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Abstract 30 

Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently 31 

colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune 32 

cells from nasal biopsy samples collected following experimental human pneumococcal challenge 33 

in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we 34 

characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B 35 

cell and CD8+CD161+ T cell clusters were significantly lower in colonized than in non-colonized 36 

subjects. By following a second cohort before and after pneumococcal challenge we observed that 37 

B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an 38 

expansion of Spn polysaccharide-specific and total plasmablasts in blood. Moreover, increased 39 

responses of blood mucosal associated invariant T (MAIT) cells against in vitro stimulation with 40 

pneumococcus prior to challenge associated with protection against establishment of Spn 41 

colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells 42 

in the protection against pneumococcal colonization and demonstrate that colonization affects 43 

mucosal and circulating B cell populations.  44 

  45 
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Introduction 46 

Streptococcus pneumoniae (Spn) is a major cause of morbidity and mortality worldwide (1, 2). It is 47 

the most common bacterial cause of otitis media, pneumonia and meningitis in children (1). Risk 48 

factors for pneumococcal disease include very young or advanced age, co-infection with influenza, 49 

HIV infection, chronic lung disease, asplenia and smoking (3). 50 

However, nasopharyngeal colonization, or carriage, of Spn in the absence of disease is common, 51 

with approximately 50% of infants and 10% of adults colonized at any time (4). Carriage is an 52 

immunising event in both children and adults but is also important as a prerequisite of disease and 53 

as the source of transmission (5-8). Successful colonization by Spn depends on many factors 54 

including bacterial factors, niche competition with other microbes, evasion of mucociliary clearance 55 

and host nutrient availability as well as immunological control of Spn (9). Epidemiological and 56 

modelling data have demonstrated that the immunizing effect of carriage is likely mediated by a 57 

combination of serotype-dependent and serotype-independent mechanisms (10-12).  58 

The introduction of pneumococcal conjugate vaccines (PCV) has led to significant reductions in 59 

carriage prevalence of covered serotypes, leading to herd protection and a decrease in 60 

pneumococcal disease in unvaccinated adults in addition to conferring direct protection (13). 61 

However, only 13 of approximately 100 Spn serotypes are currently covered by PCVs and the 62 

elucidation of immune mechanisms that associate with the control of Spn carriage remains an area 63 

of active investigation (14). 64 

Mouse models have suggested that Th17-mediated recruitment of neutrophils and monocytes to the 65 

nasopharynx is the mechanism of control and clearance of Spn carriage (15-17). In contrast, 66 

depletion of B cells or CD8+ T cells did not impair the clearance of Spn in murine models (18, 19).  67 

Amplification of monocyte recruitment in an auto-feedback loop via CCL2 was found to be important 68 

for clearance, further supporting the role for these cells in control of carriage (20). Innate factors 69 

have also been implicated in murine models as disruption of IFN-α or interleukin-1 signalling is 70 
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associated with increased colonization (21, 22). Recently, we demonstrated using an experimental 71 

human pneumococcal challenge (EHPC) model that carriage leads to degranulation of nasal-72 

resident neutrophils and recruitment of monocytes to the nasal mucosal surface (23). These 73 

responses were impaired by co-infection with live attenuated influenza virus, which associated with 74 

increased carriage density (24). Protection against experimental carriage acquisition in an 75 

unvaccinated setting is further associated with the levels of circulating memory B cells, but not levels 76 

of IgG, directed against the Spn polysaccharide capsule (25). Following PCV, very high levels of IgG 77 

associate with protection against experimental carriage acquisition, likely by mediating Spn 78 

agglutination followed by mucociliary clearance (26, 27). However, the relative role of these and 79 

other adaptive and innate immune cell subsets in controlling Spn at the human nasal mucosa 80 

remains largely unknown (28). The relatively small number of cells that can be collected from the 81 

nasal mucosa using minimally-invasive nasal curettage has limited the capacity to analyse the role 82 

of cellular subsets in controlling Spn carriage at the human nasal mucosa (29).  83 

Here, we collected nasal biopsies under local anaesthesia following experimental human 84 

pneumococcal challenge. This allowed for a comprehensive analysis of mucosal immunity during 85 

Spn carriage as these samples yield substantially more cells than minimally-invasive curettes. Nasal 86 

mucosal samples were analysed using mass cytometry (CyTOF), a technique in which antibodies 87 

are labelled with rare earth metals and that enabled the investigation of 37 protein markers 88 

simultaneously on a single-cell level (30). This method is ideally suited to investigate the relative 89 

understudied mucosal immune populations as the large number of markers allow the identification 90 

of previously unknown cell subsets and markers. Indeed, CyTOF has recently provided new insights 91 

into alveolar macrophage subpopulations in the lung and innate lymphoid cells differentiation 92 

pathways in the gut (31, 32). By combining nasal biopsies and CyTOF, we were thus able to study 93 

in-depth the immunological role of innate and adaptive cell subsets at the human nasal mucosa and 94 

their role during pneumococcal colonization. 95 

  96 
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Results 97 

Characterization of nasal immune populations 98 

Twenty healthy subjects negative for natural pneumococcal carriage at baseline screening were 99 

challenged intranasally with type 6B Spn (Figure 1A and Table 1). Carriage state was assessed at 100 

days two and seven post challenge and a nasal biopsy was collected at ten days post challenge 101 

(Supplementary Video 1), the timepoint at which Spn starts to be cleared from the nose (33, 34). 102 

Eight subjects became colonized with Spn (carriage+), while twelve subjects remained carriage– 103 

(Figure 1A). Biopsies yielded a median of 2.3x105 cells (IQR: 1.6x105 - 3.2x105) per subject, 104 

approximately 90% of which were stromal cells, which were stained with a panel of thirty-eight 105 

antibodies and analysed by CyTOF (Figure 1B, Supplementary Table 1). Viable immune cells were 106 

manually gated from all acquired events and subsequently clustered by hierarchical-stochastic 107 

neighbour embedding (h-sne) using Cytosplore software (Figure 1C,2) (35-37). H-sne is a recently 108 

developed method in which t-distributed stochastic neighbor embedding (t-sne) is performed 109 

sequentially to cluster first global cell populations, each of which is then in turn clustered into 110 

subpopulations.   111 

Based on the expression of 37 markers, a total of 199,426 immune cells from all subjects were 112 

divided into nine lineages (CD8+ T cells, CD4+ T cells, myeloid cells, innate lymphoid cells, B cells, 113 

double-negative T cells, granulocytes, CD117+ cells and plasma cells, in order of decreasing 114 

abundance). These cell lineages were further divided into twenty-two subpopulations and 293 115 

clusters (Figure 1C and Table 2). Cell numbers were normalized to the number of stromal cells for 116 

each subject to correct for varying biopsy yields. Normalized abundancies were then compared 117 

between carriage– and carriage+ subjects for each of the lineages, subpopulations and clusters. 118 

There were no significant differences in frequencies between total lineages or subpopulations 119 

between carriage– and carriage+ subjects. However, at a finer level seven clusters were significantly 120 

higher in carriage– than in carriage+ subjects (Figure 1C, blue bars). Of note, three B cell clusters 121 

were higher in carriage– subjects (Figure 1C). Moreover, three CD8+ T cell clusters, all expressing 122 
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CD161, and one CD8dim T cell cluster were higher in carriage– subjects than in carriage+ subjects 123 

(Figure 1C). The seven significant clusters strongly correlated (r>0.70) with eighty-eight clusters in 124 

other lineages/subpopulations, sixty-eight of which were in B or T cell lineages, highlighting an 125 

interconnectivity between B and T cell subpopulations in the human nasopharynx (Figure 1C). We 126 

also investigated whether Spn load was associated with cluster abundance to determine the effect 127 

of cell clusters on the control of bacterial load. At day 2, four clusters were significantly negatively 128 

correlated with Spn density, including the CD8dim T cell cluster (r=-0.51, p=0.023) and one of the 129 

CD161+ CD8+ T cell clusters (r=-0.51, p=0.021) that was increased in carriage– subjects over 130 

carriage+ subjects. The other two clusters that negatively associated with density were also were 131 

CD8+ T cell clusters, with one expressing CD161. At day 7, only two clusters were significantly 132 

associated with Spn density: the CD8dim T cell cluster (r=-0.55, p=0.011) and one B cell cluster (r=-133 

0.45, p=0.049).   134 

Nasal B cells are depleted during pneumococcal carriage 135 

We then further investigated the three B cell clusters that were higher in carriage– subjects (Figure 136 

3A,B). All three significantly higher clusters (cluster 4, 9 and 17) expressed CD45RA, HLA-DR, 137 

CD19, CCR6 and CCR7 to varying degrees. None of these clusters expressed CD38, a marker for 138 

plasmablasts, or CD5, a marker for innate B cells (38, 39). Cluster 9 was 2.9-fold higher in carriage– 139 

subjects (p = 0.047) and cells in this cluster expressed also low levels of CXCR5 and CD27. Cluster 140 

17 (2.0-fold higher, p = 0.049) additionally expressed the B cell activation marker CD69. To assess 141 

whether the higher frequency in carriage– subjects was related to increased B cells in carriage– 142 

subjects or decreased B cells in carriage+ subjects, we longitudinally measured CD19+ B cell 143 

frequencies in nasal microsamples collected from an independent cohort (Figure 3C and 144 

Supplementary Figure 1A). Compared to baseline, B cell levels decreased following pneumococcal 145 

carriage at days 2 (2.1-fold, p = 0.048), 6 (2.8-fold), 9 (2.0-fold) and 27 (3.1-fold, p = 0.028) post-146 

inoculation. In the carriage– group, B cell levels decreased 1.1-fold at days 2 and 6, increased 1.2-147 
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fold at day 9 and decreased 1.2-fold at day 27, respectively and were thus relatively stable. The fold-148 

change decrease in nasal B cell levels did not associate with Spn density at any timepoint.  149 

Pneumococcal carriage increases circulating plasmablasts 150 

We hypothesized that the depletion of B cells from the nasal mucosa following carriage 151 

establishment was due to a re-circulation of activated B cells. Although, none of the B cell clusters 152 

that were lower in the carriage+ group expressed the plasmablast marker CD38, it has been 153 

demonstrated previously that memory B cells differentiate rapidly intro plasmablasts upon activation 154 

(40). Therefore, we measured numbers of Spn-specific and total plasmablasts in peripheral blood 155 

mononuclear cells (PBMC) collected before and after carriage establishment using a flow cytometry-156 

based assay (Supplementary Figure 1B). During carriage, the frequency of 6B polysaccharide-157 

specific plasmablasts among total B cells increased while the frequency of plasmablasts specific to 158 

the pneumococcal protein pneumolysin remained unaltered (Figure 4A). As a negative control we 159 

measured levels of plasmablasts specific for an unrelated Spn capsular type (15B), which were not 160 

affected as expected. However, the frequency of total circulating plasmablasts among all B cells 161 

increased (median 1.5x, IQR: 1.2-2.8x; p = 0.008) suggesting that nasal B cells became non-162 

specifically activated during carriage. Similar results were obtained when normalizing to the total 163 

number of lymphocytes, demonstrating this was not due to other shifting B cell populations 164 

(Supplementary Figure 2A). We then investigated CCR10 expression on these plasmablasts, which 165 

has been reported to mark IgA secreting cells (41) and is potentially important for homing of B cells 166 

to mucosal tissues including the airways (42, 43). The total population of plasmablasts post carriage 167 

displayed reduced numbers of CCR10+ cells, in contrast to 6B-specific plasmablasts, indicating 168 

differential expansion between specific and non-specific B cell populations (Figure 4B). This is 169 

supported by the observation that increased circulating levels of 6B polysaccharide-specific 170 

plasmablasts inversely correlated with the nasal B cell CyTOF clusters 9 and 20, while total 171 

plasmablast increases inversely correlated with the CyTOF B cell clusters 21 (Figure 4C). Clusters 172 

9 and 21 still negatively correlated with levels of circulating 6B-specific and total plasmablasts, 173 
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respectively, after normalization to total lymphocyte numbers (Supplementary Figure 2B). Thus, we 174 

wanted to assess whether both Spn-specific as well as unrelated B cells became activated following 175 

carriage, leading to recirculation. We therefore measured antibody levels in serum against not only 176 

Spn but also Streptococcus pyogenes, Staphylococcus aureus and Haemophilus influenzae as 177 

these are common colonizers of the human nasopharynx and thus nasal B cells against these 178 

bacterial species are likely present in the nose of most individuals. Following Spn colonization, IgG 179 

levels specific for Spn (median 1.4x, IQR: 1.1-2.4) and Haemophilus influenzae (median 1.2x, IQR: 180 

1.1-1.5) significantly increased, while IgG levels specific for Streptococcus pyogenes and 181 

Staphylococcus aureus were not significantly altered (Supplementary Figure 3A). Serum IgA 182 

concentration only increased for Spn and not for Haemophilus influenzae (Hi) or any of the other 183 

bacterial species (Supplementary Figure 3B). To investigate whether this observed increase in 184 

Haemophilus-specific IgG was due to an increase in cross-reactive antibodies, directed against for 185 

example the surface antigen choline phosphate (ChoP) or the capsular polysaccharide (44, 45), we 186 

also measured Haemophilus-specific IgG titers following absorption with whole cell pneumococcus 187 

(Supplementary Figure 3C). This abrogated the increased titers against Hi post carriage, indicating 188 

this was likely due to cross-reactivity. Similarly, in nasal wash, levels of IgA against Spn and Hi were 189 

increased, whereby the latter also was prevented by pre-absorption of nasal wash with Spn 190 

(Supplementary Figure 3D,E). 191 

Nasal CD8 Tissue-resident memory T cells are higher in carriage– subjects 192 

The three clusters of CD8+ T cells and the cluster of CD8dim T cells that were higher in carriage– 193 

subjects all expressed CD69, a marker of tissue-resident memory (Trm) cells (Figure 5A). To verify 194 

that these CD69+ CD8+ T cells represented Trm cells, we measured the expression of CD103 and 195 

CD49a on CD69+ and CD69- cells by flow cytometry from a representative biopsy (Supplementary 196 

Figure 4A). Indeed, 89.1% of nasal CD69+ CD8+ T cells expressed CD103 and CD49a, confirming 197 

that these were Trm cells (Figure 5B) (46). The markers CD5, CD38, HLA-DR, CCR6, CD127, CCR7 198 

and CD11c were expressed in cluster-specific patterns and at varying intensities among the 199 
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significant clusters. This suggests that clusters of cells with varying degrees of activation and 200 

memory types were enriched in carriage– subjects. One cluster expressed only low levels of CD8 201 

(cluster 10 of CD8dim T cells, 2.0-fold higher, p = 0.016), which could reflect cytotoxic effector memory 202 

cells (47). We then stimulated nasal biopsy cells and PBMC overnight with PMA and ionomycin to 203 

assess the functional capacity of nasal CD8+ T cells (Figure 5C). Among nasal CD8+ T cells, 94.8% 204 

produced tumor necrosis factor alpha (TNF) and/or interferon gamma (IFN-ɣ) following stimulation, 205 

compared to 36% of blood CD8+ T cells, demonstrating that nasal CD8+ T cells are highly functional.  206 

Baseline circulating MAIT functionality associates with resistance to pneumococcal carriage 207 

Three of the four significant clusters expressed CD161, a marker for mucosal associated invariant T 208 

(MAIT) cells, and we therefore tested the hypothesis that MAIT cell responses against Spn were 209 

associated with protection against carriage. PBMC collected prior to pneumococcal challenge were 210 

stimulated in vitro with heat-inactivated Spn and activation (CD69) and cytokine production (TNF, 211 

IFN-ɣ and IL-17A) were assessed (Supplementary Figure 4B). MAIT cells of both carriage– and 212 

carriage+ groups upregulated CD69 after a 3-day culture with heat-inactivated Spn (Supplementary 213 

Figure 4C). However, only MAIT cells from carriage– subjects produced increased levels of TNF and 214 

IFN-ɣ, but not IL-17A, upon restimulation in vitro with heat-inactivated Spn (Figure 5D). Conversely, 215 

MAIT cells from carriage+ subjects did not produce increased levels of any cytokine upon stimulation. 216 

This was specific to MAIT cells as conventional CD8+ T cells responded by producing small amounts 217 

of IFN-ɣ and no TNF (Supplementary Figure 4D). The baseline responses of MAIT cells in blood 218 

upon restimulation showed a positive correlation with numbers of nasal cells at ten days post 219 

pneumococcal challenge in CyTOF CD161+ CD8+ T cell cluster 9, which was significantly higher in 220 

the carriage– group (r = 0.54, p = 0.02, Figure 5E).  221 

To assess the kinetics of nasal MAIT cells, we collected nasal curettes before and at 2 and 6 days 222 

post inoculation in an independent cohort and analysed total MAIT cells by flow cytometry 223 

(Supplementary Figure 5). Total MAIT cell numbers were similar between carriage– and carriage+ 224 

groups at all timepoints, as observed by CyTOF at day 10. Due to the low numbers of cells that can 225 
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be obtained using minimally-invasive curettage, we were not able to longitudinally measure MAIT 226 

cell subsets that were significantly associated with carriage as identified by CyTOF. 227 

Association between baseline IgG and abundance of B and CD8+ T cell clusters 228 

We wanted to further characterize the relationship between abundance of the clusters that were 229 

significantly different between carriage+ and carriage– groups with levels of baseline IgG against Spn 230 

to assess whether recall responses were involved. As previously reported, there was no difference 231 

between carriage+ and carriage– groups in levels of baseline IgG against Spn (Figure 6A) (7, 25, 27). 232 

Of the seven clusters significantly associated with carriage status, one cluster (B cell cluster 9) 233 

showed a positive association between baseline IgG and cluster abundance (Figure 6B). This B cell 234 

cluster also correlated with the increased number of 6B-specific plasmablasts following colonization, 235 

which could suggest that these B cells are linked to production of Spn 6B-specific antibodies.   236 

Nasal monocytes show limited differentiation into macrophages 237 

Monocytes have been previously associated with the clearance of Spn carriage (16, 23), however 238 

these cells have not been previously phenotyped in detail in the human nasopharynx. Of the twenty-239 

five clusters defined in the myeloid lineage, fifteen expressed CD14 (Supplementary Figure 6). Of 240 

these, only two also expressed CD16. Four CD14+ clusters expressed the macrophage markers 241 

CD163 and CD206 and an additional three clusters expressed CD206 but not CD163 (48). However, 242 

alveolar monocytes can express CD206, suggesting this is not a definitive indication of differentiation 243 

(49). The activation markers CD25 and CD86 were present on five monocyte clusters (50). Thus, 244 

monocyte/macrophages in the nose mainly consisted of classical monocytes with limited 245 

differentiation into macrophages.  246 

Characterization of nasal CD4+ memory T cells 247 

CD4+ T memory cells, in particular Th17 cells, were previously found to be critical for Spn immunity 248 

in mice models of nasal colonization (15, 16). Of all cells in the CD4+ T cell lineage, 89.6% expressed 249 
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the memory marker CD45RO. Of these, 60.3% expressed CD161, a marker that has been proposed 250 

to identify Th17 cells (51, 52). Another 4.6% of memory cells was defined by expression of high 251 

levels of CD25, a marker for regulatory T cells. We defined twenty-three clusters of CD161– CD4+ T 252 

memory cells, twenty-one clusters of CD161+ CD4+ T memory cells and nine clusters of CD25hi CD4+ 253 

T memory cells (Supplementary Figure 7). All CD4+ T memory cell clusters expressed a combination 254 

of the markers CD7, CD127, HLA-DR, CD38 and CD69 demonstrating a wide range in activation 255 

and differentiation status (46). The CD25hi CD4+ T memory cells likely were regulatory T cells as 256 

they were predominantly negative for CD127 and two of these clusters expressed cytotoxic T-257 

lymphocyte-associated protein 4 (CTLA-4) and CD27 (53). CD161 was not restricted to Th17 cells 258 

as among CD161+ CD4+ T memory cells, two clusters expressed also CD8 and were thus double-259 

positive T cells (54). In addition, two clusters expressed CD25 without CD127 expression indicating 260 

regulatory T cells, and one cluster expressed chemoattractant receptor-homologous molecule 261 

expressed on Th2 cells (CRTH2), a marker of Th2 cells (55).  262 

Cellular distribution through the nasal mucosa 263 

We then performed immunohistochemistry on a biopsy from a challenged but carriage– subject to 264 

further understand the distribution of these cells through the mucosal tissue (Figure 7). CD4+ T cells 265 

were found predominantly in the subepithelial layer (Figure 7C,D), while CD8 and CD161 were also 266 

found at the epithelial layer (Figure 7E,F). Similar to CD4+ T cells, B cells (defined by CD20) were 267 

mostly observed in the sub-epithelium, while myeloid cells (CD68) could be seen at both the 268 

epithelial and sub-epithelial layer (Figure 7G,H). Neutrophils were found abundantly at the epithelial 269 

surface but also in the sub-epithelium (Figure 7I,J).   270 

Discussion 271 

This study comprehensively characterised immune cells in biopsies collected from the human nasal 272 

mucosa. As nasal samples were collected ten days following experimental human pneumococcal 273 

challenge, we were able to associate the frequency of specific immune populations with Spn 274 



  12 

carriage. Given the difficulty in access to such tissue samples, especially in a setting where the onset 275 

of infection is known, this provided a unique opportunity to investigate mucosal immune responses 276 

not undertaken previously. The application of CyTOF led to a broad and comprehensive study of 277 

cellular subsets involved in immunity against Spn carriage, deriving 293 immune clusters belonging 278 

to nine cellular lineages. Clusters belonging to B cells and CD8+ CD161+ T cells were higher in 279 

carriage– subjects. In addition to carriage status, we also associated Spn density with cluster 280 

abundance. Several CD8+ T cell clusters negatively correlated with Spn load, further supporting a 281 

protective function for these cells.  282 

B cells were depleted from the nasal mucosa following the establishment of Spn carriage. This 283 

depletion correlated on an individual level with increased numbers of circulating 6B polysaccharide 284 

specific and total plasmablasts. Thus, this depletion likely was due to recirculation of activated B 285 

cells rather than due to apoptosis of nasal B cell upon Spn polysaccharide capsule encounter as has 286 

also been described (56). The total plasmablast expansion, but not 6B plasmablast expansion, was 287 

characterized by a decreased proportion of CCR10+ cells, suggesting a preferential expansion of 288 

CCR10– cells or a downregulation of this marker. The correlation between low numbers of cells in 289 

specific nasal B cell clusters with increased levels of circulating plasmablasts indicates that activation 290 

of nasal B cells during carriage led to B cell re-circulation. In particular numbers of B cell cluster 9, 291 

which was lower in carriage+ subjects, associated with 6B PS-specific plasmablasts, as well as with 292 

levels of pneumococcus-specific antibodies in serum. Indeed, trafficking of memory B cells between 293 

airways and blood has been reported (57).  294 

Levels of serum IgG against Hi increased following colonization with Spn, due to an induction of 295 

cross-reactive antibodies, as pre-absorption with Spn abrogated this increase. Thus, pneumococcal 296 

colonization has an effect on mucosal and systemic B cell populations and antibodies that bind both 297 

pneumococcus and Hi. The negative association between Spn and Hi in the human nasopharynx is 298 

well described and this observation could be added to the potential mechanisms that underlie this 299 

interaction, such as Hi-mediated recruitment of neutrophils and clearance of pneumococcus (58). B 300 
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cells express the innate receptors TLR2 and TLR4 (59), which can be activated by pneumococcus, 301 

and we thus hypothesized that pneumococcal carriage leads to non-specific activation of B cells. 302 

Neisseria lactamica has been previously demonstrated to be able to aspecifically activate innate B 303 

cells (60, 61). However, the increased antibody responses against Hi were likely due to induction of 304 

cross-reactive antibodies and we observed no increase in serum IgG levels against Streptococcus 305 

pyogenes or Staphylococcus aureus, two other common nasal colonizers. 306 

Several nasal CD8+ Trm cell clusters were higher in subjects protected from Spn carriage. These 307 

cells were previously found to be protective against influenza infection in murine models (62). Spn 308 

is classically thought of as an extracellular bacterium and therefore the role of CD8+ T cells in 309 

controlling Spn has not been extensively studied in humans. However, it was recently shown that 310 

Spn can replicate within splenic macrophages and can reside within epithelial cells, suggesting that 311 

CD8+ T cell immunity could be elicited by Spn and play a role in protection against Spn carriage or 312 

disease (63, 64). Indeed, Spn protein specific CD8+ T cells could be readily detected in blood of 313 

Gambian adults (65). In murine models, CD8+ T cells were found to be protective against Spn lung 314 

infection but did not have an effect on nasopharyngeal carriage (19, 66). 315 

We found here that CD8+ MAIT cell functionality before pneumococcal challenge associated with a 316 

resistance to carriage acquisition. MAIT cells were recently reported to be able to recognize Spn 317 

through MHC class I-related protein 1 (MR-1) dependent and independent pathways (67). MAIT cells 318 

were previously found to be important in the protection against lung bacterial and viral infections via 319 

direct and indirect responses (68). Our findings now suggest these cells could also protect against 320 

nasopharyngeal Spn colonization. Given the abundance of MAIT cells at the nasal mucosa and their 321 

specificity for precursors from the riboflavin synthesis pathway, which is highly conserved in the Spn 322 

genome (67), these cells are excellently placed to initiate an immune response upon exposure to 323 

Spn. The rapid production of cytokines as TNF and IFN-γ by these cells upon Spn encounter could 324 

lead to the recruitment or activation of neutrophils and monocytes, which in turn could phagocytose 325 

Spn and protect against carriage acquisition (69). Baseline MAIT functionality in blood positively 326 
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correlated with cell numbers within one of the nasal CD8+ CD161+ cell clusters, suggesting trafficking 327 

of MAIT cells from the blood to the nose upon pneumococcal encounter. Indeed, MAIT cells have 328 

been shown to be depleted from the circulation and accumulate in tissues upon infection (70, 71).   329 

One limitation of this study is that the number of granulocytes measured was very low due to the 330 

overnight resting step following enzymatic digestion. While this resting step allowed for the return of 331 

markers that were cleaved by the enzymatic digestion, neutrophils quickly become apoptotic after 332 

being removed from the body (72-74). Consequently, the characterization of granulocytes reported 333 

here is incomplete and we were not able to assess whether specific neutrophil subsets are 334 

associated with protection against pneumococcal colonization.  335 

In addition, due to the invasiveness of sample acquisition, sample size was limited and we were not 336 

able to characterize nasal biopsies at various time points. Thus, no baseline was available making 337 

it impossible to conclude whether differences between carriage– and carriage+ groups were present 338 

at baseline or occurred in the ten days following inoculation. In addition, we were not able to assess 339 

transient responses early after bacterial inoculation. To address this caveat, we longitudinally 340 

measured levels of nasal B cells and MAIT cells collected by nasal curettes in independent cohorts. 341 

This analysis demonstrated that B cells were depleted from the nose upon colonization. In contrast, 342 

we did not observe any changes in total numbers of MAIT cells. Using CyTOF we observed that 343 

MAIT cell clusters expressing the markers CD7, CD69, CD5 and CCR6 or CD38, but not total 344 

number of MAIT cells, were higher in the carriage– group. Thus the larger amount of cells obtained 345 

from nasal biopsies combined with the broad analysis by CyTOF allowed us to identify sub-346 

populations of MAIT cells associated with protection against colonization. 347 

This study revealed some notable differences from previously conducted experiments with murine 348 

models. In particular, we did not see any association between Th17 cells, or any CD4+ T memory 349 

cells, and control of colonization as previously reported (15, 16). This agrees with previous 350 

observations from experimentally colonized adults that nasal IL-17A levels are not increased (24). 351 

Moreover, there was no association between monocytes and Spn colonization status or density, 352 
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unlike what was previously reported in murine models or humans followed up longitudinally following 353 

experimental colonization (16, 20, 24). This is possibly because we terminated carriage after day 354 

seven for safety reasons prior to collecting biopsies, making it impossible to associate immune cell 355 

clusters, such as monocytes, with Spn clearance which typically occurs after day 10. Moreover due 356 

to relatively small numbers of individuals in this controlled human infection study, it is possible that 357 

subtle associations between cell populations and bacterial load were missed. This study however 358 

does provide a unique characterization of monocytes/macrophages phenotype in the human nose, 359 

which show remarkably little differentiation into macrophages. Another remarkable difference 360 

between this study and findings from murine models is that we observed a protective effect of MAIT 361 

cells against colonization, while depletion of CD8+ T did not affect immunological Spn control in 362 

mouse models (19). MAIT cells are a recently identified T cell subset that is common in humans, 363 

consisting of up to 10% of all T cells in the circulation, but that is very rare in mice (68). It is possible 364 

that this difference has led to an underappreciation of the CD8+ T cell’s role in protection against 365 

pneumococcal carriage in humans. Finally, our finding of an activation and exodus of B cells from 366 

the nose merits further attention and validation using tractable mouse models to understand its role 367 

in the generation of humoral immunity against Spn and cross-reactive protection against 368 

Haemophilus influenzae. 369 

In conclusion, this study provides both a broad and an in-depth view of the adult human nasal 370 

immune system in the setting of experimental human pneumococcal challenge. Nasal B cells were 371 

depleted following carriage establishment, likely due to differentiation to plasmablasts and 372 

recirculation. In addition, CD8+ MAIT cell responses were associated with protection from Spn 373 

carriage.  374 

Methods 375 

Study design and sample collection 376 

Healthy adult subjects were screened for the presence of natural pneumococcal carriage in nasal 377 

wash samples (NW) using classical microbiology (7, 34, 75). Subjects not naturally carrying 378 
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pneumococcus were then inoculated with 80,000 CFU per nostril of 6B type Spn as described (7, 379 

75). Development of nasal carriage was monitored using NW samples collected at days 2 and 7 post 380 

inoculation. Growth of pneumococcus from NW samples at any time-point defined carriage positive 381 

volunteers. All subjects then received a three-day course of amoxicillin and underwent a 4mm nasal 382 

biopsy at day 10 post inoculation. The nasal cavity was first sprayed up to six times with lidocaine 383 

hydrochloride 5% with phenylephrine hydrochloride 0.5%.  Five to ten minutes later the infero-medial 384 

part of the inferior turbinate, i.e. the point of incision, was injected with up to 1 mL of lidocaine 385 

hydrochloride 2% with adrenaline 1:80 000. An incision of approximately 5 mm with No.15 blade was 386 

then made and 2-4 mm of mucosal tissue was removed with Tillies Henckle’s surgical forceps. This 387 

study was registered under ISRCTN85509051. Nasal curettes (ASL Rhino-Pro©, Arlington 388 

Scientific) were collected from an additional cohort (ISRCTN16993271) of subjects inoculated with 389 

the same 6B strain. The outcomes reported in this manuscript were a priori included in the study 390 

protocols. 391 

Nasal biopsy digestion 392 

Nasal biopsies were finely cut using a sterile scalpel size 11 (Fisher Scientific). Pieces were then 393 

incubated in 20mL pre-warmed RPMI 1640 (Fisher Scientific) with Liberase TL (250μg/mL, Sigma) 394 

and DNAse I (50μg/mL, Sigma). Fragments were incubated for 45 minutes at 37°C, while shaking 395 

at 250rpm at a 10° angle. At the end of the digestion, biopsies were passed five times through a 16-396 

gauge blunt-ended needle (Fisher Scientific) and the digested sample was filtered over a 70um filter 397 

(Fisher Scientific). This process was repeated for any remaining fragments. Cell were spun down for 398 

10 minutes at 400xg and then red blood cells were lysed using an osmotic lysis buffer. Cells were 399 

washed with RPMI with 20% heat-inactivated fetal bovine serum (FBS, Fisher Scientific), 400 

resuspended at 106 cells/mL in RPMI with 20% FBS and rested overnight. The next day, cells were 401 

counted and washed with RPMI + 10% FBS. Cells were stained as a viability marker using 1µM 402 

intercalator Rh-103 (Fluidigm) for 15 minutes, washed and fixed with 1.8% paraformaldehyde 403 



  17 

(Sigma) for 15 minutes. Cells were washed and stored in liquid nitrogen in CTL-CryoTM ABC media 404 

(Cellular Technology Limited) until CyTOF barcoding and staining.  405 

Mass cytometry staining and analysis 406 

Nasal biopsy cells were thawed on ice and barcoded using the Cell-ID 20-plex Pd Barcoding Kit as 407 

per manufacturer’s instructions (Fluidigm). The effect of fixation on epitopes detected by the included 408 

antibody clones was tested using PBMCs and monocyte-derived dendritic cells. Following three 409 

washes with staining buffer (Fluidigm) and 10 minutes of FcR blocking (Biolegend) pooled cells were 410 

stained for 45 minutes at room temperature with the antibody cocktail (Supplementary Table 1). All 411 

Fluidigm antibodies were pre-conjugated to metals while all other antibodies were conjugated using 412 

a total of 100 μg of purified antibody combined with the MaxPar X8 Antibody Labelling Kit (Fluidigm) 413 

according to manufacturer’s protocol V7 and stored in 200 µL Antibody Stabilizer PBS (Candor 414 

Bioscience) at 4°C. Cells were washed twice with staining buffer and incubated for 1 hour with 1000x 415 

diluted 125 μM Cell-ID intercalator-Ir (Fluidigm) to stain DNA. Cells were washed 3 times with 416 

staining buffer and 2 times with de-ionized H2O prior to addition of normalization beads (Fluidigm) 417 

and acquisition on a Helios 2 mass cytometer (DVS Sciences). CyTOF Fcs files were normalized 418 

using the included beads, concatenated and debarcoded as per manufacturer’s instructions. The 419 

debarcoding step leads to a removal of doublets (76). Then, viable immune cells were pre-grated 420 

(Figure 2) and exported as .fcs files using Flowjo X (Treestar). These were further analysed using 421 

Cytosplore (https://www.cytosplore.org/). 422 

Nasal B and MAIT cell phenotyping 423 

Immunophenotyping of nasal B and MAIT cells obtained by curettes was performed as described 424 

(29). In brief, cells were dislodged from curettes and stained with LIVE/DEAD® Fixable Aqua Dead 425 

Cell Stain (ThermoFisher) and an antibody cocktail containing among others Epcam-PE, HLADR-426 

PECy7, CD66b-FITC, CD19-BV650 (all Biolegend), CD3-APCCy7, CD14-PercpCy5.5 (BD 427 

Biosciences) and CD45-PACOrange (ThermoFisher) for B cells, while the cocktail for MAIT cells 428 

included also CD8–BV785 and TCRva7.2-BV711 or TCRva7.2-PE-TxsRed and CD45-BV510 429 

https://www.cytosplore.org/
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(Biolegend). Samples were acquired on a LSRII flow cytometer and analysed using Flowjo X 430 

(Treestar). Fluorescent minus one controls for each of the included antibodies were used to validate 431 

results during set-up of all of the panels used. Samples with less than 500 immune cells or 250 432 

epithelial cells (11.9% of all nasal samples) were excluded from further analysis. A full list of all 433 

antibodies used for flow cytometry is provided in Supplementary Table 2). 434 

Intracellular cytokine staining following PMA/Ionomycin or pneumococcus stimulation 435 

For intracellular cytokine staining after PMA and Ionomycin stimulation, fresh nasal biopsy cells or 436 

PBMC were stimulated with 100 and 500 ng/mL of these, respectively. After 2 hours, Golgiplug™ 437 

(BD Biosciences) was added and cells were incubated for another 16 hours. Cells were washed and 438 

stained extracellularly with LIVE/DEAD® Fixable Violet Dead Cell Stain (ThermoFisher) for 15 439 

minutes and then for another 15 minutes with CD161-APC, CD69-BV650, CD25-PEDazzle594, 440 

CD103-BV605, CD4-PercpCy5.5, CD8-AF700, TCRvα7.2-BV785 (all Biolegend) and CD3-APH7 441 

and TCRgd-PECy7 (BD Biosciences). Cells were then permeabilized using the eBioscience™ Foxp3 442 

Transcription Factor Staining Buffer Set (Fisher Scienctific) following the manufacturer’s protocol. 443 

Intracellular staining was done for 30 minutes with FOXP3-AF488, IFNg-PE, TNFa-BV711 444 

(Biolegend) and IL17A-BV510 (BD Biosciences). Finally, cells were washed, resuspended in 200µL 445 

PBS and acquired on a LSR2. 446 

For staining with pneumococcus, PBMC were thawed with 50μg/mL DNAse I (Sigma) in pre-warmed 447 

RPMI + 10% FBS and washed twice, once in media including DNAse I and once in media without 448 

DNAse I. Cells were rested overnight and then cultured at 5x105 cells in 500uL media with 5ug/mL 449 

(corresponding to 4.3x10^7 CFU/mL) heat-inactivated type 6B Streptococcus pneumoniae or left 450 

unstimulated as a control. After 48 hours, fresh antigen was added to the cells and 2 hours later 451 

Golgiplug was added and cells were treated as above. 452 

Pneumococcal-specific B cell detection 453 
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Purified pneumococcal polysaccharides 6B and 15B (Oxford Biosystems) and Pdb were diluted to 454 

100µg/mL in purified H2O and biotinylated using the One-Step Antibody Biotinylation Kit (Miltenyi) 455 

as per manufacturer’s instructions. Biotinylated proteins were then 2x dialysed for 45 minutes against 456 

1L PBS using Slide-A-Lyzer™ MINI Dialysis Device, 3500 molecular weight cut off (ThermoFisher) 457 

and stored at 4ºC until labelling. Biotinylated 15B, 6B and Pdb were then mixed in a 4:1 molecular 458 

ratio (Pdb), or a 1:1 molecular ratio (polysaccharides), with PE-streptavidin, BV785-streptavidin or 459 

FITC-streptavidin (Biolegend), respectively. Incubation was performed on ice in a stepwise approach 460 

where 1/10 fraction of streptavidin conjugate was added to the antigen followed by a ten-minute 461 

incubation. After the final incubation, 1 pmol free biotin was added and the mixture was incubated 462 

for 30 minutes on ice. Labelled antigens were stored at 4ºC and used within two weeks.   463 

To stain cells, PBMC were thawed with 50μg/mL DNAse I (Sigma) in pre-warmed RPMI + 10% FBS 464 

and washed once in media including DNAse I. Cells were then resuspended in PBS containing 465 

LIVE/DEAD® Fixable Violet Dead Cell Stain (ThermoFisher) with 10µg/mL purified streptavidin (to 466 

block aspecific binding, Biolegend) for 15 minutes. Then labelled antigens and an antibody cocktail 467 

containing CD71-AF700 (BD Biosciences), CD19-BV605, CD27-PE/Cy7, CD38-APC/Cy7, CD69-468 

BV510 and CCR10-APC (all Biolegend) was added and cells were incubated for another 15 minutes. 469 

Finally, cells were washed, resuspended in 200µL PBS and acquired on a LSR2. 470 

Immunohistochemistry 471 

A nasal biopsy was fixed in 4% PFA for 16-24 hours before rinsing in 50% and 70% ethanol. This 472 

was embedded in Paraffin, cut into 4µm sections, dewaxed, subjected to antigen retrieval (95ºC for 473 

15 minutes in Sodium Citrate Buffer (pH 6) and processed for immunohistochemistry as published 474 

(77). In short, sections were permeabilised in methanol for 15 minutes with 1% hydrogen peroxide. 475 

After rinsing in PBS, primary antibodies were diluted in goat (or horse) serum buffer (1% BSA, 4% 476 

goat (or horse) serum, 0.01% sodium azide in PBS). Primary antibodies used were: CD3 (Dako), 477 

CD4, CD20, CD66b, CD68, CD11b (Abcam), CD8 (Epitomics) and CD161 (Atlas antibodies), which 478 

were applied over night at 4ºC (Supplementary table 3). Sections were rinsed in PBS and secondary 479 



  20 

biotinylated antibodies (Vector lab) were applied for 45 mins at RT. Slides were rinsed and a complex 480 

of avidin and biotin (ABC) solution was added to sections for 60 minutes which was prepared 30 481 

minutes prior incubation After rinsing, NovaRed™ (Vector®, Burlingame, CA, U.S.A) chromogen 482 

was prepared to manufacturer's instructions. Sections were counterstained, dehydrated, placed in 483 

xylene and mounted for microscopy and scanned using the nanozoomer digital pathology (NDP, 484 

Hamamatsu, Photonics KK). Pictures were processed using the NDPview 2 software (version 2.6.13; 485 

Hamamatsu Photonics KK). 486 

ELISA  487 

Serum IgG and IgA titres against Streptococcus pneumoniae, Streptococcus pyogenes, 488 

Staphylococcus aureus and Haemophilus influenzae were quantified in serum samples, whereas 489 

nasal mucosa IgG and IgA titres against Streptococcus pneumoniae and Haemophilus influenzae 490 

were measured in nasal wash samples using whole cell ELISA. The ELISA was performed on 491 

MaxiSorp™ 96 well plates (Nunc). Per pathogen, 100μL of 108 CFU/mL was prepared in carbonate 492 

buffer pH 8, added to the plates and allowed to adhere to the wells for 16 hours at 22°C. Then the 493 

plates were washed three times using phosphate buffered saline (PBS) containing 0.05% Tween 20, 494 

followed by blocking by adding 100 μL of PBS containing 2% Bovine serum albumin. Plates were 495 

incubated at 37°C for 1 hour and were washed before adding serial dilutions of serum samples. For 496 

detection of IgG and IgA, a 1:5000 and 1:4000 dilution of anti-human-IgG (Sigma, A9544, Germany) 497 

and anti-human-IgA (Sigma, A9669, Germany), respectively, was made using 0.1% BSA and 100 498 

µL added to each well after washing and incubated at room temperature for 2 hours. Standard curves 499 

for IgG and IgA were generated based on a standard pool serum (sera of 7 Spn carriers collected at 500 

D23 post challenge). Arbitrary units of IgG and IgA were assigned to the serum standard for each 501 

pathogen. To absorb antibodies cross-reactive against S. pneumoniae, pneumococci were added in 502 

the samples, following 2h incubation at RT and overnight incubation on a rotor at 4o C. The next day 503 

samples were centrifuged at 4,000g for 3min and supernatant was collected and measured as 504 

above. Efficacy of depletion was confirmed by ELISA against Spn post absorption. 505 
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Statistics 506 

Two-tailed, non-parametric statistical tests were used throughout the study. The number of cells in 507 

a cluster for each subject was normalized against the total number of non-immune cells acquired by 508 

CyTOF for that subject to account for number of cells isolated from a given biopsy. This normalization 509 

strategy has the advantage that the normalized frequencies of cells in a cluster is not dependent on 510 

other clusters, which is a major disadvantage of normalizing against total immune cells. Normalized 511 

cluster abundances were then compared between carriage– and carriage+ subjects for each of the 512 

clusters using the Mann-Whitney test, without correcting for multiple testing. Data was analysed and 513 

graphs were created using ‘pheatmap’ and ‘ggplot2’ packages in R software and circular graph 514 

(Figure 1C) was created using circos software (78). The graphical abstract was created with 515 

BioRender 516 

Data availability 517 

Normalized and debarcoded CyTOF fcs files have been deposited in the FlowRepository with 518 

identifier FR-FCM-ZYSE (https://flowrepository.org/).  519 

Study Approval 520 

All subjects gave written informed consent and research was conducted in compliance with all 521 

relevant ethical regulations. Ethical approval was given by the East Liverpool NHS Research and 522 

Ethics Committee (REC), reference numbers: 17/NW/0029 and 14/NW/1460.  523 

https://flowrepository.org/
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Figure and figure legends 

 

Figure 1. Mass cytometry from nasal biopsies following experimental human pneumococcal 

challenge. A) Study design showing pneumococcal inoculation (green bar) and sample collection. 
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Subjects who acquired pneumococcus following challenge are depicted in red (n=8), while those 

protected are depicted in blue (n=12). Antibiotics (abx) were administered in the 3 days leading up 

to biopsy collection (blue area). B) Viable cell yield following enzymatic biopsy digestion for the 

twenty biopsies collected for CyTOF. Individual samples and boxplots, depicting median and 

interquartile ranges, with whiskers extending to 1.5× interquartile range or maximum value, are 

shown. C) Circle diagram showing all 293 defined clusters within 9 lineages and 22 subpopulations. 

From outside in: number of cells in each cluster is depicted by grey bars. Relative expression for 36 

markers is shown with red depicting higher expression (CD45 and Epcam are not depicted). 

Association with carriage state is shown, where blue bars depict the fold-change of the median of 

normalized abundance in carriage– subjects over carriage+ subjects (Mann-Whitney test, p < 0.05 

shown only). Significant correlations between Spn density at either day 2 or day 7 with normalized 

abundance are depicted by circles, with red indicating a negative association. Spearman correlation 

analyses were performed with all subjects where carriage– subjects were included with a density of 

0. Ribbons connect highly correlated (r>0.70) clusters that were associated with Spn carriage status 

not belonging to the same lineage, with colour indicating the lineage of origin. DN_T = double 

negative T cells, Gran = granulocytes, ILC = innate lymphoid cells. 
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Figure 2. CyTOF analysis strategy. A) CyTOF data files were pre-gated using Flowjo to identify cells 

(DNA+ Bead–), followed by selecting viable immune cells (CD45+ Dead–). These cells were exported 
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and loaded in Cytosplore for hierarchical stochastic neighbour embedding (h-sne), in which lineages, 

subpopulations and clusters were sequentially identified in three steps. Gating for naïve CD4+ T cells 

is shown as an example. B) Cells were clustered using all 38 markers minus the epithelial marker 

Epcam and lineages were then defined based on the expression of nine markers. Clustered lineages 

and expression of included markers are shown. Subpopulations for C) CD8+ T cells, D) granulocytes, 

E) CD4+ T cells, F) innate lymphoid cells, G) CD117+ cells and H) double-negative T cells were 

defined based on the expression of the depicted markers. B cells, plasma cells, myeloid cells were 

not further divided into subpopulations due to lack of clear clustering by relevant markers. Cell 

subpopulations were then further divided into clusters using all 38 markers minus the epithelial 

marker Epcam. 
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Figure 3. Nasal B cells are depleted following pneumococcal carriage. A) Heatmap showing the 

expression of thirty-seven markers for all B cell clusters. Clusters were ordered based on similarity 
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and a distance dendrogram is depicted. B) The relative abundance for each of the three significantly 

higher clusters normalized to stromal cells is expressed on a log10 scale for carriage– (Spn–, blue, 

n=12) and carriage+ (Spn+, red, n=8) subjects. Boxplots, depicting median and interquartile ranges, 

with whiskers extending to 1.5× interquartile range or maximum value, and individual subjects are 

shown. C) Levels of CD19+ nasal B cells longitudinally measured by flow cytometry from minimally-

invasive nasal curettes in an independent cohort for carriage– (Spn–, blue, n=52) and carriage+ 

(Spn+, red, n= 42) subjects. Mean and standard error of mean of log2-transformed fold change levels 

to baseline are shown. * p < 0.05 by Wilcoxon test comparing to baseline with Bonferroni correction 

for comparing multiple timepoints. 
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Figure 4. Pneumococcal carriage leads to increased systemic plasmablasts. A) Levels of 6B 

polysaccharide-specific, 15B polysaccharide-specific, Pneumolysin derivative b (Pneumolysin)-

specific or all plasmablast amongst total B cells were measured from PBMC collected at baseline 

(Day -5) and at the time of biopsy (Day 10 post inoculation). Boxplots depicting median and 

interquartile ranges, with whiskers extending to 1.5× interquartile range or maximum value, and 

individual subjects are shown with carriage–  in blue (n=12) and carriage+ in red (n=8). Paired 

samples are connected by dashed lines.  * p < 0.05, ** p < 0.01 by Wilcoxon test comparing a group 

to its baseline. B) Levels of CCR10+ plasmablasts for 6B-specific and total plasmablasts measured 

from PBMC collected at baseline (Day -5) and at the time of biopsy (Day 10 post inoculation). 

Boxplots and individual subjects are depicted with carriage–  in blue and carriage+ in red with paired 
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samples connected by dashed lines.  ** p < 0.01 by Wilcoxon test comparing a group to its baseline. 

C) Correlations between fold-change in levels of 6B PS-specific and total plasmablasts between 

baseline and day 10 against levels of B cell clusters measured by CyTOF. Color and size of symbols 

reflect the Spearman rho value. * p < 0.05 and ** p < 0.01 by Spearman test.  
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Figure 5. Increased MAIT responses associate with protection from carriage. A) Heatmap showing 

the expression of thirty-seven markers for each of the four CD8+ clusters that were significantly 

different between carriers and non-carriers. Non-significant CD8+ T clusters are not shown. Below 

the heatmap, the abundance for each of the significantly higher clusters normalized to stromal cells 

is expressed on a log10 scale for carriage– (blue) and carriage+ (red) subjects. Boxplots depicting 

median and interquartile ranges, with whiskers extending to 1.5× interquartile range or maximum 

value, and individual subjects are depicted. B) Representative flow cytometry contour plot of CD8+ 

CD69+ and CD8+ CD69- T cells, showing CD103 and CD49a tissue resident marker expression on 

nasal biopsy cells (n=4). C) Representative flow cytometry contour plot of unstimulated nasal biopsy 

cells, and nasal biopsy cells and PBMC stimulated overnight with PMA and ionomycin (PI) to assess 

functional capacity (n=4). D) TNF, IFN-ɣ and IL-17A production by CD8+ MAIT cells 

(CD161+TCRvα7.2+) after 3-day in vitro stimulation with heat-inactivated pneumococcus (HI-Spn) or 

left unstimulated for carriage– (blue, n=14) and carriage+ (red, n=8) subjects in PBMC collected at 

baseline. Boxplots and individual subjects, connected by dashed lines, are shown. ** p < 0.01 by 

Wilcoxon test, *** p < 0.001 by Wilcoxon test. E) Correlations between the difference in cytokine 

production (total of TNF and IFN-ɣ) by MAIT cells in vitro stimulated with HI-Spn or left unstimulated 

against CD8+ CD161+ T cell clusters measured by CyTOF (n=20). Colour and size of symbols reflect 

the Spearman rho value. * p < 0.05 by Spearman test. 
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Figure 6. Association between baseline IgG against Spn and cluster abundance. A) Levels of 

baseline IgG levels against whole cell 6B Spn in serum are shown carriage– (blue, n=12) and 

carriage+ (red, n=8) subjects. Boxplots depicting median and interquartile ranges, with whiskers 

extending to 1.5× interquartile range or maximum value, and individual subjects, connected by 

dashed lines, are shown. B) Correlation between abundance of clusters and baseline levels of IgG 

are shown. Individuals subjects and regression lines per group are shown, with 95% confidence 

intervals depicted in grey. *p=0.03 determined by linear model including carriage status and log-

transformed baseline IgG levels.  
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Figure 7. Immunohistochemistry on serial sections of a nasal biopsy. To establish an overall cellular 

distribution in the tissue a 10x magnification is shown for each of the markers. A 40x inset is also 

included to visualize some individual positive cells. A) Haematoxylin and eosin staining showing the 

entire biopsy. Staining of subsequent slices showing the biopsy at the epithelial edge for the markers 

B) negative control, C) CD3, D) CD4, E) CD8, F) CD161, G) CD20, H) CD68, I) CD66b and J) 

CD11b. A scale showing 250µm are added to all panels and a 40x inset is included. Slices were 

counterstained with haematoxylin and eosin. Some background staining of the extracellular matrix 

is present for CD161 (panel F). Biopsy was derived from one challenged, carriage– subject. 
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Tables 

Table 1. Volunteer cohort characteristics divided by carriage state. 

 

 

 

Table 2. List of lineages and subpopulations derived from nasal biopsy analysis. For all nine 

lineages and twenty-two subpopulations, the numbers of defined cell clusters are shown. In 

addition, the total numbers of cells within those lineages/subpopulations and the percentage of that 

subpopulation within all cells for carriage– and carriage+ subjects are shown. Memory cells are 

defined as CD45RO+RA– and naïve cells are defined as CD45RO–RA+ 

Lineage Subpopulation Clusters Cells %Carriage– %Carriage+ 

CD8+ T cells CD161+ CD8+ T cells 17 25103 13.0 11.7 

 Naive CD8+ T cells 20 9042 3.8 6.3 

 Memory CD8+ T cells 26 36860 18.1 19.4 

 Total 63 71005 34.9 37.3 

CD4+ T cells CD161+ CD4+ T cells 21 36328 18.7 17.0 

 CD25hi CD4+ T cells 9 2743 1.2 1.9 

 Naïve CD4+ T cells 9 4235 2.2 1.8 

 Memory CD4+ T cells 23 21158 10.5 10.8 

 CD45RO–RA– CD4+ T  6 2743 1.2 1.9 

 Total 68 67207 33.8 33.5 

Myeloid cells - 25 15226 7.4 8.3 

Innate lymphoid 
cells 

CD8–CD16+ ILC 13 3683 2.0 1.5 

 CD8+CD16+ ILC 5 2392 1.1 1.4 

 CD16–CD127+ ILC 4 1550 0.8 0.6 

 CD16–CD127– ILC 9 3417 1.7 1.8 

 Total 31 11042 5.6 5.3 

B cells - 22 10279 5.8 3.7 

CD4–CD8– T cells TCRgd T cells 9 1838 0.8 1.2 

 DN T cells 7 3052 1.6 1.5 

 CD8dim T cells 13 4317 2.2 2.1 

 Total 29 9207 4.6 4.7 

 Carriage–  
(n=12) 

Carriage+  
(n=8) 

Female gender (%) 4 (33.3%) 4 (50%) 
Median age (min-max) 21 (18-44) 23 (20-30) 
Median day 2 Spn density CFU/mL (min-max) - 127.2 (5.8 - 38677.7) 
Median day 7 Spn density CFU/mL (min-max) - 187.5 (0 – 21736.6) 
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Granulocytes CD66b+ Granulocytes 19 5478 2.9 2.4 

 CD66b– Granulocytes 2 662 0.3 0.3 

 Total 21 6140 3.2 2.7 

CD117+ cells CD117+ lymphocytes 8 2566 1.3 1.3 

 CD117+ mast cells 13 2810 1.5 1.2 

 Total 21 5376 8.5 6.2 

Plasma cells - 13 3944 2.0 2.0 

9 22 293 199426 100 100 
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