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In frequency-division-duplex (FDD) massive multiple-input multiple-
output (MIMO) systems, noisy feedback is a constant challenge for the
base station (BS) to acquire accurate downlink channel state information
(CSI). In this letter, we propose a convolutional neural network (CNN)
based approach to overcome this problem, which we refer to it as an
anti-noise CSI acquisition network (ANCAN). Results demonstrate that
ANCAN can reconstruct CSI more accurately than other emerging CSI
acquisition methods in the presence of noisy feedback links.

Introduction: Uplink-downlink channel reciprocity is a crucial property
to estimate downlink channel state information (CSI) from the uplink
for massive multiple-input multiple-output (MIMO) antenna systems
where a large number of channel coefficients need to be estimated. In
frequency-division-duplex (FDD) systems, nevertheless, such reciprocity
no longer holds. This practically means that the downlink channel state
information (CSI) has to be obtained through feedback from the users
[1–3]. Conventional approaches utilise techniques such as beam domain
transmission [4], long-term statistics feedback [5], compressed sensing
[6], among others, to reduce the feedback overhead and increase the CSI
accuracy. Deep learning (DL) has also emerged as a promising technique
to design reliable CSI feedback in [7]. The so-called CsiNet in [7] is the
most powerful state-of-the-art for CSI feedback which can reduce the
feedback overhead while still achieving very high CSI accuracy.

The problem is that most of the techniques were not designed for noisy
environments, meaning that their performance may degrade severely in
the presence of noise. This motivates the work of this letter where we
construct a convolutional neural network (CNN) based CSI acquisition
framework to address the problem of CSI compression and robust CSI
reconstruction with noisy feedback. This proposed approach is referred
to as the anti-noise CSI acquisition network (ANCAN). Numerical results
show that the proposed ANCAN is robust and achieves a much better CSI
acquisition accuracy in the presence of noise.

System model: Consider a massive MIMO system in the downlink with
N transmit antennas at the base station (BS) and a single antenna user
equipment (UE). We assume orthogonal frequency-division-multiplexing
(OFDM) transmission with M subcarriers. The channel matrix in the
spatial frequency domain is expressed as

H= [h1 · · ·hM ]H , (1)

where hn ∈CN×1 represents the channel vector on the nth subcarrier.
The CSI is estimated at the UE and obtained as H, then fed back to the
BS via a noisy feedback channel. To focus on the feedback design, we
assume that the perfect channel estimation H can be obtained at UE.

To compress the feedback information, the channel estimation is first
encoded via a well trained encoder, ge(·),

xu = ge(H), (2)

where xu ∈C1×L denotes the encoded codeword. After that, xu is sent
to the BS through a noisy feedback link. In what follows, the BS receives
the feedback codeword as

xb = xu + n, (3)

where n∈C1×L denotes the the additive white Gaussian noise (AWGN).
Then Ĥ can be reconstructed from xb at the BS via a decoder, gd(·), as

Ĥ= gd(xb). (4)

ANCAN: Note that a channel matrix can be interpreted as a 2D image.
Since CNN has revealed promising performance in image processing, we
anticipate that a CNN based ANCAN can be effective in dealing with the
compression and recovery of the channel matrix. The architecture of the
proposed ANCAN is illustrated in Fig. 1, which consists of an encoder
and a decoder, while they are linked by a noisy feedback channel.

Encoder: The input of encoder is the real and imaginary parts of H,
first pass through a convolution layer to extract the features of H with
kernels sized as 3× 3, and then through a reshape layer to generate a

Fig. 1. The framework of ANCAN

vector. Finally a fully connected layer is used to generate the codeword
xu. The number of neurons in the fully connected layer represents the
length of the codeword as L. The three layers serve as CSI compression.

Noisy feedback: A custom layer is introduced to simulate the AWGN
feedback channel in the training. The custom layer allows the CNN to be
trained to best fit the training data while noise in the feedback channel is
considered.

Decoder: The codeword xb passes through a fully connected layer
and a reshape layer to initially recover the real and imaginary parts of
H. Then it can be decoded by several RefineNet units [7]. The number
of RefineNet units can vary according to actual performance. Experiment
results demonstrate that 5 RefineNet units provide the best performance
in our considered scenario. After passing through all RefineNet units, Ĥ
can be finally reconstructed via the last convolution layer.

By treating H as an input, it passes through our proposed ANCAN as
shown in Fig. 1. The parameters of the layers in the training process are
denoted as αe, αn and αd, respectively, and the output can be represented
by Ĥ= gd(gf (ge(H;αe);αn);αd). The parameter updating scheme we
use in the training process is the adaptive moment estimation (ADAM)
algorithm in [8], and the loss function is the mean squared error (MSE).

Our results reveal that CsiNet is not designed to recover CSI from
a noisy feedback link. Thus, we utilize the RefineNet units to establish
ANCAN, to effectively deal with the noisy CSI feedback issue.

Experiment: The channel matrices for the training were created through
the COST 2100 channel model [9], where the frequency band is setting
as 5.3 GHz. The BS is equipped with N = 32 antennas, and the number
of subcarriers is M = 1024. Moreover, the number of training samples
and testing samples are considered as 100, 000 and 20, 000, respectively.
All testing samples are excluded from the training samples. In addition,
we further assume that the number of epochs is 1000, the learning rate is
0.001, and the batch size is 200. We compare the proposed ANCAN with
the CsiNet under a noisy feedback channel.

The similarity between the input channel matrices H and output
channel matrices Ĥ can be measured by the normalized MSE (NMSE),
given by

NMSE=E{
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2
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Therefore, we can also have the similarity, defined as ρ:
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Fig. 2. ρ versus SNR under different numbers of RefineNet unit
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Fig. 3. Comparision of ANCAN and CsiNet with noisy feedback

where hn and ĥn are the desired and recovered channel matrices of
the nth subcarrier, respectively. NMSE and ρ are the parameters for
evaluating the quality of the noisy CSI feedback system.

Table 1: Comparison between CsiNet and ANCAN when L = 512

SNR[dB]
Networks CsiNet ANCAN

NMSE ρ NMSE ρ

0 13.73 0.22 -13.31 0.97
5 9.39 0.33 -14.19 0.98
10 4.56 0.51 -14.61 0.98
15 -0.27 0.72 -18.51 0.99
20 -5.01 0.87 -13.90 0.97
25 -9.34 0.94 -18.21 0.99

Table I compares the performance of CsiNet and ANCAN in terms
of NMSE and ρ when L = 512. From 0 dB to 25 dB, the NMSE and ρ
of ANCAN are superior to CsiNet significantly. CsiNet recovers the CSI
without considering the effects of noisy feedback, even for SNR as 25dB,
CsiNet cannot achieve the optimal performance. In contrast, ANCAN can
obtain an excellent performance even if SNR is 0 dB, while the NMSE
appears to be the minimum at 15dB of SNR. Clearly, ANCAN is more
robust for the noisy CSI feedback.

Fig. 2 shows the results of ρ for various number of RefineNet units
when L is set to be 512 again. We see that 5 RefineNet units provide the
highest similarity. Especially at a low SNR, 5 RefineNet units are more
robust to the noise effect in the feedback link, and are best for the decoder
part in the ANCAN model.

The similarities of CsiNet and ANCAN are compared in Fig. 3 under
the noisy feedback against the SNR. One can see that the similarities
of ANCAN are much higher than CsiNet, especially in the low SNR
regime. The provided results confirm that the noisy feedback has a great
impact on the performance of CsiNet , which supports that our proposed
ANCAN can effectively handle with the effects of the noisy feedback.

Fig. 4 demonstrates the comparison of similarities with different L for
the SNR as 5 dB. ANCAN is compared with CsiNet with and without
noise. L is set as 32, 64, 128, 256 and 512, respectively. From Fig. 4, it
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Fig. 4. ρ versus different compressed codeword length L

is clear that regardless of the length of compressed codeword, ANCAN
achieves the performance as good as CsiNet without noise (or perfect
CSI feedback). Results of CsiNet illustrate that noise greatly affects its
performance. The provided results indicate that ANCAN still works well
under the effect of noisy feedback for different L. The performance of
ANCAN also is improved along with an increase of L, approaching to
that of the perfect scenario. Considering the overhead of feedback, when
L is set as 128, ANCAN can achieve relatively high similarity and reduce
the feedback overhead significantly.

Conclusion: In this letter, we studied the acquisition of CSI at the
BS by constructing a noisy CSI feedback model in the FDD massive
MIMO system. We proposed a CNN based ANCAN to reconstruct the
downlink CSI at the BS with noisy feedback link. Experiment results
demonstrated that the proposed ANCAN is suitable for different SNR
and L, and recovers the CSI more accurately, which greatly improves the
performance of BS for the downlink CSI acquisition.
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