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Abstract

Hypothalamic-pituitary-adrenal (HPA)-axis hyperactivity and inflammation are thought to be prominent in the aetiology of
depression. Although meta-analyses have confirmed this relationship, there is considerable variability in the effect sizes
across studies. This could be attributed to a differential role of such biological systems in somatic versus cognitive-affective
depressive symptoms which remains largely unexplored. Furthermore, most longitudinal research to date has focused on
transient rather than persistent depressive symptoms. In the current study, we investigated the associations of hair cortisol
and plasma C-reactive protein (CRP) with the longitudinal persistence and dimensions (cognitive-affective versus somatic)
of depressive symptoms over a 14-year period using Trait-State-Occasion (TSO) structural equation modelling. The data
came from a large sample of older adults from the English Longitudinal Study of Ageing. Depressive symptoms were
assessed from wave 1 (2002-03) to wave 8 (2016—17). Hair cortisol (N =4761) and plasma CRP (N = 5784) were measured
in wave 6 (2012-13). Covariates included demographic, socioeconomic, lifestyle, chronic disease, and medication data. Our
results revealed that higher cortisol and CRP levels were significantly associated with persistent depressive symptoms across
the study period. Notably, both biomarkers exhibited stronger relationships with somatic than with cognitive-affective
symptoms. The associations with somatic symptoms were also independent of relevant confounding factors. In contrast, their
associations with cognitive-affective symptoms were weak after adjustment for all covariates. These distinct associations
reveal the importance of considering symptom-specific effects in future studies on pathophysiological mechanisms.
Ultimately, this will have the potential to advance the search for biomarkers of depression and facilitate more targeted
treatments.

Introduction

Depression is a common mental disorder characterised by
an array of cognitive, affective, and somatic symptoms
[1, 2]. Exposure to stressful life circumstances is one of the
strongest risk factors for the development of depression. For
instance, it has been demonstrated that high levels of
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psychosocial stress can affect not only the first onset of
depression, but also its severity, remission, or relapse [3, 4].
Besides this, several meta-analyses have demonstrated that
depression has a bidirectional relationship with numerous
chronic disease outcomes [5-7]. The relationship of
depression with stress and physical health is particularly
relevant at older ages due to increasing stressors resulting
from declining physical health and diminishing social
connections [8, 9]. Hence, with a progressively ageing
population worldwide, understanding the biological
mechanisms underlying the links between stress, depres-
sion, and physical health at older ages becomes increasingly
important [10].

Biological systems that are thought to be prominent in
the aetiology of depression and underlie its relationship with
stress and physical health include the hypothalamic-
pituitary-adrenal (HPA)-axis and the inflammatory
response system [11]. Activation of the HPA-axis is a
hallmark of the stress response in humans [12], representing
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an important indicator of psychosocial stress [13]. Con-
vincing evidence also suggests that exposure to stress can
result in elevated inflammatory responses in the brain as
well as peripherally [14, 15]. Accordingly, an abundance of
studies has indicated that depressed individuals tend to
exhibit elevated cortisol levels [16] and greater plasma
concentrations of pro-inflammatory cytokines such as C-
reactive protein (CRP) [17]. In addition to their associations
with stress and depression, HPA-axis hyperactivity and
elevated inflammation have also been implicated in the
development of various cardiometabolic, inflammatory,
endocrine, and neural disorders [18-21].

Although meta-analytic studies have confirmed the asso-
ciation of depression with HPA-axis hyperactivity and
inflammation, there is considerable variability in the effect
sizes across studies, which overall appear to be weaker than
is often assumed [16, 22, 23]. This could be attributed to
differences in the study samples (e.g., clinical versus popu-
lation based), or to methodological differences in the mea-
surement of depression [24]. Another possibility is that most
studies have focused on depression as a whole thereby
neglecting possible symptom-specific associations [25].
Depression is in fact a highly heterogeneous disorder in terms
of varying and sometimes opposing symptoms [26]. Differ-
ent types of cognitive-affective and somatic symptoms are
outlined both in the ICD-10? and DSM-5' diagnostic criteria
for depression. Similarly, factor analytic studies of various
depression scales have found evidence for distinct somatic
and cognitive-affective components although in different
combinations [27]. Despite this, individual differences in
depressive symptom profiles have typically been ignored
owing to the prevailing use of sum scores [25].

According to the sickness behaviour theory [28, 29],
upregulated inflammatory and neuroendocrine responses
can result in somatic depressive-like symptoms such as
fatigue, sleep problems, lack of appetite, and psychomotor
slowing, which are often referred to as ‘sickness behaviour’
in the experimental animal literature [30]. Accordingly,
there is some preliminary evidence suggesting that the
relationship of depression with HPA-axis hyperactivity and
inflammation might be predominantly driven by somatic
symptoms (e.g., tiredness, lack of energy, and sleep pro-
blems), whilst associations with cognitive-affective symp-
toms (e.g., sadness, positive affect, and depressed mood) are
considerably lower [31-35]. Thus, elevated inflammatory
and neuroendocrine responses might contribute to the
pathogenesis of the somatic components of depression
[32, 34]. Another important limitation is that most studies
have used cross-sectional assessments of depression which
cannot disentangle persistent from episodic depressive
symptoms. In fact, there is substantial variability in the
duration and chronicity of symptoms amongst people with
identical diagnoses, as well as amongst those who do not
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meet diagnostic criteria. For example, some individuals may
experience depressive symptoms occasionally, whereas
others may exhibit persistently high levels of symptoms
[36, 37]. Importantly, persistent depressive symptoms are
likely to be a more robust indicator of the accumulation of
biological risk factors influencing depression [37, 38].

Therefore, the aim of the present study was to investigate
the associations of hair cortisol and plasma CRP with
depressive symptoms over a l4-year period in a large
representative population cohort of older adults. For this
purpose, we used Trait-State-Occasion (TSO) structural
equation modelling [39], which allowed us to measure the
persistence, as well as dimensions (i.e., cognitive-affective
and somatic) of depressive symptoms over time. We
hypothesised that greater persistence of overall depressive
symptoms would be associated with higher cortisol and
CRP levels. Furthermore, we expected that both cortisol and
CRP would exhibit stronger effects on somatic than on
cognitive-affective symptoms.

Materials and methods
Sample

The English Longitudinal Study of Ageing (ELSA) is an
ongoing, multidisciplinary prospective cohort study of
women and men aged 50 years and over living in England
[40]. A description of the data collection methods and
sample design can be found at www.elsa-project.ac.uk.
Depressive symptoms were assessed from wave |1
(2002-03) to wave 8 (2016—17), while hair cortisol and
plasma CRP measurements were made during the nurse
visit in wave 6 (2012-13). Out of the 7699 participants who
participated in the nurse interview, hair samples were col-
lected from 5451 individuals. However, 690 cases were
excluded since they had undetectable or extreme (>660 pg/
ml) cortisol values, resulting in a sample of 4761 partici-
pants. Blood samples for the measurement of CRP were
collected from 6126 participants. Study members with CRP
values > 10 mg/L were excluded from the analysis since this
may reflect immune activation due to current infection
rather than chronic inflammation. Thus, the final CRP
sample included 5784 participants. All respondents pro-
vided informed consent and ethical approval was obtained
from the National Research Ethics Service [41]. The ELSA
datasets can be accessed through the UK Data Service
(www.ukdataservice.ac.uk).

Depressive symptoms

Depressive symptoms were ascertained using the 8-item
Centre for Epidemiological Studies-Depression scale


http://www.elsa-project.ac.uk
http://www.ukdataservice.ac.uk
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(CESD-8) [42]. CESD-8 scores equal or greater than three
correspond with the traditional CESD-20 cut-off of 16
points for a clinical diagnosis of depression [43, 44]. At
each wave, we calculated a cognitive-affective score
(“enjoyed life”, “felt depressed”, “happy”, “lonely”, and
“felt sad”) and a somatic score (“everything I did was an
effort”, “sleep was restless”, and “I could not get going”)
representing the total number of depressive symptoms
reported by the participant for each dimension. To further
validate this two-dimensional model found in previous
exploratory analyses [27], we performed a confirmatory
factor analysis (CFA) of the CESD-8 items using the full
ELSA sample at wave 6 (N =8031).

Biological measures
Hair cortisol

Hair strands of ~3 cm and weighing at least 10 mg were
collected from the posterior vertex as close to the scalp as
possible. Exclusion criteria for hair sampling included:
pregnancy, breastfeeding, certain scalp conditions, having
<2cm of hair length, and inability to sit with head
remaining still. Assuming an average hair growth of ~1 cm
per month [45], the 3 cm hair segment closest to the scalp
provides a measure of the average cortisol output over the
3 months prior to sampling. The hair analysis was con-
ducted by the Technische Universitit Dresden (Germany) in
two separate phases (2015 and 2018) due to financial con-
straints. Cortisol levels were quantified by high perfor-
mance liquid chromatography—mass spectrometry following
a standard wash and steroid extraction procedure [46], and
were expressed in pg/mg.

Plasma CRP

High sensitivity plasma CRP was assayed using the N Latex
CRP mono immunoassay on the Behring Nephelometer II
Analyzer (Dade Behring, Milton Keynes, UK) [47].
Exclusion criteria for blood sampling included: clotting or
bleeding disorders, history of fits or convulsions, or being
on anticoagulant medication [48]. For the purpose of this
analysis, CRP concentration was expressed in mg/L.

Covariates

The analyses were adjusted for relevant demographic,
socioeconomic, lifestyle, health, and medication data mea-
sured in wave 6. These included: sex, age, wealth, smoking
status, physical activity, frequency of alcohol use, body
mass index, presence of chronic diseases (i.e., cardiovas-
cular conditions, cancers, chronic lung disease, and dia-
betes), use of anti-inflammatory or antihypertensive drugs,

and antidepressants. The models including hair cortisol
were also adjusted for hair-related characteristics (i.e.,
whether hair was dyed, season of hair collection, and phase
of hair analysis).

Statistical analyses

The cortisol and CRP measures were log transformed since
their distribution was positively skewed. All continuous
variables were standardised and mean centred. The long-
itudinal persistence and dimensions of depressive symptoms
were measured using TSO structural equation modelling
[39, 49] based on the observed cognitive-affective and
somatic scores at each wave (Fig. 1). The complete speci-
fication model used in the analysis is shown in eFigure 1
[Supplementary Information (SI)] as described in Newsom
(2015) [49]. Since the observed scores were treated as
ordinal variables, the models were fitted using the robust
weighted least squares estimator, which handles missing
data by estimating parameters and standard errors directly
from the available data under the MARX assumption (i.e.,
missing at random with respect to the covariate variables)
[50]. In a second step, the three latent factors representing
overall, cognitive-affective, and somatic depressive symp-
toms were used as outcomes in a full structural equation
model to test their associations with cortisol and CRP
controlling for relevant confounders. The effects of cortisol
and CRP on the latent factors were analysed in separate
models. Data management was conducted in Rstudio ver-
sion 3.4.4. The TSO models were estimated using Mplus
version 7. Further details about the statistical analyses,
model fit indices, and coding of the covariates can be found
in the SI file.

Results

Descriptive statistics of the study participants are provided
in Table 1. The average age was 67 years in the cortisol
sample (67% female) and 66 years in the CRP sample (55%
female). There was a higher proportion of participants in the
highest compared with the lowest wealth quintiles.
Depressive symptoms were generally low, but ranged
across the full spectrum from zero to eight. The percentage
of participants with high depressive symptoms (mean total
CESD-8 score > 3) across waves 1-8 was 16% in the cor-
tisol sample and 14% in the CRP sample. Figure 2 displays
the mean somatic and cognitive-affective scores at each
wave of data collection by cortisol and CRP tertiles for
illustrative purposes only.

A CFA of the CESD-8 items demonstrated that our
two-factor model distinguishing between somatic and
cognitive-affective components fit the data better than the
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Fig. 1 Trait-State-Occasion
(TSO) model of depressive
symptoms. Simplified
illustration, eFigure 1 in SI file
for full specification model. C =
cognitive-affective score. S =
somatic score. Squares represent
observed variables; circles
represent latent factors. The
overall factor measures the
longitudinal persistence of
depressive symptoms. The
cognitive-affective and somatic
factors correspond to the two
symptom-specific dimensions

one-factor solution and had good discriminant validity
(eFig. 2, SI).

Cortisol sample
TSO model of depressive symptoms

The longitudinal measurement model of depressive symp-
toms without risk factors had good fit, RMSEA = 0.031,
CFI=0.988, and TLI=0.984. Based on the variance
decomposition described in Prenoveau (2016) [51], on
average the overall factor representing the longitudinal
persistence of depressive symptoms explained 38% of the
model variance, whilst only 24% of variance was occasion-
specific (eTable 1), suggesting that symptoms of depression
are more stable than episodic in nature.

Associations with hair cortisol

The marginal effects of cortisol on the overall, cognitive-
affective, and somatic factors are shown in Fig. 3 and
Table 2. In the unadjusted model (Model 1), higher cortisol
levels were significantly associated with greater overall
factor scores (b=0.077, 95% CI. 0.030; 0.124). The
symptom-specific associations revealed a stronger effect of
cortisol on somatic (b =0.104, 95% CI: 0.052; 0.155) than
on cognitive-affective symptoms (b=0.054, 95% CI
0.001; 0.107). Demographic, socioeconomic, and lifestyle
characteristics had little impact on these associations
(Model 2, Table 2). In contrast, in the fully adjusted model
(Model 3, Table 2), these effects reduced considerably when
controlling also for chronic disease and medication use. The
effect of cortisol on cognitive-affective symptoms was no
longer significantly different from zero (b =0.032, 95% CI:
—0.020; 0.084). In contrast, the association with the overall
(b =0.054, 95% CI: 0.012; 0.096) and somatic (b = 0.075,
95% CI: 0.027; 0.122) factors survived after adjustment for
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all covariates (Model 3, Table 2). Nevertheless, the differ-
ence between the effect of cortisol on somatic and
cognitive-affective symptoms found in Model 3 was not
large enough to reach statistical significance (95% CI:
—0.113; 0.027) (Table 2).

CRP sample
TSO model of depressive symptoms

The fit of the longitudinal measurement model of depressive
symptoms was good, RMSEA = 0.028, CFI =0.990, and
TLI = 0.986. On average, the overall factor explained 37%
of the model variance, whereas 23% of variance was
occasion-specific (eTable 2).

Associations with CRP

The marginal effects of CRP on the overall, cognitive-affec-
tive, and somatic factors are shown in Fig. 3 and Table 2. In
the unadjusted model (Model 1), elevated CRP concentration
was related to greater overall factor scores (b =0.214, 95%
CIL: 0.171; 0.256). As for cortisol, the effect of CRP was larger
on somatic (b=0.273, 95% CI. 0.226; 0.320) than on
cognitive-affective symptoms (b=0.166, 95% CL: 0.117,
0.214) (Table 2). Demographic, socioeconomic, and lifestyle
characteristics had a considerable impact on these associations
(Model 2, Table 2). The magnitude of the effects of CRP
further decreased when controlling also for chronic disease
and medication use (Model 3, Table 2). In this fully adjusted
model, the marginal effects of CRP on the overall, cognitive-
affective, and somatic factors were, respectively: 0.104 (95%
CI: 0.065; 0.143), 0.059 (95% CI: 0.012; 0.106), and 0.151
(95% CI: 0.107; 0.195) (Model 3, Table 2). The effect of CRP
on somatic symptoms was still substantially larger than that
on cognitive-affective symptoms, and such difference was
statistically significant (95% CIL: —0.157; —0.026) (Table 2).
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Table 1 Sample characteristics

Cortisol sample (N =4761) C-reactive protein sample (N = 5784)
Variables Levels Missing (%) Mean (sd) Frequency (%) Missing (%) Mean (sd) Frequency (%)
Depressive symptoms (CESD-8)
Overall score 1.0 1.20 (1.69) 0.8 1.13 (1.64)
Cognitive-affective score 1.0 0.60 (1.19) 0.7 0.57 (1.15)
Somatic score 04 0.71 (0.94) 0.3 0.67 (0.91)
Stress biomarkers
Hair cortisol (log, pg/mg) - 0.89 (0.56) 39.5 0.88 (0.57)
Plasma C-reactive protein 26.6 0.37 (0.92) - 0.36 (0.92)
(log, <10 mg/L)
Demographics
Sex Men - 33.0 45.4
Women 67.0 54.7
Age - 67.47 (9.39) - 66.41 (9.09)
Wealth (quintiles) 1 (lowest) 1.7 18.0 1.7 17.1
2 19.6 19.4
3 20.3 20.7
4 21.0 21.5
5 (highest) 21.2 21.3
Lifestyle indicators
Current smoker - 11.0 - 11.1
Physical activity Low - 60.2 - 56.1
High 39.8 439
Alcohol use (frequency) 8.3 4.44 (2.23) 8.1 4.26 (2.17)
Body mass index (BMI) 43 28.27 (5.40) 2.9 27.98 (4.95)
Chronic conditions
CVD - 22.6 - 18.8
Cancer - 54 - 4.6
Chronic lung disease - 44 - 4.1
Diabetes - 10.3 - 9.2
Medications
Anti-inflammatory/antihypertensive - 453 - 429
Antidepressants - 11.8 - 10.5
Hair characteristics
Hair dyed 0.6 33.6 - -
Season hair collection Summer - 234 - -
Autumn 42.7
Winter 26.7
Spring 7.2
Phase of hair analysis 1(2015) - 53.6 - -
2 (2018) 46.4
Data source: ELSA, wave 6. sd standard deviation, CESD-8 eight-item centre for epidemiological studies-depression scale, CVD cardiovascular
disease
Associations with the covariates and sensitivity sample), eTable 4 (CRP sample)]. Sensitivity analyses
analyses revealed significant differences in socioeconomic, health,

and lifestyle characteristics between ELSA participants

The marginal effects of all covariates included in the fully  included in the analysis and those excluded owing to
adjusted models can be found in the SI [eTable 3 (cortisol ~ missing biomarker data. Nevertheless, the majority of these
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Fig. 2 Mean scores of somatic and cognitive-affective depressive
symptoms at each wave (1-8) by hair cortisol and CRP tertiles. Data
source: ELSA, waves 1-8. CRP = C-reactive protein. The trajectories
of the mean scores were estimated using a smoothing function with

effects did not exceed 0.1% [eTable 5 (cortisol sample),
eTable 6 (CRP sample)]. Lastly, we tested all models in a
subsample of participants with a mean total CESD-8 score
of three or more points across waves 1-8 (Cortisol: N =
763; CRP: N=2801). The pattern of results found in this
subsample was similar to that observed in the full analytical
sample. Both cortisol and CRP had considerably large
effects on the somatic factor, which were robust to adjust-
ment for all covariates. In contrast, their associations with
the overall and cognitive-affective factors were much
weaker and did not reach statistical significance in most
cases, possibly due to the reduced statistical power of these
analyses (eTable 7).

Discussion
This is the first study examining the relationship of hair
cortisol and plasma CRP with the persistence and dimen-

sions (i.e., cognitive-affective and somatic) of depressive
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linear regression. The grey bands represent the confidence intervals of
the trajectories. The data presented in this graph are for descriptive
purposes only and do not relate to the trait-state-occasion models
tested in the main analysis

symptoms across a 14-year period in a large population-
based cohort of older adults. As expected, elevated cortisol
and CRP levels were associated with persistent depressive
symptoms across the study period. Notably, both bio-
markers exhibited stronger relationships with somatic than
with cognitive-affective symptoms, although such differ-
ences were more marked for CRP. The associations of
cortisol and CRP with somatic symptoms were independent
of relevant demographic, socioeconomic, health, and life-
style characteristics. In contrast, cortisol was no longer
significantly associated with cognitive-affective symptoms
after adjustment for all covariates, and the confidence
interval for the effect of CRP was close to zero.

Our results of higher CRP and cortisol levels in partici-
pants with persistent depressive symptoms corroborate the
findings of previous meta-analyses [16, 22, 23]. Several
studies have examined HPA-axis function in relation to
depression using salivary cortisol levels [52]. The results
have generally been positive, suggesting that between 20
and 80% of depressed individuals exhibit some form of
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Fig. 3 Marginal effects of hair cortisol and C-reactive protein on
persistent depressive symptoms: overall, cognitive-affective, and
somatic factors. Data source: ELSA, waves 1-8. N: Cortisol = 4761,
C-reactive protein = 5784. Unstandardised regression coefficients and

HPA-axis hyperactivation [16]. In addition, drugs targeting
hormones related to the HPA-axis have been shown to have
beneficial effects on depressive symptoms [53]. Likewise,
an abundance of studies has indicated that depressed indi-
viduals tend to exhibit elevated plasma concentrations of
pro-inflammatory cytokines such as CRP [17]. Furthermore,
there is some evidence showing that experimentally induced
inflammation can lead to depressed mood [54], whereas
anti-inflammatory medication may reduce depressive
symptoms [55, 56]. This suggests that HPA-axis hyper-
activity and elevated inflammation might be key patho-
physiological mechanisms underlying depression, as well as
potential mediators of its relationship with stress and phy-
sical illness [57]. In line with previous evidence [36], the
longitudinal TSO model of depressive symptoms indicated
that the proportion of variance explained by time-invariant
components was considerably larger than that attributable to
time-varying factors. Thus, this demonstrates the value of
considering the persistence of depressive symptoms over
time. Moreover, since the adverse consequences of stress
may take a long time to manifest themselves, persistent
depressive symptoms could be a more reliable indicator of
the biological embedding of chronic or repeated stress
exposure across the life course, particularly amongst older
adults [58].

Another key finding of our study is that, as hypothe-
sised, CRP and cortisol had stronger associations with

C-Reactive Protein

—_—
Somatic factor -
e
chpe——
Overall factor -
e
—_—
Cognitive-affective factor -
e
0.0 01 02 03

¢ Fuly adiustedmodel 4 Unadjusted model

confidence intervals. Estimator = WLSMV. Unadjusted model =
Model 1 (no covariates). Fully adjusted model = Model 3 (adjusted
for demographic, socioeconomic, lifestyle, chronic disease, and
medication data)

somatic than with cognitive-affective symptoms. For CRP,
these results are consistent with previous evidence indi-
cating that higher CRP levels were associated with specific
somatic symptoms, but not with cognitive-affective
experiences [31-34]. In relation to cortisol, this was the
first study to examine the link between HPA-axis function
and specific dimensions of depression using hair cortisol.
Our results revealed that elevated hair cortisol concentra-
tions were predictive of somatic symptoms, whereas their
effect on cognitive-affective symptoms was almost null
after adjustment for possible confounding factors. Similar
results were also reported by a cohort study of adolescents
using salivary cortisol [35]. However, another study did not
find clear evidence for a differential relationship of salivary
cortisol with the dimensions of depressive symptoms in
adolescents [59]. This negative result could be explained
by the use of salivary cortisol, which is not a reliable
marker of long-term HPA-axis activity [60], or by the
young age of the study participants. As expected, the
associations of cortisol and CRP with depressive symptoms
reduced considerably after adjustment for possible con-
founding factors. Controlling for the presence of chronic
conditions and medication use led to the strongest reduc-
tion in the effects of cortisol and CRP on depressive
symptoms. This is not surprising given the known bidir-
ectional links of physical illness with depression, neu-
roendocrine processes, and inflammation [7].
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p-value 95% CI

Somatic factor
SE

95% CI

p-value

Cognitive-affective factor
SE

SE p-value 95% CI

Overall factor

4761)

Table 2 Marginal effects of hair cortisol and C-reactive protein on persistent depressive symptoms: overall, cognitive-affective, and somatic factors

Hair cortisol (N
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0.127
0.115

0.052; 0.155

0.104 0.026 <0.001
0.112  0.026 <0.001

0.075

0.001; 0.107

0.062 0.054 0.027 0.045

0.030; 0.124

0.024  0.001

0.077

Model 1 (unadjusted)

0.062; 0.163

0.068

0.007; 0.112

0.040; 0.128 0.068 0.060 0.027 0.026

0.022  <0.001

0.021

0.084

Model 2 (partially adjusted)
Model 3 (fully adjusted)

0.071

0.027; 0.122

0.034 0.075 0.024 0.002

—0.020; 0.084

0.032  0.027 0.223

0.043

0.012; 0.096

0.011

0.054

5784)

C-reactive protein (N

<0.001  0.226; 0.320  0.325

<0.001
<0.001

0220 0.273 0.024

0.117; 0.214
0.049; 0.145

<0.001
<0.001
0.015

0.166  0.025

0.097

0.170
0.116

0.171; 0.256
0.104; 0.186

<0.001
<0.001

0.022

0.214

Model 1 (unadjusted)

0.209
0.145

0.155; 0.246

0.107;0.195

0.023

0.112  0.201

0.062 0.151

0.024

0.021

0.145
0.104

Difference between somatic and cognitive-affective scores

Model 2 (partially adjusted)
Model 3 (fully adjusted)

0.023

0.012; 0.106

0.059 0.024

0.065; 0.143 0.082

0.020 <0.001

C-reactive protein

Hair cortisol

95% CI

p-value
0.002
0.002
0.005

Difference  SE
-0.107

—0.104
—0.092

Difference ~ SE p-value  95% CI
—0.050

—0.052
—0.043

—0.175; —0.038
—0.169; —0.038

—0.157; —0.026

0.035

—0.123; 0.023
—0.125; 0.021

0.037 0.182

Model 1 (unadjusted)

0.033

0.037 0.165

Model 2 (partially adjusted)
Model 3 (fully adjusted)

0.033

—0.113; 0.027

0.036 0.234

Data source: ELSA, waves 1-8 B: regression coefficient. f: standardised regression coefficient. Estimator: WLSMV. Model 1 = unadjusted. Model 2: adjusted for demographic, socioeconomic,

lifestyle, and hair (cortisol only) characteristics. Model 3:Model 2+ chronic disease and medication use

SE standard error, CI confidence interval

The present findings have important implications and
open up new avenues for depression research and treat-
ment. Taken together, they suggest that elevated cortisol
and CRP levels could be reliable biomarkers of somatic
depressive symptoms, rather than overall depressive
symptoms. In addition, they provide further support for
the sickness behaviour theory [28, 29], according to
which somatic depressive-like symptoms which char-
acterise sickness behaviour are likely to stem from dys-
regulated inflammatory and neuroendocrine responses.
Such somatic changes could in turn influence the devel-
opment of cognitive-affective symptoms thereby acting as
important mediators of the relationship between depres-
sion and these biological systems [34]. This possibility is
also supported by investigations demonstrating the causal
effect of immunotherapy on the development of early-
onset somatic depressive symptoms in the majority of
cancer patients, while late-onset psychological symptoms
occur less frequently [61]. Likewise, immune activation in
animals and healthy participants has been shown to lead to
typical somatic symptoms of depression [62, 63]. Such
results highlight the importance of taking into account
specific depressive symptom dimensions in future studies
on pathophysiological mechanisms. This could help to
advance the search for biomarkers of depression, facilitate
more targeted treatments, and inform antidepressant
medication selection [64, 65]. To illustrate, since different
symptoms may be characterised by distinct biological
dysregulations, the efficacy of antidepressants is likely to
be affected by the specific symptom profile of patients. In
additon, drugs that pharmacologically modify neu-
roendocrine and inflammatory processes might be parti-
cularly effective for individuals with higher levels of
somatic symptoms [53, 56].

Our investigation has several strengths. These include,
for instance: a large sample size; participants not selected on
the basis of mental health issues, and therefore more
representative of the general population; robust estimates of
depressive symptoms due to repeated measures; and reliable
assessment of long-term HPA-axis activity owing to the
quantification of cortisol in hair. Notwithstanding this, there
also are a number of limitations to consider. First, this study
does not provide direct evidence for the possible casual
effect of HPA-axis dysfunction and inflammation on
depression. Second, we only considered a single biomarker
for each biological system, which may not be sufficiently
precise to understand the complex role of neuroendocrine
and inflammatory processes in depression. Third, sensitivity
analyses revealed that ELSA participants with available
biomarker measures had better socioeconomic, health, and
lifestyle characteristics compared with those who did not
participate in the nurse visit or did not have blood/hair
samples taken. Last, it is worth noting that there are
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inconsistencies in the definition of somatic symptoms in the
literature [34], as well as in the types of items that char-
acterise this symptom cluster across different depression
scales [27]. Therefore, although we employed the most
suitable classification of somatic symptoms for the CESD-8
[27, 43], this may not correspond to that used in other
studies.

Further work is required to investigate the associations of
inflammation and HPA-axis function with the somatic
clusters underlying other depression scales, and to elucidate
the complex interactions amongst somatic and cognitive-
affective symptoms over time [25]. Future studies should
also clarify the direction of the associations of depressive
symptoms with cortisol and CRP using methods that
strengthen causal inference such as genetically informed
approaches [66]. Furthermore, it would be worth investi-
gating the relationship of cognitive-affective and somatic
symptoms with other biomarkers of HPA-axis function and
inflammation, as well as with other biological and envir-
onmental risk factors [25].

To conclude, the current study demonstrates that elevated
hair cortisol and plasma CRP levels were associated with
more persistent depressive symptoms over a 14-year period
in a large sample of older adults. Furthermore, their rela-
tionship with somatic symptoms was considerably larger
than that with cognitive-affective symptoms. These distinct
associations reveal the importance of considering symptom-
specific effects in future studies on pathophysiological
mechanisms. Ultimately, this will have the potential to
advance the search for biomarkers of depression and facil-
itate more targeted treatments.
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