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It is well-established that patients with sickle cell disease (SCD) are at substantial risk

of neurological complications, including overt and silent stroke, microstructural injury,

and cognitive difficulties. Yet the underlying mechanisms remain poorly understood,

partly because findings have largely been considered in isolation. Here, we review

mechanistic pathways for which there is accumulating evidence and propose an

integrative systems-biology framework for understanding neurological risk. Drawing

upon work from other vascular beds in SCD, as well as the wider stroke literature,

we propose that macro-circulatory hyper-perfusion, regions of relative micro-circulatory

hypo-perfusion, and an exhaustion of cerebral reserve mechanisms, together lead to a

state of cerebral vascular instability. We suggest that in this state, tissue oxygen supply

is fragile and easily perturbed by changes in clinical condition, with the potential for

stroke and/or microstructural injury if metabolic demand exceeds tissue oxygenation.

This framework brings together recent developments in the field, highlights outstanding

questions, and offers a first step toward a linking pathophysiological explanation of

neurological risk that may help inform future screening and treatment strategies.

Keywords: sickle cell disease, stroke, silent cerebral infarction, cerebral hemodynamics, vascular instability,

anemia, oxygen extraction fraction, cerebrovascular reserve

INTRODUCTION

Sickle cell disease (SCD) refers to a group of inherited hemoglobinopathies that affect ∼20–25
million people globally (1, 2). The condition is caused by a single-base substitution that leads to the
production of mutant hemoglobin type S (HbS). When oxygen tension is low, HbS polymerizes,
giving erythrocytes their characteristic “sickle” shape. The wider pathophysiology is complex and
appears to involve a cycle of inter-related processes, including erythrocyte-leukocyte adhesion to
the endothelium, endothelial activation, hemolysis, inflammation, and hyper-coagulation (3–8).

NEUROLOGICAL COMPLICATIONS

In developed countries, medical advances have led to dramatically increased life expectancy for
children with SCD (9). The transition from fatal disorder to chronic illness has, however, brought a
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new set of challenges with regard to the clinical complications
that can have major implications for quality of life. Among the
most debilitating and poorly understood complications are a
number of conditions affecting the brain, including overt and
silent stroke, cerebrovascular disease, cognitive impairment, and
structural abnormalities (Figure 1). Below, we consider these
in turn.

STROKE AND CEREBROVASCULAR
DISEASE

In the absence of screening and prophylactic treatment (10),
∼11% of SCD patients will suffer an overt stroke by their
20th birthday, and 24% by their 45th (11). Ischemic insults
are most common, accounting for up to 75% of SCD-related
strokes (12, 13). Patients are however at considerable risk of both
overt ischemic and hemorrhagic stroke, with the former reported
more frequently in children, and the latter more frequently in
young adults (14–16). In a recent cohort study, 10% of SCD
patient deaths were attributable to overt stroke (17). Whilst
overt ischemic stroke is rarely fatal, death may occur following
26% of hemorrhagic cases (11). Without secondary prevention,
recurrence rates of up to 70% have been reported for overt
ischemic stroke, with the risk greatest within 36 months of
the initial event (18). Both types of overt stroke are associated
with significant long-termmorbidity, including seizures, physical
disability, and cognitive impairment (19).

More common than overt stroke is “silent cerebral
infarction” [SCI; (20)], where hyperintensities consistent
with infarction/ischemia are apparent on brain MRI in the
absence of focal neurological symptoms. SCI may occur as
early as the 6th month of life (21, 22). There is evidence that
prevalence reaches 25% by 6 years of age (23), 39% by 18 years
of age (24), and 53% by young adulthood (25), with no reports
of a plateau. Although clinically “silent,” evidence of progression
was first provided by the co-operative study of SCD (CSSD),
where SCI was associated with a 14-fold increase in risk of overt
ischemic stroke, and 25% of children with SCI presented with
new or enlarged lesions at follow-up (26). In the CSSCD, SCI
was also associated with cognitive decline (27). These findings
have been replicated in more recent work, including in a study
where SCI in patients younger than 5 years old were shown
to be associated with later progressive ischemia, vasculopathy,
academic difficulties, and a higher risk of overt ischemic stroke
(21). Further indicative of progressive ischemia, a recent clinical
review of 60 unselected adult cases found that 37% of patients
with SCI had more than one lesion (25).

Infarction in the territory of large intracranial vessels is the
most common pattern in SCD patients with overt ischemic
stroke, but the watershed regions of the deep white-matter
are particularly vulnerable (16, 28, 29), whether or not there
is concomitant intra-cranial cerebral vasculopathy (30). The
distribution of SCI is similar, with up to 90% of SCI reportedly
occurring in a relatively small deep watershed white matter
region, encompassing only 5.6% of brain volume (31). SCI and
overt ischemic stroke are often indistinguishable on MRI (32),
and several authors have suggested that it may be differences

in lesion size and location, rather than underlying physiological
mechanism, that determines whether an ischemic insult is
accompanied by focal symptoms (ischemic stroke) or goes
undetected [SCI; (33)].

Both in addition to, and in the absence of, overt stroke and
SCI, vasculopathy on MR angiography (MRA) is common in
SCD patients (32). Although vasculopathy definitions have varied
considerably between studies, intra- and extra- cranial steno-
occlusive arteriopathy, often involving the distal internal carotid
and the proximal anterior and middle cerebral arteries, are
frequently reported, particularly in patients with overt ischemic
stroke (34, 35), and SCI (24). Incidence of progressive stenosis
with compensatory collateral vessel formation is as high as
30–40% in SCD patients with vasculopathy (36, 37). In a
multi-center pediatric study in which 37 chronically transfused
patients underwent serial MRI, 38% of patients presented with
a new vessel segment of stenosis or occlusion at follow-up (38).
Despite aggressive hematological management, the children with
vasculopathy progression were also 12 times more likely to
present with new SCI or overt ischemic stroke than those with
no progression.

Some authors have proposed a sequential moyamoya-
like model of SCD vasculopathy and stroke (39), in which
early ischemic events are associated with stenosis, and later
hemorrhagic events with the development and eventual
rupturing of friable and maximally dilated collateral vessels.
However, the majority of SCD-related intra-cerebral and
subarachnoid hemorrhages are associated not with collateral
vessel rupture, but with aneurysm rupture (40, 41). Intracerebral
aneurysms are also prevalent in SCD patients (25, 41), and
tortuosity and ectasia are well-documented in humans and
animal models (42–45). Whilst aneurysms are not significantly
associated with collateral vessel formation (46) they do appear
to form in the context of progressive vasculopathy, with a
majority of patients with aneurysms having more than one (47).
In a recent clinical case review of children with SCD, five of
seven patients with overt hemorrhagic stroke and/or aneurysm
presented with evidence of overt ischemic stroke and/or SCI
(48). These findings may indicate concurrent development
of pathology underlying both ischemia and hemorrhage (49),
with shared underlying mechanisms (50). Further support
for this notion comes from the identification of a number of
common, albeit non-specific, risk factors for both ischemic
and hemorrhagic stroke, including anemia, chest syndrome,
hypertension, and previous infarction (15, 51).

COGNITIVE DIFFICULTIES

Overt stroke was originally identified as the primary cause of
cognitive impairment in SCD (52). However, subsequent work
has indicated that, whilst overt stroke and SCI are typically
associated with the greatest impairment, cognitive difficulties
may be common even in patients with no observable MRI
abnormality (53, 54), manifesting as poorer school-readiness
during the preschool years (55, 56), academic difficulties
during childhood through adolescence (57–59), and employment
difficulties during adulthood (60).
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FIGURE 1 | Neurological complications. Time of flight angiography image overlaid on 3D rendered Fluid Attenuated Inversion Recovery (FLAIR) image, edited to

depict common neurological complications in SCD.

Already in infancy, up to 50% of patients show delay in early
markers of cognition and expressive language (61). Throughout
development, patients continue to be at risk of impairment
across a range of domains including executive function, memory,
and processing speed (27, 62–67). Although several authors
have highlighted the need to consider SCD in the framework
of a neurodevelopmental disorder (68), there have been no
comprehensive longitudinal studies modeling raw cognitive
trajectories over time. The extent to which later cognitive
impairment is causally related to earlier developmental delay,
and/or previous/ongoing pathophysiological processes, therefore
remains unclear.

MACRO- AND MICROSTRUCTURAL
BRAIN ALTERATIONS

Quantitative MRI studies have indicated that the total extent of
cerebral tissue injury may go beyond overt stroke, SCI, and large
vessel disease in SCD. There have been reports of reduced cortical
and subcortical gray matter volumes (69–72) as well as reduced
subcortical white matter volumes (73–75). Abnormal patterns of
brain maturation have also been described (76–78). Diffusion

imaging studies have further revealed significant reductions in
white matter integrity, with watershed regions of the centrum-
semiovale consistently affected in SCI patients well as in those
without MRI-defined lesions (79–83).

Several studies have provided evidence that volumetric
and structural integrity alterations contribute to cognitive
impairment in patients with and without SCI. Lower gray matter
volumes have been associated with worse performance IQ in
adults (72), with decline in FSIQ in children (84), and with
memory impairment in mice (85). Moreover, decreases in white
matter density (75) and reductions in white matter integrity
(86), have been associated with worse performance on tests of
processing speed, irrespective of presence of SCI. It is therefore
possible that cerebrovascular disease represents only the “tip of
the iceberg” in terms of functionally significant cerebral tissue
injury in SCD.

MECHANISMS OF NEUROLOGICAL
MORBIDITY

Although the incidence and impact of neurological
complications in SCD are well-described, the underlying
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mechanisms remain poorly understood. As a result, current
treatment strategies are inadequate, with many patients
continuing to suffer progressive vasculopathy and/or ischemia
despite being on gold-standard transfusion regimes (38, 87).
Co-existing and interdependent pathophysiological processes
pose significant challenges to understanding the individual
impact of each in SCD. Systems and network approaches, which
focus on the relationship between processes, have not been
comprehensively applied, but may be useful in combination with
reductionist approaches in developing an understanding of the
complex pathophysiology (88).

Taking a systems-biology approach to neurological
complications, we propose a novel framework that emphasizes
a role for vascular instability as a linking pathophysiological
explanation for the various implicated mechanisms, including
vaso-occlusion, hypercoagulability, thrombosis, hemolytic
anemia, and hypoxia, as well as the interactions between
them (Figure 2). According to this tentative framework,
vascular instability is in part a result of operating at the
limits of hemodynamic compensation for these physiological
mechanisms. In this state, tissue oxygen supply is fragile and
easily perturbed by relatively minor changes in clinical condition,
with the potential for overt stroke, SCI, and/or micro-structural
brain injury if metabolic demand exceeds tissue oxygenation.
In the following sections, we review frequently implicated
mechanisms, and demonstrate how the proposed framework is
able to integrate them with the most current evidence in the field.

VASO-OCCLUSION AND CEREBRAL
SMALL VESSEL DISEASE

Vaso-occlusion was originally proposed to cause progressive
vasculopathy and stroke, with erythrocyte adhesion, sickling,
sludging, and congestion in small arterioles and venules. When
it became clear that patients with SCD and overt stroke had
large vessel disease, the suggestion that this process involved
the vaso-vasorum network of feeders of large-vessels, gained
traction as an explanatory mechanism for both macro- and
micro-circulatory pathology (34). However, with the later
discovery that large intracranial vessels lack a vaso-vasorum,
the notion that vaso-occlusion alone is the proximate cause
of macro-circulatory pathology has been challenged (50).
Erythrocyte adhesion and congestion in post-capillary venules,
with backward propagation and potential vascular pruning [i.e.,
regression; (89)], nevertheless remain an influential model of
micro-circulatory pathology or “cerebral small-vessel disease”
[CSVD; (90–93)].

Despite a lack of histological evidence, SCI, structural
abnormalities, and cognitive impairment are often described
as manifestations of CSVD, secondary to vaso-occlusive
pathophysiology in SCD (94, 95). CSVD is typically regarded as
a “whole-brain” disease, encompassing not only white-matter
hyperintensities, but also other diffuse pathologies including
silent micro-hemorrhages, white matter hyperintensities similar
to SCI but in non-SCD populations, lacunar infarcts, and
prominent perivascular spaces (96). However, the scanty

available data do not suggest a high prevalence of silent
microhemorrhages in children and young adults with SCD
(97, 98). Moreover, whilst susceptibility-weighted MRI (SWI)
of the brain has revealed patterns consistent with venular
rarefaction in SCD patients (98), which may indicate vascular
pruning (89, 93), concerns have been voiced about the potentially
confounding effects of decreased hemoglobin and increased
cerebral blood flow on SWI signal (98). Moreover, erythrocyte
congestion, CSVD, and/or vascular pruning cannot alone
account for the disproportionate vulnerability to injury of the
deep watershed white matter regions in SCD (30, 31).

ENDOTHELIAL DYSFUNCTION

Models have also been proposed in which neurological
complications are thought to occur as a result of downstream
ischemia from progressive large-vessel vasculopathy (16). It
has been postulated that endothelial damage, exacerbated
by inflammation, hyper-coagulation, and erythrocyte-leukocyte
adhesion to the endothelium, may play a cardinal role in
progressive large-vessel vasculopathy and perhaps also in CSVD
and capillary pruning (16, 51, 93). There is indirect clinical
evidence in support, with studies reporting associations between
risk of cerebral infarction and leukocyte count (99), leukocyte
expression of L-selectin (100), and endothelial expression of
VCAM1 variant(-1594) (101).

According to one model of large-vessel vasculopathy (50),
endothelial dysfunction may either lead to a reparative
response involving intimal thickening and smooth muscle-cell
proliferation or to fragmentation of the elastic lamina, with the
former resulting in vessel narrowing and the development of
stenosis, and the latter in vessel wall dilation and aneurysm
formation. It has been suggested that local rheology, shear-stress,
and/or tissue characteristics may determine whether endothelial
injury leads to focal narrowing or dilation (48). Although the
precise mechanisms are not well-defined, this model is able to
account for cases in which regional ischemic and hemorrhagic
pathology develop concurrently (48).

However, whilst associated with an increased risk of ischemic
events, there is evidence that intracranial vasculopathy alone is
neither necessary, nor sufficient, for the development of overt
ischemic stroke, SCI, reduced integrity, or cognitive impairment
in SCD. Neuropathological (49), angiographic (34, 102), and
MRA/I (30, 38, 71, 82, 103, 104) studies have consistently
described cases of overt ischemic stroke and SCI both in the
presence and absence of observable intracranial vasculopathy.
Conversely there have been reports of intracranial vasculopathy
in the presence and absence of SCI and overt stroke (104–106).

For example, in a large trial (n = 516) in which patients
with prior overt stroke or abnormal transcranial-doppler (TCD)
screening results were excluded, 84% of children with SCI
showed no MRA evidence of intracranial vasculopathy at
baseline, and 36% of those with MRA defined vasculopathy
showed no evidence of SCI (104). At exit, only 1 of 15
patients with SCI recurrence had baseline vasculopathy (107).
Similarly, in a medium-sized trial (n = 150) in SCD children
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FIGURE 2 | Systems biology framework. Proposed Model of neurological risk emphasizing role for vascular instability. Highlighting several potential mutually enforcing

pathways. Different colors used to differentiate different mechanistic pathways, and to distinguish them from outcomes.

with prior overt stroke, there was no consistent pattern of
intracranial vasculopathy associated with SCI, and there were
no consistent hematological biomarkers for SCI or vasculopathy
(87). Reduced cortical thickness (71), sub-cortical volumes
(69), white-matter integrity, and cognitive performance (82,
86) are also well-documented in patients without MRI-defined
lesions or MRA-defined vasculopathy. Whilst these studies are
plagued by highly heterogeneous samples and use of inconsistent
vasculopathy definitions (32), these and other findings have
nevertheless encouraged authors to explore alternative etiologies
for neurological morbidity in SCD (108).

HYPERCOAGULABILITY AND EMBOLIC
EVENTS

There is indirect evidence that cerebral embolic events occur in
SCD patients, including reports of associations between overt
ischemic stroke and thromboemboli (109, 110) as well as of
fat-embolism syndrome from bone-marrow necrosis (111–114).
Although comprehensive prevalence data are lacking, shunting

at intra-pulmonary or intra-cardiac (e.g., through a PFO; patent
foramen ovale) level and paradoxical embolismmay also be more
common in children (33, 115, 116) and adult (117) SCD patients
and may be associated with cerebral infarction (118). Although
there are few data in SCD, PFO is an established risk-factor for
overt stroke in the general population (119–121).

Hypercoagulability may pre-dispose to cerebral
thromboembolism and is also a feature of SCD. Activation
of the coagulation cascade and fibrinolysis are favored (122)
and there is a high risk of venous thromboembolism (123). Risk
factors may include genetic predisposition (124), inflammation
(122), and splenectomy (125). Phosphotidylserine exposure on
red cells and microparticles may play a role, related in part to
acquired protein S deficiency (126). Whole blood thrombin
generation is increased in SCD, while plasma thrombin
generation is decreased, suggesting a cellular component,
although this does not appear to be related to phosphotidylserine
exposure (126). There is cross-sectional evidence indicating that
hypercoagulability may contribute to risk of overt stroke and SCI
in SCD patients (127, 128). Proteomic analyses have revealed
associations between SCI and the prothrombotic proteins
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α2-antiplasmin, fibrinogen-γ chain and thrombospondin-4
which are considered to predispose to hypercoagulability (124).
Although findings have been mixed, several studies have also
shown lower serum levels of coagulation markers [e.g., D-Dimer,
VonWillebrand factor, TAT complex; (129)] and lower thrombin
generation (130) in SCD children deemed at low risk of overt
stroke on the basis of transcranial doppler (TCD) velocities (see
page 10). In addition, poor splenic function is associated with
SCI (99), although the link to hypercoagulability has not been
made for SCD as it has for thalassemia (131, 132).

Upregulation of platelets may exacerbate the hypercoagulable
as well as the proinflammatory state associated with SCD.
Platelets may also promote endothelial activation and
erythrocyte adhesion by stimulating several major endothelial
adhesion molecules, including vascular adhesion molecule
(VCAM-1) (133) and by forming an increased number of
platelet-erythrocyte (134, 135), platelet-monocyte (136) and
platelet-neutrophil aggregates (136). Although the underlying
mechanisms are unclear, there is cross-sectional evidence that
patients with SCI or overt ischemic stroke have higher mean
platelet values than patients without lesions on MRI (137).
Also, thrombocytosis (platelets > 500∗109/L) is associated with
cognitive impairment across multiple domains in children
with SCD (138), and elevated levels of erythrocyte and platelet
derived microparticles have been described in those with a
history of overt stroke (139). Whilst there is also evidence
that higher mean platelet volume is associated with a global
increase in white matter volume in SCD patients, further work
is required to determine whether this is adaptive or a reflection
of edema (74). Given these data, there is a good case for further
investigation into the relationships between platelet activation,
hypercoagulability, and neurological complications in SCD.
Mechanisms could include embolism through a cardiac or
pulmonary shunt from the systemic venous circulation e.g., in
the pelvis or the limbs, as well as local thrombosis.

HEMODYNAMIC COMPROMISE

Watershed Vulnerability
Whilst vaso-occlusive, thrombotic, and/or embolic events may
contribute to some ischemic insults in SCD, several authors have
argued that the high density of overt and silent infarction and
microstructural abnormalities in watershed regions may point to
hemodynamic compromise or “brain drain” as a more common
contributor (32, 140). Historically, in non-SCD patients,
watershed infarcts have been associated with hemodynamic
causes, and are sometimes referred to as hemodynamic strokes
(141, 142). As the watershed regions lie at the end junctions
between adjacent arterial territories, vascular supply is inherently
low. Much as the last field on a farm is the area with the least
supply of water and therefore the most vulnerable to a reduction
in flow, the watershed regions of the brain are believed to be the
most vulnerable to a reduction in perfusion (143).

Vascular Physiology
Despite only accounting for 2% of total body weight, the brain
has the highest metabolic requirements of any organ, consuming

a disproportionate 20% of the body’s total oxygen supply. In
children, brain oxygen consumption is even higher, reaching 50%
during the first decade of life (144). As reflected by these high
demands, a baseline cerebral metabolic rate of oxygen utilization
(CMRO2) is required to maintain tissue viability (145).

CMRO2 is defined as the product of arterial oxygen content
(CaO2), rate of blood delivery (CBF; Cerebral blood flow),
and the percentage of oxygen extracted by the tissue (Oxygen
extraction fraction; OEF).

The following equations, derived from the Fick principle show
their relationship;

CaO2 = (Hemoglobin∗1.34∗SaO2)+ (0.003∗ paO2)

Oxygen Delivery = CaO∗

2 CBF

OEF = (CaO2 − CvO2)/CaO2

CMRO2 = CaO∗

2CBF
∗ OEF

Where 1.34 is the oxygen affinity of normal hemoglobin type A,
paO2 is the partial pressure of oxygen in arterial blood, SaO2 is
the ratio of oxygenated hemoglobin to the sum of oxygenated
and deoxygenated hemoglobin in arterial blood, and CvO2 is
venous oxygen content (CvO2) defined similarly to CaO2, but
with metrics drawn from venous rather than arterial blood.

In normal vascular physiology, CBF is closely coupled to
baseline CMRO2, leading to globally uniform OEF (146, 147).
By arteriolar dilatation, CBF increases in response to increased
metabolic demand related to function, e.g., movement of a
limb or response to a visual stimulus. Under conditions in
which oxygen delivery is decreased [e.g., hypoxia; (148), carotid
artery occlusion; (146)] or CMRO2 is increased beyond normal
functional demands [e.g., pyrexia or seizures; (149)] the brain
is able to fall back on two reserves; a cerebrovascular dilatory
reserve (CVR) and a metabolic reserve. CVR reflects the
capacity of smooth muscles to alter vessel caliber in response to
fluctuations in arterial blood gases such as carbon dioxide and
oxygen (150). The arterioles respond to changing carbon dioxide
tension with a positive linear response across the physiological
range but flattening at the extremes (151). Although the
underlying mechanisms are less well-understood, the metabolic
reserve reflects the capacity of the brain to augment CMRO2

via increases in OEF, which may potentially involve changes in
effective oxygen diffusibility (152).

In models of hemodynamic stroke there is a disproportionate
drop in oxygen delivery relative to baseline CMRO2, and
an exhaustion of vascular reserve mechanisms (141). Within
the first 48 h of an ischemic insult, a state of hemodynamic
compromise known as “misery perfusion” is often observed,
involving reductions in regional CBF that are accompanied by
increases in regional OEF. Regional OEF increases may serve to
maintain CMRO2 up to a point, beyond which tissue injury may
ensue (146, 153–155).

There have been reports of hemodynamic changes consistent
with a similar model of hemodynamic compromise in patients
with SCD, including altered CaO2, CBF (156–161), CVR (162–
164), and OEF (165–167). Whilst vaso-occlusion, vasculopathy,
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and emboli are all flow-restricting phenomena that may
contribute to hemodynamic compromise, some hemodynamic
changes may represent compensatory responses to physiological
stressors associated with SCD pathophysiology (140), including
anemia and hypoxia. In the following subsections, we consider
research on aspects of CMRO2 in SCD in turn.

Arterial Oxygen Content (CaO2)
In patients with SCD, hemolytic-anemia leads to chronic
hemoglobin-driven reductions in CaO2 (6). CaO2 may,
however, be further reduced in these patients due to acute,
intermittent, and/or chronic daytime, nocturnal, and/or
exercise-induced oxyhemoglobin desaturation. Daytime
oxyhemoglobin desaturation, when defined by pulse oximetry
as SpO2 <96%, may affect between 30 and 50% of steady-state
patients (168–173).

Although a well-described phenomenon, there is no
consensus on cause, definition, or treatment of oxyhemoglobin
desaturation in SCD (174). Proposed mechanisms include
phenomena often considered “hypoxemic” such as abnormal
HbS oxygen affinity, elevated levels of dyshemoglobins, and
pulse oximeter calibration for HbA rather than HbS (175, 176).
“Hypoxic” phenomena, including obstructive and restrictive
lung disease, sleep disordered breathing, and shunting, have also
been proposed to play a role (176, 177).

The affinity of hemoglobin for oxygen is a fundamental
determinant of the oxygen-carrying capacity of blood and is
altered in patients with SCD. HbS polymerization has long been
known to reduce oxygen affinity, causing a right shift of the
oxyhemoglobin dissociation curve [ODC; (178–181)]. Although
there is significant heterogeneity, the pO2 at which hemoglobin
is 50% saturated (P50) is increased in a majority of SCD patients,
meaning that hemoglobin oxygen saturation for any given pO2 is
lower (171, 182–185). Whilst this right shift of the ODC is seen
in many anemia’s, and facilitates unloading of oxygen from blood
to tissue (see section below on OEF), it inhibits oxygen loading
at the lungs, which may promote oxyhemoglobin desaturation in
SCD (186).

Studies using near-infrared spectrophotometry have provided
evidence that cerebral oxyhemoglobin tissue desaturation is
common and can be severe in steady-state SCD patients (187–
189). However, oxygen carrying capacity appears to only partially
explain cerebral desaturation, with CaO2, age, and male gender
together accounting for 40% of the variance (188).

Cerebral Blood Flow, Cerebrovascular
Reserve, and Cerebral Autoregulation
Cerebral tissue oxygenation is dependent not only upon oxygen
availability and the blood’s oxygen carrying capacity, but also
on tissue perfusion. Whilst CaO2 is chronically decreased in
SCD patients, studies have consistently reported compensatory
vessel dilation (190), leading to increases in global CBF and CBV
(157, 166, 191, 192), which appear to maintain oxygen delivery
and metabolism when averaged globally (157, 167).

However, in patients with SCD, compensatory increases in
global CBF are associated with reduced CVR (70, 162–164, 193),
with the white matter also exhibiting disproportionate delays in

CVR response times (194). There is evidence that a majority
of patients may approach the upper limit of dilatory capacity,
and that a quarter may also exhibit negative reactivity or “steal”
(193). Steal refers to blood being “stolen” from one cerebral
region and given to another, and occurs when a pressure gradient
exists between regions, such as when one region is maximally
dilated and unable to respond to a vasodilatory stimulus [e.g.,
hypercapnic challenge; (195)]. In these instances, blood may be
redistributed from regions unable to dilate to regions that are able
to. Theoretically, therefore, in a parallel vascular system where
there is CVR exhaustion, an increase in perfusion in one region
can lead to a relative decrease in perfusion in another.

Studies in healthy populations suggest that some brain regions
are more vulnerable to CVR exhaustion and steal than others.
CVR appears to be greater in gray matter than white matter (196,
197), as well as in phylogenetically older than phylogenetically
younger gray-matter regions of the brain (198, 199), which may
be related to the relatively greater vascularization in gray matter
regions that perform essential homeostatic functions (198).
There is also evidence that watershed white matter regions are
disproportionately at risk of steal in young healthy populations
during hypercapnia (196), suggesting that these regions may
be continuously compensating for low perfusion pressure.
Exhausted CVR, alone or in combination with steal, may thus
render the watershed white matter regions disproportionately
vulnerable to ischemia in settings where there is increased
metabolic demand (e.g., infection, pyrexia, seizures) or an acute
drop in CaO2 [e.g., acute chest syndrome with acute anemia and
hypoxia; (33)], which are common in SCD.

Whilst several MRI studies suggest that global white matter
CBF is on average elevated in “steady-state” SCD patients
(158, 166, 200), the elevation is lower than that observed for
gray matter, and may therefore be insufficient to maintain
oxygen delivery regionally. Results from a more recent study
are consistent with this notion, and suggest that global white-
matter oxygen delivery is significantly reduced in “steady-state”
SCD patients without MRA defined vasculopathy compared
to controls (201). Using a rigorous partial volume correction,
the authors found significantly elevated global gray-matter
CBF in patients, but no differences in global white-matter
CBF, indicating inadequate compensatory vasodilation in
white-matter. Importantly, through t-score maps, the authors
showed the reduction in white matter oxygen delivery to
be disproportionate in watershed regions vulnerable to SCI
and reduced integrity, going beyond that expected due to
anatomical constraints and the watershed effect alone (201).
These findings suggest that watershed regions are hypo-perfused
in SCD patients, and highlight the need for future studies to
consider regional perfusion characteristics alongside global
averages. In line with this, Positron Emission Tomography [PET;
(161, 192, 202)], Single Photon Emission Computed Tomography
[SPECT; (203–205)], Xenon-Computed Tomography [CT;
(206)] and MRI studies (158, 160, 201) have also reported
regions of hypo-metabolism and/or hypo-perfusion in patients
with SCD.

The etiology of regional hypo-perfusion in SCD is unclear. In
the absence of longitudinal data, it is impossible to determine
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whether injury in these regions occurs secondary to hypo-
perfusion, or whether hypo-perfusion is secondary to the lower
metabolic requirements of injured tissue. Given that CBF
and CMRO2 are closely coupled, it is possible to speculate
that injured regions have lower CMRO2, resulting in hypo-
perfusion. However, SCI-burden was relatively low in the Chai
et al. (201) sample, with only half of patients showing small
lesions. Moreover, there is evidence that even in “steady-state”
patients without SCI, PET may find regions of hypo-metabolism
and hypo-perfusion (161). Whilst CVR-exhaustion and vascular
steal secondary to compensatory increases in gray matter CBF is
another plausible explanation, it is also possible that there is a
broader vulnerability of vasculature regulation in SCD.

Cerebral autoregulation (CA) refers to the ability of the brain
to maintain relatively constant CBF over a broad range of
cerebral perfusion pressures (CPP), and is thought to involve
a complex interplay of autonomic, myogenic, and neuronal
mechanisms (207).

Cerebral perfusion pressure (CPP) is defined as either:

CPP = MAP− ICP

or

CPP = MAP− JVP

Where MAP is the mean arterial pressure and JVP is the jugular
venous pressure.

If blood pressure decreases or increases, CA maintains
constant CBF across the autoregulatory range which varies
with age and a variety of conditions. Below this range, CBF
falls with decreasing CPP, risking ischemia, particularly in the
watershed regions. Above this range, CBF rises with increasing
CPP, with the risk of edema, particularly in the posterior
circulation. There is some evidence indicating impaired CA
in SCD patients, with one study showing that patients have a
reduced capacity to buffer the transfer of blood pressure surges to
the cerebral tissue (208). Whilst CA has traditionally been treated
as separate from CVR, both are mechanisms deployed to ensure
CBF-CMRO2 coupling in the face of changing physiological
conditions, and there are persuasive data indicating synergism
and interdependence between them (150, 209, 210). For example,
progressive hypotension appears to blunt and abolish the CBF
response to hypo and hypercapnia (151, 211), and hypoxia
and hypercapnia appear to reduce the ability of the brain to
defend against changes in perfusion pressure as well (212, 213),
suggesting that CVR and CA may rely on the same underlying
flow reserve.

The role of reduced CPP secondary to intra/or extracranial
vasculopathy (24, 35), diastolic dysfunction (214), relative
systemic hypotension (215), and/or embolism, has received
relatively little attention in SCD, but any effect may be
compounded by CVR exhaustion. Some SCD patients may
thus face a “quadruple jeopardy” of reduced CaO2, systemic
hypotension, CBF restricting stenosis/emboli, and exhausted
CVR (140). It is unclear whether low flow conditions are
further exacerbated by increases in JVP secondary to erythrocyte
congestion in post-capillary venules, and/or increases in ICP

secondary to acute drops in CaO2 and cerebral oedema [e.g.,
in acute hypertension; (216) or hypoxia; (217)]. However, it is
possible that critical closing pressure, the CPP at which vessels
collapse and close completely, is reached during acute illness
with relatively small increases in either ICP or JVP or reductions
in MAP.

Both CVR and CA must necessarily rely on the same
underlying capacity for cerebral vessels to regulate resistance
(150), a capacity which is modulated by local metabolites, RBC
chemistry, the autonomic nervous system, and blood rheology,
all of which are abnormal in SCD (218). Vessel caliber is
ultimately dependent on the balance between the myriad of
vaso-constricting and vaso-dilating agents derived from the
endothelium, neuronal innervations, and physical factors such as
shear and stretch (219). Evidence from forearm and renal studies
suggests that the vaso-active balance is inherently vulnerable in
SCD patients, with concomitant upregulation and exhaustion of
vaso-constricting and vasodilating agents (220). For example, low
nitric oxide (NO) bioavailability occurs secondary to hemolysis in
patients with SCD, and given that NO is a powerful vasodilator
that also inhibits the vaso-constrictive effect of endothelin-1, this
may increase reliance on other agents and tip the balance in
favor of vaso-constriction once alternative agents are exhausted
(91, 221).

Although it is unclear how this plays out in the cerebral
circulation in SCD, and the molecular mechanisms underlying
CVR and CA remain the subject of much debate (150, 222),
studies in animals and humans suggest that endothelial NO
may play a role in moderating CVR as well as in extending the
lower limit of CA (223, 224). In endothelial nitric oxide synthase
knockout mice, for example, there is a substantial rightward shift
of the CA curve at low perfusion pressures (225). Whilst a right
shifted CA may protect the brain from brain-barrier disruption
secondary to hyper-perfusion, it may also mean that a higher
perfusion pressure is required to prevent hypo-perfusion.

Of note, impaired CA (226–228) and reduced CVR (229, 230),
have also been observed following sympathetic stimulation in
animals and humans. There is evidence for autonomic nervous
system dysfunction in SCD, with enhanced sympathetically
mediated vasoconstriction reflexes (218, 231–234), which
theoretically, could compound any effect of reduced NO.
Although there are no data comparing CVR, CA, and the
interaction between them in SCD, a vulnerability in the
availability of regulatory agents, either alone or in combination
with autonomic nervous system dysfunction, may mean that
normal CVR and CA ranges are right-shifted and/or narrower
with loss of the plateau. Coupled with the inherent anatomical
vulnerability of watershed white matter regions, reduced and/or
altered regulatory capacity may further predispose SCD patients
to hypoperfusion and/or oxygen supply-demand mismatch in
these regions.

Theoretically, in patients with higher hematocrit, either
naturally or as a result of transfusion, the increased viscosity
of blood containing HbS could exacerbate hypo-perfusion in
low-shear watershed regions (51, 235, 236). There is in-vitro
evidence, including in patients with SCD, suggesting that a
lower hematocrit to viscosity ratio (HVR) measured at high
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shear rate is associated with poorer cerebral oxyhemoglobin
saturation as measured by NIRS (237). However, HVR is a
measure that confounds CaO2 and viscosity, meaning that it
could be low secondary to either low CaO2 or high viscosity.
Moreover, studies in animals using high and low viscosity
replacement fluids (238) as well as in humans with other anemia’s,
polycythemia, and paraproteinemia (148, 239), suggest that once
any differences in CaO2 are accounted for, the impact of viscosity
on global CBF is negligible. These findings have been replicated in
other populations with normal vascular function and hematocrit
during isovolumic conditions (240). This apparent contradiction
of Poiseuille’s law may relate to the physiological conditions of
the cerebral vasculature, with turbulent flow, non-Newtonian
fluid, and atuoregulation of vessel caliber (224). However, if
vessels are less able to dilate in SCD patients, either due to
CVR exhaustion secondary to reduced CaO2 and/or a broader
vulnerability in regulatory capacity, the ability to compensate for
increases in viscosity and/or reductions in deformability may be
reduced. Whilst there is some data indicating no independent
effect of blood viscosity on global CBF in patients with SCD (157),
further work is required to examine the effects of viscosity and
deformability in both low and high shear regions of the brain.

Mutually Enforcing Pathways
Of note, hypo-perfusion reduces shear-stress, and there is
evidence that endothelial cells exposed to low-shear conditions
show sustained activation of adhesion molecules, tissue factors,
and inflammatory agents, as well as decreased production of
nitric oxide (241, 242). Hypo-perfusion may also increase the
risk of thrombus formation secondary to platelet-aggregation
(243). Interestingly, murine studies have demonstrated that
pre-conditioning via prior exposure to ischemia can be
neuroprotective by reprogramming the genetic response
to ischemia, with adaptations including the suppression of
thrombus formation (244). Presence or absence, or even the
degree and timing, of pre-conditioning may be relevant in
determining the nature of acute neurological presentations
in SCD where patients are at risk of chronic sustained and
intermittent exposure to hypoxia (245).

There is also evidence that high and turbulent shear-stress,
which may occur secondary to hyper-perfusion and reduced
CaO2, can induce angiogenesis and vascular remodeling
(241, 246, 247). Hypoxic exposure may additionally promote
angiogenesis through several non-mechanic endothelial
pathways (248), although these may be perturbed in SCD.
Nevertheless, reports indicate that patients with SCD display
a heightened “angiogenetic tone,” with elevated levels of
proangiogenic growth factors, which in combination with
endothelial dysfunction, could contribute to vasculopathy (4).
Taken together, these findings illustrate how mutually enforcing
pathophysiological processes may be at play, and suggest that,
depending on the extent of any pre-conditioning (e.g., via prior
exposure to hypoxia), both global hyperperfusion and regional
hypoperfusion could in turn exacerbate erythrocyte-leukocyte
adhesion, hypercoagulation, endothelial dysfunction, and
vasculopathy (249).

Oxygen Extraction
Reports that OEF is abnormal (165, 167), particularly in
watershed regions prone to SCI (166), are further indicative of
hemodynamic compromise and regional vulnerability in SCD
patients (250). There is evidence that changes in global OEF
are associated with increases in global CBF, but that only
changes in OEF are related to higher levels of clinico-radiological
impairment, defined as moderate stenosis >50% in any major
vessel, prior overt stroke or SCI, and/or chronic debilitating
pain (167). Although there is controversy as to whether oxygen
extraction is higher (166, 167, 251) or lower (165, 252), both
patterns would be consistent with on-goingmetabolic stress, with
higher or lower OEF potentially either reflecting compensation
for, or exacerbation of, hemodynamic compromise.

These paradoxical findings may be explained in the context
of preliminary reports of venous hyperintensities on arterial-
spin labeling MRI, consistent with arterio-venous shunting
(253). One theory, named the “functional shunting hypothesis”
(254), postulates that regional shunting pathophysiology,
coupled with compensatory increases in global CBF and
reductions in arterial transit times and CVR, lead to regions
of impaired oxygen unloading and diffusion in SCD, reflected
by regional reductions in OEF. In these instances, tissue
oxygen delivery may be compromised even though differences
between arterial and venous saturation are small. Such
shunting could be compensatory in terms of minimizing
HbS polymerization and/or metabolic demand [e.g., hibernation;
(165)], but could also be a dysfunctional consequence of
macrocirculatory hyperperfusion in the setting of reduced and/or
shifted CA.

The functional shunting hypothesis has been challenged,
however, with one study finding no relationship between
venous hyperintensities and global OEF (253, 255). Part of this
controversy stems from the need for calibration models when
using oxygen-sensitive MRI techniques. In SCD patients, T2
relaxation under spin tagging (TRUST) can yield diametrically
opposing results depending on data calibration model [HbA vs.
HbS calibration; (165, 256)], and there is no consensus on model
validity (255). As a result, global CMRO2 in patients with SCD
has been reported to be higher (166, 257, 258), lower (165, 252),
and similar (167) to that of controls.

Reports of higher global OEF are broadly consistent with a
previous PET study (192) and have been established using two
different MRI methods [asymmetric spin echo—(166); TRUST
with HbA calibration–(167, 258)]. However, both depend on
broad assumptions that may not be valid in SCD patients
(165, 259), as demonstrated by a recent study employing
a novel susceptibility-based technique, where venous oxygen
saturation was found to be elevated in SCD patients, consistent
with lower global OEF (259). Further complicating matters,
it is possible that there are regional differences in OEF and
transit times, or thresholds beyond which increases in CBF
begin to impair oxygen unloading. Whilst further work is
required to determine whether OEF is higher, lower, or spatially
heterogenous in SCD patients, the available data are nevertheless
indicative of OEF exhaustion and/or insufficiency, consistent
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with hemodynamic compromise, and likely exacerbated by
hypoxic and anemic exposure.

Of note, shunting pathophysiology has been described in
other vascular beds in SCD, including the peripheral [Upper arm;
(260)] and pulmonary (118) circulations. Whilst the similarities
and differences between vascular beds of various organs have
received little attention and are poorly understood, the cardiac
description of a “superimposed restrictive and hyperdynamic
physiology” (261), and the renal, fingertip, and skeletal muscle
descriptions of a “perfusion paradox” (93, 220), are similar to
the hemodynamic changes observed in the cerebral circulation,
with hyper-perfusion in the macro-circulation, hypo-perfusion
in watershed regions of the micro-circulation, and an exhaustion
of vascular reserve mechanisms. These findings are suggestive of
a state of vascular instability, in which tissue oxygen supply is
fragile, and easily perturbed by fluctuations in clinical condition.

A SYSTEMS-BIOLOGY FRAMEWORK

Taken together, the reviewed mechanisms are consistent with a
tentative systems-biology framework of neurological morbidity
with vascular instability at its core (Figure 2). According
to this tentative framework, increases in CBF, reductions in
CVR, and exhausted/insufficient OEF, may act synergistically
to cause vascular instability (Figure 2), a state in which risk
of regional hypoperfusion, ischemia, re-perfusion, and the
associated inflammatory milieu are high. These factors may
contribute either alone, or in combination with acute drops in
CaO2, vasculopathy, erythrocyte congestion, and/or thrombo-
emboli to perturb tissue oxygenation, leading to overt stroke, SCI,
or microstructural tissue injury (e.g., reduced integrity). In this
tentative framework, it is differences in the severity, duration, and
precise location of a hypoxic-ischemic or hemorrhagic insult, that
determine structural and functional tissue outcome.

Importantly, vascular instability provides a linking
pathophysiological explanation for the various implicated
processes, including vaso-occlusive, coagulative, thrombotic,
hypoxic, and hemolytic phenomena, as well as the interactions
between them. The framework is consistent with a previous
systems-biology model of systemic vasculopathy in SCD, in
which ischemia-re-perfusion injury and inflammation are
emphasized, along with multiple overlapping and mutually-
enforcing mechanistic pathways (88). The current neurological
model similarly attempts to provide a parsimonious account
of neurological risk and morbidity, in which multiple potential
pathways are highlighted, but the most proximate mechanism
is emphasized. Below, we consider evidence consistent with
the framework.

Evidence for Links With Neurological
Morbidity
There are many strands of indirect clinical evidence broadly
consistent with a role for vascular instability in neurological
morbidity, with decreased hemoglobin and peripheral oxygen
saturation, components of CaO2, consistently associated with
overt stroke (11, 262, 263), SCI (20, 23, 24, 99, 264), reduced

white matter volume and tissue integrity (81, 82), and cognitive
impairment (86, 265–267). Several case-series have highlighted
acute chest syndrome in patients presenting with overt ischemic
stroke in the absence of intracranial large-vessel vasculopathy
(11, 103, 268), which may indicate a role for reduced oxygen
delivery and hemodynamic failure (269).

Moreover, TCD, which captures the time averaged mean of
the maximum velocity of blood, can be high as a compensatory
mechanism for reduced CaO2 (270, 271) rather than vessel
narrowing, and there is evidence that up to 79% of SCD children
with high TCD have either no stenosis or <25% stenosis (272).
In an analysis of the STOP trial data, only 2 out of 6 high TCD
patients who went on to have a stroke showed evidence of intra-
cranial vasculopathy (273). Although extra-cranial vasculopathy
may not have been excluded, these findings are consistent
with the notion that hemodynamic factors, e.g., reduced CVR
associated with high CBF, may be more pertinent to the etiology
of overt stroke than vasculopathy alone.

According to one seminal model of hemodynamic stroke in
non-SCD patients, transition from misery perfusion to ischemic
stroke is a result of perfusion pressure dropping to such an extent
that CMRO2 is no longer maintainable by increases in OEF (146).
Whilst there are a number of PET studies in support (274, 275),
isolated reports of favorable tissue outcome following misery
perfusion, termed the “ischemic penumbra,” including in one
patient with SCD (276), indicate that there may be additional
mechanisms involved in determining transition to observable
tissue infarction (146, 277).

Although the hemodynamic underpinnings have not been
investigated, a similar, albeit lower level, potentially reversible
phenomenon termed “acute silent cerebral event” (ASCIE), has
also been observed in SCD patients (278–282). In a prospective
case-series, 18% of SCD patients and 7% of non-SCD patients
presenting with acute anemia (hemoglobin <5 g/dl and >30%
lower than steady state) secondary to infection, acute chest
syndrome, and/or fever, showed lesions consistent with ischemia
on DWI, termed ASCIE (279). On follow-up MRI, a majority,
but not all, patients showed evidence of SCI corresponding to
the original ASCIE. In 75% of the SCD patients presenting with
ASCIE, there was no evidence of vasculopathy. A more recent
multi-center trial established that ASCIE were detectable and
prevalent also in “steady-state” SCD patients undergoing MRI
screening, with an estimated 10 times greater incidence of ASCIE
compared to SCI [47.3 vs. 4.8 per 100 patient years; (282)].

The temporal association of ASCIE with acute anemia,
along with the observed transition of some ASCIE to SCI,
are consistent with, but do not establish, a role for reduced
oxygen delivery in SCI. Given that not all ASCIE progress to
permanent lesions (i.e., SCI), these findings may suggest that
additional hemodynamic, vaso-occlusive, inflammatory and/or
pre-conditioning mechanisms are involved in determining
transition from ASCIE to observable tissue infarction.

It is unclear what determines this tipping point in patients
with SCD, but in prospective studies of non-SCD patients with
carotid occlusion, risk of infarction is highest in patients with
both increased OEF and CBV, the former indicative of misery
perfusion, and the latter potentially of vasodilation and exhausted
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CVR (283, 284). These findings are consistent with models
of hemodynamic stroke and tissue ischemia in which regional
reductions in oxygen delivery (201) along with both exhausted
CVR and OEF may play mechanistic roles. Recent SCD research
indicating that regions of CBF and CMRO2 nadir overlap with
the regions of highest SCI density (31) and highest oxygen
extraction (166), provide further indirect evidence for a similar
model in SCD (Figure 3). Research on these hemodynamic
factors is, however, just beginning. Further work is required to
establish whether concomitant measurement of CBF, OEF, and
CBV/R may lead to better stratification of neurological risk than
TCD in patients with SCD.

Whilst the mechanisms by which transfusion reduces risk
of stroke are unknown and vigorously debated, there are some
reports indicating that a reduction in vascular instability may
play a role. Transfusion significantly increases CaO2, and has
immediate hemodynamic effects, reflected by reductions in CBF
(285) and TCD velocity (286). Post-transfusion reductions in
OEF (191, 255) and increases in CVR (162) have also been
reported. Similar hemodynamic changes in global OEF and CBF
have also been observed following bone marrow transplantation
(287), which is the only curative treatment option currently
available for SCD. Taken together, these findings provide proof of
principle that normalization of CaO2 and hyperemia, along with
restoration of vascular reserves, may contribute to the efficacy of
transfusion in reducing risk of overt stroke.

Interestingly, post-transfusion reductions in global OEF and
CBF are independently associated with improvement in total
hemoglobin, but not HbS fraction (191, 255, 288), which suggests
that a reduction in vascular instability is primarily achieved
via improvement in global oxygen delivery rather than RBC
rheology, and has implications for current transfusion strategies
with HbS% targets. However, given their interdependence, these
effects are difficult to disentangle. In SCD, both the compensatory
global increases and post-transfusion reductions in CBF are
greater than would be expected from changes in hemoglobin
levels alone (289), suggesting that factors beyond correction of
CaO2 are at play.

Moreover, transfusion appears to reduce, but not completely
normalize, CBF and OEF in SCD patients, with watershed
zones continuing to exhibit “at-risk” regions (191). There is also
evidence that OEF and CBF responses to transfusion are blunted
in adult SCD patients (255). These factors could contribute to
continuing risk of morbidity in some patients, and may relate
to vaso-occlusive/rheological factors, endothelial dysfunction,
concomitant shifts in the oxygen-dissociation curve, and/or
reduced regulatory capacity. There is in-vitro evidence that
low-shear HVR decreases following simple chronic transfusion
therapy in SCD patients, indicating that despite improvement
in CaO2, post-transfusion increases in blood viscosity may
worsen oxygen delivery in low-flow regions (235, 290). However,
these findings are inconsistent with the observation that “at
risk” regions of elevated OEF in watershed white matter
zones appear to become smaller, rather than larger, following
exchange transfusion (191). A possible explanation for this
apparent juxtaposition is a difference in flowmechanics following
simple and exchange transfusion, with exchange transfusion

significantly reducing HbS% without substantially increasing
hematocrit and viscosity (291). It is also possible that post-
transfusion increases in CaO2 and CVR somewhat restore the
ability of the brain to compensate for slight increases in viscosity.

Consistent with this notion, a recent study comparing
untreated, chronically exchange transfused, and hydroxyurea
(HU)-treated SCD patients, a less invasive treatment strategy
based on stimulation of fetal hemoglobin (HbF), foundOEF to be
lowest in the transfused patients (288). Whilst “at-risk” regions
of elevated OEF in watershed zones were detected across all
groups, they were larger in the untreated andHU-treated patients
than in the transfused patients, respectively. Interestingly, global
gray and white matter CBF were similar among all groups,
and there were no differences in total hemoglobin or SpO2

between HU-treated and transfused patients, suggesting that
the between-group differences in OEF are not explainable
by differences in global oxygen delivery. Of note, given that
imaging was conducted on the day before scheduled transfusion,
and other studies have shown reductions in global CBF and
OEF 24 h post-transfusion (191), these findings may suggest
that the hemodynamic effects of transfusion are greater near
transfusion, compared to far from transfusion, as has been
demonstrated for cognitive impairment (292). Nevertheless, the
apparent inferiority of HU, even when compared with “late”
transfusion effects, may be accounted for by the increased affinity
of hemoglobin F for oxygen (293). Whilst the authors found no
independent effect of HbF% or HbS% in multivariate models, left
shifts in the oxygen dissociation curve are likely to impair oxygen
offloading, and may be greater following HU than following
transfusion. Whilst the effect on global oxygen metabolism may
be balanced by the concomitant improvement in global oxygen
delivery, more work is required to establish whether this is the
case also for regional oxygen delivery, particularly in view of the
finding that “at-risk” regions remain.

Whether vascular instability contributes to structural
delay/deterioration not visible using conventional MRI and
associated cognitive impairment, is an open question (294).
The increased prevalence of ASCIE compared to SCI in acutely
ill as well as steady state patients is consistent with the notion
of an on-going state of vascular instability, and suggests that
risk of ischemic insult may be far higher than previously
recognized in SCD. It is unclear whether some of these insults
are radiologically reversible or lead to microstructural tissue
injury not visible using conventional MRI techniques. In support
of the latter possibility, there is evidence that lesion detectability
increases with increasing magnet strength in SCD, with one
study showing that 3T MRI fails to detect lesions that are visible
at 7T (295). Also, glial fibrillary acidic protein (GFAP), a marker
of acute stroke and brain trauma, is significantly upregulated and
associated with performance IQ, but not verbal IQ in “steady
state” SCD patients with and without SCI (296).

Correlations have also been demonstrated between reductions
in CVR and cortical thinning in regions of highmetabolic activity
in children with SCD (70), which may suggest that reduced
dilatory capacity is involved in more subtle, and widespread
tissue atrophy and/or delayed maturation. This notion is further
supported by a recent report demonstrating a disruption in
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FIGURE 3 | Watershed vulnerability. Results from collection of studies illustrating watershed vulnerability in SCD. (A) Top: SCI density map from 286 SCD children.

Bottom: region encompassing 5.6% of brain volume in which 90% of SCI were confined [from Ford et al. (31)]. (B) Regions in which 20 SCD children without SCI

demonstrated reduced white-matter density compared to 31 controls [from Baldeweg et al. (73)]. (C) Top: Ratiometric maps showing regions of elevated OEF derived

from the ratio of SCD (n = 36) to control (n = 20) OEF values. (C) Middle: Region of high OEF (threshold 1.6, outlined in blue) overlaid on the average CBF map from

the SCD cohort. (C) Bottom: Region of elevated OEF overlaid on SCI density map created from an independent cohort of 23 participants with SCD [from

Fields et al. (166)].

the relationship between CVR and white-matter integrity in
SCD patients (297). There is evidence that reduced integrity
is more common (82), and potentially also more functionally
significant than SCI alone in SCD patients (86). Case reports of
deterioration in cognitive function with acute drops in CaO2 in
SCD (33) along with studies showing correlations between TCD
abnormalities and executive dysfunction (298–300) and between
reduced blood-oxygenated dependent (BOLD) MRI responses to
visual stimulation and intelligence (301), lend further support to
a role for vascular instability in cognitive impairment.

CONCLUSION AND FUTURE DIRECTIONS

In summary, the pathophysiology of neurological morbidity
in SCD is complex, and likely involves multiple mutually
enforcing pathways, including vaso-occlusive/rheological,
hemolytic, and hypoxic phenomena. Based on existing theories
and accumulating evidence, we have proposed an integrative
framework which emphasizes a role for vascular instability
as a potential linking pathophysiological explanation. This

framework brings together recent developments in the field,
highlights outstanding questions, and provides mechanistic
hypotheses that may guide future research.

Whilst the many strands of indirect evidence presented
are broadly consistent with the framework, they do not rule
out alternative and/or additional mechanisms of neurological
morbidity. In order to interrogate and refine the framework,
further advanced MRI studies are required. For this purpose,
longitudinal measures of oxygen-metabolism would be most
useful. As the framework and reviewed literature demonstrate,
aspects of CMRO2, such as oxygen delivery and extraction ought
to be considered together, both globally and regionally. Multi-
modal, neurodevelopmental approaches that combine structural,
diffusion, hemodynamic, and cognitive measures would also be
helpful in further addressing outstanding questions.

One of the key challenges with these advancedMRI techniques
remains validation in SCD patients, in whom some of the
underlying assumptions may not be valid (165, 256, 259, 302–
304). Comparison with current clinical gold-standard (e.g., PET
for oxygen-extraction) may be useful in this regard. Employment
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of standardized criteria for detection of SCI and grading of
vasculopathy will also be important in facilitating between-study
comparisons (32, 164). Given that the vast majority of reviewed
studies are based on patients with homozygous SCD, exploring
these measures in patients with other genotypes is also vital and
may help shed further light on the underlying physiology. Finally,
further work is also required to establish the applicability of this
framework to other end-organs which are also at risk of damage
in SCD.

If fruitful, this line of enquiry has the potential to improve
precision medicine in SCD, which is a crucial next step in
efforts to screen and intervene. Whilst there are evidence-based
strategies for stroke prevention in children (10), treatment is
often burdensome (305), the specificity of screening is poor (10),
and many patients continue to suffer progressive vasculopathy
and/or recurrent insults (38). There are few evidence-based
strategies for cognitive dysfunction, and none that tackle
microstructural tissue injury. Improved strategies are therefore
urgently required.

According to the proposed framework, measures of regional
oxygen delivery, CVR, and OEF are likely the most proximate
targets for prediction of neurological risk. With further
refinement, development of a “vascular instability risk profile”
based on these measures may enable selection of patients
with sufficiently high-risk for invasive, burdensome, and
costly treatment options such as transfusion, bone marrow
transplant, or eventually gene therapy. Such a profile may
also enable on-going monitoring of risk so that transfusion
is not necessarily lifelong. Another implication is the
identification of regional oxygen delivery as a potential

treatment target for therapies, with several potential avenues
for intervention (e.g., anemia, oxygen desaturation, endothelial
dysfunction). Crucially, therapies need to balance any increases
in oxygen-delivery with any potential reductions in oxygen-
unloading (293). With further refinement, this framework
may therefore hold promise not only for guiding research,
but also for prediction of risk and implementation of tailored
preventative strategies before stroke, SCI and/or microstructural
injury occurs.
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