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A B S T R A C T

Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial re-
active oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is
unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of
neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and en-
dogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved
whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants
rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bun-
garotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity
increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP5+ and/or MnTnBuOE-2-PyP5+

blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor
deficits. Selectively inducing mitochondrial ROS—using mitochondria-targeted Paraquat
(MitoPQ)—recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by
blocking mitochondrial ROS with MnTnBuOE-2-PyP5+. We unveil mitochondrial ROS as synaptic activity sen-
tinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are
relevant to pruning because synaptic inactivity is one of its defining features.

1. Introduction

Mitochondrial reactive oxygen species (ROS), namely superoxide
anion (O2

.-) and hydrogen peroxide (H2O2), are of considerable biolo-
gical interest because they can signal but can also cause damage [1–4].
The factors that control the production and removal of mitochondrial
ROS are well understood (reviewed in [5–7]). ATP demand, [NADH]
and proton motive force (Δp) control mitochondrial ROS production in
forward mode whereas antioxidant enzyme activity controls their re-
moval [5–10]. Key mitochondrial antioxidant enzymes include man-
ganese superoxide dismutase, peroxiredoxin 3 and glutathione perox-
idase 1 [11–13]. Using existing knowledge of mitochondrial ROS
production and removal (the known), it is possible to make experi-
mentally tractable predictions about situations wherein a role for mi-
tochondrial ROS is suspected but unverified (the unknown).

Developmental synapse pruning refines burgeoning connectomes
[14,15]. Neuronal activity regulates pruning: activity protects synapses

from and inactivity selects synapses for pruning, respectively [16–18].
Mitochondrial ROS are proposed to regulate pruning because neuronal
activity should divergently regulate their production [19,20]. Neuronal
activity should fulfil essential criteria for comparatively low mi-
tochondrial ROS production (i.e. high respiration, high ATP demand
and low Δp [5]). Conversely, neuronal inactivity should fulfil essential
criteria for significant mitochondrial ROS production in forward mode
(i.e. low respiration, low ATP synthesis and [NADH] build-up [5]). In
support, skeletal muscle activity and inactivity decreases and increases
mitochondrial ROS, respectively [21–24]. Further, surgically abolishing
skeletal muscle activity increases mitochondrial ROS ex vivo [25–28].
We propose that: mitochondrial ROS are endogenous synaptic activity
sentinels.

Whether mitochondrial ROS regulate pruning is unknown because it
is a novel idea associated with two formidable technical challenges.
First, studying pruning is challenging in the brain owing it its intricate
connectome. The neuromuscular junction (NMJ)—a peripheral synapse
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between a motor neuron and skeletal muscle fibre—is an ideal alter-
native owing to its relative simplicity, size and accessibility [29]. The
NMJ is tractable because its development requires pruning to transition
from the poly to mono-innervated state [29–31]. Second, pruning oc-
curs over a protracted time-course (order of weeks) and encompasses in
utero and ex utero developmental stages [30]. It is, however, possible to
use neurotoxins to broadly recapitulate pruning by forcing synaptic
inactivity in species that develop ex utero, such as Xenopus laevis (X.
laevis) [32]. Neurotoxins obviate the need for invasive surgical proce-
dures that can provoke adaptive redox responses to injury [33–35]. A
key advantage: neurotoxins make the micro functional outcomes of
pruning (partial loss of innervation) detectable as motor deficits at the
macro level owing to their mass action [36]. Whether they induce
pruning is unclear; but their ability to, at worst, mimic its functional
consequences (i.e. motor deficits owing to lost innervation) is clear. To
begin to resolve whether mitochondrial ROS regulate pruning, we used
multiple forced synaptic inactivity models to determine if: synaptic
inactivity increases mitochondrial ROS; and chemically heterogeneous
antioxidants rescue synaptic inactivity induced motor deficits.

2. Results

2.1. The manganese porphyrin MnTE-2-PyP5+ reduces α-BTX—a post-
synaptic inactivity model—induced motor deficits

The neurotoxin α-bungarotoxin (α-BTX) induces forced synaptic
inactivity by ligating the nicotinic acetylcholine receptor to competi-
tively antagonise cholinergic neurotransmission ([36,37] Fig. 1A). We

used α-BTX to induce forced synaptic inactivity in X. leavis tadpoles. To
verify α-BTX induced motor deficits, we assessed evoked swimming
frequency: α-BTX decreased evoked swimming frequency by
15.5 ± 1.4% compared to control (Fig. 1B). To determine if α-BTX
increases mitochondrial ROS in vivo, we used two intensity based mi-
tochondria-targeted (i.e. triphenylphosphonium cation conjugated)
probes: mito-dihydroethidium (Mito-SOX) and mitochondria peroxy
yellow 1 (MitoPY1) [38–40]. Free radicals (e.g. O2

.-) oxidise Mito-SOX
to fluorescent ethidium or 2-hydroxyethidium products whereas H2O2

and/or peroxynitrite oxidise MitoPY1 to a fluorescent phenol by a
boronate de-protection mechanism [41–47]. α-BTX increased Mito-SOX
and MitoPY1 oxidation by 40.5 ± 4.9% and 30.5 ± 3.5%, respec-
tively, compared to control (Fig. 1C-D).

To determine if mitochondrial ROS play a functional role, we used
chemically heterogeneous antioxidants (Supplementary Table 1). Spe-
cifically, Mn(III) meso-tetrakis(2-pyridyl)porphyrin (MnTE-2-PyP5+),
Mn(III) meso-tetrakis(N-(n-butoxyethyl)pyridinium-2-yl (MnTnBuOE-2-
PyP5+), Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin
(MnTBAP3-) and 2,2,6,6-tetramethyl-4-[5-(triphenylphosphonio)pen-
toxy] piperidin-1-oxy (MitoTempol) [48–52]. MnTBAP3- and Mito-
Tempol were inefficacious: failing to rescue α-BTX induced motor
deficits or reduce MitoSOX and MitoPY1 oxidation. MnTnBuOE-2-
PyP5+ successfully reduced MitoPY1 oxidation by 20.3 ± 4.2% com-
pared to α-BTX, but failed to significantly reduce α-BTX induced Mito-
SOX oxidation or motor deficits. MnTE-2-PyP5+ successfully blocked
mitochondrial ROS reducing Mito-SOX and MitoPY1 oxidation by
38.6 ± 4.7% and 31.2 ± 5.0%, respectively, compared to α-BTX
(Fig. 1C-D). MnTE-2-PyP5+ significantly reduced α-BTX induced motor

Fig. 1. α-BTX induced motor deficits are redox
regulated. (A) α-BTX mechanism of action scheme.
Left: skeletal muscle activity stems from acetylcho-
line (ACh) binding to post-synaptic nicotinic acet-
ylcholine receptor (nAChR) to permit Na+ entry.
Right: α-BTX ligates the nAChR to render it im-
permeable to Na+ leading to forced post-synaptic
inactivity induced motor deficits. (B) Evoked swim-
ming frequency (expressed as %δ control) by condi-
tion (α-BTX, α-BTX plus: MnTE-2-PyP5+,
MnTnBuOE-2-PyP5+, MnTBAP3- or MitoTempol;
n=10 in each condition). (C) Mito-SOX oxidation
(expressed as %δ control) by condition (n=10 per
condition). (D) MitoPY1 oxidation (expressed as %δ
control) by condition (n=10 per condition). Error
bars are SEM. Concentrations and incubations: α-
BTX (8 µM for 30min), MnTE-2-PyP5+, MnTnBuOE-
2-PyP5+, MnTBAP3- conditions= 1 µM for 30min.
MitoTempol= 20 µM for 30min. # denotes sig-
nificant difference vs control. * denotes significant
difference vs α-BTX.
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deficits (Fig. 1B), restoring evoked swimming frequency to control va-
lues—no statistical difference between MnTE-2-PyP5+ and control.

2.2. The manganese porphyrin MnTE-2-PyP5+ abolishes α-LTX—a pre-
synaptic inactivity model—induced motor deficits

The neurotoxin α-latrotoxin (α-LTX) forces pre-synaptic inactivity
by binding to nerve terminals to cause mass Ca2+ influx, vesicle release
and ATP depletion ([53–55] Fig. 2A). α-LTX induced motor deficits:
reducing evoked swimming frequency by 8.3 ± 0.8% compared to
control (Fig. 2B). To determine if α-LTX increased mitochondrial ROS,
we assessed Mito-SOX and MitoPY1 oxidation. α-LTX increased Mito-
SOX and MitoPY1 oxidation by 38.9 ± 6.3% and 41.9 ± 5.2%, re-
spectively, compared to control (Fig. 2C-D). To determine if mi-
tochondrial ROS were functional, we used antioxidants. MnTBAP3- and
MitoTempol were inefficacious: failing to rescue α-LTX induced motor
deficits or reduce MitoSOX and MitoPY1 oxidation. MnTnBuOE-2-
PyP5+ successfully reduced Mito-SOX oxidation but failed to sig-
nificantly reduce α-LTX induced MitoPY1 oxidation or motor deficits.
MnTE-2-PyP5+ decreased Mito-SOX and MitoPY1 oxidation by
25.6 ± 7.2% and 25.9 ± 5.1%, respectively, compared to α-LTX
(Fig. 2C-D). MnTE-2-PyP5+ abolished α-LTX induced motor deficits
(Fig. 2A-B).

2.3. MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+ reduce SPARC—an
endogenous pruning cue—induced motor deficits

Despite multiple advantages (e.g. known mechanisms)
[36,37,53,54], neurotoxins lack physiological relevance beyond en-
venomation. Consequently, we used Secreted Protein Acidic and Rich in
Cysteine (SPARC)—an endogenous pruning cue—to provide a physio-
logically relevant model ([56,57] Fig. 3A). SPARC reduced evoked
swimming frequency by 12.0 ± 1.7% compared to control (Fig. 3B).
To determine if SPARC increased mitochondrial ROS, we assessed Mito-
SOX and MitoPY1 oxidation. SPARC increased Mito-SOX and MitoPY1
oxidation by 42.1 ± 5.5% and 49.5% ± 5.8%, respectively, compared
to control (Fig. 3B-C). To determine if mitochondrial ROS were func-
tional, we used antioxidants. MnTBAP3- and MitoTempol were in-
efficacious: failing to rescue SPARC induced motor deficits or reduce
MitoSOX and MitoPY1 oxidation. MnTE-2-PyP5+ and MnTnBuOE-2-
PyP5+ blocked the SPARC induced increase in mitochondrial ROS.
MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+ reduced Mito-SOX
(33.7 ± 4.2% and 28.77 ± 4.6%, respectively) and MitoPY1
(39.2 ± 4.8% and 38.17 ± 2.9%, respectively) oxidation compared to
SPARC (Fig. 3C-D). MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+ sig-
nificantly reduced SPARC induced motor deficits (Fig. 3B), restoring
evoked swimming frequency to control values—no statistical difference
between MnTE-2-PyP5+ and MnTnBuOE-2-PyP5+ vs control.

Fig. 2. α-LTX induced motor deficits are redox
regulated. (A) α-LTX mechanism of action scheme.
α-LTX binds to nerve terminals to cause mass neu-
rotransmitter vesicle depletion, leading to pre-sy-
naptic inactivity. (B) Evoked swimming frequency
(expressed as %δ control) by condition (α-LTX, α-
LTX plus: MnTE-2-PyP5+, MnTnBuOE-2-PyP5+,
MnTBAP3- or MitoTempol; n=10 in each condi-
tion). (C) Mito-SOX oxidation (expressed as %δ
control) by condition (n=10 per condition). (D)
MitoPY1 oxidation (expressed as %δ control) by
condition (n=10 per condition). Error bars are
SEM. Concentrations and incubations: α-LTX (15 nM
for 30min), MnTE-2-PyP5+, MnTnBuOE-2-PyP5+,
MnTBAP3- conditions=1 µM for 30min.
MitoTempol= 20 µM for 30min. # denotes sig-
nificant difference vs control. * denotes significant
difference vs α-LTX.
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2.4. MitoPQ recapitulates exogenous and endogenous synaptic inactivity
model induced motor deficits

If exogenous and endogenous forced synaptic inactivity models in-
duce mitochondrial ROS, it should be possible to chemically re-
capitulate motor deficits by increasing their levels. A related advantage:
one can leverage known redox chemistry to gain new insight regarding
the redox control of forced synaptic inactivity. We used mitochondria-
targeted paraquat (Mito-PQ) to selectively induce matrix O2

.- [58]
(Fig. 4A). Unlike respiratory chain inhibitors (e.g. rotenone [59]), Mi-
toPQ leaves Δp and ATP synthesis unperturbed [58]. MitoPQ success-
fully increased mitochondrial ROS evidenced by increased Mito-SOX
(44.7 ± 5.3%) and MitoPY1 (34.2 ± 4.3%) oxidation compared to
control (Fig. 4B-C). MitoPQ decreased evoked swimming frequency by
19.9 ± 1.4% compared to control (Fig. 4D). We exclude the possibility
that MitoPQ simply kills cells to induce motor deficits because primary
muscle-nerve co-cultures remain viable after MitoPQ treatment
(Supplementary Fig. 1). To explore the functional role of mitochondrial
ROS, we used antioxidants. MnTnBuOE-2-PyP5+ reduced Mito-SOX
(43.1 ± 4.2%) and MitoPY1 (51.3 ± 4.4%) oxidation compared to
MitoPQ (Fig. 4B-C). MnTnBuOE-2-PyP5+ reduced MitoPQ induced
motor deficits (Fig. 4D). Each antioxidant reduced MitoPQ induced

motor deficits—perhaps due to MitoPQ indiscriminately targeting
multiple cells consistent with greater (~ 5%) motor deficits compared
with α-BTX, α-LTX and SPARC.

3. Discussion

If mitochondrial ROS are synaptic activity sentinels, their produc-
tion should be unmasked by silencing synaptic activity. We robustly
tested whether forced synaptic inactivity increases mitochondrial ROS
using mechanistically diverse exogenous and endogenous models. Their
ability to induce motor deficits—the canonical outcome of synaptic
inactivity at the NMJ—was verified using a well-accepted behavioural
assay, before we expolited the optical accessibility of X. laevis tadpoles
to assess mitochondrial ROS in vivo using established techniques
[38–45]. Forced synaptic inactivity rapidly (within 30 min) increases
mitochondrial ROS in vivo, regardless of how it is achieved. The out-
come is the same irrespective of whether one deploys muscle (α-BTX) or
nerve (α-LTX) targeted neurotoxins or endogenous pruning cues
(SPARC) to silence the NMJ. We acknowledge that global increases in
mitochondrial ROS are described: specific roles of nerve or muscle
mitochondria are important open questions. It will also be necessary to
unravel how synaptic inactivity increases mitochondrial ROS with

Fig. 3. SPARC induced motor deficits are redox
regulated. (A) SPARC mechanism of action scheme.
SPARC binds to weak synaptic inputs to selectively
induce pruning—via a yet to be fully elucidated
mechanism. Withdrawing inputs (retraction bulbs)
are inactive; hence, global SPARC treatment can si-
lence multiple NMJs to induce motor deficits. (B)
Evoked swimming frequency (expressed as %δ con-
trol) by condition (SPARC, SPARC plus: MnTE-2-
PyP5+, MnTnBuOE-2-PyP5+, MnTBAP3- or
MitoTempol; n=10 in each condition). (C) Mito-
SOX oxidation (expressed as %δ control) by condi-
tion (n=10 per condition). (D) MitoPY1 oxidation
(expressed as %δ control) by condition (n=10 per
condition). Error bars are SEM. Concentrations and
incubations: SPARC (50 nM for 30min), MnTE-2-
PyP5+, MnTnBuOE-2-PyP5+, MnTBAP3-

conditions= 1 µM for 30min. MitoTempol= 20 µM
for 30min. # denotes significant difference vs con-
trol. * denotes significant difference vs SPARC.
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reference to sites and modes of their production [5–7]. We are, how-
ever, the first to describe rapid increases in mitochondrial ROS in vivo
across diverse synaptic inactivity models. That mechanistically diverse
forced synaptic inactivity models increase mitochondrial ROS, supports
the idea that mitochondrial ROS are endogenous synaptic activity
sentinels.

Forcing synaptic inactivity en masse makes the phenotypical con-
sequences of pruning (partial loss of innervation) at the micro level
detectable as motor deficits at the macro level, enabling us to resolve
whether mitochondrial ROS were functional or mere epiphenomena.
Our forced synaptic inactivity models make functional studies possible
because their effects are reversible [36,55]. If mitochondrial ROS are
functional, antioxidants should rescue motor deficits, provided they
block mitochondrial ROS [60–64]. The latter clause is key because
failing to block mitochondrial ROS seemed to negate the ability of
MnTBAP3- and MitoTempol to reduce motor deficits induced by neu-
rotoxins or SPARC. MnTE-2-PyP5+ and/or MnTnBuOE-2-PyP5+ block
mitochondrial ROS to significantly reduce forced synaptic inactivity
induced motor deficits. Consistent with their ability to accumulate in
mitochondria and react with O2

.-/H2O2 [48,49,52,65]. However, given
their pleiotropic redox biochemistry [48], how MnTE-2-PyP5+ and
MnTnBuOE-2-PyP5+ act is an open question. MnTE-2-PyP5+ and/or

MnTnBuOE-2-PyP5+ were effective regardless of how forced synaptic
inactivity was achieved: significantly reducing motor deficits induced
by disparate exogenous and endogenous models. Their efficacy suggests
NMJ blockade fails to fully explain the motor deficits observed; per-
haps, denervation contributes, consistent with synapse loss (pruning) as
SPARCs modus operandi [56,57]. Our antioxidant studies strongly sug-
gest that mitochondrial ROS cause forced synaptic inactivity induced
motor deficits.

Multiple non-mitochondrial ROS sources exist (e.g. NADPH oxidase
[66–68]); why, therefore, do we suspect a role for mitochondrial ROS?
We include a role for non-mitochondrial ROS sources: ROS-induced
ROS release means they likely contribute [69]. However, most do so at
a biological cost: sustaining NADPH oxidase activity requires continued
NADPH and GTP to supply electrons and activate RAC1, respectively
[67,70,71]. We favour mitochondrial ROS as the proximal event be-
cause their production reports on ATP use without consuming it, pla-
cing mitochondrial ROS as energetically efficient synaptic activity
sentinels [19,72–75]. We used MitoPQ to explore the role of mi-
tochondrial ROS [58]. MitoPQ recapitulated synaptic inactivity induced
motor deficits by increasing mitochondrial ROS. MnTnBuOE-2-PyP5+

blocked mitochondrial ROS to significantly reduce MitoPQ induced
motor deficits; suggesting mitochondrial ROS production is the key

Fig. 4. MitoPQ induced motor deficits are redox
regulated. (A) MitoPQ mechanism of action scheme.
Within the mitochondrial matrix, MitoPQ accepts an
electron from complex I to yield a MitoPQ radical.
The MitoPQ radical reacts with molecular oxygen
(O2) to generate O2

.-, leading to an increase in matrix
[O2

.- and H2O2] (the latter as a consequence of
MnSOD mediated O2

.- dismutation). (B) Mito-SOX
oxidation (expressed as %δ control) by condition
(MitoPQ, MitoPQ plus: MnTE-2-PyP5+, MnTnBuOE-
2-PyP5+, MnTBAP3- or MitoTempol n=10 per
condition). (C) MitoPY1 oxidation (expressed as %δ
control) by condition (n=10 per condition). (D)
Evoked swimming frequency (expressed as %δ con-
trol) by condition (n=10 in each condition). Error
bars are SEM. Concentrations and incubations:
MitoPQ (5 µM for 60min), MnTE-2-PyP5+,
MnTnBuOE-2-PyP5+, MnTBAP3- conditions= 1 µM
for 30min. MitoTempol=20 µM for 30min. #de-
notes significant difference vs control. *denotes sig-
nificant difference vs MitoPQ.
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proximal event. A related corollary: MitoSNO rescues ischemia-re-
perfusion injury induced denervation by blocking mitochondrial ROS
[76].

4. Conclusion

We unveil mitochondrial ROS as synaptic activity sentinels that
regulate the phenotypical consequences (i.e. motor deficits) of forced
synaptic inactivity at the NMJ. Our novel results are relevant to pruning
because synaptic inactivity is one of its defining features.

5. Methods

5.1. Materials and reagents

Materials and reagents details are provided (Supplementary
Table 2).

5.2. Xenopus laevis

X. laevis were reared in de-chlorinated water at room temperature.
Nieuwkoop–Faber developmental stage 37–38 X. laevis tadpoles were
used because the neural control of their swimming behaviour is well-
understood [77]. Experiments received institutional ethical approval.

5.3. Treatments

In accordance with previous research [78,79], stage 37–38 X. laevis
tadpoles were anesthetised in 0.1% MS-222 (3-aminobenzoic acid ester)
in normal frog ringer (NFR, mM: 116 NaCl, 2 KCl, 1.8 CaCl2, 5 Na+-
HEPES, pH 7.35) until their movement ceased (usually within a
minute). MS-222 is commonly used to anesthetise X. leavis [80]. After
mounting tadpoles on a Sylgaard stage immersed in NFR, a fine dorsal
fin cut was made proximal to the myotomal region using a dissection
knife to improve α-BTX and α-LTX permeability consistent with pre-
vious research [78,79,81,82]. After being allowed to recover for 30min
in NFR, tadpoles were incubated with either control (i.e. just NFR) or
NFR plus: SPARC (50 nM for 30min), α-LTX (15 nM for 30min), α-BTX
(8 µM for 30min) or MitoPQ (5 µM for 60min) in a light-protected
Eppendorf before being washed in NFR for 3min. For antioxidant ex-
periments, tadpoles were pre-treated for 30min with either MnTE-2-
PyP5+ (1 µM), MnTnBuOE-2-PyP5+ (1 µM), MnTBAP3- (1 µM) and Mi-
toTempol (20 µM) before being washed in NFR for 3min and treated as
described above. Doses and times were rationally selected based on
pilot experiments and/or previous research [36,48–51,55,57,58].

5.4. Evoked swimming frequency

In accordance with previous research [78,83], evoked swimming
was induced by manually touching the skin of X. laevis tadpoles with a
pipette, which robustly initiates movement. Swimming was filmed at
400 frames per second with a Nikon D7100 camera and calculated as:
swimming frequency = frames per second/ frames per cycle. A cycle
defined one complete tail oscillation and the frames required to com-
plete one cycle were manually counted to derive evoked swimming
frequency. A single swimming episode was recorded at 2min intervals
[78], five episodes were recorded and their average calculated and
defined as n=1. Evoked swimming frequency experiments were per-
formed during the day under room lighting because dimming lights
influences swimming behaviour [83].

5.5. Mitochondrial ROS imaging

Mito-SOX and MitoPY1 were used at a working concentration of
5 µM [84]. After a 30min light-protected incubation to avoid artificial
photo-oxidation, tadpoles were washed in NFR supplemented with

0.1% MS-222 (to prevent movement while imaging) for 3min and
placed on a glass cavity slide with methylcellulose for whole-mount
redox imaging in a dark room [84]. Care was taken to avoid bubbles
when dispensing methylcellulose. If necessary, X. laevis tadpoles were
orientated using nylon line [84], before being imaged (Mito-SOX ex-
citation/emission: 510/580 nm; MitoPY1 excitation/emission: 488/
517 nm) with a Lecia DMR epifluorescence microscope to capture
images of the myotomal region (containing skeletal muscle and motor
neurons) with a Nikon D7100 camera. For reference, Supplementary
Fig. 4 shows the myotomal region. Regions of interest (ROIs) were
analysed on Image J (http://imagej.nhi.gov/ij). Two images of the
myotomal region were captured per tadpole and at least three ROIs
were analysed per image. After background subtraction and smoothing
[33], mean florescence intensity was calculated (n=1 defines mean
fluorescence per tadpole).

6. Primary muscle-nerve co-culture

To derive primary muscle-nerve co-cultures, Nieuwkoop–Faber
Stage 22 X. leavis embryos were dissected in sterile NFR [85,86]. After
removing the jelly coat and vitelline membrane with sterile forceps, the
neural tube and associated myotomes were manually dissected in sterile
Ca2+/Mg2+-free media (CMF mM: 125 NaCl, 2 KCl, 1.2 EDTA, 5 Na+-
HEPES, pH 7.35). Cells were left to dissociate in CMF for 2 h before
being plated in poly-D-lysine coated (500 µg/ml) 35mM glass culture
dishes in media (50% L-15% and 50% NFR vol/vol) and cultured for
24 h at room temperature under ambient gas conditions before use.

6.1. Cell viability

Primary muscle-nerve co-cultures were treated with control (5 µM
DMSO in media) or MitoPQ (5 µM in media) for 60min before being
incubated with Trypan blue solution (0.4% Trypan Blue stock diluted
1:1 with culture medium) for 2min. After removing Trypan Blue so-
lution, co-cultures were immediately fixed with 5% glutaraldehyde for
10min at room temperature before being imaged using Leica DM IL
LED. Images were captured using Leica MC120 HD Microscope Camera.
Cell viability was calculated as: percentage viable cells = [1.00 –
(Number of blue cells ÷ Number of total cells)] × 100.

6.2. Statistical analysis

To determine the appropriate statistical test, normal distribution
was assessed using a Shapiro-Wilk test. Normally distributed data were
analysed using a one-way general linear model with post-hoc Tukey
tests. Abnormally distributed data were analysed using a non-para-
metric equivalent with Dunn's multiple comparison tests with alpha set
to ≤ 0.05. Statistical analysis were performed on GraphPad PRISM 7
(https://www.graphpad.com/).
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