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Abstract: Filoviruses have become a worldwide public health concern, especially during the 2013–2016
Western Africa Ebola virus disease (EVD) outbreak—the largest outbreak, both by number of cases
and geographical extension, recorded so far in medical history. EVD is associated with pathologies in
several organs, including the liver, kidney, and lung. During the 2013–2016 Western Africa outbreak,
Ebola virus (EBOV) was detected in the lung of infected patients suggesting a role in lung pathogenesis.
However, little is known about lung pathogenesis and the controversial issue of aerosol transmission
in EVD. This review highlights the pulmonary involvement in EVD, with a special focus on the new
data emerging from the 2013–2016 Ebola outbreak.
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1. Introduction

Ebolavirus is part of the Filoviridae family, which consists of three genera: Marbugvirus, Cuevavirus,
and Ebolavirus. There are currently six known, genetically distinct, species of Ebolavirus—Ebola virus
(EBOV), Sudan Ebolaviurs (SUDV), Tai Forest Ebolavirus (TAFV), Bundibugyo Ebolavirus (BDBV), Reston
Ebolavirus (RESTV), and Bombali Ebolavirus (BOMV) [1,2]. No virus has triggered fear in the general
population more than the filovirus Ebolavirus [3]. EBOV is categorized among the deadliest viruses,
with mortality rates up to 90%. The zoonotic origin of outbreaks are often the result of transmission
from primates, although the suspected natural reservoir for EBOV, bats, is still being questioned.
Since it was first identified in 1976 in Zaire (the actual Democratic Republic of Congo), 27 confirmed
outbreaks, mainly in the central part of Africa, have occurred, and each outbreak was accompanied by
high case fatality rates up to 88%, including the new declared outbreak ongoing in the North Kivu
Province of the Democratic Republic of the Congo [4–6]. The 2013–2016 Ebola outbreak is the largest
(both by number of cases and geographical extension) ebolavirus outbreak ever reported, resulting
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in 28,610 cases and 11,308 deaths, with fatality rates of 70% in Guinea and Sierra Leone and 41% in
Liberia [5]. The number of cases in this single outbreak is far greater than the total number of all cases
and deaths of the past outbreaks over the last 40 years. The reasons of such an extended outbreak
are linked to societal factors (poverty, urbanization, population migration patterns, and changes of
socio-economic conditions), together with the concomitant invasion of animal habitats, climate change,
and deforestation [4]. In fact, the emergence and re-emergence of such viruses in Africa or their
potential introduction into new countries have usually been related to the mobility and international
transport of infected animals or animal products, thus making ebolavirus and filoviruses a worldwide
public health concern [7]. Moreover, despite almost 40 years of research, filovirus transmission remains
incompletely understood. In humans, EBOV has been found in a variety of body fluids, including
blood, stool, breast milk, semen, urine, and saliva [8]. There are multiple routes of transmission for
EBOV. However, information about transmission in humans is incomplete, and defining the modes
of transmission would greatly increase the ability of public health structures to limit the disease, as
well as enable health care workers to avoid any unnecessary risk. So far, our understanding of EBOV
transmission in humans mainly relies on epidemiological observations and contact with body fluids
from EBOV-positive patients remain the most likely route of transmission. Notably, the number of past
outbreaks and associated epidemiological studies carefully examining transmission patterns are small.

Ebola Virus Disease (EVD) is commonly associated with multiple organ systems, including the
liver, renal organs, and lungs [9]. So far, little is known about the involvement of the respiratory
tract and EBOV pathogenesis in the lung. However, little evidence in filovirus animal outbreaks and
animal studies highlights the involvement of the lungs and the respiratory tract in filovirus pathology.
Over the years, there has been an increasing concern regarding the possible involvement of the lung in
EBOV infection. This concern further increased during the 2013–2016 EBOV outbreak, which offered
evidence of viral shedding in the lung, leading to a risk of aerosol transmission [10]. The aim of
this review is to highlight the pulmonary involvement in EVD, with a special focus on the new data
emerging from the 2013–2016 Ebola outbreak.

2. Host Defense Mechanisms in the Respiratory Tract during EBOV Infection

The lung is a vulnerable organ along with the skin and the gut; it is the interface between the sterile
body sanctuary and the external environment. Besides its role in maintaining the conduit for air to and
from the alveoli, the airway epithelium of the respiratory system is central to the defense of the lung
against pathogens. Through the combined function of ciliated epithelial and secretory cells, efficient
mucociliary clearance is maintained, along with a variety of other host defense mechanisms [11].
Airway epithelial cells regulate both innate and adaptive immunity through production of functional
molecules and physical interactions with cells of the immune system [12]. Despite these defense
mechanisms, viruses have found ways to evade the immune system, resulting in severe respiratory
disease. Lung pathogenesis is a combination of direct and indirect processes involving virus and/or
host factors. Virus-related factors (Figure 1) include receptor specificity and the ability to induce cell
damage (direct cytopathic effect) and/or cell apoptosis, whereas host-related factors mostly include
the inflammatory response and the activation of the immune system, combined with host-risk factors
(chronic respiratory diseases, smokers, atopy of the airway epithelium, etc).
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Figure 1. Direct and indirect effects of viral infections of the airway epithelium. Upon entrance into 
the cell, viruses are recognized by the Toll-like receptor (TLR) on either cell membrane or in 
endosomes. TLRs activate interferon regulatory factors (IRFs) leading to IFN-α and IFN-β release via 
the Toll/IL-1 receptor domain-containing adaptor (TRIF). TLR3 stimulates IRF-7 and NF-κB via 
MyD88 activation, leading to the release of proinflammatory cytokines and the production of IFN-α, 
-β, and -λ, respectively. Secretion of proinflammatory cytokines and chemokines activate the immune 
system, through recruitment of eosinophils, neutrophils, macrophages, dendritic cells, T cells, and 
NK cells. Most respiratory viruses have developed strategies to escape antiviral defense, mainly by 
interfering with the IFN system or by affecting the epithelium barrier, with the consequence of a loss 
of integrity and protection. Furthermore, respiratory viruses can perturb (skewed or exaggerated) 
inflammatory responses and production of soluble mediators. 

EBOV infection is acquired through direct contact with bodily fluids. The virus enters blood 
circulation through breaks in the skin and mucosa and spread to different organs, causing systemic 
manifestation of cardiovascular, coagulation, or inflammatory disturbances [10]. The terminal stages 
of EVD usually involve massive tissue injury and hemorrhage, resulting in multiorgan failure and 
shock, the main cause of exitus in EVD patients [13]. During EVD, respiratory symptoms such as 
chest pain, shortness of breath, cough, and nasal discharge are signals of the multisystem 
involvement, but, so far, lung damage has not been directly linked to EBOV replication in the 
respiratory tract. However, new evidences collected during the recent 2013–2016 Ebola outbreak 
hypothesized shedding of the virus in the lung and identified viral replication markers in sputum 
samples collected from EBOV infected patients [14]. On the other hand, the high virulence of EBOV 
is attributed in large part to the ability of this virus to interfere with the host immune response, and 
the high degree of variation in lung pathogenesis is usually linked to indirect damage due to 
endothelial and epithelial inflammation and the hyper-activation of the immune system subsequent 
to EBOV infection. In fact, viral direct damages are always associated with indirect damages, caused 
by inflammatory and immune reactions elicited by the viruses through the activation of soluble 
mediators (cytokines and chemokines) as part of the immune response (Figure 1). The acute 
inflammation process is characterized by increasing blood flow, which enables plasma and 
leukocytes to reach extra-vascular sites of injury. Even though inflammation may be often restored, 
in EVD, severe inflammation is associated with a cytokine storm and more serious pathological 
changes are observed. For instance, EBOV in vitro infection of monocytes and macrophages triggers 
the robust expression of inflammatory mediators, including IL-1β, IL-6, IL-8, MIP-1a, MIP-1β, MCP-
1, and TNF-α [15,16], whereas the dysregulation of immune mediators in humans has been associated 
with the secretion of other inflammatory mediators, such as IL-1β, IL-8, CCL2, CCL3, CCL13, CXCL1, 
CXCL10, CXCL11, CXCL12, IL6, MIF, SPP [17–19]. In addition, severe inflammatory 

Figure 1. Direct and indirect effects of viral infections of the airway epithelium. Upon entrance
into the cell, viruses are recognized by the Toll-like receptor (TLR) on either cell membrane or in
endosomes. TLRs activate interferon regulatory factors (IRFs) leading to IFN-α and IFN-β release via
the Toll/IL-1 receptor domain-containing adaptor (TRIF). TLR3 stimulates IRF-7 and NF-κB via MyD88
activation, leading to the release of proinflammatory cytokines and the production of IFN-α, -β, and -λ,
respectively. Secretion of proinflammatory cytokines and chemokines activate the immune system,
through recruitment of eosinophils, neutrophils, macrophages, dendritic cells, T cells, and NK cells.
Most respiratory viruses have developed strategies to escape antiviral defense, mainly by interfering
with the IFN system or by affecting the epithelium barrier, with the consequence of a loss of integrity
and protection. Furthermore, respiratory viruses can perturb (skewed or exaggerated) inflammatory
responses and production of soluble mediators.

EBOV infection is acquired through direct contact with bodily fluids. The virus enters blood
circulation through breaks in the skin and mucosa and spread to different organs, causing systemic
manifestation of cardiovascular, coagulation, or inflammatory disturbances [10]. The terminal stages of
EVD usually involve massive tissue injury and hemorrhage, resulting in multiorgan failure and shock,
the main cause of exitus in EVD patients [13]. During EVD, respiratory symptoms such as chest pain,
shortness of breath, cough, and nasal discharge are signals of the multisystem involvement, but, so far,
lung damage has not been directly linked to EBOV replication in the respiratory tract. However, new
evidences collected during the recent 2013–2016 Ebola outbreak hypothesized shedding of the virus in
the lung and identified viral replication markers in sputum samples collected from EBOV infected
patients [14]. On the other hand, the high virulence of EBOV is attributed in large part to the ability
of this virus to interfere with the host immune response, and the high degree of variation in lung
pathogenesis is usually linked to indirect damage due to endothelial and epithelial inflammation and
the hyper-activation of the immune system subsequent to EBOV infection. In fact, viral direct damages
are always associated with indirect damages, caused by inflammatory and immune reactions elicited
by the viruses through the activation of soluble mediators (cytokines and chemokines) as part of the
immune response (Figure 1). The acute inflammation process is characterized by increasing blood flow,
which enables plasma and leukocytes to reach extra-vascular sites of injury. Even though inflammation
may be often restored, in EVD, severe inflammation is associated with a cytokine storm and more
serious pathological changes are observed. For instance, EBOV in vitro infection of monocytes and
macrophages triggers the robust expression of inflammatory mediators, including IL-1β, IL-6, IL-8,
MIP-1a, MIP-1β, MCP-1, and TNF-α [15,16], whereas the dysregulation of immune mediators in
humans has been associated with the secretion of other inflammatory mediators, such as IL-1β, IL-8,
CCL2, CCL3, CCL13, CXCL1, CXCL10, CXCL11, CXCL12, IL6, MIF, SPP [17–19]. In addition, severe
inflammatory cytokines/chemokines may spill over into the circulation and result in systemic cytokine
storms, which are responsible for multi-organ dysfunction and for the impairment of the vascular
system and disseminated intravascular coagulation [20,21]. Dendritic cells (DCs) play an essential role
in the link between the innate and adaptive immune response, and their maturation is essential for
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the correct functionality of DCs, such as the migration, processing, and presentation of viral antigens
to T- and B-cells for their activation and correct viral clearance [22,23]. EBOV infection has been
shown to influence these mechanisms through impairment of DCs in upregulating co-stimulatory
molecules (CD40, CD86, and CD80) and Major Histocompatibility Complex (MHC) class II, as well as
soluble chemokines and cytokines [24]. EBOV infection is also able to influence the adaptive immune
response: severe lymphopenia and the destruction of lymphoid tissue is one of the hallmarks of EBOV
infection. Fatal cases showed a more marked reduction of NK cells and γδ T-cell frequency, as well
as a loss of peripheral blood CD4+ and CD8+ T cells [25,26]. Moreover, a recent study showed that
patients with fatal outcome presented lower, or often absent, levels of both EBOV-specific IgM and
IgG, which, when detected, appeared later than in survivors [19]. Overall, the alteration of the innate
and adaptive response explains the paralysis of the immune system and its inability to initiate and
maintain a protective immune response. At the pulmonary level, many of the pathological changes
are, in fact, secondary to systemic alterations, correlating with general pathogenic mechanisms, which
are the major causes of severe disease in humans, even at the respiratory level [19,27].

3. Ebola Virus Disease

EVD is a viral hemorrhagic fever (VHF) characterized by acute systemic manifestations with
vascular damage, plasma leakage, severe inflammation, and disruption of the immune system [28]. EVD
transmissibility seems to vary depending on the stage of disease [29]. A high-level of EBOV replication,
associated with systemic dissemination to multiple cell types, results in a complex pathogenesis,
which is linked to an increased risk of infection transmission [29]. As stated above, these pathogenic
mechanisms include detrimental immune suppression and over-activation of the immune response,
disordered coagulation, and tissue damage due to direct viral and indirect host-mediated effectors.
In the absence of adequate supportive care, these processes commonly result in multiple organ failure
and death within about 10 days of symptom onset in humans.

It is well recognized that EBOV infection is acquired by direct contact with bodily fluids. Notably,
studies conducted in animal models have instilled doubts about possible airborne/droplet transmission
(see Section 3.1). However, this route of infection in humans is still debated. Piercy and colleagues
evaluated the actual stability of the virus particles in aerosol droplets [30]. They created Ebola-containing
aerosol droplets and, according to the decay rates, estimated that EBOV and RESTV can survive in
aerosols for roughly 100 and 160 min, respectively, at 50% to 55% relative humidity and 22 ± 3 ◦C [30].
Therefore, a key additional question to ask is whether primary pulmonary infection of EBOV could be
a potential scenario for the future. A fair amount of studies, based on animal experiments (Table 1)
and clinical evidence collected during the outbreaks (Table 2), suggest that pulmonary infection may
be a possibility. This possibility will be fully investigated below.
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Table 1. Evidences in animal studies of Ebolavirus (EBOV) infection and pathogenesis in the respiratory system.

Year Animal
Virus

(Co-Infection;
Provenance)

Analyzed Tissue Route of Inoculation Pathological Findings Clinical Signs Reference

1989
Cynomolgus

monkeys
(Macaca fascicularis)

RESTV
(co-infection with
SHFV; Philippines)

Plasma,
Sera, tissues Natural infection Enlarged spleens and kidneys Anorexia, cough, nasal

exudates, swollen eyelids
Jahrling PB, et al.,
Lancet 1990 [31]

2008 Domestic swine

RESTV
(co-infection with
PRRSV and PCV-2;

Philippines)

Plasma, sera,
tissues

(lymph nodes)
Natural infection RESTV isolation from lung

and lymph nodes

Severe respiratory disease
syndrome,

interstitial pneumonia

Barrette RW, et al.,
Science 2009 [32]

2011 Domestic pigs
RESTV

(Philippines
swine isolate)

Blood,
swabs, tissues

Challenge by
subcutaneous and

oral routes

RESTV isolation from
superficial (submandibular,

axillary, inguinal) and internal
(bronchial, mesenteric) lymph

nodes, nasal turbinates,
muscle, and lung

Mild acute rhinitis Acute
bronchopneumonia

Marsh GA, et al.,
JID 2011 [33]

2014 Domestic pigs
RESTV

(co-infection with
PRRSV, China)

Spleen Natural infection Positive for RESTV RT-PCR
Typical clinical signs of

porcine reproductive and
respiratory syndrome

Pan Y, et al.,
Arch Virol 2014 [34]

1995 Monkeys
(Macaca mulatta)

EBOV
(EBOV isolate) Plasma, tissues Aerosol exposure

Bronchial
and bronchiolar epithelium,
alveolar pneumocytes, and

alveolar macrophages
showed positive EBOV

antigen staining

Typical signs of EVD.
Serosanguineous nasal

discharge,
subcutaneous haemorrhage

Johnson E et al., Int.
J. Exp. Path.

1995 [35]

2010 Domesticated
Landrace pigs

EBOV (EBOV
strain Kikwit 95) Blood, tissues Intranasal, intraocular

and oral routes

Macroscopic pathological
changes in lungs. Abundant

viral antigen detection
in lungs

Most prominent and
progressive clinical signs

were respiratory

Kobinger G, et al., J
Infect Dis 2011 [36]

2012

Pigs (breed
Landrace) and
cynomolgus

macaques
(Macaca fascicularis)

EBOV (EBOV
strain Kikwit 95) Blood, tissues

Oro-nasal inoculation
of the pigs. Macaques
in close contact with
the pigs to evaluate
aerosol transmission

Pigs: viral antigens in
bronchioles

Macaques: EBOV antigen in
alveolar, septal macrophages,

pneumocytes and
endothelial cells

Pigs: broncho-interstitial
pneumonia with a lobular

pattern
Macaques: typical signs of

EBOV infection, with
damages mainly to the lung

and liver

Weingartl HM et al.,
Sci Rep. 2012 [37]
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Table 1. Cont.

Year Animal
Virus

(Co-Infection;
Provenance)

Analyzed Tissue Route of Inoculation Pathological Findings Clinical Signs Reference

2013 Domesticated
Landrace pigs

EBOV (EBOV
strain kikwit 95) Blood, tissues Intranasal, intraocular

and oral routes

Pneumonia, distributed
primarily in the dorso-caudal

lobes, characterized by
consolidation and

haemorrhage affecting more
than 70% of the lung tissue

Typical signs of EBOV
infection. An increase in

respiratory rate as well as
difficult, abdominal

breathing, inappetence,
weakness and reluctance

to move

Nfon CK, et al.,
Plos One 2013 [38]

– Rhesus macaques
(Macaca mulatta)

EBOV (EBOV
strain from

Zaire 95)

Blood, set of
tissues from all
major organs

Aerosol exposure

Histologic changes within the
lungs included alveolar

histiocytosis, alveolar fibrin,
and multifocal

fibrinoid vasculitis

Typical signs of
EBOV infection

Twenhalfel NA,
et al., Vet Path

2013 [39]

PRRSV—Porcine Reproductive and Respiratory Syndrome Virus, SHFV—Simian Haemorrhagic Fever Virus, PCV-2—Porcine Circovirus Type 2, RESTV—Reston Ebolavirus,
EBOV—Ebola virus.

Table 2. Evidence of lung involvement from retrospective cohort studies and clinical observations from the field.

Date Country Virus No of
Cases

No of
Deaths CFR Clinical Evidence Diagnostic Evidence Reference

Jun–Nov 1976 Sudan SUDV 284 151 53% Chest pain 153 (83%),
Cough 90 (49%) of 183 patients

2 autoptic findings with
proliferative thickening

of alveolar septa
WHO. Bull WHO 1978 [40]

Aug 1976 Zaire EBOV 318 280 88%
Cough 36% in 208 deceased

patients, 18% in 34 serogically
confirmed patients

Clinical evidence WHO. Bull WHO 1976 [40]

Jun 1977 Zaire EBOV 1 1 100% No respiratory sign Clinical evidence Heymann DL. J Infect Dis 1980 [41]
Aug–Sep 1979 Sudan SUDV 34 22 65% No respiratory sign Clinical evidence Baron RC. Bull WHO 1983 [42]

1989 Philippine RESTV 3 0 0% No respiratory sign Clinical evidence Miranda ME. Lancet 1991 [43]
1990 USA RESTV 4 0 0% No respiratory sign Clinical evidence CDC. MMWR 1990 [44]
1994 Cote d’Ivoire TAIFV 4 0 0% No respiratory sign Clinical evidence Le Guenno B. Lancet 1995 [45]
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Table 2. Cont.

Date Country Virus No of
Cases

No of
Deaths CFR Clinical Evidence Diagnostic Evidence Reference

Dec 1994–Feb 1995 Gabon EBOV 52 31 60% No respiratory sign Clinical evidence Georges AJ. J Infect Dis 1999 [46]
May–Jul 1995 Zaire EBOV 315 250 79% Dyspnea 55 (25%) of 209 Clinical evidence Khan AS. J Infect Dis 1999 [47]
Jan–Apr 1996 Gabon EBOV 60 45 75% No respiratory sign Clinical evidence Georges AJ. J Infect Dis 1999 [46]

Jul 1996–Mar 1997 Gabon EBOV 37 21 57% No respiratory sign Clinical evidence Georges AJ. J Infect Dis 1999 [46]
Oct 2000–Jan 2001 Uganda SUDV 425 224 53% No data Clinical evidence Okware SI. Trop Med Int Health 2002 [48]
Oct 2001–Jul 2002 Gabon, DRC EBOV 124 96 77% Article not available No data WHO. Week Epi Rec 2003 [49]

Dec 2002–Apr 2003 DRC EBOV 143 128 90% No data Clinical evidence Formenty P. Med Trop 2003 [50]
Nov–Dec 2003 DRC EBOV 35 29 83% No data Clinical evidence WHO. Week Epi Rec 2004 [49]
Apr–Jun 2004 Sudan SUDV 17 7 41% Cough in 11 of 13 cases, 85% Clinical evidence WHO. Week Epi Rec 2005 [49]

April 2005 DRC EBOV 12 10 83% No data No data Article not avalaible
Aug–Nov 2007 DRC EBOV 264 187 71% No data No data WHO. Week Epi Rec 2007 [49]

Dec 2007–Jan 2008 Uganda BDBV 149 37 25% No data No data MacNeil AJ. Infect dis 2011 [51]
Dec 2008–Feb 2009 DRC EBOV 32 15 47% No data No data WHO. Glob Aler Resp 2009 [52]

May 2011 Uganda SUDV 1 1 100% No respiratory symptoms
–Respiratory failure Clinical evidence Shoemaker T. EID 2012 [53]

Jun–Aug 2012 Uganda SUDV 17 7 41% No data No data Albarino CG. Virol 2013 [54]
Jun–Nov 2012 DRC BDBV 35 13 36% No data No data Albarino CG. Virol 2013 [54]

Dec 2013–Jan 2016 Western Africa EBOV 28,616 11,310 39% Cough, dyspnoea, pulmonary
oedema, pneumonia

Viral replication
markers in sputum

samples
Baize S. N Engl J Med 2014 [3]

Aug–Nov 2014 DRC EBOV 66 49 74% Difficult breathing 21.4%
Cough 18% Clinical evidence Maganga GD. N Eng J Med 2014 [55]

May 2017 DRC EBOV 8 4 50% Cough 25% Clinical evidence Nsio J. J Infect Dis 2019 [56]

May–Jul 2018 DRC EBOV 54 33 61% Difficult breathing 34.4% Clinical evidence The Ebola Outbreak Epidemiology Team
Lancet 2019 [38]

August 2018–ongoing DRC EBOV 2620 1762 67% No data No data WHO, 2019 [57]

CFR—Case Fatality Rate, DRC—Democratic Republic of Congo, SUDV—Sudan Ebolavirus, RESTV—Reston Ebolavirus, BDBV—Bundibugyo Ebolavirus, EBOV—Ebola virus, TAIFV—Tai
Forest Ebolavirus.
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3.1. Animal Studies

After its first discovery in 1989 in cynomolgus macaques imported to Reston, Virginia, RESTV
was detected in domestic swine in the Philippines in a co-infection with the Porcine Reproductive and
Respiratory Syndrome Virus (PRRSV, family Arteriviridae, genus Arterivirus) and Porcine Circovirus
type 2 (PCV-2; family Circoviridae) [32,34]. Later on, RESTV was identified to cause asymptomatic
infections with mild respiratory symptoms, which may result in severe mortality in cases of co-infections
with other viral pathogens like viruses in the families Arteriviridae and Circoviridae. The virus was
first isolated in lung and lymphoid tissues in the original disease investigation [32]. However, the
massive presence of the virus in the lungs may be due to the fact that RESTV infection in pigs has been
mostly associated with other infections of the respiratory tract, which may contribute to the specific
localization of the virus and the respiratory symptoms of the disease. Marsh et al. [33] conducted an
experimental study to rule out the effect of other pathogens affecting pigs, using a 2008 Philippines
swine isolate of RESTV. Specifically, five-week-old pigs were exposed (via the oro-nasal or subcutaneous
route) to the virus, and the subsequent viral replication in internal organs and shedding of the virus
from the nasopharynx was observed. The researchers detected the highest levels of virus replication in
lung and lymphoid tissues, confirming previous results [32].

The detection of RESTV in domestic swine raised important biosecurity concerns about the
potential for the disease’s emergence in humans and other livestock, mainly in animals for food
consumption [32,33]. The evidence of RESTV seropositive individuals further increased the concern for
human infections and the worries of researchers, farm owners, and the public at large (World Health
Organization. WHO, 2009, Available online: https://www.who.int/csr/resources/publications/HSE_
EPR_2009_2.pdf). Interestingly, so far RESTV has not been seen to result in any human disease, even if
there is concern that its passage through swine may allow RESTV to diverge and shift its potential for
pathogenicity [58].

On the other hand, several studies investigated if other Ebola viruses may be transmitted through
the aerosol route and may result in primary pulmonary infection [9,10,59]. Researchers reviewed the
different animal models and offered an overview regarding the possibilities of Ebola viruses causing
aerosol infections in non-human primates (NHPs) and other animals. Experimental studies analyzed the
respiratory tract involvement in filovirus infections when the animals were exposed to the virus through
different aerosol routes (artificially aerosolized virus or natural aerosol transmission) [36,37,39,60].
In these experimental studies conducted on NHPs and pigs, EBOV was inoculated via the aerosol
route, and, following mucosal exposure, EBOV replicated, reaching high concentrations, mainly in
the respiratory tract, with the development of severe lung pathology. Interestingly, Weingartl et al.
demonstrated that piglets inoculated oro-nasally with EBOV and then transferred to a different room
housing macaques in an open inaccessible cage system resulted in EBOV infection of all macaques,
suggesting a need to revise prevention and control measures during outbreaks [37]. Viral replication
was observed within alveolar spaces [36,37], in type I pneumocytes and macrophages [36], and in
type II pneumocytes, bronchiolar epithelial cells, and endothelial cells [38], supporting the respiratory
involvement. The upper and lower respiratory tract, the lymphoid tissues, and the mediastinal lymph
nodes showed infection signs, as well [39]. Similarly, in experiments on cynomolgus macaques placed
separately in cages with experimentally infected piglets [37], and on guinea pigs exposed via aerosols
to a guinea pig-adapted EBOV strain [39], viral antigens were detected within alveolar and septal
macrophages, pneumocytes, epithelial cells, endothelial cells, fibroblasts, and other interstitial cells of
the respiratory tree [61]. Considering the pathology of the respiratory system, the expression of disease
in the lungs and the patterns of lesions seem to be influenced by the exposure routes (aerogenous
or hematogenous). Broncho–interstitial pneumonia, characterized by injury to both the bronchiolar
and the alveolar epithelium, is commonly caused by aerogenous viral infections [62]. Moreover, such
pathological features were generally not evidenced following the inoculation of EBOV by other routes
in NHPs and laboratory animals [9,35]. As shown in animal studies, primary pulmonary infections

https://www.who.int/csr/resources/publications/HSE_EPR_2009_2.pdf
https://www.who.int/csr/resources/publications/HSE_EPR_2009_2.pdf
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could occur and cause active viral shedding from the respiratory tract, thus potentially setting up a
cycle of ongoing respiratory transmission in humans [9,63].

Overall, experimental works conducted so far have shown that EBOV infection induces respiratory
complications, that the virus can be shed via the respiratory secretions, and that it can cause similar
pulmonary lesions both in animals exposed to aerosols and in those kept nearby in separate cages with
no close contact.

3.2. Clinical and Pathology Findings in Humans during EVD

The pathophysiological mechanism of pulmonary disease in patients with EVD is unknown.
Notably, autopsies were performed on a limited number of humans (about 30 cases), primarily during
the 1976 SUDV and 1995 EBOV EVD outbreaks and revealed interesting characteristics at microscopic
level. During the first known SUDV outbreak, chest pain was almost universal (83% of patients), often
accompanied by a dry cough. Autopsies were further performed on two patients and thickening of
the alveolar walls due to proliferative accumulations of alveolar cells was found [64]. Furthermore,
a possible pathogenetic role of the virus in the respiratory tract was suggested by the fact that viral
inclusions within alveolar macrophages and free viral particles within alveolar space were found in
the lungs from fatal EVD cases who showed congestion, focal intra-alveolar edema, diffuse alveolar
damage, and hemorrhaging. [9,10].

One of the most common symptoms in EVD patients is a cough (up to 49%), especially during the
progression of the disease, when viral loads in serum significantly increase, and the virus is copiously
emitted in most body fluids, as well as in aerosol particles of various sizes [65,66]. Among the reported
EVD cases in the literature, respiratory symptoms were commonly reported with a wide range of
symptoms, such as a cough (from 3% [67,68] to 60% [69]), dyspnoea or breathless (detected from
0% [70] to 49% [57]), and chest pain (from 7.5% [71] to 98.6% [72]). Moreover, a WHO study on the
first 9 months of the epidemic in Western Africa found that nearly 30% (194 out of 665) of the patients
experienced coughing and 2.4% (20 of 831) had a bloody cough [73,74]. A study of 27 EBOV-positive
patients of the 2013–2016 outbreak in Western Africa, treated in Europe and USA, reported that cough
and dyspnoea were present at admission in seven (30%) and five (22%) EVD patients, respectively.
At symptom onset, only a cough was reported in one patient. Furthermore, during hospitalization,
14 patients (52%) experienced hypoxemia while they were breathing ambient air, 12 patients (44%)
had pulmonary oedema, seven patients (26%) had pneumonia, 39 patients (33%) had respiratory
failure, and six patients (22%) had a diagnosis of acute respiratory distress syndrome (ARDS). Of
these patients, four patients (15%) received non-invasive mechanical ventilation, and seven patients
(26%) received invasive mechanical ventilation [75]. Notably, the first EBOV-positive patient treated in
Italy, mechanically ventilated for respiratory insufficiency for 5 days, had high levels of EBOV RNA
in the lower respiratory tract secretions. The authors concluded that the absence of other identified
respiratory pathogens in broncho-alveolar lavage fluids and aspirates supported the hypothesis of a
direct contribution to the lung tissues damage by EBOV. Notably, EBOV RNA was detected in bronchial
aspirate fluids when the EBOV RNA concentration in the concomitant blood samples was barely
detectable. Furthermore, the blood EBOV RNA concentrations in the previous days were significantly
lower than the concentrations detected in the bronchial aspirate samples. These findings suggest that
this EBOV infection is unlikely a spillover from the blood compartment, eventually accompanied by
delayed clearance. Instead, the most plausible explanation is that the virus actually replicated into the
lower respiratory tract [76].

In the second EBOV-patient treated in Italy, our group investigated the presence of EBOV genetic
material in the lungs and blood during the patient’s treatment and recovery. The patient showed a
persistence of EBOV replication markers within the respiratory tract, with a prolonged detection of
EBOV viral RNAs (negative and positive sense RNAs: neg-RNA and pos-RNA, respectively), known
to be associated with EBOV replication, in the lower respiratory tract for up to five days after the EBOV
viral load in blood was already undetectable. These results suggest that EBOV may replicate in the
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lungs, although it is possible that the lungs simply provided a protective environment that allowed
RNA to linger longer than it did in the plasma. Nevertheless, the detection of pos-RNA together with
neg-RNA in the sputum (until day 9 and 10 of the hospital stay, respectively) supports the concept of
active viral replication within the respiratory tract, rather than plasma spill-over or prolonged RNA
stability [14].

Overall, the pathophysiological mechanisms of pulmonary disease in patients with EVD are still
uncertain, but there could be multiple contributing factors, including vascular leak from endothelial
infection, cytokine dysregulation, or direct damage to EBOV-infected cells (Figure 2).
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3.3. Impact of Epidemiological and Virological Data on Infection and Control Measures

Our understanding of EBOV transmission in humans mainly relies on epidemiological observations.
Contact with bodily fluids from EVD patients remains the most likely route of transmission. Notably,
the number of past outbreaks and associated epidemiological studies hat carefully examine transmission
patterns is small. Therefore, conclusions about transmission are based on relatively limited data
sets [10]. Interestingly, 18 (6.6%) of the 2774 cases in the 1976 SUDV outbreak in Nzara, Sudan, and 55
(17.4%) of the 316 cases during the 1995 EBOV outbreak in Kikwit, DRC, had no direct or physical
contact with an infected person or known infected dead body [77,78], thus pointing to other possible
routes of transmission, e.g., human to human respiratory tract infection through droplet and aerosols.
During the 2013–2016 Western Africa epidemic, more than 890 health care workers (HCW) were
infected, with a case fatality rate of 57% [60], whereas during the current 2018–2019 outbreak in DRC,
as of 22 July 2019, 140 HCW have been already affected (5.4% of total cases) [6].

Currently, full body protection is recommend by WHO and CDC [79,80]. All HCW involved in
the care of EVD patients must receive training and demonstrate competency in performing all Ebola
related infection control practices and procedures, specifically in proper donning and doffing PPE
even if using an N95 mask or a powered air-purifying respirator (PAPR). The risk of infection via
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inhalation of contaminated aerosols from exposed individuals has not been documented. However,
droplets containing EBOV that have become aerosolized (e.g., from coughing sneezing, vomiting,
invasive medical or surgical procedures, or surfaces) may have the potential to come into contact
with a person’s mucous membrane in their nose or mouth or non-intact skin. Therefore, respiratory
protection may be helpful in providing a barrier to help prevent infectious materials from contacting a
wearer’s mucous membranes.

Finally, the epidemiologic and viral evidence of EBOV detection and replication in the respiratory
tract raise concerns on the need of strict application of cough etiquette for patients and of droplet
and/or respiratory precautions for all HCW involved in the clinical management of EVD suspected
and confirmed cases.

4. Conclusions

Acute respiratory tract infections (ARTIs) remain a leading cause of mortality, morbidity, and
economic loss, and viruses are one of the main causes of such disease. WHO estimates that ARTIs cause
nearly four million deaths per year, a rate of more than 60 deaths/100,000 people [81]. The microbial
etiology of ARIs is varied, with viruses being the most common cause in humans [82], leading to a
high level of awareness and the necessity to develop countermeasures to control them (Table 3).

Filoviruses are not commonly considered to be viruses responsible for ARIs, even if respiratory
symptoms may be present as a consequence of diffuse systemic alterations. Interestingly, evidence
collected in animal studies, in the epidemiological analysis of transmission chains, and in the most
recent Ebola outbreaks suggests that EBOV may be able to cause primary pulmonary infection.
This evidence highlights the ability of the virus to be shed in the lung, suggesting a role in lung
pathogenesis. Specifically, the relevant proportion of EVD patients without any epidemiologic link
to the exposure to contaminated biological samples or fomites, or to any contact with EVD patients;
the evidence of respiratory signs and symptoms commonly reported all over the clinical course; the
abundance of viral antigens in the lungs in animal necropsies; the prolonged persistence of EBOV
detection and replication within the respiratory tract days after undetectable EBOV viral load in plasma;
and similar clinical patterns in several other viral respiratory tract infections are all different parameters
with consistent evidence of a major role in the pathogenesis of EVD in respiratory tissues [10].

On the other hand, there is no evidence of aerosol transmission in EVD. However, different
studies addressing this issue have been performed [30,83], and aerosol transmission was considered a
possibility as a consequence of epidemiological observations in past outbreaks, where people showed
signs of EVD even in the absence of a direct or physical contact with an infected person or known
infected dead body [78,84]. This hypothesis was corroborated by other studies, in which the presence
of free viral particles in alveoli and within intra-alveolar macrophages demonstrated a pulmonary
involvement [10].
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Table 3. Pathological findings in viral infections.

Family Genus Virus Pathological Findings Most Common Symptoms Ref

Adenoviridae Mastadenovirus Adenovirus

Interstitial and peribronchial
infiltration, Acute bronchiolitis,

Necrosis, Haloed
basophilic inclusions

Common cold, Laryngitis,
tracheobronchitis

Khanal S. et al.,
Biomedicines 2018 [85]

Herpesviridae Cytomegalovirus Cytomegalovirus

Interstitial pneumonitis,
Intra-alveolar damage, DAD §,

Cytomegaly, Eosinophilic
intranuclear Cowdry

type-B inclusions

Bronchiolitis, Pneumonia *

Falsey AR et al.,
Semin Respir Crit Care Med.

2007 [86], Pierangeli A
Minerva Pediatr. 2018 [87]

Paramyxoviridae

Pneumovirus Respiratory
Syncytial Virus

Atelectasis, Mucosal
ulcerations, DAD

Giant cells pneumonia

Common cold,
Bronchiolitis

◦,*,
Pneumonia

◦,*

Pierangeli A
Minerva Pediatr. 2018 [87]

Morbillivirus Measles
Squamous metaplasia of bronchial
epithelium, DAD, Multinucleated

giant cells

Fever, Sore throat,
Tracheobronchitis,

Laryngitis

Yanagi Y
J Gen Virol. 2006 [88]

Orthomyxoviridae Influenza Influenza virus

Tracheobronchitis, Bronchiolitis,
DAD, Hemorrhage oedema,

Squamous metaplasia of
bronchial epithelium

Fever, Laryngitis,
Tracheobronchitis

Capelozzi VL
Clinics (Sao Paulo). 2010 [89]

Coronoviridae Betacoronavirus Severe Acute Respiratory
Syndrome (SARS)

DAD, Bronchiolar injury,
Multinucleated cells

Harvey-Comb lung, Acute
bronchopneumonia

Bronchitis, Pneumonia Lau YL
Curr Opin Immunol. 2005 [90]

Flaviviridae Flavivirus Yellow fever virus
Dengue virus

Alveolar oedema, Interstitila
pneumonitis, DAD, DAH # Pneumonia

Paessler S
Annu Rev Pathol. 2013 [91], Lee YR

Virus Res. 2007 [92]

Arenaviridae Arenavirus
Lassa virus

Machupo Virus
Guanarito Virus

Alveolar oedema, Interstitial
pneumonitis, DAD,
Bronchopneumonia

Pneumonia
Paessler S

Annu Rev Pathol. 2013 [91], Yun NE
Viruses. 2012 [93]
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Table 3. Cont.

Buanyaviridae

Bunyavirus Hantavirus Alveolar oedema, DAH,
Bronchopneumonia Pneumonia

Paessler S
Annu Rev Pathol. 2013 [91],

Safronetz D
Proc Natl Acad Sci USA. 2014 [94]

Nairoviridae
Crimean-Congo

Hemorrhagic
Fever (CCHF)

Alveolar oedema Pneumonia Paessler S
Annu Rev Pathol. 2013 [91]

Filoviridae

Ebolavirus Ebola virus

Pneumonia, Pulmonary oedema,
Pulomnary effusion

Cough, Bronchitis,
Pneumonia

Paessler S
Annu Rev Pathol. 2013 [91],

Marcinkiewicz J
Folia Med Cracov. 2014 [27],

Martines RB
J Pathol. 2015 [9]

Marburgvirus Marburgvirus

§ DAD: Diffuse Alveolar Damage, # DAH: Diffuse Alveolar Hemorrhage, * Immunocompromised patients,
◦

Most commonly found in infants.
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From a clinical point of view, the 2013–2016 EBOV outbreak underlined the lung involvement in
EVD pathogenesis. In fact, only a few patients treated in Europe and USA had a cough and difficulty
breathing at admission. Nevertheless, during the clinical progression, half of the patients experienced
hypoxemia while breathing room air, one third had respiratory failure, and one fourth received invasive
or non-invasive mechanical ventilation [75]. In the Italian experience at the National Institute for
Infectious Diseases “L. Spallanzani” (INMI), respiratory symptoms were present in both patients, in
the absence of other common respiratory pathogens [14,76]. One case required mechanical ventilation
and the other presented EBOV replication markers in the lungs even after clearance of the virus from
the blood. The INMI experience suggests a direct role of the virus in lung pathogenesis.

Although lung pathogenesis in EVD may be secondary to systemic alterations (correlating with
general pathogenic mechanisms) the direct presence of the virus is undisputable in the lung, and its
interaction with the immune system, whose hyper-activation may be the most likely explanation of the
lung damage, is also indisputable. Further research will be needed to better understand the potential
role of pulmonary involvement in EVD and whether it may be a factor in the transmission of the virus
from one human to another.
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