JCI The Journal of Clinical Investigation

Innate and adaptive nasal mucosal immune responses following experimental human pneumococcal colonization

Simon P. Jochems, ..., Maria Yazdanbakhsh, Daniela M. Ferreira

J Clin Invest. 2019. https://doi.org/10.1172/JCI128865.

 Research
 In-Press
 Preview
 Immunology
 Infectious disease

Graphical abstract

Find the latest version:

http://jci.me/128865/pdf

1 Innate and adaptive nasal mucosal immune responses following experimental human

- 2 pneumococcal colonization
- 3 Simon P. Jochems^{1,2,*}, Karin de Ruiter^{2,*}, Carla Solórzano^{1,*}, Astrid Voskamp^{2,*}, Elena Mitsi¹,
- 4 Elissavet Nikolaou¹, Beatriz F Carniel¹, Sherin Pojar¹, Esther L. German¹, Jesús Reiné¹, Alessandra
- 5 Soares-Schanoski³, Helen Hill^{1,4}, Rachel Robinson^{1,4}, Angela D. Hyder-Wright^{1,4}, Caroline M.
- 6 Weight⁵, Pascal F. Durrenberger⁶, Robert S. Heyderman⁵, Stephen B. Gordon^{1,7}, Hermelijn H.
- 7 Smits², Britta C. Urban⁸, Jamie Rylance¹, Andrea M. Collins^{1,4,9}, Mark D. Wilkie⁴, Lepa Lazarova^{1,4},
- 8 Samuel C. Leong^{1,10}, Maria Yazdanbakhsh^{2,#}, Daniela M. Ferreira^{1,#}
- 9 ¹ Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United
- 10 Kingdom
- ² Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- 12 ³ Bacteriology Laboratory, Butantan Institute, Sao Paulo, Brazil
- 13 ⁴ Royal Liverpool and Broadgreen University Hospital, Liverpool, United Kingdom
- ⁵ Division of Infection and Immunity, University College London, London, United Kingdom
- ⁶ Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- ⁷ Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- ⁸ Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- ⁹ Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
- ¹⁰ Department of Otorhinolaryngology Head and Neck Surgery, Aintree University Hospital NHS
- 20 Foundation Trust, Liverpool, United Kingdom
- 21 ^{*} Joint first authors
- 22 [#] Joint senior authors
- 23

24 Corresponding authors: Simon Jochems (Albinusdreef 2, 2333 ZA, Leiden, Netherlands;

- 25 +31(0)715261404; <u>s.p.jochems@lumc.nl</u>) and Daniela Ferreira (Pembroke Place, L3 5QA,
- 26 Liverpool, UK; +44 (0)1517053711; <u>daniela.ferreira@lstmed.ac.uk</u>).
- 27 The authors have declared that no conflict of interest exists.
- 28 The Funders require a Creative Commons CC-BY license to support publication fees
- 29

30 Abstract

31 Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently 32 colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune 33 cells from nasal biopsy samples collected following experimental human pneumococcal challenge 34 in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B 35 36 cell and CD8⁺CD161⁺ T cell clusters were significantly lower in colonized than in non-colonized 37 subjects. By following a second cohort before and after pneumococcal challenge we observed that 38 B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an 39 expansion of Spn polysaccharide-specific and total plasmablasts in blood. Moreover, increased 40 responses of blood mucosal associated invariant T (MAIT) cells against in vitro stimulation with 41 pneumococcus prior to challenge associated with protection against establishment of Spn 42 colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells 43 in the protection against pneumococcal colonization and demonstrate that colonization affects 44 mucosal and circulating B cell populations.

46 Introduction

47 Streptococcus pneumoniae (Spn) is a major cause of morbidity and mortality worldwide (1, 2). It is 48 the most common bacterial cause of otitis media, pneumonia and meningitis in children (1). Risk 49 factors for pneumococcal disease include very young or advanced age, co-infection with influenza, 50 HIV infection, chronic lung disease, asplenia and smoking (3).

51 However, nasopharyngeal colonization, or carriage, of Spn in the absence of disease is common, 52 with approximately 50% of infants and 10% of adults colonized at any time (4). Carriage is an 53 immunising event in both children and adults but is also important as a prerequisite of disease and 54 as the source of transmission (5-8). Successful colonization by Spn depends on many factors 55 including bacterial factors, niche competition with other microbes, evasion of mucociliary clearance 56 and host nutrient availability as well as immunological control of Spn (9). Epidemiological and 57 modelling data have demonstrated that the immunizing effect of carriage is likely mediated by a 58 combination of serotype-dependent and serotype-independent mechanisms (10-12).

The introduction of pneumococcal conjugate vaccines (PCV) has led to significant reductions in carriage prevalence of covered serotypes, leading to herd protection and a decrease in pneumococcal disease in unvaccinated adults in addition to conferring direct protection (13). However, only 13 of approximately 100 Spn serotypes are currently covered by PCVs and the elucidation of immune mechanisms that associate with the control of Spn carriage remains an area of active investigation (14).

Mouse models have suggested that Th17-mediated recruitment of neutrophils and monocytes to the nasopharynx is the mechanism of control and clearance of Spn carriage (15-17). In contrast, depletion of B cells or CD8⁺ T cells did not impair the clearance of Spn in murine models (18, 19). Amplification of monocyte recruitment in an auto-feedback loop via CCL2 was found to be important for clearance, further supporting the role for these cells in control of carriage (20). Innate factors have also been implicated in murine models as disruption of IFN- α or interleukin-1 signalling is 71 associated with increased colonization (21, 22). Recently, we demonstrated using an experimental 72 human pneumococcal challenge (EHPC) model that carriage leads to degranulation of nasal-73 resident neutrophils and recruitment of monocytes to the nasal mucosal surface (23). These 74 responses were impaired by co-infection with live attenuated influenza virus, which associated with 75 increased carriage density (24). Protection against experimental carriage acquisition in an 76 unvaccinated setting is further associated with the levels of circulating memory B cells, but not levels 77 of IgG, directed against the Spn polysaccharide capsule (25). Following PCV, very high levels of IgG 78 associate with protection against experimental carriage acquisition, likely by mediating Spn 79 agglutination followed by mucociliary clearance (26, 27). However, the relative role of these and 80 other adaptive and innate immune cell subsets in controlling Spn at the human nasal mucosa 81 remains largely unknown (28). The relatively small number of cells that can be collected from the 82 nasal mucosa using minimally-invasive nasal curettage has limited the capacity to analyse the role 83 of cellular subsets in controlling Spn carriage at the human nasal mucosa (29).

84 Here, we collected nasal biopsies under local anaesthesia following experimental human 85 pneumococcal challenge. This allowed for a comprehensive analysis of mucosal immunity during 86 Spn carriage as these samples yield substantially more cells than minimally-invasive curettes. Nasal 87 mucosal samples were analysed using mass cytometry (CyTOF), a technique in which antibodies 88 are labelled with rare earth metals and that enabled the investigation of 37 protein markers 89 simultaneously on a single-cell level (30). This method is ideally suited to investigate the relative 90 understudied mucosal immune populations as the large number of markers allow the identification 91 of previously unknown cell subsets and markers. Indeed, CyTOF has recently provided new insights 92 into alveolar macrophage subpopulations in the lung and innate lymphoid cells differentiation 93 pathways in the gut (31, 32). By combining nasal biopsies and CyTOF, we were thus able to study 94 in-depth the immunological role of innate and adaptive cell subsets at the human nasal mucosa and 95 their role during pneumococcal colonization.

97 Results

98 Characterization of nasal immune populations

99 Twenty healthy subjects negative for natural pneumococcal carriage at baseline screening were 100 challenged intranasally with type 6B Spn (Figure 1A and Table 1). Carriage state was assessed at 101 days two and seven post challenge and a nasal biopsy was collected at ten days post challenge 102 (Supplementary Video 1), the timepoint at which Spn starts to be cleared from the nose (33, 34). 103 Eight subjects became colonized with Spn (carriage⁺), while twelve subjects remained carriage⁻ 104 (Figure 1A). Biopsies yielded a median of 2.3x10⁵ cells (IQR: 1.6x10⁵ - 3.2x10⁵) per subject, 105 approximately 90% of which were stromal cells, which were stained with a panel of thirty-eight 106 antibodies and analysed by CvTOF (Figure 1B, Supplementary Table 1). Viable immune cells were 107 manually gated from all acquired events and subsequently clustered by hierarchical-stochastic 108 neighbour embedding (h-sne) using Cytosplore software (Figure 1C,2) (35-37). H-sne is a recently 109 developed method in which t-distributed stochastic neighbor embedding (t-sne) is performed 110 sequentially to cluster first global cell populations, each of which is then in turn clustered into 111 subpopulations.

112 Based on the expression of 37 markers, a total of 199,426 immune cells from all subjects were 113 divided into nine lineages (CD8⁺ T cells, CD4⁺ T cells, myeloid cells, innate lymphoid cells, B cells, 114 double-negative T cells, granulocytes, CD117⁺ cells and plasma cells, in order of decreasing 115 abundance). These cell lineages were further divided into twenty-two subpopulations and 293 116 clusters (Figure 1C and Table 2). Cell numbers were normalized to the number of stromal cells for 117 each subject to correct for varying biopsy yields. Normalized abundancies were then compared 118 between carriage⁻ and carriage⁺ subjects for each of the lineages, subpopulations and clusters. 119 There were no significant differences in frequencies between total lineages or subpopulations 120 between carriage⁻ and carriage⁺ subjects. However, at a finer level seven clusters were significantly 121 higher in carriage⁻ than in carriage⁺ subjects (Figure 1C, blue bars). Of note, three B cell clusters 122 were higher in carriage⁻ subjects (Figure 1C). Moreover, three CD8⁺ T cell clusters, all expressing

123 CD161, and one CD8^{dim} T cell cluster were higher in carriage⁻ subjects than in carriage⁺ subjects 124 (Figure 1C). The seven significant clusters strongly correlated (r>0.70) with eighty-eight clusters in 125 other lineages/subpopulations, sixty-eight of which were in B or T cell lineages, highlighting an 126 interconnectivity between B and T cell subpopulations in the human nasopharynx (Figure 1C). We 127 also investigated whether Spn load was associated with cluster abundance to determine the effect 128 of cell clusters on the control of bacterial load. At day 2, four clusters were significantly negatively 129 correlated with Spn density, including the CD8^{dim} T cell cluster (r=-0.51, p=0.023) and one of the 130 CD161⁺ CD8⁺ T cell clusters (r=-0.51, p=0.021) that was increased in carriage⁻ subjects over 131 carriage⁺ subjects. The other two clusters that negatively associated with density were also were 132 CD8⁺ T cell clusters, with one expressing CD161. At day 7, only two clusters were significantly associated with Spn density: the CD8^{dim} T cell cluster (r=-0.55, p=0.011) and one B cell cluster (r=-133 134 0.45, p=0.049).

135 Nasal B cells are depleted during pneumococcal carriage

136 We then further investigated the three B cell clusters that were higher in carriage⁻ subjects (Figure 137 3A,B). All three significantly higher clusters (cluster 4, 9 and 17) expressed CD45RA, HLA-DR, 138 CD19, CCR6 and CCR7 to varying degrees. None of these clusters expressed CD38, a marker for 139 plasmablasts, or CD5, a marker for innate B cells (38, 39). Cluster 9 was 2.9-fold higher in carriage-140 subjects (p = 0.047) and cells in this cluster expressed also low levels of CXCR5 and CD27. Cluster 141 17 (2.0-fold higher, p = 0.049) additionally expressed the B cell activation marker CD69. To assess 142 whether the higher frequency in carriage subjects was related to increased B cells in carriage 143 subjects or decreased B cells in carriage⁺ subjects, we longitudinally measured CD19⁺ B cell 144 frequencies in nasal microsamples collected from an independent cohort (Figure 3C and 145 Supplementary Figure 1A). Compared to baseline, B cell levels decreased following pneumococcal 146 carriage at days 2 (2.1-fold, p = 0.048), 6 (2.8-fold), 9 (2.0-fold) and 27 (3.1-fold, p = 0.028) post-147 inoculation. In the carriage group, B cell levels decreased 1.1-fold at days 2 and 6, increased 1.2-

- fold at day 9 and decreased 1.2-fold at day 27, respectively and were thus relatively stable. The fold-
- 149 change decrease in nasal B cell levels did not associate with Spn density at any timepoint.

150 Pneumococcal carriage increases circulating plasmablasts

151 We hypothesized that the depletion of B cells from the nasal mucosa following carriage 152 establishment was due to a re-circulation of activated B cells. Although, none of the B cell clusters 153 that were lower in the carriage⁺ group expressed the plasmablast marker CD38, it has been 154 demonstrated previously that memory B cells differentiate rapidly intro plasmablasts upon activation 155 (40). Therefore, we measured numbers of Spn-specific and total plasmablasts in peripheral blood 156 mononuclear cells (PBMC) collected before and after carriage establishment using a flow cytometry-157 based assay (Supplementary Figure 1B). During carriage, the frequency of 6B polysaccharide-158 specific plasmablasts among total B cells increased while the frequency of plasmablasts specific to 159 the pneumococcal protein pneumolysin remained unaltered (Figure 4A). As a negative control we 160 measured levels of plasmablasts specific for an unrelated Spn capsular type (15B), which were not 161 affected as expected. However, the frequency of total circulating plasmablasts among all B cells 162 increased (median 1.5x, IQR: 1.2-2.8x; p = 0.008) suggesting that nasal B cells became non-163 specifically activated during carriage. Similar results were obtained when normalizing to the total 164 number of lymphocytes, demonstrating this was not due to other shifting B cell populations 165 (Supplementary Figure 2A). We then investigated CCR10 expression on these plasmablasts, which 166 has been reported to mark IgA secreting cells (41) and is potentially important for homing of B cells 167 to mucosal tissues including the airways (42, 43). The total population of plasmablasts post carriage 168 displayed reduced numbers of CCR10⁺ cells, in contrast to 6B-specific plasmablasts, indicating 169 differential expansion between specific and non-specific B cell populations (Figure 4B). This is 170 supported by the observation that increased circulating levels of 6B polysaccharide-specific plasmablasts inversely correlated with the nasal B cell CyTOF clusters 9 and 20, while total 171 172 plasmablast increases inversely correlated with the CyTOF B cell clusters 21 (Figure 4C). Clusters 173 9 and 21 still negatively correlated with levels of circulating 6B-specific and total plasmablasts,

174 respectively, after normalization to total lymphocyte numbers (Supplementary Figure 2B). Thus, we 175 wanted to assess whether both Spn-specific as well as unrelated B cells became activated following 176 carriage, leading to recirculation. We therefore measured antibody levels in serum against not only 177 Spn but also Streptococcus pyogenes, Staphylococcus aureus and Haemophilus influenzae as 178 these are common colonizers of the human nasopharynx and thus nasal B cells against these 179 bacterial species are likely present in the nose of most individuals. Following Spn colonization, IgG 180 levels specific for Spn (median 1.4x, IQR: 1.1-2.4) and Haemophilus influenzae (median 1.2x, IQR: 181 1.1-1.5) significantly increased, while IgG levels specific for Streptococcus pyogenes and 182 Staphylococcus aureus were not significantly altered (Supplementary Figure 3A). Serum IgA 183 concentration only increased for Spn and not for Haemophilus influenzae (Hi) or any of the other 184 bacterial species (Supplementary Figure 3B). To investigate whether this observed increase in 185 Haemophilus-specific IgG was due to an increase in cross-reactive antibodies, directed against for 186 example the surface antigen choline phosphate (ChoP) or the capsular polysaccharide (44, 45), we 187 also measured Haemophilus-specific IgG titers following absorption with whole cell pneumococcus 188 (Supplementary Figure 3C). This abrogated the increased titers against Hi post carriage, indicating 189 this was likely due to cross-reactivity. Similarly, in nasal wash, levels of IgA against Spn and Hi were 190 increased, whereby the latter also was prevented by pre-absorption of nasal wash with Spn 191 (Supplementary Figure 3D,E).

192 Nasal CD8 Tissue-resident memory T cells are higher in carriage⁻ subjects

The three clusters of CD8⁺ T cells and the cluster of CD8^{dim} T cells that were higher in carriagesubjects all expressed CD69, a marker of tissue-resident memory (Trm) cells (Figure 5A). To verify that these CD69⁺ CD8⁺ T cells represented Trm cells, we measured the expression of CD103 and CD49a on CD69⁺ and CD69⁻ cells by flow cytometry from a representative biopsy (Supplementary Figure 4A). Indeed, 89.1% of nasal CD69⁺ CD8⁺ T cells expressed CD103 and CD49a, confirming that these were Trm cells (Figure 5B) (46). The markers CD5, CD38, HLA-DR, CCR6, CD127, CCR7 and CD11c were expressed in cluster-specific patterns and at varying intensities among the significant clusters. This suggests that clusters of cells with varying degrees of activation and memory types were enriched in carriage⁻ subjects. One cluster expressed only low levels of CD8 (cluster 10 of CD8^{dim} T cells, 2.0-fold higher, p = 0.016), which could reflect cytotoxic effector memory cells (47). We then stimulated nasal biopsy cells and PBMC overnight with PMA and ionomycin to assess the functional capacity of nasal CD8⁺ T cells (Figure 5C). Among nasal CD8⁺ T cells, 94.8% produced tumor necrosis factor alpha (TNF) and/or interferon gamma (IFN- γ) following stimulation, compared to 36% of blood CD8⁺ T cells, demonstrating that nasal CD8⁺ T cells are highly functional.

207 Baseline circulating MAIT functionality associates with resistance to pneumococcal carriage

208 Three of the four significant clusters expressed CD161, a marker for mucosal associated invariant T 209 (MAIT) cells, and we therefore tested the hypothesis that MAIT cell responses against Spn were 210 associated with protection against carriage. PBMC collected prior to pneumococcal challenge were 211 stimulated in vitro with heat-inactivated Spn and activation (CD69) and cytokine production (TNF, 212 IFN-y and IL-17A) were assessed (Supplementary Figure 4B). MAIT cells of both carriage⁻ and 213 carriage⁺ groups upregulated CD69 after a 3-day culture with heat-inactivated Spn (Supplementary 214 Figure 4C). However, only MAIT cells from carriage- subjects produced increased levels of TNF and 215 IFN-y, but not IL-17A, upon restimulation *in vitro* with heat-inactivated Spn (Figure 5D). Conversely, 216 MAIT cells from carriage⁺ subjects did not produce increased levels of any cytokine upon stimulation. 217 This was specific to MAIT cells as conventional CD8⁺ T cells responded by producing small amounts 218 of IFN-y and no TNF (Supplementary Figure 4D). The baseline responses of MAIT cells in blood 219 upon restimulation showed a positive correlation with numbers of nasal cells at ten days post 220 pneumococcal challenge in CyTOF CD161⁺ CD8⁺ T cell cluster 9, which was significantly higher in 221 the carriage⁻ group (r = 0.54, p = 0.02, Figure 5E).

To assess the kinetics of nasal MAIT cells, we collected nasal curettes before and at 2 and 6 days post inoculation in an independent cohort and analysed total MAIT cells by flow cytometry (Supplementary Figure 5). Total MAIT cell numbers were similar between carriage⁻ and carriage⁺ groups at all timepoints, as observed by CyTOF at day 10. Due to the low numbers of cells that can

be obtained using minimally-invasive curettage, we were not able to longitudinally measure MAIT
 cell subsets that were significantly associated with carriage as identified by CyTOF.

228 Association between baseline IgG and abundance of B and CD8⁺ T cell clusters

229 We wanted to further characterize the relationship between abundance of the clusters that were 230 significantly different between carriage⁺ and carriage⁻ groups with levels of baseline IgG against Spn 231 to assess whether recall responses were involved. As previously reported, there was no difference 232 between carriage⁺ and carriage⁻ groups in levels of baseline IgG against Spn (Figure 6A) (7, 25, 27). 233 Of the seven clusters significantly associated with carriage status, one cluster (B cell cluster 9) 234 showed a positive association between baseline IgG and cluster abundance (Figure 6B). This B cell 235 cluster also correlated with the increased number of 6B-specific plasmablasts following colonization, 236 which could suggest that these B cells are linked to production of Spn 6B-specific antibodies.

237 Nasal monocytes show limited differentiation into macrophages

238 Monocytes have been previously associated with the clearance of Spn carriage (16, 23), however 239 these cells have not been previously phenotyped in detail in the human nasopharynx. Of the twenty-240 five clusters defined in the myeloid lineage, fifteen expressed CD14 (Supplementary Figure 6). Of 241 these, only two also expressed CD16. Four CD14⁺ clusters expressed the macrophage markers 242 CD163 and CD206 and an additional three clusters expressed CD206 but not CD163 (48). However, 243 alveolar monocytes can express CD206, suggesting this is not a definitive indication of differentiation 244 (49). The activation markers CD25 and CD86 were present on five monocyte clusters (50). Thus, 245 monocyte/macrophages in the nose mainly consisted of classical monocytes with limited 246 differentiation into macrophages.

247 Characterization of nasal CD4⁺ memory T cells

CD4⁺ T memory cells, in particular Th17 cells, were previously found to be critical for Spn immunity
 in mice models of nasal colonization (15, 16). Of all cells in the CD4⁺ T cell lineage, 89.6% expressed

250 the memory marker CD45RO. Of these, 60.3% expressed CD161, a marker that has been proposed 251 to identify Th17 cells (51, 52). Another 4.6% of memory cells was defined by expression of high 252 levels of CD25, a marker for regulatory T cells. We defined twenty-three clusters of CD161⁻ CD4⁺ T 253 memory cells, twenty-one clusters of CD161⁺ CD4⁺ T memory cells and nine clusters of CD25^{hi} CD4⁺ 254 T memory cells (Supplementary Figure 7). All CD4⁺ T memory cell clusters expressed a combination of the markers CD7, CD127, HLA-DR, CD38 and CD69 demonstrating a wide range in activation 255 and differentiation status (46). The CD25^{hi} CD4⁺ T memory cells likely were regulatory T cells as 256 257 they were predominantly negative for CD127 and two of these clusters expressed cytotoxic Tlymphocyte-associated protein 4 (CTLA-4) and CD27 (53). CD161 was not restricted to Th17 cells 258 259 as among CD161⁺ CD4⁺ T memory cells, two clusters expressed also CD8 and were thus doublepositive T cells (54). In addition, two clusters expressed CD25 without CD127 expression indicating 260 261 regulatory T cells, and one cluster expressed chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), a marker of Th2 cells (55). 262

263 Cellular distribution through the nasal mucosa

We then performed immunohistochemistry on a biopsy from a challenged but carriage[–] subject to further understand the distribution of these cells through the mucosal tissue (Figure 7). CD4⁺ T cells were found predominantly in the subepithelial layer (Figure 7C,D), while CD8 and CD161 were also found at the epithelial layer (Figure 7E,F). Similar to CD4⁺ T cells, B cells (defined by CD20) were mostly observed in the sub-epithelium, while myeloid cells (CD68) could be seen at both the epithelial and sub-epithelial layer (Figure 7G,H). Neutrophils were found abundantly at the epithelial surface but also in the sub-epithelium (Figure 7I,J).

271 Discussion

This study comprehensively characterised immune cells in biopsies collected from the human nasal mucosa. As nasal samples were collected ten days following experimental human pneumococcal challenge, we were able to associate the frequency of specific immune populations with Spn 275 carriage. Given the difficulty in access to such tissue samples, especially in a setting where the onset 276 of infection is known, this provided a unique opportunity to investigate mucosal immune responses 277 not undertaken previously. The application of CyTOF led to a broad and comprehensive study of 278 cellular subsets involved in immunity against Spn carriage, deriving 293 immune clusters belonging 279 to nine cellular lineages. Clusters belonging to B cells and CD8⁺ CD161⁺ T cells were higher in carriage⁻ subjects. In addition to carriage status, we also associated Spn density with cluster 280 281 abundance. Several CD8⁺ T cell clusters negatively correlated with Spn load, further supporting a 282 protective function for these cells.

283 B cells were depleted from the nasal mucosa following the establishment of Spn carriage. This 284 depletion correlated on an individual level with increased numbers of circulating 6B polysaccharide 285 specific and total plasmablasts. Thus, this depletion likely was due to recirculation of activated B 286 cells rather than due to apoptosis of nasal B cell upon Spn polysaccharide capsule encounter as has 287 also been described (56). The total plasmablast expansion, but not 6B plasmablast expansion, was 288 characterized by a decreased proportion of CCR10⁺ cells, suggesting a preferential expansion of 289 CCR10⁻ cells or a downregulation of this marker. The correlation between low numbers of cells in 290 specific nasal B cell clusters with increased levels of circulating plasmablasts indicates that activation 291 of nasal B cells during carriage led to B cell re-circulation. In particular numbers of B cell cluster 9, 292 which was lower in carriage⁺ subjects, associated with 6B PS-specific plasmablasts, as well as with 293 levels of pneumococcus-specific antibodies in serum. Indeed, trafficking of memory B cells between 294 airways and blood has been reported (57).

Levels of serum IgG against Hi increased following colonization with Spn, due to an induction of cross-reactive antibodies, as pre-absorption with Spn abrogated this increase. Thus, pneumococcal colonization has an effect on mucosal and systemic B cell populations and antibodies that bind both pneumococcus and Hi. The negative association between Spn and Hi in the human nasopharynx is well described and this observation could be added to the potential mechanisms that underlie this interaction, such as Hi-mediated recruitment of neutrophils and clearance of pneumococcus (58). B

301 cells express the innate receptors TLR2 and TLR4 (59), which can be activated by pneumococcus, 302 and we thus hypothesized that pneumococcal carriage leads to non-specific activation of B cells. 303 *Neisseria lactamica* has been previously demonstrated to be able to aspecifically activate innate B 304 cells (60, 61). However, the increased antibody responses against Hi were likely due to induction of 305 cross-reactive antibodies and we observed no increase in serum IgG levels against *Streptococcus* 306 *pyogenes* or *Staphylococcus aureus*, two other common nasal colonizers.

307 Several nasal CD8⁺ Trm cell clusters were higher in subjects protected from Spn carriage. These 308 cells were previously found to be protective against influenza infection in murine models (62). Spn 309 is classically thought of as an extracellular bacterium and therefore the role of CD8⁺ T cells in 310 controlling Spn has not been extensively studied in humans. However, it was recently shown that 311 Spn can replicate within splenic macrophages and can reside within epithelial cells, suggesting that 312 CD8⁺ T cell immunity could be elicited by Spn and play a role in protection against Spn carriage or 313 disease (63, 64). Indeed, Spn protein specific CD8⁺ T cells could be readily detected in blood of 314 Gambian adults (65). In murine models, CD8⁺ T cells were found to be protective against Spn lung 315 infection but did not have an effect on nasopharyngeal carriage (19, 66).

316 We found here that CD8⁺ MAIT cell functionality before pneumococcal challenge associated with a 317 resistance to carriage acquisition. MAIT cells were recently reported to be able to recognize Spn 318 through MHC class I-related protein 1 (MR-1) dependent and independent pathways (67). MAIT cells 319 were previously found to be important in the protection against lung bacterial and viral infections via 320 direct and indirect responses (68). Our findings now suggest these cells could also protect against 321 nasopharyngeal Spn colonization. Given the abundance of MAIT cells at the nasal mucosa and their 322 specificity for precursors from the riboflavin synthesis pathway, which is highly conserved in the Spn 323 genome (67), these cells are excellently placed to initiate an immune response upon exposure to 324 Spn. The rapid production of cytokines as TNF and IFN-y by these cells upon Spn encounter could 325 lead to the recruitment or activation of neutrophils and monocytes, which in turn could phagocytose 326 Spn and protect against carriage acquisition (69). Baseline MAIT functionality in blood positively 327 correlated with cell numbers within one of the nasal CD8⁺ CD161⁺ cell clusters, suggesting trafficking
328 of MAIT cells from the blood to the nose upon pneumococcal encounter. Indeed, MAIT cells have
329 been shown to be depleted from the circulation and accumulate in tissues upon infection (70, 71).

One limitation of this study is that the number of granulocytes measured was very low due to the overnight resting step following enzymatic digestion. While this resting step allowed for the return of markers that were cleaved by the enzymatic digestion, neutrophils quickly become apoptotic after being removed from the body (72-74). Consequently, the characterization of granulocytes reported here is incomplete and we were not able to assess whether specific neutrophil subsets are associated with protection against pneumococcal colonization.

336 In addition, due to the invasiveness of sample acquisition, sample size was limited and we were not 337 able to characterize nasal biopsies at various time points. Thus, no baseline was available making 338 it impossible to conclude whether differences between carriage⁻ and carriage⁺ groups were present 339 at baseline or occurred in the ten days following inoculation. In addition, we were not able to assess 340 transient responses early after bacterial inoculation. To address this caveat, we longitudinally 341 measured levels of nasal B cells and MAIT cells collected by nasal curettes in independent cohorts. 342 This analysis demonstrated that B cells were depleted from the nose upon colonization. In contrast, 343 we did not observe any changes in total numbers of MAIT cells. Using CyTOF we observed that 344 MAIT cell clusters expressing the markers CD7, CD69, CD5 and CCR6 or CD38, but not total 345 number of MAIT cells, were higher in the carriage- group. Thus the larger amount of cells obtained from nasal biopsies combined with the broad analysis by CyTOF allowed us to identify sub-346 347 populations of MAIT cells associated with protection against colonization.

This study revealed some notable differences from previously conducted experiments with murine models. In particular, we did not see any association between Th17 cells, or any CD4+ T memory cells, and control of colonization as previously reported (15, 16). This agrees with previous observations from experimentally colonized adults that nasal IL-17A levels are not increased (24). Moreover, there was no association between monocytes and Spn colonization status or density,

353 unlike what was previously reported in murine models or humans followed up longitudinally following 354 experimental colonization (16, 20, 24). This is possibly because we terminated carriage after day 355 seven for safety reasons prior to collecting biopsies, making it impossible to associate immune cell 356 clusters, such as monocytes, with Spn clearance which typically occurs after day 10. Moreover due 357 to relatively small numbers of individuals in this controlled human infection study, it is possible that 358 subtle associations between cell populations and bacterial load were missed. This study however 359 does provide a unique characterization of monocytes/macrophages phenotype in the human nose, 360 which show remarkably little differentiation into macrophages. Another remarkable difference 361 between this study and findings from murine models is that we observed a protective effect of MAIT 362 cells against colonization, while depletion of CD8⁺ T did not affect immunological Spn control in 363 mouse models (19). MAIT cells are a recently identified T cell subset that is common in humans, 364 consisting of up to 10% of all T cells in the circulation, but that is very rare in mice (68). It is possible that this difference has led to an underappreciation of the CD8⁺ T cell's role in protection against 365 366 pneumococcal carriage in humans. Finally, our finding of an activation and exodus of B cells from 367 the nose merits further attention and validation using tractable mouse models to understand its role 368 in the generation of humoral immunity against Spn and cross-reactive protection against 369 Haemophilus influenzae.

In conclusion, this study provides both a broad and an in-depth view of the adult human nasal immune system in the setting of experimental human pneumococcal challenge. Nasal B cells were depleted following carriage establishment, likely due to differentiation to plasmablasts and recirculation. In addition, CD8⁺ MAIT cell responses were associated with protection from Spn carriage.

375 Methods

376 Study design and sample collection

Healthy adult subjects were screened for the presence of natural pneumococcal carriage in nasal wash samples (NW) using classical microbiology (7, 34, 75). Subjects not naturally carrying 379 pneumococcus were then inoculated with 80,000 CFU per nostril of 6B type Spn as described (7, 380 75). Development of nasal carriage was monitored using NW samples collected at days 2 and 7 post 381 inoculation. Growth of pneumococcus from NW samples at any time-point defined carriage positive 382 volunteers. All subjects then received a three-day course of amoxicillin and underwent a 4mm nasal 383 biopsy at day 10 post inoculation. The nasal cavity was first sprayed up to six times with lidocaine hydrochloride 5% with phenylephrine hydrochloride 0.5%. Five to ten minutes later the infero-medial 384 385 part of the inferior turbinate, i.e. the point of incision, was injected with up to 1 mL of lidocaine 386 hydrochloride 2% with adrenaline 1:80 000. An incision of approximately 5 mm with No.15 blade was 387 then made and 2-4 mm of mucosal tissue was removed with Tillies Henckle's surgical forceps. This study was registered under ISRCTN85509051. Nasal curettes (ASL Rhino-Pro©, Arlington 388 389 Scientific) were collected from an additional cohort (ISRCTN16993271) of subjects inoculated with 390 the same 6B strain. The outcomes reported in this manuscript were a priori included in the study 391 protocols.

392 Nasal biopsy digestion

393 Nasal biopsies were finely cut using a sterile scalpel size 11 (Fisher Scientific). Pieces were then 394 incubated in 20mL pre-warmed RPMI 1640 (Fisher Scientific) with Liberase TL (250µg/mL, Sigma) 395 and DNAse I (50µg/mL, Sigma). Fragments were incubated for 45 minutes at 37°C, while shaking 396 at 250rpm at a 10° angle. At the end of the digestion, biopsies were passed five times through a 16-397 gauge blunt-ended needle (Fisher Scientific) and the digested sample was filtered over a 70um filter 398 (Fisher Scientific). This process was repeated for any remaining fragments. Cell were spun down for 399 10 minutes at 400xg and then red blood cells were lysed using an osmotic lysis buffer. Cells were 400 washed with RPMI with 20% heat-inactivated fetal bovine serum (FBS, Fisher Scientific), 401 resuspended at 10⁶ cells/mL in RPMI with 20% FBS and rested overnight. The next day, cells were 402 counted and washed with RPMI + 10% FBS. Cells were stained as a viability marker using 1µM 403 intercalator Rh-103 (Fluidigm) for 15 minutes, washed and fixed with 1.8% paraformaldehyde

- 404 (Sigma) for 15 minutes. Cells were washed and stored in liquid nitrogen in CTL-Cryo[™] ABC media
- 405 (Cellular Technology Limited) until CyTOF barcoding and staining.

406 Mass cytometry staining and analysis

407 Nasal biopsy cells were thawed on ice and barcoded using the Cell-ID 20-plex Pd Barcoding Kit as 408 per manufacturer's instructions (Fluidigm). The effect of fixation on epitopes detected by the included 409 antibody clones was tested using PBMCs and monocyte-derived dendritic cells. Following three 410 washes with staining buffer (Fluidigm) and 10 minutes of FcR blocking (Biolegend) pooled cells were 411 stained for 45 minutes at room temperature with the antibody cocktail (Supplementary Table 1). All 412 Fluidigm antibodies were pre-conjugated to metals while all other antibodies were conjugated using 413 a total of 100 µg of purified antibody combined with the MaxPar X8 Antibody Labelling Kit (Fluidigm) 414 according to manufacturer's protocol V7 and stored in 200 µL Antibody Stabilizer PBS (Candor 415 Bioscience) at 4°C. Cells were washed twice with staining buffer and incubated for 1 hour with 1000x 416 diluted 125 µM Cell-ID intercalator-Ir (Fluidigm) to stain DNA. Cells were washed 3 times with 417 staining buffer and 2 times with de-ionized H_2O prior to addition of normalization beads (Fluidigm) 418 and acquisition on a Helios 2 mass cytometer (DVS Sciences). CyTOF Fcs files were normalized 419 using the included beads, concatenated and debarcoded as per manufacturer's instructions. The 420 debarcoding step leads to a removal of doublets (76). Then, viable immune cells were pre-grated 421 (Figure 2) and exported as .fcs files using Flowjo X (Treestar). These were further analysed using 422 Cytosplore (https://www.cytosplore.org/).

423 Nasal B and MAIT cell phenotyping

Immunophenotyping of nasal B and MAIT cells obtained by curettes was performed as described
(29). In brief, cells were dislodged from curettes and stained with LIVE/DEAD® Fixable Aqua Dead
Cell Stain (ThermoFisher) and an antibody cocktail containing among others Epcam-PE, HLADRPECy7, CD66b-FITC, CD19-BV650 (all Biolegend), CD3-APCCy7, CD14-PercpCy5.5 (BD
Biosciences) and CD45-PACOrange (ThermoFisher) for B cells, while the cocktail for MAIT cells
included also CD8–BV785 and TCRva7.2-BV711 or TCRva7.2-PE-TxsRed and CD45-BV510

(Biolegend). Samples were acquired on a LSRII flow cytometer and analysed using Flowjo X (Treestar). Fluorescent minus one controls for each of the included antibodies were used to validate results during set-up of all of the panels used. Samples with less than 500 immune cells or 250 epithelial cells (11.9% of all nasal samples) were excluded from further analysis. A full list of all antibodies used for flow cytometry is provided in Supplementary Table 2).

435 Intracellular cytokine staining following PMA/Ionomycin or pneumococcus stimulation

436 For intracellular cytokine staining after PMA and Ionomycin stimulation, fresh nasal biopsy cells or 437 PBMC were stimulated with 100 and 500 ng/mL of these, respectively. After 2 hours, Golgiplug™ 438 (BD Biosciences) was added and cells were incubated for another 16 hours. Cells were washed and 439 stained extracellularly with LIVE/DEAD® Fixable Violet Dead Cell Stain (ThermoFisher) for 15 440 minutes and then for another 15 minutes with CD161-APC, CD69-BV650, CD25-PEDazzle594, CD103-BV605, CD4-PercpCy5.5, CD8-AF700, TCRva7.2-BV785 (all Biolegend) and CD3-APH7 441 and TCRgd-PECy7 (BD Biosciences). Cells were then permeabilized using the eBioscience ™ Foxp3 442 443 Transcription Factor Staining Buffer Set (Fisher Scienctific) following the manufacturer's protocol. 444 Intracellular staining was done for 30 minutes with FOXP3-AF488, IFNg-PE, TNFa-BV711 445 (Biolegend) and IL17A-BV510 (BD Biosciences). Finally, cells were washed, resuspended in 200µL 446 PBS and acquired on a LSR2.

For staining with pneumococcus, PBMC were thawed with 50µg/mL DNAse I (Sigma) in pre-warmed RPMI + 10% FBS and washed twice, once in media including DNAse I and once in media without DNAse I. Cells were rested overnight and then cultured at 5x10⁵ cells in 500uL media with 5ug/mL (corresponding to 4.3x10^7 CFU/mL) heat-inactivated type 6B *Streptococcus pneumoniae* or left unstimulated as a control. After 48 hours, fresh antigen was added to the cells and 2 hours later Golgiplug was added and cells were treated as above.

453 Pneumococcal-specific B cell detection

454 Purified pneumococcal polysaccharides 6B and 15B (Oxford Biosystems) and Pdb were diluted to 100µg/mL in purified H₂O and biotinylated using the One-Step Antibody Biotinylation Kit (Miltenyi) 455 456 as per manufacturer's instructions. Biotinylated proteins were then 2x dialysed for 45 minutes against 457 1L PBS using Slide-A-Lyzer[™] MINI Dialysis Device, 3500 molecular weight cut off (ThermoFisher) and stored at 4°C until labelling. Biotinylated 15B, 6B and Pdb were then mixed in a 4:1 molecular 458 ratio (Pdb), or a 1:1 molecular ratio (polysaccharides), with PE-streptavidin, BV785-streptavidin or 459 460 FITC-streptavidin (Biolegend), respectively. Incubation was performed on ice in a stepwise approach 461 where 1/10 fraction of streptavidin conjugate was added to the antigen followed by a ten-minute 462 incubation. After the final incubation, 1 pmol free biotin was added and the mixture was incubated for 30 minutes on ice. Labelled antigens were stored at 4°C and used within two weeks. 463

To stain cells, PBMC were thawed with 50µg/mL DNAse I (Sigma) in pre-warmed RPMI + 10% FBS
and washed once in media including DNAse I. Cells were then resuspended in PBS containing
LIVE/DEAD® Fixable Violet Dead Cell Stain (ThermoFisher) with 10µg/mL purified streptavidin (to
block aspecific binding, Biolegend) for 15 minutes. Then labelled antigens and an antibody cocktail
containing CD71-AF700 (BD Biosciences), CD19-BV605, CD27-PE/Cy7, CD38-APC/Cy7, CD69BV510 and CCR10-APC (all Biolegend) was added and cells were incubated for another 15 minutes.
Finally, cells were washed, resuspended in 200µL PBS and acquired on a LSR2.

471 Immunohistochemistry

472 A nasal biopsy was fixed in 4% PFA for 16-24 hours before rinsing in 50% and 70% ethanol. This 473 was embedded in Paraffin, cut into 4µm sections, dewaxed, subjected to antigen retrieval (95°C for 474 15 minutes in Sodium Citrate Buffer (pH 6) and processed for immunohistochemistry as published 475 (77). In short, sections were permeabilised in methanol for 15 minutes with 1% hydrogen peroxide. 476 After rinsing in PBS, primary antibodies were diluted in goat (or horse) serum buffer (1% BSA, 4% 477 goat (or horse) serum, 0.01% sodium azide in PBS). Primary antibodies used were: CD3 (Dako), 478 CD4, CD20, CD66b, CD68, CD11b (Abcam), CD8 (Epitomics) and CD161 (Atlas antibodies), which 479 were applied over night at 4°C (Supplementary table 3). Sections were rinsed in PBS and secondary biotinylated antibodies (Vector lab) were applied for 45 mins at RT. Slides were rinsed and a complex
of avidin and biotin (ABC) solution was added to sections for 60 minutes which was prepared 30
minutes prior incubation After rinsing, NovaRed™ (Vector®, Burlingame, CA, U.S.A) chromogen
was prepared to manufacturer's instructions. Sections were counterstained, dehydrated, placed in
xylene and mounted for microscopy and scanned using the nanozoomer digital pathology (NDP,
Hamamatsu, Photonics KK). Pictures were processed using the NDPview 2 software (version 2.6.13;
Hamamatsu Photonics KK).

487 ELISA

488 Serum IgG and IgA titres against Streptococcus pneumoniae, Streptococcus pyogenes, 489 Staphylococcus aureus and Haemophilus influenzae were quantified in serum samples, whereas 490 nasal mucosa IgG and IgA titres against Streptococcus pneumoniae and Haemophilus influenzae 491 were measured in nasal wash samples using whole cell ELISA. The ELISA was performed on 492 MaxiSorp[™] 96 well plates (Nunc). Per pathogen, 100µL of 10⁸ CFU/mL was prepared in carbonate 493 buffer pH 8, added to the plates and allowed to adhere to the wells for 16 hours at 22°C. Then the 494 plates were washed three times using phosphate buffered saline (PBS) containing 0.05% Tween 20, 495 followed by blocking by adding 100 µL of PBS containing 2% Bovine serum albumin. Plates were 496 incubated at 37°C for 1 hour and were washed before adding serial dilutions of serum samples. For 497 detection of IgG and IgA, a 1:5000 and 1:4000 dilution of anti-human-IgG (Sigma, A9544, Germany) 498 and anti-human-IgA (Sigma, A9669, Germany), respectively, was made using 0.1% BSA and 100 499 µL added to each well after washing and incubated at room temperature for 2 hours. Standard curves 500 for IgG and IgA were generated based on a standard pool serum (sera of 7 Spn carriers collected at 501 D23 post challenge). Arbitrary units of IgG and IgA were assigned to the serum standard for each 502 pathogen. To absorb antibodies cross-reactive against S. pneumoniae, pneumococci were added in 503 the samples, following 2h incubation at RT and overnight incubation on a rotor at 4o C. The next day 504 samples were centrifuged at 4,000g for 3min and supernatant was collected and measured as 505 above. Efficacy of depletion was confirmed by ELISA against Spn post absorption.

506 Statistics

507 Two-tailed, non-parametric statistical tests were used throughout the study. The number of cells in 508 a cluster for each subject was normalized against the total number of non-immune cells acquired by 509 CyTOF for that subject to account for number of cells isolated from a given biopsy. This normalization 510 strategy has the advantage that the normalized frequencies of cells in a cluster is not dependent on 511 other clusters, which is a major disadvantage of normalizing against total immune cells. Normalized 512 cluster abundances were then compared between carriage⁻ and carriage⁺ subjects for each of the 513 clusters using the Mann-Whitney test, without correcting for multiple testing. Data was analysed and 514 graphs were created using 'pheatmap' and 'ggplot2' packages in R software and circular graph 515 (Figure 1C) was created using circos software (78). The graphical abstract was created with 516 BioRender

517 **Data availability**

518 Normalized and debarcoded CyTOF fcs files have been deposited in the FlowRepository with 519 identifier FR-FCM-ZYSE (<u>https://flowrepository.org/</u>).

520 Study Approval

All subjects gave written informed consent and research was conducted in compliance with all relevant ethical regulations. Ethical approval was given by the East Liverpool NHS Research and Ethics Committee (REC), reference numbers: 17/NW/0029 and 14/NW/1460.

524 Author contributions

525 SJ contributed to conceiving, designing, conducting and analysing experiments, design of the study 526 and writing of the paper. KR, CS, AV contributed to designing, conducting and analysing 527 experiments. SG, LL, JRylance, AC, SL contributed to conceiving and designing the study. EM, EN, 528 BC, AS, SP, EG, JReine, CW and PD contributed to conducting and analysing experiments. HH, 529 RR, AHW, SL and MW contributed to sample collection. RSH, HS, BU and MY contributed to 530 designing and analysing experiments. DF contributed to conceiving, designing and analysing 531 experiments, design of the study and writing of the paper. All authors have read and approved the 532 manuscript. The authorship order between shared fist and shared senior authors was decided 533 alphabetically.

534 Acknowledgements

535 This work was supported by the Medical Research Council (grant MR/M011569/1) to SG, and by support from Bill and Melinda Gates Foundation (grant OPP1117728) and the National Institute for 536 Health Research (NIHR) Local Comprehensive Research Network to DF. This work was supported 537 538 by the Human Infection Challenge Network for Vaccine Development (HIC-Vac) funded by the GCRF 539 Networks in Vaccines Research and Development which was co-funded by the MRC and BBSRC. 540 RSH and CW are funded through the NIHR Global Health Research Unit on Mucosal Pathogens at 541 UCL. Flow cytometric acquisition was performed on a BD LSR II funded by a Wellcome Trust Multi-542 User Equipment Grant (104936/Z/14/Z). Purified pneumococcal Pneumolysin derivative b (Pdb) 543 protein was a kind gift by Dr. Eliane Miyaji. We would like to thank all volunteers for participating in 544 this study and C. Lowe, C. Hales, H. Adler, V. Connor, C.J. Webb and A. Panarese for clinical 545 support.

546

548 References

- O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. *Lancet*. 2009;374(9693):893-902.
- 5522.Welte T, Torres A, and Nathwani D. Clinical and economic burden of community-acquired553pneumonia among adults in Europe. *Thorax.* 2012;67(1):71-9.
- 5543.Ortqvist A, Hedlund J, and Kalin M. Streptococcus pneumoniae: epidemiology, risk factors,555and clinical features. Semin Respir Crit Care Med. 2005;26(6):563-74.
- Goldblatt D, Hussain M, Andrews N, Ashton L, Virta C, Melegaro A, et al. Antibody
 Responses to Nasopharyngeal Carriage of Streptococcus pneumoniae in Adults: A
 Longitudinal Household Study. *Journal of Infectious Diseases*. 2005;192(3):387-93.
- 559 5. Simell B, Auranen K, Kayhty H, Goldblatt D, Dagan R, O'Brien KL, et al. The fundamental link between pneumococcal carriage and disease. *Expert review of vaccines*.
 561 2012;11(7):841-55.
- 5626.Melegaro A, Gay NJ, and Medley GF. Estimating the transmission parameters of563pneumococcal carriage in households. *Epidemiol Infect.* 2004;132(3):433-41.
- Ferreira DM, Neill DR, Bangert M, Gritzfeld JF, Green N, Wright AK, et al. Controlled
 human infection and rechallenge with Streptococcus pneumoniae reveals the protective
 efficacy of carriage in healthy adults. *American journal of respiratory and critical care medicine*. 2013;187(8):855-64.
- 5688.McCool TL, Cate TR, Moy G, and Weiser JN. The immune response to pneumococcal569proteins during experimental human carriage. *JExpMed.* 2002;195(3):359.
- Weiser JN, Ferreira DM, and Paton JC. Streptococcus pneumoniae: transmission,
 colonization and invasion. *Nat Rev Microbiol*. 2018;16(6):355-67.
- 572 10. Granat SM, Ollgren J, Herva E, Mia Z, Auranen K, and Makela PH. Epidemiological
 573 evidence for serotype-independent acquired immunity to pneumococcal carriage. *The*574 *Journal of infectious diseases*. 2009;200(1):99-106.
- 575 11. Weinberger DM, Dagan R, Givon-Lavi N, Regev-Yochay G, Malley R, and Lipsitch M.
 576 Epidemiologic evidence for serotype-specific acquired immunity to pneumococcal carriage.
 577 The Journal of infectious diseases. 2008;197(11):1511-8.
- 578 12. Cobey S, and Lipsitch M. Niche and neutral effects of acquired immunity permit coexistence of pneumococcal serotypes. *Science*. 2012;335(6074):1376-80.
- 580 13. Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R, et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. *N Engl J Med.* 2003;348(18):1737-46.
- 58314.Jochems SP, Weiser JN, Malley R, and Ferreira DM. The immunological mechanisms that584control pneumococcal carriage. *PLoS Pathog.* 2017;13(12):e1006665.
- Lu YJ, Gross J, Bogaert D, Finn A, Bagrade L, Zhang Q, et al. Interleukin-17A mediates
 acquired immunity to pneumococcal colonization. *PLoS Pathog.* 2008;4(9):e1000159.
- 587 16. Zhang Z, Clarke TB, and Weiser JN. Cellular effectors mediating Th17-dependent clearance
 588 of pneumococcal colonization in mice. *J Clin Invest.* 2009;119(7):1899-909.
- 589 17. Lu YJ, Leite L, Goncalves VM, Dias Wde O, Liberman C, Fratelli F, et al. GMP-grade
 590 pneumococcal whole-cell vaccine injected subcutaneously protects mice from
- 591 nasopharyngeal colonization and fatal aspiration-sepsis. *Vaccine*. 2010;28(47):7468-75.
- 592 18. McCool TL, and Weiser JN. Limited role of antibody in clearance of Streptococcus 593 pneumoniae in a murine model of colonization. *Infect Immun.* 2004;72(10):5807-13.

- Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, and Lipsitch M. CD4+
 T cells mediate antibody-independent acquired immunity to pneumococcal colonization.
 Proc Natl Acad Sci U S A. 2005;102(13):4848-53.
- Davis KM, Nakamura S, and Weiser JN. Nod2 sensing of lysozyme-digested peptidoglycan
 promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. J
 Clin Invest. 2011;121(9):3666-76.
- Kuipers K, Lokken KL, Zangari T, Boyer MA, Shin S, and Weiser JN. Age-related
 differences in IL-1 signaling and capsule serotype affect persistence of Streptococcus
 pneumoniae colonization. *PLoS Pathog.* 2018;14(10):e1007396.
- Parker D, Martin FJ, Soong G, Harfenist BS, Aguilar JL, Ratner AJ, et al. Streptococcus
 pneumoniae DNA initiates type I interferon signaling in the respiratory tract. *MBio*.
 2011;2(3):e00016-11.
- Jochems SP, Marcon F, Carniel BF, Holloway M, Mitsi E, Smith E, et al. Inflammation
 induced by influenza virus impairs human innate immune control of pneumococcus. *Nat Immunol.* 2018.
- Jochems SP, Marcon F, Carniel BF, Holloway M, Mitsi E, Smith E, et al. Inflammation
 induced by influenza virus impairs human innate immune control of pneumococcus. *Nat Immunol.* 2018;19(12):1299-308.
- 612 25. Pennington SH, Pojar S, Mitsi E, Gritzfeld JF, Nikolaou E, Solorzano C, et al.
 613 Polysaccharide-specific Memory B-cells Predict Protection Against Experimental Human
 614 Pneumococcal Carriage. *American journal of respiratory and critical care medicine*. 2016.
- 615 26. Collins AM, Wright AD, Mitsi E, Gritzfeld JF, Hancock CA, Pennington SH, et al. First
 616 Human Challenge Testing of a Pneumococcal Vaccine. Double-Blind Randomized
 617 Controlled Trial. *American journal of respiratory and critical care medicine*.
 618 2015;192(7):853-8.
- 619 27. Mitsi E, Roche AM, Reine J, Zangari T, Owugha JT, Pennington SH, et al. Agglutination by
 620 anti-capsular polysaccharide antibody is associated with protection against experimental
 621 human pneumococcal carriage. *Mucosal Immunol.* 2016.
- Khan MN, and Pichichero ME. The host immune dynamics of pneumococcal colonization:
 implications for novel vaccine development. *Hum Vaccin Immunother*. 2014;10(12):368899.
- Jochems SP, Piddock K, Rylance J, Adler H, Carniel BF, Collins A, et al. Novel Analysis of
 Immune Cells from Nasal Microbiopsy Demonstrates Reliable, Reproducible Data for
 Immune Populations, and Superior Cytokine Detection Compared to Nasal Wash. *PLoS One.* 2017;12(1):e0169805.
- 629 30. Spitzer MH, and Nolan GP. Mass Cytometry: Single Cells, Many Features. *Cell*.
 630 2016;165(4):780-91.
- 631 31. Li N, van Unen V, Hollt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry
 632 reveals innate lymphoid cell differentiation pathways in the human fetal intestine. *J Exp*633 *Med.* 2018;215(5):1383-96.
- Morrell ED, Wiedeman A, Long SA, Gharib SA, West TE, Skerrett SJ, et al. Cytometry
 TOF identifies alveolar macrophage subtypes in acute respiratory distress syndrome. *JCI Insight*. 2018;3(10).
- 637 33. Rylance J, de Steenhuijsen Piters WA, Pojar S, Nikolaou E, German E, Mitsi E, et al. Effect
 638 of Live Attenuated Influenza Vaccine on Pneumococcal Carriage. *bioRxiv*. 2018.
- 639 34. Gritzfeld JF, Cremers AJ, Ferwerda G, Ferreira DM, Kadioglu A, Hermans PW, et al.
 640 Density and duration of experimental human pneumococcal carriage. *Clin Microbiol Infect.*
- 641 2014;20(12):O1145-51.

- 642 35. Hollt T, Pezzotti N, van Unen V, Koning F, Eisemann E, Lelieveldt B, et al. Cytosplore:
 643 Interactive Immune Cell Phenotyping for Large Single-Cell Datasets. *Comput Graph*644 *Forum.* 2016;35(3):171-80.
- 645 36. van Unen V, Hollt T, Pezzotti N, Li N, Reinders MJT, Eisemann E, et al. Visual analysis of
 646 mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types.
 647 *Nat Commun.* 2017;8.
- Abdelmoula WM, Pezzotti N, Holt T, Dijkstra J, Vilanova A, McDonnell LA, et al.
 Interactive Visual Exploration of 3D Mass Spectrometry Imaging Data Using Hierarchical
 Stochastic Neighbor Embedding Reveals Spatiomolecular Structures at Full Data
 Resolution. *J Proteome Res.* 2018;17(3):1054-64.
- 38. Jourdan M, Caraux A, Caron G, Robert N, Fiol G, Reme T, et al. Characterization of a
 transitional preplasmablast population in the process of human B cell to plasma cell
 differentiation. *J Immunol.* 2011;187(8):3931-41.
- 655 39. Hardy RR. B-1 B cell development. J Immunol. 2006;177(5):2749-54.
- 40. Tangye SG, Avery DT, Deenick EK, and Hodgkin PD. Intrinsic differences in the
 proliferation of naive and memory human B cells as a mechanism for enhanced secondary
 immune responses. *J Immunol.* 2003;170(2):686-94.
- Morteau O, Gerard C, Lu B, Ghiran S, Rits M, Fujiwara Y, et al. An indispensable role for
 the chemokine receptor CCR10 in IgA antibody-secreting cell accumulation. *J Immunol*.
 2008;181(9):6309-15.
- Kato A, Hulse KE, Tan BK, and Schleimer RP. B-lymphocyte lineage cells and the
 respiratory system. *J Allergy Clin Immunol.* 2013;131(4):933-57; quiz 58.
- 43. van Splunter M, van Hoffen E, Floris-Vollenbroek EG, Timmerman H, de Bos EL, Meijer
 B, et al. Oral cholera vaccination promotes homing of IgA(+) memory B cells to the large
 intestine and the respiratory tract. *Mucosal Immunol.* 2018;11(4):1254-64.
- 667 44. Clark SE, and Weiser JN. Microbial modulation of host immunity with the small molecule
 668 phosphorylcholine. *Infect Immun.* 2013;81(2):392-401.
- 45. Lagergard T, and Branefors P. Nature of cross-reactivity between Haemophilus influenzae
 types a and b and Streptococcus pneumoniae types 6A and 6B. *Acta Pathol Microbiol Immunol Scand C.* 1983;91(6):371-6.
- Kumar BV, Ma W, Miron M, Granot T, Guyer RS, Carpenter DJ, et al. Human TissueResident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in
 Lymphoid and Mucosal Sites. *Cell Rep.* 2017;20(12):2921-34.
- 47. Trautmann A, Ruckert B, Schmid-Grendelmeier P, Niederer E, Brocker EB, Blaser K, et al.
 Human CD8 T cells of the peripheral blood contain a low CD8 expressing cytotoxic/effector
 subpopulation. *Immunology*. 2003;108(3):305-12.
- Kaku Y, Imaoka H, Morimatsu Y, Komohara Y, Ohnishi K, Oda H, et al. Overexpression of
 CD163, CD204 and CD206 on alveolar macrophages in the lungs of patients with severe
 chronic obstructive pulmonary disease. *PLoS One*. 2014;9(1):e87400.
- 49. Yu YR, Hotten DF, Malakhau Y, Volker E, Ghio AJ, Noble PW, et al. Flow Cytometric
 Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. *Am J Respir Cell Mol Biol.* 2016;54(1):13-24.
- 50. Farina C, Theil D, Semlinger B, Hohlfeld R, and Meinl E. Distinct responses of monocytes
 to Toll-like receptor ligands and inflammatory cytokines. *Int Immunol.* 2004;16(6):799-809.
- 686 51. Cosmi L, De Palma R, Santarlasci V, Maggi L, Capone M, Frosali F, et al. Human
 687 interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. *J Exp Med.*688 2008;205(8):1903-16.

- Kleinschek MA, Boniface K, Sadekova S, Grein J, Murphy EE, Turner SP, et al. Circulating
 and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J *Exp Med.* 2009;206(3):525-34.
- 692 53. Ballke C, Gran E, Baekkevold ES, and Jahnsen FL. Characterization of Regulatory T-Cell
 693 Markers in CD4+ T Cells of the Upper Airway Mucosa. *PLoS One*. 2016;11(2):e0148826.
- 694 54. Overgaard NH, Jung JW, Steptoe RJ, and Wells JW. CD4+/CD8+ double-positive T cells:
 695 more than just a developmental stage? *J Leukoc Biol.* 2015;97(1):31-8.
- 696 55. Cosmi L, Annunziato F, Galli MIG, Maggi RME, Nagata K, and Romagnani S. CRTH2 is
 697 the most reliable marker for the detection of circulating human type 2 Th and type 2 T
 698 cytotoxic cells in health and disease. *Eur J Immunol.* 2000;30(10):2972-9.
- 69956.Dullforce P, Sutton DC, and Heath AW. Enhancement of T cell-independent immune700responses in vivo by CD40 antibodies. *Nat Med.* 1998;4(1):88-91.
- 701 57. Ohm-Laursen L, Meng H, Chen J, Zhou JQ, Corrigan CJ, Gould HJ, et al. Local Clonal
 702 Diversification and Dissemination of B Lymphocytes in the Human Bronchial Mucosa.
 703 *Front Immunol.* 2018;9:1976.
- 58. Lijek RS, and Weiser JN. Co-infection subverts mucosal immunity in the upper respiratory
 tract. *Curr Opin Immunol.* 2012;24(4):417-23.
- Find Stress St
- Vaughan AT, Gorringe A, Davenport V, Williams NA, and Heyderman RS. Absence of
 mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria
 lactamica but not pathogenic Neisseria meningitidis during the peak age of nasopharyngeal
 carriage. *J Immunol.* 2009;182(4):2231-40.
- Vaughan AT, Brackenbury LS, Massari P, Davenport V, Gorringe A, Heyderman RS, et al.
 Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via
 cell surface Ig. *J Immunol.* 2010;185(6):3652-60.
- Pizzolla A, Nguyen THO, Smith JM, Brooks AG, Kedzieska K, Heath WR, et al. Resident
 memory CD8(+) T cells in the upper respiratory tract prevent pulmonary influenza virus
 infection. *Sci Immunol.* 2017;2(12).
- 63. Weight CM, Venturini C, Pojar S, Jochems S, Reiné J, amp, et al. Epithelial control of
 colonisation by Streptococcus pneumoniae at the human mucosal surface. *bioRxiv*. 2018.
- Frcoli G, Fernandes VE, Chung WY, Wanford JJ, Thomson S, Bayliss CD, et al.
 Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. *Nat Microbiol.* 2018;3(5):600-10.
- Mureithi MW, Finn A, Ota MO, Zhang Q, Davenport V, Mitchell TJ, et al. T cell memory
 response to pneumococcal protein antigens in an area of high pneumococcal carriage and
 disease. *The Journal of infectious diseases*. 2009;200(5):783-93.
- Weber SE, Tian H, and Pirofski LA. CD8+ cells enhance resistance to pulmonary serotype 3
 Streptococcus pneumoniae infection in mice. *J Immunol.* 2011;186(1):432-42.
- Kurioka A, van Wilgenburg B, Javan RR, Hoyle R, van Tonder AJ, Harrold CL, et al.
 Diverse Streptococcus pneumoniae Strains Drive a Mucosal-Associated Invariant T-Cell
 Response Through Major Histocompatibility Complex class I-Related Molecule-Dependent
 and Cytokine-Driven Pathways. *The Journal of infectious diseases*. 2018;217(6):988-99.
- 68. Wakao H, Sugimoto C, Kimura S, and Wakao R. Mucosal-Associated Invariant T Cells in Regenerative Medicine. *Front Immunol.* 2017;8:1711.

- Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, and Pamer EG. TNF/iNOSproducing dendritic cells mediate innate immune defense against bacterial infection. *Immunity*. 2003;19(1):59-70.
- 739 70. Chen Z, Wang H, D'Souza C, Sun S, Kostenko L, Eckle SB, et al. Mucosal-associated
 740 invariant T-cell activation and accumulation after in vivo infection depends on microbial
 741 riboflavin synthesis and co-stimulatory signals. *Mucosal Immunol.* 2017;10(1):58-68.
- 742 71. Howson LJ, Napolitani G, Shepherd D, Ghadbane H, Kurupati P, Preciado-Llanes L, et al.
 743 MAIT cell clonal expansion and TCR repertoire shaping in human volunteers challenged
 744 with Salmonella Paratyphi A. *Nat Commun.* 2018;9(1):253.
- 745 72. Autengruber A, Gereke M, Hansen G, Hennig C, and Bruder D. Impact of enzymatic tissue
 746 disintegration on the level of surface molecule expression and immune cell function. *Eur J*747 *Microbiol Immunol (Bp).* 2012;2(2):112-20.
- 748 73. Pongracz J, Webb P, Wang K, Deacon E, Lunn OJ, and Lord JM. Spontaneous neutrophil apoptosis involves caspase 3-mediated activation of protein kinase C-delta. *J Biol Chem*. 1999;274(52):37329-34.
- 751 74. Goodyear AW, Kumar A, Dow S, and Ryan EP. Optimization of murine small intestine
 752 leukocyte isolation for global immune phenotype analysis. *J Immunol Methods*.
 753 2014;405:97-108.
- 754 75. Gritzfeld JF, Wright AD, Collins AM, Pennington SH, Wright AK, Kadioglu A, et al.
 755 Experimental human pneumococcal carriage. *J Vis Exp.* 2013(72).
- 756 76. Zunder ER, Finck R, Behbehani GK, Amir el AD, Krishnaswamy S, Gonzalez VD, et al.
 757 Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell
 758 deconvolution algorithm. *Nat Protoc.* 2015;10(2):316-33.
- 759 77. Durrenberger PF, Ettorre A, Kamel F, Webb LV, Sim M, Nicholas RS, et al. Innate
 760 immunity in multiple sclerosis white matter lesions: expression of natural cytotoxicity
 761 triggering receptor 1 (NCR1). *J Neuroinflammation*. 2012;9:1.
- 762 78. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an
 763 information aesthetic for comparative genomics. *Genome Res.* 2009;19(9):1639-45.
- 764

Figure and figure legends

Figure 1. Mass cytometry from nasal biopsies following experimental human pneumococcal challenge. A) Study design showing pneumococcal inoculation (green bar) and sample collection.

Subjects who acquired pneumococcus following challenge are depicted in red (n=8), while those protected are depicted in blue (n=12). Antibiotics (abx) were administered in the 3 days leading up to biopsy collection (blue area). B) Viable cell yield following enzymatic biopsy digestion for the twenty biopsies collected for CyTOF. Individual samples and boxplots, depicting median and interquartile ranges, with whiskers extending to 1.5x interquartile range or maximum value, are shown. C) Circle diagram showing all 293 defined clusters within 9 lineages and 22 subpopulations. From outside in: number of cells in each cluster is depicted by grey bars. Relative expression for 36 markers is shown with red depicting higher expression (CD45 and Epcam are not depicted). Association with carriage state is shown, where blue bars depict the fold-change of the median of normalized abundance in carriage⁻ subjects over carriage⁺ subjects (Mann-Whitney test, p < 0.05shown only). Significant correlations between Spn density at either day 2 or day 7 with normalized abundance are depicted by circles, with red indicating a negative association. Spearman correlation analyses were performed with all subjects where carriage⁻ subjects were included with a density of 0. Ribbons connect highly correlated (r>0.70) clusters that were associated with Spn carriage status not belonging to the same lineage, with colour indicating the lineage of origin. DN T = double negative T cells, Gran = granulocytes, ILC = innate lymphoid cells.

Figure 2. CyTOF analysis strategy. A) CyTOF data files were pre-gated using Flowjo to identify cells (DNA⁺ Bead⁻), followed by selecting viable immune cells (CD45⁺ Dead⁻). These cells were exported 30

and loaded in Cytosplore for hierarchical stochastic neighbour embedding (h-sne), in which lineages, subpopulations and clusters were sequentially identified in three steps. Gating for naïve CD4⁺ T cells is shown as an example. B) Cells were clustered using all 38 markers minus the epithelial marker Epcam and lineages were then defined based on the expression of nine markers. Clustered lineages and expression of included markers are shown. Subpopulations for C) CD8⁺ T cells, D) granulocytes, E) CD4⁺ T cells, F) innate lymphoid cells, G) CD117⁺ cells and H) double-negative T cells were defined based on the expression of the depicted markers. B cells, plasma cells, myeloid cells were not further divided into subpopulations due to lack of clear clustering by relevant markers. Cell subpopulations were then further divided into clusters using all 38 markers minus the epithelial marker Epcam.

Figure 3. Nasal B cells are depleted following pneumococcal carriage. A) Heatmap showing the expression of thirty-seven markers for all B cell clusters. Clusters were ordered based on similarity

and a distance dendrogram is depicted. B) The relative abundance for each of the three significantly higher clusters normalized to stromal cells is expressed on a log_{10} scale for carriage⁻ (Spn–, blue, n=12) and carriage⁺ (Spn+, red, n=8) subjects. Boxplots, depicting median and interquartile ranges, with whiskers extending to 1.5× interquartile range or maximum value, and individual subjects are shown. C) Levels of CD19⁺ nasal B cells longitudinally measured by flow cytometry from minimally-invasive nasal curettes in an independent cohort for carriage⁻ (Spn–, blue, n=52) and carriage⁺ (Spn+, red, n= 42) subjects. Mean and standard error of mean of log2-transformed fold change levels to baseline are shown. * p < 0.05 by Wilcoxon test comparing to baseline with Bonferroni correction for comparing multiple timepoints.

Figure 4. Pneumococcal carriage leads to increased systemic plasmablasts. A) Levels of 6B polysaccharide-specific, 15B polysaccharide-specific, Pneumolysin derivative b (Pneumolysin)-specific or all plasmablast amongst total B cells were measured from PBMC collected at baseline (Day -5) and at the time of biopsy (Day 10 post inoculation). Boxplots depicting median and interquartile ranges, with whiskers extending to 1.5x interquartile range or maximum value, and individual subjects are shown with carriage⁻ in blue (n=12) and carriage⁺ in red (n=8). Paired samples are connected by dashed lines. * p < 0.05, ** p < 0.01 by Wilcoxon test comparing a group to its baseline. B) Levels of CCR10⁺ plasmablasts for 6B-specific and total plasmablasts measured from PBMC collected at baseline (Day -5) and at the time of biopsy (Day 10 post inoculation). Boxplots and individual subjects are depicted with carriage⁻ in blue and carriage⁺ in red with paired from PBMC collected at baseline (Day -5) and at the time of biopsy (Day 10 post inoculation).

samples connected by dashed lines. ** p < 0.01 by Wilcoxon test comparing a group to its baseline. C) Correlations between fold-change in levels of 6B PS-specific and total plasmablasts between baseline and day 10 against levels of B cell clusters measured by CyTOF. Color and size of symbols reflect the Spearman rho value. * p < 0.05 and ** p < 0.01 by Spearman test.

Figure 5. Increased MAIT responses associate with protection from carriage. A) Heatmap showing the expression of thirty-seven markers for each of the four CD8⁺ clusters that were significantly different between carriers and non-carriers. Non-significant CD8⁺ T clusters are not shown. Below the heatmap, the abundance for each of the significantly higher clusters normalized to stromal cells is expressed on a log₁₀ scale for carriage⁻ (blue) and carriage⁺ (red) subjects. Boxplots depicting median and interquartile ranges, with whiskers extending to 1.5x interquartile range or maximum value, and individual subjects are depicted. B) Representative flow cytometry contour plot of CD8+ CD69⁺ and CD8⁺ CD69⁻ T cells, showing CD103 and CD49a tissue resident marker expression on nasal biopsy cells (n=4). C) Representative flow cytometry contour plot of unstimulated nasal biopsy cells, and nasal biopsy cells and PBMC stimulated overnight with PMA and ionomycin (PI) to assess functional capacity (n=4). D) TNF, IFN-y and IL-17A production by CD8⁺ MAIT cells (CD161⁺TCRva7.2⁺) after 3-day in vitro stimulation with heat-inactivated pneumococcus (HI-Spn) or left unstimulated for carriage⁻ (blue, n=14) and carriage+ (red, n=8) subjects in PBMC collected at baseline. Boxplots and individual subjects, connected by dashed lines, are shown. ** p < 0.01 by Wilcoxon test, *** p < 0.001 by Wilcoxon test. E) Correlations between the difference in cytokine production (total of TNF and IFN-y) by MAIT cells in vitro stimulated with HI-Spn or left unstimulated against CD8⁺ CD161⁺ T cell clusters measured by CyTOF (n=20). Colour and size of symbols reflect the Spearman rho value. * p < 0.05 by Spearman test.

Figure 6. Association between baseline IgG against Spn and cluster abundance. A) Levels of baseline IgG levels against whole cell 6B Spn in serum are shown carriage⁻ (blue, n=12) and carriage+ (red, n=8) subjects. Boxplots depicting median and interquartile ranges, with whiskers extending to 1.5× interquartile range or maximum value, and individual subjects, connected by dashed lines, are shown. B) Correlation between abundance of clusters and baseline levels of IgG are shown. Individuals subjects and regression lines per group are shown, with 95% confidence intervals depicted in grey. *p=0.03 determined by linear model including carriage status and log-transformed baseline IgG levels.

Figure 7. Immunohistochemistry on serial sections of a nasal biopsy. To establish an overall cellular distribution in the tissue a 10x magnification is shown for each of the markers. A 40x inset is also included to visualize some individual positive cells. A) Haematoxylin and eosin staining showing the entire biopsy. Staining of subsequent slices showing the biopsy at the epithelial edge for the markers B) negative control, C) CD3, D) CD4, E) CD8, F) CD161, G) CD20, H) CD68, I) CD66b and J) CD11b. A scale showing 250µm are added to all panels and a 40x inset is included. Slices were counterstained with haematoxylin and eosin. Some background staining of the extracellular matrix is present for CD161 (panel F). Biopsy was derived from one challenged, carriage⁻ subject.

Tables

Table 1. Volunteer cohort characteristics divided by carriage state.

	Carriage⁻ (n=12)	Carriage ⁺ (n=8)
Female gender (%)	4 (33.3%)	4 (50%)
Median age (min-max)	21 (18-44)	23 (20-30)
Median day 2 Spn density CFU/mL (min-max)	-	127.2 (5.8 - 38677.7)
Median day 7 Spn density CFU/mL (min-max)	-	187.5 (0 – 21736.6)

Table 2. List of lineages and subpopulations derived from nasal biopsy analysis. For all nine lineages and twenty-two subpopulations, the numbers of defined cell clusters are shown. In addition, the total numbers of cells within those lineages/subpopulations and the percentage of that subpopulation within all cells for carriage⁻ and carriage⁺ subjects are shown. Memory cells are defined as CD45RO⁺RA⁻ and naïve cells are defined as CD45RO⁻RA⁺

Lineage	Subpopulation	Clusters	Cells	%Carriage [_]	%Carriage+
CD8⁺ T cells	CD161 ⁺ CD8 ⁺ T cells	17	25103	13.0	11.7
	Naive CD8 ⁺ T cells	20	9042	3.8	6.3
	Memory CD8 ⁺ T cells	26	36860	18.1	19.4
	Total	63	71005	34.9	37.3
CD4 ⁺ T cells	CD161 ⁺ CD4 ⁺ T cells	21	36328	18.7	17.0
	CD25 ^{hi} CD4 ⁺ T cells	9	2743	1.2	1.9
	Naïve CD4 ⁺ T cells	9	4235	2.2	1.8
	Memory CD4 ⁺ T cells	23	21158	10.5	10.8
	CD45RO ⁻ RA ⁻ CD4 ⁺ T	6	2743	1.2	1.9
	Total	68	67207	33.8	33.5
Myeloid cells	-	25	15226	7.4	8.3
Innate lymphoid cells	CD8 ⁻ CD16 ⁺ ILC	13	3683	2.0	1.5
	CD8 ⁺ CD16 ⁺ ILC	5	2392	1.1	1.4
	CD16 ⁻ CD127 ⁺ ILC	4	1550	0.8	0.6
	CD16-CD127- ILC	9	3417	1.7	1.8
	Total	31	11042	5.6	5.3
B cells	-	22	10279	5.8	3.7
CD4 ⁻ CD8 ⁻ T cells	TCRgd T cells	9	1838	0.8	1.2
	DN T cells	7	3052	1.6	1.5
	CD8 ^{dim} T cells	13	4317	2.2	2.1
	Total	29	9207	4.6	4.7

Granulocytes	CD66b ⁺ Granulocytes	19	5478	2.9	2.4
	CD66b ⁻ Granulocytes	2	662	0.3	0.3
	Total	21	6140	3.2	2.7
CD117⁺ cells	CD117 ⁺ lymphocytes	8	2566	1.3	1.3
	CD117 ⁺ mast cells	13	2810	1.5	1.2
	Total	21	5376	8.5	6.2
Plasma cells	-	13	3944	2.0	2.0
9	22	293	199426	100	100