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Abstract1

Rod-shaped bacterial cells can readily adapt their lengths and widths in response to environmental2

changes. While many recent studies have focused on the mechanisms underlying bacterial cell size3

control, it remains largely unknown how the coupling between cell length and width results in4

robust control of rod-like bacterial shapes. In this study we uncover a conserved surface-to-volume5

scaling relation in Escherichia coli and other rod-shaped bacteria, resulting from the preserva-6

tion of cell aspect ratio. To explain the mechanistic origin of aspect-ratio control, we propose a7

quantitative model for the coupling between bacterial cell elongation and the accumulation of an8

essential division protein, FtsZ. This model reveals a mechanism for why bacterial aspect ratio is9

independent of cell size and growth conditions, and predicts cell morphological changes in response10

to nutrient perturbations, antibiotics, MreB or FtsZ depletion, in quantitative agreement with11

experimental data.12

13

Introduction14

Cell morphology is an important adaptive trait that is crucial for bacterial growth, motility, nutri-15

ent uptake, and proliferation [1]. When rod-shaped bacteria grow in media with different nutrient16

availability, both cell length and width increase with growth rate [2, 3]. At the single-cell level,17

control of cell volume in many rod-shaped cells is achieved via an adder mechanism, whereby cells18

elongate by a fixed length per division cycle [4–8]. A recent study has linked the determination of19

cell size to a condition-dependent regulation of cell surface-to-volume ratio [9]. However, it remains20

largely unknown how cell length and width are coupled to regulate rod-like bacterial shapes in21

diverse growth conditions [10–13].22

23

Results24

Here we investigated the relation between cell surface area (S) and cell volume (V ) for E. coli cells25

∗ Corrrespondence: shiladitya.banerjee@ucl.ac.uk
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FIG. 1. Surface-to-volume scaling in E. coli and other rod-shaped bacteria. (A) E. coli cells

subjected to different antibiotics, nutrient conditions, protein overexpression/depletion, and single gene

deletions [3, 9, 14–17], follow the scaling relation between population-averaged surface area (S) and volume

(V ): S = γV 2/3 (legend on the right, 5011 data points; Supplementary file 1). Best fit shown in dashed

black line for steady-state data from [3] gives γ = 6.24 ± 0.04, and a power law exponent 0.671 ± 0.006.

For single deletion Keio set [16], the best fit curve is S = 5.79V 2/3. (B) Aspect-ratio distribution for cells

growing in steady-state, corresponding to the data in (A) [3]. (Inset) Relationship between γ and aspect

ratio η for a sphero-cylinder (red line). Best fit from (A) shown with horizontal green band gives aspect

ratio 4.14 ± 0.17. (C) S/V vs growth rate. Model line uses S = 2πV 2/3 and the nutrient growth law (Eq.

1). Data from [3]. (D) S-V relation for various bacterial cell shapes. Black dashed line: Small, medium,

and large rod-shaped cells with a conserved aspect ratio of 4 follow the relation: S = 2πV 2/3. Gray dashed

line: Filamentous cells with constant cell width follow the scaling law: S ∼ V . Red dashed line: Spheres

follow S ∼ V 2/3. (E) S vs V for 49 different bacterial species [9, 17–28], and one rod-shaped Archaea (H.

volcanii) (Supplementary file 2). Rod-shaped cells lie on S = 2πV 2/3 line, above the line are Spirochete and

below the line are coccoid. For coccoid S. aureus exposed to different antibiotics best fit is S = 4.92V 2/3,

with preserved aspect ratio η = 1.38± 0.18. Red dashed line is for spheres.
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grown under different nutrient conditions, challenged with antibiotics, protein overexpression or26

depletion, and single gene deletions [3, 9, 14–16]. Collected surface and volume data span two orders27

of magnitude and exhibit a single power law in this regime: S = γV 2/3 (Fig. 1A). Specifically, during28

steady-state growth [3], γ = 6.24 ± 0.04, suggesting an elegant geometric relation: S ≈ 2πV 2/3.29

This surface-to-volume scaling with a constant prefactor, γ, is a consequence of tight control30

of cell aspect ratio η (length/width) (Fig. 1D), whose mechanistic origin has been puzzling for31

almost half a century [29, 30]. Specifically, for a sphero-cylindrical bacterium, S = γV 2/3 implies32

γ = ηπ
(ηπ

4 −
π
12

)−2/3
. A constant γ thus defines a constant aspect ratio η = 4.14 ± 0.17 (Fig. 1B-33

inset), with a coefficient of variation ∼ 14% (Fig. 1B).34

The surface-to-volume relation for steady-state growth, S ≈ 2πV 2/3, results in a simple expres-35

sion for cell surface-to-volume ratio: S/V ≈ 2πV −1/3. Using the phenomenological nutrient growth36

law V = V0e
ακ [2], where κ is the population growth rate, a negative correlation emerges between37

S/V and κ:38

S/V ≈ 2πV
−1/3
0 e−ακ/3 , (1)39

with V0 the cell volume at κ = 0, and α is the relative rate of increase in V with κ (Fig. 1C).40

In Eq. (1) underlies an adaptive feedback response of the cell — at low nutrient conditions, cells41

increase their surface-to-volume ratio to promote nutrient influx [3, 31]. Prediction from Eq. (1)42

is in excellent agreement with the best fit to the experimental data. Furthermore, a constant43

aspect ratio of ≈ 4 implies V ≈
√

8w3 and S ≈ 4πw2, where w is the cell width, suggesting44

stronger geometric constraints than recently proposed [13, 31]. Thus, knowing cell volume as a45

function of cell cycle parameters [3] we can directly predict cell width and length under changes46

in growth media, in agreement with experimental data (Figure 1—figure supplement 1A-B). We47

further analysed cell shape data for 48 rod-shaped bacteria, 1 rod-shaped Archaea (H. vulcanii),48

two long spiral Spirochete, and one coccoid bacteria (Fig. 1E). Collected data for all rod-shaped49

cells follow closely the relationship S ≈ 2πV 2/3, while the long Spirochetes deviate from this50

curve (Fig. 1D-E). Coccoid S. aureus also follows the universal scaling relation S = γV 2/3 (with51

γ = 4.92), but maintains a much lower aspect ratio η = 1.38± 0.18 [25] when exposed to different52

antibiotics (Fig. 1D-E). Therefore, aspect-ratio preservation likely emerges from a mechanism that53

is common to diverse rod-shaped and coccoid bacterial species.54

To investigate how aspect ratio is regulated at the single cell level we analysed the morphologies55

of E. coli cells grown in the mother machine [6] (Fig. 2A, B). For five different growth media, mean56

volume and surface area of newborn cells also follow the relationship S = 2πV 2/3, suggesting that57



4

a fixed aspect ratio is maintained on average. In the single-cell data, slight deviation from the58

2/3 scaling is a consequence of large fluctuations in newborn cell lengths for a given cell width59

(Figure 2—figure supplement 1A-B). Importantly, the probability distribution of aspect ratio is60

independent of the growth media (Fig. 2B), implying that cellular aspect ratio is independent of61

cell size as well as growth rate.62

To explain the origin of aspect ratio homeostasis we developed a quantitative model for cell63

shape dynamics that accounts for the coupling between cell elongation and the accumulation of64

cell division proteins FtsZ (Fig. 2C). Our model is thus only applicable to bacteria that divide using65

the FtsZ machinery. E. coli and other rod-like bacteria maintain a constant width during their66

cell cycle while elongating exponentially in length L [6, 32]: dL/dt = kL, with k the elongation67

rate. Cell division is triggered when a constant length is added per division cycle — a mechanism68

that is captured by a model for threshold accumulation of division initiator proteins, produced at69

a rate proportional to cell size [22, 33, 34]. While many molecular candidates have been suggested70

as initiators of division [35], a recent study [36] has identified FtsZ as the key initiator protein that71

assembles a ring-like structure in the mid-cell region to trigger septation.72

Dynamics of division protein accumulation can be described using a two-component model.73

First, a cytoplasmic component with abundance Pc grows in proportion to cell size (∝ L), as74

ribosome content increases with cell size [37]. Second, a ring-bound component, Pr, is assembled75

from the cytoplasmic pool at a constant rate. Dynamics of the cytoplasmic and ring-bound FtsZ76

are given by:77

dPc

dt
= −kbPc + kdPr + kPL , (2)78

79

dPr

dt
= kbPc − kdPr , (3)80

where kP is the constant production rate of cytoplasmic FtsZ, kb is the rate of binding of cyto-81

plasmic FtsZ to the Z-ring, and kd is the rate of disassembly of Z-ring bound FtsZ. At the start of82

the cell cycle, we have Pc = P ∗ (a constant) and Pr = 0. Cell divides when Pr reaches a threshold83

amount, P0, required for the completion of ring assembly. A key ingredient of our model is that84

P0 scales linearly with the cell circumference, P0 = ρπw, preserving the density ρ of FtsZ in the85

ring. This is consistent with experimental findings that the total FtsZ scales with the cell width86

[38]. Accumulation of FtsZ proteins, P = Pc +Pr−P ∗, follows the equation: dP/dt = kPL, where87

kP is the production rate of division proteins, with P = 0 at the start of the division cycle. We88

assume that kb � kd, such that all the newly synthesized cytoplasmic proteins are recruited to the89
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FIG. 2. Aspect ratio control in E. coli at the single cell level. (A) S vs V for newborn E. coli cells

grown in mother machine [6]. Single cell data (small circles) binned in volume follow population averages

(large circles). For sample size refer to Supplementary file 1. (B) Probability distribution of newborn

cell aspect ratio is independent of growth rate, fitted by a log-normal distribution (solid line) (C) Model

schematic. Cell length L increases exponentially during the division cycle at a rate k. Division proteins (P )

are produced at a rate kP , and assembles a ring in the mid-cell region. At birth, cells contain P ∗ molecules

in the cytoplasm. Amount of FtsZ recruited in the ring is Pr. Cells divide when Pr = P0 ∝ w, where w is

cell width. P vs time and L vs time are reproduced from model simulations. (D) Ratio of the added length

(∆L) and cell width (w) during one cell cycle is constant and independent of growth rate. Error bars: ±1

standard deviation.

Z-ring at a rate much faster than growth rate [39]. As a result, cell division occurs when P = P090

(Fig. 2C). Upon division P is reset to 0 for the two daughter cells. It is reasonable to assume that91

all the FtsZ proteins are in filamentous form at cell division, as the concentration of FtsZ in an92

average E. coli cell is in the range 4-10 µM, much higher than the critical concentration 1 µM [40].93

From the model it follows that during one division cycle cells grow by adding a length ∆L =94
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FIG. 3. Aspect ratio preservation during nutrient upshift or downshift. (A-C) At t = 0 h cells

are exposed to nutrient upshift or downshift. Population average of n = 105 simulated cells. (A) Growth

rate (k) vs time used as input for our simulations. (B) Population-averaged cell length and width vs time.

(C) Population-averaged aspect ratio of newborn cells vs time. Changes in cell width and length result in a

transient increase in aspect ratio during nutrient downshift, or a transient decrease during nutrient upshift.

P0k/kP , which equals the homeostatic length of newborn cells. Furthermore, recent experiments95

suggest that the amount of FtsZ synthesised per unit cell length, dP/dL, is constant [36]. This96

implies,97

dL

dP
=

k

kP
=

∆L

P0
∝ ∆L

w
= const. (4)98

Aspect ratio homeostasis is thus achieved via a balance between the rates of cell elongation and99

division protein production, consistent with observations that FtsZ overexpression leads to minicells100

and FtsZ depletion induces elongated phenotypes [41, 42]. Indeed single cell E. coli data [6] show101

that ∆L/w is constant on average and independent of growth conditions (Fig. 2D). Furthermore,102

added length correlates with cell width during one cell cycle implying that the cell width is a good103

predictor for added cell length (Figure 2—figure supplement 1C-D).104105

To predict cell-shape dynamics under perturbations to growth conditions we simulated our106

single-cell model (Fig. 3, Materials and Methods) with an additional equation for cell width that107

we derived from a recent model proposed by Harris and Theriot [9]: dS/dt = βV , where β is the108

rate of surface area synthesis relative to volume and is a linearly increasing function of k (Figure109

3—figure supplement 1A). This model leads to an equation for the control of cell width for a110

sphero-cylinder shaped bacterium,111

dw

dt
= w (k − βw/4)

1− w/3L
1− w/L

, (5)112
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such that w = 4k/β at steady-state. It then follows from Eq. (4) that the added cell length113

∆L ∝ k2/βkP. However, our model for division control is mechanistically different from Ref.114

[9]. In the latter, cells accumulate a threshold amount of excess surface area material to trigger115

septation – a condition that does not lead to aspect ratio preservation. By contrast, we propose116

that cells divide when they accumulate a threshold amount of division proteins in the Z-ring,117

proportional to the cell diameter.118

We simulated nutrient shift experiments using the coupled equations for cell length, width119

and division protein production (Materials and Methods). When simulated cells are exposed to120

new nutrient conditions (Figure 3—figure supplement 1B-E), changes in cell width result in a121

transient increase in aspect ratio (η = L/w) during nutrient downshift, or a transient decrease122

in η during nutrient upshift (Fig. 3 C). After nutrient shift, aspect ratio reaches its pre-stimulus123

homeostatic value over multiple generations. Typical timescale for transition to the new steady-124

state is controlled by the growth rate of the new medium (∝ k−1), such that the cell shape125

parameters reach a steady state faster in media with higher growth rate. This result is consistent126

with the experimental observation that newborn aspect ratio reaches equilibrium faster in fast127

growing media [6] (Figure 3—figure supplement 1F). In our model, cell shape changes are controlled128

by two parameters: the ratio k/kP that determines cell aspect ratio, and k/β that controls cell129

width (Fig. 4A). Nutrient upshift or downshift only changes the ratio k/β while keeping the steady-130

state aspect ratio (∝ k/kP ) constant.131

We further used our model to predict drastic shape changes leading to deviations from the132

homeostatic aspect ratio when cells are perturbed by FtsZ knockdown, MreB depletion, and an-133

tibiotic treatments that induce non steady state filamentation (Fig. 4B). First, FtsZ depletion134

results in long cells while the width stays approximately constant, S ∝ V 0.95 (Fig. 4—figure135

supplement 4C), data from [42]. We modelled FtsZ knockdown by decreasing kP and simulations136

quantitatively agree with experimental data. Second, MreB depletion increases the cell width137

and slightly decreases cell length while keeping growth rate constant [42]. We modelled MreB138

knockdown by decreasing β as expected for disruption in cell wall synthesis machinery, while139

simultaneously increasing kP (Materials and Methods). This increase in kP is consistent with a140

prior finding that in MreB mutant cells of various sizes, the total FtsZ scales with the cell width141

[38]. Furthermore, cells treated with MreB inhibitor A22 induce envelope stress response system142

(Rcs) that in turn activates FtsZ overproduction [43, 44]. Third, transient long filamentous cells143

result from exposure to high dosages of cell-wall targeting antibiotics that prevent cell division,144

or DNA-targeting antibiotics that induce filamentation via SOS response [14]. Cell-wall targeting145
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parameters that control changes in cell aspect ratio (k/kP ) or width (k/β). For quantification see Figure 4—

figure supplement 1A. (B) Surface area vs volume for cells under antibiotic treatment [14], FtsZ knockdown

and MreB depletion [3, 42]. Solid lines are best fit obtained using our model and data from [42] (see

Materials and Methods). Cells with depleted FtsZ have elongated phenotypes, while depleted MreB have

smaller aspect ratio and larger width. Cell wall or DNA targeting antibiotics induce filamentation. Dashed

green line: S = 2πV 2/3, dashed black line: spheres.

antibiotics inhibit the activity of essential septum forming penicillin binding proteins, preventing146

cell septation. We modelled this response as an effective reduction in kP , while slightly decreasing147

surface synthesis rate β (Materials and Methods). For DNA targeting antibiotics, FtsZ is directly148

sequestered during SOS response resulting in delayed ring formation and septation [45]. Surpris-149

ingly all filamentous cells have a similar aspect ratio of 11.0± 1.4, represented by a single curve in150

the S-V plane (Fig. 4B).151

152

Discussion153

The conserved surface-to-volume scaling in diverse bacterial species, S ∼ V 2/3, is a direct conse-154

quence of aspect-ratio homeostasis at the single-cell level. We present a regulatory model (Fig. 2C)155

where aspect-ratio control is the consequence of a constant ratio between the rate of cell elongation156

(k) and division protein accumulation (kP ). Deviation from the homeostatic aspect ratio is a con-157

sequence of altered k/kP , as observed in filamentous cells, FtsZ or MreB depleted cells (Fig. 4B).158

By contrast, drugs that target cell wall biogenesis, e.g. Fosfomycin, do not alter k/kP and maintain159

cellular aspect ratio (Figure 4—figure supplement 1C).160

Our study suggests that cell width is an essential shape parameter for determining cell length161
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in E. coli (Figure 2—figure supplement 1C-D). This is to be contrasted with B. subtilis, where162

cell width stays approximately constant across different media, while elongating in length [46].163

However, FtsZ recruitment in B. subtilis is additionally controlled by effector UgtP, which localises164

to the division site in a nutrient-dependent manner and prevents Z-ring assembly [47]. This can165

be interpreted as a reduction in kP with increasing k, within the framework of our model. As a166

result, B. subtilis aspect ratio (∝ k/kP ) is predicted to increase with increasing growth rate.167

Aspect ratio control may have several adaptive benefits. For instance, increasing cell surface-168

to-volume ratio under low nutrient conditions can result in an increased nutrient influx to promote169

cell growth (Fig. 1C). Under translation inhibition by ribosome-targeting antibiotics, bacterial170

cells increase their volume while preserving aspect ratio [3, 9]. This leads to a reduction in surface-171

to-volume ratio to counter further antibiotic influx. Furthermore, recent studies have shown that172

the efficiency of swarming bacteria strongly depends on their aspect ratio [48, 49]. The highest173

foraging speed has been observed for aspect ratios in the range 4-6 [48], suggesting that the main-174

tenance of an optimal aspect ratio may have evolutionary benefits for cell swarmers.175

176

Materials and Methods177

Cell shape analysis. Bacterial cell surface area and volume are obtained directly from previ-178

ous publications where these values were reported [3, 16, 17], or they are calculated assuming179

a sphero-cylindrical cell geometry using reported values for population-averaged cell length and180

width [14, 15, 21–24, 26, 28, 42]. Single cell data are obtained from Suckjoon Jun lab (UCSD)181

[6]. For number of cells analyzed per growth condition see Supplementary file 1. Intergeneration182

autocorrelation function (Fig. 2—figure supplement 1D) of average cell width during one cell cycle183

is calculated using expression in [50]. For a spherocylinder of pole-to-pole length L and width184

w, the surface area is S = wLπ, and volume is given by V = π
4w

2L − π
12w

3. In the case of S.185

aureus, surface area and volume are computed assuming prolate spheroidal shape using reported186

population averaged values of cell major axis, c, and minor axis a [25]. Surface area of a prolate187

spheroid is S = 2πa2 + 2πac2√
c2−a2 arcsin(

√
c2−a2
c ), and volume is V = 4π

3 a
2c.188

189

Cell growth simulations. We simulated the single-cell model using the coupled equations for190

the dynamics of cell length L, cell width w, and division protein production P (Fig. 2C). In191

simulations, when P reaches the threshold P0 = ρπw, the mother cell divides into two daughter192

cells whose lengths are 0.5 ± δ fractions of the mother cell. Parameter δ is picked from Gaussian193

distribution (µ = 0, σ = 0.05).194
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For nutrient shift simulations we simulated 105 asynchronous cells growing at a rate k = 0.75 h−1195

(Fig. 3). In Equation 5, parameter β = 4k/w is obtained from the fit to experimental data for196

4k/w vs k (Figure 3—figure supplement 1A) [3], giving β = 3.701k + 0.996, where k is in units197

of h−1, and β in h−1µm−1. At t = 0 h we change k corresponding to nutrient upshift (k = 1.25,198

2 h−1) or nutrient downshift (k = 0.75, 0.25 h−1). We calculated population average of length199

and width (Fig. 3B), and population average of aspect ratio of newborn cells (Fig. 3C). Aspect200

ratio of newborn cells are binned in time and the bin average is calculated for a temporal bin size201

of 10 min. Examples of single cell traces during the nutrient shift are shown in Figure 3—figure202

supplement 1B-E.203

FtsZ depletion experiment [42] was simulated for w = 1µm while kP was reduced to 40% of204

its initial value. This is consistent with the reduction of relative mRNA to ∼ 40% corresponding205

to addition of 3 ng/ml of aTc to deplete ftsZ expression [42]. Our model predictions for the206

dependence of cell aspect ratio on kb/kd is shown in Figure 4—figure supplement 1B.207

Best fit for MreB depletion experiment [42] was obtained for η ≈ 2.7, by simulating reduction208

in division protein production rate, kP , and by varying β so that width spans range from 0.9 to 1.8209

µm. The best fit for long filamentous cells (resulting from DNA or cell-wall targeting antibiotics)210

was obtained for η ≈ 11.0. Filamentation was simulated by decreasing kP and β so that w spans211

the range from 0.9 to 1.4 µm as experimentally observed [14].212

Open Source Physics (www.compadre.org) Java was used for executing the simulations and213

Mathematica 11 for data analysis, model fitting, and data presentation.214
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[33] M. Basan, M. Zhu, X. Dai, M. Warren, D. Sévin, Y.-P. Wang, and T. Hwa, Molecular Systems Biology

11, 836 (2015).

[34] K. R. Ghusinga, C. A. Vargas-Garcia, and A. Singh, Scientific Reports 6, 30229 (2016).



12

[35] D. W. Adams and J. Errington, Nature Reviews Microbiology 7, 642 (2009).

[36] F. Si, G. Le Treut, J. T. Sauls, S. Vadia, P. A. Levin, and S. Jun, Current Biology 29, 1760 (2019).

[37] S. Marguerat and J. Bähler, Trends in Genetics 28, 560 (2012).

[38] H. Shi, A. Colavin, M. Bigos, C. Tropini, R. D. Monds, and K. C. Huang, Current Biology 27, 3419

(2017).
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[50] N. Ojkic, J. López-Garrido, K. Pogliano, and R. G. Endres, PLoS computational biology 10, e1003912

(2014).

Acknowledgements

We thank Suckjoon Jun lab (UCSD) for providing single cell shape data for E. coli, and Javier
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Figure 1—figure supplement 1. Control of cell width and length in E. coli. Cell length (A)

and width (B) vs 2(C+D)/τ . Data used from [3]. Here C is time from initiation to termination of DNA

replication, D is time from termination of DNA replication to cell division, and τ is doubling time. Green

lines are calculated assuming S = 2πV 2/3. Dashed black lines are best fit curves.
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Figure 2—figure supplement 1. Deviation from average surface-to-volume scaling law, and

correlation between added length and width from single-cell E. coli data. (A) Surface area

vs volume for sphero-cylindrical bacterium, computed using normal distribution for cell widths (µw,σ(w))

and log-normal distribution (µL,σ(L)) of cell lengths. Green line is S = 2πV 2/3. (B) Surface-to-volume

scaling exponent computed for different values of σ(w) and σ(L) while keeping L/w = 4. For each pair of

values (σ(w), σ(L)) we pick 104 random numbers from corresponding distributions and computed surface-

to-volume scaling exponent. Total of 2500 pairs (σ(w), σ(L)) were used. We obtained σ(w) and σ(L) of

newborn cells grown in mother machine by fitting experimental distributions. These values are shown by

coloured points that correspond to different growth media [6]. Large fluctuation in new born lengths for

a given cell width results in scaling exponents slightly above 2/3, as expected. (C-D) Single cell data are

obtained from Suckjoon Jun lab (UCSD) [6]. (C) Single cell added length (∆L) vs average width (w) during

one cell cycle for cell grown in TSB. Green circles represent single cell data, orange circles are average

of binned data in width, error bars are ±1 standard deviation, and orange line is best fit to binned data

(∆L = 4.014w). (D) Intergeneration autocorrelation function of average cell width during one cell cycle

for cell grown in TSB. Once perturbed, cell width takes ≈ 4 generations to equilibrate to its steady state

population average. Error bars: ±1 standard deviation.
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Figure 3—figure supplement 1. Simulations of nutrient upshift and aspect ratio equilibration

at the single cell level. (A) From experimental measurement of growth rate k and cell width w we

calculated surface area production rate β = 4k/w. Data from Si et al. [3]. Dashed black line is best fit that

we used in nutrient shift simulations. (B-E) Single cell traces for simulation of cell shape dynamics during

nutrient upshift. (B) Division protein vs time normalised by P0 before the nutrient shift. (C) Growth rate

vs time. (D) Length vs time. Length fluctuations at division is a consequence of noise in division ratio (see

Materials and Methods). (E) Cell width vs time. (F) Aspect ratio of newborn cells vs generation number

for single cell data from mother machine [6]. Newborn cells with aspect ratio between 5-6 or 3-3.5 were

tracked over generations. Population average for given generation number over 737-2843 cells for different

growth condition is shown.
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Figure 4—figure supplement 1. Surface-to-volume scaling and the impact of FtsZ on cell

aspect ratio. (A) Quantification of surface-to-volume ratio for the schematic shown in Fig. 4A. (B) Model

prediction for cellular aspect ratio (average over newborn cells) as a function of kb/kd. Here kb is the rate of

binding of cytoplasmic FtsZ to the Z-ring, and kd is the rate of disassembly of Z-ring bound FtsZ. Dashed

green horizontal line corresponds to aspect ratio of 4, obtained in the limit kb � kd. (C) Comparison of

surface-to-volume scaling for E. coli treated with fosfomycin [9] and under FtsZ knockdown [42].


