.3.5 Step Wait, Revised

Beginning with the second iteration (i > 1), it is advisable to apply a dominance
rule when we create

−→
T waited
R[i],i from

−→
T setup
R[i],i. This is due to the fact that an early break

can only be beneficial if it starts outside of a time window. Let t be a time for which
Hshift

i (t) is defined. By construction, Hshift
i (t) is only defined within the time win-

dows of customerR[i]. If Hshift
i (t)− break is inside a time window, there is no reason

for an early break because that break could be taken later without any downside.
Precisely, we set

−→
T waited
R[i],i (t) :=

−→
T setup
R[i],i(Hshift

i (t)) + (t− Hshift
i (t))

only for those t for which Hshift
i (t) is defined and additionally Hshift

i (t) − break ∈
−→
WR[i] holds, where

−→
WR[i] denotes the union of the forward waiting intervals of cus-

tomerR[i]. We set
−→
T waited
R[i],i (t) := ⊥ for all other t.

Finally, we conjecture (but do not prove) that no driver state dominates another
driver state that is contained in the same label.

6.3.4 Backward Propagation

In the backward propagation phase, we proceed analogously to the forward case.
We do not go into every detail of this phase but focus on the main differences. One
of these differences is that we iterate backwards from i = |R| down to 1. However,
the steps remain in the same order as before. Another difference is that whenever
we shift pieces, we now shift them to the left and not to the right. Step Wait could be
revised again but we omit the details here.

6.3. Integrated Approach 123

6.3.4.1 Step Wait

The major part of this step is the definition of the auxiliary function Hshift
j . For every

j ≤ |R| − i + 1, we set

Hshift
j (t) := min{t′ | t = t′ −←−WR[i](t

′) ∧←−T setup
R[i],j(t

′) 6= ⊥}

where the minimum over the empty set is supposed to be ⊥.
←−
WR[i] is the backward

waiting time function of customer R[i] as introduced in section 6.3.2. Note that
Hshift

j (t) is undefined for any t with t − serviceR[i] outside of the customer’s time
windows.

As in the forward case, letQ be a sequence of wi periods of time. This time, Q[k]
stores the best known travel time for the shifted end ω(W k

i) + serviceR[i] of the k-th
time window for every k from 1 to wi.

We set

←−
T waited
R[i],j (t) :=

←−
T setup
R[i],j(Hshift

j (t)) + (Hshift
j (t)− t)

for all t for which Hshift
j (t) is defined, and

←−
T waited
R[i],j (t) := ⊥ for all other t. If j <

|R| − i + 1, t = ω(W k
i) + serviceR[i] for some k, and

←−
T waited
R[i],j (t) is not less than Q[k],

then we reset
←−
T waited
R[i],j (t) to ⊥.

6.3.4.2 Step Serve

For every j ≤ |R| − i + 1, we set

←−
T served
R[i],j (t) :=

←−
T waited
R[i],j (t + serviceR[i]) + serviceR[i]

for all t within the planning horizon, and
←−
T served
R[i],j (t) := ⊥ for all other points in time.

6.3.4.3 Step Drive

In this step, the driver drives from customerR[i] toR[i− 1]. With drivei−1 as a short
notation for driveR[i−1],R[i], we set for every j ≤ |R| − i + 1

hexc
j :=

←−
ds served
R[i],j + drivei−1 − limitDshort

If hexc
j ≤ 0:

←−
dsdriven
R[i],j :=

←−
ds served
R[i],j + drivei−1

←−
T driven
R[i],j (t) :=

←−
T served
R[i],j (t + drivei−1) + drivei−1

However, if hexc
j > 0, then we set (with h#

j :=
⌈

hexc
j /limitDshort

⌉
defined as before):

←−
dsdriven
R[i],j := hexc

j − (h#
j − 1) · limitDshort

←−
T driven
R[i],j (t) :=

←−
T served
R[i],j (t + (drivei−1 + h#

j · break)) + (drivei−1 + h#
j · break)

124 Chapter 6. Vehicle Routing and Truck Driver Scheduling

Finally, we set
←−
dl driven
R[i] :=

←−
dl served
R[i] + drivei−1. The driver has now arrived at the

customerR[i− 1].

6.3.4.4 Step Setup

For all j ≤ |R| − i + 1, we set

←−F setup
R[i−1],j :=

←−F driven
R[i],j

In the following, let k be |R| − (i− 1) + 1. To set
←−F setup
R[i−1],k, we need an interme-

diate step. First, we introduce a function
←−
T ′R[i],j and set it as follows:

←−
T ′R[i−1],k(t) := min

j≤|R|−i+1

←−
T driven
R[i],j (t + break) + break

for all t ∈ H and
←−
T ′R[i−1],k(t) := ⊥ otherwise, where we treat ⊥ like ∞.

In order to guarantee that
←−
T setup
R[i−1],k + id is monotonously increasing (apart from

the gaps where it is undefined), we proceed analogously to before (treat ⊥ like ∞):

←−
T setup
R[i−1],k(t) :=

{
⊥, ∃t′ > t :

←−
T ′R[i−1],k(t

′) + t′ − t ≤ ←−T ′R[i−1],k(t)←−
T ′R[i−1],k(t), otherwise

Finally, we set
←−
ds setup
R[i−1],k := 0.

6.3.5 Feasibility Check of a Neighboring Solution

We now turn towards Algorithm 6 again. The task is to efficiently check the fea-
sibility of all neighbors of the incumbent solution with respect to the 2-opt* neigh-
borhood. In the end, we are interested in a feasible neighboring solution that is
evaluated best. In the following, we describe the feasibility and gain evaluation of a
single move.

LetR′ andR′′ be two different vehicle routes. Suppose we take a first part from
R′ and a second part from R′′, precisely we take the first x customers from R′ and
the last y customers from R′′ in order to create a new vehicle route R′′′. Without
loss of generality, we assume that both x and y are not 0. We use the short notation
c′ := R′[x] and c′′ := R′′[|R′′| − y + 1] to denote the customers that we want to
connect. Let drivec′,c′′ be the driving time between them.

To find out whether R′′′ is feasible or not, we compare the labels
−→L served

c′ and
←−L served

c′′ . If
−→
dl served

c′ + drivec′,c′′ +
←−
dl served

c′′ exceeds the total driving time limit limitDlong,
R′′′ is infeasible. So we only continue if this is not the case. Then, the next step is
to do the following for every index pair (j, k), where j is an index between 1 and x
and k is an index between 1 and y. For a given index pair (j, k), we first compute the
number h#

j,k of due breaks en route:

h#
j,k :=

⌈
(
−→
ds served

c′,j + drivec′,c′′ +
←−
ds served

c′′,k)/limitDshort

⌉
− 1

For instance, if
−→
ds served

c′,j + drivec′,c′′ +
←−
ds served

c′′,k ≤ limitDshort, then no break en route is
necessary. With this number, we can then calculate the minimum travel time of R′′′

6.4. Conclusion and Outlook 125

with respect to the index pair (j, k) as the minimum of
−→
T served

c′,j (t) +
←−
T served

c′′,k (t′) + (t′−
t) over all t and t′ with t + drivec′,c′′ + h#

j,k · break ≤ t′. The travel time functions may
be undefined for some t but we treat ⊥ just like ∞ here. For a given t, the point
in time t′ is quickly determined as the earliest point in time that is not earlier than
t + drivec′,c′′ + h#

j,k · break and for which
←−
T served

c′′,k (t′) is defined.
After we have calculated the minimum travel time of R′′′ with respect to every

index pair (j, k), the (overall) minimum travel time of R′′′ is the minimum over all
j from 1 to x and all k from 1 to y. If it is undefined, then R′′′ is infeasible. If not,
we finally check whether the minimum travel time of R′′′ exceeds the maximum
allowed travel time limitTlong or not.

Let the input of a checking routine be two labels
−→L served

c′ and
←−L served

c′′ , let size(L)
denote the size of the label L, that is, the number of pieces of information contai-
ned therein, and let nodes(L) denote the length of the contained sequence of tu-
ples (corresponds to x or y here). Then the time it takes to evaluate a move is in
O(size(

−→L served
c′) · nodes(

←−L served
c′′) + size(

←−L served
c′′) · nodes(

−→L served
c′)). We conjecture – but

do not prove – that the size of a label is polynomial in the number of customers in
the route and the number of their time windows. Note that the scheduling problem
at hand is a subproblem of the problem treated in chapter 4, which was proven to be
solvable in polynomial time.

Checking a neighboring solution means to do the above for two new links. That
is, we do so not only for (c′, c′′) but also for (R′[x+ 1],R′′[|R′′| − y]), unless x = |R′|
or y = |R′′|. In order to evaluate the gain of the move, we sum up the minimum
travel times of the two output routes and subtract the minimum travel times of the
input routes. In the special case x = |R′| and y = |R′′|, the number of routes in
the solution is decreased by one. Recall that minimizing the number of routes in the
solution is the primary optimization goal.

6.4 Conclusion and Outlook

As the VRTDSP with multiple time windows is a highly complex problem, we have
focused on local search based algorithms to solve it. We have shown how to pro-
pagate travel time information forward and backward. When such information is
pre-computed, the concatenation of two partial routes can be evaluated efficiently.
2-opt* is an example of a neighborhood where this technique is particularly useful.
However, bidirectional labeling can also be advantageous for other neighborhoods,
such as the insert or the swap neighborhood in which one customer is moved from
one route to another or two customers are exchanged between their routes, respecti-
vely. Our approach works for any setting of the break parameters (for instance, we
could allow 10 hours of driving between two long breaks instead of only 9 hours)
and with the general break policy that allows breaks en route at any time, unlike the
approach of Schiffer et al. (2017). We conjecture that it takes polynomial time (in the
number of customers and the number of time windows) to find the best move in the
2-opt* neighborhood.

For the sake of completeness, we have presented a very simple local search based
algorithm to solve the VRTDSP. But our approach for the route evaluation could
as well be integrated into the far more sophisticated solution framework of Vidal
et al. (2014) by implementing the Eval2 function. At PTV, we have incorporated
the presented ideas into the move evaluation of the vehicle routing service of PTV

126 Chapter 6. Vehicle Routing and Truck Driver Scheduling

xServer. Here, we have even implemented an enhanced variant that works with two
types of breaks under the no-long-break-en-route policy (see section 5.6).

In the European Union, there is a relaxing rule that allows to take a break in two
parts. In this chapter, we have ignored this rule, even though an extension of the
presented approach to the ruleset {drive until driven, first-second-split} is not overly
difficult (see section 3.4).

We have proposed an exact scheduling method that always finds a feasible sche-
dule if one exists and that returns the minimum travel time. However, the overall
problem, the VRTDSP, is typically not solved to proven optimality in practice. The-
refore, one direction for future research is to assess the pros and cons of a heuristic
scheduling approach that no longer guarantees optimality of the subproblem. As
long as the returned solution is feasible, it would suffice to have a method that does
not always find a feasible solution if one exists and does not necessarily output the
minimum travel time if it finds one. In particular, if the second optimization crite-
rion was not the minimum total travel time but the minimum total distance, then
the adverse effects of the non-optimality may be acceptable and outweighed by a
shorter run-time.

Minimum Service Cost Objective We have considered a constraint on the maxi-
mum travel time of each vehicle route and the total travel time of all routes as se-
condary minimization goal. This is common both in theory and in practice. But
sometimes, there are other cost drivers that should also be taken into account. To
this end, let us suppose that the length of the planning horizon is at most limitTlong.
In this scenario, we do not need to keep track of the minimum travel time accumu-
lated since the last long break. Instead, we could focus a little more on actual costs.

So far, we have only considered hard time window constraints. Ibaraki et al.
(2005) propose general time windows as a generalization of hard and even soft time
windows. This means we are given a time-dependent service cost function that
maps a time t to the cost that a service entails when it starts at time t. Hard time
windows are a special case in which the costs are either 0 or infinite. With such
a service cost function, we can assign a cost value between 0 and ∞ to a service
that begins rather late or early. Even priorities of time windows can be expressed.
In practice, this is very useful when perishable groceries need to be delivered. Let
us take a delivery to a supermarket or a (fast food) restaurant as an example. The
groceries need to be accepted and handled by the staff of the supermarket or the
restaurant. Hence, the service cost of the delivery may be higher the more crowded
the store or restaurant is and the busier the staff is with other things at that time.

In our algorithm, we could store the accumulated service cost since the end of
the last long break instead of the accumulated travel time since then. With such a
function, we could optimize the service level over all customers. Hashimoto, Ya-
giura, and Ibaraki (2008) even regard a time-dependent driving time function and
a time-dependent driving cost function for every pair of customers in addition to
the time-dependent service costs. Time-dependent driving costs could also be in-
tegrated into our approach – but only as long as the driving times remain time-
independent.

127

Chapter 7

Truck Driver Routing on
Time-Dependent Road Networks

We study the problem of computing time-dependent shortest routes for truck dri-
vers. In contrast to conventional route planning, truck drivers have to obey go-
vernment regulations that impose limits on non-stop driving times. Therefore, route
planners must plan break periods in advance and select suitable parking lots. To en-
sure that maximum driving times are not exceeded, predictable congestion due to,
e.g., peak hours should also be taken into account. Therefore, we introduce the
truck driver routing problem in time-dependent road networks. It turns out that the
combination of time-dependent driving times with constraints imposed by drivers’
working hours requires computation of multiple time-dependent profiles for optimal
solutions. Although conceptually simple, profile search is expensive. We greatly re-
duce (empirical) running times by calculating bounds on arrival and departure times
during additional search phases to only query partial profiles and only to a fraction
of the parking lots. Carefully integrating this approach with a one-to-many extension
of time-dependent contraction hierarchies makes our approach practical. For even
faster queries, we also propose a heuristic variant that works very well in practice.
Excellent performance of our algorithms is demonstrated on a recent real-world in-
stance of Germany that is much harder than time-dependent instances considered
in previous works.

Note This chapter has been published before. Apart from a few minor changes, it
is an exact quote of the paper by Kleff et al. (2017). As such, it is self-contained and
does not require the knowledge of previous chapters.

7.1 Introduction

In many countries of the world, truck drivers are legally obligated to take breaks
on a regular basis to obviate drivers’ fatigue and hence increase road safety. For in-
stance, Regulation (EC) No. 561/2006 of the European Union (European Parliament
and Council of the European Union, 2006) demands a break of at least 45 minutes af-
ter at most 4.5 hours of driving. And according to the hours-of-service regulation in
the United States (Federal Motor Carrier Safety Administration, 2011), a 30-minutes-
break is mandatory after at most eight hours have elapsed. Truck drivers must park
their vehicle at a suitable location before taking such a “lunch break”. Due to the size
of their trucks, the drivers are severely limited compared to car drivers when in se-
arch of a parking space. For assistance in finding appropriate and available parking

128 Chapter 7. Truck Driver Routing on Time-Dependent Road Networks

lots, truck drivers use mobile apps like Truck Parking Europe1 that maintain data-
bases of parking lots and display nearby lots to users. In this work, we investigate
the following optimization problem: En route from one customer to another, when
and where should the driver take a break (if at all) to conform to the provisions on
breaks and arrive at the destination earliest possible?

We only consider one drive from a source to a destination. In general, a truck
driver may visit multiple customers per day. In this case, the customers’ time win-
dows also have to be regarded. Moreover, if a trip takes more than one day, not only
lunch breaks have to be scheduled but also longer rest breaks for the driver to sleep.
The problem of scheduling breaks in order to comply with regulations while also
taking customer time windows into account is known as the truck driver scheduling
problem (Goel, 2010). However, the locations of the parking lots remain disregarded
in this setting. In this work, we take a major first step towards combining time-
dependent route planning and truck driver scheduling. We determine not only when but
also where to take a break.

We consider time-dependent driving times to model predictable congestion. In
this scenario, it might be beneficial to not depart from source right away, or to pro-
long a break, or to wait at a parking lot for a time that is too short to count as break.
As an example of short-term waiting, imagine the following: At the time of arrival at
a parking lot, the driving time to the destination would be two minutes longer than
the remaining allowed driving time. Luckily, the driver just has to wait ten minutes
for the congestion to disperse and for the driving time to drop by these two minutes.
In contrast to the European Union, short-term waiting does not pay off in the United
States because the lunch break becomes mandatory after eight hours have elapsed,
and not after a certain accumulated driving time. In the following, we focus on the
EU regulation.

Time-dependency makes the problem particularly challenging, and the question
arises whether it can be solved efficiently in practice. We are interested both in op-
timal and in heuristic approaches. There are a couple of parameters to reduce the
run-time, and we seek to shed light on their impact on the solution quality. For
our experimental analysis, it is sufficient to assume that the driver stops at only one
parking lot (if at all). For a planning horizon of one day, this is no substantial limita-
tion in practice as a daily driving time of 9h (US: 11h) should not be exceeded, even
though it may be extended to 10h twice a week. For the sake of completeness, we
discuss the implications regarding multiple stops.

Related Work Route planning algorithms have received a large amount of atten-
tion in recent years, resulting in a multitude of speedup techniques (Bast et al., 2016;
Sommer, 2014). In the time-dependent scenario, there are driving time functions asso-
ciated with the edges. These map the time of the day to a driving time (Cooke and
Halsey, 1966). Dijkstra’s algorithm (Dijkstra, 1959; Dantzig, 1963) can be generali-
zed (Dreyfus, 1969) to answer earliest arrival (EA) queries. However, profile queries
asking for the driving time function between two vertices are not feasible for large
road networks (Delling and Wagner, 2009). The reason is that profiles may have su-
perpolynomial complexity (Foschini, Hershberger, and Suri, 2014), and maintaining
them for all vertices makes Dijkstra’s algorithm impractical.

Several classic speedup techniques have been generalized to the time-dependent
scenario (Baum et al., 2016; Delling, 2011; Delling and Nannicini, 2012), typically
focusing on fast EA queries. Efficient EA and profile queries at continental scale

1https://truckparkingeurope.com/

https://truckparkingeurope.com/

7.2. Problem Statement and Preliminaries 129

are provided by TCH (Batz et al., 2013), a generalization of Contraction Hierar-
chies (CH) (Geisberger et al., 2012). Batched shorted paths in the time-dependent
scenario are studied by Geisberger and Sanders (2010). Recently, Strasser (2016) in-
troduced a simple heuristic for time-dependent routing that is cheap in time and
space, but drops optimality and provides no approximation guarantees.

As far as the truck driver scheduling problem is concerned, the interested reader
can find descriptions of optimal algorithms for the EU variant of this problem in
the papers of Goel (2010), Drexl and Prescott-Gagnon (2010), and Kok, Hans, and
Schutten (2011) and for the US variant in those of Goel (2014), Koç et al. (2016), and
Koç, Jabali, and Laporte (2017). Of these authors, Kok, Hans, and Schutten (2011)
and Koç et al. (2016) propose a mixed integer linear programming formulation. The
former even takes time-dependent driving times into account, the latter is the only
one to include real-world data of parking lots (here: interstate rest areas) into their
experimental analysis. However, in both cases not only the sequence of customers
is fixed but also the path in the road graph. So in the former case the path cannot
change over time, and in the latter case truck stops aside the path are disregarded.
In the master thesis of Shah (2008), time-dependent routes for truck drivers subject
to government regulations and time windows are solved heuristically. Finally, other
lines of research have considered problems that resemble our setting but are NP-
hard, such as crew scheduling (Smith, Boland, and Waterer, 2012), routing of electric
vehicles (Baum et al., 2015), or time-dependent pollution-routing (Franceschetti et
al., 2013).

Contribution and Outline We introduce the truck driver routing problem that
asks for the fastest route between two customers that complies with legal provisi-
ons for truck drivers (section 7.2). To the best of our knowledge, we are the first
to integrate the choice of routes, breaks and parking lots in one query – unlike pre-
vious works that first fix the route and then schedule breaks, possibly missing the
optimal solution. Since rush hours severely affect driving times, we consider the
time-dependent scenario. We propose a naive approach (section 7.3) that would be
far too expensive in time and space without at least one of two described accelera-
tion techniques (sections 7.3.1 and 7.3.2): An implementation based on TCHs achie-
ves query times in the order of minutes on the German road network. Sophisticated
bounds computations on top of that speed queries up by a factor of 25, yielding
running times well below 10 seconds. Finally, a heuristic approach (section 7.3.3)
enables queries below a second and less. Most of our experiments (section 7.4) are
performed on a new instance of the German road network, currently used by PTV
in production systems. It turns out to be much harder than the ten-year-old instance
used in most publications so far. Before we conclude (section 7.6), we discuss the
implications of allowing multiple stops (section 7.5).

7.2 Problem Statement and Preliminaries

The basic input for every variant of the truck driver routing problem is the following:
Let a road network be given, modeled as a directed graph G = (V , E), where verti-
ces v ∈ V typically correspond to intersections and edges (u, v) ∈ E to road segments.
The subset P ⊂ V of the vertices contains exactly the parking locations that represent
the parking lots (or even parking spaces) where the driver may take a break. The
minimum break period and the maximum driving time until such a break is mandatory
are denoted by break and limit respectively. These two parameters are sufficient to

130 Chapter 7. Truck Driver Routing on Time-Dependent Road Networks

handle the Regulation (EC) No. 561/2006 of the European Union (European Par-
liament and Council of the European Union, 2006) for a planning horizon of one
day.

We are also given a sequence of exactly two customers to be visited, source s ∈
V \ P and destination d ∈ V \ P . An s–d-path Paths,d (in G) is a sequence [v1 =
s, v2, . . . , vk = d] of vertices such that (vi, vi+1) ∈ E and vi 6= vj for all 1 ≤ i < j ≤ k.
A (truck driver) route Rs,d from s to d in turn is a sequence [Pathui ,vi]1≤i≤k of paths
such that u1 = s and ui ∈ P for 1 < i ≤ k, vk = d and vi ∈ P for 1 ≤ i < k, and
vi−1 = ui for 1 < i ≤ k. In this chapter, we will focus on routes with a sequence
length |Rs,d| := k of at most two. The general case is only discussed in section 7.5.

In the time-independent case, the weights on the edges are constants and indicate
the driving time along the edge. A path is feasible iff the accumulated driving time
along the path is no longer than limit, and a route is feasible iff all its paths are. The
duration of a truck driver route Rs,d is the sum of the accumulated driving times of
its paths plus (|Rs,d| − 1) · break. In time-independent truck driver routing, we are
interested in a shortest feasible route from s to d if such a feasible route exists.

In time-dependent truck driver routing, we are given time-dependent driving time
functions for every edge instead of constant driving times. That is, for every edge (u, v)
there is a function Ψu,v : R → R+ that maps the time of departure from u to the
driving time to v. In this work, all functions are supposed to be piecewise-linear.
The driver is not allowed to wait at any vertex other than the parking locations
or s. In this scenario, it is common to demand that the functions fulfill the FIFO
property because the shortest-path problem would become NP-hard if it was not sa-
tisfied for all edges (Sherali, Ozbay, and Subramanian, 1998; Dean, 2004). We even
presume that functions are continuous and fulfill the strict FIFO property, i.e., for ar-
bitrary t < t′ ∈ R, the condition t + Ψ(t) < t′ + Ψ(t′) holds for every edge (later
departure leads to later arrival). This way, the arrival time function id+Ψ is bijective
(id being the identity function) and we can build the inverse (id+Ψ)−1 that maps
an arrival time to the appropriate departure time.

To check feasibility of a route Rs,d = [Pathui ,vi]1≤i≤k , we also ask for departure
and arrival times dep(ui) and arr(vi) for all i. This way, the duration of a path Pathu,v
can easily be computed by arr(v)− dep(u) (must be positive) and the waiting time at
a parking location by dep(ui)− arr(vi−1) (must be non-negative). To be feasible, no
single path is allowed to be longer than limit. In addition, a route

[
Paths,p, Pathp,d

]
is

feasible only if either the sum of the paths’ durations does not exceed limit or there
is a waiting time that counts as break at the parking location p in between. Among
all feasible truck driver routes we look for one with the earliest arrival at d. To this
end, we are also given a lower bound on the earliest departure lbED(s) from s, i.e., we
demand dep(s) ≥ lbED(s). It is only a lower bound because a feasible route with
dep(s) = lbED(s) may not exist. In this chapter, we call a vertex v reachable from u at
time t if there is a feasible routeRu,v with dep(u) = t.

A (driving time) profile between u and v is a time-dependent function ψu,v : R →
R+ that maps every departure time at u to the shortest driving time to v. If (u, v) ∈ E ,
the profile is identical to the given driving time function Ψu,v. If not, we can compute
the profile ψu,v recursively either forward or backward using the link operation� and
the merge operation ⊕:

ψu,v :=
⊕

w : (w,v)∈E
ψu,w�Ψw,v or ψu,v :=

⊕
w : (u,w)∈E

Ψu,w�ψw,v (7.1)

7.3. Solution Approach 131

where ψ� ϕ is defined to be ψ + ϕ ◦ (id+ψ) and ψ⊕ ϕ defined to be min(ψ, ϕ). A
profile search can be implemented as described by Delling and Wagner (2009).

7.3 Solution Approach

We first describe a basic and rather naive approach to compute the earliest arrival
at destination d. There are three ways in which d may be reachable from s: Either
without passing a parking location at all, or by taking a break at a parking location,
or by short-term waiting at a parking location. Accordingly, we will now compute
three values optnone, optbreak, and optshort. The minimum of these is then the overall
optimal solution.

At first, we investigate whether d can be reached from s without passing a par-
king location. To do this, we compute the driving time profile ψs,d from s to d
and then look up the earliest feasible departure time deps,d from s in this respect:
deps,d := min{t : ψs,d(t) ≤ limit ∧ t ≥ lbED(s)}. With this, we can conclude:
optnone := deps,d + ψs,d(deps,d).

To consider the parking locations, we have to search forward and backward in
order to compute the driving time profiles ψs,p and ψp,d for all p ∈ P . In the case
with a break at a parking location, the next step is, similarly as before and for every
parking location p ∈ P , to determine the earliest feasible departure time deps,p from
s when going to p as deps,p := min{t : ψs,p(t) ≤ limit ∧ t ≥ lbED(s)}, and then to
look up the earliest feasible departure time depp,d from p when going to d after a
break as depp,d := min{t : ψp,d(t) ≤ limit ∧ t ≥ deps,p + ψs,p(deps,p) + break}. In turn,
we can conclude: optbreak := minp∈P{depp,d + ψp,d(depp,d)}.

But maybe the optimal solution consists in just waiting at a parking location for a
short time that does not necessarily count as break. To take this case into account, we
determine the earliest feasible departure time deps,p,d from p when going from s to
d for every parking location p ∈ P as follows: deps,p,d := min{t : ∃t′ : ψs,p(t′) +
ψp,d(t) ≤ limit ∧ lbED(s) ≤ t′ ≤ t − ψs,p(t′)}. Again, we conclude: optshort :=
minp∈P{deps,p,d + ψp,d(deps,p,d)}.

This description is only a sketch. It is meant to give an overview. A naive im-
plementation would certainly be far too slow for any practical use. This motivates
the following three acceleration approaches: by narrowing down profile searches,
by time-dependent contraction hierarchies, and heuristically.

7.3.1 Acceleration by Narrowing Down Searches

Some computations can be performed faster than others. The idea is to spend little
extra time on quick computations in order to gain bounds that help us speed up the
expensive calculations such as the profile search.

We define ubMax(ψ) as an upper bound on the maximum value of the profile
ψ, i.e., ubMax(ψ) ≥ maxt∈R ψ(t). Analogously, lbMin(ψ) is a lower bound on the
minimum value of ψ. A query for these bounds, called a profile bounds query here,
can be answered by applying Dijkstra’s algorithm (Dreyfus, 1969) on a graph where
the constant edge weights are the minimum (maximum) values of the respective
driving time functions. Given a departure time t in addition, an earliest arrival (EA)
query asks for the earliest arrival at d when departing at time t. Both queries can
be processed rapidly and are described in greater detail by Batz et al. (2013). In our
context, a usual EA query only gives a lower bound lbEA(d) on the earliest arrival if
lbEA(d) > t + limit. To highlight this, we call it an lbEA query.

132 Chapter 7. Truck Driver Routing on Time-Dependent Road Networks

Computing Partial Profiles. One of the key acceleration techniques in this chapter
is to only compute a partial profile. A partial profile maps a departure time t ∈ R to a
driving time in R+ ∪ {⊥}, where ⊥ can be read as undefined. We have to distinguish
a partial forward profile from a partial backward profile. More precisely, the following
holds for a partial forward profile ψ f given a departure time range [tbegin, tend] ⊂ R:
ψ f (t) ∈ R+ for tbegin ≤ t ≤ tend and ψ f (t) = ⊥ otherwise. An analog statement
holds for a partial backward profile ψb given an arrival time range [tbegin, tend] ⊂ R:
ψb(t) ∈ R+ for (id+ψb)−1(tbegin) ≤ t ≤ (id+ψb)−1(tend) and ψb(t) = ⊥ otherwise.

A partial (forward or backward) profile for a given (departure or arrival time)
range can be computed similar to before. If (u, v) ∈ E , we set

ψ
f
u,v(t) :=

{
Ψu,v(t), if t in range
⊥, otherwise

ψb
u,v(t) :=

{
Ψu,v(t), if t + Ψu,v(t) in range
⊥, otherwise

If not, we use the same (forward or backward) recursion formula as before in (7.1).
But we have to adjust the definitions of the link and merge operations and distin-
guish the forward from the backward case. The forward and backward link opera-
tions for a partial profile and a driving-time function of some edge are now defined
as follows:

(ψ
f
u,v� f Ψv,w)(t) :=

{
ψ

f
u,v(t) + Ψv,w(t + ψ

f
u,v(t)), if ψ

f
u,v(t) 6= ⊥

⊥, otherwise

(Ψu,v�b ψb
v,w)(t) :=

{
Ψu,v(t) + ψb

v,w(t + Ψu,v(t)), if ψb
v,w(t + Ψu,v(t)) 6= ⊥

⊥, otherwise

The forward and backward merge operations for two partial profiles for the same
vertex pair and range are now defined as follows:

(ψ f ⊕ f ϕ f)(t) :=

{
min{ψ f (t), ϕ f (t)}, if ψ f (t) 6= ⊥∧ ϕ f (t) 6= ⊥
⊥, otherwise

(ψb⊕b ϕb)(t) :=

ψb(t), if ψb(t) 6= ⊥∧ (id+ϕb)−1(t + ψb(t)) ≤ t
ϕb(t), if ϕb(t) 6= ⊥∧ (id+ψb)−1(t + ϕb(t)) < t
⊥, otherwise

Given a source, a destination, and a range, we call a query for a partial profile a
profile range query.

One-to-one queries. At first, we perform a one-to-one lbEA query for s and d and
departure time lbED(s), that is, we compute the earliest arrival at d as if there was
no break to take when leaving s earliest possible. If this lower bound lbEA(d) on
the earliest arrival is no later than lbED(s) + limit, it is tight, and we have found the
requested earliest arrival at d.

The second step is to compute a lower bound lbMin(ψs,d) on the driving time
from s to d. If this bound is already greater than 2 · limit, we stop here because d is
considered to be not reachable from s as we only take one break into account.

7.3. Solution Approach 133

s d

Blue1 Blue2 Blue3

Red1 Red2 Red3 Red4

FIGURE 7.1: The set sequences Blue1 ⊃ Blue2 ⊃ Blue3 and Red1 ⊃
Red2 ⊃ Red3 ⊃ Red4. The two sets Blue1 and Red1 are disjoint.

If lbMin(ψs,d) ≤ limit, then an optimal solution may incorporate short-term wai-
ting at a parking location. We store this information by setting lbWaiting := 0. Ot-
herwise we set lbWaiting := break because it is certain that the driver will have to
take a break at one of the parking locations.

One-to-many-to-one queries. We perform both an lbEA search and a profile bounds
search from s to all potentially reachable parking locations, that is, we compute
lbMin(ψs,p), ubMax(ψs,p) and lbEA(p) for all p ∈ P with lbMin(ψs,p) ≤ limit. We
insert all those parking locations p with lbEA(p) ≤ lbED(s) + limit into a set Blue1.
So for all p ∈ Blue1, the lower bound lbEA(p) is tight and equals the earliest ar-
rival EA(p) at p. We add the other potentially reachable parking locations p, i.e.
with lbEA(p) > lbED(s) + limit (and also lbMin(ψs,p) ≤ limit by construction), to a
set Red1. These are the ones for which the lower bound is known to be not tight. The
set Red1 may remain empty, especially if waiting at s was not allowed. An empty set
Red1 helps to speed up computation as we can omit the forward profile range query
later. If both sets are empty, there is no feasible solution. Blue1 and Red1 are each the
first element of a sequence of subsets of P that we will construct in the following.
An illustration is shown in Figure 7.1.

The next step is to conduct a profile bounds search from d backwards to all po-
tentially reachable parking locations in Blue1 ∪ Red1, i.e., we compute lbMin(ψp,d)
and ubMax(ψp,d) for all p ∈ Blue1 ∪ Red1 with lbMin(ψp,d) ≤ limit. Let Blue2 (resp.
Red2) be the subset of parking locations in Blue1 (resp. Red1) that are also potentially
reachable backwards. Again, if Blue2 ∪ Red2 is empty, there is no feasible solution.
With the bounds on the driving time we get (better) bounds on the earliest arrival at
d. We can set the upper bound ubEA(d) to min{EA(p) + break + ubMax(ψp,d) : p ∈
Blue2 ∧ ubMax(ψp,d) ≤ limit}, where the minimum over the empty set is considered
to be infinite. If lbWaiting = break and improving, we can update the lower bound
lbEA(d) to min{lbEA(p) + break + lbMin(ψp,d) : p ∈ Blue2 ∪ Red2}.

A profile range search backwards from d in the range [lbEA(d), ubEA(d)] to all
p ∈ Blue2 ∪ Red2 yields a partial profile ψp,d for all these p. It is defined for exactly
those departure times t from p for which t + ψp,d(t) ∈ [lbEA(d), ubEA(d)] holds.
For all p ∈ Blue2 we can now determine an upper bound ubED(p) on the earliest
departure from p as the earliest point in time t such that t ≥ EA(p) + break and
ψp,d(t) ≤ limit. In case lbWaiting = break, this bound is tight. In the other case, we
may be able to improve it by the earliest point in time t for which t ≥ EA(p) and

134 Chapter 7. Truck Driver Routing on Time-Dependent Road Networks

ψp,d(t) ≤ limit− (EA(p)− lbED(s)) holds. However, we might not be able to find
such an upper bound because neither of the conditions are met. So let Blue3 ⊂ Blue2
be the set of parking locations for which ubED(p) can be determined. Then, we may
improve the upper bound ubEA(d) on the earliest arrival at d by min{ubED(p) +
ψp,d(ubED(p)) : p ∈ Blue3}.

On the other hand, we calculate a lower bound lbED(p) on the earliest departure
from p for all p ∈ Red2 as the earliest point in time t with t ≥ lbEA(p) + break and
ψp,d(t) ≤ limit. If lbWaiting = 0, we may have to lower this bound to the earliest
point in time t with t ≥ lbEA(p) and ψp,d(t) ≤ limit− lbMin(ψs,p). And, again, let
Red3 ⊂ Red2 be the set of parking locations for which lbED(p) can be determined.

Let Red4 ⊂ Red3 be the set of parking locations p for which the inequality lbED(p)+
ψp,d(lbED(p)) < ubEA(d) holds. So Red4 contains those parking locations for which
a forward profile range search is inevitable. If this set is empty and lbWaiting =
break, then ubEA(d) is tight, so we are done. If not, we need to compute an upper
bound ubED(p) on the departure time from p for all p ∈ Red4 (and p ∈ Blue2 if
lbWaiting = 0): It is the point in time t with t + ψp,d(t) = ubEA(d). With the upper
bound for all p, we can obtain an upper bound ubED(s) on the departure from s:
It is max{ubED(p) − lbWaiting− lbMin(ψs,p)} over all p ∈ Red4 (and p ∈ Blue2 if
lbWaiting = 0).

Finally, we conduct a forward profile range search from s to all p ∈ Red4 (and
p ∈ Blue2 if lbWaiting = 0) for the departure time range [lbED(s), ubED(s)]. Now
we have everything we need together: In case lbWaiting = break, we compute optbreak
similar to before, except that the earliest arrival at d via the parking locations in Blue3
is already known and has to be determined only for Red4. In case lbWaiting = 0, we
have to compute optshort in addition, but only for Blue2 ∪ Red4, and also optnone (pro-
vided that waiting at s is allowed). To speed up the computation of optnone, we only
perform a forward profile range search from s to d for the range [lbED(s), ubEA(d)−
lbMin(ψs,d)].

7.3.2 Acceleration by Contraction Hierarchies

In the previous section, we proposed techniques to reduce the number of profile
searches and restrict the remaining profile searches to smaller ranges. We accele-
rate our approach even further by speeding up the profile searches (and EA que-
ries) themselves using time-dependent contraction hierarchies (Batz et al., 2013). (T)CHs
were originally proposed for point-to-point queries, whereas we also need to com-
pute a variant of one-to-many queries (from a source vertex to all parking lots). In
this section we recap the (time-dependent) contraction hierarchies algorithm and
describe our modifications of it.

A contraction hierarchy (CH) (Geisberger et al., 2012) is built by contracting the
vertices of a graph in increasing order of importance. Intuitively, vertices that lie
on many shortest paths (such as vertices on highways) are considered important.
To contract a vertex v, it is (temporarily) removed from the graph, and shortcuts are
added between its neighbors in order to preserve distances in the remaining graph.
Witness searches are performed to determine whether a shortcut is necessary or can
be discarded. For each pair of neighbors u, w with (u, v) ∈ E , (v, w) ∈ E , we run a
Dijkstra search from u to w. Only if the path via v is the unique shortest u–w-path,
we add the shortcut between u and w. In the time-dependent case, we need to run a
profile search from u to w. A shortcut can only be omitted if it is not needed at any
point in time.

7.4. Experiments 135

CH queries are a modified variant of bidirectional Dijkstra, where both forward
and reverse search relax only upward edges, i.e., edges going from less to more im-
portant vertices. In the time-dependent scenario, the reverse search is particularly
difficult, because the time of arrival at the target is unknown. In a basic query vari-
ant, the reverse search only marks all edges in the reverse search space from d, and
the forward search is allowed to additionally relax all marked arcs. More sophistica-
ted query variants compute bounds during the reverse search that guide the forward
search into the direction of d.

The obvious approach to compute EA queries or profiles from a source to all
parking lots P runs |P| point-to-point TCH queries. However, we can do better
with the following modification. During the contraction process, we block all vertices
representing parking lots, i.e., we disallow to contract them. After contraction, there
remains a core graph at the top of the hierarchy, consisting of all parking lots and
(shortcut) arcs between them. Queries from a source s to all parking lots now boil
down to a forward search from s that relaxes no edges to less important vertices.
As long as the query has not yet reached the core, it behaves like a normal forward
CH search. On the core graph, it behaves like a standard Dijkstra search. We can
accelerate the search using the stall-on-demand optimization (Geisberger et al., 2012)
and stop it as soon as all parking lot vertices are settled, or a certain time limit is
reached. Since blocking arbitrary vertices can lead to suboptimal contraction orders,
we do not contract all vertices but the parking lots, but rather stop contraction as
soon as the remaining graph becomes too dense.

7.3.3 Heuristic Acceleration

In our study, we schedule waiting times on the assumption that the time-dependent
driving times are deterministic. This is not the case in real-life. So it is questionable
whether a route with, for instance, scheduled short-term waiting would be accepta-
ble in practice. This is the motivation for the restricted waiting policy that disallows
waiting at s, short-term waiting at any parking location, and the prolongation of a
break. To conform to this policy, the driver must depart immediately at time lbED(s)
and may take a break of exactly 45 minutes if inevitable. In this scenario, it is not
necessary to query any profiles, even if d cannot be reached directly without break.
Then, the Red sets are ignored, and instead of computing partial profiles backwards
from d to Blue2, we conduct multiple lbEA searches forward from the parking locati-
ons in Blue2, getting a better and better upper bound on the earliest arrival at d.

7.4 Experiments

In this section, we first describe the data and the test setup and then analyze run-
time and solution quality of the described approaches. Our experiments are based
on two versions of the road network of Germany with time-dependent driving time
functions, see Table 7.1. The older network from the year 2006 has been used by
several other studies related to time-dependent routing (see section 7.1) and contains
car driving times based on a traffic model. The very recent data from 2017 is quite
different: The new data is more detailed with respect to time dependency, there are
more edges with driving time functions that are not constant, and the total number
of breakpoints representing the functions is larger. The driving times are based on

136 Chapter 7. Truck Driver Routing on Time-Dependent Road Networks

FIGURE 7.2: The left image shows all available parking lots in Ger-
many, the right image shows the reduced set with only big parking

lots.

historic data provided by TomTom2 which is post-processed by PTV such that it
models truck driving times.

TABLE 7.1: Key figures of the input data used for the experiments. TD
Edges denotes the relative number of edges with a time-dependent

and not constant driving time function.

Road network Vertices Edges TD Edges Breakpoints Parking set / subset

Germany 2017 7.2 M 15.7 M 28.6 % 136.9 M 6 596 / 759
Germany 2006 5.1 M 12.6 M 3.7 % 20.9 M 6 447 / 731

We use the database of PTV Group’s Truck Parking Europe app3. It contains cur-
rently more than 25 000 parking lots all over Europe. Some parking lots cannot be
linked to the old road network of 2006. Therefore, the number of parking locations
is a bit lower than in the road network of 2017. The database does not only con-
tain rest areas with fuel stations, restrooms, and restaurants but also parking areas
without any facilities. It is not clear if or under what circumstances the choice of a
parking area without facilities would be acceptable in practice. We will take this into
account by also testing our algorithm with a smaller subset of parking lots that offer
30 parking bays or more each. Figure 7.2 shows these two sets of parking lots.

Test Setup. We run our experiments on a VMware ESX cluster. Our machine has
four cores of a 2.2 GHz Intel Xeon E5-2698 v4, 64 GB main memory, and runs Ubuntu
16.04. Besides the construction of the contraction hierarchies the algorithms use only
one core. Our code is written in C++ and compiled with gcc 5.4, optimization level
-O3. Our CH implementation is based on the code by Batz (Batz et al., 2013; KaTCH)
and has been extended as described in section 7.3. We set the size of the CH cores to
0.2 % of the vertices in case of the whole parking set and 0.02% in case of the subset.

2https://www.tomtom.com/
3https://truckparkingeurope.com/

https://www.tomtom.com/
https://truckparkingeurope.com/

7.4. Experiments 137

TABLE 7.2: Number of truck driver route queries per category.

C1 C2 C3 C4 C5 Over all

Query set 2017 4278 210 4943 165 404 10000
Query subset 2017 877 36 980 31 76 2000
Query set 2006 7109 126 2754 1 10 10000

TABLE 7.3: Mean run-time per category in seconds for different sce-
narios.

Scenario C1 C2 C3 C4 C5 Over all

Default scenario 0.0038 18.1756 5.9549 121.9516 0.0053 5.3392
Restricted waiting 0.0033 0.2925 0.2187 0.1163 0.0910 0.1212
Parking subset 0.0041 5.8109 1.0646 7.8424 0.0057 0.7796

Naive approach 2.8018 287.1991 227.5335 228.4150 195.4254 128.8562
Query subset 2017 0.0039 18.5811 5.8160 121.5858 0.0056 5.0708

Germany 2006 0.0013 0.9829 0.3932 23.8170 0.0021 0.1239

This results in a CH search graph size of 38.90 GB in the former and 37.28 GB in the
latter case (and 2.03 GB in the case of the 2006 road network).

Since our test data is the road network of Germany, we consider the EU regula-
tion, i.e., break=45 min and limit=4.5 h. We generate 10 000 truck driver route que-
ries for both versions of the road network. To this end, we randomly select ver-
tices s and d and (a lower bound on) the earliest departure from s between 6 am
and 9 am. Since the run-time of these queries can differ a lot, we assign each of
them to one of five categories: Category C1 comprises the queries for which the
lbEA query suffices, i.e., lbEA(d) ≤ lbED(s) + limit. Category C2 contains the ones
with lbEA(d) > lbED(s) + limit and lbMin(ψs,d) ≤ limit, category C3 the ones with
lbMin(ψs,d) > limit and ubMax(ψs,d) ≤ 2 · limit, and category C4 the ones with
ubMax(ψs,d) > 2 · limit and lbMin(ψs,d) ≤ 2 · limit. Finally, category C5 holds the
instances with lbMin(ψs,d) > 2 · limit that cannot be solved.

Table 7.2 lists how these queries are distributed among the five categories. In
case of the query set 2006, there are far more queries in C1 because with car driving
times the vehicle’s range is larger. Also in this list is the query subset 2017. We need
this smaller subset of queries to measure the run-time of the long running naive
approach.

Results on Run-Time. Table 7.3 shows the mean run-time for different scenarios,
broken down into the five categories. The categories themselves are not part of the
input of the algorithm. For the default scenario, we use the 2017 road graph, all des-
cribed acceleration techniques, all parking locations, and allow waiting of any du-
ration. The other scenarios deviate from this in one aspect each. In the default sce-
nario, the run-time varies a lot with the category. A query from category C4 takes
more than 30 000 times longer than one from C1. Since there are far more queries in
C1 than in C4, the mean run-time over all 10 000 queries is still less than 6 seconds.
Queries from C4 take so long because in 106 cases no upper bound on the earliest
arrival at d can be determined, so a full backward profile search is necessary. Figure
7.3 illustrates the run-time distribution among the 10 000 queries.

In case of the restricted waiting policy, waiting at s is not allowed and waiting at
any parking location is only allowed if the waiting time equals exactly the time for

138 Chapter 7. Truck Driver Routing on Time-Dependent Road Networks

●●

●

●

●

●

●●
● ●

●

●●

●
●

●
●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●● ●
●

●

●
●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●

●
● ●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●

● ●

● ●
●

●●

●

●●
●

●

●
●

●

●

●

●
●

●

● ●

●●

●●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●●

● ●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

● ●● ●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●
●

●●
●

●
●

●

● ●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●●

●● ●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●
●

● ●

●
●●

●

●

●
●

●●
●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●●
●

●
●

● ●
●

●●
●

●

●
●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

● ●

●

●●

●

●
●

●

● ●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

● ●
● ●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●
● ●

● ●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●

●

● ●

● ●

●

●
●

●

●

●

●
●

●

●
● ●● ●●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●●
●

● ●
●

●

●●

●

●

●

●●●
●●

●
●

●

●
●

●

●
●

●

●
●●●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●

●

●●

●● ●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●

●● ●

●

●

●
●●

●

●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

● ●

●

●

●

●●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●●
●

● ●●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●●
●

●●

●

●●
●

●

●

●
● ●●

●

● ●
●

●● ●
● ●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●
●●

●●

●
● ●

●

●

●

●

●

● ●●
●
●

●

●

●
●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●● ●● ●
●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●●● ●

●

● ●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

● ●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●
●

●● ●
●● ●

●

●●

●●

●

●
●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●●
●

● ●●
●

●

●

● ●

●

●

●

●
●

●

●

●
●

● ● ●●

●

●●

●

●

●

●

●

● ●

●

●
● ●

●

●

●
●

●

●●

●
● ●

●

●

●
●

●

●

●
●

●

●

●●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

● ●
●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●
●

●
● ●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

● ●●

●
●

●

●●
●

●

●

●
●●

●

●
●

●

●

●
●●

●

● ●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●● ●●

● ●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

● ●

● ●
● ●

●●

● ●
●

●●

●

●

●

●
●

●●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●●

●

●

●
●●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

● ●

●

●●

●
●

●

●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●
●● ●

●

●●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●●● ●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●
●

●●

●
●

●

● ●

●

●

●

●
●

●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●●●
●

●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

●
●

●
● ● ●●●

●

●

● ●

●
●

●

●

● ● ●

●

●

●
●

●

●

●
●●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

● ●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●●

●

●

●
●

●●

● ●

●

●

●

●

●●
●

●

●
● ●

●
●

●

●●

●●
●

●●

●

●

●●

●

●

●
●●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●
●●

●● ●
●● ●●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●
●

●
●

●●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●

● ●

●
●

●

●
●

●
●

●● ●
● ●

●●

● ●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●●

●●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

● ●●
●

●

●

●

●

●

●●
●●

● ●

●

●

●

●
●

●

●

●

●

● ●

● ●●

●●

●●●
●● ●

●

●
●●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●
●

●
●

●
●

●

●

●
●

● ●
●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●
● ●

●

●●●●

●

●
●

●

●

● ●
●

●
●

●
●

●

●

●
●

●
●●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

● ●

●
●

●

●
●
●

●

●

●● ●
●

●

●●

●

●

●
●

● ●
●

●
●

●

●

●

●●

●
●

●● ●●

● ●
●

●
●

●

●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

● ●

●●

●

●

●

●

●
●

● ●

●

● ●

●

●
●

●

●
●

●

●

●

● ● ●
●

●

●●
●

●

●

●●

●●

●
● ●

●
●

●
●●

●
●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

● ●
●

●● ●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●

●

●

●●

●●
●● ●

●
●

●●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●
●

●

●

●

●

●

●●
●●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●
●●

●

●●

●

●

●

●

●

●

●● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●
●●

●

●
●

●

● ●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

● ● ●

●

●

●

●●
●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●
●●

●

● ●

●

●

●
●

●●

●

●
●

●

●

● ●
● ●●●

●

● ● ●

●
●

●

●

●

●

●

●
●●●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●●● ●

●

●
●

●●

●

●
●

●
●

●
●

●

● ●

●
● ● ●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
● ●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●●

●

●

●

●

●

● ●
●

●

●
●

●
●

●
●

●

●

●●

●
●

●
●

●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●● ●

●
●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
● ●

●

●
●

● ●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●
● ●

●

● ●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●
●

●

● ●
●

●

●

●●●
●

●

●

● ●●
●

●
●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●
●●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●●

●
●● ●

●

●

●

●
●

●

●●

●

● ●

●

●

●●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

● ●●

●
●

●

●●

●

●
●

●

●

●●●

● ●

●
●

●

●●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●● ● ●

●

●
● ●●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

● ● ●
● ●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

● ● ●
● ●

●

●●

●

●
●●

●

●

● ●

●

●
●

● ●●●
●

●

● ●

●●

●
●

●
●

●●

●

●
●

●

●

● ●

●
●● ●

●

●

●

● ●

● ●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

● ●
●●

●

●●

●

●
●

●●●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●●
●

●

●
●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

● ●

●

●

●
●●

● ●
●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●
●

●●

●●

●
●

●

●

●
●

● ●

0 10000 20000 30000 40000 50000

0.
00

1
0.

10
0

10
.0

00

y[
ca

te
go

ry
.1

, "
ca

lc
.ti

m
e"

] ●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●● ●
●● ●●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

● ●●

●
●

●

●

●

●

●

● ●
●●

●
●●

●

●
●

●

●

●

●

● ● ●

●
●

●●
●● ●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●●
● ●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●
●

●

●●

●

●
●

●
●●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

● ●

●●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●●
●

●

●
●

●

●

●

●
●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

● ●
●

●

● ●●

●

●

●
●

●●●
●

●

● ●

●

●
●

●

●
●

●

● ●

●

●● ●
●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●●

●

●
●

●

●
●

● ●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ● ●

●●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

● ●●
●

●●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●
●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●●
●

●

●
●●

●

● ●

●●

●

●

●

●

●
●

●●

●●

●

●

●

●

● ●

●

●

●●

●●

●● ●●
●

●

●

●

●

●

●

●

●

●

●●
● ●●

●

●
● ●●

●

●●
●

●

● ● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●
● ●●

●

●

●

●
●

●

● ●●

●

●

●
●●

●
●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●
● ●

●
●

● ●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●●
●

●
●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

●

●●
●

●

● ●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●●

●

●
●

●

●
● ●

●
●

●● ●
●

●

●

●

●●

●

●
● ●●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

● ●
●

●

●

●

● ●

●
●

●
●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

● ●

●

●

●●
●

●

●

●

●

●●
● ●

●
●

●

●●
●

●

●

●

●
●

●

● ● ●●
●● ●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●
●

●

● ●

●
●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●●

●

●●
●
●●

●

●

●

●

●

●

●●

●●

●●

●

●

●

● ●
●

●

●
●●

●

● ●●
●●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●
●●

●
●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●
●●

● ●●

● ● ●

●

●

●

●

●

●● ●● ●
●

●

●

●
●

●
●

●

●●● ●

● ●

●●

●

●●●

●

●
●

●
● ●

●
●

● ●

● ●

● ●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●● ●
●

●

●

●●

●●

●
●

●

●

●
●

● ●

●

●

●

●

●
●●

●

●

● ●
● ● ● ●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●

● ●

●

●●

●

●
●

●

● ●

●●

●

●

●

●
●

●●

●

●

●

●
●●

●

●
● ●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

● ●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

●
●

●
●

●●
●

● ●

● ●

●

●

●●

●
●

●

●

●

●
● ●

●

●●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●● ● ●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●●

●

●

●

● ●

●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

● ●●

●

●

● ●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●●
●

●●
●

●

●

●
● ●

●

● ●●
●

●
●● ●
● ●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

● ●
● ●

●

● ●
●

●

●

●

●●

●

●●

●
●

●

●

●

●●
●

●●

●

●

●

● ●
●●

●
●

●

●

●

●
●

●
●

●● ●●
●

●
●●

●

●

● ●● ●
●

●

●
●

●● ●
● ●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●
●

●

●
●

●
● ●●
●

●

●
●

●

●

● ●
●

●
●

●
●

● ●
●

●

●
●

●●
●

●

●

●●
●

●●
●

●●

●

●

●

●

●●

● ●●

●
●

●

●

●

●
● ●

●
●

●● ●

●
●

●

●●
● ●● ●

●
●●●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●●

●

● ●
●

●
●

●●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●
●
●●

● ●●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●
●●

●
●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●● ●

●
●

●

●

●●

●

●

●
●●

●
●●● ●

●● ●
●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●●

● ●
●

●

●

●
●

●

●

●
●

●●●
● ●●

●

●

●

●

●

●

● ●

●

●
●

●●

●
●

●
●

●●

●

●

●●

●

●
●●

●
●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●
●●

●

●

●

●

● ●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

● ●
●

●

●

●●
●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●●
●●

●
●

● ●
● ●

●

●

●
●

●

●
●

●
●

●
●

●

●●

● ●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●● ●

● ●
●

● ●

●

●

●

●

● ●●

●

●

● ●●
●

●

●
●

●

●
● ●

●
●

●

● ●

●

● ●●●
●●● ●

● ●

●

●●

●

●

●

●

●
●●●

●

●

● ●

● ●

●
●

●

●●

●

●
●

●

●
●

●

●

● ●●
●●

● ●

●

●

●
● ●● ● ●

●

●
●

●
●

●

●

●

●● ●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
● ●

●●

●
● ●

●●
●

●
●●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●● ●

●
●

●

● ●● ●

●

●
●

●●

●

●

●

●

●●
●

●
●

●

●

●
●● ●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●●●

● ●●

●

●

●

●
●

● ●
●

●

●

●
● ●

●

●

● ●

● ●

● ●

●
●● ●●

● ●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●●●

●
● ● ●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●
● ●●

●

●
●

●
●

●
●

●
●

●
●●

●

●

●
●●

●
●●

●

●
●

● ●●●
●

●

● ●
●

●

●
●

●

●

●

●
●

●●

●

● ●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●
●

● ●

●

●
●

● ●●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●●

●

●

● ●●

●
● ●

●

●

●

●
●

●

●
●

●

●
●● ●

●
●

●

●
●

●
●●●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●
●●

●

●
● ●●

●
●

●

●

●
●● ●●

●

●

●

●

●

●
●●

● ●

●

●

● ●

● ●●

●

●

●

●

●
●●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●
●

●

● ●
●

●●
●

●

●

●

●● ●
●

●

●

●

●●

● ●
●

●

●●●

●

●
●

●

●

●

●

●

●● ●●●

●

● ●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●
●

●

●●
● ●●

●

●
●

● ●●

●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

●●●●

● ●● ●

●

●
●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●●

●
●

●

●●

●●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●● ● ●
●● ●

●

●
●●

●

●

●

●
●

●
●

●

●

●
● ●● ● ●

●

● ●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●
●

●
●

●
●

●
●

●

● ●● ●
●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

● ●
●●

●

●●
●

●

●
●

●

●●

●

●●

●

●

●

● ●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●
●

●

●

●
●●

●
●

●

●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●●

●

●

●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●●

●

●

●

●●

● ●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●
● ●

●

●

● ●
●●

●

●

●
● ●

●

●● ●

●

●

●

●

●
●

●

●

● ●
●

●
●

●
●●

●

●
●

●

●

●
● ●

● ●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
● ●

●

●●

●

● ●

● ●●
●

●
●

● ●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●● ●●

●

●●
●

●

●

●
●

●

●

●

●
●●

●●
●

● ●
●

●

●
●

●
●

●●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

● ●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

● ●
●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

● ●●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●●

● ●
●

●
●

●

●● ●

●

●

●

●

●●●
●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●● ●
●

●

●

●●●
●

●

●●●

●

● ●
●

●●

●

●
●

●

●

●

●
● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●
●

●

●

●●
●

● ●
●

●● ●
●

● ●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●
●

● ●
●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●●

●

●
● ●

●
●

● ●
●

●

●

●

●

●● ● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●
●

●

●
●

●

●
● ●

●

●
●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●●

●

●● ●
●

●●
●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
● ●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

● ●●

●
●

●
●

●

●

●●●

●

●

●

●● ● ●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●●

●
●

●●●

●

●
●●

● ●
●

●

●

● ●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●

● ● ●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
● ●

●

●●

●

●●

● ●

●

●
●

●
●

●
●

●● ●

●
●

●
●

●
●

● ●
●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
● ●

●

●
●

●

●

●

● ●

●
●

●
●

●

● ● ●●
●

●

●
●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●
●

●
●

● ●● ●

●●

● ●

●●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●
●●

●

●
●

●

●

●

●●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

● ●

●
●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●
● ●

● ●

●

●
●

●

● ●

●

●

●
●

●●
●

●
●●

●

●● ●

●

●
●

●

● ●
●

●

●

●

●

●
●

●●

●

● ●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●
●●

●
●●

●
●

●●
●

●

●●

●

●

●
●
●

●

●
●

●

●
●●●
●
●
●●

●
●

●
●●

●●

●

●

●●

●

●
●●
●
●

●

●

●
●●

●
●●

●

●

●

●●●

●

●
●

●

●

●●●
●

●●

●

●●●

●●
●●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●

●●

●

●

●●●●●
●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●●

●●●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●
●●●
●
●
●●●
●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●●●
●
●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●
●

●

●
●

●
●●●

●
●

● ●
●
● ●

●
●

●●
●

● ●

●

●

●●●
●

●

●
●

●

●

●
● ●

●

●
●

●

●●
●

●

●
●

●

●
●●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

● ●●
●

●
●

●

●

●
●

●

●

●
● ●

●●
●●

●

●
●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

●

●●

●
●●

●

●●

●●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●

● ●

●●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●
● ●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●
●

● ●
●

●

● ●

●

●●
●

● ●
●

●

● ●

●

●
●●

●

●
●●

●

●
●●

●

●

●●

●
●

● ●
●

●
●
●

●
●

●
●

●

● ●

●

●

●

● ●

●
●

● ●●●

●
●

●
●

●
●●

●
●●

●●
●

●

●

●
● ●

●

●

●
●

●
●
●

● ●
●

●
●

●●

●● ●
●

●●
●● ●

●

●
●●●

●
●

●

● ●

●
●

●

●
●

●

●
●

● ●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●
● ●●

●

●● ●

●

● ●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●● ●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●
● ●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

● ●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

● ●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

● ●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●
●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●● ●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

● ●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●● ● ●

●

●

●
● ●

●

●
●

● ●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ● ●

●
● ●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ● ●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●
●

●

● ●
●

●

● ●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●●●

●
●

●

●

●

●

●
● ●

●

●
●

●
●

●●

●
●

●●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

●●

●

●
●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
● ●

●
● ●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●
● ●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●
● ●

●● ●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

●

● ●

●
●

●

●●● ●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●●●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

0 10000 20000 30000 40000 50000

0.
00

1
0.

00
5

0.
05

0
0.

50
0

y[
ca

te
go

ry
.1

, "
ca

lc
.ti

m
e"

]

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

● ● ●

●

●
●

●

●
●

●

●
●●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

● ●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

● ●

●

●

● ●
●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●● ●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
● ●

●

●
●

●

●

●

●

●

●

●

● ●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●●

●

●
●

●
●

●●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

● ●
●

●

●●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

● ●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
● ● ●

●

●
●

●

●

●

●

●
●

●

●

●

●●
● ●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

●
●●●

●

●

●
●

● ●

●

●

●

●

● ●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●●

●

●
●

●

●
●●

●●

●
●

●●
●

●

●
●

●
●●
●●

●

●

●

●
●●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

● ●

●
●

●
●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●
●
● ●

●
●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

● ●

●

●
●

●

● ●

●

●●

● ●
●

● ●

● ●
●

●

●

●

●

● ●
●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

FIGURE 7.3: Run-time of each s-d-query in the default scenario (left)
and according to restricted waiting policy (right), lbMin(ψs,d) on abs-
cissa and run-time in seconds on ordinate (on a logarithmic scale).

Points are colored by category. Scales differ.

a break. This speeds the calculation up by a factor of 40 over all queries. In the
parking subset scenario, we allow waiting only at larger parking lots. We run the
algorithm on the Germany 2017 network but the search graphs differ. Compared
to the default setting, the smaller size of the core graph leads to faster one-to-many
profile range queries (approx. by a factor of 7.5) but slower one-to-one profile range
queries (approx. by a factor of 1.2). In both of these scenarios, not all queries can be
solved. Solution quality is discussed later.

The naive approach does not make use of the acceleration based on partial profiles
as described in section 7.3.1 but still CH as in section 7.3.2. Because of the long run-
time of the naive approach, the run-times are based on the reduced query subset 2017
(see Table 7.2). For better comparability, we also give the run-times of the default
scenario for the reduced query subset. An achieved speed-up of 25 over all queries
proves the effectiveness of our described acceleration in general. The main aspect
of it is the computation of only partial profiles that concerns category C3 primarily.
Here, we even achieve a speed-up of almost 40.

In case of the Germany 2006, we run the accelerated approach on the 2006 road
graph that was used in the original TCH publication (Batz et al., 2013). The run-time
is smaller by an order of magnitude compared to our recent data.

Some more numbers are of interest. A crucial issue of our bounds-based accele-
ration is to find a (good) upper bound ubEA(d). In the default scenario, there are 113
cases in which such a bound cannot be determined and so a complete profile needs
to be searched for backwards. A complete profile search backwards takes 138.7 s
on average. In contrast, a profile range search is performed in 5168 cases and takes
5.8 s on average. The mean length of these ranges, i.e. ubEA(d)− lbEA(d), is 604 s.
A second important aspect of the acceleration is to avoid the profile (range) search
forward if the set Red4 is empty. This set contains elements only in 50 cases and then
only a few, most often just one. Figure 7.4 shows a sample query with empty set
Red4.

7.4. Experiments 139

FIGURE 7.4: Sample query from Hamburg to Dresden in the default
scenario (left) and in the parking subset scenario (right). Different
parking lots (P) are selected. The largest squares represent the sets

Blue3 and Red3.

Results on Quality. Table 7.4 compares the solution quality of the default scena-
rio to the restricted waiting and the parking subset scenario. The results of the naive
approach are identical to the default, and the results of Germany 2006 are hardly com-
parable, particularly since the driving times in this setting are based on a car model.

In the default setting, 9558 of 10 000 queries can be solved. We observe that the
travel time, i.e., the driving time plus all waiting time (at s and at parking), exceeds
15 hours in some cases, presumably to exploit the short driving times during the
night. Such a solution is feasible according to our problem statement but most likely
it would neither be acceptable in practice nor legal as truck drivers have to take a
sleep rest daily. In the following, we call a solved query legal if the travel time does
not exceed 15 hours. In case of the restricted waiting policy, a solved query is always
legal.

We also state how many queries are solved (legally and) optimally, i.e., how often
is the calculated earliest arrival at d identical to the default scenario. In the parking
subset scenario, this happens in 58% of the cases, even though there are less than 12%
of the parking lots in the subset. Parking lots with more than 30 parking bays are
most often located right next to a freeway (Autobahn in Germany), whereas many
of the small parking lots are further away from it. In the restricted waiting scenario,
only 21 of the solved queries are not solved optimally. So in the vast majority of the
cases, the computational effort spent on taking waiting of any duration into account
does not pay off. For instance, short-term waiting is scheduled only 11 times in the
default scenario.

TABLE 7.4: Comparison of solution quality for different scenarios.
Mean and maximum deviation is in seconds over all queries that are

legal but not optimal.

Scenario solved legal optimal & legal mean dev max dev

Default scenario 9558 9512 9512 0 0
Restricted waiting 9474 9474 9453 1211 2265
Parking subset 9518 9470 5518 127 17559

140 Chapter 7. Truck Driver Routing on Time-Dependent Road Networks

7.5 Enhancement to Multiple Stops

Our algorithm is tailored to the one-stop case. What are the implications if we allow
more than one stop? For instance, if there were two drivers on board, they could take
turns and stop three times for a change before they must take a rest and sleep. From a
conceptual perspective, the multi-stop case is not too difficult. Let Ps be the parking
locations that are reachable from s at some point in time without taking a break
along the path, and let Pd be the parking locations that are potentially reachable
backwards from d, i.e., lbMin(ψpd,d) ≤ limit for all pd ∈ Pd. Moreover, suppose
we had precomputed a |P| × |P| matrix M of travel time profiles such that for two
parking locations ps and pd, M[ps, pd] maps the departure time from ps (where the
driver is expected to have taken a break) to the shortest travel time to pd, including
as many breaks as needed and also one at pd (unless ps = pd). With this, a truck
driver route query boils down to three steps: First, we compute the earliest arrival at
every ps ∈ Ps. Then, we determine the earliest departure from every pd ∈ Pd with
the help of M as follows:

ED(pd) = min
ps∈Ps

EA(ps) + break + M[ps, pd](EA(ps) + break)

Having done that, we can finally calculate the earliest arrival at d, also checking if d
could be reached without any break.

We could easily adapt the restricted waiting policy heuristic to this general case.
It is short-term waiting that makes the computation of the earliest arrival at every
ps ∈ Ps challenging. In order to do so, we could propagate a time-dependent
function forward (here: mapping an arrival time to the minimum accumulated dri-
ving time). But as we have seen, propagating a time-dependent function is expen-
sive. So from a practical point of view, it would be important to again find ways of
narrowing down the search, like finding good bounds and only propagating partial
functions as we have demonstrated before. In addition to this challenge, our as-
sumption that we have a matrix M in memory is not realistic. Due to the superpoly-
nomial complexity of the travel time profiles, we would most likely need hundreds
of GB of main memory for the parking lots in Germany. So the question is raised
what a good trade-off would be between memory consumption and computational
effort (and solution quality).

7.6 Conclusion and Outlook

We have introduced the truck driver routing problem and described an exact algo-
rithm for it. While a naive approach would be far too costly in time and space, it
can be made feasible using our two proposed acceleration methods. One is a modi-
fication of TCH. Additionally narrowing down TCH searches by several fast bounds
computations and queries of only partial profiles results in an extra speed-up of 25
and practical run-times. We have also suggested a heuristic based on the policy of
restricted waiting and analyzed its effect. In this setting, truck driver route que-
ries take well below one second without losing too much solution quality. Similarly
effective is the restriction of the parking set to the more relevant parking locations.

In this chapter, we have left out our experiments with approximated driving time
functions. Using the algorithm of Imai and Iri (1987) to approximate the functions
of both original and shortcut edges further reduces the run-time, especially of pro-
file (range) queries. In doing so, we only sacrifice a precision that is not justified in

7.6. Conclusion and Outlook 141

practice. Future work includes a solution to the combined truck driver routing and
scheduling problem for a given sequence of customers by using the results of this
chapter as a building block. Moreover, it would be interesting to reevaluate the exis-
ting work on algorithms for time-dependent route planning on the new benchmark
instance. We conjecture that other shortcut-based methods such as TD-CRP (Baum
et al., 2016) also suffer significantly from the new instance. It could be promising
to further investigate shortcut-free approaches like the ALT algorithm (Delling and
Nannicini, 2012).

Our algorithm will also be evaluated in the EU research projects AEOLIX and
Clusters 2.0.

143

Chapter 8

Truck Driver Scheduling and
Routing on Time-Dependent Road
Networks

In the truck driver scheduling problem, a truck driver needs to visit some customers
in a given order and tries to find a schedule such that not only every customer is
visited within one of the customer’s time windows but also the regulations on breaks
are respected. For instance, the European Union stipulates a break of (at least) 45
minutes after (at most) 4.5 hours of driving. In the truck driver scheduling and routing
problem, also the underlying road network and dedicated parking locations within
the network are considered. Here, one is not only interested in a schedule but also
in a route in the network from the first to the last customer via the other customers
and (if need be) some parking locations. In our study, we regard the time-dependent
scenario in which the driving time along a segment of the network depends on the
time of day. So the optimal route (and schedule) may vary over time. In this setting,
the objective is to find a route and a corresponding schedule such that the customers
are visited in time, the regulations on breaks are respected, and the finish time of the
route is earliest possible within a given planning horizon.

We present the first exact algorithm for the truck driver scheduling and routing
problem. Especially in the time-dependent scenario, an efficient implementation is
crucial due to the complexity of driving time profiles. Hence, we describe accele-
ration techniques. These are based on the ideas already presented in chapter 7. In
addition, we introduce a heuristic that is at least two orders of magnitude faster
than the exact approach (despite our acceleration efforts) and still does not sacrifice
much of the quality of the exact approach. We evaluate our algorithms by letting
both randomly generated and real-world queries run on a recent network instance
of Germany.

8.1 Introduction

After investigating the truck driver scheduling problem in chapters 3 through 5 and the
truck driver routing problem in chapter 7, we now turn towards the combined truck
driver scheduling and routing problem. In this problem, we are given a road graph.
Some of the vertices in the graph represent customers that have to be served by a
truck driver in a given order and within certain time windows. Some other vertices
in the graph represent parking locations where the driver is able to park the truck
in order to take a break. A break may become due according to some rules that
are specific for a certain variant of the truck driver scheduling and routing problem.
The objective is to find a route in the graph that connects the customers in the given

144 Chapter 8. Truck Driver Scheduling and Routing

order and a schedule within a given planning horizon that respects the customers’
time windows as well as the rules on breaks. When a break is scheduled, the driver
must be at a customer or at a parking location. At any other location, the driver
cannot stop. Among all feasible schedules, we look for one for which the finish time,
that is, the time when the final customer is served, is earliest possible.

A simple example of a road graph with parking locations is given in Figure 8.1.
Suppose the driving time between consecutive customers is 1 time unit each, the
customers’ time windows are non-restrictive, and a break becomes due after slightly
less than 2 time units of driving. One feasible solution is to take exactly one break at
the parking location p5. It is better than taking a break at p2 because the detour via
p5 is shorter than the detour via p2. Another feasible solution is to take a break both
at customers c2 and c3. In case an additional break takes less time than the detour
via p5, this is the best solution.

In general, several rules may apply to the same type of break. In this chapter,
we consider only one break rule. In the European Union, a truck driver may no
longer drive after accumulating 4.5 hours of driving since the last break unless he
takes another break of at least 45 minutes (European Parliament and Council of the
European Union, 2006). We call this the drive until driven rule or simply the EU rule.
For the sake of completeness, we mention that a driver is allowed to take the break
in two parts, a first split break of at least 15 minutes and a second split break of at
least 30 minutes. However, this remains disregarded in the following.

In the United States, a similar rule exists. Here, a truck driver may no longer
drive after 8 hours have elapsed since the end of the last break unless he takes anot-
her break of at least 30 minutes (Federal Motor Carrier Safety Administration, 2011).
We call this the drive until traveled rule or the US rule. The focus of this chapter is
on the EU rule but we shortly discuss the differences between the two problem va-
riants and also necessary changes to our algorithm later (section 8.3.2.6). Both in the
EU and the US, also the total driving time per day is restricted (EU: 9 hours, US:
11 hours, see section 2.1). This is ignored in the main part of this chapter. Just like
with the US rule, we discuss the implications of this additional constraint towards
the end of this chapter (section 8.7).

Besides regulations on breaks, we also take predictable congestion in the road
network into account. Typically, the driving times are highest during the rush hours
in the morning and the early evening and lowest during the night. To model this,
the weight of a graph’s edge is supposed to be a function over time that maps the
departure time from the tail of the edge to the time it takes to traverse it.

With time-dependent driving times, one of the differences between the EU and
the US rule becomes apparent. In the EU, short-term waiting, that is, waiting for less
than the minimum break duration, may pay off. For instance, it may be favorable to
stop at a parking location for only a short period of time when the remaining driving
time to the next customer decreases over time. In the US, a break becomes due after
a certain time has elapsed and thus voluntary waiting has no advantage. This is at
least true if, from two drivers who take the same road(s), the one who departs later
also arrives later. This property is called the strict FIFO property (first-in-first-out).

In this chapter, we assume that the strict FIFO property holds for the driving time
functions of all edges. If the FIFO property was not satisfied for all such functions,
the time-dependent truck driver scheduling and routing problem would become
NP-hard (Sherali, Ozbay, and Subramanian, 1998; Dean, 2004).

In the following, short-term waiting at parking locations is not taken account of.
If a driver stops at such a location, we require him to stay at least for the minimum
break duration. However, we do consider a prolongation of that break. We disallow

8.1. Introduction 145

c1 c2 c3 c4

p1 p2 p3

p4 p5 p6

FIGURE 8.1: Example road graph with parking locations.

short-term waiting en route for two reasons: One is that, considering the uncertainty
of traffic forecasts, a scheduled short-term waiting period at a parking location is
most likely not wanted in practice. Another is that it is shown in chapter 7 that it is
of little benefit.

As in chapter 7, we solely focus on at most one parking location en route between
consecutive customers. This is not a limitation in practice for a planning horizon of
less than a day. The implications of an enhancement to multiple stops are discussed
in the previous chapter (section 7.5).

In this chapter, we present both an exact approach and a heuristic for the descri-
bed variant of the truck driver scheduling and routing problem on time-dependent
road networks. Analogously to section 7.3.1 from the previous chapter, we describe
how to accelerate the exact approach by computing bounds first. With the heuristic,
we aim to find a solution with a good trade-off between run-time and quality. Espe-
cially, we want to know what quality we can expect when we only allow a run-time
of less than a second on average. Both algorithms are evaluated on the same road
graph of Germany as in the previous chapter 7 and with regard to both random and
real-world test queries.

Related work To the best of our knowledge, the truck driver scheduling and rou-
ting problem has not been studied before, except from the master theses of Shah
(2008) and Kinz (2016), and the bachelor thesis of Bräuer (2016). Shah (2008) pre-
sents a heuristic for a slightly different variant of the time-dependent truck driver
scheduling and routing problem in which breaks can be scheduled at every vertex
in the graph. Kinz (2016) studies a time-independent variant of the truck driver
scheduling and routing problem without the limitation to a single parking location
between consecutive customers. Bräuer (2016) describes an exact approach for the
same truck driver scheduling and routing problem as in this chapter and also consi-
ders the time-dependent scenario. This chapter builds upon that work and enhances
it in different directions.

Related to our problem at hand are the problems studied by Kok, Hans, and
Schutten (2011) and Koç et al. (2016). In both papers, a mixed integer linear program-
ming formulation for the truck driver scheduling problem is proposed. Kok, Hans,
and Schutten (2011) even regard the time-dependent variant of the problem. Koç
et al. (2016) include real-world data of interstate rest areas into their experimental
analysis. However, in both papers, the route in the road graph between two custo-
mers or between a customer and a rest area is fixed. Likewise related are the electric
vehicle routing problem with truck driver scheduling (Schiffer et al., 2017) and the
traveling salesman problem with multiple time windows and hotel selection (Baltz
et al., 2015). In these two problems, one seeks to find an optimal order in which
the customers are to be visited. This makes these problems NP-hard in contrast to

146 Chapter 8. Truck Driver Scheduling and Routing

(at least the time-independent variant of) our problem at hand (see section 8.3.3 on
complexity).

Tuin, Weerdt, and Batz (2018) investigate the truck driver routing problem with
truck driving bans. In their scenario, the driving time on a road segment does not
change over time whereas the travel time does. This is due to the driving bans.
In Germany, for instance, driving a truck is forbidden on every Sunday between
midnight and 10 pm. The authors do not consider explicit parking locations. Instead,
it is assumed that waiting is possible everywhere and at any time.

Outline First, we give a formal definition of the present variant of the truck driver
scheduling and routing problem in section 8.2. Then, we show how to solve it ex-
actly and how to implement the algorithm efficiently. The presentation of the exact
approach is spread over two sections. While the focus is on the inherent scheduling
problem in section 8.3, the focus of section 8.4 is on the inherent routing problem.
Subsequently, the heuristic is described in section 8.5. In section 8.6, we show the
results of the experiments on random test queries and on some real-world test que-
ries, also comparing the exact approach with the heuristic. A problem enhancement
is shortly discussed in section 8.7. Finally, in section 8.8, a conclusion is presented
and an outlook on future work is given.

8.2 Problem Definition

Given is a sequence C = [c1, . . . , cn] of n different customers. Everyone of these re-
quests a certain service that takes servicei time and has to begin within one of the wi
time windows in the sequence [W1

i , . . . ,Wwi
i] for any i between 1 and n. The service is

performed by a truck driver who has to comply with provisions on breaks when vi-
siting the customers in the given order. In addition, the driver only operates within a
time interval H, called planning horizon. W.l.o.g. the driver is assumed to be located
at the first customer when the planning horizon begins.

Also given is a road graph G = (V , E) where V denotes the set of vertices and E
the set of edges. All customers in C are contained in V . Some of the vertices in V \ C
constitute the setP of parking locations that correspond to those areas where the truck
driver may park the vehicle in order to take a break. For every edge (u, v), there is
a corresponding driving time that may vary over the time of day. In general, we call
a function that maps the time of departure from a vertex u to the shortest driving
time in G to some other vertex v the (driving time) profile of (u, v). For every edge
(u, v) ∈ E , a profile Pu,v : R → R+ belongs to the input. It is supposed to be given
as a piecewise linear and continuous function that respects the strict FIFO property.
For a vertex pair (u, v) /∈ E , we can derive the profile Pu,v recursively either forward
or backward using the link operation � and the merge operation ⊕ (unless v is not
reachable from u in G):

Pu,v :=
⊕

w : (w,v)∈E
Pu,w� Pw,v or Pu,v :=

⊕
w : (u,w)∈E

Pu,w� Pw,v (8.1)

where Pu,w� Pw,v is defined to be Pu,w + Pw,v ◦ (id+Pu,w) and Pu,w⊕ Pw,v defined to
be the minimum of the two functions. And id denotes the identity function with
id(t) = t for all t.

A truck driver route R for a sequence C = [c1, . . . , cn] of n customers is a se-
quence [(uk, vk)]1≤k≤` of n − 1 ≤ ` ≤ 2(n − 1) vertex pairs, called route segments,

8.2. Problem Definition 147

such that every vk is reachable from uk in G and the following conditions hold:

u1 = c1 (8.2)
uk = ci ⇒ vk = ci+1 ∨ (vk ∈ P ∧ vk+1 = ci+1) for all k < `, i < n (8.3)
uk+1 = vk for all k < ` (8.4)
u` = ci ⇒ v` = ci+1 for all i < n (8.5)
v` = cn (8.6)

Here, constraint (8.3) makes use of the restriction to at most one stop en route bet-
ween two customers. Note that while we demand all customers to be different, the
same parking location may be visited multiple times.

A truck driver schedule for a truck driver route R = [(uk, vk)]1≤k≤` is a triple
(D,A,B) of three sequences of points in time: For all k ≤ `, let D[k] be the sche-
duled departure time from vertex uk, and A[k] be the scheduled arrival time at vertex
vk. For all i ≤ n, B[i] denotes the scheduled start time of the service at customer i. A
truck driver schedule is feasible only if the following basic conditions hold:

α(H) ≤ B[1] ≤ D[1]− service1 (8.7)
B[i] ∈ Wi for all i ≤ n (8.8)
D[k] + Puk ,vk(D[k]) ≤ A[k] for all k ≤ ` (8.9)
vk = ci ⇒ A[k] ≤ B[i] ≤ D[k + 1]− servicei for all k < `, 1 < i < n (8.10)
vk ∈ P ⇒ A[k] ≤ D[k + 1]− break for all k < ` (8.11)
A[n] ≤ B[n] ≤ ω(H)− servicen (8.12)

where break denotes the minimum break period, α(H) the beginning of the planning
horizon, ω(H) its end, andWi the multi-interval of the time windows of customer i
(recall sections 2.4.1 and 2.4.3). According to (8.11), we demand that the driver stays
at a parking location at least as long as break.

In addition, we need to specify when a break becomes due. In this chapter, we
focus on the rule drive until driven, i.e., after the driver has driven for a while, he is
no longer allowed to drive, unless he takes a break of length break. Let limit be the
maximum allowed accumulated driving time without break. After a break of at least break
time, he is considered as completely rested and may drive again until he has driven
for another limit time at most.

Before we give a complete definition of a feasible truck driver schedule, we in-
troduce the notion of a break index. Let a break index be an index k < ` such that for
all i ≤ n

vk = ci ⇒ A[k] + break ≤ B[i] ∨ B[i] ≤ D[k + 1]− servicei − break (8.13)

holds (compare (8.10)). That is, either vk is a parking location, or there is enough
buffer for a break at the customer at which the driver arrives at the end of the k-th
route segmentR[k].

So a truck driver schedule is feasible only if the driving time of every route seg-
ment does not exceed limit. If the total driving time of several consecutive route
segments does exceed limit, then there must be a break scheduled in between, that
is, there must be a parking location in between or a customer that has enough buffer
for a break. In other words, a truck driver schedule is feasible if and only if the basic

148 Chapter 8. Truck Driver Scheduling and Routing

conditions and the following two additional constraints hold:

A[k]−D[k] ≤ limit for all k ≤ ` (8.14)

∑j
k=j′ A[k]−D[k] > limit⇒

∃k : j′ ≤ k < j ∧ k is a break index
for all j′ < j, j ≤ ` (8.15)

Now we define the truck driver scheduling and routing problem to be the problem
of finding both a feasible truck driver schedule and a corresponding truck driver
route for a given customer sequence - or the information that there is no feasible
schedule. And among all feasible truck driver schedules, we prefer one with the
earliest finish time, that is, the earliest time when the service at the final customer
can be completed.

Problem variant Even though we concentrate on the rule drive until driven in this
chapter, we also define the problem variant with regard to the rule drive until traveled
for the sake of completeness. The only thing we need to do is to replace constraint
(8.15) with the following:

A[j]−D[j′] > limit⇒
∃k : j′ ≤ k < j ∧ k is a break index

for all j′ < j, j ≤ ` (8.16)

8.3 Scheduling Part of the Exact Approach

In this section, we focus on the inherent scheduling problem and do not want rou-
ting issues to distract us. To this end, we disregard the underlying road graph and
instead suppose that we are given an oracle that is able to tell us the driving time
profile for any pair of vertices. This assumption will then be dropped in the next
section 8.4.

The scheduling approach resembles the ones presented in previous chapters.
Again, there are n iteration cycles, so as many iterations as there are customers.
And every iteration is partitioned into steps. This time, we distinguish five of them:
SetupBeforeService, Wait, Serve, SetupAfterService, and Drive. A generic truck driver
scheduling and routing algorithm is outlined in Algorithm 9 (compare Algorithm 1
in chapter 3). Both in step SetupBeforeService and in step SetupAfterService, the same
function Setup of the algorithm is called.

As before, Lstep
i denotes the driver states label at the end of step step in iteration i.

In this chapter, a label comprises nothing but one time-dependent function, which
we call Dstep

i (t) in the following. For a point in time t at the end of step step in
iteration i, Dstep

i (t) denotes the minimum accumulated driving time since the end
of the last (i.e. most recent) break. Since waiting does not increase the accumulated
driving time and is allowed anytime, the function is monotonically decreasing. For
some points in time t, for instance outside of the planning horizon, the function
value may be ⊥, which is to be read as “undefined”.

Algorithm 9 returns the first point in time t at which Dserved
n (t) is defined, or

returns⊥ if such a t does not exist. We use the same notation as in previous chapters:
For an interval I , let α(I) be the beginning and ω(I) the end of that interval. And
for a time-dependent function D, let α(D) be min{t | D(t) 6= ⊥} and ω(D) be
max{t | D(t) 6= ⊥}, or ⊥ if D(t) = ⊥ for every t.

8.3. Scheduling Part of the Exact Approach 149

Algorithm 9: Generic truck driver scheduling and routing algorithm

Input : Ldriven
0

Output: Earliest finish time or ⊥ if no feasible schedule exists
1 forall i = 1 . . . n do
2 Lsetup1

i := Setup (Ldriven
i−1);

3 Lwaited
i := Wait (Lsetup1

i);
4 Lserved

i := Serve (Lwaited
i);

5 if i = n then
6 return α(Lserved

n);

7 Lsetup2
i := Setup (Lserved

i);
8 Ldriven

i := Drive (Lsetup2
i);

c1 c2
0.5

p

2.5

c3
4

2.5

FIGURE 8.2: Example graph with three customers and one parking
location. Free-flow driving times are written on edges.

8.3.1 Initialization

We focus on the offline use case, that is, the trip is planned some time before the
planning horizon. The planning horizon usually begins in the morning and ends
in the evening. And the driver is completely rested when he starts the trip in the
morning.

Ddriven
0 (t) :=

{
0, for t ∈ H
⊥, otherwise

8.3.2 Steps of Algorithm in Detail

Figure 8.2 shows an example graph with three customers and one parking location.
Customer c1 is always open, whereas customer c2 has one time window from 1.5 to
3.5 and c3 one time window from 10.5 to 15. All three customers demand a service of
0.5. The driving time from c1 to c2 is always 0.5, independent of the time of day. The
driving time functions on the other edges are time-dependent and presented later in
section 8.3.2.5. Here, we only state the free-flow driving times. For a single edge, the
free-flow driving time equals the shortest driving time over time, and for a path, it
is the sum of the free-flow driving times of the path’s edges. For an arbitrary pair
of vertices (u, v), it is the smallest free-flow driving time over all paths from u to v.
From c2 to c3, the free-flow driving time is 4, and both from c2 to p and from p to c3,
it is 2.5. Let the planning horizon be from 0 to 15, and break = 3, and limit = 4.

150 Chapter 8. Truck Driver Scheduling and Routing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Time at end of step SetupBeforeService in iteration 2

A
cc
u
m
u
la
te
d
d
ri
vi
n
g
ti
m
e

FIGURE 8.3: Function of accumulated driving times Dsetup
2 .

8.3.2.1 Step SetupBeforeService

The driver may take a break immediately after arrival and before service. This may
be beneficial if the driver would otherwise have to wait. To take that into account,
we simply reset the accumulated driving time to 0 for every point in time that is
break later than the earliest possible arrival time, which is simply the first defined
point of Ddriven

i−1 .

Dsetup1
i (t) :=

Ddriven

i−1 (t), t < α(Ddriven
i−1) + break

0, α(Ddriven
i−1) + break ≤ t ≤ ω(H)

⊥, otherwise

Figure 8.3 depicts Dsetup
2 as in the example. The earliest possible arrival α(Ddriven

1)
at customer c2 is at time 1, after 0.5 of service and 0.5 of driving. In step SetupBefore-
Service, all function values starting from 1 + break = 4 are reset to 0.

8.3.2.2 Step Wait

Before service, it may be necessary to wait for a time window to open. However
with time-dependent driving times, it may also be beneficial to wait after service.
This is because traffic may clear over time, and thus a favorable parking location or
the next customer may become reachable only at a later departure time. Or suppose
the next customer opens rather late so there is waiting time when the driver departs
right away after service. If the driver wants to be at the next customer when the next
time window opens, he rather waits for the shortest driving time that still takes him
to the next customer in time. In step Wait, we take account of waiting both before
and after service.

To this end, we introduce the following notation for this step: For the multi-
interval Wi of the wi time windows of customer i, let W i denote the multi-interval
of the time periods between or after the time windows of customer i, i.e.,

W j
i := (ω(W j

i), α(W j+1
i)) for all 1 ≤ j < wi, andWwi

i := (ω(Wwi
i), ω(H)].

(Note that we expect all time windows to lie within the planning horizon H, as
already stated in section 2.4.1.) We call these favorable departure waiting intervals.
Their definition resembles the one of the waiting intervals (compare section 2.4.3).

8.3. Scheduling Part of the Exact Approach 151

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Time at end of step Wait in iteration 2

A
cc
u
m
u
la
te
d
d
ri
vi
n
g
ti
m
e

FIGURE 8.4: Function of accumulated driving times Dwaited
2 .

In the following, let us suppose the service time servicei at the current customer
is 0. When the driver arrives inside a time window, there is no reason to wait, so
we set Dwaited

i (t) := Dsetup1
i (t). But what about a time t inside a favorable departure

waiting interval? Service is not allowed to begin at time t but it is at the end of the
previous time window. Let t′ < t be the end of that time window. Then we set
Dwaited

i (t) := Dsetup1
i (t′). We summarize:

Dwaited
i (t) :=

Dsetup1

i (t), t ∈ Wi

Dsetup1
i (max{t′ | t′ ∈ Wi ∧ t′ ≤ t}), t ∈ W i

⊥, otherwise

But what if servicei > 0 holds? The service time itself is taken into account in the
next step. Nothing changes in this step because for the accumulated driving times,
it is irrelevant whether the driver first performs service and then waits or the other
way round.

This step can be thought of as a 2-in-1 step. We could have first set the function
Dwaited

i to undefined outside of the time windows, then allow for the service time,
and finally consider the waiting time for a favorable departure after service. The
advantage of regarding waiting both before and after service in the same step is that
this way, we do not introduce any gaps in the function of accumulated times.

Function Dwaited
2 in our example is pictured in Figure 8.4. This function is no

longer defined over the interval from 1 to 1.5 as it is neither within a time window
nor within a departure interval. All function values after the end of the time window
at time 3.5 are set to Dsetup

2 (3.5) = 1 in order to take account of the possibility to wait
after service.

8.3.2.3 Step Serve

Step Serve is trivial. All we do is shifting the pieces of the function to the right by the
service time servicei and cutting off pieces that go beyond the end of the planning
horizon.

Dserved
i (t) :=

{
Dwaited

i (t− servicei), t ∈ H
⊥, otherwise

152 Chapter 8. Truck Driver Scheduling and Routing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Time at end of step Serve in iteration 2

A
cc
u
m
u
la
te
d
d
ri
vi
n
g
ti
m
e

FIGURE 8.5: Function of accumulated driving times Dserved
2 .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Time at end of step SetupAfterService in iteration 2

A
cc
u
m
u
la
te
d
d
ri
vi
n
g
ti
m
e

FIGURE 8.6: Function of accumulated driving times Dsetup2
2 .

Figure 8.5 presents function Dserved
2 . The one piece of Dsetup

2 is simply shifted
to the right by the service time of 0.5. The fact that waiting after service could be
advantageous is already taken care of in step Wait.

8.3.2.4 Step SetupAfterService

The driver may take a break after service and before departure. To take that into
account, we reset the function values to 0 for every point in time that is break later
than the earliest possible time α(Dserved

i) at which service may be completed. This is
analogously to step SetupBeforeService.

Dsetup2
i (t) :=

Dserved

i (t), t < α(Dserved
i) + break

0, α(Dserved
i) + break ≤ t ≤ ω(H)

⊥, otherwise

In our example, function Dsetup2
2 looks as depicted in Figure 8.6.

8.3.2.5 Step Drive

Since we request all driving time functions on the road segments to respect the strict
FIFO property, so do the computed driving time profiles such as Pu,v for the driving
time from u to v. It follows that the function id+Pu,v that maps a departure time

8.3. Scheduling Part of the Exact Approach 153

to an arrival time is bijective. So we can define Pu,v := id−(id+Pu,v)−1 to be the
function that maps an arrival time at v to the corresponding driving time from u to
v. Even though strictly speaking not correct, we do not see a danger of confusion
when we call Pu,v the inverse driving time function between u and v in the following.
In the remainder of this section, we assume that the inverse driving time functions
are known between every two customers and between every customer and every
parking location (or vice versa). Details on an efficient implementation of this step
are explained in section 8.4. In this section, we focus on the concept.

Given the inverse driving time function Pci ,ci+1 between the current and the next
customer, we can compute the earliest arrival at customer i + 1 if not taking a break
en route, which we denote by aci ,ci+1 in the following. We need to consider that the
driver cannot depart earlier than α(Dsetup2

i), and on arrival, the minimum accumu-
lated driving time since last break must not exceed the driving time limit. So the
earliest arrival is at time aci ,ci+1 := min{t | t − Pci ,ci+1(t) ≥ α(Dsetup2

i) ∧ Dsetup2
i (t −

Pci ,ci+1(t)) + Pci ,ci+1(t) ≤ limit}. With this, we set an auxiliary function D′ci ,ci+1
that

maps an arrival time to the minimum accumulated driving time since last break in
case we ignore all parking locations:

D′ci ,ci+1
(t) :=

 min
aci ,ci+1≤t′≤t

{Dsetup2
i (t′ − Pci ,ci+1(t

′)) + Pci ,ci+1(t
′)}, t ≥ aci ,ci+1 ∧ t ∈ H

⊥, otherwise

Now we turn towards the case that the driver takes a break at a parking location
p ∈ P en route between the two customers. Let in this case the earliest arrival at
p be denoted by aci ,p and the earliest arrival at ci+1 by ap,ci+1 . Analogously to the
definition of aci ,ci+1 , we set aci ,p := min{t | t − Pci ,p(t) ≥ α(Dsetup2

i) ∧ Dsetup2
i (t −

Pci ,p(t)) + Pci ,p(t) ≤ limit}. For the earliest arrival at customer i + 1, we exploit that
we excluded the possibility of short-term waiting, that is, the driver always takes a
break at a parking location. We set ap,ci+1 := min{t | t− Pp,ci+1(t) ≥ aci ,p + break ∧
Pp,ci+1(t) ≤ limit}. Again, we use this to set an auxiliary function D′p,ci+1

. It maps an
arrival time to the minimum accumulated driving time since last break in case the
driver stops at parking location p:

D′p,ci+1
(t) :=

 min
ap,ci+1≤t′≤t

{Pp,ci+1(t
′)}, t ≥ ap,ci+1 ∧ t ∈ H

⊥, otherwise

Finally we set Ddriven
i (t) to the minimum over the auxiliary functions, that is,

Ddriven
i (t) := min

v∈P∪{ci},D′v,ci+1
(t) 6=⊥

D′v,ci+1
(t)

for every t inside the planning horizon.
Let us get back to our example. The free-flow driving time from c2 to c3 is 4, and

the free-flow driving time both from c2 to p and from p to c3 is 2.5. However, as we
can tell by the Figures 8.7 and 8.8, there is hardly a time when the traffic is flowing
freely. Most of the time, the inverse driving time functions depicted therein lie above
the free-flow driving times.

The driver may either reach the next customer c3 directly or via parking location
p. By construction of the example, c3 is not easy to reach directly as the maximum
allowed driving time is only 4. And so the driver may arrive at c3 not before time

154 Chapter 8. Truck Driver Scheduling and Routing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Arrival time at destination

D
ri
vi
n
g
ti
m
e
to

d
es
ti
n
at
io
n

FIGURE 8.7: Inverse driving time function Pc2,c3 for a drive from cus-
tomer c2 to customer c3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Arrival time at destination

D
ri
vi
n
g
ti
m
e
to

d
es
ti
n
at
io
n

FIGURE 8.8: Inverse driving time function valid both for the drive
from customer c2 to parking location p and from there to customer c3.

10. In order to arrive at that time, the driver has to depart at time 6 from c2. Since
Dsetup2

2 (6) = 0, that is, the driver is completely rested at time 6, the arrival at time 10
is indeed feasible.

Going via the parking location takes longer. The driver may arrive at p not before
time 5 and, as he takes a break there, depart not before time 8. Thus, the driver
reaches c3 not before time 11.

Function Ddriven
2 is shown in Figure 8.9. From 10 until 11, the minimum accumu-

lated driving time since the end of the last break is 4, which can be achieved when
taking the direct way. From 11 until the end of the planning horizon, it is in line with
the inverse driving time function Pp,c3 (the minimum from the left, to be precise) as
depicted in Figure 8.8.

Acceleration by Preprocessing We could pre-compute some bounds to help acce-
lerate our scheduling algorithm. To this end, let drivei be a lower bound on the dri-
ving time from customer i to customer i + 1. With this, we estimate the latest possible
departure time from each customer by first setting lpdn = ω(H) and then recursively
for all i from n− 1 to 1:

lpdi = max{t | t ∈ Wi+1 ∧ t ≤ lpdi+1 − servicei+1} − drivei

8.3. Scheduling Part of the Exact Approach 155

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Time at end of step Drive in iteration 2

A
cc
u
m
u
la
te
d
d
ri
vi
n
g
ti
m
e

FIGURE 8.9: Function of accumulated driving times Ddriven
2 .

We could use this estimate by setting Dsetup2
i (t) to ⊥ for every t > lpdi. This may

help identify infeasible instances earlier.

8.3.2.6 Necessary Changes with Regard To Rule drive until traveled

If we regard rule drive until traveled instead of rule drive until driven, the algorithm
needs to be adjusted. Instead of a function Dstep

i that keeps the minimum accumu-
lated driving time for every point in time, a label now holds a function Tstep

i . For a
time t, Tstep

i (t) denotes the minimum accumulated travel time since the end of the last
break with respect to step step in iteration i. The main difference is that the function
Tstep

i may contain “gaps” in which it is not defined.
The steps SetupBeforeService and SetupAfterService do not need to be altered. In

step Wait, the waiting time must be added to the accumulated travel time. Short-
term waiting is not beneficial. So after service, the driver should either take a break
or depart immediately. There is no reason to wait a little. With the help of the
auxiliary function Hshift(t) (see section 3.3.3.2), we set:

Twaited
i (t) :=

{
Tsetup1

i

(
Hshift(t)

)
+ (t− Hshift(t)), Hshift(t) 6= ⊥

⊥, otherwise

In step Serve, the service time is added to the accumulated travel time:

Tserved
i (t) :=

{
Twaited

i (t− servicei) + servicei, t ∈ H
⊥, otherwise

In step Drive, it may now happen that Tsetup2
i (t) is undefined for some time t. For

the sake of simplicity, we omit to re-write step Drive and introduce special handling
of cases in which the minimum accumulated travel time since last break is undefi-
ned. From an arithmetic point of view, ⊥ can be treated just like ∞.

156 Chapter 8. Truck Driver Scheduling and Routing

8.3.3 Complexity Analysis

Given pre-computed profiles For the time being, let us suppose that all inverse
driving time functions Pu,v between every two consecutive customers as well as bet-
ween every customer and every parking location (in both directions) have been pre-
computed. In addition, let us suppose that all driving time functions are constant
functions for the sake of simplicity. This means Pci ,ci+1 as well as, for every p ∈ P ,
Pci ,p and Pp,ci+1 only comprise one piece. Then how many pieces can Dstep

i comprise
at most?

We observe that in every iteration i

1. Dsetup1
i can have at most one piece more than Ddriven

i−1 ,

2. Dwaited
i can have at most as many pieces as Dsetup1

i ,

3. Dserved
i can have at most as many pieces as Dwaited

i ,

4. Dsetup2
i can have at most one piece more than Dserved

i , and

5. Ddriven
i can have at most |P| pieces more than Dsetup2

i because

• D′ci ,ci+1
can have at most as many pieces as Dsetup2

i and

• D′p,ci+1
has at most one piece for each p ∈ P .

We conclude that Dserved
n comprises at most n(|P|+ 2) + 1 pieces, provided that the

inverse driving time functions are all constant. Over all n iterations, the total number
of created pieces is in n2(|P|+ 1).

As far as the time complexity of the scheduling algorithm is concerned, we ob-
serve that it does not suffice to count the number of created pieces but that the num-
ber of time windows has an impact on the run-time, too. In step Wait of iteration
i, we iterate over the wi time windows of customer i. Hence, the total run-time is
in O(n2(|P|+ 1) + w) (where w is the sum of wi), disregarding the time it takes to
pre-compute the inverse driving time functions. In particular, the time complex-
ity is in O(n2 + w) if there are no parking locations (which then coincides with the
no-break-en-route policy as introduced in chapter 5).

Figure 8.10 shows a graph with two customers and seven parking locations bet-
ween them. By construction of this example, pk is closer to c2 but the detour via this
parking location is larger when compared to pj for any 1 ≤ j < k ≤ 7. Suppose c2 is
not reachable from c1 without a break en route. Then, Ddriven

1 consists of |P| = 7 pie-
ces. Figure 8.11 depicts the corresponding Pareto front of the driving time between
the two customers via a parking location on one hand and the driving time from a
parking location to the next customer on the other hand.

Complexity of computing profiles In case of constant driving time functions on
every edge, the shortest paths from a single source to some other vertices like from
a customer to all parking locations can be computed in O(|E | + |V| log |V|) time
(Fredman and Tarjan, 1987). The same complexity holds for the computation of
shortest paths to a single destination like from all parking locations to the next cu-
stomer. It takes (n − 1) single-source and (n − 1) single-destination (distance re-
stricted) shortest path computations to have pre-computed all necessary profiles. So
the time-independent truck driver scheduling and routing problem can be solved in
polynomial time.

8.3. Scheduling Part of the Exact Approach 157

c1 c2

p1
p2 p3 p4 p5 p6

p7

FIGURE 8.10: ”Pareto front” of parking locations. The closer a par-
king location is to c1, the shorter is the detour but the longer is the

remaining drive to c2.

FIGURE 8.11: Pareto front corresponding to Figure 8.10. Driving time
between customers via a parking location on x-axis and driving time
from parking location to next customer on y-axis. The left-most data

point corresponds to the parking location p1, the right-most to p7.

158 Chapter 8. Truck Driver Scheduling and Routing

With piecewise linear but not necessarily constant driving time functions, the
shortest path between two vertices in the graph can change |V|Θ(log |V|) times, and so
the computed profiles can have super-polynomial complexity (Foschini, Hershber-
ger, and Suri, 2014). This means that in this case, the computation of profiles do-
minates the run-time of our exact truck driver scheduling and routing algorithm.
This complexity is the motivation for the acceleration techniques that are described
in section 8.4.

8.3.4 Schedule and Route Deduction

Algorithm 1 only returns the earliest finish time of a route. But we are also interested
in a corresponding route itself and a feasible schedule. We can deduce both from the
computed functions, and Algorithm 10 shows how.

Algorithm 10: Schedule and route deduction

1 B := A := D := R := ∅;
2 B += α(Dwaited

n);
3 forall i = n− 1 . . . 1 do
4 if B[0] ≥ α(Ddriven

i) + break then
5 A += min{t | Ddriven

i (t) = Ddriven
i (B[0]− break)};

6 else
7 A += min{t | Ddriven

i (t) = Ddriven
i (B[0])};

8 pick a vertex v from arg min
u∈P∪{ci}

D′u,ci+1
(A[0]);

9 R += (v, ci+1);
10 D += A[0]− Pv,ci+1(A[0]);
11 if v 6= ci then
12 A += aci ,v;
13 R += (ci, v);
14 D += A[0]− Pci ,v(A[0]);
15 if D[0] ≥ α(Dserved

i) + break then
16 B += max{t | t ∈ Wi ∧ t ≤ D[0]− break− servicei};
17 else
18 B += max{t | t ∈ Wi ∧ t ≤ D[0]− servicei};

The sequence R of route segments as well as the sequences B,A, and D that
constitute a truck driver schedule are initially empty. The algorithm works from
back to front. The operator “+=” inserts the operand on the right-hand side at the
beginning of the sequence on the left-hand side, so that B[0],A[0], and D[0] refer to
the most recently added points in time. All three sequences remain monotonously
increasing.

We explain the algorithm step by step by the example used in section 8.3.2 (see
Figure 8.2). Customer 3 has one time window that begins at time 10.5. As we can
see in Figure 8.9, the driver is able to be at the final customer right when that time
window opens. So in line 2, the time 10.5 is added to the front of the sequence B that
contains those points in time at which the service at a customer commences.

Next, we want to determine the arrival time at customer 3. As we have already
discussed, c3 cannot be reached before 11 when going via the parking location. We

8.4. Routing Part of the Exact Approach 159

notice that, according to Ddriven
2 (10.5) in Figure 8.9, the minimum accumulated dri-

ving time since last break is 4. But we learn from the inverse driving time function
in Figure 8.7 that the driving time from c2 to c3 is 4.25 when arriving at time 10.5.
This does not match. The accumulated driving time of 4 at time 10.5 can only be
achieved when the driver arrives at 10 and then waits until 10.5. The waiting time
before service is taken into account in line 5 or line 7. In our example, the condition
in line 4 is not fulfilled, so the arrival time is determined in line 7. We observe that
Ddriven

2 (t) equals Ddriven
2 (10.5) for no t earlier than 10. So indeed, it is time 10 that is

added to the front of the sequence A of arrival times.
In general, D′u,ci+1

(A[0]) = Ddriven
i (A[0]) may hold for several vertices from P ∪

{ci}. In line 8, we pick an arbitrary vertex from this list. For our algorithm and our
problem definition, all vertices from the list are equally suitable. However, there
may be additional optimization criteria such as preferences where to take a break,
in which case we may refine this line. In line 9, (c2, c3) is added to R; and in line
10, time 6 is added to the sequence D of departure times. In lines 16 or 18, depen-
ding on whether there is enough buffer for a break, the waiting time after service is
considered. It is assured that every point in time that is added to B is inside a time
window.

After the second iteration of the for-loop, the truck driver route that is finally
returned is R = [(c1, c2), (c2, c3)]. We present the three sequences B,A, and D as
output by the algorithm in Table 8.1.

TABLE 8.1: Truck driver schedule as returned by Algorithm 10 in
case of the example graph as input. The truck driver route is R =

[(c1, c2), (c2, c3)].

c1 c2 c3

B 1.5 2.5 10.5
D 2 6
A 2.5 10

In general, we try to schedule the arrival, departure, and start times as late as
possible. But Algorithm 10 is a heuristic in the sense that there may be a feasible
truck driver schedule with the same finish time but a later start time that is not
found by the algorithm.

8.4 Routing Part of the Exact Approach

We now turn towards the routing part of the exact solution approach. In the des-
cription of step Drive in section 8.3.2.5, we assume to know the inverse driving time
function Pu,v for every u ∈ P ∪ {ci} and v ∈ P ∪ {ci+1}, where at least one of them is
a customer vertex. In the following, we deal with the efficient computation of these
profiles.

Conceptually, computing these profiles is not too involved. A profile search can
be implemented as described by Delling and Wagner (2009). However, the run-
time for computing such a profile depends on the number of its breakpoints, that is,
on the number of points in time at which the slope of the profile changes. As we
have already mentioned in section 8.3.3, that number may grow super-polynomially
in the number of vertices (Foschini, Hershberger, and Suri, 2014). This makes the
profile search by far the most time-consuming part of the exact approach. Hence,

160 Chapter 8. Truck Driver Scheduling and Routing

the focus of this section is on speed-up techniques. We have already introduced
such techniques in section 7.3 of the previous chapter. In the following, we proceed
similar to the approaches described in that section.

One of the acceleration measures is to use time-dependent contraction hierar-
chies (TCH) (Batz et al., 2013). Here, we distinguish a pre-processing phase and a
query phase, and the data collected during the first phase then speeds up the second
phase. It is described in more detail in section 7.3.2. It is re-used in this chapter
without any changes.

Another acceleration method is to narrow down the profile searches and only
compute partial profiles. Partial profiles and profile range queries have been introduced
and defined in section 7.3.1. Here, the basic idea is to first spend little extra time
on finding bounds on the earliest arrival at the next customer. Then, with the aid
of these bounds, we know to which range of a profile we can restrict the profile
queries in step Drive. In comparison with the approach in section 7.3.1, three things
are different:

1. In the previous chapter, we expect the driver to be completely rested when
he departs from the source s. Now, when the driver departs from some cus-
tomer i at time t, we have to consider the driver state Dsetup2

i (t), which is not
necessarily 0 as before. So we have to do more.

2. In the following, we do not consider short-term waiting. This in turn makes it
a little simpler.

3. In the previous chapter, we are only interested in the earliest arrival time at the
destination d. Now, we need to know the driver state on arrival at the next cu-
stomer for a certain time span that begins with the earliest arrival time. It ends
already break later because the accumulated driving time would be reset to 0
for this and any later point in time in the succeeding step SetupBeforeService.

In section 8.4.1, we describe how to find both a lower and an upper bound on the
earliest arrival time at the next customer. Then, in section 8.4.2, we explain how we
use these bounds for the profile range queries.

8.4.1 Computing Bounds on Earliest Arrival Time at Next Customer

In step Drive of iteration i, we are given Dsetup2
i from the previous step. But in

the following, we are interested in this function at only two points in time: Let
tα := α(Dsetup2

i) be the earliest departure time from customer ci and t0 := min{t |
Dsetup2

i (t) = 0} be the first point in time at which the driver is completely rested. In
the first iteration, these are the same points in time. In general, t0 ≤ tα + break holds.

In the following, a single departure query (in contrast to a profile query) asks for
the driving time between customer i and i+ 1 such that the driving time is minimum
with respect to a given departure time but disregarding all break rules. Adding this
minimum driving time to the given departure time yields the earliest arrival at cu-
stomer i + 1 with respect to that departure time, and so it can be seen as a variant
of an earliest arrival query. There are two reasons why we omit the term earliest
arrival query here: One is that “earliest” arrival may suggest that the value is abso-
lute whereas it is with regard to a departure time. Since we consider two significant
departure times, this may cause confusion (calling it lbEA does not help here). The
other - more important one - is that we want earliest arrival to mean earliest arrival
with regard to break rules (absolute, only relative to planning horizon).

8.4. Routing Part of the Exact Approach 161

To find an upper bound on the earliest arrival at the next customer requires some
effort. We describe the procedure in four steps.

1. At first, we conduct a one-to-one single departure search for the departure
from customer i at time tα, which gives us Pci ,ci+1(t

α). With this, we get a lower
bound on the earliest arrival lbEA(ci+1) := tα + Pci ,ci+1(t

α) at the next customer.
If the driver may reach the next customer without due break when departing
at time tα, so if Dsetup2

i (tα) + Pci ,ci+1(t
α) ≤ limit, then the lower bound is tight

and we have found the earliest arrival EA(ci+1) at the next customer. In this
case, we can skip the other steps.

2. We compute a lower bound lbMin(Pci ,ci+1) on the driving time between the
two customers, i.e., we conduct a one-to-one profile bounds query. Should
lbMin(Pci ,ci+1) even be longer than 2 · limit, then we consider the next customer
as not reachable and stop here. If lbMin(Pci ,ci+1) is at least longer than limit,
a break at a parking location is inevitable, so we continue with the next step.
Otherwise we proceed similar to the first step and conduct a second one-to-
one single departure search for the departure time t0. In case Pci ,ci+1(t

0) ≤ limit
holds, it is sufficient to take a break at the current customer before departure.
Then, ubEA(ci+1) := t0 + Pci ,ci+1(t

0) is an upper bound on the earliest arrival at
the next customer, and we skip the other steps again. Otherwise we still look
for a valid upper bound.

3. We perform a one-to-many single departure search to all potentially reacha-
ble parking locations for the departure time tα, together with a profile bounds
search. The latter helps us limit the search space because we can stop sear-
ching if the lower bound on the driving time stored in the label at the top
of the heap exceeds limit. Let P ′ ⊂ P be the subset of parking locations
such that every p ∈ P ′ may be reachable from customer ci at some point in
time, more precisely, those with lbMin(Pci ,p) ≤ limit. For some of these, even
Dsetup2

i (tα) + Pci ,p(t
α) ≤ limit holds, that is, parking location p is known to be

reachable from customer ci at time tα. Let P ′α ⊂ P ′ be the set of these parking
locations.

The next step is to conduct a profile bounds search from the next customer
backwards to all potentially reachable parking locations in P , i.e., we compute
lbMin(Pp,ci+1) and ubMax(Pp,ci+1) for all p ∈ P with lbMin(Pp,ci+1) ≤ limit. In
turn, let P ′′ ⊂ P be the subset of parking locations such that customer ci+1
may be reachable from every p ∈ P ′′ at some point in time, i.e., those with
lbMin(Pp,ci+1) ≤ limit. If P ′′ ∩P ′ is empty but at the same time lbMin(Pci ,ci+1) >
limit, there is no feasible solution. Figure 8.12 illustrates the interrelation bet-
ween the sets of parking locations.

For all p ∈ P ′α ∩ P ′′ =: P ′′α , the earliest arrival there is known. It is at tα +
Pci ,p(t

α), and thus the earliest departure is at tp := tα + Pci ,p(t
α) + break. For

every p ∈ P ′′α with ubMax(Pp,ci+1) ≤ limit, an upper bound on the earliest
arrival at customer ci+1 is tp + ubMax(Pp,ci+1). So if such parking locations
exist, the minimum of these bounds is the upper bound we are looking for,
and we skip the last step. (If lbMin(Pci ,ci+1) > limit, a break has to be taken
at a parking location, and so we could also improve our lower bound on the
earliest arrival at the next customer. We omit the details here.)

4. However, should such a parking location not exist, then we proceed analo-
gously to the previous step but for the departure time t0. That is, we determine

162 Chapter 8. Truck Driver Scheduling and Routing

s d

P ′
α P ′

0

P ′ P ′′

FIGURE 8.12: The parking locations sets P ′ ⊃ P ′0 ⊃ P ′α and P ′′.

sets P ′′0 ⊂ P ′0 ⊂ P ′ in an analogue way. In case there is a parking location in
P ′′0 with ubMax(Pp,ci+1) ≤ limit, an upper bound at the next customer can be
found. Otherwise the only upper bound on the earliest arrival at the next cus-
tomer we know for sure is the end of the planning horizon.

After these steps, we know a lower and an upper bound on the earliest arrival at
the next customer. If the computed lower bound on earliest arrival time at customer
ci+1 is outside of the planning horizon, there is no feasible solution.

8.4.2 Profile Range Queries

We propagate the profile range [lbEA(ci+1), ubEA(ci+1) + break] backwards to the
current customer ci and all parking locations with both lbMin(Pci ,p) ≤ limit and
lbMin(Pp,ci+1) ≤ limit. That is, we get to know Pv,ci+1(t) for all v ∈ P ′′′ ∪ {ci} with
P ′′′ := P ′ ∩ P ′′ but only for t ∈ [lbEA(ci+1), ubEA(ci+1) + break] because we do not
need to know the driving time profile for other points in time.

The next step is to compute Pci ,p(t) for all p ∈ P ′′′ over a certain time inter-
val. We calculate an upper bound ubED(p) on earliest departure from a parking
location p ∈ P ′′′. It is ubED(p) := ubEA(ci+1) + break− Pp,ci+1(ubEA(ci+1) + break).
And ubED(ci) := maxp∈P ′′′ ubED(p)− break− lbMin(Pci ,p) gives an upper bound on
the earliest departure from customer ci. We perform another profile range search.
This time we propagate forward from customer ci in the range [tα, ubED(ci)]. This
way, we obtain Pci ,p(t) for all p ∈ P ′′′ but only for those t such that t − Pci ,p(t) ∈
[tα, ubED(ci)].

Finally, we have computed the inverse driving time functions for all relevant
relations and over all relevant points in time. This concludes the routing part of the
exact approach.

8.5 Heuristic

We split the presentation of the heuristic in two parts. We start with describing a
basic version of the heuristic (section 8.5.1) before we then turn to a worthwhile
enhancement of it (section 8.5.2).

8.5. Heuristic 163

8.5.1 Basic Heuristic

The basic heuristic is divided into the same steps as the exact approach. The only
step of the heuristic that deviates from the exact approach is step Drive as this is the
most time consuming step. The idea is to rather process multiple single departure
queries than to invoke a single profile search. The heuristic presented in section
7.3.3 of the previous chapter is based on the same idea. As we have seen before
(recall Tables 7.3 and 7.4 of the previous chapter), a profile search is very expensive
and, at least in our setting, hardly worth the computational effort. In the following,
we describe the adjusted version of step Drive in iteration i.

Just like before in section 8.4.1, there are two significant departure times at cus-
tomer i. Let again tα := α(Dsetup2

i) be the earliest departure time from customer ci

and t0 := min{t | Dsetup2
i (t) = 0} be the first point in time at which the driver is

completely rested. Our heuristic sets Ddriven
i (t) := ⊥ for all t but one, so Ddriven

i (t) is
only defined for a single point in time t. This point in time is determined in one of
the following four steps:

1. If Dsetup2
i (tα) + Pci ,ci+1(t

α) ≤ limit, the driver may arrive at the next customer
without having to take a break. For t := tα + Pci ,ci+1(t

α), we set

Ddriven
i (t) := Dsetup2

i (tα) + Pci ,ci+1(t
α)

2. However, if a break is inevitable, we check whether it is sufficient to take a
break at the customer before departure. This is the case if Pci ,ci+1(t

0) ≤ limit
holds. Analogously to step 1, we set for t := t0 + Pci ,ci+1(t

0)

Ddriven
i (t) := Pci ,ci+1(t

0)

3. It may happen that the next customer is too far away and not reachable without
a break en route. Let P ′α ⊂ P be the subset of parking locations such that every
p ∈ P ′α is reachable from customer ci at time tα, i.e., Dsetup2

i (tα) + Pci ,p(t
α) ≤

limit. For all p ∈ P ′α, the earliest arrival at p is at tα + Pci ,p(t
α) and the earliest

departure is at tp := tα + Pci ,p(t
α) + break. In turn, let P ′′α ⊂ P ′α be the subset

of parking locations such that customer ci+1 is reachable from every p ∈ P ′′α at
the earliest departure time, i.e., Pp,ci+1(tp) ≤ limit. For all p ∈ P ′′α , the earliest
arrival at customer ci+1 is tp + Pp,ci+1(tp). Provided that P ′′α is not empty, let
p∗ ∈ P ′′α be a parking location for which tp∗ + Pp∗,ci+1(tp∗) is minimum (primary
criterion) and, in case the minimum is attained at more than one parking loca-
tion, Pp∗,ci+1(tp∗) is minimum (secondary criterion). For t := tp∗ + Pp∗,ci+1(tp∗),
we set

Ddriven
i (t) := Pp∗,ci+1(tp∗)

4. Should P ′′α be empty, we proceed analogously to the previous step for the de-
parture time t0. This time, we seek for the reachable parking locations P ′0 at
time t0, and in turn for the subset P ′′0 of these from which customer ci+1 is rea-
chable after a break at a parking location. Again, we first calculate the earliest
departure time tp for all p ∈ P ′0 and the earliest arrival time at the next cus-
tomer for all p ∈ P ′′0 . Then we choose an optimal parking location p∗ ∈ P ′′0
regarding the same criteria as in the previous step. Just like before, we set for
t := tp∗ + Pp∗,ci+1(tp∗)

Ddriven
i (t) := Pp∗,ci+1(tp∗)

164 Chapter 8. Truck Driver Scheduling and Routing

If even P ′′0 is empty or if the computed earliest arrival time at customer ci+1 is
outside of the planning horizon, we cannot find a feasible schedule and terminate
the algorithm prematurely, returning ⊥.

8.5.2 Enhancement of the Heuristic

The basic heuristic prefers an early break at a customer over a break at a parking
location, so it does not fully exploit the driving time potential. When the total dri-
ving time of the route is close to 2 · limit for example, this behavior may cause the
basic heuristic to schedule two breaks while the exact approach is able to find a bet-
ter solution with only one. The goal of the enhancement is to reduce the number of
scheduled breaks by one if possible.

The enhancement consists in a backtracking component. It is based on the follo-
wing idea: Suppose the basic heuristic schedules two breaks, the first of which is an
early break at a customer. In order to exploit the allowed driving time better, the
backtracking heuristic schedules the first break at a parking location en route to the
next customer instead. If we are lucky, the second break can be omitted this way. If
not, we go back again and pick another parking location, one that is still reachable
from the customer but even closer to the next customer than the previously picked
parking location. This is repeated until either the second break can be omitted or
another parking location with that property does not exist. In the latter case, a solu-
tion with two breaks is the best that the heuristic can find.

The overall heuristic proceeds as follows: The first thing we do is to call the
basic heuristic in order to gain an initial solution. Here, we may allow the planning
horizon to be exceeded by the minimum break duration as it is our aim to save a
break and find an earlier finish time. The backtracking heuristic is only called if the
basic heuristic schedules more than one break. Otherwise the solution found by the
basic heuristic is returned provided that it remains within the planning horizon.

Pseudo code of the backtracking heuristic is presented by Function BTHeuristic.
It is based on a recursive reformulation of Algorithm 1. Input to BTHeuristic is not
only the label Ldriven

i−1 of the previous iteration, but also the current iteration i itself
and a limit z on the number of breaks that the function is allowed to schedule. So
if the basic heuristic schedules two breaks for instance, we call BTHeuristic with
(Ldriven

0 , 1, 1) as input.
In line 3 of BTHeuristic, it is checked whether there is an inevitable early break

before the service at customer ci. This is the case if the waiting time for the opening
of the next time window is so long that it may as well count as break, i.e., if both
i > 1 and Dwaited

i (α(Dwaited
i)) = 0 holds. Here, the first customer is special because

the driver rather starts later than waits. If there is an inevitable early break indeed,
but the parameter z forbids to take a break, the backtracking heuristic does not find
a feasible solution. In line 12, we use the ternary operator ?: that evaluates to z− 1 if
there is an inevitable early break, and to z otherwise.

Lines 13 through 19 treat the case that one break is necessary. At first, we com-
pute a set of vertices P∗1 where it is feasible to take a break. If there is an inevitable
early break before service, one break does not suffice, because we already know that
the next customer cannot be reached directly, despite the early break. In this case,
we set P∗1 := ∅ and thus skip this if-clause. Otherwise, let P ′α and P ′′α be defined
just like in section 8.5.1, that is, let P ′′α ⊂ P ′α be the subset of parking locations such
that customer ci+1 is reachable from every p ∈ P ′′α at the earliest departure time tp,
i.e., Pp,ci+1(tp) ≤ limit. If in addition Pci ,ci+1(t

0) ≤ limit holds, we also set tci := t0 and

8.5. Heuristic 165

Function BTHeuristic
Input : Label Ldriven

i−1 , customer index i, maximum number z of breaks to
schedule

Output: A finish time of a feasible schedule or ⊥ if no feasible schedule is
found

1 Dsetup1
i := Setup (Ddriven

i−1);
2 Dwaited

i := Wait (Dsetup1
i);

3 if i > 1∧ Dwaited
i (α(Dwaited

i)) = 0∧ z = 0 then
4 return ⊥;

5 Dserved
i := Serve (Dwaited

i);
6 if i = n then
7 return α(Dserved

n);

8 Dsetup2
i := Setup (Dserved

i);
9 tα := α(Dsetup2

i);
10 if Dsetup2

i (tα) + Pci ,ci+1(t
α) ≤ limit then

11 Ddriven
i (t) :=

{
Dsetup2

i (tα) + Pci ,ci+1(t
α), t = tα + Pci ,ci+1(t

α)

⊥, otherwise
;

12 return BTHeuristic(Ddriven
i , i + 1, (i > 1∧ Dsetup2

i (tα) = 0) ? z− 1 : z);

13 if z ≥ 1 then
14 compute P∗1 and departure times tv for all v ∈ P∗1 ;
15 forall v in P∗1 , ascending in tv + Pv,ci+1(tv) do

16 Ddriven
i (t) :=

{
Pv,ci+1(tv), t = tv + Pv,ci+1(tv)

⊥, otherwise
;

17 obj := BTHeuristic(Ddriven
i , i + 1, z− 1);

18 if obj 6= ⊥ then
19 return obj;

20 if z ≥ 2 and P∗1 = ∅ then
21 compute P∗2 and departure times tp for all p ∈ P∗2 ;
22 forall p in P∗2 , ascending in tp + Pp,ci+1(tp) do

23 Ddriven
i (t) :=

{
Pp,ci+1(tp), t = tp + Pp,ci+1(tp)

⊥, otherwise
;

24 obj := BTHeuristic(Ddriven
i , i + 1, z− 2);

25 if obj 6= ⊥ then
26 return obj;

27 return ⊥;

166 Chapter 8. Truck Driver Scheduling and Routing

add ci to some otherwise empty set Q. So for all v ∈ P ′′α ∪ Q, the earliest arrival at
customer ci+1 is tv + Pv,ci+1(tv) with an accumulated driving time of Pv,ci+1(tv).

Now let P∗1 ⊂ P ′′α ∪ Q be the maximum subset such that for any two u, v ∈ P∗1
either the arrival time is earlier or the accumulated driving time since last break is
lower, i.e., either tu + Pu,ci+1(tu) < tv + Pv,ci+1(tv) or Pu,ci+1(tu) < Pv,ci+1(tv) holds. So
every v ∈ P∗1 leads to a Pareto optimum. The backtracking heuristic iterates over the
set P∗1 that is supposed to be sorted by tv + Pv,ci+1(tv) in ascending order. As soon as
a feasible solution is found by the recursive call of BTHeuristic, it is returned. On
the other hand, ⊥ is returned if no feasible solution can be found, provided that P∗1
is not empty.

If P∗1 is empty, two breaks are necessary. This case is treated in the next if-clause
from line 20 to 26. We proceed similar to the previous if-clause. Analogously to
before, we determine a set P∗2 ⊂ P ′′0 of parking locations such that either the arri-
val time at the next customer or the accumulated driving time on arrival is better.
Since two breaks are scheduled, we reduce z accordingly when we call BTHeuristic
recursively.

When the initial call of BTHeuristic finally returns a solution, it is guaranteed
to contain at most z breaks, so by construction a break less than the initial solution.
However, on very odd and artificial instances, the new solution may still be worse,
in which case we stick to the initial solution. At last, we also have to check that the
planning horizon is respected if we allowed its exceedance before.

8.6 Experiments

The basic test setup is the same as in the previous chapter. We conduct all our experi-
ments with respect to the road network of Germany. The corresponding road graph
is provided by TomTom1. Also from TomTom is the original data regarding time-
dependent changes in speed on the graph’s edges. This data is modified by PTV in
order to model speeds (and driving times derived from these) of trucks instead of
cars as in the original data. The data on parking locations stems from the Truck Par-
king Europe app2. This app provides a service to truck drivers by displaying nearby
parking lots, their occupancy status, and available facilities. All our experiments are
conducted on the same road graph, referred to as Germany 2017 in section 7.4 of the
previous chapter, and the same set of parking locations. Key figures of the input
data are given in Table 8.2. The break rule parameters are set according to the EU
regulation, that is, break=45 min and limit=4.5 h.

TABLE 8.2: Key figures of the road network Germany 2017 and the
set of parking locations, where % TD denotes the percentage of edges

with a time-dependent (i.e. not constant) driving time function.

|V| |E | % TD # Breakpoints |P|
7.2 M 15.7 M 28.6 % 136.9 M 6 596

Just like the input data, the used technical configuration remains the same as in
section 7.4. We still run our experiments on a VMware ESX cluster. Our machine
uses four cores of a 2.2 GHz Intel Xeon E5-2698 v4, 64 GB main memory, and runs
Ubuntu 16.04. Our code is written in C++ and compiled with gcc 5.4, optimization

1https://www.tomtom.com/
2https://app.truckparkingeurope.com/

https://www.tomtom.com/
https://app.truckparkingeurope.com/

8.6. Experiments 167

level -O3. Besides the construction of the contraction hierarchies the algorithms use
only one core. Our CH implementation is based on the code by Batz (Batz et al.,
2013; KaTCH) and has been extended as described in section 7.3.2. We set the size
of the CH cores to 0.2 % of the vertices, which results in a search graph size of 38.90
GB.

Let us quickly recall a few of the findings presented in chapter 7 that are valid for
the truck driver scheduling and routing problem just like they are for the truck driver
routing problem. We do this because we do not repeat all our previous experiments
in the new context.

• The acceleration by computing bounds as described in section 8.4 is effective.
In chapter 7, a speed-up of 25 over 2000 randomly generated queries with two
customers is reported (recall Table 7.3). Among those instances where one
break is known to be both necessary and sufficient, that speed-up factor even
reaches 40. So the effectiveness is proven for the special case of two custo-
mers. We claim that this result can be transferred to the general case. In Chris-
tian Bräuer’s bachelor thesis (Bräuer, 2016), the reported mean run-time of an
unaccelerated exact approach on instances with 6 customers is more than half
an hour. Pre-empting the results of our experiments a little, this is an indicator
that we can expect a similar speed-up factor with 6 customers as with 2 custo-
mers. Due to the long run-time of the unaccelerated exact approach, we forgo
further investigating the exact speed-up factor in the general case.

• Our algorithms, especially the exact approach, can be further sped up by only
taking a subset of parking locations into account, e.g., those with better ame-
nities and/or those with a higher chance of being available on arrival. On one
hand, this may decrease the solution quality and even the number of solvable
queries. On the other hand, besides the speed-up, this may raise the user’s sa-
tisfaction with a solution, provided that a feasible solution can still be found.
In chapter 7, we examine the subset of parking locations with at least 30 par-
king bays each. This subset consists of less than 12% of the locations in the
original set. We find that this filter has a good trade-off between run-time and
quality. Again, we claim that this result is also applicable to the general case
with more than two customers. However, we only consider the complete par-
king set in the following. It is an interesting line of research to investigate the
impact of different filters on quality and run-time. But this is not in the focus
of this chapter.

• In chapter 7, we also compare the run-time of the exact approach (for the spe-
cial case of two customers) on two different road graphs representing the road
network of Germany. Predominantly, these two road graphs differ in the num-
ber of edges with time-dependent information as well as the number of bre-
akpoints of the driving time functions on these edges. Even though the road
graph Germany 2017 has less than 7 times more breakpoints than the other road
graph, we find that the exact approach takes even more than 40 times longer on
this instance. This increase may be explained by the superpolynomial (worst-
case) complexity of driving time profiles. We expect that this result can be
transferred to the general case. We restrict ourselves to the computationally
harder road graph Germany 2017 in the following.

The focus of our experiments is on comparing the run-time and the solution qua-
lity of the exact approach against the heuristic (section 8.6.2). But before we can

168 Chapter 8. Truck Driver Scheduling and Routing

do that, we need to have test queries. Two types of test queries are introduced in
section 8.6.1.

8.6.1 Test Setup

We test our algorithms on two different types of queries: Randomly generated que-
ries and real-world queries.

Random Queries Each of the random queries contains a sequence of six customers.
These are chosen as follows: The first customer is picked at random. Next, with the
help of a (limited) one-to-many lower profile bound query, we randomly pick the next
customer among those vertices that are between 95% and 100% of 8/5h away (with
respect to the free-flow driving time) from the current customer. We repeat this step
four more times until six customers are chosen in total.

By construction, consecutive customers are at least a drive of 8/5h (minus 5%)
apart, so it is not feasible to visit four in a row without taking a break in between.
The total driving time is at least 8h (minus 5%) but it can be expected to be higher
due to congested road segments. Since we are interested in examining the general
behavior of the algorithms, we disregard the service times and time windows, i.e.,
all time windows are always open and every service time is 0. The beginning of the
planning horizon is randomly selected between 5 and 7 in the morning of a Tuesday,
and the end is set such that it is non-restrictive. We generate 1000 queries this way.

Real-World Queries With real-world queries, we want to investigate the impact
of time windows and other aspects that would otherwise be hard to set realistically.
Our real-world queries are taken from PTV Drive & Arrive3. This is a cloud-based
service to distribute information about the current estimated time(s) of arrival to all
stakeholders in the supply chain, and it is integrated into the route optimization
suite PTV Route Optimiser ST4.

A user of this software suite may transfer planned routes to PTV Drive & Ar-
rive in order to activate tracking of the vehicle. However, tracking information is
not of interest here. For our test queries, we are only interested in the sequence of
locations as well as the time window and the service time per location. It is unfortu-
nate for our purposes that PTV Drive & Arrive only supports a single time window
because we cannot investigate the effects that multiple time windows per customer
may create. In a PTV Drive & Arrive request that originates from PTV Route Opti-
miser ST, we may also be given planned times of arrival and a planned start time of
the route. These times refer to the (time-independent) scheduling component of the
route optimization suite and are ignored here.

We picked three different users of PTV Drive & Arrive (and PTV Route Optimi-
ser ST). At some day in March 2018, we selected the most recent queries of these
users with the additional properties that all customers are within Germany and the
designated vehicle is a heavy goods vehicle (gross vehicle mass of at least 7.5t). We
refer to these test query sets as RW-1, RW-2, and RW-3 in the following, and to the
union of these three as RW-Total.

Tables 8.3, 8.4, and 8.5 summarize the main properties of all test query sets: Table
8.3 lists the mean number of customers per query and the total number of queries
in each test query set. Table 8.4 reports key figures regarding the distribution of the

3https://driveandarrive.ptvgroup.com/
4https://www.ptvgroup.com/en/solutions/products/ptv-route-optimiser/

https://driveandarrive.ptvgroup.com/
https://www.ptvgroup.com/en/solutions/products/ptv-route-optimiser/

8.6. Experiments 169

service time in each (real-world) query set. And Table 8.5 provides the same key
figures regarding the distribution of the time window length in each of these sets.

In all our queries the beginning of the planning horizon coincides with the be-
ginning of the time window of the first customer, so the planning horizon is not
restrictive. In the set RW-1, the first customer mostly opens at 5 a.m., but in 12 cases
it is an hour later. In the set RW-2, it is always at 4 a.m., and in the set RW-3, it is
always at 5 a.m.. We also notice that in case of the sets RW-1 and RW-3, the planned
routes are round trips from the same depot, i.e., the first and the last customer cor-
respond to the very same site in each of the two sets. Such a pattern does not exist
in RW-2.

TABLE 8.3: Properties of test query sets: Mean number of customers
and number of queries per test query set.

Query set ∅ |C| # Queries

Random 6 1000
RW-1 17.9 120
RW-2 10.8 490
RW-3 7.6 200
RW-Total 11.1 810

TABLE 8.4: Properties of test query sets: Service time (minimum, me-
dian, (arithmetic) mean, maximum) in seconds (rounded).

Query set Min Median Mean Max

RW-1 0 555 670 6434
RW-2 0 620 534 2805
RW-3 0 900 678 3420
RW-Total 0 624 591 6434

TABLE 8.5: Properties of test query sets: Time window length (mini-
mum, median, (arithmetic) mean, maximum) in hh:mm (rounded).

Query set Min Median Mean Max

RW-1 0:44 5:21 8:15 24:00
RW-2 2:49 11:50 13:07 24:00
RW-3 1:45 8:45 10:16 24:00
RW-Total 0:44 11:49 11:28 24:00

8.6.2 Experimental Analysis

We examine the exact approach as well as the heuristic on the random test queries
and the three real-world test query sets. The focus of the analysis is on the run-time
of the exact approach and on the trade-off between run-time and solution quality of
the heuristic.

Exact approach on random queries The random queries are constructed in a way
such that at least one break is necessary. And should one break also be sufficient,
then it has to be a break at a parking location between customers 3 and 4. To reach

170 Chapter 8. Truck Driver Scheduling and Routing

F
re

qu
en

cy

0 50 100 150 200 250 300

0
50

10
0

15
0

(A) Random queries.

F
re

qu
en

cy

0 50 100 150 200 250 300

0
10

20
30

40
50

(B) Real-world queries.

FIGURE 8.13: Run-time histograms for exact approach on random
(left) and real-world (right) queries. Run-time in seconds.

that parking location, a detour may be unavoidable. Whether one break is sufficient
or not depends on how strong the effect of the congestion is on one hand, and how
far such a detour is on the other. That is, how much does the total driving time of a
route (considering congestion and possibly including detours) deviate from the total
direct free-flow driving time?

As it turns out, the effects of congestion and detours are not too strong, at least
not with regard to our instance of the German road network. While the mean total
direct free-flow driving time of the random queries is 97.5% of 8h by construction,
we find that the mean total (actual) driving time is 8h 17 and thus 6.2% longer. The
maximum total (actual) driving time encountered is 8h 47. And so in 999 cases, it
suffices to schedule one break at a suitable parking location between customers 3
and 4. Only in one single case a second break is inevitable because such a suitable
parking location does not exist.

The average run-time of the exact approach on a random query is 70.5 seconds.
Even though the random test queries are rather homogeneous, the run-time varies
between 23.1 and 109.4 seconds. A run-time histogram is given in Figure 8.13a.
Let us contrast the average run-time of 70.5 seconds with the run-time on instances
with exactly two customers as stated in the previous chapter 7. There, the reported
mean run-time on instances, for which one break is known to be both necessary and
sufficient, is approximately 6 seconds (see Table 7.3). So even if we had to do it 5
times for 5 drives between customers, that would only make about 30 seconds. The
increased run-time can be explained by the fact that the profile range of the sub-
queries is larger by at least the break length, so the acceleration technique described
in section 8.4 is less effective. Even though consecutive customers are closer together
than those in chapter 7 so that a significantly smaller part of the graph needs to be
investigated, this does not make up for the increased run-time due to the higher
number of breakpoints in the profiles.

To make the impact of time-dependency on run-time even clearer, let us assume
free-flow driving times throughout the day. If we replace the time-dependent dri-
ving time profile on each edge with a constant function and set the free-flow driving
time as its value, then the average run-time on a random query drops to only 0.30
seconds.

8.6. Experiments 171

F
re

qu
en

cy

0 10000 20000 30000 40000 50000 60000

0
10

20
30

40

(A) Total travel time in seconds.
F

re
qu

en
cy

0 5 10 15 20 25 30

0
20

40
60

80

(B) Number of customers.

FIGURE 8.14: Histograms on total travel time and on number of cus-
tomers with respect to the real-world queries.

Exact approach on real-world queries Approximately 10% of all real-world que-
ries are not feasible (77 out of 810), simply because one of the time windows is mis-
sed (recall that we set the planning horizon to be non-restrictive). Most of the infe-
asible queries are from RW-1. Of this query set alone, about 50% of the queries are
not feasible. In most cases, this is not due to effects caused by congestion as 65 of all
77 infeasible queries remain so even if we ignore time-dependency and assume free-
flow driving times. The reason why so many (RW-1) instances are infeasible even
under free-flow conditions is not known to us. Most likely, the routes were genera-
ted with respect to a profile of a significantly faster vehicle. But it may also be that
some time window restrictions were overruled by the user of PTV Route Optimiser
ST.

We observe that in many cases, a break is scheduled before the service at the
second customer. This is due to the very early beginning of the planning horizon
between 4 a.m. and 6 a.m., which is when the first customer’s time window opens.
Even after service at the first customer and driving to the next, this often still leaves
enough time for a break, simply because the second customer is not open yet. As
for RW-3, the second customer does not open before 7 a.m. in 182 cases (out of 200),
which leaves enough time for a break in 126 cases. Such a break is scheduled even
though it may later turn out to be unnecessary.

There are two important limits to observe: One is on the total driving time and
the other is on the total travel time. We find 9 instances in which the total travel time
exceeds 13 hours, in one case the total travel time is even longer than 15 hours. It
should be noted that these instances may not be in accordance with the applicable
regulation in the EU because it stipulates that a driver takes a so-called daily rest of
11 hours (in certain cases 9 hours) every 24 hours (see section 2.1.1). If we set the
planning horizon restrictive, these instances would also be considered as infeasible.
A travel time histogram is given in Figure 8.14a.

The total driving time limit of 9 hours is exceeded in three cases. In two of these,
also the total travel time is too high. Only in one case, the found schedule would be
feasible with respect to the total travel time but infeasible with respect to the total
driving time. The restriction of the total driving time is subject of section 8.7.

The number of customers per query varies a lot, namely between 2 and 28. A

172 Chapter 8. Truck Driver Scheduling and Routing

5 10 15 20

0
50

10
0

15
0

20
0

25
0

30
0

R
un

−
tim

e

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

(A) Exact approach.

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

R
un

−
tim

e

●● ●

●

●
●●

●

● ●

●

●●●
●

●●
●

●
●

●●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●
●● ●

●●●

●
●
●

●
●

●

●
●

●

●

●
●●●

●

●
●
●●

●

●●●

●●
●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●
●

●

● ●
●

●

●
●

●
●

●
●

●
● ●●

●

●
●●

●
●

● ●

●

●

●
●

●

●●

●

●
●

●
●

●

●
●

●●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●●●

●

● ●
●● ●

●
● ●

●
●

●

●
●

●

●

●
●

●
●

● ●

●

●●● ●
●●

●●
●●

●
●

●
●

● ●●
●

●

●

●●
●●

●
●● ●

● ●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●●● ●

●
●

●

●

●

●

●

● ●●
●

●

●
●

●●
● ●

●

●

●
●

●
●●

● ●●
●

●●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
● ●●●

●

●

●
●●● ●

●●
●

●

●●
●

●
●●

●●
●

● ●
●

●●

●

● ●
●

● ●
● ●●

●●

●
●

●● ●●
● ●

●●●●
●

●
●

●

● ●●●
●

●● ●
●●

●
● ●

●

●
●

●
●

●
●

●

●● ●

●

●
●

●

●

●

● ●●
●

●●

●

●

●
●

●

●

●●

●

●
●

●
● ●

●
●

●●
●

●
●

●
●

●●
●

●
●

●●●
● ●

●
●

●

●
●

● ●●
● ●

●

●
● ●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●●

●●
●

●

●
●

●
●●

●
●

●

●
●

●
● ●

●
●

(B) Heuristic.

FIGURE 8.15: Run-time in seconds of exact approach (left) and of heu-
ristic (right) on solvable real-world queries by number of customers
in a route. Blue squares for RW-1 queries, red circles for RW-1 queries,

and cyan triangles for RW-3 queries.

histogram is shown in Figure 8.14b. Accordingly, the run-times are far more spread
than those for the random queries (see Figure 8.13a and 8.13b). On average, the
run-time is 114.4 seconds. It is higher than the average run-time of a random query
because here, the average number of customers is also higher. The mean run-time
over the 53 instances with 6 customers alone is only 65.2 seconds and thus within
the scope of the run-time on random queries.

In the scatter plot of Figure 8.15a, the run-time of each real-world query is plotted
against the number of customers in that query. For queries from RW-1 we use blue
squares, for those from RW-2 red circles, and those from RW-3 cyan triangles. As we
can deduce from this figure, the run-time grows more or less linearly in the number
of customers per query. However, unsolvable queries may run significantly shorter
and thus distort the picture. Hence, unsolvable queries are exempted here.

On some instances, the driving time is so short that a break never becomes due.
In our implementation of the exact approach, this is not exploited in order to further
speed the computation up. In contrast, the run-time of the heuristic benefits from
this.

Heuristic on random queries As already described, the random queries are con-
structed in a way such that a break has to be taken on a parking location if we want
to schedule only one break whenever possible. And so we use the enhanced version
of the heuristic. The solution quality of this enhanced heuristic is amazingly good on
the random query set. In fact, in 998 cases, the travel time matches with the solution
computed by the exact approach. Only in two of the 1000 cases, there is a difference
in travel time of approximately 45 seconds.

The mean run-time, however, is only 0.54 seconds. It is so much lower than the
run-time of the exact approach not only because we omit the expensive linking and
merging of driving time profiles, but also because most parking locations can simply
be ignored due to dominance rules. The histogram in Figure 8.16a illustrates how
many parking lots are contained in the set P∗1 of “Pareto-optimal” parking locations.
As we can see, there are never more than 15, and the cardinality of the set is only

8.6. Experiments 173

F
re

qu
en

cy

0 5 10 15

0
50

10
0

15
0

20
0

25
0

(A) Cardinality of P∗1 .
F

re
qu

en
cy

2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0

(B) Number of considered parking locations.

FIGURE 8.16: Histograms on the number of parking locations with
respect to the heuristic on the random query set.

3.6 on average. The histogram on the right (Figure 8.16b) shows how many of these
parking locations are evaluated, until the recursive call to the heuristic in line 17 of
the pseudo-code is successful. As we can conclude from this histogram, in many
cases it suffices to evaluate only one parking location of the “Pareto set” P∗1 . On
average, only 1.6 parking locations are enough, and at most 8.

Heuristic on real-world queries As we already know, only 733 of the 810 real-
world queries are solvable. Of these, the heuristic manages to find the optimal so-
lution in 600 cases. In most of the other cases, the solution of the heuristic is only
slightly worse. But in three cases, the deviation is close to the break duration of 45
minutes. While the median deviation is only 42.87 seconds, the mean deviation is
379 seconds and the maximum deviation is 2695 seconds.

While the exact approach is slower on the real-world instances than on the random
instances, it is the other way round for the heuristic. The mean run-time is only 0.016
seconds and thus more than three orders of magnitude faster. This is because in the
vast majority of cases, there is no need to search for a parking location, which is
the most time-consuming step of the heuristic. In fact, only in three cases, the back-
tracking component is used that tries to reduce the number of breaks by scheduling
one break at a parking location instead of two at customers. In two of the three ca-
ses, this is successful. In one case, two breaks remain scheduled, each at a customer.
Figure 8.15b displays the run-time per number of customers. Three outliers are cle-
arly visible. They correspond to exactly those three cases in which the backtracking
component is activated.

Concluding remarks Table 8.6 summarizes the run-times again. On the random
queries, the heuristic is 130 times faster on average than the exact approach. On the
real-world queries, it is even more than 7000 times faster. In case of the random
queries, the heuristic finds the optimal solution in 998 out of 1000 cases. In case of
the real-world queries, this is true in 600 out of 733 cases.

We can conclude that the heuristic offers an excellent trade-off between run-time
and quality. The exact approach takes into account that it may be advantageous to

174 Chapter 8. Truck Driver Scheduling and Routing

prolong a break or to not depart from a customer immediately after service (short-
term waiting at customers). However, the experiments reveal that the benefit is only
marginal and the computational effort – of computing partial profiles even – does
not pay off.

It should be noted that we have tested our algorithms on a single road graph
and that we rely on the accuracy of the TomTom-based driving time profiles on the
graph’s edges. This raises the question in how far the conclusions that we draw
from the experimental results remain valid when this data changes. In general, the
steeper the descent is between two breakpoints of a profile, the shorter the driver
has to wait for a significant drop of the driving time and the more beneficial could
be short-term waiting. This means that as long as the number of the profiles’ pieces
with a steep descent does not increase substantially and/or their descent becomes
even steeper, we claim that our conclusions still hold. In other words, as long as
the driving times decrease due to dispersing congestion and not due to lifted road
closures for instance, we expect our conclusions to remain valid in practice.

TABLE 8.6: Mean run-time of different algorithms on different query
sets (in seconds).

Random RW-Total

Exact 70.5 114.4
Heuristic 0.54 0.016
Exact (free-flow) 0.30 0.58

8.7 Discussion of an Additional Constraint on the Total Dri-
ving Time

As pointed out in the introduction, there is an extension of the problem that we also
want to shed light on. Both in the EU and the US, there may also be a given maximum
total driving time. For instance, the EU stipulates a limit on the total daily driving
time of 9 hours (even though it allows a total driving time of up to 10 hours twice a
week (European Parliament and Council of the European Union, 2006)). This means
a solution may be feasible according to our problem statement but it may still not
be legal. Let limitTotal denote such a limit on total driving time. With this, a feasible
schedule is only considered as legal if the sum ∑`

k=1A[k] − D[k] of driving times
along the ` route segments does not breach that limit, i.e., we set as an additional
constraint

`

∑
k=1
A[k]−D[k] ≤ limitTotal (8.17)

Finding a legal schedule is a more complex problem. And this is already true in
the scenario with time-independent driving times. In Figure 8.17, an example road
graph with two parking locations is given. In this example, the driving times are
time-independent constants and written on the edges. All depicted edges are shorter
than limit. Let c + d > limit and a + b + c > limit, so a break must be scheduled at c2
and either p1 or p2. Now suppose there is only one time window at c2 that opens not
before a+ b+ c+w+ break. If the break is taken at p1, the driver has an accumulated
driving time since last break of c on arrival at c2, which is b less than if the break is
taken at p2. But on the other hand, if a break (of length break + w) is taken at p2, a

8.8. Conclusion and Outlook 175

c1 c2 c3
d

p1

a + b + w
c

p2

a
b + c

FIGURE 8.17: Example road graph with three customers and two par-
king locations. Time-independent (and positive) driving times writ-

ten on edges.

shorter total driving time of only a + b + c + d is possible, w less than when taking
the break at the other parking location.

This example is constructed in a way that our exact approach (for the non-ex-
tended problem) does not find the solution with a break at p2. It discards it due to
the worse accumulated driving time since last break when the time window of c2
opens. So should a + b + c + d + w be longer than the maximum total driving time
and a + b + c + d be shorter, then this approach does not find a legal solution even
though one exists. However, we observe that the heuristic finds that solution in this
example. This is because the heuristic prefers the parking location via which the
earliest arrival at the next customer can be achieved, which is p2 in the example.

In practice, it almost always turns out that the returned solution is also legal.
This is because both criteria, the minimum accumulated driving time since last break
and the minimum accumulated total driving time, are not independent, they both
benefit from short driving times in general. And it may not be necessary to include
the restriction on the total driving time if the total service time is considerable. With
the break rule parameters of the EU, we observe that if all service times sum up to
more than 2h 30 (or 1h 30), then the total driving time of a feasible solution cannot
exceed 9 hours (or 10 hours) because otherwise at least two breaks of 45 minutes are
scheduled and the sum of all driving times, service times, and break times breaches
the length of the planning horizon of 13 hours. So in such cases, we could as well
ignore the restriction.

With the RW-1 query set, the mean total service time per query is clearly over 2h
30. With the RW-2 query set, the mean total service time is over 1h 30, and with the
RW-3 query set, it is only slightly below that. And so from all 810 real-world queries,
there is only one case in which the returned solution has a driving time of slightly
more than 9 hours and a travel time of less than 13 hours. In this particular case, the
returned solution is feasible but is not legal unless the “10-hour-exception” is used.

8.8 Conclusion and Outlook

We have introduced the truck driver scheduling and routing problem on road networks,
which is the problem of finding both a schedule and a route in the road network such
that the route connects the customers to be visited and (if need be) some parking
locations, the schedule complies with the applicable legislation, the customers are
visited within one of their time windows, and breaks are only taken at customers or
parking locations. For this problem, both an exact method and a heuristic have been

176 Chapter 8. Truck Driver Scheduling and Routing

presented. Our focus has been on the time-dependent scenario in which the driving
times depend on the time of day.

For the exact method, we have described how it can be accelerated by computing
bounds in order to only conduct profile range searches. We evaluated both methods
on a road network of Germany. We found out that the heuristic is at least two orders
of magnitude faster and still finds the optimal solution in the majority of the cases. In
fact, the mean run-time of the heuristic is well below one second and thus certainly
fast enough to be applied in practice.

Outlook For future research, we see several interesting directions.
In this chapter, we have concentrated on predictable congestion. For instance,

a higher driving time can be expected on roads in and around cities during the
rush hours in the morning of every workday. But what about a traffic jam in conse-
quence of an accident? Such events remain disregarded in our setting. Of course, we
could re-calculate the CH search graph every time new information about the cur-
rent traffic situation comes in. However, the computation of the search graph takes
too long to be used in this fashion. A solution could be time-dependent customizable
contraction hierarchies, which is an on-going research subject. In general, customiza-
ble contraction hierarchies (Dibbelt, Strasser, and Wagner, 2016) is an extension of
contraction hierarchies, where the pre-processing step is divided into two phases. In
the first phase, only the unweighted topology of the graph is exploited. In the se-
cond phase, the auxiliary data is adapted to a specific weight. In a real-time scenario,
only the second phase has to be called again.

Another open question for research is how to take the features of parking areas
(including those at customers) into account. At some of them, there may be restau-
rants and convenience stores, whereas some others may not offer any public facilities
at all. Depending on the amenities they provide, some parking areas may be more
popular among drivers than others. But it is not only about the facilities, also safety
could be an issue. In general, we see it as an interesting line of research to include
the fact that some parking areas are “better” than others into the objective function.

In practice, parking areas may be occupied. The easiest way to take that into
account would be to remove those parking areas from consideration that are pre-
sumably occupied. But this neglects the temporal dimension. Suppose we had an
oracle that tells us for every point in time whether a parking space is available. Then
it would be another interesting research subject to include that oracle into our algo-
rithm. It should be noted that an additional complexity comes in as the driver cannot
wait for a parking space to become available when the parking area is occupied. In
practice, we are far from having such an oracle, unfortunately. One exception are
parking spaces that can be reserved via a booking system such as the one integrated
into Truck Parking Europe.

177

Chapter 9

Conclusion and Outlook

In this thesis, we have dealt with various scheduling and routing problems that arise
in the context of regulations on drivers’ working hours. Towards the end of it, we
summarize the main findings again (section 9.1) and review the directions for further
research that we find the most interesting (section 9.2).

9.1 Conclusion

In this thesis, we have focused on the regulations that are effective in the European
Union and the United States. First, we have classified the most important break
rules and their parameters. Then, we have investigated three classes of optimization
problems: the truck driver scheduling problem, the vehicle routing and truck driver
scheduling problem, and the truck driver scheduling and routing problem. In the
following, let us recapitulate the research questions.

9.1.1 Truck Driver Scheduling

In the truck driver scheduling problem, we are given some customers and a se-
quence in which these customers are to be visited. On one hand, all customers must
be visited within their time windows, and on the other hand, some break rules need
to be respected. As far as this problem is concerned, the main research question was:

Which problem variants of the truck driver scheduling problem can (still) be solved in
polynomial time - and how?

To this end, we have presented polynomial-time algorithms for several problem
variants. All currently known results regarding a polynomial-time bound only hold
in the single time window case. Hence, we have focused solely on the multiple
time window case, where the number of time windows per customer is not limited.
We make no assumptions on the lengths of the time windows or the time between
consecutive time windows. It is a common feature of our polynomial-time algo-
rithms to regard time-dependent and piecewise linear functions in order to store
non-dominated driver states.

Table 9.1 summarizes the main results. We have observed several rulesets as
they are relevant both in the European Union and the United States. Precisely, we
have considered the rulesets RulesetUS = {drive until driven, drive until traveled } and
RulesetEU = {drive until driven, work until traveled } as well as RulesetEU+ = {drive until
driven, work until traveled, first-second-split }, according to our classification of break
rules presented in section 2.3. Thus, our algorithms belong to those few that can be
used both in the EU and the US without major changes.

In case two types of breaks need to be distinguished, two rulesets must be spe-
cified, one for the short break and one for the long break. In case of a single type of

178 Chapter 9. Conclusion and Outlook

TABLE 9.1: Main results of this thesis regarding polynomial-time
bounds of truck driver scheduling problems with multiple time win-

dows per customer (compare Table 3.1).

Short break Long break Policy Goal Complexity Chapter

RulesetUS - non-restrictive EF O(nw) 3
RulesetEU - non-restrictive EF O(nw) 3
RulesetEU+ - non-restrictive EF O(nw) 3

RulesetUS - non-restrictive MD O(n3w2) 4
RulesetEU - non-restrictive MD O(n3w2) 4

RulesetEU RulesetEU no-break-en-route EF O(n3w) 5
RulesetUS RulesetUS no-break-en-route EF O(n3w) 5

break, we always regard a non-restrictive break policy, that is, breaks can be taken at
any time, particularly, while en route between two customers. In case of two types
of breaks, the polynomial-time bound requires the no-break-en-route policy. This
policy only allows drivers to take breaks while at a customer, that is, before or after
service at that customer.

We regard two different optimization goals. One is to find the earliest finish
time (EF) of a schedule, that is, the earliest completion time of the service at the
last customer. The other goal is to find the minimum duration (MD) of a schedule,
that is, the shortest time between the start time of the service at the first customer
and the completion time of the service at the final customer. The EF objective is
asymptotically not more complex that the decision problem that only asks whether
a feasible schedule exists. However, the MD objective is more complex.

In Table 9.1, the time complexity is given with respect to the number of customers
n and the total number of time windows w. If every customer had only a single
time window, we could replace w by n. With the polynomial-time bound for the
minimum duration variants, we falsify the NP-hardness conjecture of Xu et al. (2003)
for an important special case.

The secondary research question

Which variants can no longer be solved in strongly polynomial time?

is not definitively answered. But one variant that is a promising candidate is the
problem with two types of breaks together with a non-restrictive break policy. At
least we have shown by way of example that the number of non-dominated driver
states does not solely depend on the number of customers and time windows but
also on the setting of the break rule parameters and the driving times. While this
is not a proof, it is still an indication that a strongly polynomial algorithm may not
exist for this problem variant.

9.1.2 Vehicle Routing and Truck Driver Scheduling

In the vehicle routing and truck driver scheduling problem, the truck driver schedu-
ling problem appears as a subproblem. It needs to be solved as part of the feasibility
check inside an algorithm for the vehicle routing problem. Since the literature on the
family of vehicle routing problems already contains a plethora of solution approa-
ches, we had focused on the aspect of how to integrate the feasibility check regarding
the subproblem into a solution framework for the vehicle routing problem. The re-
search question was:

9.1. Conclusion 179

How can the feasibility in respect of drivers’ working hours be checked efficiently within
local search based heuristics for the vehicle routing and truck driver scheduling problem?

The efficient feasibility check that we have described in this thesis consists of two
ingredients. One ingredient is storing information on partial routes in order to pre-
vent that the same information is computed over and over again while evaluating
the neighborhood of the incumbent solution. The second ingredient is the bidirecti-
onal propagation of this information. While both ingredients are not new in general,
they have not been described in the context of our problem variant at hand. This va-
riant is characterized by multiple time windows per customer, the necessary break
rules for day trips in the EU, and a general break policy that allows breaks en route
at any time.

9.1.3 Truck Driver Scheduling and Routing

In the truck driver scheduling and routing problem, we are given a road graph.
Some of the vertices correspond to customers and some others to parking areas.
When a break is scheduled, it must be scheduled either at a customer or at a parking
area. For a given order in which the customers are to be visited, we need to find
a route in the road graph and a corresponding schedule such that the finish time
is earliest possible. For an even more realistic setting, we also regard predictable
congestion. The research question was formulated as follows:

Given real-world data like a road graph representing the German road network and infor-
mation on predictable congestion, how quickly can optimal truck driver routes and schedules
be computed, and what is a good trade-off between run-time and solution quality (and me-
mory consumption)?

The short answer is that it takes several seconds to respond to an exact query,
and this holds despite our acceleration efforts. In the worst case, a respond may
take up to a few minutes even. The main reason is that the calculation of driving
time profiles is computationally very expensive. Our mentioned acceleration efforts
refer to two applied techniques. One technique is to use time-dependent contraction
hierarchies. Here, we also exploit the limitation that we allow to stop for a break
only once between consecutive customers. Another technique is to compute upper
and lower bounds on arrival times. With these bounds, we know over which ran-
ges we do not need to calculate the driving time profiles. Both techniques preserve
optimality.

We have conducted all our experiments on the basis of the road network of Ger-
many and congestion data provided by TomTom (and post-processed by PTV). Besi-
des exact approaches, we have presented heuristics. These heuristics do not consider
short-term waiting or the prolongation of a break. They are very close to what the
driver would do in practice. And they are significantly faster. On real-world queries
with several customers, the respective heuristic performed three order of magnitude
faster on average. Moreover, the optimal solution was found in 600 out of 733 cases.
To sum up, we find that the heuristics perform extremely well and offer an excellent
trade-off between run-time and quality.

As far as the trade-off between run-time and memory consumption is concerned,
some questions remain open and are discussed in the following outlook.

180 Chapter 9. Conclusion and Outlook

9.2 Outlook

Truck Driver Scheduling A rather obvious direction for future research is to com-
bine some of our presented ideas and show that even more variants of the TDSP
can be solved in polynomial time. For instance, a polynomial-time approach for
the TDSP-2B with no-break-en-route policy and with minimum duration objective
would certainly be valuable. On the other hand, the conjecture of Drexl and Prescott-
Gagnon (2010) is still open, just like our conjecture that a strongly polynomial-time
algorithm for the TDSP-2B with an unrestricted break policy does not exist.

Vehicle Routing and Truck Driver Scheduling At PTV, we have already extended
the presented approach in order to also consider a second type of break as it is ne-
cessary for a planning horizon of several days. It is another important variant to not
consider the rule drive until driven but the rule drive until traveled as it is needed for
the lunch break rule in the United States.

Truck Driver Scheduling and Routing We have used time-dependent contraction
hierarchies as a speed-up technique in our experiments, both for our exact and our
heuristic approaches. However, the created search graph has become quite large,
approximately 40 GB for a recent road network of Germany. For a world map, the
size would be prohibitive. So one line of research is to find ways to reduce the
memory consumption of the search graph.

Another direction for future research is it to consider temporary road closures
and/or driving bans. Recently, Tuin, Weerdt, and Batz (2018) investigated the case
with truck driving bans where waiting is allowed everywhere and at any time. Br-
äuer (2018) studies the case with temporary road closures where waiting is only
allowed at dedicated parking locations, that is, the FIFO property does not hold.
However, break rules are disregarded here. In both works, the driving time along
an edge is supposed to be time-independent. The consideration of temporary road
closures and driving bans is both challenging and rewarding since it is certainly re-
levant in practice.

181

Bibliography

ADAC (2018). ADAC Staubilanz 2017. URL: https : / / www . adac . de / der - adac /
verein/aktuelles/staubilanz-2017/.

Archetti, Claudia and Martin Savelsbergh (2009). “The Trip Scheduling Problem”. In:
Transportation Science 43.4, pp. 417–431. DOI: 10.1287/trsc.1090.0278. eprint:
http://dx.doi.org/10.1287/trsc.1090.0278. URL: http://dx.doi.org/10.
1287/trsc.1090.0278.

Baltz, Andreas, Mourad El Ouali, Gerold Jäger, Volkmar Sauerland, and Anand Sri-
vastav (2015). “Exact and heuristic algorithms for the Travelling Salesman Pro-
blem with Multiple Time Windows and Hotel Selection”. In: Journal of the Ope-
rational Research Society 66.4, pp. 615–626. ISSN: 1476-9360. DOI: 10.1057/jors.
2014.17. URL: https://doi.org/10.1057/jors.2014.17.

Bartodziej, P., U. Derigs, D. Malcherek, and U. Vogel (Apr. 2009). “Models and al-
gorithms for solving combined vehicle and crew scheduling problems with rest
constraints : an application to road feeder service planning in air cargo trans-
portation”. In: OR Spectrum 31.2, pp. 405–429. ISSN: 1436-6304. DOI: 10.1007/
s00291-007-0110-7. URL: https://doi.org/10.1007/s00291-007-0110-7.

Bast, Hannah, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck (2016).
“Route Planning in Transportation Networks”. In: Algorithm Engineering - Se-
lected Results and Surveys. Vol. 9220. Lecture Notes in Computer Science. Springer,
pp. 19–80.

Batz, Gernot V., Robert Geisberger, Peter Sanders, and Christian Vetter (2013). “Mi-
nimum Time-Dependent Travel Times with Contraction Hierarchies”. In: ACM
Journal of Experimental Algorithmics 18, 1.4:1–1.4:43.

Batz, Gernot Veit. KaTCH. URL: https://github.com/GVeitBatz/KaTCH/.
Baum, Moritz, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zün-

dorf (2015). “Shortest Feasible Paths with Charging Stops for Battery Electric
Vehicles”. In: Proceedings of the 23rd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (GIS’15). ACM, 44:1–44:10.

Baum, Moritz, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner (2016). “Dyn-
amic Time-Dependent Route Planning in Road Networks with User Preferen-
ces”. In: Proceedings of the 15th International Symposium on Experimental Algorithms
(SEA’16). Vol. 9685. Lecture Notes in Computer Science. Springer, pp. 33–49.

Beaudry, Alexandre, Gilbert Laporte, Teresa Melo, and Stefan Nickel (2010). “Dyn-
amic transportation of patients in hospitals”. In: OR Spectrum 32.1, pp. 77–107.
ISSN: 1436-6304. DOI: 10.1007/s00291-008-0135-6. URL: https://doi.org/10.
1007/s00291-008-0135-6.

Bernhardt, Alexandra, Teresa Melo, Thomas Bousonville, and Herbert Kopfer (2016).
Scheduling of driver activities with multiple soft time windows considering European
regulations on rest periods and breaks. Tech. rep. 12. Hochschule für Technik und
Wirtschaft des Saarlandes. DOI: 10.13140/RG.2.2.27918.77122.

— (2017). Truck driver scheduling with combined planning of rest periods, breaks and vehi-
cle refueling. Tech. rep. 14. Hochschule für Technik und Wirtschaft des Saarlandes.

https://www.adac.de/der-adac/verein/aktuelles/staubilanz-2017/
https://www.adac.de/der-adac/verein/aktuelles/staubilanz-2017/
https://doi.org/10.1287/trsc.1090.0278
http://dx.doi.org/10.1287/trsc.1090.0278
http://dx.doi.org/10.1287/trsc.1090.0278
http://dx.doi.org/10.1287/trsc.1090.0278
https://doi.org/10.1057/jors.2014.17
https://doi.org/10.1057/jors.2014.17
https://doi.org/10.1057/jors.2014.17
https://doi.org/10.1007/s00291-007-0110-7
https://doi.org/10.1007/s00291-007-0110-7
https://doi.org/10.1007/s00291-007-0110-7
https://github.com/GVeitBatz/KaTCH/
https://doi.org/10.1007/s00291-008-0135-6
https://doi.org/10.1007/s00291-008-0135-6
https://doi.org/10.1007/s00291-008-0135-6
https://doi.org/10.13140/RG.2.2.27918.77122

182 Bibliography

DOI: 10.13140/RG.2.2.13781.73448. URL: http://hdl.handle.net/10419/
175088.

Bowden, Zachary E. and Cliff T. Ragsdale (2018). “The truck driver scheduling pro-
blem with fatigue monitoring”. In: Decision Support Systems 110, pp. 20 –31. ISSN:
0167-9236. DOI: 10.1016/j.dss.2018.03.002. URL: http://www.sciencedirect.
com/science/article/pii/S0167923618300484.

Braekers, Kris, Katrien Ramaekers, and Inneke Van Nieuwenhuyse (2016). “The vehi-
cle routing problem: State of the art classification and review”. In: Computers &
Industrial Engineering 99, pp. 300 –313. ISSN: 0360-8352. DOI: 10.1016/j.cie.
2015.12.007. URL: http://www.sciencedirect.com/science/article/pii/
S0360835215004775.

Bräuer, Christian (2016). “Optimale zeitabhängige Pausenplanung für LKW-Fahrer
mit integrierter Parkplatzwahl”. Bachelor thesis. Karlsruhe Institute of Techno-
logy.

— (2018). “Route Planning with Temporary Road Closures”. Master thesis. Karls-
ruhe Institute of Technology.

Campbell, Ann Melissa and Martin Savelsbergh (2004). “Efficient Insertion Heuris-
tics for Vehicle Routing and Scheduling Problems”. In: Transportation Science 38.3,
pp. 369–378. DOI: 10.1287/trsc.1030.0046. eprint: https://pubsonline.
informs.org/doi/pdf/10.1287/trsc.1030.0046. URL: https://pubsonline.
informs.org/doi/abs/10.1287/trsc.1030.0046.

Ceselli, Alberto, Giovanni Righini, and Matteo Salani (2009). “A Column Generation
Algorithm for a Rich Vehicle-Routing Problem”. In: Transportation Science 43.1,
pp. 56–69. DOI: 10.1287/trsc.1080.0256. eprint: https://doi.org/10.1287/
trsc.1080.0256. URL: https://doi.org/10.1287/trsc.1080.0256.

Coelho, Leandro C, Jean-Philippe Gagliardi, Jacques Renaud, and Angel Ruiz (May
2016). “Solving the vehicle routing problem with lunch break arising in the furni-
ture delivery industry”. In: Journal of the Operational Research Society 67.5, pp. 743–
751. ISSN: 1476-9360. DOI: 10.1057/jors.2015.90. URL: https://doi.org/10.
1057/jors.2015.90.

Cooke, Kenneth L. and Eric Halsey (1966). “The Shortest Route Through a Network
with Time-Dependent Internodal Transit Times”. In: Journal of Mathematical Ana-
lysis and Applications 14.3, pp. 493–498.

Dantzig, George B. (1963). Linear Programming and Extensions. Princeton University
Press.

Dean, Brian C. (2004). “Algorithms for Minimum-Cost Paths in Time-Dependent
Networks with Waiting Policies”. In: Networks 44.1, pp. 41–46.

Delling, Daniel (2011). “Time-Dependent SHARC-Routing”. In: Algorithmica 60.1,
pp. 60–94.

Delling, Daniel and Giacomo Nannicini (2012). “Core Routing on Dynamic Time-
Dependent Road Networks”. In: Informs Journal on Computing 24.2, pp. 187–201.

Delling, Daniel and Dorothea Wagner (2009). “Time-Dependent Route Planning”. In:
Robust and Online Large-Scale Optimization. Vol. 5868. Lecture Notes in Computer
Science. Springer, pp. 207–230.

Derigs, Ulrich, René Kurowsky, and Ulrich Vogel (2011). “Solving a real-world vehi-
cle routing problem with multiple use of tractors and trailers and EU-regulations
for drivers arising in air cargo road feeder services”. In: European Journal of Ope-
rational Research 213.1, pp. 309 –319. ISSN: 0377-2217. DOI: 10.1016/j.ejor.
2011.03.032. URL: http://www.sciencedirect.com/science/article/pii/
S0377221711002694.

https://doi.org/10.13140/RG.2.2.13781.73448
http://hdl.handle.net/10419/175088
http://hdl.handle.net/10419/175088
https://doi.org/10.1016/j.dss.2018.03.002
http://www.sciencedirect.com/science/article/pii/S0167923618300484
http://www.sciencedirect.com/science/article/pii/S0167923618300484
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1016/j.cie.2015.12.007
http://www.sciencedirect.com/science/article/pii/S0360835215004775
http://www.sciencedirect.com/science/article/pii/S0360835215004775
https://doi.org/10.1287/trsc.1030.0046
https://pubsonline.informs.org/doi/pdf/10.1287/trsc.1030.0046
https://pubsonline.informs.org/doi/pdf/10.1287/trsc.1030.0046
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1030.0046
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1030.0046
https://doi.org/10.1287/trsc.1080.0256
https://doi.org/10.1287/trsc.1080.0256
https://doi.org/10.1287/trsc.1080.0256
https://doi.org/10.1287/trsc.1080.0256
https://doi.org/10.1057/jors.2015.90
https://doi.org/10.1057/jors.2015.90
https://doi.org/10.1057/jors.2015.90
https://doi.org/10.1016/j.ejor.2011.03.032
https://doi.org/10.1016/j.ejor.2011.03.032
http://www.sciencedirect.com/science/article/pii/S0377221711002694
http://www.sciencedirect.com/science/article/pii/S0377221711002694

Bibliography 183

Dibbelt, Julian, Ben Strasser, and Dorothea Wagner (2016). “Customizable Contraction
Hierarchies”. In: ACM Journal of Experimental Algorithmics 21, 1.5:1–1.5:49.

Dijkstra, Edsger W. (1959). “A Note on Two Problems in Connexion with Graphs”.
In: Numerische Mathematik 1.1, pp. 269–271.

Drexl, Michael and Eric Prescott-Gagnon (2010). “Labelling algorithms for the ele-
mentary shortest path problem with resource constraints considering EU dri-
vers’ rules”. In: Logistics Research 2.2, pp. 79–96. ISSN: 1865-0368. DOI: 10.1007/
s12159-010-0022-9. URL: http://dx.doi.org/10.1007/s12159-010-0022-9.

Drexl, Michael, Julia Rieck, Thomas Sigl, and Bettina Press (Nov. 2013). “Simultane-
ous Vehicle and Crew Routing and Scheduling for Partial- and Full-Load Long-
Distance Road Transport”. In: Business Research 6.2, pp. 242–264. ISSN: 2198-2627.
DOI: 10.1007/BF03342751. URL: https://doi.org/10.1007/BF03342751.

Dreyfus, Stuart E. (1969). “An Appraisal of Some Shortest-Path Algorithms”. In: Ope-
rations Research 17.3, pp. 395–412.

European Parliament and Council of the European Union (Mar. 2002). “Directive
2002/15/EC of the European Parliament and of the Council of 11 March 2002 on
the organisation of the working time of persons performing mobile road trans-
port activities”. In: Official Journal of the European Union L 80, pp. 35–39.

— (Nov. 2003). “Directive 2003/88/EC of the European Parliament and of the Coun-
cil of 4 November 2003 concerning certain aspects of the organisation of working
time”. In: Official Journal of the European Union L 299, pp. 9–19.

— (Apr. 2006). “Regulation (EC) No. 561/2006 of the European Parliament and of
the Council of 15 March 2006 on the harmonisation of certain social legislation
relating to road transport and amending Council Regulations (EEC) No. 3821/85
and (EC) No. 2135/98 and repealing Council Regulation (EEC) No. 3820/85.” In:
Official Journal of the European Union L 102.1, pp. 1–13.

European Transport Safety Council (2001). The Role of Driver Fatigue in Commercial
Road Transport Crashes. https://etsc.eu/wp-content/uploads/The-role-of-
driver-fatigue-in-commercial-road-transport-crashes.pdf.

Federal Motor Carrier Safety Administration (May 2000). “Hours of Service of Dri-
vers; Driver Rest and Sleep for Safe Operations; Proposed Rule”. In: Federal Re-
gister 65.85, pp. 25539–25611. URL: https://federalregister.gov/a/00-10703.

— (2008). “Hours of Service of Drivers”. In: Federal Register 73.224, pp. 69569–69586.
URL: https://federalregister.gov/a/E8-27437.

— (2011). “Hours of Service of Drivers”. In: Federal Register 76.248, pp. 81133–81188.
URL: https://federalregister.gov/a/2011-32696.

Foschini, Luca, John Hershberger, and Subhash Suri (2014). “On the Complexity of
Time-Dependent Shortest Paths”. In: Algorithmica 68.4, pp. 1075–1097.

Franceschetti, Anna, Doroth’ee Honhon, Tom Van Woensel, Tolga Bektaş, and Gil-
bert Laporte (2013). “The Time-Dependent Pollution-Routing Problem”. In: Trans-
portation Research Part B: Methodological 56, pp. 265–293.

Fredman, Michael L. and Robert E. Tarjan (1987). “Fibonacci Heaps and Their Uses
in Improved Network Optimization Algorithms”. In: Journal of the ACM 34.3,
pp. 596–615.

Geisberger, Robert and Peter Sanders (2010). “Engineering Time-Dependent Many-
to-Many Shortest Paths Computation”. In: Proceedings of the 10th Workshop on Al-
gorithmic Approaches for Transportation Modeling, Optimization, and Systems (AT-
MOS’10). Vol. 14. OpenAccess Series in Informatics (OASIcs).

Geisberger, Robert, Peter Sanders, Dominik Schultes, and Christian Vetter (2012).
“Exact Routing in Large Road Networks Using Contraction Hierarchies”. In:
Transportation Science 46.3, pp. 388–404.

https://doi.org/10.1007/s12159-010-0022-9
https://doi.org/10.1007/s12159-010-0022-9
http://dx.doi.org/10.1007/s12159-010-0022-9
https://doi.org/10.1007/BF03342751
https://doi.org/10.1007/BF03342751
https://etsc.eu/wp-content/uploads/The-role-of-driver-fatigue-in-commercial-road-transport-crashes.pdf
https://etsc.eu/wp-content/uploads/The-role-of-driver-fatigue-in-commercial-road-transport-crashes.pdf
https://federalregister.gov/a/00-10703
https://federalregister.gov/a/E8-27437
https://federalregister.gov/a/2011-32696

184 Bibliography

Goel, A., T. Vidal, and A.L. Kok (2019). To team up or not – Single versus team driving
in European road freight transport. Tech. rep. Rio de Janeiro, Brasil: PUC–Rio. URL:
https://w1.cirrelt.ca/~vidalt/papers/Team-vs-Single.pdf.

Goel, Asvin (2009). “Vehicle Scheduling and Routing with Drivers’ Working Hours”.
In: Transportation Science 43.1, pp. 17–26. DOI: 10.1287/trsc.1070.0226. eprint:
https://doi.org/10.1287/trsc.1070.0226. URL: https://doi.org/10.1287/
trsc.1070.0226.

— (2010). “Truck driver scheduling in the European Union”. In: Transportation Science
44.4, pp. 429–441.

— (Dec. 2012a). “A mixed integer programming formulation and effective cuts for
minimising schedule durations of Australian truck drivers”. In: Journal of Schedu-
ling 15.6, pp. 733–741. ISSN: 1099-1425. DOI: 10.1007/s10951-012-0282-0. URL:
https://doi.org/10.1007/s10951-012-0282-0.

— (2012b). “The Canadian minimum duration truck driver scheduling problem”.
In: Computers & Operations Research 39.10, pp. 2359 –2367. ISSN: 0305-0548. DOI:
10.1016/j.cor.2011.12.016. URL: http://www.sciencedirect.com/science/
article/pii/S0305054811003728.

— (2012c). “The minimum duration truck driver scheduling problem”. In: EURO
Journal on Transportation and Logistics 1.4, pp. 285–306.

— (2014). “Hours of Service Regulations in the United States and the 2013 Rule
Change”. In: Transport Policy 33, pp. 48–55. ISSN: 0967-070X. DOI: 10.1016/j.
tranpol.2014.02.005.

— (2018). “Legal aspects in road transport optimization in Europe”. In: Transpor-
tation Research Part E: Logistics and Transportation Review 114, pp. 144 –162. ISSN:
1366-5545. DOI: 10.1016/j.tre.2018.02.011. URL: http://www.sciencedirect.
com/science/article/pii/S1366554517309936.

Goel, Asvin, Claudia Archetti, and Martin Savelsbergh (2012). “Truck driver sche-
duling in Australia”. In: Computers & Operations Research 39.5, pp. 1122 –1132.
ISSN: 0305-0548. DOI: 10 . 1016 / j . cor . 2011 . 05 . 021. URL: http : / / www .
sciencedirect.com/science/article/pii/S0305054811001559.

Goel, Asvin and Stefan Irnich (2017). “An Exact Method for Vehicle Routing and
Truck Driver Scheduling Problems”. In: Transportation Science 51.2, pp. 737–754.
DOI: 10.1287/trsc.2016.0678. eprint: https://doi.org/10.1287/trsc.2016.
0678. URL: https://doi.org/10.1287/trsc.2016.0678.

Goel, Asvin and Leendert Kok (2012a). “Efficient Scheduling of Team Truck Dri-
vers in the European Union”. In: Flexible Services and Manufacturing Journal 24.1,
pp. 81–96. ISSN: 1936-6582. DOI: 10.1007/s10696-011-9086-3.

— (2012b). “Truck Driver Scheduling in the United States”. In: Transportation Science
46.3, pp. 317–326. DOI: 10.1287/trsc.1110.0382. eprint: http://dx.doi.org/
10.1287/trsc.1110.0382. URL: http://dx.doi.org/10.1287/trsc.1110.0382.

Goel, Asvin and Louis-Martin Rousseau (Dec. 2012). “Truck driver scheduling in
Canada”. In: Journal of Scheduling 15.6, pp. 783–799. ISSN: 1099-1425. DOI: 10.
1007/s10951-011-0249-6. URL: https://doi.org/10.1007/s10951-011-0249-
6.

Goel, Asvin and Thibaut Vidal (2014). “Hours of Service Regulations in Road Freight
Transport: An Optimization-Based International Assessment”. In: Transportation
Science 48 (3), pp. 391–412.

Hashimoto, Hideki, Mutsunori Yagiura, and Toshihide Ibaraki (May 2008). “An ite-
rated local search algorithm for the time-dependent vehicle routing problem
with time windows”. In: Discrete Optimization 5.2, pp. 434–456. DOI: doi:10.
1016/j.disopt.2007.05.004.

https://w1.cirrelt.ca/~vidalt/papers/Team-vs-Single.pdf
https://doi.org/10.1287/trsc.1070.0226
https://doi.org/10.1287/trsc.1070.0226
https://doi.org/10.1287/trsc.1070.0226
https://doi.org/10.1287/trsc.1070.0226
https://doi.org/10.1007/s10951-012-0282-0
https://doi.org/10.1007/s10951-012-0282-0
https://doi.org/10.1016/j.cor.2011.12.016
http://www.sciencedirect.com/science/article/pii/S0305054811003728
http://www.sciencedirect.com/science/article/pii/S0305054811003728
https://doi.org/10.1016/j.tranpol.2014.02.005
https://doi.org/10.1016/j.tranpol.2014.02.005
https://doi.org/10.1016/j.tre.2018.02.011
http://www.sciencedirect.com/science/article/pii/S1366554517309936
http://www.sciencedirect.com/science/article/pii/S1366554517309936
https://doi.org/10.1016/j.cor.2011.05.021
http://www.sciencedirect.com/science/article/pii/S0305054811001559
http://www.sciencedirect.com/science/article/pii/S0305054811001559
https://doi.org/10.1287/trsc.2016.0678
https://doi.org/10.1287/trsc.2016.0678
https://doi.org/10.1287/trsc.2016.0678
https://doi.org/10.1287/trsc.2016.0678
https://doi.org/10.1007/s10696-011-9086-3
https://doi.org/10.1287/trsc.1110.0382
http://dx.doi.org/10.1287/trsc.1110.0382
http://dx.doi.org/10.1287/trsc.1110.0382
http://dx.doi.org/10.1287/trsc.1110.0382
https://doi.org/10.1007/s10951-011-0249-6
https://doi.org/10.1007/s10951-011-0249-6
https://doi.org/10.1007/s10951-011-0249-6
https://doi.org/10.1007/s10951-011-0249-6
https://doi.org/doi:10.1016/j.disopt.2007.05.004
https://doi.org/doi:10.1016/j.disopt.2007.05.004

Bibliography 185

Ibaraki, T., S. Imahori, M. Kubo, T. Masuda, T. Uno, and M. Yagiura (May 2005).
“Effective Local Search Algorithms for Routing and Scheduling Problems with
General Time-Window Constraints”. In: Transportation Science 39.2, pp. 206–232.
ISSN: 1526-5447. DOI: 10.1287/trsc.1030.0085. URL: http://dx.doi.org/10.
1287/trsc.1030.0085.

Imai, Hiroshi and Masao Iri (1987). “An Optimal Algorithm for Approximating a
Piecewise Linear Function”. In: Journal of Information Processing 9.3, pp. 159–162.

Jong, Cor de, Goos Kant, and André van Vliet (1996). On Finding Minimal Route Du-
ration in the Vehicle Routing Problem with Multiple Time Windows. Tech. rep. De-
partment of Computer Science, Utrecht University. URL: http://www.cs.uu.nl/
research/projects/alcom/wp4.3.html.

Kinz, Monika (2016). “Optimale Pausenplanung von LKW-Fahrern mit integrierter
Parkplatzwahl”. MA thesis. Technische Universität Darmstadt.

Kleff, Alexander, Christian Bräuer, Frank Schulz, Valentin Buchhold, Moritz Baum,
and Dorothea Wagner (2017). “Time-Dependent Route Planning for Truck Dri-
vers”. In: Computational Logistics: 8th International Conference, ICCL 2017, Sout-
hampton, UK, October 18-20, 2017, Proceedings. Ed. by Tolga Bektaş, Stefano Co-
niglio, Antonio Martinez-Sykora, and Stefan Voß. Cham: Springer International
Publishing, pp. 110–126. DOI: 10.1007/978-3-319-68496-3_8. URL: https:
//doi.org/10.1007/978-3-319-68496-3_8.

Koç, Çagri, Tolga Bektas, Ola Jabali, and Gilbert Laporte (2016). “A comparison of
three idling options in long-haul truck scheduling”. In: Transportation Research
Part B: Methodological 93, Part A, pp. 631 –647. ISSN: 0191-2615. DOI: 10.1016/j.
trb.2016.08.006. URL: http://www.sciencedirect.com/science/article/
pii/S019126151630145X.

Koç, Çağrı, Ola Jabali, and Gilbert Laporte (2017). “Long-Haul Vehicle Routing and
Scheduling with Idling Options”. In: Journal of the Operational Research Society
69.2, pp. 235–246. ISSN: 1476-9360. DOI: 10.1057/s41274- 017- 0202- y. URL:
https://doi.org/10.1057/s41274-017-0202-y.

Kok, A. L., C. M. Meyer, H. Kopfer, and J. M. J. Schutten (2010). “A Dynamic Pro-
gramming Heuristic for the Vehicle Routing Problem with Time Windows and
the European Community Social Legislation”. In: Transportation Science 44(4),
pp. 442–454.

Kok, A.L., E.W. Hans, and J.M.J. Schutten (2011). “Optimizing departure times in
vehicle routes”. In: European Journal of Operational Research 210.3, pp. 579 –587.
ISSN: 0377-2217. DOI: http://dx.doi.org/10.1016/j.ejor.2010.10.017. URL:
http://www.sciencedirect.com/science/article/pii/S0377221710006582.

Lahyani, Rahma, Mahdi Khemakhem, and Frédéric Semet (2015). “Rich vehicle rou-
ting problems: From a taxonomy to a definition”. In: European Journal of Operatio-
nal Research 241.1, pp. 1 –14. ISSN: 0377-2217. DOI: 10.1016/j.ejor.2014.07.048.
URL: http://www.sciencedirect.com/science/article/pii/S0377221714006146.

Lin, Shen (Dec. 1965). “Computer Solutions of the Traveling Salesman Problem”.
In: Bell System Technical Journal 44.10, pp. 2245–2269. DOI: 10.1002/j.1538-
7305.1965.tb04146.x.

Meyer, Christoph Manuel (2011). Vehicle Routing under Consideration of Driving and
Working Hours: A Distributed Decision Making Perspective. ISBN 978-3-8349-2942-
6. Gabler Verlag, Wiesbaden. DOI: 10.1007/978-3-8349-6732-9.

National Academies of Sciences, Engineering, and Medicine (2016). Commercial Mo-
tor Vehicle Driver Fatigue, Long-Term Health, and Highway Safety: Research Needs.
Washington, DC: The National Academies Press. DOI: 10.17226/21921.

https://doi.org/10.1287/trsc.1030.0085
http://dx.doi.org/10.1287/trsc.1030.0085
http://dx.doi.org/10.1287/trsc.1030.0085
http://www.cs.uu.nl/research/projects/alcom/wp4.3.html
http://www.cs.uu.nl/research/projects/alcom/wp4.3.html
https://doi.org/10.1007/978-3-319-68496-3_8
https://doi.org/10.1007/978-3-319-68496-3_8
https://doi.org/10.1007/978-3-319-68496-3_8
https://doi.org/10.1016/j.trb.2016.08.006
https://doi.org/10.1016/j.trb.2016.08.006
http://www.sciencedirect.com/science/article/pii/S019126151630145X
http://www.sciencedirect.com/science/article/pii/S019126151630145X
https://doi.org/10.1057/s41274-017-0202-y
https://doi.org/10.1057/s41274-017-0202-y
https://doi.org/http://dx.doi.org/10.1016/j.ejor.2010.10.017
http://www.sciencedirect.com/science/article/pii/S0377221710006582
https://doi.org/10.1016/j.ejor.2014.07.048
http://www.sciencedirect.com/science/article/pii/S0377221714006146
https://doi.org/10.1002/j.1538-7305.1965.tb04146.x
https://doi.org/10.1002/j.1538-7305.1965.tb04146.x
https://doi.org/10.1007/978-3-8349-6732-9
https://doi.org/10.17226/21921

186 Bibliography

Potvin, Jean-Yves and Jean-Marc Rousseau (Dec. 1995). “An Exchange Heuristic for
Routeing Problems with Time Windows”. In: Journal of the Operational Research
Society 46.12, pp. 1433–1446. ISSN: 1476-9360. DOI: 10.1057/jors.1995.204. URL:
https://doi.org/10.1057/jors.1995.204.

Prescott-Gagnon, Eric, Guy Desaulniers, Michael Drexl, and Louis-Martin Rousseau
(2010). “European Driver Rules in Vehicle Routing with Time Windows”. In:
Transportation Science 44.4, pp. 455–473. DOI: 10.1287/trsc.1100.0328. eprint:
http://dx.doi.org/10.1287/trsc.1100.0328. URL: http://dx.doi.org/10.
1287/trsc.1100.0328.

Rancourt, Marie-Eve, Jean-Francois Cordeau, and Gilbert Laporte (2013). “Long-
Haul Vehicle Routing and Scheduling with Working Hour Rules”. In: Transpor-
tation Science 47.1, pp. 81–107. DOI: 10.1287/trsc.1120.0417. eprint: http:
//pubsonline.informs.org/doi/pdf/10.1287/trsc.1120.0417. URL: http:
//pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0417.

Sahoo, Surya, Seongbae Kim, Byung-In Kim, Bob Kraas, and Alexander Popov Jr.
(Jan. 2005). “Routing Optimization for Waste Management”. In: Interfaces 35.1,
pp. 24–36. ISSN: 0092-2102. DOI: 10.1287/inte.1040.0109. URL: http://dx.
doi.org/10.1287/inte.1040.0109.

Savelsbergh, M. W. P. (Dec. 1985). “Local search in routing problems with time win-
dows”. In: Annals of Operations Research 4.1, pp. 285–305. ISSN: 1572-9338. DOI:
10.1007/BF02022044. URL: https://doi.org/10.1007/BF02022044.

Savelsbergh, Martin and Marc Sol (1998). “Drive: Dynamic Routing of Independent
Vehicles”. In: Operations Research 46.4, pp. 474–490. DOI: 10.1287/opre.46.4.474.
eprint: https://pubsonline.informs.org/doi/pdf/10.1287/opre.46.4.474.
URL: https://pubsonline.informs.org/doi/abs/10.1287/opre.46.4.474.

Savelsbergh, Martin W. P. (1992). “The Vehicle Routing Problem with Time Windows:
Minimizing Route Duration”. In: ORSA Journal on Computing 4.2, pp. 146–154.
DOI: 10.1287/ijoc.4.2.146. eprint: https://doi.org/10.1287/ijoc.4.2.146.
URL: https://doi.org/10.1287/ijoc.4.2.146.

Schiffer, Maximilian, Gilbert Laporte, Michael Schneider, and Grit Walther (2017).
The impact of synchronizing driver breaks and recharging operations for electric vehicles.
Tech. rep. GERAD. URL: https://www.gerad.ca/en/papers/G-2017-46.

Shah, Vidit Divyang (2008). “Time dependent truck routing and driver scheduling
problem with hours of service regulations”. MA thesis. Northeastern University,
Massachusetts. URL: http://hdl.handle.net/2047/d10016995.

Sherali, Hanif D., Kaan Ozbay, and Shivaram Subramanian (1998). “The Time-Dependent
Shortest Pair of Disjoint Paths Problem: Complexity, Models, and Algorithms”.
In: Networks 31.4, pp. 259–272.

Smith, Olivia J., Natashia Boland, and Hamish Waterer (2012). “Solving Shortest
Path Problems with a Weight Constraint and Replenishment Arcs”. In: Computers
& Operations Research 39.5, pp. 964–984.

Sommer, Christian (2014). “Shortest-Path Queries in Static Networks”. In: ACM Com-
puting Surveys 46.4, 45:1–45:31.

Statistisches Bundesamt (Destatis) (Nov. 2017). Verkehrsunfälle: Unfälle von Güterkraft-
fahrzeugen im Straßenverkehr. https://www.destatis.de/.

Strasser, Ben (2016). Intriguingly Simple and Efficient Time-Dependent Routing in Road
Networks. Technical report abs/1606.06636. ArXiv e-prints.

Tilk, Christian (2016). Branch-and-price-and-cut for the vehicle routing and truck driver
scheduling problem. Technical Report LM-2016-04. Mainz, Germany: Chair of Lo-
gistics Management, Gutenberg School of Management and Economics, Johan-
nes Gutenberg University Mainz.

https://doi.org/10.1057/jors.1995.204
https://doi.org/10.1057/jors.1995.204
https://doi.org/10.1287/trsc.1100.0328
http://dx.doi.org/10.1287/trsc.1100.0328
http://dx.doi.org/10.1287/trsc.1100.0328
http://dx.doi.org/10.1287/trsc.1100.0328
https://doi.org/10.1287/trsc.1120.0417
http://pubsonline.informs.org/doi/pdf/10.1287/trsc.1120.0417
http://pubsonline.informs.org/doi/pdf/10.1287/trsc.1120.0417
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0417
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0417
https://doi.org/10.1287/inte.1040.0109
http://dx.doi.org/10.1287/inte.1040.0109
http://dx.doi.org/10.1287/inte.1040.0109
https://doi.org/10.1007/BF02022044
https://doi.org/10.1007/BF02022044
https://doi.org/10.1287/opre.46.4.474
https://pubsonline.informs.org/doi/pdf/10.1287/opre.46.4.474
https://pubsonline.informs.org/doi/abs/10.1287/opre.46.4.474
https://doi.org/10.1287/ijoc.4.2.146
https://doi.org/10.1287/ijoc.4.2.146
https://doi.org/10.1287/ijoc.4.2.146
https://www.gerad.ca/en/papers/G-2017-46
http://hdl.handle.net/2047/d10016995
https://www.destatis.de/DE/Publikationen/Thematisch/TransportVerkehr/Verkehrsunfaelle/UnfaelleGueterkraftfahrzeuge5462410167004.pdf?__blob=publicationFile

Bibliography 187

Tuin, Marieke van der, Mathijs de Weerdt, and Gernot Veit Batz (2018). “Route Plan-
ning with Breaks and Truck Driving Bans Using Time-Dependent Contraction
Hierarchies”. In: Twenty-Eighth International Conference on Automated Planning and
Scheduling (ICAPS 2018). URL: https://aaai.org/ocs/index.php/ICAPS/
ICAPS18/paper/view/17745.

United States House Committee on Rules (Dec. 2014). Consolidated and Further Con-
tinuing Appropriations, 2015.

Vidal, T., T.G. Crainic, M. Gendreau, and C. Prins (2013). “Heuristics for multi-
attribute vehicle routing problems: A survey and synthesis”. In: European Journal
of Operational Research 231.1, pp. 1–21. DOI: 10.1016/j.ejor.2013.02.053. URL:
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-05.pdf.

— (2014). “A unified solution framework for multi-attribute vehicle routing pro-
blems”. In: European Journal of Operational Research 234.3, pp. 658–673. DOI: 10.
1016/j.ejor.2013.09.045. URL: https://www.cirrelt.ca/DocumentsTravail/
CIRRELT-2013-22.pdf.

Vidal, Thibaut, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Wal-
ter Rei (2012). “A Hybrid Genetic Algorithm for Multidepot and Periodic Vehi-
cle Routing Problems”. In: Operations Research 60.3, pp. 611–624. DOI: 10.1287/
opre.1120.1048. eprint: https://doi.org/10.1287/opre.1120.1048. URL:
https://doi.org/10.1287/opre.1120.1048.

Xu, Hang, Zhi-Long Chen, Srinivas Rajagopal, and Sundar Arunapuram (2003). “Sol-
ving a Practical Pickup and Delivery Problem”. In: Transportation Science 37.3,
pp. 347–364. DOI: 10.1287/trsc.37.3.347.16044. eprint: http://pubsonline.
informs . org / doi / pdf / 10 . 1287 / trsc . 37 . 3 . 347 . 16044. URL: http : / /
pubsonline.informs.org/doi/abs/10.1287/trsc.37.3.347.16044.

Zäpfel, Günther and Michael Bögl (2008). “Multi-period vehicle routing and crew
scheduling with outsourcing options”. In: International Journal of Production Eco-
nomics 113.2. Special Section on Advanced Modeling and Innovative Design of
Supply Chain, pp. 980 –996. ISSN: 0925-5273. DOI: 10.1016/j.ijpe.2007.11.011.
URL: http://www.sciencedirect.com/science/article/pii/S0925527307003611.

https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17745
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17745
https://doi.org/10.1016/j.ejor.2013.02.053
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-05.pdf
https://doi.org/10.1016/j.ejor.2013.09.045
https://doi.org/10.1016/j.ejor.2013.09.045
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2013-22.pdf
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2013-22.pdf
https://doi.org/10.1287/opre.1120.1048
https://doi.org/10.1287/opre.1120.1048
https://doi.org/10.1287/opre.1120.1048
https://doi.org/10.1287/opre.1120.1048
https://doi.org/10.1287/trsc.37.3.347.16044
http://pubsonline.informs.org/doi/pdf/10.1287/trsc.37.3.347.16044
http://pubsonline.informs.org/doi/pdf/10.1287/trsc.37.3.347.16044
http://pubsonline.informs.org/doi/abs/10.1287/trsc.37.3.347.16044
http://pubsonline.informs.org/doi/abs/10.1287/trsc.37.3.347.16044
https://doi.org/10.1016/j.ijpe.2007.11.011
http://www.sciencedirect.com/science/article/pii/S0925527307003611

	Abstract
	Introduction
	Problem Descriptions
	Scope of Thesis
	Truck Driver Scheduling
	Truck Driver Scheduling and Routing
	Vehicle Routing and Truck Driver Scheduling

	Organization and Main Contributions

	Fundamentals and Preliminaries
	Regulations Affecting Drivers' Working Hours
	European Union
	United States

	Related Work
	Classification of Break Rules
	Basic Terminology
	Types of Break Rules

	Basic Definitions and Notation
	Truck Driver Scheduling Problem Template
	Examples of Concrete Truck Driver Scheduling Problems
	Convenient Definitions

	Truck Driver Scheduling with Multiple Time Windows
	Introduction
	Problem Definition
	Definition of a Truck Driver Schedule
	Problem Characteristics

	Solution Approach
	Driver States Label
	Outline and Initialization of the Algorithm
	Steps of Algorithm in Detail
	Deriving a Schedule
	Complexity Analysis

	Discussion of the Extension by Break Splits
	Driver States Label Extension
	Outline and Initialization of the Algorithm
	Steps of Algorithm in Detail
	Complexity Analysis

	Conclusion and Outlook

	Truck Driver Scheduling with Minimum Duration Objective
	Introduction
	Problem Definition
	Problem Characteristics

	Solution Approach
	Driver States Label
	Outline and Initialization of the Algorithm
	Step Setup in Detail
	Other Steps in Detail
	Complexity Analysis

	Discussion of a Problem Variant with Minimum Idle Cost Objective
	Conclusion and Outlook

	Truck Driver Scheduling with Two Types of Breaks
	Introduction
	Problem Definition
	Problem Characteristics
	Solution Approach
	Driver States Label
	Outline and Initialization of the Algorithm
	Steps of Algorithm in Detail
	Deriving a Schedule
	Complexity Analysis

	Discussion of a Non-restrictive Break Policy
	Conclusion and Outlook

	Vehicle Routing and Truck Driver Scheduling with Multiple Time Windows
	Introduction
	Problem Definition
	Integrated Approach
	Driver States Label
	Outline of Propagation Scheme and Initialization
	Forward Propagation
	Backward Propagation
	Feasibility Check of a Neighboring Solution

	Conclusion and Outlook

	Truck Driver Routing on Time-Dependent Road Networks
	Introduction
	Problem Statement and Preliminaries
	Solution Approach
	Acceleration by Narrowing Down Searches
	Acceleration by Contraction Hierarchies
	Heuristic Acceleration

	Experiments
	Enhancement to Multiple Stops
	Conclusion and Outlook

	Truck Driver Scheduling and Routing on Time-Dependent Road Networks
	Introduction
	Problem Definition
	Scheduling Part of the Exact Approach
	Initialization
	Steps of Algorithm in Detail
	Complexity Analysis
	Schedule and Route Deduction

	Routing Part of the Exact Approach
	Computing Bounds on Earliest Arrival Time at Next Customer
	Profile Range Queries

	Heuristic
	Basic Heuristic
	Enhancement of the Heuristic

	Experiments
	Test Setup
	Experimental Analysis

	Discussion of an Additional Constraint on the Total Driving Time
	Conclusion and Outlook

	Conclusion and Outlook
	Conclusion
	Truck Driver Scheduling
	Vehicle Routing and Truck Driver Scheduling
	Truck Driver Scheduling and Routing

	Outlook

	Bibliography

