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Introduction

Perhaps the strongest link between the chapters of this thesis are /2-Betti numbers. ¢>-Betti
numbers are topological invariants with values in the positive extended-real numbers [0, co].
Their history, or evolution, goes back to the year 1976, when Atiyah defined them for universal
coverings of compact Riemannian manifolds by means of the heat kernel [Ati76]. This was
followed by different definitions - a simplicial one was given by Dodziuk [Dod77] and, later,
Liick [Ltic97, Lic98] gave a homological one - all these definitions only apply to discrete groups
acting on topological spaces. Using similar techniques as Cheeger and Gromov, who gave the
first definition of /?-Betti numbers of an arbitrary discrete group [CG86], Gaboriau defined
(%-Betti numbers of a standard measure preserving equivalence relation [Gab02]. This was suc-
ceeded by a generalization to discrete measured groupoids, due to Sauer [Sau05], which we will
deal with in Chapter[4] Later on, Connes and Shlyakhtenko defined ¢2-Betti numbers of ar-
bitrary finite von Neumann algebras [CSO5]. Building on the homological approach of Liick,
H. D. Petersen extended the notion of von Neumann dimension from finite to semi-finite von
Neumann algebras and was thus able to define ¢*-Betti numbers of unimodular locally com-
pact second countable groups [Pet13]. We will come back to this definition in Chapter(]

In this thesis, I want to study different aspects and generalizations of /?-Betti numbers.

« Up to what extent do £2-Betti numbers depend on the coarse geometry of the group?
« How do /2-Betti numbers behave under Benjamini-Schramm convergence?

« Is there a way to define the /2-Betti numbers of groupoids, or spaces with an action of
a groupoid, analogous to the definition of ¢*-Betti numbers of discrete groups?

The motivation for the last question is that such a definition may enables us to define ¢*-Betti
numbers of objects for which it was not possible before. In the following we will address each
of the three questions.

Coarse Geometry Invariance

The answer to the first question is that /2-Betti numbers are no quasi-isometry invariants and
they do not coincide up to a constant factor. But, as we will see later, the vanishing of /2-Betti
numbers is a coarse geometry invariant (this is a joint work with Roman Sauer [SS18]).

The insight that the vanishing of ¢*-Betti numbers provides a quasi-isometry invariant is
due to Gromov [Gro93, Chapter 8], and positive results around this insight have a long his-
tory. Maybe the most important contribution is due to Pansu [Pan95] who introduced asymp-
totic /P-cohomology of discrete groups and proved its invariance under quasi-isometries.
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If a group I is of type F, then the /?-cohomology of I" coincides with its asymptotic ¢7-
cohomology [Pan95, Théoreme 1]. The geometric explanation for the appearance of the type
F,, condition is that the finite-dimensional skeleta of the universal covering of a classifying
space of finite type are uniformly contractible. As an immediate consequence of Pansu’s re-
sult, the vanishing of /2-Betti numbers is a quasi-isometry invariant among discrete groups
of type Fi,. The same arguments work for totally disconnected groups admitting a topologi-
cal model of finite type [Saul8].

Elek [Ele98] investigated the relation between ¢P-cohomology of discrete groups and Roe’s
coarse cohomology and proved similar results. Another independent treatment is due to Fan
[Fan94]. Genton [Genl4] elaborated upon Pansu’s methods in the case of metric measure
spaces.

Oguni [OgulO] generalised the quasi-isometry invariance of the vanishing of ¢?-Betti num-
bers from discrete groups of type F, to discrete groups whose cohomology with coefficients
in the group von Neumann algebra satisfies a certain technical condition. A similar technical
condition appears in the proof of quasi-isometry invariance of Novikov-Shubin invariants of
amenable groups [Sau0Oé|, and it is unclear how much this condition differs from the type Fi,
condition. Oguni’s groupoid approach is inspired by [Gab02|,Sau0é] and quite different from
the approaches by Elek, Fan, and Pansu. The coarse invariance of vanishing of £2-Betti num-
bers for discrete groups was shown by Mimura-Ozawa-Sako-Suzuki [MOSS15|, Corollary 6.3].
Li [Li18] recently reproved this using groupoid techniques as a consequence of more general
cohomological coarse invariance results.

Benjamini-Schramm Convergence

Now we turn to the second question. Benjamini and Schramm introduced the concept of ran-
dom rooted graphs as probability measures on the space of connected rooted graphs [BSO1].
This allowed them to define convergence - today known as Benjamini-Schramm convergence
- of sequences of finite graphs and to study the corresponding limit random rooted graphs.
It was realized by Aldous and Lyons [ALO7] that Benjamini-Schramm limits of finite graphs
share a useful mass-transport property, called unimodularity, which, when added to the defi-
nition of random rooted graphs, allows to extend several results from quasi-transitive graphs
to this setting. These two insights provide the basis of a large number of subsequent develop-
ments.

The basic idea of Benjamini-Schramm convergence is not specific to graphs and was, in par-
ticular, generalized to simplicial complexes in the work of Elek [Ele10] and Bowen [Bow15],
who further generalized it to metric measure spaces. In this thesis, I want to focus on Ben-
jamini-Schramm convergence of simplicial complexes. Elek proved in [Ele10] that the limit
lim,, 0 b, (K,)/ |K,(LO)| of the Betti numbers normalized by the number of vertices exists for
a Benjamini-Schramm convergent sequence (K,), of finite simplicial complexes of globally
bounded vertex degree.

I will give a definition of /2-Betti numbers of random rooted simplicial complexes - which
coincides with b, (K) /| K| for a finite random rooted simplicial complex K - and show that
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they are continuous under Benjamini-Schramm convergence on the space of sofic random
rooted simplicial complexes [Sch19].

This result generalizes Liick’s Approximation Theorem [Lic94], which says in its classical ver-
sion that for a free I'-CW-complex X, with I\ X of finite type,

0,(TA\X;Q) )
oy D
holds for all finite index normal towers (T';);en. Farber [Far] extended this to so called Farber
sequences, which weakens the assumption that (T';);ey is normal. Elek and Szabé [ESO5] fur-
ther extended this result to normal towers (T'; ) ;e with T'/T; sofic for everyi € N. In [ABB*17],
Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault and Samet proved an approximation
result for Benjamini-Schramm convergent sequences of orbifolds which arise from a uni-
formly discrete sequence of lattices in a semi-simple Lie group. Petersen, Sauer and Thom
generalized the notion of Farber sequences to lattices in a totally disconnected second count-
able unimodular group G, which is also an instance of local weak convergence, and proved
that the normalized Betti numbers of a uniformly discrete Farber sequence converge to the
(%-Betti numbers of the group G [PST18]. Recently, Carderi, Gaboriau and de la Salle proved
a theorem for graphed groupoids and ultra products of them, which for instance implies the
convergence for Farber sequences [CGd18].

Now that we know that /?-Betti numbers are continuous under Benjamini-Schramm conver-
gence, it is natural to ask if this also holds true for refinements of them. One classical refine-
ment of ordinary Betti numbers are multiplicities of irreducible representations of a finite
group which acts on the homology of a simplicial complex. In analogy to this, Kionke defined
¢>-multiplicities as a refinement of ¢2-Betti numbers of CW-complexes [Kiol8].

In this thesis, I will give a definition of ¢*-multiplicities of random rooted simplicial com-
plexes with an action of a finite group and prove that they are continuous with respect to an
equivariant version of Benjamini-Schramm convergence for sofic random rooted simplicial
G-complexes. This is a joint work with Steffen Kionke [KSB].

(?-Betti Numbers of Groupoids

Let us move on to the last of the three questions. Gaboriau defined ¢?-Betti numbers of an R -
simplicial complex ¥ as the von Neumann dimension of the reduced homology of the chain
complex S® C’T(LQ)(EI)du(m) [Gabo2]. If the simplicial complexes ¥, are almost surely con-
tractible, then the /2-Betti numbers are independent of 3 and are called the ¢/?-Betti numbers
of the equivalence relation R.

For discrete measured groupoids there also exists a notion of /?-Betti numbers, due to Sauer
[Sau0s], which is purely homological and does not involve any simplicial complexes. Sauer
showed that the two definitions coincide for orbit equivalence relations of discrete groups.
Later on, Takimoto adapted the ideas of Gaboriau and defined G-simplicial complexes - for a
discrete measured groupoid G - and their corresponding ¢-Betti numbers [Tak15]. Further-
more, Takimoto proved that for contractible G-simplicial complexes, the ¢?-Betti numbers
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of the G-simplicial complex coincides with the /2-Betti numbers, as defined by Sauer, of the
groupoid.

Inspired by this, I will define topological G-spaces, which are less restrictive than G-simplicial
complexes, and define a G-equivariant singular homology on them. This enables us to de-
fine /?-Betti numbers of G-spaces. Furthermore, to justify this definition, I will show that
the /2-Betti numbers of the geometric realization of a G-simplicial complex, considered as a
topological G-space, coincide with the ¢2-Betti numbers of the G-simplicial complex as de-
fined by [Taki5].

Before I will give a more detailed summary of the results, I would like to return to the three
questions from the beginning of this introduction. We can give a positive answer to all three of
them, atleast partially. It is clear that £2-Betti numbers can not be quasi-isometry invariants,
but their vanishing is a coarse equivalence invariant. Before this work, it was only known for
discrete groups of type I, or discrete groups fulfilling another technical condition. Now, we
know it for all unimodular locally compact second countable groups, and this are all groups
for which ¢2-Betti numbers are defined. The question of the continuity of the /?-Betti num-
bers under Benjamini-Schramm convergence can also be answered positively for the space of
sofic random rooted simplicial complexes. Before, it was only known for sequences of finite
simplicial complexes, and furthermore, there was no notion of ¢*-Betti numbers for the limit
objects. It would be nice to have a definition of /2-Betti numbers in a more general setting, in
particular for probability measures on the space of rooted metric measure spaces or, atleast,
on the space of rooted Riemannian manifolds as defined in [AB16]. I will give a definition of
topological G-spaces and /2-Betti numbers of them, which is a positive answer to the third
question. This definition extends the scope of objects on which ¢2-Betti numbers are defined
and it is compatible with previous definitions for groups, equivalence relations and discrete
measured groupoids.

Statement of Results

This thesis is divided into two parts. The first part, consisting of the Chapters[]jtol4] represents
original research. The second consists of the Appendices[Alto[C|and is mainly a summary of
results from the literature that we use in the first part.

In Appendix[A] I summarize the character theory of finite groups. Appendix [B|is dedicated
to the theory of direct integral Hilbert spaces which is a major tool for the Chapters[2]and 3|
The last appendix, Appendix|C], is a collection of results from the dimension theory of mod-
ules over finite and semi-finite von Neumann algebras and also contains some results from
homological algebra.

Coarse equivalence invariance

Chapter [l]is based on a joint work with Roman Sauer [SS18]] and provides a proof of the fol-
lowing theorem:
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Theorem (1.3.6). Let G and H be unimodular locally compact second countable groups. If G and H are
coarsely equivalent, then the nth (?-Betti number of G vanishes if and only if the nth (-Betti number of
H vanishes.

To this end, we introduce the coarse £-cohomology H X (5)(G) ofalocally compact second count-
able group G. The idea is that we only consider (equivalence classes of) measurable functions
a: G"! — C such that

j 2 dpns < o,
G”V;é+l

where /1,11 is the n+1-fold product of a left-invariant Haar measure on G and G5! < G"*!
is the tube consisting of tuples (go, ..., g ) such that d(g;, g;) < Rforall0 < ¢,j < n. Note
that by a theorem from Struble every locally compact second countable group admits a left-
invariant proper continuous metric (Theorem|[l.1.2). Our definition of the coarse ¢/2-cohomo-
logy is the continuous analogue of Elek’s definition [Ele98|, Definitionl.3] in the discrete case,
who gives credits to Roe [Roe93], and is very much related to Pansu’s asymptotic £2-cohomology
[Pan9s].

In Theorem|1.3.5], we prove that coarsely equivalent locally compact second countable groups
have isomorphic coarse £2-cohomology groups. This completes the proof of the main theorem
(Theorem [I.3.6), since we verify in Theorem [L.3.3|that for unimodular locally compact second
countable groups the coarse £2-cohomology is isomorphic to the continuous cohomology. I
remark that coarse equivalence is a weaker notion than quasi-isometry, though for compactly
generated groups, in particular for finitely generated discrete groups, they are equivalent.

Benjamini-Schramm Convergence

Most of the results of Chapter[2already appeared in my article [Sch19]. Before I can describe
the results, we briefly recall the definition of Benjamini-Schramm convergence. Every finite
simplicial complex K gives rise to a random rooted simplicial complex, i.e. a unimodular prob-
ability measure on the space SC, of isomorphism classes of locally finite connected rooted
simplicial complexes, by picking a vertex uniformly at random as root. We say a sequence
of finite simplicial complexes converges Benjamini-Schramm to a probability measure on SC.
if their associated random rooted simplicial complexes weakly converge to this probability
measure. The Benjamini-Schramm limits of finite simplicial complexes are also called sofic
random rooted simplicial complexes.

In order to define homology and ¢2-Betti numbers of random rooted simplicial complexes,
we have to choose a representative for each isomorphism class in SC,. We can do this in a
measurable way by Lemmal2.2.1]. This enables us to define the simplicial £>-chain complex

@
CP(SCoy ) = SCCf)([K,x])du([K,x])

of a random rooted simplicial complex . (Definition[2.2.2) as a direct integral of the ¢*>-chain
complexes of the representatives of each isomorphism class [ K, x| € SC.. The Laplace oper-

ators on the fibres give rise to a Laplace operator on c? (SC., 1).
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After we define a von Neumann algebra of bounded operators on 0152) (SC., 1) together with
a trace, we can define the ¢*-Betti numbers /8,(,2) (u) of a random rooted simplicial complex
1 (Definition 2.2.8). The last section of Chapter 2]is dedicated to the proof of the following
theorem:

Theorem (2.3.3). Let (11,,),, be a sequence of sofic random rooted simplicial complexes with uniformly
bounded vertex degree. If the sequence weakly converges to a random rooted simplicial complex i, then
the (2-Betti numbers of (i1,,),, converge to the (*-Betti numbers of yu.

From this theorem, together with Proposition [2.1.12}, we recover the following generaliza-
tion of Liick’s approximation theorem of Elek and Szabé [ESO5|], which we already mentioned
above:

Theorem. Let K be a simplicial complexwith a free and cocompact action of a discrete group I'. If (I',,).,
is a sequence of normal subgroups of T such that ' /T",, is sofic, then

lim G (K /T T) = B (K ).

Another corollary from Theorem is a version of the Euler-Poincaré Formula:

Corollary (Euler-Poincaré Formula). Let 1 be a sofic vandom rooted simplicial complex of dimension
n and with bounded degree. Then

n n

E,(deg,)
P (2) THAOp)
YEIEBEPWEIE S

where E,(deg,,) denotes the expected number of p-simplices containing the root.

(>-Multiplicities

Chapterreﬂects the results of a joint work with Steffen Kionke [KSB], in which we generalize
the concept of Benjamini-Schramm convergence to simplicial complexes with an action of a
finite group G. Now, we do not consider simplicial complexes rooted at one vertex, but rooted
ata G-orbit of vertices. If K is a finite simplicial complex and GG acts on it, then GG also acts on
its homology group H,(K; C). This representation decomposes as a direct sum of irreducible
representations of G and every irreducible representation o € Irr(G) occurs a finite number,
say m(o, H,(K, C)), of times in this decomposition. The number m (o, H,(K, C)) is called
the multiplicity of o in H,(K, C). Drawing from this, and the concepts of Chapter[2], we define
¢2-multiplicities (Definition ; these are non-negative real numbers m](f) (o, ) for every
random rooted simplicial G-complex p and every irreducible representation ¢ € Irr(G). In
fact, if i is the law of a finite G-complex, then

m(07 Hp(Ka C)) .
KO

m® (o, i) =

see Example[3.2.8] Our main result is the following approximation theorem.

10



Statement of Results

Theorem (3.3.2). Let (), beasequence of sofic vandom rooted simplicial G-complexes. Ifthe sequence
weakly converges to a random rooted simplicial G-complex (1o, then
2) 2

nh—% ml() (07 ,un) = mz(g )(07 ,uoo)

forevery p € Ny and every irreducible representation o of G.

Along the way (in Section [3.1.1), we investigate induced G-complexes. Given a subgroup
H < G and a simplicial H-complex L, it is natural to construct a simplicial G-complex
K = G xy L by inducing the action from H to G This can be promoted to an operation Ind$,
which takes random rooted H -complexes to random rooted G-complexes. We provide a cri-
terion to decide whether a sequence of finite G-complexes converges to an induced random
rooted G-complex; see Proposition[3.1.8|. This is relevant, since the ¢>-multiplicities of the in-
duced random rooted complex Ind (i) can be computed from the /2-multiplicities of y (see
Theorem 3.3.3). As a special case, for /' = {1}, we have the following result.

Corollary (3.3.4). Let pu be a sofic random rooted simplicial complex and let G be a finite group. For all
o € Irr(G) and p € Ny the following identity holds:

dimg(0)
mi (o, Ind{ (1)) = e

Singular Groupoid Homology

In Chapter[4], I introduce topological G-spaces (Definition4.1.14) for a discrete measured grou-
poid G over a probability space X . A topological G-space is a Borel fibred spaces Y over X,
such that each fibre Y, is a topological space, equipped with an action of G. In comparison,
G-simplicial complexes are discrete G-spaces, though their fibrewise geometric realizations
form topological G-spaces as we will see in Section4.2]

Inspired by the singular homology of topological spaces, we define the singular groupoid homol-
ogy of a topological G-space in Sectionf4.3] The following is the main theorem of Chapter[4]

Theorem (4.4.1). Let 3 be a simplicial G-complex and || its geometric realization as a topological
G-space. Then

B(2,6) = B2(Z1.6)
foralln € N.

To this end, we show the homotopy invariance of the singular groupoid homology for a suit-
able notion of homotopy (see Corollary 4.3.9) and a corresponding version of the Excision
Theorem (Proposition . Note that the /?-Betti numbers 57(12)(2, G) of a simplicial G-
complex Y and the ¢/?-Betti numbers 67(?)(|E|, G) of a topological G-space are defined as the
von Neumann dimension (Definition[C.3) of the simplicial or singular groupoid homology
groups, respectively, with respect to the groupoid von Neumann algebra LG. In comparison
to the classical Excision Theorem, our version is only a LG-dimension isomorphism. That is

11
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likewise the reason why we only have equal £2-Betti numbers and not isomorphic homology
groups as in the classical case.

An immediate consequence of Theorem and a result of Takimoto ( Theoremf4.2.59) is the
following corollary, where 3P (G) denotes the ¢?-Betti number of the groupoid G as defined
by Sauer [Sau05|:

Corollary . IfY is a contractible G-space, then B (Y,G) = S (G) foreveryn € N.
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Chapter1.

Coarse Equivalence Invariance of /2-Betti
Numbers of Locally Compact Groups

This chapteris ajoint work with Roman Sauer [SS18]. We provide a proof that the vanishing of
¢?-Betti numbers of unimodular locally compact second countable groups is an invariance of
coarse equivalence. To this end, we define coarse ¢?-cohomology for locally compact second
countable groups and show that coarsely equivalent groups have isomorphic #2-cohomology
groups. We complete the proof by showing that the coarse £?-cohomology is isomorphic to
continuous cohomology for unimodular locally compact second countable groups.

We begin in Section[L.]with a summary of results concerning the coarse geometry of locally
compact groups and the existence of a semi-finite trace on the group von Neumann algebra.
In Section|[L.2) we review the necessary basics of ¢2-Betti numbers and continuous cohomol-
ogy. We define coarse /?-cohomology for locally compact second countable groups and show
that it is invariant under coarse equivalence in Section[l.3} Moreover, we prove that it is iso-
morphic to continuous cohomology if the group is unimodular and, by this, complete the
proof of the main theorem of the chapter. In the end we shortly discuss what fails for non-
unimodular groups.

15



Chapter1. Coarse Equivalence Invariance of >-Betti Numbers of Locally Compact Groups

1.1. Locally Compact Groups

In this section, we summarize some basic results for locally compact groups which we will
need in the following. For more information about metric properties of topological groups
consider [CdIH16], and [Ped18] for the regular representation and the group von Neumann
algebra of unimodular locally compact groups.

A topological space is called locally compact if each of its points has a compact neighbourhood;
it is called second-countable if its topology has a countable basis of open sets.

Definition 1.1.1. A locally compact second countable group is a group G which is a locally compact
second countable topological space such that the map (g,h) — gh™! from G x G — G'is
continuous, where G x G carries the product topology.

The following theorem of Struble is crucial:

Theorem 1.1.2. [Str74] Every locally compact second countable group admits a left-invariant proper
continuous metric, where proper means that balls are relatively compact.

Now, that we know that there is always a metric, we introduce the notion of coarse equivalences.
Amap f : (X,dx) — (Y,dy) between metric spaces is called coarsely Lipschitz if there is a
non-decreasing function a: [0, c0) — [0, o) such that

dy (f(z), f(«)) < ald(z, "))

forall z, 2’ € X. We say that two such maps f, g are close to each other, denoted by f ~ ¢, if

sup dy (f(z), 9(x)) < .

Definition 1.1.3. A coarsely Lipschitz map f: X — Y is called a coarse equivalence if there is a
coarsely Lipschitzmap g: Y — X such that f o gand g o f are close to the identity. We say ¢
is a coarse inverse of f.

In view of the following proposition, we can say that every locally compact second countable
group has a well defined coarse geometry.

Proposition 1.1.4. [CdIH16|, 4.A.6] Let G be a locally compact second countable group and d, and d,
are two left-invariant proper continuous metrics on G. The identity, viewed as a map 1d: (G, d;) —
(G, dy), is a coarse equivalence.

A locally compact second countable group does not only have a metric, but also a left- and a
right-Haar measure, i.e. a left- and a right-translation invariant positive Radon measure on
the Borel o-algebra, respectively. These measures are uniquely determined, up to a constant
factor, by their property of being translation invariant. A locally compact second countable
group is called unimodular if its left- and right-Haar measures coincide.

16



1.1. Locally Compact Groups

Definition1.1.5. Let GG be alocally compact second countable group and y a left-Haar measure
on G. The left-regular representation \: G — B(L*(G, u)) of G is given by

Mg)f(h) = f(g 'h).

Usually, we denote L?(G, ) just by L?(G) if there are no different measures involved. The
closure of A\(L'(G)) in the weak-operator topology is the group von Neumann algebra of G and
denoted by LG. The left-action of G on L?(G) commutes with the right-action of LG, there-
fore, we will consider L?(G) as a G- LG-module. Unimodularity is a necessary condition to
define ¢?-Betti numbers of locally compact groups because of the following theorem:

Theorem 1.1.6. [Ped18], 7.2.7 and 7.2.8] Let G be a locally compact second countable group. LG car-
ries a canonical faithful, normal and semi-finite trace tr,, if and only if G is unimodular. Moreover, the
trace scales in the following way: tr, = % tr,, forc > 0.

If G is not unimodular, there exist only a faithful weight on G, which is not tracial. By Defini-
tion|C.3|we have a dimension function dim,, for LG-modules, which is additive for short exact
sequence (Proposition|C.4). We added the Haar measure 4 to the notation of the dimension
dim,,, since it scales in the same way as the trace, that is, dim,, = % dim,, for ¢ > 0.

17



Chapter1. Coarse Equivalence Invariance of >-Betti Numbers of Locally Compact Groups

1.2. Continuous Cohomology and ¢/>-Betti Numbers

Let X be a locally compact second countable space with Radon measure v and let £ be a
Fréchet space. The space C'(X, E) of continuous functions from X to E becomes a Fréchet
space when endowed with the topology of compact convergence. The semi-normson C'( X, F)
are then given by

i) = sup £,

for f € C(X, E), where K < X is compactand | - |, is a semi-norm of E ([Gui80, D.1.3]).
In a similar way we define the space L7, (X, E) of equivalence classes of measurable maps
f: X — E,uptov-null sets, such that || f| x|, is square-integrable for every compact subset
K < X and semi-norm | - |, of E. So L} (X, E') becomes again a Fréchet space with semi-

loc
norms given by

pcpia(f) = ( | ||f(w)§dV(x))l/2,

for f € L} (X, E) (IGui80, D.2.1]).
Let G be a unimodular locally compact second countable group. We call a Fréchet space £
together with a continuous linear G-action (i.e G — E, g — gv is continuous for allv € E)
a G-module. A homomorphism of G-modules is a continuous linear G-equivariant map be-

tween G-modules. If F is a G-module and G acts continuously and v-preserving on X, then
C(X,FE)and L}, (X, E) become G-modules as well, via

(9-f)(x) =gf(g "),

forge G,z € Xand f € C(X,E)or f € L} (X, E), respectively ([Bla79, Proposition 3.1.1]).
Since the category of topological G-modules is not abelian, we have to restrict to relatively
injective resolutions of F if you want to define the cohomology of G with coefficients in E
independent of the choice of the resolution. We will not go into that because we only consider
the following explicit cochain complexes of G-modules, which are relatively injective resolu-

tions of F (cf. [Gui80, Chapter III, §1, Proposition 1.2 and 1.4]):

050G, E) S oG E) S ..
05 L2.(G,E) 5 L3,(G2E) S ..

loc

with €(e)(g) = e and the usual homogeneous coboundary map

n

(@™ F)(G0s -+es Gn) = D (=1 F(Gos 02 Gis s G)

i=0

forge Gand f € C(G"*!, E), respectively f € L2 (G", E). Note, here and in the follow-
ing we use

nSn

to mark an element which we remove from a tuple. The action of G on G"*! is
given by the diagonal action.
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1.2. Continuous Cohomology and (*-Betti Numbers

Definition 1.2.1. The continuous cohomology of G with coefficients in F is the cohomology
H™(G,E) := H"(C(G*™, E)%)

of the G-invariants of C(G*™', E). The reduced continuous cohomology H" (G, E) of G is ob-
tained by taking the quotient with the closure of im d*|¢(gx+1 pyc.

We have the obvious inclusions

I*: C(G**'E) — L?

loc

(G*+1,E),

which form a cochain map of G-modules. We fix an arbitrary positive continuous function
X on G with compact support and integral 1. There is a cochain map R*: L2 (G*™' E) —
C(G*™! E) of G-modules

(R"f)(g0, -y gn) = J f(ho, ..., hn)X(galho, ey g;lhn)du(ho, vy )
Gn+1

such that 7* o R* and R* o I'* are homotopic, as cochain maps of G-modules, to the identity
[Bla79|, Proposition 4.8]. Therefore, we have the following useful fact:

Theorem 1.2.2. The cochain map

I*: C(G** E) — L}

loc

(G*+1, E),
defined by the inclusions, induces isomorphisms in cohomology and reduced cohomology.

Now, we turn to the case where the coefficient module F is the (left)-regular representation
L?(G) of G (Definition[L.1.5). Since the action of G and the action of LG on L*(G) com-
mute, also the previously considered G-action on C(G**!, L?(@)) and L} (G**!, L*(G))
commutes with the LG-action induced from the right LG-action on L?*(G). So the (reduced)
continuous cohomology of G with coefficients in L?(G) is naturally a LG-module in the alge-
braic sense. Obviously, the cochain map I* above is compatible with the LG-module struc-
tures. The groups H*(G, L*(G)) are called the ¢2-cohomology of G and similarly for the re-
duced cohomology. As mentioned after Theorem[.1.6] the trace on LG induces a dimension

function for LG-modules, therefore, we have the following definition:

Definition 1.2.3. The nth (?-Betti number of G is the LG-dimension of its nth reduced ¢2-
cohomology group, i.e.

BA(G) := dim, H"(G, L*(G)) € [0, o0].

Remark1.2.4. Equivalently, the nth ¢*-Betti number of G can be defined as the LG-dimension
of the non-reduced cohomology H"(G, L*(G)) (see [KPV15|, Theorem A]). For discrete groups
this definition coincides with the one of Liick [Liic98], this was shown in [PT11, Theorem 2.2].

The following useful lemma was observed in [Pet13, Proposition 3.8]. Since it is a direct con-
sequence of Sauer’s local criterion (Proposition|C.8), we present the argument.
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Lemmal.2.5.
BA(G) =0« H'(G,L*(G)) = 0.

Proof. Let BﬁQ)(G) = 0andlet f: G""' — L*(@)) be a cocycle representing a cohomology
class [f] € H"(G, L*(G)). By Proposition|C.8|there is a increasing sequence of projections
p; € LG whose supremum is 1 and such that fp; is a coboundary d" 'b;. Obviously, fp;
converges to f in the topology of C(G™*!, L*(G)), thus [f] = 0. O
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1.3. Coarse Cohomology and Coarse Equivalence Invariance

1.3. Coarse Cohomology and Coarse Equivalence Invariance

Let GG be alocally compact second countable group. We fix a proper continuous left-invariant
metric d on G (see Theorem[L.1.2)for the existence). Let i be a Haar measure on G and i, the
n-fold product measure of 1z on G".

For every R > (0 and n € N we consider the closed subset

G = 1{(g0s -, gn) € G" | d(gi, 95) < Rforall0 < i,j < n}

and define a family of semi-norms on the space of measurable functions : G"*! — C by

olfi= | 1000 s ) Pla (g0 0) € 0. 2]

R

Let CX(5)(G) by the space of equivalence classes, up to j,+1-null sets, of measurable func-

tions a: G — C such that |a||p < oo for every R > 0. The semi-norms | - | turn
CX(5)(G) into a Fréchet space. We claim that the coboundary map

(dn 1 g0>' 7gn Z 907' '>/g\i7--'7gn)

yields a well-defined continuous homomorphism C'X (’51 (G) = CX(5)(G).

Proof.

n 2

Z(—l)ia(go, s Giy oy Gn)

M“W%=f
Gn+1 £

R

=0
1) ~
< n + 1 ZJn+1 gOa ooy Gy ,gn)|d,un+1

d,un—&- 1

—

17 [l g0 )l
GRtt
< (n+ 1)u(Br(e)) lal%

In (1) we used Jensen’s inequality and in the last step we took into account that g,, does not
appear any more in the integrand. So the measure of the acceptable domain for g, factors in.

The domain is precisely
n—1
() Br(g:).
=0

where Br(g) denotes the closed ball of radius R around g, which is always contained in the
ball Br(g) around some g € G. Since i is left-translation invariant u(Bg(g)) = u(Br(e)),
with e the neutral element of GG. Further, since the metric is proper, closed balls are compact
and hence p(Bg(e)) < oo. O
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Chapter1. Coarse Equivalence Invariance of >-Betti Numbers of Locally Compact Groups

Thus, we obtain a cochain complex C'X(,, (G) of Fréchet spaces.
Definition 1.3.1. We define the coarse ¢2-cohomology of G to be

Similarly, we define the reduced coarse (*-cohomology HX () (G) of G by taking the quotients by
the closure of the differentials.

Remark1.3.2. The previous definition is the continuous analogue of Elek’s definition [Ele98|,
Definition 1.3] in the discrete case (Elek gives credits to Roe [Roe93]). It is very much related
to Pansw’s asymptotic (?-cohomology [Pan95], which was considered in the generality of met-
ric measure spaces by Genton [Genl4]. The difference of our definition to the one in Gen-
ton [Genl4] is as follows: C'X %, () is an inverse limit of spaces L2(G%HY). Unlike us, Genton

takes first the cohomology of L?(G%'") and then the inverse limit. Under some uniform con-
tractibility assumptions the two definitions coincide, but likely not in general.

Theorem 1.3.3. Let G be a unimodular locally compact second countable group. For every n = 0, the
nth continuous cohomology with coefficients in the left-reqular representation L*(G) isisomorphicto the
nth coarse £*-cohomology of G, and likewise for reduced cohomology.

Proof. We have the obvious embedding
(G", Li,o(G))

loc loc

Ly (G" LA(G)) < L,
and an isomorphism [Gui80, D.2.2 (vii)]

Line(G™, Lipo(G)) = Lig(G™ % G).

loc

Thus, an element in L? _(G™"!, L*(Q)) is represented by a measurable complex function in

n+2 variables. The G-invariant elements, i.e. « € L7 (G"", L?(G)) with the property that

loc

(g-a) (o, ..., z) () = a(g 20, ..., g 2n) (97 2) = alwg, ..., 2,) (),

are clearly represented by G-invariant elements of L? .(G"?). We would like to turn such an

invariant element a € L? (G™*!, L*(G)) into a complex valued function in n + 1 variables
by evaluating it at the neutral element, i.e. a(z, ..., ,,)(e), but this is in general not possible,
since we are dealing with equivalence classes of measurable functions. Therefore, we define
[in+o-almost everywhere

F": L}

loc

(G™1 L¥(G))" = Lin(G™?),

F*(a)(xg, ..., xn, ) = a(zxg, ..., x2,)(X).

The measurable function F"*(«) is invariant by translations in the (n+2)th variable because of
the G-invariance of o. By Fubini’s theorem, we may regard F"(«) as a measurable function
E™(a): G — C in the first n+1 variables and think of it as an evaluation at the neutral
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1.3. Coarse Cohomology and Coarse Equivalence Invariance

element e in the (n+2)th variable. An other way to define E™ is to pick an arbitrary non-
empty relatively compact open set U (for example an open ball around the neutral element),
thus 0 < p(U) < oo holds, and set

B () (0, .. 1) = ﬁ L a0, oy 1) (@) dpa() " = 0, o ) (€).

We show that | E"(a)|r < oo for every R > 0, thus E(a) € CX(;)(G). Let B(R) denote the
R-ballaround e € G. Since a € L2 (G"*!, L2(G))“, we have

loc

0 > J f |Oé('r07x17 7‘rn)(x)|2dlu’d/“bn+1
B(2R)n+1

= f - f la(wg e twg, wte Ty, xg te ) () Pdpd 41
B(2R)+

We have to verify that the map
. 2 n+2 1,1 1,1 1,1 -1
m: G" > G (Toy ey Ty ) o (Tg T T, Ty X Ly ey Ty T Ty Ty )
is measure preserving. Let X, X, ..., X,, € G be measurable subsets:

fnr2(m(Xox... x X, x X))
= J\Gn+2 ]l:palX—lxg ('T)]lzalx—le (xl)"‘]lxalx—an (xn)]ngl (xg)d,unm

=p(X1) o p(X) - (XY - p(XGH)
=lnio(Xo % ... x X, x X).

Note that this requires unimodularity. Further, we have
m(G% x B(R)) € B(2R)"™! x G,
since forall0 < j <n
d(zg 'z 'y, e) < d(@zy, x;) + d(zj,20) < 2R
holds. This implies the inequality below; the first equality follows from the fact that
(0, vey Tny ) > (20, vy Ty, T)

is a measure preserving measurable automorphism of G';'' x B(R):

J( ) 1f (g e twg, mg e ey, gt ) (g ) P dpd g 4
BR)"+

f j (20, o 1) (2) Pl 1
Gn+1
f j (a0, o, 72, (@) iy
Gn+1

||E”( )&
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Chapter1. Coarse Equivalence Invariance of >-Betti Numbers of Locally Compact Groups

Hence, | E™(«)||g is finite for every R > 0. Further, this computation shows that £ is con-
tinuous with respect to the Fréchet topologies. That E* is a cochain map is obvious.
Given § € CX ;) (G) we define

M™(B)(go; -+ gn)(9) = B9 905 -9 gn)

for p,,o-almost every (go,...,gn,g). We show that M"(S) defines an element in
L} (G L*(G))C. We start with the G-invariance:

(h- M™(8))(go, - gn)(g) = M™(B)(h " go, ... h " gn)(h ™" g)
= 897" 90: -9 gn) = M™(B)(g0, -, gn)(9)

Next we have to show that | M" ()| g(ryn+1 | is square-integrable for every R > 0. This follows
from the following computation, based on similar arguments as above:

r

N(B(R)) J |B(go, e gn)|2d,un+1 = JB(R) |ﬁ(go, e gn)|2d,un+1

n+1 n+1
G2R G2R

[

A\

r
f 1897 g0, -+ 9" gn) Pdpdpin 11
B(R)n+1 G

[

r

= |M™(B)[*dpnsr-
JB(R)H+1

Itis clear that M* is a chain map; continuity follows from the previous computation. An easy
computation shows that M* and E* are mutually inverses:

E"(M™(B))(xo, ..., Tn) = M™(B)(zx0, ..., zxp)(T) = B(20, "y T1);
M"™(E™())(go, -, 9n)(9) = E™(@)(g 90, -+9 "gn) = a(xg " go, .., x9 " gn) (@)
= a(rgo, .-, Tgn)(2g) = (go; -, 9n)(9)-

Note that all the equalities only hold pi-almost everywhere. O

In order to compare the cohomology of coarsely equivalent locally compact groups we need
the following lemma:

Lemma 1.3.4. Coarsely equivalent locally compact second countable groups are measurably coarsely
equivalent, i.e. if G and H are coarsely equivalent, then there are measurable coarsely Lipschitz maps
w: G — Handy: H — G suchthat @ o and ) o p are close to the identity.

Proof. We choose left-invariant proper continuous metrics d and dy on G and H, respec-
tively. Let ¢: G — H be a coarsely Lipschitz map with dy (¢(z), o(2')) < a(dg(z, 2’)). We
fixat > 0and pick a countable measurable partition ¢ of G whose element have diameter
< t and choose xyy € I for every U € U. In particular, we can construct such an cover by
first covering G with open balls of diameter < ¢ and then pick a countable subcover { B; } e,
which always exist by the Lindelof property; finally, we define U; = B;\ | U;~; inductively.
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1.3. Coarse Cohomology and Coarse Equivalence Invariance

By setting ¢(x) = ¢(xy) for x € U, we obtain a coarsely Lipschitz map ¢: G — H which
satisfies

di(p(x), P(2)) = du(p(zv), p(vr)) < alda(ev, v07)) < aldg(, ') + 2t)

for z € U and 2’ € U’ and which is close to ¢ with

du(P(z), ¢(x)) = alda(zv, 7)) < alt).

Analogously, we construct from a coarsely Lipschitzmapt: H — G, whichisacoarseinverse
of ¢, ameasurable coarsely Lipschitz map v. Itis obvious that ) is a coarse inverse of , since

W o@)~ (o)~ (op)~Idg,

where ¢ ~ @ means that ¢ and  are close to each other. O

Theorem 1.3.5. Coarsely equivalent locally compact second countable groups have isomorphic reduced
and non-reduced coarse (*-cohomology groups.

Proof. Let G and H be locally compact second countable groups with left-Haar measures p
and v, respectively. Let p: G — H be a coarse equivalence with coarse inverse ¢): H — G.
Because of Lemmall.3.4, we can further assume that ¢ and ¢ are measurable. We define a
map x: G x G — Rby
1p,@(y)
X(.CE, y) = D
(B (e))

where we choose r such that (B,.(e)) = 1. Thus, x is a measurable function with x(z, y) =
x(y,x) and {, x(z,y)du(y) = 1. We use the following notation:

X+ Gn+1 X Gn+1 - IR7 X((ZE(), "'axn)a (?JO, 7yn)) = X(x()?y()) Tt X(x'rwyn)

Analogously, we define x': H"™! x H""' — R with some radius r’. We define the maps

@' HX((H) — HX(5)(G) and ¢*: HX( (G) — HX( (H) as follows:

(") (w0, ..., Ts) = Ln“ (Yo, - Yn)X (©(20), o ©(2n))s (Y05 s Yn) ) Wig1 (Yo, -y Yn),

(¢nﬁ)(y07 ) yn) = Jgn+1 5(1'07 ) xn)X((d’(QO)a ) w(yn))’ (x07 ) xn))dﬂn-‘rl(l‘(}» ) (En),

where o € HX,(H) and 8 € HX(,)(G), and where we used z; and y; to denote elements
of G and H, respectively. The idea of averaging over a function like x goes back to Pansu; it is
necessary in our context, since the maps ¢ and 1) do not preserve measure classes in general.
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Chapter1. Coarse Equivalence Invariance of >-Betti Numbers of Locally Compact Groups

First of all, we check that these are well-defined continuous cochain maps. Therefore, let
dH(QD(x% (p(.fl?/)) < a(dG($7 Q?l))

> ol = |l )Py )

a(R)+

= J o |04(3/07 ) yn)|2j X/((SO(:CO)J ) SO(.Tn)), (?JO; ey yn))d,u’nJrlanJrl
Hn n +1

= J et Y (00 (), e ) s

2
= (y(h . 7yn)X ((80(96’0) Sp(xn))a (yOa ) yn))anJrl dﬂnJrl
GT}L%+1 Hn+1
= | 0 ) Pl = Il
It is a direct computation that d” o " = a™*! o d". It remains to show that there is a

cochain homotopy : C X, (H) — C’X(*QXI(H) such that Id —¢*¢* = hd + dh. We define
R CXETH(H) — O Xy (H) by

(h:'hLlOé) (yOJ sy yn)

= J ) O‘(yN(b ceey gi) Yiy ooy ?/n)X/((?J(b ceey yn)a (?JO, ceey yNn))an-l-l(g)
Hn+

and set

n

hn+1 _ Z(—l)ih?-ﬂ.

1=0

We show that h* is well-defined and continuous.

ol = f 00 YY) P L (U0r oY)
Hn+? Ritr

= J f |05(y~07 ) yNna yn)|2xl((y07 ) yn)7 (y~07 ) ?/Nn))anJrl(y)anJrl(g)
Hn+1 H”'H

f 1f 1 yOv' 7y17y27' 7yn)| X((yOa--':yn)a(?JOa-'-7y~n))dl/n+1(y)dyn+l(g)
Hn+ H"

/ J\
+1
Hp

= [h R

2
J L (y07' >yz>yza' ayn)X ((y07'-'7yn)a(g07"'7?]n))dl/n+l( )‘ an+1
Hn+

Now denote the ith term of the coboundary map by d, i.e.

(d?a)(y% T yn+1) = CY(y07 T gb e yn+1)-
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1.3. Coarse Cohomology and Coarse Equivalence Invariance

It is straightforward to verify that we have the following relations:

n+1 n _ n
h’n Odn—i—l _¢ OSO 9

Wl o dt = Tdexn

(2)(H)7
h;.”rlod?:d?iloh?,l for 1<]<n andiéj,
h?“odf‘zd?:lloh? for 1 <i<n and i>j.

Summa summarum, we get A" 1d" + d"~1h" = Id¢ X7y, (H) —1)™ o ™. The same construction

applies to ¢* o 1*, which completes the proof. O

Theorem1.3.6. Let G and H be unimodular locally compact second countable groups. If G and H are
coarsely equivalent, then the nth ¢(?-Betti number of G vanishes if and only if the nth (>-Betti number of
H vanishes.

Proof. We have the following equivalences:

G =0 < H'G,L*G) =0  (Lemma[[.2.3)

— HX&)(G) =0 (Theoreml[l.3.3)
= HX{5»(H)=0 (Theorem|L.3.5).
Going the same steps backwards for the group H finishes the proof. O

Remark1.3.7. Since the Borel subgroup B < SLy(R) of upper triangular matrices is cocom-
pact, the solvable Lie groups B and SL,(R) are quasi-isometric. So B belongs to the class
of amenable hyperbolic locally compact groups. For more details about this class consider
[CCMTI5].

The group B is not unimodular and thus /2-Betti numbers are not defined. Nevertheless, one
may ask what exactly breaks down in the proof above which can be formulated to a large part
without the notion of /2-Betti numbers. By a result of Delorme [Del77, Corollaire V.3], we have
H"(B,L*(B)) = 0. Since Theorem|L.3.5|does not require unimodularity, we have

HX (5 (B) = HX 5 (SLy(R)) # 0

because 3% (SLy(R)) # 0. Soitis Theoremthat fails for the non-unimodular group B.
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Chapter 2.

¢-Betti Numbers of Random Rooted
Simplicial Complexes

Let SC, be the space of isomorphism classes of connected locally finite rooted simplicial complexes
(Definition [2.1.2). Every finite simplicial complex defines a random rooted simplicial complex
(Definition[2.1.3), i.e. a probability measure on SC., by choosing uniformly at random a ver-
tex as root. A sequence (K,), of finite simplicial complexes converges Benjamini-Schramm
(Definition[2.1.6) if their associated random rooted simplicial complexes weakly converge to
a probability measure on SC,.

We will give a definition of ¢2-Betti numbers (Definition [2.2.8) for random rooted simplicial
complexes. For a random rooted simplicial complex pix defined by a finite simplicial complex

K, the (?-Betti numbers coincide with the ordinary Betti numbers b,(K) of K normalized by
the number of vertices, i.e. (cf. Example[2.2.9)

bp(K)
(2) o
/Bp (MK) |K(0)| :
The main result of this chapter (Theorem [2.3.3) will be, that the ¢?-Betti numbers are con-
tinuous under weak convergence on the space of sofic random rooted simplicial complexes.
Together with Proposition this implies the sofic approximation theorem of Elek and
Szabd [ESO5].

This chapter is organized as follows. We define random rooted simplicial complexes (Defi-
nition[2.1.3) and give various examples in Section 2.1, We also give examples of Benjamini-
Schramm convergent sequences of finite simplicial complexes. In particular, we show that ev-
ery random rooted simplicial complex that arises from a simplicial complex with a cocompact
action of a sofic group is a Benjamini-Schramm limit (Proposition[2.1.12). In Section[2.2], we
will define ¢/2-Betti numbers of random rooted simplicial complexes. To this end, we have to
define the simplicial £2-chain complex of a random rooted simplicial complex (Definition[2.2.2),
avon Neumann algebra and a trace function on it. We finish the section by considering the
(2-Betti numbers of the examples given in Section[2.1 In order to prove our main result (The-
orem|[2.3.3) in Section[2.3] we show that for a weak convergence sequence of random rooted
simplicial complexes the spectral measures of the associated Laplace operators weakly con-
verge. We finish the chapter by a computation of the ¢*-Betti numbers of the random rooted
simplicial complex defined by Sierpinski’s Triangle (Example[2.3.9).
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Chapter2. (*-Betti Numbers of Random Rooted Simplicial Complexes

2.1. Random Rooted Simplicial Complexes

Simplicial complexes are one of the main objects we deal with in this work. There are several
different definitions in the literature, therefore, and to introduce our notation, we will give a
definition which, in particular, can be found in [tDO8, 8.1].This definition is sometimes called
an abstract simplicial complex, since it is a purely combinatorial object.

Definition 2.1.1. A simplicial complex (K, V') consists of a non-empty set V' of vertices and a set
K of finite subsets of V. Aset s € K with n+1 elements is called an n-simplex of K. Further,
a simplicial complex fulfils the following axioms:

« {v} € K foreveryv e V;
« If se K, theneverysubsett c sisalsoin K. We callt s a face of s.

Since V' is contained in K as the single element sets, we usually denote a simplicial complex
(K, V') only by K. We will denote the set of n-simplices of K by K'(n).

We say a simplicial complex is n-dimensional if it contains atleast one n-simplex but non + 1-
simplices. The degree of a vertex v € V' is the number of 1-simplices s with v € s. A simplicial
complex (K, V) is locally finite if degv < oo for all v € V and uniform locally bounded, or of
bounded degree, if the degree deg(K') = sup,., deg v of K is finite.

A subcomplex (L, W) of (K, V') consist of a subset W < V of vertices and a subset of simplices
L < K such that (L, W) forms a simplicial complex. The n-skeleton K™ of (K, V') is the
subcomplex (K™ V), where K™ = {s e K | dims < n}.

We have a metric on the vertices V' of a simplicial complex K, called the graph distance, given

by
d(v,w) :=inf{r e N | H{vy, w1}, ..., {v,,w,} € K(1) 1 v = vy, w; = v;41, W, = w}.

A rooted simplicial complex is a triple (K, V, ) consisting of a simplicial complex (K, V') and a
fixed vertex x € V. Most of the time we will omit V and denote the rooted simplicial complex
(K, V,z)just by (K, x). Two rooted simplicial complexes (K, x) and (L, y) are isomorphic if
there is a simplicial isomorphism ®: K — L such that ®(z) = y.

Definition2.1.2. We denote by SC. the space of isomorphism classes of locally finite connected rooted
simplicial complexes and write [ K, x| for the isomorphism class represented by (K, x).

Let B, (K, z) the rooted subcomplex of (K, x) spanned by all vertices of graph distance at
most r from x. The following defines a metric on SC,:

() (L)) = { | BK ) = B.L) |

SC, equipped with the topology induced by this metric is a totally disconnected Polish space,
where the rooted isomorphism classes of finite simplicial complexes form a countable dense
subset. For every finite rooted simplicial complex o and every r € N we obtain an open set
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2.1. Random Rooted Simplicial Complexes

U,(«), called the r-neighbourhood of «, given by all isomorphism classes of rooted simplicial
complexes | K, z] such that B, (K, z) =~ B,(«), thus

U,(a) = {[K,z] € SC, | B.(K,z) = B,(a)}.

The sets U,.(«) are compact and open, and provide a basis for the topology. In a similar way,
we define the space SC... of isomorphism classes of doubly rooted simplicial complexes, where an ele-
ment [ K, z, y] consists of a simplicial complex K and an ordered pair of vertices = and y. The
metric on SC,. is given by:

([ 2. ), (L. v, w]) = max { d([K. 2], [L.]) ., d([K.y].[L.w]) }

Definition 2.1.3. A random rooted simplicial complex is an unimodular probability measure 1 on
SC,, where unimodular means

[ 3 s autima) = [ % 05

Cx ye i (0) SCx ye K (0)

for all Borel functions f: SC,. — Rxq.

Remark2.1.4. It was realized by Aldous and Lyons [ALO7] that weak limits of probability mea-
sures arising from finite graphs share a useful mass-transport property, which they called uni-
modularity. If we consider f([K, x, y]) as the mass sent from x to y, then unimodularity says
that the outgoing mass is equal the incoming mass of all vertices of the graph. There are two
motivations for the name "unimodular”. On the one hand, a graph has a unimodular auto-
morphism group if and only if the uniform at random rooted graph is unimodular. On the
other hand, unimodularity of an random rooted simplicial complex y implies the equality of
the following two measures on SC..,. associated with 1, the left measure yi;, defined by

| saw= | % s au(. o)
SCux SCx (0)

yeK
and the right measure 11z defined by

| g X sy ahdn(ir o,

SC e g (0)

e e

Figure 2.1. The first two rooted simplicial complexes are at distance 3 to each other,
where the third one has distance % to the others.
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Aweak limit of random rooted simplicial complexes is again a random rooted simplicial com-
plex. This can be deduced by observing that a probability measure 1, on SC, is unimodular if
and only if for all n € N and all Borel functions f: SC,. — R~ the equality

LC 2. f([K,xvy])du([K7fﬁ])=Lc Y, FUK y,a))du((K,a])

yEK(O) yeK(O)
d(y,z)<n d(y,z)<n

holds, where the sum now runs only over the vertices with distance at most n to the root . This
follows immediately from the monotone convergence theorem. We can further restrict the
assumptions from Borel functions to continuous functions by the monotone class theorem.

We define the vertex degree of an element [ K, 2] € SC, asdeg([ K, x]) = sup{degz | z € KV}
and the degree of a random rooted simplicial complex 1 as the p-essential supremum

deg(p) := ess sup, deg([ K, x]).

In comparison, the expected vertex degree of a random rooted simplicial complex 1 is

Byldes) = | deg(a)du((.).

Example2.1.5. (1) Every finite simplicial complex K defines a random rooted simplicial
complex

O a]
b = Z |K(0)| )

ze K (0)

with K, the connected component of z € K and [k, ] the Dirac-measure of the
point [ K, z]. That ik is a probability measure is obvious, we only have to verify that it
is unimodular. For the sake of simplicity let us assume that K is connected:

f S AL ) dp([Loa]) = 3 @ S F(K x0)

yeL(0) zeK(0) yeK(0)

- ﬁ S (K, 2, y)

yeK(0) zeK(0)

:LC Z f(L, z,y])dpx([L, y])

2eL(0)

- X DL a)

yeL(0)

Note that yif is unique in the sense that there is no other unimodular probability mea-
sure fully supported on the rooted isomorphism classes of K.
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(2) There is a more general construction, which also applies to infinite complexes. Let K
be a connected locally finite simplicial complex with unimodular simplicial automor-
phism group Aut(K’), where simplicial means that we only consider simplicial auto-
morphisms, i.e. the stabilizer of a simplex is equal the intersection of the stabilizers
of its vertices. Further, let {x1, 75, ...} be a complete orbit section in K©). There exist
an unique unimodular probability measure ik, fully supported on the rooted isomor-
phism classes of K, if

1
€= Z Stab(z,)] =~

holds, where | - | denotes the Haar measure on Aut(K’). The random rooted simplicial
complex is given by:

KxL
Z |Stab(x;)]

In [ALO7, Theorem 3.1], Aldous and Lyons give a proof for the graph case, which also
applies to simplicial complexes. They proved even more: The measure y, associated
with a graph G, is unimodular if and only if the automorphism group Aut(G) of G is
unimodular. An important special case of this is the following. Let K be connected
locally finite simplicial complex with proper and cocompact action of a discrete group
I' QAut(K) =: G. Let F be a fundamental domain for the I"-action and F' be a funda-
mental domain for the G-action in K (9. We remark that F is finite, since F is finite.
Subsequently, we have the following formula for the random rooted simplicial complex:

Z Z Z ng |StabG/r‘(FiL‘)|
|StabG 24 24 " Staba(@)]|G/T]
gwe]:

Z IG/FIIStabr vl

In a similar, way we obtain that

Z IG/TIIStabr vl

hence, with ¢(T') = 3, . ~(|Stabr(y)|)~", we deduce that

Z ] Stabp . 2.1)
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Chapter2. (*-Betti Numbers of Random Rooted Simplicial Complexes

This shows that yj is independent of the group and the choice of the fundamental do-
main F. Since this are important examples of random rooted simplicial complexes, we
include a proof for the unimodularity of 11

LC S AL gD dusc([L, 2])

ye(L)(©)
Z;O) Stabp( ;O)f ([K, 2, 1)
Z;O) Stabp ;0);Stabp F(K =, 7y])
c(F)wg(O) Stablp( )StabF Zf ([, 297 y])
="'=f ALy D (L, 2]).
SC ye(1)(©

Note that if the I'-action is free, 11k has the following appearance:

5[K Y]
UK = .
ye;m 7O

(3) Probability measure preserving equivalence relations R < X x X on a standard Borel
space (X, v), or more generally discrete measured groupoids G, also give rise to ran-
dom rooted simplicial complexes. Let ¥ be a simplicial G-complex (see Definition}.2.1),
i.e. a measurable assignment X 3 z — X, of simplicial complexes together with an G-
action: For every g € G with s(g) = x and t(g) = y there is a simplicial isomorphism
Yy Xy — X, such that ¢, o ¢, = 9y, and g, = Idy,. These complexes have been
introduced by Gaboriau [Gab02] in the case of probability measure preserving equiva-
lence relations and generalized my Takimoto to discrete measured groupoids [Tak15].
Let us assume that there is a Borel fundamental domain F' for the action of G on the
vertices with finite measure ¢ := {, |7 '({z}) n F|dv(z) < oo, then (3, G, v) defines
a random rooted simplicial complex:

ME,Q: J Z (5[21 dV( )
fer=1({z})

A special case of this is a field of graphs + +— &, defined by a graphing ® of R. In
this situation, the fundamental domain is just the diagonal (z, z) € R and the random
rooted graph is given by

HoR = J(s@(x) dV( )

Random rooted graphs defined by graphings were also treated in [ALO7]. For more in-
formation about measured equivalence relations see [FM77a},[FM77b].
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(4) Thedifferent models of random simplicial complexes, like the Erdos-Rényi model G(n, p),
the random d-complex Y (n, p) of Linial and Meshulam [LMO6], random flag complexes
X (n, p) [Kah09] or random geometric complexes (e.g. the random geometric graph of
Penrose [Pen03]), give rise to unimodular measures on SC, by applying the construc-
tion of Example[2.1.5/1. to a random sample.

Definition 2.1.6. We say a sequence (K, ),, of simplicial complexes is Benjamini-Schramm con-
vergent if the weak limit lim,,_,, 1, of the associated random rooted simplicial complexes
(kK )n exists. Moreover, we call a random rooted simplicial complex sofic if it is a weak limit
of a Benjamini-Schramm convergent sequence of finite simplicial complexes.

Maybe the most prominent example of a Benjamini-Schramm convergent sequence is the fol-
lowing:

Example 2.1.7 (Towers of finite sheeted covering spaces). Let K be a simplicial complex of
vertex degree bounded by some D € N together with a simplicial, proper and cocompact
action of a discrete group I'. Suppose that I' is residually finite and let (V,,),, be a descend-
ing sequence of finite index normal subgroups of I' with () .y NV, = {1}, then the sequence
(Kpn)n := (K/N,), converges Benjamini-Schramm to

1 O[K ]
UK = 5
o(T) ;) [Stabr(z)]

where F is a fundamental domain for the I'-action. This can be deduced in the following way:
We fixanr > 0. The set S of elements v € I" such that

B, (K,x) nvyB,(K,z) # & (2.2)

for some z € F(© is finite, since K is locally finite. Therefore, B, (K, x)(® is finite and F© is
finite. We take an n € N so large that N,, n S = {1}, hence we know if Equation holds
foran~y € N, then~ = 1. Hence, the quotient map K — K /N, takes B, (K, x) injectively to
B,(K/N,,zN,). We show that every simplex s € K, has a unique liftin B, (K, z). Let §bea
lift of s with atleast one vertex in B,.(K, x), thus § lies completely in B, ;1 (K, z). Let y be an
arbitrary vertex of 5, then there must be an vy € N,, such that d(yy, x) < rin K. Therefore,

IYBT-&-I(K’ 'r) M BT’-‘rl(K’ I) 7 @

which yields that v = 1 and § lies already in B, (K, x). This shows that for sufficiently large
n € Nthe r-ball B, (K, z) is isomorphic to the r-ball B,.(K,,, zN,,), forallz ¢ K(©,
Now, choose n large enough such that S n V,, = {1} and, additionally, that the action of IV,

on K is free. Let F(NV,,) be a fundamental domain for this action. Hence, we have for every
o€ SC,:

_MH=ze F(N,)O | B.(K,7) = a}

pr (U (@) FOL)O) see Example[2.1.5].2.
Nz e K| Bo(K,,xN,) = a}]
B K
= pix, (Ur(@)).
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Example 2.1.8 (Sierpinski’s triangle). The following example is from a joint work with Kionke
[KSB]. We describe a sequence (7,,),, of two-dimensional simplicial complexes which occur in
the construction of the fractal Sierpinski triangle. It appeared to us that the example becomes
clearer if we describe the geometric realizations of the T}, as subsets of R? instead of working
with the abstract simplicial complexes. Lete; = (1,0) € R? and lete, = 1(1,+/3) € R%
The points 0, e; and e, are the vertices of an equilateral triangle T; with sides of length 1; we
consider Ty to be a 2-simplex. We define inductively

Tn+1 =T, v (Tn + 2nel) o (Tn + 2n€2).

1o T 15
Figure 2.2.

By induction it is easy to verify that 7,, is a simplicial complex with % vertices, 3" ! edges
and 3" 2-simplices. The vertex degree of T,, is 4 for all n > 1. The three vertices of degree 2
will be called the corners of T,,. The distance between two corners of T, is 2.

Claim: The sequence (T,,),, converges Benjamini-Schramm to a random rooted simplicial com-
plex ji..

Let r > 0 and let « be a finite rooted simplicial complex of radius at most . Take m so large
that 2~! > r, then any r-ball in T}, contains at most one of the three corners of 7},,. Let
N(k, ) denote the number of vertices v in T, such that the ball of radius r around v is
isomorphic to . We observe that

N(k+1,a) =3N(k,a) + cq,

forall kK > 0, for some constant ¢, € Z. Indeed, r-balls around vertices of distance at least r
from one of the corners in 7, occur exactly 3-times in 7,1 x+1. In the small set of vertices
which lie close to a corner of T}, , we always see two copies of T}, being glued together at a
corner. This shows that the effect of the operation does not depend on k; compare Figure[2.3]
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Tm

Tm

T Tm Tm

Tm+k
Figure 2.3. Small balls touch at most two copies of T;,,

Now it follows from a short calculation that (|N(k, ) |/|T(0)

e |) is a Cauchy sequence. Since
k

rand awwere arbitrary, we conclude that the sequence (7},),, converges in the sense of Benjamini-
Schramm.

2.1.1. Sofic Approximation

In the following we will relate sofic groups to sofic random rooted simplicial complexes, but
first, we will describe a procedure for assembling a collection of simplicial complexes together
into a larger simplicial complex. This construction is inspired by graph of groups (cf. [Hat02),

p.91]).
Definition 2.1.9. A graph of simplicial complexes (G, { K, }., {¢.}.) consist of the following data:
(1) Alocally finite, connected and simple (i.e. no loops or multiple edges) graph G;

(2) afinite simplicial complex K, for every vertex v € G(*) and

(3) a bijection ¢ : Kf,?) >V, » U, < qug), for every edge e = {v1,v2} of G, between
subsets V., U, of the vertices of K, and K,,, respectively; the ¢, are called attaching
maps.

A graph of simplicial complexes determines a simplicial complex

K(G7{Kv}v’{¢e}e) = |_| Kv/ ~,

veG(0)

where (v1, k) ~ (va, k) fork € K\ and k' € K, if {v1,v5} € G and ¢y, oy (k) = K.
Note that by identifying vertices of K, and K,, also the simplices spanned by these ver-
tices get identified, even though the maps ¢. do not have to be bijections for the higher di-
mensional simplices. Consequently, it does not make a difference for the simplicial complex

K(G,{K,}v, {¢c}) if there is a simplex {o, ..., z,,} in K,, and a simplex {¢. (), ..., ¢ (20) }
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Chapter2. (*-Betti Numbers of Random Rooted Simplicial Complexes

in K, or the simplex is only contained in either K, or K, aslong as all the vertices xy, ..., =,
are contained in the support of ¢.. On the other hand, it is also possible that a simplex of one
of the K’s vanishes if there is a cycle in the graph and two or more vertices of the simplex get
identified by the attaching maps along the cycle.

For our purposes, the following is the most important example of a simplicial complex arising
from a graph of simplicial complexes.

Example 2.1.10. Let " be a finitely generated discrete group with symmetric generating set .S
and let G = Cay(I'; S) be the Cayley graph of I with respect to this generating set. Further,
let K be alocally finite simplicial complex with a free, simplicial and cocompact action of I
and denote by F a finite fundamental domain for this action. We can turn F into a simplicial
complex by adding some lower dimensional simplices of K; let us denote this complex by
F. To make things easier, we denote the vertices of G by corresponding elements v € I' of
the group and set K., = F for every vertex 7 in G. Further, let B, = FO A sF” and

F,=s'E, c ]_-"(0), both considered as subsets of 7. We define a bijection
¢s: Ky, o By > Fyc Ky, o+ sz,

for every s € S, and associate it with all edges labelled by s. In other words, we identify the
vertices of the complex F at the vertex v of G with the corresponding, by s translated, vertices
of F at the vertex sy of G. Compare Figure . Obviously, we have that

K(Cay(r’ S)a {?}77 {¢s}s) = K,

since we attach the copies of the fundamental domain F according to the action of T

[2)

ty

Figure 2.4. The group Z? acts on this simplicial complex with fundamental domain
given by the yellow coloured area; note there is only one vertex {+}. To turn this into
a simplicial complex we have to add the vertices {¢}, {#},{*} and the red edge on the
right-hand side of the fundamental domain. We consider the grid as the Cayley graph
of Z? with edges labelled by ¢; and t5 as indicated in the figure. The attaching map ¢,
which is associated with all edges labelled by ¢4, is given by {e} — {<} and {e} > {e}.
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Figure 2.4. (Previous page.) We remark that, by identifying these vertices, also
the edges {e, e} and {-, ¢} get identified. Further, note that there is no edge be-
tween {e} and {e} in the closed fundamental domain, but, since these vertices get
identified by ¢, with {-} and {e}, respectively, there is an edge between them in

K (Cay(Z2, {t1,t2}), {F}, {61.}:).

Definition 2.1.11. [WeiOO|, Definition 2.1] A finitely generated group I is called sofic if for some
finite symmetric set of generators .S, andany e > 0, and r € N, there is a finite directed graph
G edge labelled by S, which has a finite subset of its vertices 1, = G satisfying:

(1) foreachw € Vg, the r-ball B,(G, v) is graph isomorphic as a labelled graph to the r-ball
B, (Cay(I', S), 1) in the Cayley graph of I" and

@) [Vo| = (1 - )|G].

Proposition2.1.12. Let I beafinitely generated sofic group. If T acts freely and cocompactly on alocally
finite connected simplicial complex K, then there exist a sequence (K ,,),, of finite connected simplicial
complexes which converges Benjamini-Schramm to iy .

Proof. Let G = Cay(I'; S) be the Cayley graph of I" for a symmetric generating set S and let
(G)n beasequence of S-labelled graphs such that there is a finite subset of vertices V,, G
satisfying:

() foreachwv € V,, then-ball B, (G, v)is graph isomorphic as alabelled graph to the n-ball
B,(G,1)and

@ Vo] = (1= 1)aP).

By Example we know that K can be considered as the graph of simplicial complexes
K(G,{F},,{¢s}s) for some fundamental domain F < K of the I'-action. We will show that
the sequence

K, = K(Gm {f}veG%O), {(bs}s)

of simplicial complexes converges Benjamini-Schrammto K = K (G, {F},er, {¢s},), where
(G AF} . GO, {¢s}s) is the graph of simplicial complexes with the simplicial complex F at
every vertex and with the attaching maps { ¢}, given by the same maps as in K according to
the labels of the edges.

Fix aradiusr > 0 and choose n € Nso large that for atleast (1 — e/|7"(0) |G| many vertices
in G,, the r-ball looks like the r-ball in GG. Let us denote the set of these vertices by V,,. In the

: . —=(0 .
worst case, we only have one vertex in K, for every vertex in V,, and | F ( )| — 1 many vertices

. 0 . . . .
for every vertex in G )\Vn. Hence, since the attaching maps in K, are the same as in K, we
conclude that

e, (Un(a) = pic(Un(@))] < €
for every finite rooted simplicial complexes a. O
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2.2. (*-Betti Numbers of Random Rooted Simplicial Complexes

In order to define ¢2-Betti numbers, we introduce the ¢*-homology of random rooted sim-
plicial complexes. Therefore, we will construct a chain complex for each probability measure
on SC... We begin by picking a representative for each isomorphism class [K, z] € SC, ina
measurable way.

Let A(Np) be the simplicial complex consisting of all non-empty finite subsets of Ny,. Every
subcomplex A = A(Ny) can be encoded by an element f, € {0,1}2M0) such that fu(s) = 1
if and only if the simplex s is contained in the subcomplex A. We endow {0, 1}2®M0) with the
product topology, i.e. the topology generated by all cylinder sets. The subset Sub(A(Ny)) <
{0, 1}2(®o) which consists of elements encoding subcomplexes of A(Ny) is closed.

Lemma 2.2.1. There is a continuous map V: SC, — Sub(A(Ny)) such that (V([K,x]),0) is a
representative for [ K, x| forall [ K, x] € SC,, i.e.

[U([K, 2]), 0] = [K, z].

Proof. We enumerate the simplices of A(Ny) in diagonal way,

({03, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1,2}, {3}, . ..

and by this, identify the simplices of A(Ny) with Ny. We denote thismapby T: Ny — A(Np).
Subsequently, all simplices with vertices in {0, ...,n} show up in the first 2"*! entries of
{0, 1}4(®0) The lexicographic order on {0, 1}2M0) given by

f<ge f(X() = g(TE) for0<i <k, f(X(k+1)=1landg(T(k+1)) =0,

defines an order on the subcomplexes of A(Ny). Now, we define ¥ ([ K, x]) to be the smallest
A € Sub(A(Np)) with (A, 0) € [K, z]. We have to remark two things: First, there is always
a subcomplex A of A(Ny) such that (A,0) = (K, x). We obtain such a A by enumerating
the vertices of K in an arbitrary way with the only restriction that x is identified with 0. And
second, for a rooted isomorphism class [ K, ] of a finite simplicial complex K it follows by the
well-ordering principle that there is a unique smallest element in {0, 1}2®°), We will show
that for an infinite complexes [ K, x| there is also a minimal element. To this end, we claim
that V([ B, (K, x)]|) = B.(V(|By4+«(K,z)])) for all r,¢ > 0, hence the minimal element is
given by
W([K, o)) = lig¥([B, (K. ) 2]).

First, we verify that the set of vertices of V(| B, (K, z)]) and also of B, (V(| B, (K, x)])) is
the interval {0, 1, ..., N,} = Ny, with N, = |B,(K,z)®|. For ¥([B, (K, z)]) this is obvious
by the definition of the order. For B, (V([B, (K, x)])) we show this by induction.

Suppose that B,_1 (¥ ([B,4(K,2)]))® = {0,1,..., N,_,} and assume there exists an k €

{N,_1 +1,...,N,} such that k ¢ B,(V(|B,,.(K,)]))?. Therefore, there must be a ver-
tex | € B, (V([B,,.(K,r)])©® with [ > N,. By assumption, the distance of k to the root
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0 in V([ B, (K, z)]) must be at least  + 1, hence all simplices of the form s U {k} with
s < {0,1,..., N, 1} can not be contained in V([ B, (K, z)]). But this is a contradiction to
the minimality of V([ B,.;(K, x)]), since by interchanging the roles of [ and k we would get
a smaller complex. After we verified that V([ B, (K, z)]) and B,(V([B,(K,x)])) have the
same set of vertices, it is a direct consequence of the definition of the order that

\IJ([BT(K7 ZL‘)]) = Br(qj([Br-i-t(K? [E)]))

We check that W is continuous. Let {ko, k1, ..., k,} = Y(k) € A(Ng) with kg < k1 < ... < ky,
be the simplex which corresponds to the natural number k& € Ny. From the previous part of
the proof we can deduce that the simplex T (k) € A(Ny) can have at most distance k to the
root in every minimal subcomplex of A(Ny) which contains Y(k). Let [k] be the cylinder set
defined by k. Since Y'(k) € V([ K, x]) if and only if it is in W( By, 1 (K, x)), it follows that the
preimage of [k] is give by the countable union of ky + 1-neighbourhoods Uy, +1(«) of finite
rooted simplicial complexes o with Y (k) € W(By,1()), i.e.

U = Ukl
a€SCy finite
Y (k)e¥(Brj+1(a))

This is a countable union of open sets, thus ¥ is continuous. O

For a simplicial complex K the complex Hilbert space of simplicial /?-p-chains CZ(,Z) (K) con-
sists of formal sums 3y, ¢ss with coefficients ¢, € Cand such that > ., |s|* < . The
map U, from the preceding lemma, gives rise to a field of complex Hilbert spaces (see Defi-

nition [K,z] — c? (V([K, x])) over SC., for every p € Ny. In addition, every oriented
p-simplex s € A(Ny) yields a characteristic vector field x ; defined by

Xs([ X 2]) :{ 3 i)f’-cfleem\l;l(s[eK E

We observe that, since W is continuous, the function

[ 2] = O (K 7)), xw ([ 2))

is continuous for all oriented p-simplices s and s’. Further, the collection of all characteristic
vector fields {x; | s € A(Ny)(p)} of oriented p-simplices s € A(Ny) form a total sequence

for every complex Hilbert space i (U([K,x])). Therefore, by Proposition there exists

a unique measurable field structure on [K, x| — c? (U([ K, x]) such that the characteristic
vector flelds are measurable and hence form a fundamental sequence. By Proposition|B.3] a

vector field o : [K,z] — o([K,x]) € 0222)(\1!([}(, x])) is measurable, with respect to this
structure, if

[K, 2] = (o (K 2]), xs ([ 21))

is measurable for every oriented p-simplex s of A(Ny). Now, let 11 be a random rooted sim-
plicial complex.
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Definition 2.2.2. The Hilbert space of simplicial ¢?-p-chains of y is the direct integral
®
CO(SCap)i= [ COWK a))iul( 2]

The elements of the direct integral (see Definition[B.5) are (equivalence classes of) measurable
vector fields o with the property

lo]* = LC lo (1K 2]) 2 dp([ K, 2]) < o,
where the vector fields that vanish almost every will be identified. The boundary operators
Optica): O (WK ])) — O (W ([ ]))
and their adjoints
Oy CPAT (L 2])) — O (W (K, 2]))

define measurable fields of linear mappings 0,: [K,z] — 0p[xq and d: [K, z] — df ;.

By Proposition[B.9] it is enough to check that

[K7 ‘T] = <5p,[K,x]X8([K’ :L‘]), Xs’([K’ ZE])>
is measurable for every p-simplex s and p-1-simplex s’ in A(Ny), but this is a direct conse-
quence of the continuity of W. Therefore, also the Laplace operators

1
Ap (K] = A 1Op1xa] + Opi1 (56,21 o

yield a measurable field of operators. By Proposition[B.13} J, x..] defines a closed linear map-
ping

D
ap = J\S(; ap,[K,:E]d:u: C]()2) (SC*7 :u) - 0152—)1 (SC*, :u)a

and we obtain a chain complex

2
= OP(SCy, ) > OS2 (SCuyp) = -+

Definition 2.2.3. Let i be a random rooted simplicial complex. We define the p-th simplicial
(2-homology of y as the Hilbert space

HZ()Q) (SCy, p) :=ker d,/im 0.

Later, we will usually consider the kernel of the Laplace operator, which is (atleast in the case

when A, is a bounded operator on C’}?) (SC., p)) isomorphic to the homology by the Hodge
isomorphism (cf. [EckOO|, p. 192])

D
HE(SC.up) = Rer(dy) = [ ter My

This has the advantage that ker(A,) is a subspace of C]§2) (SC., 1) and not a quotient space.
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Proposition 2.2.4. For every random rooted simplicial complex pu of degree bonded by D the boundary
operator 0,,, its adjoint dP and the Laplace operator A, are bounded operators for every p € N. Moreover,
A, is self-adjoint.

Proof. To show that the operators are bounded, it is enough to proof that |J,| < R(D,p),
for some constant R(D, p) only depending on the dimension p and the degree D of 1, since
|dP|| = [|0%] = [0y || Let us first consider a simplicial complex K with vertex degree bounded
by D and let s be a p-simplex; p < D. Hence, every vertex v of s has already p neighbours. If
sis contained in a p + 1 simplex, then this simplex consist of the vertices of s plus one more
vertex vg. Therefore, vy is also a neighbour of all vertices in s and hence the number of p + 1-
simplices containing s is at most D — p. This gives us the following estimate of the norm of
the boundary operator:

4

16,(0))% = | DI(~1)idio|* < (p+ 1)(D — p+ 1) = R(D,p).

1=0

Now, since the essential supremum of the vertex degree is D, the essential supremum of
|Gy, || is bounded by R(D, p). By Proposition B.10} it follows that also

&)
\f Oprcardp([ K, 2])|” < R(D, p).

That A, is self-adjoint, is a direct consequence of Proposition[B.14}, since for a simplicial com-
plex of bounded degree the Laplace operator is self-adjoint. O

We would like to have a notion for the dimension of a subspace of C’Z(,2) (SC., ), to this end
we introduce a von Neumann algebra with a trace. Let A,(x) be the von Neumann algebra
of bounded decomposable operators T' = S® Ttk z)dp on C’,(,z) (SC., i) such that for almost
al [K,z] € SC,, all simplicial isomorphisms ¢: V([K,z]) — ¥([L,y]) and all 0,0’ €
C$(SC,, 1) the identity

Ttk ao ([K, 2]), o' ([K, 2]) = Tgypso ([K, 2]), 00" ([ K, 2]))

holds. It is clear that this condition is closed under the weak topology. Further, it implies
that the operators are independent of the choice of the root, thus we will sometimes denote
an operator by T instead of Tjx 1. If 0, is a bounded operator for j, then J,, d” and A,
are in A, (1), since 0, and dP? commute with the chain map ¢; induced by an isomorphism
o: V([K,z]) > Y([L, y]). Now let

T, = {Xs € q@(sc*,u) | se A(Np)(p), O¢€ s}

the characteristic vector fields of the oriented p-simplices of A (Ny) which contain 0. We claim
that

tr, (1) = Y] f: ? e [0, 0]

TE€Tp
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defines a trace on A, (). Note that the formula does not depend on the orientation of 7. Let
T,5e Ay(p).

Z<ST7‘ T) = Z<T7‘ S*r) = L Z<TKT ([K, x]), Si([K, x]) du([ K, z])

7'67;; 76727 Cx TET

Lc Z Z<TKT (|K, z]), s)s, Si7([K, z])Ydu([ K, z])

s€¥([K,z])(p) T€Tp

TeT(|K, x]), s{Sks, T(| K, x
J Z Z (Trr(] 1) >Jf1K ([ 1)) du([K, z]).
5Cx (] Kx DO sen((Ka)r) 7T p
F( )

Now we use the unimodularity of 1 (see Definition[2.1.3):

- j S H(K.y, 2] dp([K, 2))
SCx e g (o)
:J 3 D Trr (K, y]), s)(Sks, T([K, y]))

e Au([K. )

Cx e (0) sel([ K 2)) €Ty

:L DD (Sks, T K,y])><T([K,y]),Tz’é8>du([K7x])

Cx yek () seU([K)) 7eT, p+1
- (Sics, Tis)dpu([K, 2])
SCx sev( K:v N {p)
Oes
J S Swer([K, ), Trr ([, a)ydp([K, 2]) = S TST, 7.
SCy reT e,

Proposition 2.2.5. The trace tr,, on A, (1) is normal, faithful and semi-finite. If the expected number
of p-simplices at the root is finite, then tr is a finite trace.

Proof. Faithfulness follows from the fact that the operators in .4, (1) are independent from
the choice of the root and from the unimodularity of /1. We check that tr, is semi-finite. Let
A e A,(u) be positive. We define the operators

Alxcal
max{deg,(z) —n, 1}’

An,[K,x] =
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where we denote by deg,, () the number of p-simplices containing . We will show that (A,,),,
weakly converges to A, but first we verify that tr(A,,) < co.

(AT, T)
try (A LC* = + 1) max{deg,(z) — n, 1}d,u([K, zl)
HAH deg,(z)
< LC* (b + 1) max{deg, (2) —n, 1j L)
_ A+
p+1

To prove the weak convergence, let o, 0 € ngz) (SC, ).

r

Ao 0> = | (Ao 05y — J
JSCy S

(Ac, 8)
¢, max{deg (r) —n, 1}
[ (Ao, 0)
= ik alesc. (Ao, O)dp + JKI eSCx deg, (1) — n

deg, (z)<n deg,(z)>n

du

dp

.
=2, (Ao, 0ydu = (Ao, 0).

JSCy

In the last step, we used the fact that the elements of SC, are locally finite, hence the right
summand tends to zero and the left one to Ssc* (Ao, B)dp. O

Definition 2.2.6. Let K: [K,z] — K(|K,x]) be a field of subspaces of cf (SC., u) such
that p,/C([K, z]) = K([K,y]) for every isomorphisms ¢: ¥([K,z]) — V([K,y]). Then
the projection Py : [K,x] — Px([k,q)) onto K is an element of A, (1) and we define the von
Neumann dimension of K as

dlmHIC = tr,u(PlC)-

We remark that, by the comment after Definition

®
| et hn. o) = peicse ).

SCx

Example 2.2.7. We compute the dimension of CISQ) (SC., 1):

Idr, 7
Z< )

dim,, (C?(SCy, ) = tr,(Id o

OP(SCum)) ~
TETp

:f {7 e T, | 7([K, «) # O}

p+1

de
_ f g (@) i
sc, pt1

dp([ K, x])
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Chapter2. (*-Betti Numbers of Random Rooted Simplicial Complexes

where, again, we denoted by deg,, () the number of p-simplices containing the vertex x. If i
is the associated random rooted simplicial complex of a finite simplicial complex K, then the
von Neumann dimension is equal

|K(p)|  dime Cy(K;C)
KO (KO~

Definition 2.2.8. Let y be a random rooted simplicial complex. The pth ¢2-Betti number of 1 is

51(72) (p) := dim, ker A,

where A, is the pth Laplace operator of the simplicial £2-chain complex C(SC.,, 11). By
the Hodge isomorphism, we can interpret this as the dimension of the pth homology group

HP(SC.., ).

Example 2.2.9. In the following, we will consider the /?-Betti numbers of the random rooted
simplicial complexes defined in Example . We denote by b,(K) the pth ordinary Betti

number of a simplicial complex K and by 5" (K, I') the (2-Betti numbers of a I'-simplicial
complex with respect to the group von Neumann algebra of the discrete group I". The stan-
dard reference for /?-invariants is [LiicO2], we also recommend [Kam1I8]. Gaboriau gives a
definition of /*-Betti numbers of R-simplicial complexes which we denote by 3,(3, R, v).
This definition was generalized by Takimoto to G-simplicial complexes [Tak15], where G is a
discrete measured groupoid, we denote them by 3,(X, G, v). If the R-simplicial complex, re-
spective G-simplicial complex, is p-connected, then the definition is independent of the sim-
plicial complex 3 and hence it is called the pth ¢2-Betti number 3,(R, v) of the equivalence
relation R [Gab02] or (3,(G, v) of the groupoid G [Takl5], respectively. The later coincides
with the original definition of /?-Betti numbers of discrete measured groupoids introduced
by Sauer [Sau05].

(1) Given a finite simplicial complex L with associated random rooted simplicial complex
pr, and let P be the projection onto the kernel ker A, of the pth Laplace operator of

01(72) (SC*7 :uL) :

Pr,r
Z< )

T€Tp p 1
Pk, S)
(K 2]eSCx sev(Kahp) 7
K>L O€es
- {ye LO | (L,y) € [K,z]}| 5 (Pirc.a)5: )
- (0)
[K,2]eSCx |1LO] seV([K,z])(p) ptl
K=>~L Oes
Z 2 (Prs,s)
|L yeL(O) seL(p) p+ 1
YES
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|
8}—\
S
S
h
V)
V)
~
I
—
S
Cllw!
SN
|
=
)
~~
=~
——
9]
N
N’

From line three to four we used the fact that (L, y) and (V([ K, z]), 0) are root isomor-
phic, so
Z (Ps,s) s> 2 (Ps,s)

.
wv(mane P my P

Oes YES

Further, note that if we sum over all p-simplices s € L(p) containing a fixed vertex y and
then sum over all vertices y € L(*), we hit every p-simplex exactly p+ 1 times. Therefore,
we can cancel the denominator.

Let L be an infinite connected locally finite simplicial complex with a free, simplicial
and cocompact action of a discrete group I" with finite fundamental domain F'. The
same arguments as in the previous example yield:

B2 () = )] Py

T€Tp p+ 1
P28,
- )y Y, s
[K.21e5Cx sev(Kal)p) L
K~L Oes
Z Z (Prs,s)
|F |yeF(0) seL (p) P+ 1
(L,T)
_ (Pps,s) = [ St el
FO e;(p) |FO)]

We remark that for a finite index subgroup I'y < I the size of the fundamental do-
main scales by the same factor as the ¢2-Betti numbers do; therefore, the right side is
independent of the group I as well.

Given a probability measure preserving equivalence relation R < X x X onastandard
Borel space (X, v). Let X be a R-simplicial complex with fundamental domain F' =
e E of X such that 7: F; — X is injective and Yjes T(W(F})) < oo. We denote
the vertex over z in F; by fi(z ) A fundamental domain for the ordered simplices of
»() is given by

U1, EXP | feF e 2@ forl <i<pl.
p

Among these ordered simplices we can choose a representative for each unoriented
simplex, this gives us a fundamental domain " = | |._; F! for the action of R x &,
on ¥(® such that the projection 7: F/ — X is injective for each i € I, where &, de-
notes the symmetric group on p elements. The characteristic functions of these sets

define a total sequence {0, } s for the direct integral S?( CISQ) (3J;)dv and hence define a
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Chapter2. (*-Betti Numbers of Random Rooted Simplicial Complexes

trace [Gab02, p.120]. Let ¢ := {, |7~ ' ({z}) n F|dv(x) < o0. We compute the ¢>-Betti

numbers:
B (psr)
-3 ) ey
T€Tp
Py, m([X2, [; X, i@
f ;]T;;XW(F < ([ f(p)J]r)1 T([Za, f;( )])>dy(x)
Ps_ s, s
f ;se;pXﬂF) <p+1> (x)
fi(x)es

j S Xty ()P, 74(), 04 (1) o)

i€l
_dimRHP (Z) _ 6}7(277—‘)’7 V)

C C

Again, we used the fact that summing over all p-simplices s containing a vertex f;(x)
of the fundamental domain F' and then summing over all vertices in F'is equal to sum-
ming p + 1 times over the elements in F”, the fundamental domain of the unordered
p-simplices.
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2.3. Approximation of (*-Betti Numbers

2.3. Approximation of />-Betti Numbers

In this section, we will show that the /2-Betti numbers of a random rooted simplicial complex
i can be, under some circumstances, approximated by a sequence (1), of random rooted
simplicial complexes that weakly converges to 1. To this end, we will apply the Spectral The-
orem B.15]to the Laplace operator.

Remark 2.3.1. In order to apply the Spectral Theorem, the operator must be self-adjoint or,
atleast, essentially self-adjoint, i.e. closable with a self-adjoint closure. The Laplace operator
is always closable, but in general, when the vertex degree is not bounded, not essentially self-
adjoint. We will summarize some results about the question, when the Laplace operator is
essentially self-adjoint. In [WojO8], Wojciechowski proves that the Oth Laplace operator on
a locally-finite graph is essentially self-adjoint. In [Bor, Proposition 2.2], Bordenave shows
that the Oth Laplace operator for unimodular measures on the space of rooted locally finite
graphs G, is essentially self-adjoint. Anné and Torki-Hamza define in [ATHI5] a property
called y-completeness for graphs, which implies that the 1st Laplace operator is essentially
self-adjoint. This property was extended by Chebbi [Chel8] to two-dimensional simplicial
complexes, where it also implies essentially self-adjointness of the 1st and 2nd Laplace oper-
ator. Chebbi likewise gives an example of a two-dimensional simplicial complex with a non
self-adjoint Laplace operator. In [LP16], Linial and Peled studied the spectral measures of
random simplicial complexes of the type Y(n, £) and showed that they weakly converge to
the spectral measure of a Poisson d-tree, which has a self-adjoint Laplace operator.

Even though the most things hold true in the unbounded case, as long as the Laplace operator
is essentially self-adjoint, we will assume in the following that 1 is a random rooted simplicial

complex of bounded degree and therefore, the Laplacian A, on (1152) (SC,, 1) abounded self-
adjoint operator (see Propositio. Let s, be the projection valued measure of A, from
the Spectral Theorem (Theorem B.15). Further, we define the spectral measure of A, of a Borel
set B < Rtobe

vp(B) = tr, Ea, (B) € [0, 0).

By Proposition[B.16| this is equivalent to
(B) = | e (Bau((. ),

where
(Ea, (B)s,s)

p+1

17

pi[Kx] (B) = Z

seK(p)
TES

Y

with A}, x the pth Laplace operator of the simplicial chain complex of K and En . the corre-
sponding projection valued measure.

Remark 2.3.2. By the Spectral Theorem, v, satisfies

tra(f(A,)) = fRfmdup(A)
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Chapter2. (*-Betti Numbers of Random Rooted Simplicial Complexes

for all bounded Borel functions f on R. Further, note that v, is not a probability measure, but
it is finite as long as the expected number of p-simplices containing the root,

E,(deg,) = | deg,(a)dn
SCy
is finite (which is, in particular, satisfied if 1 has bounded degree), since we have

Vp(R) = tr,u(Ep(R)) = tru(ldp) = Eu(degp)/(p +1).

The spectral measure of the point {0} is of special interest because

vp({0}) = B2 (u)-

In the following, we will present a version of Liick’s approximation theorem [Liic94]. The proof

adapts some ideas of [ATV11] to higher dimensions. This extends a result of Elek [Ele10], who
proved that the limit lim,, ((0’;‘) exists for a Benjamini-Schramm convergent sequence K,
of finite simplicial complexes of bounded degree.

Theorem 2.3.3. Let (11,,),, be a sequence of sofic random rooted simplicial complexes with uniformly
bounded vertex degree. If the sequence weakly converges to a random rooted simplicial complex p, then
the (*-Betti numbers of (11, )., converge to the (>-Betti numbers of yu.

Before we start with the proof, we recall the following lemmas. The first one is a consequence
of the approximation theorem of Weierstraf} and the second one is known as Portmanteau the-
orem:

Lemma 2.3.4. Let (1 be a Borel measure on R and let (11,,),, be a sequence of measures. Assume there is
a compact set C' which contains the support of i, for every n € N and assume further, that

lim f Y, (t) Jf Ydu(t)

n—aeo

holds for all polynomials f € R|x]. Then (i, ), weakly converges to fu.

Lemma 2.3.5. Let (v,,),, be a sequence of finite Borel measures on R which weakly converges to v. Then
(1) liminf, o v, (U) = v(U) forall open sets U < R,
(2) limsup,, o vn(A) < v(A) forall closed sets A — R.

The following lemma is the first step of the proof of Theorem[2.3.3}

Lemma 2.3.6. Let (1), be a sequence of random rooted simplicial complexes with deg(u,,) < D <
oo foralln € N which weakly converges to jio,. Then the corresponding spectral measures (v}, ),, of the
pth Laplace operators A, weakly converge to v:°, for every p € No.
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2.3. Approximation of (*-Betti Numbers

Proof. For the sake of simplicity, we denote the spectral measures v/ and v7° by v, and v, re-
spectively. Since deg(11,,) is uniformly bounded, we know by Propositionthat 1A <
Rforalln € Nand hence the support of the spectral measures v/} liesin [~ R, R] foralln € N,
Lemmal[2.3.4|implies that it is enough to check the identity

R
lim f )dvy, (A J FN)dve (A

n—oo

for polynomials f € R[z]. By hnearlty, we can further assume that f = 2" for some r € N.

Let us consider
R
J Ndv,(N) = Y J By,
R T, ISCx p+ 1

Let s € K(p) be a p-simplex with = € s. The image A,(s) of s is a linear combination of s and
p-simplices which share a common p — 1-face with s, hence A, s lies in the 2-ball By(K, x)
centred at x. Therefore, ((A,)"s, s) only depends on the (r+1)-neighbourhood of . By the
weak convergence of the sequence (1, ),,, we know that

Jgrolo ,un(Ut(a)) = Moo(Ut(O‘))

for any finite rooted simplicial complex a and radius ¢ > 0. Hence,

T, 7'> T, T
lim f ~—r 7 J —du
=0 T;' Ury1(a p + 1 7—;’ Urt1(a) p+1 ”

for all finite rooted simplicial complexes «. Finally, the claim follows from the fact that SC,
is a countable union of open sets of the form U, ;1 (). O

Lemma 2.3.7. Fora sofic random rooted simplicial complex pu of degree bounded by some D > 0 there
always exists a sequence of finite simplicial complexes (K ,,),, with degree uniformly bounded by D and
which converges Benjamini-Schramm to .

Proof. Since 1 is sofic, there exists a sequence (L,,),, of finite simplicial complexes converging
Benjamini-Schramm to p. We remove the edges of L,, which contain at least one vertex of de-
gree greater than D, and, certainly, all higher dimensional simplices containing these edges,
until the maximum degree is less or equal D. We denote this new sequence by (K,),. We
consider the difference of the associated random rooted simplicial complexes for open sets of

the form U, («). Note that K’ O = L 1t follows that

pr, (Ur(a)) = px, (U (@)
Mo LV | Bi(Ly,2) 2 B, (K 2)}

1LY
_|fr e LY | Iy € Bu(Ly, 2) with deg(y) > D}
- L)
n—o0 O,
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Chapter2. (*-Betti Numbers of Random Rooted Simplicial Complexes

since y,, converges to p and deg(u) < D. Therefore, K,, converges Benjamini Schramm to
i, as well. O

We are ready to proof Theorem[2.3.3}

Proof. Let v’ and v, be the spectral measures of the sofic bounded degree random rooted
simplicial complexes ji,, and j1, respectively. Considering Remark[2.3.2], we have to show that
v7'({0}) converges to 14,({0}). By Lemma we know that the spectral measures v weakly
converge to the spectral measure v,,. First, let us assume that y is the random rooted simplicial
complex i associated with a finite simplicial complex K with vertex degree at most D. The
Laplace operator A, of K is bounded |A,|| < oo and can be viewed as a d x d matrix with
integral coefficients, where d = | K (p)|, when we pick a basis by choosing an orientation for
each p-simplex of K. Thus, the characteristic polynomial ¢(x) of A, is in Z[x] and of degree
d. The product of the non-zero roots of ¢(x), which are all in [—[|A,][, |A,]], is one of the
coefficients of ¢, so it is in Z\{0} and hence

1 < Iy, 0| M- 2.3)

The spectral measure of any Borel set S — R has the following form, where we denote by v;
the normed eigenvector of the eigenvalue \;:

V(S) = ZJ (Ea, (S 7'7'>dlu: 3 (En, x(S)s, s)

0
1T, ISCx p+1 ko) |K( )|
-y oy ey - o _ 1{Ae )
KO &AKO] KO
seK(p) Mi€S

Thence, we can express the number of eigenvalues in the set .S by
[{\i e S} = v(S)| K. (2.4)
Let Iy = (—¢,€)\{0} for some 0 < ¢ < 1. Equation and yields
1 < Iy 0N < E‘K(O)MIO)HAp”d-
Therefore, we obtain

0< —|KOu(Ip) In(1/e) + dIn(|A,])
BTN
V(0) S TR0 n(1/e)

The maximal number of p-simplices in a complex with vertex degree bounded by D € Nis

(g ) KO, ; consequently, we can make the right side independent of the number | K ()| of ver-

ticesp+l ’
» (A, (7))
S+ D) n(1/e)
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Note that |A, | is also bounded by some number R(D) only depending on the vertex degree
D. Up to now, we only considered a random rooted simplicial complex associated to a finite
simplicial complex, but we get the same inequality for any sofic random rooted simplicial
complex /1 of degree bounded by D, since by Lemma [2.3.7 we know that there is a sequence
of finite simplicial complexes K, all of degree bounded by D, which converges Benjamini-
Schramm to p. We denote the associated spectral measures by v, respectively v, and apply

Lemmal[2.3.5:

o In(R(D))(})
v(ly) < liminf v, (Iy) < :
e (b + In(1/¢)
After we have achieved Equation for every sofic random rooted simplicial complex of
bounded degree, we can finish the proof. First, we restate the assumptions of the Theorem.
Let (v,), be a sequence of spectral measures associated with a sequence of sofic random
rooted simplicial complexes (1i,,),, of degree bounded by D which weakly converges to 1 and
let v be the spectral measure of ;1. We conclude:

(2.5)

limsup v,,({0}) < v({0}) < v((—e,€)) < liminf v, (—e€,€)

n—oo n—o0
In(R(D))(})
< liminf v, P
minfvn (0D + a0
Letting € tend to zero, completes the proof. O

Corollary 2.3.8 (Euler-Poincaré Formula). Let 1 be a sofic random rooted simplicial complex of di-
mension n and of bounded degree. Then

n n

deg)
()

where £, (deg,,) denotes the expected number of p-simplices containing the root.

Proof. Forarandom rooted simplicial complex j1x, associated with a finite simplicial complex

K, we have, by Example[2.2.9|(1), that BI(,Q) (k) = ff;({;)' and therefore,

n n n

COEEORDIC |Ko>| o>| = (1

p=0

= |K<O
" d v E, (d
220 SCs p+1 £ p+1

where we denote by x(K) the ordinary Euler characteristic of K. If we now apply Theo-
rem we obtain the equality for sofic random rooted simplicial complexes of bounded
degree. O
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Example 2.3.9. Let (T,),, be the sequence of two-dimension simplicial complexes which oc-
curs in the construction of Sierpinski’s triangle (see Example[2.1.8). As we have seen in Exam-
ple (T},)., converges Benjamini-Schramm, or in other words, the sequence of associated
random rooted simplicial complexes (p1, ),, weakly converges, to a random rooted simplicial
complex /i,. We will use Theorem [2.3.3|to compute the first £2-Betti number of i, .

Ty T 15

First of all, observe that b, (7) = 0, b;(77) = 1 and in general, b,(7,,) = L;l Applying the
equality in Example[2.2.9].(1) yields

b(T,) 3"—1

|T7g0)| - 3n+1 + 3

2
§ )(MTn) =

Therefore, by Theorem we obtain as 1st /2-Betti number of . :

(2) 3" -1 1

_ e 6 _ _1
1 (IU/T)_JI_I)IOIOﬁl (MTH)_T}I—I}Z}OBTL"'_I—FB 3
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Chapter3.

/2-Multiplicities and Equivariant
Benjamini-Schramm Convergence

The results of this chapter are a joint work with Steffen Kionke [KSB]. We define a variant
of Benjamini-Schramm convergence for simplicial complexes with an action of a fixed fi-
nite group G which leads to the notion of random rooted simplicial G-complexes. For ev-
ery random rooted simplicial G-complex we define a corresponding /2-homology and the ¢3-
multiplicity of an irreducible representation of G in the homology (Definition[3.2.6). The ¢>-
multiplicities generalize the /-Betti numbers, defined in Chapter[2] (Definition [2.2.8). Fur-
ther, we show that they are continuous on the space of sofic random rooted simplicial G-
complexes. This result is a different approach to a theorem of Kionke [Kiol8|, Theorem 1.2],
which says that for a tower of finite sheeted coverings (X/I',,),, of a ' CW-complex X and
every irreducible representation o of G

lim m(o, H,(X/I',,C))

_ () .
n—00 [F . Fn] mp (O-’ X, F)

holds, where m(o, H,(X/I';,,C)) are the ordinary multiplicities and m (0, X;T) the ¢*-
multiplicities, defined in [Kiol18], of a '-CW complex X . In addition, we study induction of
random rooted simplicial complexes and discuss the effect on the ¢2-multiplicities. We will
use a similar language and notation as in Chapter[2] Some proofs work in a similar way as in
Chapter[2] in that case we will focus more on the differences, than on giving a detailed proof.
If not stated otherwise, G will denote a finite group.

Structure of the chapter. We define random rooted simplicial G-complexes (Definition3.1.2) in
Section[3.]and give a first example. Additionally, we introduce induction of random rooted
simplicial complexes and finish the section with the prominent example of towers of finite
sheeted covering spaces with action of a finite group. In Section[3.2}, we define /2-multiplicities
of random rooted simplicial complexes (Definition[3.2.6). To this end, we have to proceed as
in Chapter 2| and define the simplicial ¢?-chain complex of a random rooted simplicial G-
complex, a von Neumann algebra and a trace. Section 3.3|is dedicated to the proof of the
continuity of />-multiplicities (Theorem[3.3.2) and a reciprocity formula for induced random
rooted simplicial complexes (Theorem[3.3.3). We end the chapter with Example[3.3.5], in which

we compute the /2-multiplicities of Sierpinki’s triangle with rotation.
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3.1. Random Rooted Simplicial G-Complexes

Arooted simplicial G-complexis a pair (K, 0) consisting of a simplicial complex K with G-action
and a G-orbit o of vertices of K such that every connected component of K contains atleast
one vertex of 0. Actually, a rooted simplicial G-complex is not a pair but even a triple, but, as
remarked in Chapter[2], we usually omit the set of vertices V of K.

Two rooted simplicial G-complexes (K, 0) and (L, 0’) are isomorphic if there is a simplicial
isomorphism ®: K — L such that ®(0) = o’and g - ®(z) = ®(g - z) forallz € K and
g € G. In this case, we write (K, 0) £ (L, 0') or, if there is no danger of confusion, we omit

G and just write (K, 0) = (L, 0').

Definition 3.1.1. We denote by SC,.(G) the space of isomorphism classes of rooted simplicial G-
complexes and by SCZ (G) the subspace of isomorphism classes of vertex degree bounded by
D.

To avoid technical issues, we will only consider simplicial complexes of degree bounded by
some large constant D € N. Similarly as in Chapter we define a metric on SC2(G) by

d([K, 0}, [L,0]) = igf{% | B(K,0) £ B,(L,0)},

for [K,0],[L, 0] € SC., where B,(K, o) is the rooted subcomplex of K spanned by all ver-
tices of K with distance at most r from a vertex in the orbit 0. Note that subcomplexes of
the form B, (K, o) are stable under the G-action. With the topology induced by this metric,
SCP(@) is a compact totally disconnected Polish space. We define the 7-neighbourhood of a
rooted simplicial G-complex « as the open subset U,(a) = SC?(G) consisting of all rooted
isomorphism classes [, 0] such that B, (K, 0) £ B,(a). The U,(a)’s are compact and open,
and provide a basis for the topology. In the same manner (cf. Chapter[2) we define the space
SCP (G) of isomorphism classes of doubly rooted simplicial G-complexes.

Definition 3.1.2. A random rooted simplicial G-complex is a unimodular probability measure ;. on
SCP (@), where unimodular means

f ), K 0.Gal)du([K, o)) = f(IK, Gz, o])du([ K, o])
SC(G)

zeK (0) JSC?(G) 2K (0

for all Borel measurable functions f: SCZ (G) — Rsy.

Remark3.1.3. Aweaklimit of random rooted simplicial G-complexes is again a random rooted
simplicial G-complex, this follows precisely by the same arguments as in Remark|2.1.4]

Example 3.1.4. Let K be a finite simplicial G-complex of vertex degree bounded by D. There
exists a unique random rooted simplicial G-complex, fully supported on the rooted isomor-

phism classes of K, given by
o
G ._ [K.Gz]

2K (0)
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3.1. Random Rooted Simplicial G-Complexes

where d[x . denotes the Dirac-measure of the point [K, Gx]in SCZ (G). That % is a prob-
ability measure is obvious and unimodularity follows from the same computation as in Ex-

ample .

Definition 3.1.5. We say a sequence (K, ),, of finite simplicial G-complexes converges Benja-
mini-Schramm if the weak limit lim,,_, ,u% exists. Further, we call a random rooted simpli-
cial G-complex sofic if it is the limit of a Benjamini-Schramm convergent sequence of finite
simplicial G-complexes.

Before we can give more examples, we have to introduce induction of simplicial complexes.

3.1.1. Induction of Simplicial Complexes

Let GG be a finite group and H < G a subgroup. Given an H-set X, one can construct the
induced G-set G x i X. The set

GxpX:=GxX/~
is obtained by forming the quotient of G x X under the equivalence relation
(g,;r:) = (gh‘7 hot I‘)

forallg € G,z € X and h € H. The G-action is given by g1 [g2, | = [9192, =] for g1 € G and
[g2, 2] € G xy X. In the same manner, a simplicial H-complex K gives rise to a simplicial
G-complex G x i K by induction. The vertices of G x ; K are the elements of G x 7 K® and
the simplices are given by s, = {[g, ] | = € s}, for every simplex s € K and every g € G. If
we ignore the G-action, G x i K is isomorphic to the disjoint union of |G/ H| copies of K. In
particular, induction does not change the vertex degree.

Lemma3.1.6. The function Indf;: SCL(H) — SCL(G) whichmaps [K, o] to |G x i K, G[1, ]|
is continuous. In particular, the push-forward of measures with Ind$; is weakly-continuous.

Proof. We observe that the ball of radius r in G x y K around G|[1, o] is isomorphic to G x
B,.(K, o). This implies that

d(nd§y([K. o]). Ind§y (L. o)) < d([, o], [Z.0'])

and proves the assertion. O

Lemma 3.1.7. Let i be a random rooted simplicial H-complex. Then the push-forward measure
Ind$ (1) is a random rooted simplicial G-complex.
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Proof. The push-forward preserves the total mass, hence Ind% (1) is a probability measure as
well. It remains to verify the unimodularity of Ind% (12). Recall the change-of-variable for-
mula [Bou67,, $6]

oo, S ) (0) F (W5 (8))dn(9)

We obtain for all Borel maps f: SC..(G) — Rxo:

Lc*(a) Z

2eL(0)

F(IL, 0, Gz])d IndF (1)([L, 0])

<))

~

SCx«(H)

Y, G xu K, o0,Gz])du([K, o)

$€G><HK(O)

G/H| Y f(G xu K, 0,G[L,y]])du([K, o])

SCx(H) yeK (©)
= G/H| Y f(G xu K, G[1,y], o])du([K, o])
JSC*(H) ’yEK(O)

r

> MG xu K, Gz, o))du([K, 0])

JSCx(H) pein fy KO

>, J([L, Gz, o])d Ind§(u)([L o)),

JSCx(G) per 0

r

where we used the change-of-variable formula in steps (1) and (3), and the unimodularity of
(tin step (2). O]

The following criterion is useful to show that a sequence of finite simplicial G-complexes con-
verges Benjamini-Schramm to an induced random rooted simplicial G-complex.

Proposition3.1.8. Let (K, ), beasequence of finite simplicial G-complexes with vertex degree bounded
by Dand H < G beasubgroup. Assumethatthesequence (K,,),, considered as simplicial H-complexes,
converges Benjamini-Schramm to a vandom rooted simplicial H-complex ji,. Then (K,),, converges
Benjamini-Schramm as simplicial G-complexes to Ind$; (1.,) on SCP (G if and only if

|E(Kn, g,C)]

lim |K(0)|

n—o0

~0, 3.1)

forallg e G\H andallC > 0, where E(K, g,C) = {x € K© | d(z, gx) < C}.
Proof. Assume that Equation holds for all g € G\H and all C' > 0. Define E(K,C) =

Useam E(K, g, C) andletr > 0 be given. We want to verify that forall z € KS))\E(Km 2r +
1) the ball of radius r around Gz in K, is isomorphicto G x g B,.(K,,, Hz). This is the case if

B.(K,,Hz) n gB,.(K,,Hz) = &
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3.1. Random Rooted Simplicial G-Complexes

forall g € G\ H and further, if there is no edge between these two sets. Suppose that there isan
elementin the intersection or an edge between B, (K,,, Hz) and ¢ B, (K,,, Hx). In both cases,
wecanfind h, i’ € H suchthatd(hx, gh'z) < 2r+1. However, thisimpliesx € E (K, 2r+1),
sinced(z,h 'gh’z) < 2r + landh'gh’ ¢ H.

Let o be a finite rooted simplicial G-complex of radius at most r. Let ¢ > 0 and take n suffi-

ciently large such that
|E(K,,2r +1)|

K|

< €.

The inverse image V = (Ind%) ™ (U,()) € SCY(H) is a finite (possibly empty) union of sets
of the form U, (/); thus it is open and compact. The weak convergence yiff —— po, shows
that for all sufficiently large n the inequality |o (V) — pff (V)| < e holds. Moreover, by the
observation above,

|E(K,,2r +1)|
K|

i, (U () = pig, (V)] < <e.

We deduce the convergence u§. — Ind (1ic0).

Conversely, suppose that the sequence (1§ ),, converges to Ind$(yi,). Let g € G\H, C' >
0and x € E(K,,g,C). The ball Bo(K,, Hx) contains a path from x to gz and hence it
can not be isomorphic to a simplicial complex induced from an H-complex, since in that
case B¢ (K, Hzx) and g Bo (K, Hz) would not be path-connected. By assumption the limit
limy, o p§  is supported on induced complexes and thus Equation is satisfied.

0

Example 3.1.9 (Sierpinski’s triangle with rotation).

Th Ty T,

We have seen in Example that the sequence (7},),, Benjamini-Schramm converges to a
random rooted simplicial complex 1i,. Now we introduce an action of the finite cyclic group

G = {pyoforder 3. Welet pact by rotation of 27r/3 around the barycentre ¢, = 2"~ (1, \/gfl)
of T,,. All vertices of T,, have Euclidean distance at least % from the barycentre, thus every

vertex is moved by an Euclidean distance of at least 2" =2 under the non-trivial rotations p and
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p?, which in particular also holds for the path distance in 7},. Proposition[3.1.8|implies that
the sequence (7},),,, considered as simplicial G-complexes, converges Benjamini-Schramm to
the induced random rooted simplicial G-complex Ind% (11,-). Roughly speaking, the sequence
converges to three copies of Sierpinski’s triangle which are permuted cyclically by G.

Next we will discuss the prominent example of towers of finite sheeted covering spaces which
we have already treated in Example this time with an additional action of a finite group
G.

3.1.2. Towers of finite sheeted covering spaces with action of a finite group

We recall the situation of Example[2.1.7, Let K be a simplicial complex of vertex degree boun-
ded by some D € N with a simplicial, proper and cocompact action of a discrete group I'.

Suppose that I is residually finite and let (V,,),, be a descending sequence of finite index nor-
mal subgroups of ' with [,y NV, = {1}. We have seen in Example 2.1.7 that the sequence
(Ky)n := (K/Ny,), Benjamini-Schramm converges to the the random rooted simplicial com-

plex
Z | Stabr

where F is a finite fundamental domain for the I'-actionon K@ and ¢(I') = Y, _~ m.
Let G < I' be a finite subgroup. For every normal subgroup N, the quotient simplicial com-
plex K, carries a G-action. In the following, we will describe the limit taking the G-action
into account.

We say that an element v € T is FC if it has a finite conjugacy class, i.e. |I' : Cr(v)| < oo,
where Cr(7) is the centralizer of . Consider the subgroup H = {g € G | gisFCinT'} < G
of FC-elements which lie in G and let I'y <7, I'be a finite index subgroup which satisfies

< () Cr(h)

heH

Lemma 3.1.10. If Fy € K is a fundamental domain for the action of Ty on K (0, then the measure
Z K Hz)
| Stabro

on SC..(H) is unimodular and does not depend on the choices of 'y and Fy.

Proof. Observe that any element v € 'y commutes with all h € H and thus defines an iso-
morphism between (K, Hz) and (K, Hyx) as simplicial H-complexes. This shows that the
measure is independent of the fundamental domain.
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3.1. Random Rooted Simplicial G-Complexes

In order to verify that u!l does not depend on T'y, it is sufficient to show that we can replace
I'y by some finite index normal subgroup I'y <y, I'y. Let ; be a fundamental domain for I';.
We obtain

KHx KH'yy
Z |Stab1"1 Z |Stabp0 | Z |Stab[‘1 ’Yy
'er]'—l
- KHy
y;?' |Stabp0 | Z |Stabp1
wefl
KHy
= [T : I'y|
y;?' |Stabp0

and, from a similar calculation, that ¢(I'y) = |Tg : T'y|e(Ty).

It remains to show that ! is unimodular. Let f: SC,.(H) — R~ be a measurable function.
Unimodularity follows from a short calculation:

‘& ZMMﬂWW@w

H yero

- ro Z |Stabro( 7 2 J(K He, Hy))

yeK (0)
a C(Fo) x; |Stabp0 ;f 7;0 S tabro f([K, Hz, Hyy])
1 1
) @;F |Stabr, ()] - [Stabr, ()| ;of ([K, Hy ™z, Hy])
— = [ Y L e o (Lo 0

2eL(0)

Proposition3.1.11. Let G < I bea finite subgroup and let H < G be the subgroup of FC-elements for
. If (Ny)y, is a descending chain of finite index normal subgroups in T with () .y Ni = {1}, then the
sequence of simplicial G-complexes (K /N,,), converges to the random rooted szmplzcml complex G =

Indf (p25)-

Proof. The proof consists of two steps. First we show that (K/N,,),, converges as a sequence
of H-complexes to uft (Claims 1 and 2) and in the second step (Claim 3) we apply Proposi-

tion[.1.8|.

Claim I: Let > 0 be fixed. For all sufficiently large n and all x € K(©, the r-ball B, (K, Hz)
in K and the r-ball B,(K/N,,, HN,z)in K/N,, are isomorphic as H-complexes.
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Let Ty < I' be as above and let F be a fundamental domain for I'y acting on K. The action
is proper, the sets Fy and H are finite and the vertex degree of K is bounded, hence the set S
of elements v € I" such that

BT+1(K, HIE()) M ’}/BT+1(K, HZL’()) F* @ (32)

for some z € Fy is finite.

Take n € Nsolarge that S n N, = {1}. Then forall 7o € K(¥) and vy € N,, Property
implies that v = 1. Indeed, find 7 € 'y with Y92 € Fy then multiplication with g yields
B, 11(K, Hyoo) 0 7077 Bria(K, Hyoxo) # &. We deduce 9775 = v = 1. In par-
ticular, the quotient map takes the vertices of the r-ball B, (K, Hx) injectively to the r-ball
B,(K/N,, HN,x). We have to verify thatevery simplex in B, (K /N,,, H N, z) lifts toa unique
simplex in B, (K, Hzx). Let s be a simplex in B,.(K/N,,, HN,z) and let 5 be a lift in K such
that at least one vertex lies in B, (K, Hx). As a consequence § is a simplex in B, (K, Hx).
Let y be any vertex of 5. There is an element k € N,, such that d(ky, Hx) < r. This means that
B,1(K,Hx) nkB,,1(K, Hr) # ¢ and shows that k = 1. In particular, the simplex § lives
in B, (K, Hz).

Claim 2: The sequence (uif y, )n converges to .

Let r > 0 and let « be a finite rooted simplicial H-complex. Let n € N sufficiently large such
that N, acts freely on K and so that Claim 1 applies. In addition, we may take I'y < N,,; the
action of Ty is also free. Now, every point in K /N,, is covered by exactly | N,, : I'y| points in F
and we deduce

{2z € Fy | B.(K,Hz) = a}|
| Fol

H
=z KO/N, | B,(K,HN,z) = o}| D a

WU, () =

Claim 3: Equation (3.1) holds forallC' > 0 and allg € G\ H.

Let i € N be chosen so that N; acts freely on K and let F be a fundamental domain for the
action of N; on K9, Let Z < T be the finite set of elements «y € I' such that d(yz, z) < C for
some x € F. Forn > i the vertices of K /N,, correspond bijectively to N;/N,, x F.

Take z € K and write 7 = N,z € K(©)/N,,. Suppose that z € E(K/N,,, g, O);i.e. there is
Yn € Npwithd(gz, y,2) < C. Thereisaunique zg € F and anelement~y; € N; satisfyingz =
Yi7o. This shows that d(v; 'y, gvir0, 10) < C andso~; 'gy; € ZN,. How many elements
has the finite set e¢,,(g, Z) = {k € N;/N,, | k~'gk € ZN,/N,}? Clearly, its cardinality is
bounded above by |Z| - |Cn,/n, (9N»)|. The element g € G has an infinite conjugacy class
in I'. Let Y be a set of left coset representatives of Cr(g). For every finite subset S < Y,
the elements in {sgs™' | s € S} are distinct modulo N, for sufficiently large n. Hence,
IL/Ny, : Cryn, (9Ny)| = |S| and therefore,

i |CF/Nn (gNn)|
m  ————

= 0.
n—00 |F : Nn|
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We deduce that
- NE(E /N, g, O) _ 1 ealg, 2) o 14] - [Cryw, (9Nn))]
1 < lim ——— < 1 = =0.
nom  [KO/N,] 5 [KO /N[ = 0o [N, : Ny [KO/N;|
This proves the last claim and Proposition3.1.8|completes the proof. O
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3.2. (*-Multiplicities of Random Rooted Simplicial Complexes

Again, let G be a finite group. In order to define the ¢*-multiplicities of a random rooted sim-
plicial G-complex, we have to proceed as in Chapter[2. We begin by picking a representative
for each isomorphism class [K, o] € SC?(G) of rooted simplicial G-complexes in a measur-
able way. To this end, let
Ne:= || NoxX,
XeOrb(G)

where Orb(G) denotes the finite set of isomorphism classes of transitive G-sets and further,
let AP(N¢) be the simplicial complex consisting of all non-empty subset of N with at most
D+1 elements. The action of G on AP (Ng) is defined by the second coordinate. We encode
every subcomplex A © AP (N) by an element f, € {0, 1}2”®M6) such that f, (s) = 1ifand
onlyif s is contained in A and endow {0, 1}2” ) with the product topology, i.e. the topology
generated by all cylinder sets. The subset Sub(A”(Ng)) < {0,1}2"®Me) which consists of
elements encoding G-invariant subcomplexes of AP (Ng) is closed.

Lemma 3.2.1. There is a continuous map V: SC?(G) — Sub(AP(Ng)) such that
[U([K, 0]), {0} x X)| = [K, 0],

forall [K,0] € SCP(G) and such that the elements of {0} x X are the only vertices contained in
U([K, o) with first coordinate 0, where X is the isomorphism class of the orbit o.

Proof. We enumerate the set Ny of vertices in the following way: First, we enumerate the
set of isomorphism classes of G-sets X1, ..., X}, € Orb(G), then we choose an order on the
elements of each X; = {z;1, ..., Tin, } and finally we enumerate the elements of N, diagonally

(Oa xll)v ) (07 x1m1)7 (07 1'21)7 L) (Oa xk’mk)7 (]-7 'xll)) s

Now we can proceed as in Lemmal2.2.1land enumerate the simplices of AP (N) in a diagonal
way which givesusamapY: N — AP (Ny). Hence, we have an order on Sub(AP(Ng)) given
by the lexicographic order on {0, 1}":

f<ge f(TG) =g(T@) forl <i <k, f(X(k+1)=1landg(T(k+1))=0.

We define ¥ to map an isomorphism class [ K, o] to the minimal subcomplex A of AP(Ng)
such that (A, {0} x X;)) € | K, o], where X is the isomorphism class of 0, and such that the
vertices in {0} x X are the only vertices of A with first coordinate equals zero. The second
assumption is for some technical reasons which will appear later. The proof, that there exist a
minimal subcomplex and that W is continuous, is precisely the same as in Lemma[2.2.1] since
the set of subcomplexes of AP (N) with vertices in

|_|NXXJ'I_IN0XXZ'

J#i

is closed. O
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We follow Section[2.2land refer to the details there.

Definition 3.2.2. Let i be a random rooted simplicial G-complex. The pth simplicial £*-chain

module of 11 is
®

CPSCR@m) = [ OO, o)du(K o).
SCE(G)
The boundary operator
e
9 = f Op(rajdp: CE(SCR(G), 1) — C21(SCP(G), )
SCP(G)
and its adjoint

®
"= LCD<G> e s C2L(SC(G), 1) — C(SCP(G), )

commute with the induced unitary G-action on C}” (SC2(@), 1), since they commute fi-
brewise and G preserves fibres. Therefore, we have for every random rooted simplicial G-

complex ;1 a chain complex c® (SCP (@), 1) and a Laplace operator A, which commutes
with the G-action. Note that by Proposition the boundary operator 0, its adjoint d”
and the Laplace operator A, are bounded operators.

Definition 3.2.3. We define the pth simplicial ¢2-homology of a random rooted simplicial G-complex
u as the Hilbert space
HZSQ)(SCE(G), p) = ker A,

equipped with the natural unitary action of G.

The bounded decomposable operators
D
7= | Tiadus CP(SER(G), 1) — CPSCR(G). 10

with the property that for almost all [, 0] € SC? (@), all simplicial G-equivariant isomor-
phisms ¢: U([K,0]) — ¥([L,]) and all 0, 0’ € CS?(SCP(G), 1) the identity

(Tio (K, 0]), o' (LK 0])) = (Tip.orpso (1K, 0]), 050" (1K 0]))

holds form a von Neumann algebra A,(u). Of course, the operators defined by elements of
G are contained in A, (1), since we only consider isomorphisms which commute with the G-
action. Moreover, A, is in A, (1) because 0, and d* commute with the chain map ¢; induced
by an isomorphism ¢. Let

To(2) = {xs € C(SCL(G), p) | s € AP (Ne)(p), (0,2) € s
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be the set of characteristic vector fields y s of p-simplices s which contain the vertex (0, x) for
r€ X and X € Orb(G) . For T € A,(u), we define

TT, T
r(T) = > D> D) |)§|p+> € [0, ).

XeOrb(G) zeX 1€Ty(x)

The formula does not depend on the chosen orientation of 7. As in the nonequivariant case
(before Proposition [2.2.5), one can verify that tr,(ST) = tr,(T'S) and hence we obtain a
normal, faithful and finite trace on A, (1) (cf. Proposition[2.2.5).

Definition 3.2.4. Let K: [K, 0] — K([K,0]) be a G-invariant subspace of C (SC2(@), )
such that p,/C([ K, 0]) = K([ K, o']) for every isomorphism ¢: V([ K, 0]) — V([K, 0']). Then
the projection Px: [K, 0] — Px([x.o]) onto K is an element of A, (1) and we define the von
Neumann dimension of K as

dim,, K := tr,(Px).

Example 3.2.5. Let L be a finite simplicial G-complex and ;¢ the associated random rooted

simplicial G-complex (cf. Example 3.1.4). Let K be a field of G-invariant subspaces of
C{P(SCP (@), pu§) asin Definition(3.2.4, Givenanorbito = L(® andanisomorphismn: L —
U([L, o]) we define

K(L) = 17 (K([L, o]) = CP(L);
this subspace does not depend on 0 and 7. We compute the dimension of K:

Qi (K) = tro(Poy = S 3 3 DT T>

X€eOrb(G) zeX €T, (x) |X| p +1

B (Prewy$, s)
" 2 2 2 TG+ D

yeL(0) zeGy seL p)

_ Z Z <P;C(Ls s> ~ dim¢ (L)

0 B 0
yeL(0) SGL p) | L )| p+ |L( )|

Definition 3.2.6. Let ;2 be a random rooted simplicial G-complex and o be an irreducible rep-
resentation of G. The ¢?-multiplicity of o in the pth homology of 1 is

1 )
m;()2)(<7> 1) := X—(l) dim,, U(HZSQ)(SCIS(G), 1)),

where o(Hp ) (SCP (@), 1)) denotes the direct sum of the irreducible representations of
HP(SCP(G), 1) isomorphic to 0.
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In addition, we define the pth o-Laplace operator
Ao i= (Id—P,) + A,

where A, is the Laplace operator on C,(,Z) (SCP(@), 1) and

P, =X S o < i)

Gl =

is the central idempotent defined in Tneorem H Note that o(H, @ (SC2(@), ) is inde-
pendent of the chosen decomposition of Hy (SCD (G), ) into irreducible representations

by Theorem/[A.5]

Remark3.2.7. If G = {1} is the trivial group and o the unique irreducible representation of

G, i.e. the trivial 1-dimensional representation, then my’ )( W) = B (u) is simply the pth
¢2-Betti number of 1 defined in Definition[2.2.8]

Example 3.2.8. Let K be a finite simplicial G-complex and ;% the associated random rooted
simplicial G-complex (cf. Example[3.1.4). If (o, V) is an irreducible representation of G, then
m$? (o, %) is the ordinary multiplicity of the representation o in H,(K, C) divided by the

number of vertices of K:

WW@@%*%Bﬁmﬂmmxﬂ®w@)
Xo

= W Z <P0(HP(K<C S S>

seK(p)
_ dime(o(H,(K.©)) _ mlo, 1,(K,C)
dime V - |[KO)| | K]

Lemma 3.2.9. The operator A, , is positive self-adjoint and its operator norm is bounded above by a
constant R(p, D) only depending on p and D. Moreover, the kernel of A\, , is a(HIEQ) (SC2(G), ).

Proof. Since A, and Id — P, are positive self-adjoint and commute, A, , also inherits these
properties. By Proposition[2.2.4we know that | A, | is bounded above by a constant only de-
pending on p and D and Id — P, is a projection, hence [|A, .| < |A,] + 1.

Observe that avector v liesin ker A, , ifand only if (A, ;v, A, ,v) = 0. Further, note that

(Bpo0, Bpov) = [(Id =Fp)v| + [Apv] + 2(Ap(1d —F5)v, v),

since A, and Id — P, are self-adjoint and commute. All three summands are non-negative
because A, (Id —P,) is positive. Hence,

ker A, , = ker A, nker(Id —P,) = ker A, nim P, = O‘(HZ()Q) (SC2(@), ).
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3.3. Approximation of />-Multiplicities

In this section, we want to prove a statement analogous to Theorem[2.3.3|for /2-multiplicities;
the strategy will be the same. Let o be an irreducible representation of G and let E5, , denote
the projection valued measure of A, , we obtain from the Spectral Theorem (Theorem B.15).
Further, we define the spectral measure v, , of A, , to be

Vpo: Bor(R) — [0,00), 1,,(B) = tr, Ea,,(B).

Lemma3.3.1. Let /1, ),, beasequence ofrandom rooted simplicial G-complexes which converges weakly
to puoo andlet (v, ), and vy, the corresponding spectral measures of the pth o-Laplace operators A, , on

their respective cham complexes i (SC2(@), ) and i (SC2(@), piop). Then (v V', )n CORVErges
weakly to v,

Proof. For the sake of simplicity, we denote v/} , by v™ and v/, by . By the same arguments
asin Lemma it is enough to show that

lim | Mdvm(y) = J Ndv®(\)
R

n—aoo R

for some r € N. We have

J Ndv" () = try, (A ,)
SR DU IRE S 0 I R

Let us consider A7 _ and observe that

Al = ((1d-P,) Z()Id —P,) kA

r—1

NS (]:) A¥(1d—P,).

k=0

Let s € AP(Ng)(p) with (0,2) € s for some z € X and suppose that s € U([K o]) for a
rooted isomorphism class [K, o] with o = X. Then (Id —P,)(s) lies in the 1-ball around the
orbit {0} x X, since P, is alinear combination of elements g € G which only act on the second
coordinate, hence (0, z) staysin {0} x X . Further, A¥(s) liesin the k+1-ball around (0, z) (cf.
proof of Lemma . Therefore, (A} s, s) only depends on the r + 1-neighbourhood of the
orbit {0} x X. By the weak convergence of the random rooted simplicial G-complexes y,,, we
know that 1, (U, 11 () converges to fio (U,+1 () for all finite rooted simplicial G-complexes
«, hence

lim (A} 7, T)dpn = J (AL T, T)d e

"I () Urs1{a)
Now the claim follows from the fact that SC?(G) is a finite union of open sets of the form
UT-+1 (C() . O
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3.3. Approximation of (>-Multiplicities

Theorem 3.3.2. Let (11,,), be a sequence of sofic random rooted simplicial G-complexes. If the sequence
weakly converges to a random rooted simplicial G-complex (i, then

Tim (0, 1) =m0, p1)

forevery p € N and every irreducible representation o of G.

Proof. Since all the u,, are sofic, it is sufficient to prove the theorem under the assumption
that all the p,, are random rooted simplicial G-complexes associated with finite simplicial G-
complexes K, (cf. Theorem . Let o be an irreducible representation and let (v,),, and
Voo the corresponding spectral measures of the pth o-Laplace operator A, ,. We have to show
that v, ({0}) converges to v ({0}). First, observe that by Proposition [A.8|and Theorem
there exist a finite Galois extension F of Q such that all characters of G take values in Op.
We pick a basis of C’,@ (K,,) by choosing an orientation for every p-simplex of K,,. Then A, ,

can be realized on CI(JQ)(Kn) as ad x d-matrix A, with coefficients in \_CIHOE’ where d is the

numbers of p-simplices in K,,. The product ¢, , of the non-zero eigenvalues of A, is a co-
efficient in the characteristic polynomial and hence it is in ﬁ(’)E. Further, since the norm
|A, | is bounded by a constant R(p, D), only depending on p and the vertex degree D, we
get an upper bound |c,,| < R(p, D)¢. Consider the action of the Galois group Gal(E/Q)
on the irreducible representations of G. Let € Gal(E/Q), then nA, = A, and hence

NCpoc = Cpn(o)- LoOk at the element

c = |G|1EQ H NCpo-
neGal(E/Q)

We observe that ¢ must be in O, since ¢, , € @OE. Further, c is fixed by the elements of

Gal(F/Q) and therefore, ¢ must be in Q. We conclude that ¢ € Z\{0} because Q n O = Z.
Now, let Iy = (0, €) for some 0 < € < 1;we proceed as in Theorem[2.3.3
L < le] < lepol |G R (p, D)HIERIY
—s |G B R(p, D) HIEQAUD) | | < Bl R, DY
dlE: QIn(|G]) + d[E : Q] In(R(p, D))
[ In(1/e)

= v, (Ip) <

The number d of p-simplices in K, is bounded by (l; ) %, hence we can make the inequality
independent of K,:
(1 < (VB QGD + () Qm(R(p, D)
n\{0) = .

(p+ 1)In(1/e)
We finish the proof by applying two times Lemma[2.3.5/and letting ¢ tend to zero:

liin_)sogp vn({0}) < v({0}) < v((0,¢€)) < lim inf vn(0, €)

IE : QI(In(|G)) + In(R(p. D))
(p+1)In(1/e)

< liminf 1, ({0}) + (
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Let G be a finite group and H a subgroup. Let (o, V') be a finite dimensional complex repre-
sentation of H. We have seen in the paragraph after Theorem [A.7]that the multiplicity of an
irreducible representation p of G in the induced representation C[G] ®crn7 V' can be com-
puted with the following formula:

Oelrr(H)

The following theorem provides an analogous reciprocity formula for induced sofic random
rooted simplicial G-complexes.

Theorem 3.3.3. Let /1 be a sofic random rooted simplicial H-complex, then Ind$: (11) is sofic and more-
over,

H
m? (o, Ind W) = u m(6, o)m'? 0, 1),
P H P
|G| Oelrr(H)

forevery o € Irr(G) and p € Ny.

Proof. Since p is sofic, we can find a sequence of finite simplicial complexes (K, ),, such that
the associated random rooted simplicial complexes (., ), weakly converge to . Since induc-
tion is continuous (Lemma , the sequence (Ind% (u,,)), weakly converges to Ind% (s).
This shows that Ind$; (1) is sofic, since Ind %, (s, ) is the random rooted simplicial complex as-
sociated with the finite simplicial complex G x i K,. The complex G x i K, consists of |G : H |
disjoint copies of K, which are permuted by the action of GG. Therefore,

Hp(G X g Kn7 (C) = (C[G] ®(C[H] Hp(Kn, C)
Applying Frobenius reciprocity (Theorem[A.7), we obtain that

m(o, C[G] ®cp Hp(K,,C)) = > m(0,0]y)m(8, Hy(K,,C)).

Oelrr(H)
Now, using the relation of multiplicities and ¢>-multiplicities from Example[3.2.8/and apply-
ing Theorem 3.3.2completes the proof. O
Corollary 3.3.4. Let y be a sofic random rooted simplicial complex and G be a finite group. For all
(0,V) € Irr(G) the following identity holds:

. dlm(c V

m (o, Ind{ (1)) = Wﬁf) (1.
Proof. Just apply Theorem[3.3.3to H = {1}. O
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Example 3.3.5 (Sierpinski’s triangle with rotation). One last time, we come back to our run-
ning example, Sierpinski’s triangle (Example[3.1.9). We want to compute the /2-multiplicities
of the Benjamini-Schramm limit of the sequence 7;, with rotation action of the cyclic group
G = {p) of order 3. We have seen that the limit is a induced random rooted simplicial G-
complex, Ind¥ (i1, ). By Corollary we can compute the 2-multiplicities m{? (o, Ind¥ (11,))
of an irreducible representation o € Irr(G) by computing the ¢/?-Betti numbers of 11,.. We al-
ready know that 552) (r) = 3 (cf. Example @ Hence, we obtain that

my? (o, Ind(ur) = == 5" () = 5.

for every irreducible representation o € Irr(G), where we used the fact the all irreducible
representations of GG are 1-dimensional.
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Chapter 4.

¢/2-Betti Numbers of Groupoids and Fibred
Spaces

Gaboriau defined ¢?-Betti numbers 69 (32, R) of an R-simplicial complex ¥ [GabO2], where
R is a probability measure preserving equivalence relation on some probability measure space
X. If ¥ is contractible, then B,?)(E, R) is the (2-Betti number of the equivalence relation
R. Sauer defined ¢?-Betti numbers of a discrete measured groupoid G by a homological ap-
proach [Sau0O5] and proved that they coincide with the definition of Gaboriau if G is the orbit
equivalence relation of a discrete group acting on a probability measure space X . Takimoto
adapted the ideas of Gaboriau to define ¢2-Betti numbers of G-simplicial complexes for a dis-
crete measured groupoid G [Tak15]. Further, he showed that if the G-simplicial complex >
is contractible, the /2-Betti numbers of 3 coincide with the ¢?-Betti numbers of G defined by
Sauer.

In this chapter, we will give a definition for topological G-spaces (Definition[4.1.14), which are
in some sense more flexible than G-simplicial complexes. In order to define ¢?-Betti num-
bers of topological G-spaces (Definition[4.3.4), we have to define the singular groupoid homology
(Definition4.3.3) of a G-space. Our main result (Theorem[4.4.1) will be the equivalence of the
(*-Betti numbers

BR(,6) = BY(3],6)

ofaG-simplicial complex ¥ and its geometric realization |X| regarded as topological G-space.

The chapter is organized as follows. In Section 4.1, we define discrete measured groupoids
and summarize some facts about the groupoid von Neumann algebra L.G. Further, we will
give the definition of (fopological) G-spaces. We recall the theory of simplicial G-complexes and
their ¢2-Betti numbers in Section4.2] In Section}4.3|, we introduce the G-singular groupoid
homology of a G-space and show that it is G-homotopy invariant. Additionally, we prove a
version of the Excision Theorem. Section 4.4|is dedicated to the proof of the main theorem,
which adapts the structure of the proof from Hatcher [Hat02] of the equivalence of singular
and simplicial homology in the classical theory, though we have to deal with a bunch of new
problems.
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Chapter4. (-Betti Numbers of Groupoids and Fibred Spaces

4.1. Discrete Measured Groupoids

First, we will review some definitions and facts about discrete measures groupoids; for more
details consider [Con79, Ram82),[Sau02),[Sau05]. Afterwards, in Section we will define
(topological) G-spaces.

Definition 4.1.1. A groupoid is a small category in which every morphism is invertible. The set
of objects X can be considered as a subset of the morphisms G by identifying every x € X
with the identity morphism Id, € G; therefore, we identify the groupoid with the set of its
morphisms G. A groupoid fulfils the following properties:

o Thereisasourcemaps: G — X, s(f:z—y)==x
« andatargetmapt: G — X, t(f: x — y) =y.

« The composition o: G? — G is associative, where G := {g,h € G | s(g) = t(h)}.
Usually we denote the composition by gh instead of g o h.

. Forevery gin G thereisaninverseg ' € G.

Definition 4.1.2. A standard Borel space is a space X together with a o-algebra S such that
(X, S) isisomorphic to some Polish space Y with its Borel o-algebra or, equivalently, there is
a Polish topology 7 on X such that S is equal to the Borel o-algebra generated by 7.

Definition 4.1.3. We call a groupoid G with the structure of a standard Borel space a discrete
measurable groupoid, if

« themapsi: G3g— g 'eG,o0:G? 3 (g,h) > ghe Gands,t: G — X areall
measurable and

e s Y({x})and t*({x}) are countable for every z € X.

Let y be a probability measure on the space of objects X . The maps = — #{s~'({z}) n A} and
x — 2{t71({x}) n A} are measurable for every measurable subset A = G and define o-finite
measures [i; and y; on G by

a(A) = L s ({2}) ~ A}dp

and analogously for ¢. If u, = p, holds, we call v an invariant measure.

Definition 4.1.4. A discrete measurable groupoid G together with an invariant probability
measure p is called a discrete measured groupoid. We denote the measure induced by 12 on G by

fg-

The condition that y is invariant is equivalent to say that u(s(F)) = u(t(E)) for every one-
sheeted set F, i.e. s|p and t|p are injective. The one-sheeted sets have the following useful
property, which is essentially a theorem of Lusin-Novikov (Theorem[4.1.13):
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4.1. Discrete Measured Groupoids

Lemma4.1.5. Every discrete measurable groupoid can be decomposed into a countable disjoint union of
one-sheeted sets.

Asusual, we denote by L*(G, 11g) the complex-valued, measurable and yig-essentially bounded
functions on G, where we identify functions which coincide pg-almost everywhere. We call
supp(¢) :={g € G | #(g) # 0} the support of ¢ € L*(G, j1ig) and define

S(¢)(x) := #{supp(¢) N s '({x})} and
T(¢)(x) := t{supp(¢) Nt~ ({z})} e N U 0.
Definition 4.1.6. The groupoid ring CG of G is

CG :={pe L*(G,ug) | 5(0), T(9) € L*(X)}.
CG is aring with involution, where the addition is the pointwise addition, the multiplication
is given by

(G)(9) = > dlg)(g2)

91,92€G
gi192=g

for ¢,1) € CG and g € G, and the involution is defined by ¢*(g) = ¢(¢9~'). Further, CG
contains L*(X) as a subring.

Lemma 4.1.7. [SauO5, Lemma 3.3] Every element ¢ of CG can be written as finite sum >, fix g,
with f; € L*(X) and x g, the characteristic function of a one-sheeted set E;.

Let L*(G) := L*(G, jug) be the Hilbert space associated with a discrete measured groupoid
G. The mapping Ls: CG — CG, ¢ — ¢, for ¢ € CG, extends by continuity to a bounded
operator on L?(G, jig); we denote the bounded operators on L*(G) by B(L?(G)) and call the
action CG —~ L*(G, ug) the left regular representation of G.

Definition 4.1.8. The (left) von Neumann algebra LG of a discrete measured groupoid G is the
weak closure of the operators { L, | ¢ € CG}in B(L*(G)). By the von Neumann Bicommutant
Theorem, this is equivalent to say that LG = CG".

We summarize some properties of CG and LG:
Lemma4.1.9. [Sau0O5, Lemma 4.5, Lemma 4.8]
« The groupoid ring CG is flat over L™ (X);
. CG is a dimension-compatible L* (X )-L* (X )-bimodule;
o Since L*(X) < LG is an inclusion of von Newmann algebras, LG is a dimension-compatible
LG-L*(X)-bimodule.

I did not found the following Lemma in the literature, therefore, I included a proof for the
slightly more general Proposition|C.13|in the appendix.

Lemma4.1.10. If Aand B are CG-modulesand ¢: A — Bisa L* (X )-dimension isomorphic CG-
module map, then
ding Lg ®(Cg A = ding Lg ®(Cg B.
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4.1.1. G-Spaces

Definition 4.1.11. Let X be a standard Borel space and p a probability measure on X . Further,
let Y be a Borel space. We say Y is fibred over X if there is a Borel surjection7: Y — X. For
x € X, we call the inverse image 7~ ({x}) the fibre over v and denote it by Y.

The fibre product of two fibred spaces Y; and Y, over X, with surjections 7; and 7, is defined
by
Yi#Ys := {(y1,42) € Y1 x Yo | mi(y1) = m2(y2) }-

This is again a fibred space over X . Similarly, we define the fibre product .Y, for a count-
able set /.

In the following, we will distinguish between two types of fibred spaces. We say Y is a dis-
crete fibred space if Y is a standard Borel space and each fibre Y, is countable and we call Y a
topological fibred space if each fibre Y, is a topological space. Note that we do not assume Y’
to be standard for topological fibred spaces. Further, we say a fibred space Y is contractible if
p-almost every fibre Y, is contractible.

A fibred map ¢ from Y] to Y5 is a Borel map such that m; = w5 0 ¢. If Y}, Y5 are topological
fibred spaces, we call a Borel fibred map topological if f,: Y1, — Ya, is continuous for all
x € X and ifitis a homeomorphism for all fibres, we call it a G-homeomorphism.

Remark 4.1.12. Inthe case that Y is discrete, the probability measure 1 on X induces a mea-
sure f1y on 'Y via puy (U) = §, {7~ '({z}) n U}dp. Further, by the following theorem, every
discrete fibred space has a countable partition into Borel sets E,, such that 7|, is injective
and hence, there is an injection from Y to X x N.

Theorem 4.1.13 (Lusin-Novikov). Let XY be standard Borel spaces and E < X x Y be Borel.
Further, letw: X x Y — X be the projection onto X . If every section 7= (x) n E is countable, then
there is a countable partition E = | J, E,,, where E,, is Borel and 7|, is injective for every n.

Definition 4.1.14. Let G be a measurable groupoid considered as a fibred space over its objects
X with surjection s: G — X. A G-space is a fibred space 7: Y — X together with a Borel
map (g,y) — gy from G = Y to Y, called the G-action, such thatforallg,h e Gandy e Y

- g(hy) = (gh)y,
- m(gy) = r(g) and

- T(Y)y =y.

Again, if Y is a discrete or topological fibred space we call it a discrete or topological G-space,
respectively. Every G-invariant Borel subset Z of a G-space Y is a G-space as well. For topo-
logical G-spaces we say Z is a closed or open G-subspace if Z is a G-invariant Borel subset and
Z, < Y, isaclosed or open subspace for all x € X, respectively. For G-spaces Y7 and Y5 the
fibre product is again a G-space with G-action given by g(v1, y2) = (gy1, gy2). Furthermore,
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we call a fibred map ¢: Y7 — Y2 a G-map if it is G-equivariant, i.e. ¢(gy) = gp(y) for all
yeYandgeg.

A measurable subset D < Y of a discrete G-space is called fundamental domain for the G-
actionift: G+ D — X andw: Y — X are isomorphic as G-fibred spaces. If gy = y implies
g = 7(y) for py-almostally € Y, we call the G-action essentially free; but, since we can restrict
an essentially free action to a free one, we will usually assume that the action is free.

We cite the following lemma, since it is essential for the proof of the immediately succeeding
one.

Lemma 4.1.15. [Kec95|, Corollary 15.2] Let X and Y be standard Borel spaces and f: X — Y be
Borel. If A = X is Borel and f| 4 is injective, then f(A) is Borel and f is a Borel isomorphism of A and

f(A).

Lemma 4.1.16. Let m: Y — X be a discrete G-space with free action and fundamental domain D.
Then there exists an injective G-map from Y to| |, G = G x I, where the surjection G x I — X is
givenby (g,1) — t(g) and the G-action is given by g1 (g2,1) = (9192, ).

Proof. Since 7w '({x}) n D is countable, there exists, by Theorem[4.1.13} a countable partition
D = | |,; D; such that 7|p, is injective. Hence we haveY =~ G« D = | |..;G = D;. The
map 7|p,: D; — w(D;) =: X, is a Borel isomorphism, by Lemma and we have a Borel
injection G * X; — Y given by (¢, x) — g}, (x) with image GD;. Therefore, GD; is Borel
and, again by Lemmal4.1.15, f;: GD; — GX;; gy — g is a Borel isomorphism. Thus, the
injection we are looking for is given by f: Y — G x I, with f|gp, := fi. O]
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4.2. Simplicial Groupoid Homology

We summarize the theory of simplicial G-complexes of Takimoto [Tak15] which generalizes
the theory of probability measure preserving equivalence relations of Gaboriau [Gab02] to
groupoids. Let G be a discrete measured groupoid with object space X and probability mea-
sure ;o on X . Recall that we denote by &,, the symmetric group on n elements.

Definition 4.2.1. A simplicial G-complex is a sequence ¥ = (X(™),-, of discrete G-spaces,
where we assume the action to be free and admitting a fundamental domain, such that each
(" is a G-invariant measurable subset of the n + 1 times fibre product of ©(*) with the re-
striction of the G-action of the fibre product to ¥ (") and such that

o if (vo, .., v,) € 2™, then (vg(g), .., Ve(n)) € B for any permutation s € S,41,
. if (vg, .., v,) € 2™, thenv; # v; fori # jand

. if (vg, ..., v,) € 8™, then (vy, ..., D}, ..., v,) € X"V forevery 0 < j < n.

Remark 4.2.2. The fibres ¥, = (Zén))nzo are usual simplicial complexes and the geometric
realization | Y| of ¥ is given by the disjoint union of the fibrewise geometric realizations |%,|.
By Lemmal4.1.16} there is an injection of G-spaces () — G x I, given by (gv) + (g, i) for
v € F;, where F = | |, F; is a fundamental domain of (). Further, by Lemma we
have an injection of G into X x N, givenby g — (z,n) forg € E,, and z = t(g), where E,, is a
partition of G into one-sheeted sets. Thus, there is an injection of ¥(*) into X x N x I which
extends to an embedding ¥ — X x A(N x I), where A(N x I) is the simplicial complex
consisting of all finite subsets of N x . The embedding is given by

(U07 "'avm) = (({E,no,io), (xanlail)a sy (‘/Ean’ﬂuzm))

Such an embedding yields a Borel injection ¢: |¥| — X x |A(N x [I)|, where we define
the (standard) Borel structure on |%| to be the restriction of the product Borel structure on
X x |A(N x I)|. By Lemmaf4.1.15, ¢(|Z|) = X x |A(N x )] is a Borel subset and the
Borel structure is independent of the choice of the embedding of Y into X x N x T (see
[Sau09, Lemma 2.13]). Hence, |X| is a topological G-space in the sense of Definition .
The G-action is given by the linear extension of the action of G on the vertices, i.e.

gp = ) tigv;
i=0

fora pointp = >, t;v; in the geometric realization of the simplex (vy, ..., v,) and g € G.

We say a simplicial G-complex is uniformly locally bounded (ULB) if ©(°) has a fundamental do-
main F' such that

Jﬁ{w‘l(:p)mF}d,u<oo

and there exists an integer N such that#{se ¥, |ve s} < N holds forallv € () and
almost all z € X. A G-subcomplex of ¥ is a simplicial G-complex = such that each =™
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is a G-subspace of (™. An ULB exhaustion (Z;);>1 of ¥ is a sequence of G-subcomplexes

such that each = ul 1s ULB and such that (= (n))pl is an increasing sequence of n satisfy-

=(n )

ing lim=;" ") for almostall z € X.

We denote by C? () the space of (equivalence classes of) measurable functions f € L*(X™)
such that

- {75 ({2}) nsupp(f)} € L(X) and
« f(ss) =sgn(s)f(s), forallg € &,41;
and by C’(Z)( %) the (equivalence classes of) measurable functions f: (" — C such that
o §x 2pesim [f(s)Pdp < o and
« f(ss) =sgn(s)f(s), forall¢ € &,,1.
In other words, C” (X) is the direct integral Hilbert space Sgﬁ( o (X.)dp of square-summ-

able simplicial chains (see Definition|B.5).

C’(¥) and o (32) have a natural CG-module structure given by
Wf(s) == > wlgflg's)
ger~'({m(s)})

forw € CGand s € X, Furthermore, 07(12)(2) is a Hilbert LG-module. The boundary
operators 0, , of the simplicial chain complexes of the fibres 2" define a CG-module map
On: CE(D) — C*_ (D) by (0nf)(5) = Onafa(s) fors € U, Additionally, if & is ULB, we
geta bounded LG-module map o : 0(2)( ¥) — - P (32), which turns c? (3J) into a Hilbert
LG-chain complex.

We recall Takimoto's definition of /2-Betti numbers of a simplicial G-complex [Tak15].
Definition 4.2.3. For an ULB simplicial G-complex ¥ the nth reduced (>-Homology is
HELQ)(E, G) := ker 0% /im 57(321
and the nth ¢>-Betti number of 3 is
BA(2.G) = dimyg A, (2.G).

For an arbitrary simplicial G-complex ¥ we have to pick an ULB exhaustion (¥;);>1, where for
i < j we have bounded LG-chain maps Ji : C(;) — C(%;) induced by the inclusions
¥; € ¥;. We denote by Ff) (J27): H( )(ZZ, Gg) — biie )(EJ, G) the map induced by J;” and
define the nth (>-Betti number of 3 as

B, (2)i=1,G) := limlim dim g 1m(H(2)(J”))

121 521

We can omit (¥;);>; and just write B (32, G) because of the following proposition:
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Proposition 4.2.4. [Takl15|, Proposition 3.7] For any simplicial G-complex 3> and any ULB exhaus-
tion (X;)i=1 of 3 we have
BA(S, (Si)iz1,G) = dimpg H, (LG Qcg imCh (%))
= ding Hn(LQ ®Cg CZ(E )

Takimoto justifies this definition of ¢*-Betti numbers of discrete measured groupoids by the
next theorem. Recall that Sauer [Sau05] defined the nth ¢2-Betti number of a discrete mea-
sured groupoid G by 8" (G) := dimpg Tor 9 (LG, L*(X)).

Theorem 4.2.5. [Takl5, Theorem 3.6] If X is a contractible simplicial G-complex, then
B (,9) = BP(9)
foreveryn € Nj.

This is all that we need to know about the theory of simplicial G-complexes. In the next sec-
tion, we will introduce the singular groupoid homology of a topological G-space.
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4.3. Singular Groupoid Homology
In this section, G will always be a discrete measured groupoid (Definition[4.1.4) with objects
X and probability measure yon X.

Definition 4.3.1. Let my: Y — X be a topological G-space. A G-singular n-simplex is a topo-
logical fibred mapo: X x A" — Y, where A" is the standard n-simplex, i.e. my (o (z,p)) = x
and {1 xan is continuous forall z € X.

Definition4.3.2. Let SY be the set of all G-singular n-simplices. We define the L® (X )-module
of G-singular n-chains of Y as

Cim(v,9) = {e= 3 e | e e LU(X)}/ ~,
0eSY

where two chains are equivalent ¢ ~ ¢’ if ¢[{;}xan = /|{z}xan foralmostall z € X . To relax
the notation, we will usually denote the space of G-singular n-chains just by C,,(Y, G).

The G-action on Y induces a G-action on C,,(Y, G) in the following way:
(g-)x,p) = Y, calg 'x)go(g ',p),
JESg

forg e G,z = t(g) and ¢ € C,(Y,G). We will show that this defines a natural CG-module
structure on C, (Y, G) . By Lemmaf4.1.7, we know that we can write w € Cg as a finite sum
¥ wixe,, wherew; € L®(X) and the E;’s are Borel subsets of G such that s| 5, and t| , are
injective. We assume thatw = wgxgand ¢ = ¢,0 € C, (Y, G), then

(wo) (@, p) = wr(@)eo(s(tg' (@)t (@)o(s(t]g' (2)). p),

which is again a G-singular n-simplex

o'(z,p) = t|5" (x)o(s(tl5 (), p)

together with the coefficient
wp(@)eo(s(tg' () € L7 (X).

We define boundary operators 0,,: C,,(Y,G) — C,,_1(Y, G) by restricting the G-singular n-
simplices to the (n — 1)-faces A7 ' of A™:

n

6n<7 = Z(_l)iU|A><A?717

=0

where we consider 0: X x A?' — Y asamap from X x A" !toY. Itis clear that this
defines a CG-module map and that d,, o d,_; = 0. Hence, we have a chain complex C, (Y, G)
of CG-modules:

L GV, G) O (Y, G) L
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Definition 4.3.3. We define the nth G-singular homology of a topological G-space Y as

H™(Y, LG) i= Ho(LG @eg C(Y, 0)).

Definition 4.3.4. The nth (>-Betti number of a topological G-space Y is the von Neumann di-
mension of its nth G-singular homology

BAY,G) = dimpg H" (Y, LG).

Remark 4.3.5. Analogously to the ordinary singular chains of a topological space, we define
relative G-singular chains by

CsmI(Y, Z,G) = C5MI(Y, G)/CSM9(Z, G)

for a pair (Y, Z) of G-spaces, where Z is a G-subspace of Y.

4.3.1. G-Homotopy Invariance

The proof of the homotopy invariance and the proof of the Excision Theorem in the next
subsection are adapted from [HatO2] to our setting.

Definition 4.3.6. Let f, g: Y; — Y, be topological G-maps between G-spaces Y; and Y,. We
say f and g are G-homotopic, and denote it by f ~ g, if there is a topological G-map

F:Y=(X x[0,1]) > Y5,

such that F'(,0) = fand F(-,1) = g almost everywhere, where Y} » (X x [0, 1]) is the fibre
product of Y} and the constant G-space X x [0, 1]. For pairs of G-spaces (Y7, Z;) and (Y2, Z»)
we further have to assume that F'(Z; = (X x [0, 1])) = Z,. Consequently, we call a topological
G-map f: Y] — Y, a G-homotopy equivalence if there is a topological G-map ¢g: Y5 — Y7 such
that f o g ~ Idy, and g o f ~ Idy,.

Proposition 4.3.7. Iftwo G-maps f, g: Y1 — Y5 are G-homotopic, then they induce chain homotopic
maps
fi = g0 CYM(Y1,G) — O™ (Y2, G),

forevery n € Ny. In particular, they induce the same homomorphism in the homology

fo = go: Hy™(Y, LG) — Hy™(Yy, LG).
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Proof. First, we remark that the induced maps between chain complexes
fi: 961 Ca(Y1,G) = Cp (Y2, )

are given by composing each G-singular simplex o: X x A" — Y] with f or g, respectively.
Let us denote the homotopy by F': Y] = (X x [0,1]) with F'(-,0) = fand F(-,1) = g. The
idea is to consider the prism A™ x [0, 1] as if it were triangulated with vertices { vy, ..., v, }
of A" x {0} and { wy, ..., w, } of A™ x {1}. We define the prism operator P: C,(Y;,G) —
Cri1(Y2, G) as follows:

n

P(o) = Z(—l)iFo (0 # Idxx[0,1) [ [vo,-..;08,04,-w0n] -

i—1
The composition
Fo(o«Idxxpa): (X x A")« (X x[0,1]) = Y1« (X x[0,1]) = Y

is again measurable and fibrewise continuous. A straightforward computation (cf. [Hat02),
Theorem 2.10]) shows that
6P+P&‘=gﬁ—fﬁ,

which finishes the proof. O

Definition 4.3.8. A G-deformation retract of a G-space Y is a G-subspace Z such that there is a
G-homotopy from Idy to a retractionr: Y — Y, i.e. a topological G-map with r|, = Id .

Corollary 4.3.9. If f: Y — Z is a G-homotopy equivalence, in particular, if Y deformation retracts
onto Z, then f induces an isomorphism

fer H™(Y,LG) — H"™(Z, LG),

foreveryn € Nj.

4.3.2. Excision

Proposition4.3.10 (Excision Theorem). LetY beatopological G-spaceand A, B 'Y be G-subspaces
such that for almost all z € X the interiors of A, and B, coverY,.. Then the inclusion (B, A n B) —
(Y, A) induces an LG-dimension isomorphism

dimzg HI™ (B, A n B, LG) = dimzg H™(Y, A, LG),
foreveryn € Nj.

In order to proof Proposition [4.3.10|, we need a tool which allows us to compute the dimen-
sion of the homology by considering only "small" simplices. Let i/ = {U; }, be a countable
collection of G-subspaces of Y such that the interiors of U, = { U, , }j form a cover of Y, for
almost all z € X. We define C%(Y, G) to be the module of G-singular chains such that the
image of each G-singular simplex is contained in an element of /.
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Proposition4.3.11. Theinclusionsi,: CY(Y,G) — C, (Y, G) induces LG-dimensionisomorphisms
in homology ‘
dimzg H, (LG ®cg CY(Y,G)) = dimyg H:"(Y, LG),

foreveryn € Nj.

Proof. We need a construction called barycentric subdivision. The points of a standard n-
simplex [v, ..., v,], with vertices { vy, ..., v, }, can be described in barycentric coordinates
as linear combinations ) ,t;v; with ¢; € [0,1]. The barycentre of [vy, ..., v,] is the point
b=, —5vi- We define the barycentric subdivision of an n-simplex as its decomposition
in n-simplices [b, wo, ..., w,—1], where [wy, ..., w,_1] is an (n — 1)-simplex in the barycentric
subdivision of a face v, ..., ¥j, ..., v, |. The induction starts with the barycentric subdivision
of [vo] which is just [vo].

In the following, we will need the fact that the diameter of a simplex in the barycentric sub-
division of [vy, ..., v,] is -7 times the diameter of [vy, ..., v,]. The diameter of a simplex is
the maximal distance between any two of its points. The first observation we make is that the
diameter is equal to the distance between any two of its vertices, since for two points v and
>.; tiv; we have the inequality

lv — Ztivi| < ZMU — | < Zti max [v — v;| = max |v — vy,
1 (2

where for vertices of [vy, ..., v, ]| equality prevails. Therefore, we only have to verify that the

distance between any two vertices w;, w; in an n-simplex in the barycentric subdivision of

[v0, ..., vn] is at most 2 times the diameter of vy, ..., v, ]. If neither w; nor wj is the barycen-

tre of [vo, ..., v, ], then they both lie in a face of [vy, ..., v,| and we are done by induction. So

let us assume that one of them is b and the other one a vertex v; of [vy, ..., v, ]. Hence, we have

| S| n
b_ i =  — Us < i — Uil = d t y ey Unl)y
|b— vy |j=EO v — v E lv; — v 7 diame er([vo, ..., Un])

n+1 —~n+1
7=0

since |v; — v;| is equal the diameter of [vg, ..., v,] fori # j and 0 otherwise.
J q J

If we have n points { vy, ..., v, } in a vector space, we can add any other point b to the simplex
and build a cone b - [vy, ..., v, ] = [b, vo, ..., v, ]. Let us denote the barycentre of a simplex 7 by
b,. We define the barycentric subdivision inductively by St = b, - S(07) of 7, where S[J] =
[F]. Note that ST = SO7. Leto: X x A" — Y be a G-singular simplex; we define So =
0|xxsan regarded as a signed sum of restrictions of ¢ to the n-simplices in the barycentric
subdivision of A™. It is clear that So is again measurable and fibrewise continuous. Another
point of view is to consider X x SA™ as G-singular n-chain of the constant G-space X x A™.
That is, as an element of C*""9(X x A", G), and then define So = 04(X x SA™), where oy is
the induced chain map. The operator S: C:™9(Y,G) — C5™9(Y, G) is a chain map, since

050 = 0(0y(X x SA™) = o4((X x SA™))
= O'ﬁ((X X 55An)) = O'ﬁ((X X S&An))
= S(oy((X x 0A™)) = Sdo.
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Next, we define a chain homotopy T': C5™9(Y,G) — C:7{(Y,G) between S and Id. For a
simplex 7 let T'7 = b, (7 — T07) and T[] = 0. This is the decomposition of A™ x [0, 1] into
n + 1 simplices, which we obtained by joining the simplices of A™ x {0} U dA™ x [0, 1] to
the barycentre of A™ x {1} and then projecting it down to A”. Note that 07" + 70 = Id —S.
We regard X x T'A™ as an element of C,,;1 (X x A™) and define To = oy(X x TA") for
o€ C,(Y,G). Since TA™ is a sum of singular n + 1-simplices and X x T'A™ is constant in the
first coordinate, T'o is measurable and fibrewise continuous. We check that 7": C, (Y, G) —
Ch+1(Y, G) is a chain homotopy:

0To = doy(X x TA™)
= oy(X x dTA")
= 03((X x A") — (X x SA") — (X x TOA"))
=0—80—0y(X xTOA") =0 — So —Tdo.

Later, we will have to iterate the subdivision to make the simplices smaller and smaller. There-
fore, a chain homotopy between the m-fold iteration S™ and Id is given by D,,, = Z;’:Ol TSt

m— m—1 m—1

0Dy, + D0 = Z OTS"+ Y. TS'0= ) (T + T)S'
=0 i=0 =0
m—1

(Id—S)S" =Id —S™.

Il
=}

Until now, every step worked more or less as in the classical proof, but now we have to be
careful. For each G-singular n-simplex 0: X x A" — Y and almost all z € X there exists
anm, (z) such that each G-singular n-simplex in the subdivision (S™*®)¢)({x} x A") liesin
some U, , for U; € U, since we can choose m,,(x) such that the diameter of the simplices in
Sma(#) A" will be less than the Lebesgue number of the cover of A" given by 01| 4} x an (int ¢;,).
Nevertheless, we can not assume, unlike in the situation of ordinary singular homology of a
topological space, that we find an m,, such that S™ ¢ € C%(Y,G), since the diameter of a
simplex can grow bigger and bigger when we move in the fibres. To solve this problem, we

define the sets
c UU“ me(x) <m }
i=1

This is an increasing sequence with ;(X\ | J*_, X,,(¢)) = 0. For each n-simplex A in the
iterated subdivision S™A™ we set O; = <7|;(1 (U)XA(Ui) and define

0; = O\ JO;.

j<i

Xm(a):{meX

The O; are preimages of measurable sets under a measurable map and therefore measurable
as well. Hence, we can write (S™0)X x,, () as a signed linear combination of elements

m

U|Xm(a)xA = Z o

i=1
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By definition, (S™0)xx,..o) € C%(Y,G) and thus the chains, which lie in C¥ (Y, G) after
a finite iteration of subdivisions, are L*(X)-dense in C,,(Y,G). Let use denote them by
Csmall(y G). We conclude that the inclusion

i CsmlY, G) — CL(Y,G)
is a dim .« (x)-isomorphic CG-module map and by Lemma4.1.10|we have
dimzg H,(LG Qcg CS™ (Y, G)) = dimpg H™(Y, LG). (4.1)

We can define a chain homotopy D: Cs™(Y,G) — C:m4l(Y,G) for the small chains by
setting Do = D,, o, where m, is the smallest m € N such that S™o € CY(Y,G). Let
p: Csmall(y G) — Csmall(Y, G) be the chain map given by
p(o) =0 —0Do — Ddo.
We have to show that p takes C:™ (Y, G) into CY(Y, G).
p(o) =0 —0dDo — Ddo using Ddo + 0Do = S0 — o

= S" ¢+ Dy, (00) — Dy, (00).
The firstterm, 5™, is clearly an element of C% (Y, G). Further, D, (0c) — D, (dc) consists
of terms T'S(0c), with i > myg,, which alllie in C% (Y, G), since ms, < m,. We remark that
for the inclusioni: C¥(Y,G) — C:™4(Y,G), we have poi = Idand Do+ 0D = Id —i o p.
Hence, we have shown that

H,(LG ®cg Cy" (Y. G)) = Ha(LG ®cg C(Y,G))

which together with Equation finishes the proof. O

Proof of Proposition[¢.3.100. WesetUd = { A, B }. The maps p and i from the preceding proposi-
tion take chains in A to chains in A and hence induce quotient maps such that the inclusion
C(Y.G)/Cl (A G) = Cm(Y,G)/Cim (A, §)

is a chain homotopy equivalence. The superscripts for the chains in A are superfluous in a cer-
tainway, since fortd = { A, B } allchainsin A are smalland ini/. Therefore, with the same ar-
gument as in Proposition Cemall(y, G) /Csmall (A, G) is L*(X)-dense in C,, (Y, A, G).
Furthermore, the map

Cn(B,G)/Cu(An B,G) — C(Y,G)/CH(A,G)

induced by the inclusion is an isomorphism, since both are generated by the G-singular sim-
pliceso: X x A" — Bwith 0| xan © B,\A, foralmostall 2 € X. So we summarize:

dimzg H™(Y, A, LG) = dimg H, (LG ®cg Cy™(Y,G))/Ci(A, G))
= dimpg H, (LG ®cg CY(Y,G)/C.(A,G))
= dimyg Hy, (LG ®cg C+(B,G)/C(A N B, G))
= dimyg H™ (B, A n B, LG).
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Remark 4.3.12. We extract from the proofs of the preceding two propositions that C%(Y, G)
and C#™4(Y, G) are chain homotopy equivalent and C,,(B, A n B,G) and C¥(Y, A, G) are
isomorphic. Hence, we have that Cs™(Y, A, G) and C,,(B, A n B, G) are chain homotopy
equivalent.

Before we will present the last lemma of this subsection, we have to introduce the following
notation: For a pair of topological fibred spaces Y and Z with Z < Y and B the o-algebra of
Y, we define the quotient Y /Z tobe| |, Y;/Z, with the quotient o-algebra

F={FcY/Z|3B=||B,€Bsuchthat F = | | B,/Z,}.

zeX xeX

This is again a topological fibred space over X . If Y isa G-space and Z a G-invariant subspace,
then the quotient is again a G-space.

Lemma 4.3.13. Let (Y, Z) be a pair of G-spaces such that there is a G-space Z < U < Y with U,
open for almost all z € X and such that Z is a G-deformation retract of U. Then the quotient map
q: (Y, Z)— (Y/Z,Z/Z) induces LG-dimension isomorphisms

Gu: HE™(Y, Z,LG) — H™(Y /Z,Z)Z, LG),
foreveryn € Nj.
Proof. We consider the commutative diagram

H:m9(Y, Z, LG) Hsm9(Y, U, LG) Hy"(Y\Z,U\Z, LG)

Jo Jo Jo

Hy™(Y ) 2,2)Z, LG) — Hy"9(Y [ 2,U/ Z, LG) <— H;™ (Y | Z\Z | Z,U | Z\Z | Z, LG).

The upper left arrow is an isomorphism, since the homology module H5™9 (U, Z, LG) is iso-
morphicto H3™9(Z, Z, LG) = Ointhelong exact sequence of (Y, U, Z) by Corollary}s.3.9] The
same is true for the lower left arrow, since U/Z deformation retracts onto Z/Z. The other two
horizontal maps are LG-dimension isomorphisms, which follows from the Excision Theorem
4.3.10] The map g restricted to Y\ Z is a G-homeomorphism, hence the right-hand vertical
map ¢, is an isomorphism. [

Remark 4.3.14. Considering Remark and the previous proof, we have a chain homotopy

equivalence
csmall(y, 7.G) ~ Cm™iNY /7, Z/Z,G).
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4.4. Equivalence of Simplicial and Singular Homology

This section is dedicated to the proof of the main theorem of this chapter:

Theorem 4.4.1. Let Y. be a simplicial G-complex and | X | its geometric realization as a topological G-
space. Then

B(2,6) = B(1Z1.6)
foreveryn € Nj.

Proof. Note that by Proposition[4.2.4]it is enough to prove that

dimzg H:™ (||, LG) = dimpg H, (LG ® C4(X)).

The proofis divided into three parts. First, we consider the situation where . is the constant
discrete G-space X x [vy, ..., vx], in the second part, we assume ¥ to be an ULB simplicial
G-complex and in the last part, we prove the statement for arbitrary simplicial G-complexes.

1. Let (% be the constant discrete G-space X x { vy, ..., v } and
Y= (E(j))osjsk =X x { (Ve(0) -+ Vs()) ‘ S € Gk }>
where &1 denotes the symmetric group on k + 1 elements. The G-action is given by
9(x; (vo, ..., v3)) = (g, (gvo, -, gv5)) = (t(9), (Ve(0), - V()
for some permutation ¢ depending on g. The geometric realization of X% is just
¥ = X x AF

and the G-action is given by permuting the barycentric coordinates of A* according
to the action of G on (v, ..., v ). Moreover, the geometric realization of the simplicial
G-subcomplex X(*~1) is given by

IZE-D] = X x 0AF.
A map from C?(X2) to Ci(|%], G) is given by

[f: 2 — C]— [|f]: X x A" - X x A¥]
[fl(z,p) = f(7 " (2)) Idxxar (2, p).

f(m=1(x)) is well defined, since f commutes with permutations of the vertices and
there is only one simplex, up to permutations, in 7~ '(x). Further note that the nth
relative homology of the pair (£, ©(*=1) is

H, (LG ®cg Co (2™, 5¢1V)) = LG @cg CR(T)
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for n = k and zero otherwise, since for n < k we have C%(X*)) = C*(x*~1) and
C?(2U)) = 0 forn > k. Moreover,

GE) ={f:2® - C|feL?EY), f() =sen(c)f } = L”(X)
and hence,
Hy (LG ®cg CAE, Z¢ ™)) = LG ®cg L™ (X).
We will show by induction that also
dimpg H™(|2®], |2* D] LG) = dimg LG ®cg L*(X), (4.2)

and zero otherwise. For k = 0 we have

k

Co(X x A°,G) = { Z ¢j Idxx a0

J=1

¢; € L*(X) }/~

= {cldy,ao | ce L2(X) )
~ [*(X).

Further, since 0A° = @f and

[d®3:: LG xcg C1(X x A%, G) — LG xcg Co(X x A, G)
(fa U) = (f7 IdXXAO _IdXxAO) = 07

it follows that

Hy™ (X x A% X x 0A°, LG) = LG @cg Co(X x A%, X x 0A°,G)
= LG ®cg Co(X x A", G)
>~ LG Qcg L7 (X).

Let A* = A* be the union of all but one of the (k — 1)-dimensional faces of A*. We get
from the long exact sequence of the triple (X x A* X x 0A* X x AF) that

H™ (X x A%, X x A%, LG) = HI™(X x 0A%, X x AYLG),  (4.3)

since X x A* deformation retracts onto X x AF. For n = k, the isomorphism maps a
cycle o € CpL(X x A¥)to do. The pairs (X x 0AF, X x A¥)and (X x AF=1 X x 0AF1)
fulfil the assumptions of Lemmaf4.3.13|and furthermore, we have a G-homeomorphism

X x AF1/ART & X x QAR/AF

given by the inclusion A*! < JAF as the face not contained in A*, hence we have an
LG-dimension isomorphism

H™(X x 0AF, X x A* LG) =16 HI™(X x A1 X x 0AF 1 LG).  (4.4)
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92

Before we finish the proof of Equation by induction on k, note that (f, Idx, ax) is
acyclein LG ®cg Cr(X x AF, X x 0A* G), since

(Id®) (f, 1dx xar) = (f, Idxxoar) € LG ® C(X x A", G).

The isomorphism in Equation (4.3) maps Idx,ax to Idx,sar and the LG-dimension
isomorphism in Equation (4.4) is given by

Idx onk o IdXx&Ak/Ak — IdXxAkfl/aAkfl - Iy ak-1,

therefore, Id y, o+ is mapped to & Id x , ax-1, which generates a dimension isomorphic
submodule of H;"Y (X x AF=1 X x 0A*=! LG), hence Equation follows.

. Next, we assume that ¥ is an ULB simplicial G-complex. We can decompose X(*) into a

countable disjoint union of Borel sections Egk). Further, we can assume that the ng)’s
are G-invariant, since we can construct them by decomposing an exact fundamental
domain F' = | |, F; of ©(%) and then set Egk) = GF;. We consider the map

©: | | (X x AF, X, x 0AF) — (50 [st-D)), 4.5)

with X; = W(Egk)), formed by the characteristic maps of the k-simplices X; x AF —

Egk), which we regard as G-singular simplices. For almost all x € X we have a homeo-

morphism
LIy ab/ (o) < an* ~ (20287

induced by ®, and hence a G-homeomorphism

LX< A%/ X0 x 0% ~ [5®)/2¢*1),
These pairs of G-spaces fulfil the assumptions of Lemmalf4.3.13] hence
dimpg H:™ (|]S®)|, |S¢Y| LG) = dimpg HE™ <|_| X; x A¥, |_| X; x 0AF, Lg> .

Thus, with part 1 of the proof, we know that there is a dimension isomorphism
dimyg Hy™ (|S®)], 5%, LG) = dimyg H, (LG ®cg Co(SH, £¢1)) .

Let us consider the following commutative diagram, where we write H,(X) for
H, (LG ®cg C2(X)) and H,,(|%|) for H:™9(|%|, LG)) to simplify the notation.

Hy (20, 26D~ 7 (56D) — = H (5 — H, (5% SE-Dy g, (501)

| | | | |

Hyy 1 (|50, [2EY]) — Hy(JR87Y) ] — Hoy(ISW]) — H, (|20, [S0]) — H, 1 (I8¢V)
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We already know that the first and fourth vertical map are dimension isomorphisms;
by induction on k we can further assume that the second and fifth vertical map are also
dimension isomorphisms. Hence, together with the Five-Lemma|C.7} the claim for an
ULB simplicial G-complex follows.

3. Finally, let ¥ beanarbitrary simplicial G-complex with ULB exhaustion { ¥, }.. By Propo-
sition4.2.4 we know that

ding HT(?) (E) = ding Hn(Lg ®<cg Ci(g))
= dimzg H,, (LG ®cg imC2(%;)).

Since the image of an G-singular simplex o: X x A" — 3 is compact in each fibre,
limC, (|34, G) is L*(X)-dense in C,,(|X|, G) and hence

dimyg H;"(|S], LG) = dimyg H, (LG ®1g limCa(|%:1,9))
Further, fori < jand ¥; < ¥, the following diagram commutes

H,(LG ® C3(%)) H,(LG ® C3(X;))

| |

H, (LG ® Cu([%4],G)) — Ha(LG ® Ci (1%, 9)),

where the vertical maps are dimension isomorphisms by part 2 of the proof. Together
with the colimit property this implies that

dimpg Ho(LG Qrg ImC.(|S;], G)) = dimpg H, (LG Qcg imCL(5;)). u

As adirect consequence of Theoremf4.2.5/and this theorem, we obtain the following corollary:

Corollary 4.4.2. IfY isa contractible topological G-space, then

BAY.G) = B2(9)
foreveryn € Ny.
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Appendix

The following appendix is a summary of basic definitions and results and fixes notation to be
used throughout. We shortly recall the character theory of finite groups in Appendix[Al In
Appendix[B], we discuss direct integral Hilbert spaces. To this end, we introduce measurable
fields of Hilbert spaces and decomposable linear operators. We finish the section with a ver-
sion of the Spectral Theorem for direct integrals. Direct integrals are necessary for the theory
we develop in Chapters[2]and 3] but also interesting in connection with Chapter[4 The last
appendix is dedicated to dimension functions on modules over von Neumann algebras; Ap-
pendix|Clalso contains some homological algebra results, which are mainly used in Chapters[]

and /4l
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Appendix

A. Character Theory of Finite Groups

The theory of characters of finite groups is only needed for Chapter[3] Nevertheless, I have
decided to present it here in the appendix, since one or the other readers are already familiar
with it. This is only a summary of results we need; this should not be considered as an intro-
duction to the topic; therefore, I refer the reader to the main sources [Ser77] and [Isa76].

Let G be a finite group and V' a finite dimensional complex vector space. A representation
(p, V), p: G — GL(V), is called irreducible if V is not 0 and (p, V') is not the direct sum of
two representations. Usually, we will not mention the underlying vector space V' and simply
speak of the representation p. The following proposition justifies the restriction to irreducible
representations:

Proposition A.1. [Ser77, §2 Theorem 2] Every representation is a direct sum of irreducible represen-
tations.

We call the complex valued function

Xp: G—C, g tr(p(g))

the character of the representation p, where tr(A) = >, a;; for A e GL(V)and dim V' = n.
We summarize some properties of characters:

Proposition A.2. Let y be the character of a representation (p, V) with dim V' = n. Then
@ x(1) =n;
@ x(g") = x(g)forallg € G;
(3 x(hgh™) = x(g)forallh, g € G;

(4) if pis the direct sum of two representations py @ pa, then X = X, + Xpo-

We define a scalar product on the complex valued functions on G by

(G0 = |—é| S 6(0)0(0),

geG
for ¢, € C[G].
Proposition A.3. [Ser77, $2 Theorem 3]
(1) Ifx isthe character of an irreducible representation, then {x, x) = 1.

(2) Ifx and X' are the character of two non-isomorphic irreducible representations, then (x, x'y = 0.
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Theorem A.4. [Ser77, $2 Theorem 4, Corollary 1 and 2] Let p be a representation of G and x its
character. Suppose p decomposes into a direct sum of irreducible representations:

p=pD D ps.

Then, if o is an irreducible representation with character o, the number of p;’s isomorphic to o is equal to
{p, X); thus independent of the chosen decomposition. Further, it follows that two representations with
the same character are isomorphic.

Let {x1, ..., xx} denote the set of all irreducible character of G, i.e. the characters of a set
Irr(G) = {074, ..., 0%} of representatives of the irreducible representations of GG. The first part
of the following theorem is a direct consequence of the previous one.

Theorem A.5. [Ser77, $2 Theorem 8] Let p be a linear representation of G with decomposition into
irreducible representations givenby p = p1 @ . . . p;. Then

(1) the decomposition p = @, 0:(p), with o,(p) the direct sum of all irreducible representations
p; Which are isomorphic to o;, is unique, i.e. it does not depend on the chosen decomposition of p
into irreducible representations p = p1 @ . .. pi;

(2) the projection P; from p onto o;(p) is given by:

P, = X’él) > Xilg)g € C[G].

Gl =

The ;(p) in Theorem/A.5|are direct sums of irreducible representations isomorphic to o;, i.e.
oi(p) = o7 We call the number m(c, p) the multiplicity of o in p. Note that by Theo-
rem[A.4m(o;, p) = (Xi, X,y if X, is the character of p.

We recall some properties of representations and characters which are induced by a repre-
sentation of a subgroup H < G. Let (0, V) be a representation of H. We define the induced
representation by Ind% (o) := C[G] ®cpmy V-

Proposition A.6. [Ser77, $7, Proposition 20] Let (o, V') be a representation of H and x, its charac-
ter, then

1 _
Indfl(XU): G — (Ca g— E Z Xa(k 1gk)
keG
k—lgkeH

is the character of Ind% (o).

Theorem A.7 (Frobenius reciprocity). [Ser77, §7, Theorem 13] Let H be a subgroup of G and o
a representation of H with character X, and p a vepresentation of G with character x,. If p|u is the
restriction of x , to elements in H, then

<Xm Xp\H>H = <Ind1€[ Xos ,0>G>

where (-, -y or (-, - )¢ denotes the scalar product on the characters of H or G, respectively.
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Note that by Proposition[A.2[4) and Theorem[A.5|we can write every character x,, of a repre-
sentation of H as alinear combination:

Xo = Y, (XowXo)Xo

0elrr(H)

of characters xy of irreducible representations # € Irr(H ). Together with the Frobenius reci-
procity we obtain that

m(p,Indf (o)) = >, m(8. plm)m(8,0),

0elrr(H)

for every representation p of G.

Last, we want to give some results concerning the values of characters:

Proposition A.8. [Ser77, §6 Proposition 15] Let x be the character of a representation o of a finite
group G. Then x(g) is an algebraic integer forevery g € G.

Let ¥ = C denote a field of characteristic 0.

Definition A.9. We say a representation o of a finite group G can be realized over a field F, if
there exists a linear representation (p, V'), where V' is an E-vector space such that o is iso-

morphic to
pc: G — GL(V) - GL(C®g V).

Proposition A.10. [Ser77, §12 Proposition 33] Let o be a representation of a finite group G with
character x, then o is realizable over a field E ifand only if x(g) € E forallg € G.

Theorem A.11 (Brauer). [Ser77, $12 Theorem 24] Let G be a finite group and m be the least common
multiple of the orders of the elements of G. Let x be the character of a representation o of G, then x(g) €
Q(&n) forall g € G, where &, denotes the mth root of unity.
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B. Direct Integrals

The definition of direct integrals goes back to John von Neumann. Though, for this summary
I mainly used the book [Dix81] of Dixmier. The theory of direct integrals is requisite for Chap-
ters[2land | In Chapterf|direct integrals appear, but more than an alternative view; they are
not necessary for the understanding of the results or the proofs of them. The theory for un-
bounded operators can be found in [Nus64] and [DNSZ15].

Let X be a Borel space and p a positive measure on X. If it is not necessary, we omit z and
just say measurable instead of yi-measurable.

Definition B.1. We call a mapping + — H(x) on X, with H(x) a Hilbert space for every
x € X, afield of Hilbertspacesover X . Anelementvof [ [, H(x)canberegarded asamapping
v: x — v(x), such thatv(x) € H(x), and is called a vector field over X .

Definition B.2. Ameasurablefield of Hilbert spacesis a field of Hilbert spaces x — H () together
withalinear subspace M of | | . H (), called the measurablevector fields, with the following
properties:

« Foreveryv e M,z — |v(x)| is measurable;

« Ifforw € | [,.x H(z) the function z — (v(z),w(x)) is measurable for every v € M,

thenw € M;

« There exists a sequence (by, by, ....) of element of M such that for every x € X, b, () is
atotal sequence in H(x); this means, every element of H (z) can be written as a count-
able linear combination of the b,,(x)’s. We call such a sequence a fundamental sequence of
measurable vector fields.

Proposition B.3. Let (by, bs, ...) be a fundamental sequence of measurable fields. A vector field v is
measurable if and only if v — (v(x), b;(x)) is measurable for every i.

Proposition B.4. Letx — H (x) be a field of Hilbert spaces and (vy, va, ...) a sequence of vector fields
possessing the following properties:

« & — (v;(x),v;(x))is measurable for every i and j;

e (vi(z),vo(x),...) is a total sequence in H (z) forevery x € X.
Then there exist a unique measurable field structure on x — H () such that the v;’s are measurable.

We say a vector field v is square-integrable if it is measurable and

[ 1otoPanta) <o
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The square-integrable vector fields form a complex vector space K with inner product

) = | o). w)dnto)

Note that the vector fields v which vanish almost everywhere are just those with

W = | Jo@Pauta) =o.

Definition B.5. Letx — H (x) be a measurable field of Hilbert spaces with M the measurable
vector fields and K the square integrable ones. The direct integral of x — H (x) with respect to

Mis
DM
J H(z)du(x) := K/ ~,
where ~ is given by identifying the vector fields which vanish almost everywhere.

The direct integral depends on the measurable structure M, but if it is clear from the context
what the measurable vector fields are, especially in regard of Proposition [B.4], we omit M in
the notation.

Proposition B.6. The direct integral

[ @

is a Hilbert space. If X is a standard Borel space, then it is separable.

The next proposition gives us a criterion to decide whether a field of subspaces is measurable
or not.

Proposition B.7. Let v — H/(x) a measurable field of Hilbert spaces, K (x) a closed linear subspace
of H(x) forevery x € X and P(x) the projection onto K (x). Let M i be the set of measurable vector
fields v such that v(z) € K (x) forevery x € X. The following conditions are equivalent:

o The field of Hilbert spaces t — K (x) together with My is a measurable field;

o There exist a sequence (v, Vs, ..) of measurable vector fields in x — H (x) such that for every
z € X, (vi(x),ve(x), ...) is a total sequence for K (z);

« For any measurable vector field vin x — H (x) the field x — P(x)v(x) is measurable.

Nowletz — H(x)and x — H'(x) be measurable fields of Hilbert spaces over X and 7T'(z) €
L(H(z), H'(x)) a (possibly unbounded) linear mapping from H(x) into H'(x) for every x €
X. We call x — T(z) a field of linear mappings. 1f H and H' coincide we speak of a field of
operators. First, we consider bounded linear mappings.

Definition B.8. A field of continuous linear mappings = — T'(z) is called measurable if for
every measurable vector field 2 — v(z) € H(x) the vector field z — T'(x)v(z) € H'(z) is
measurable.
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Proposition B.9. Let (b1, by, ...) and (U}, 1), ...) be fundamental sequences forv — H(z) and x —
H'(x), respectively. A field of continuous linear mappings x — T'(x) is measurable if and only if

v = (T()bi(x), 0})
is measurable for every i and j.

A measurable field x — T'(x) of linear mappings is called essentially bounded if the essentially
supremum of x — T'(z) is finite. Recall, the essentially supremum of a measurable function
f: X — Hisgivenby

ess supy |f| = inf {D >0 | p({z e X | |f] > D}) = 0},
for a measure space (X, 1) and H a Banach space.

Proposition B.10. Letx — T(z) € L(H(z), H'(x)) a measurable and essentially bounded field
of linear mappings with ess supy |[T(z)| = D < oo. Then x — T(x) defines a continuous linear

mapping
- [® ®
T: f Hdy — J H'du

with |T| = D. Further, if thereis an other field of linear mappings = — T'(x) such that T = T", then
T(x) = T'(x) foralmostall x € X.

Definition B.11. A continuous linear mapping T: {® Hdy — {® H'dy is called decomposable
if it can be expressed by a measurable and essentially bounded field of linear mappings + —
T'(x). In that case, we also write

&)
T f T(@)dpu(x).

In regard of Proposition[B.7, letz — P(z) be a measurable field of projections onto the linear
subspaces © — K(z) and

D
j f P(2)dp(z),

then the direct integral of * — K () and the image of P coincide, i.e.

JK Ydp(x JH Ydp(x

We also want to deal with unbounded mappings. For an linear mapping 7': H — H'let us
denote the projection from H x H’ onto the closure of its graph G(T') by Py

Definition B.12. A field of linear mappings + — T (z) is called measurable if the field of
bounded operators x — Pr is measurable.

For continuous linear mappings this definition coincide with the previous one. Also a field of
unbounded mappings © — T'(z) gives rise to an operator on the direct integral:
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Proposition B.13. Let v — T'(x) be a field of measurable closed linear mappings H(x) — H'(x)
with domains D(T'(x)). Let D be the set of square-integrable vector fields x — v(z) such thatv(x) €
D(T'(z)), forall x € X, and such that the vector field v — T (x)v(z) is square-integrable. Then
x — T'(x) defines a closed linear mapping

@
T J T(@)du(x)

from € H (x)dp(z) to & H'()dp(x) with domain D.

In regards of this proposition, we can extend Definition to the unbounded case and say a

linear mapping . .
T f H(z)du(z) — J H'(2)dp()

is decomposable if it can be expresses as T’ = S® T(x)du(x). Adecomposable operator inherits
many of the properties of its field of operators. We only state some of them, which we will
need later:

Proposition B.14. Foran decomposable operator T = S® T(x)du(x) its adjoint T* exist if and only
if T'(x)* exist for almost all v € X . In that case, we have

T J®T(x)*du(w).

Moreover, T'is self-adjoint if and only if T'(x) is self-adjoint for almost all x € X.

There is also a "decomposable” version of the spectral theorem. We first state the usual version
to introduce the notation:

Theorem B.15 (Spectral Theorem). For every self-adjoint operator T" on a Hilbert space H there exist
a unique projection valued measure E1: Bor(R) — P(H) such that for all bounded Borel functions f
omR

_ ijWET(A).

Proposition B.16. [DNSZ15, Proposition 4.2] Let T = S@ x) be a decomposable self-

adjoint operator on the dirvect integral Hilbert space S@ (x)du(x ) Por every Borel subset B < R
we have

D
Er(B) - J Erey(B)du(z).

Moreover, for every Borel measurable function f: R — R, the following holds

@
- | 1@@)inta).
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C. Dimension Theory

We will give the definition and summarize some properties of the dimension function for
modules over (semi)-finite von Neumann algebras. The semi-finite case is only needed in
Chapter[l] therefore, we formulate only the lemmas and propositions needed their in the gen-
erality of semi-finite von Neumann algebras. When we say A is a semi-finite or finite von
Neumann algebra with trace tr 4, we mean a semi-finite, o-finite von Neumann algebra A
and a faithful, normal, semi-finite trace tr 4 on A, respectively, a finite von Neumann algebra
A and a faithful, normal, finite trace tr 4 on .A. Most of the results concerning the finite case
can be found in [Liic94] and the semi-finite case in [Pet13]. I only included a proof of the very
last proposition, since I did not found it in the literature; though, I do not claim originality.

Definition C.1. Let A be a semi-finite von Neumann algebra with trace tr 4 and M be an A-
module. We say M is tr 4-finitely generated, if there is a short exact sequence of A-modules

0> N - A > M —0,
where p is a projection in M,,(.A) with finite trace Y | tr4(pi;)-

Definition C.2. For a tr4-finitely generated projective .A-module M = A"p, where p €
M,,(A) is a projection, the von Neumann dimension is

dimy M = 2 tra(pii)-
i-1

Note that the von Neumann dimension is independent of the choice of the projection p. This
definition can be extended to arbitrary .A-modules.

Definition C.3. The von Neumann dimension of an arbitrary A-module M is

dim4 (M) := sup{dimy N | N < M tr4 -finitely generated projective submodule}.
Proposition C.4. For a semi-finite von Neumann algebra A with trace tr 4 the dimension function
dim 4 satisfies the following properties:

o Atr4-finitely generated projective A-module P is trivial if and only ifdim 4 P = 0.

. Additivity

For any short exact sequence of A-modules
0->M->N->Q—-0

the von Neumann dimension satisfies dim 4 N = dimy4 M + dimy4 Q.

« Cofinality

Let {M; | i € I} bea cofinal system of submodules of M = | J,.; M. Then

el

dimy M = sup{dim M; | i€ I}.
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Definition C.5. Let M and N be A-modules. An A-homomorphism f: M — N is called
A-dimension isomorphism, or dim 4-isomorphism, if dim 4(ker f) = dim 4(coker f) = 0.

Remark C.6. The A-modules M with dim 4 M = 0 are a Serre subcategory A-Mod, of A-Mod,
i.e. A-Mody is closed under subobjects, quotients and extensions which follows from Propo-
sition (cf. [ST10, $4.2]). Therefore, we can form the localized category A-Mod /A-Mod, =
A-Mod,,., which has the same objects as A-Mod, is abelian and there is an exact functor
q: A-Mod — A-Mod,,. such that:

« ¢q(f)is anisomorphism if f is an .A-dimension isomorphism;

« For any other abelian category C and exact functor F': A-Mod — C, such that F(f)is
an isomorphism for all dim 4-isomorphisms f, there is (up to natural isomorphisms)
an unique functor F': A-Mod;,. — C such that the following diagram commutes up

to natural equivalences:
A-Mod

C.

./4 —MOlec

This is a powerful tool, for instances we get the following version of the Five lemma:

Lemma C.7 (Five Lemma). Given the following commutative diagram of A-modules with exact rows
and A-dimension isomorphisms a, b, d and e:

A B C D E

ok

A B’ C’ D' E'.

Then c is also an A-dimension isomorphism.

Proof. This follows directly from Remark|C.éland the Five lemma for abelian categories. [

The next proposition is due to Sauer [Sau05|, Theorem 2.4] in the finite case and was extended
by Petersen [Pet13|, B.27] to semi-finite von Neumann algebras.

Proposition C.8 (Sauer’s local criterion). An A-module M satisfies dim 4 M = 0ifand only if for
every m € M there is an increasing sequence of projections p,, € A such that p,m = 0 foreveryn e N
and sup p, = 1.

Definition C.9. Let A be a finite von Neumann algebra. For any .A-module M we define the
rank functiontk 4: M — [0, 1] by

k4(m) := inf{tr4(p) | p € Proj(A), p=m = 0}.
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The rank function induces a pseudo-metric d 4, called the rank metric, on M by
da(m,n) :=rk(m — n).

The following corollary is a direct consequence of Sauer’s local criterion and enables us to use
the rank metric to decide whether a submodule has the same von Neumann dimension as the
ambient module or not.

Corollary C.10. A submodule N < M of an A-module is dense with vespect to the rank metric if and
onlyifdimg M /N = Oand dimy M = dim_4 N. Therefore, the inclusion of an d_4-dense submodule
is an A-dimension isomorphism.

Proof. Suppose N is d4-dense in M, hence for every m € M and ¢ > O thereisan € N
and a p. € Proj(A) such that tr4(p) < € and p>(m — n) = 0. This is equivalent to say that
pZ(m + N) = 0 € M/N, which shows together with the local criterion that dim4 M /N =
0. [

Definition C.11. An A-B-bimodule M is called dimension compatible if
dimy M @z N =0

for every B-module N with dimg N = 0.

Lemma C.12. [Sau0O5|, Lemma 4.7] Let B < A be an inclusion of finite von Neumann algebras. Then
Ais a dimension compatible A-BB-bimodule.

Since I did not found a reference for the following proposition, I will present the argument.

Proposition C.13. Let A — R < BB be an inclusion of rings, where A and I3 are finite von Neumann
algebras. Further, let o: M — N be an A-dimension isomorphism. Then

Id3®(,01 B@RM—>B®RN

is a B-dimension isomorphism.

Proof. Since ¢ is an A-dimension isomorphism, we know that
dim 4 ker ¢ = dim 4 coker ¢ = 0.
Hence, with LemmalC.12}, it follows that
dimg(B ®4 ker ) = dimg(B ® 4 coker ¢) = 0
and by the additivity of the dimension function (see Proposition|C.4) that

dimg(B ®g ker ¢) = dimg(B ®g coker ) < dimp(B ® 4 coker ) = 0.
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Further, we have for any free R-resolution P, of 3 that dimpz(P, ®g coker ¢) = 0 and hence
dimg Torf (B, coker ) = dimpg H, (P, ®g coker ) = 0;

again, this follows from the additivity and cofinality of the dimension function. We consider
the short exact sequences:

0—kerop > M — imp — 0,

0 — imy — N — coker ¢ — 0;
and obtain the following long exact sequences:

.. — Tor?(B,im ) » BQp ker p = BQp M — B®gim ¢ — 0,
-+ — Tor?(B, coker p) — BQg im ¢ — Bz N — B®g coker p — 0.

We already know that dimgz(B ®g ker ¢) = 0, dimg Torf(B, coker ) = 0 and dimg B ®p
coker ¢ = 0, hence

BQr M — BQgim g
B@le(p—>8®3N

are B-dimension isomorphisms and, therefore, their composition. O
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