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Abstract

Purpose

To benchmark the human and machine performance of spectral-domain (SD) and swept-

source (SS) optical coherence tomography (OCT) image segmentation, i.e., pixel-wise clas-

sification, for the compartments vitreous, retina, choroid, sclera.

Methods

A convolutional neural network (CNN) was trained on OCT B-scan images annotated by a

senior ground truth expert retina specialist to segment the posterior eye compartments.

Independent benchmark data sets (30 SDOCT and 30 SSOCT) were manually segmented

by three classes of graders with varying levels of ophthalmic proficiencies. Nine graders

contributed to benchmark an additional 60 images in three consecutive runs. Inter-human

and intra-human class agreement was measured and compared to the CNN results.

Results

The CNN training data consisted of a total of 6210 manually segmented images derived

from 2070 B-scans (1046 SDOCT and 1024 SSOCT; 630 C-Scans). The CNN segmenta-

tion revealed a high agreement with all grader groups. For all compartments and groups,

the mean Intersection over Union (IOU) score of CNN compartmentalization versus group

graders’ compartmentalization was higher than the mean score for intra-grader group

comparison.
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Conclusion

The proposed deep learning segmentation algorithm (CNN) for automated eye compart-

ment segmentation in OCT B-scans (SDOCT and SSOCT) is on par with manual segmenta-

tions by human graders.

Introduction

Optical coherence tomography (OCT) is one of the most rapidly evolving imaging technolo-

gies used in ophthalmology to visualize eye structures [1, 2]. Due to the growth in available

imaging datasets and increased computing powers, novel automated pattern recognition

methods have been proposed to detect retinal pathologies such as age-related macular degen-

eration or presence of macular fluid [3, 4].

Until recently, methods for automated image analysis relied on hand-crafted rule sets or

classical machine learning. These include, for example, path search using gradient information

[5], classification of image patches using kernel regression [6], or random forest classification

[7].

In recent years, deep learning with artificial multi-layer neural networks has become very

successful in visual learning tasks [8, 9]. In particular, convolutional neural networks (CNN)

have been shown to outperform other computer vision algorithms [10, 11]. For semantic seg-

mentation tasks, i.e., pixel-wise labelling, various neural network architectures have been pro-

posed [12, 13]. In particular, the so-called U-Net architecture has proven to be among the

most reliable and performant semantic labelling algorithms in medical imaging applications

[14, 15]. This is because of its characteristic U-shape, which enables it to combine semantic

information describing what is shown in an image with spatial information.

Within the field of ophthalmology, deep learning has been successfully applied [16, 17, 18]

to detect macular edema [19, 20], for retinal layer segmentation [21], or to determine retinal

thickness [22].

In this paper, we build upon U-Net for the purpose of OCT image compartment segmenta-

tion. Most U-Net applications strongly rely on the original implementation [23]. In this paper,

we increased the field of view with an additional layer in depth as opposed to introducing

residual blocks as previously reported [24]. This allowed us to consider larger spatial regions of

the input images to classify individual pixels.

In contrast to automated image analysis, major limitations of manual image segmentation

by human graders are its time-consuming nature, training of expert-level graders, variable

reproducibility, and the need for relatively high-quality images compared to automated mea-

surements [25].

The purpose of this study was to propose and benchmark a deep-learning-based algorithm

to segment OCT B-scans. To our knowledge, this is the first study to comprehensively com-

pare a deep learning algorithm against different levels of human graders on both SDOCT and

SSOCT images. This was especially important, as there is a growing use of non-domain experts

as graders (e.g., crowd sourcing) or for training novice retina/eye doctors/employees [26, 27].

Specifically, our novel contributions are:

• We propose the first retina compartmentalization tool using a dual CNN approach made

feasible for both types of OCT image acquisition techniques (SDOCT B-and SSOCT scans).

• Our trained CNN is the first to detect the choroid compartment in its entirety on complete

B-scans to calculate new parameters such as surface area and volume.

Machine learning segmentation of ocular layers is as good as human graders
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• To the best of our knowledge, our presented study is based on a higher number and diversity

of manual human graders that make it possible to study both the intra- and inter-observer

variability among human graders, and to measure the human grader’s performance against

the trained CNN’s performance.

• The data obtained will not only be valuable from a technical point of view, but will also lead

to values that are of great clinical significance in upcoming longitudinal studies—for exam-

ple, those on pigmented tumors of the choroid.

• The developed method will be further enhanced and made available as a fully automated and

cloud-based analysis method for pigmented choroidal tumors free of charge and open access

to the medical community.

Material and methods

The use of the data for this study was pre-approved by the local ethics committee Nordwest-

und Zentralschweiz (EKNZ) (ID: EKNZ UBE-15/89 and EKNZ UBE-l5/72) and was per-

formed in accordance with the tenets of the Declaration of Helsinki. Written informed consent

was obtained from all subjects.

Data

The inclusion criteria were: complete display of all three compartments (vitreous, retina, cho-

roid), good represented retina layers with three out of three possible values in the acquisition

of SSOCT, and image quality of at least 25 in SDOCT imaging, indicated by the OCT device.

Exclusion criteria were known vitreous or retinal surgery, retinal pathologies such as retinal

scars, gliosis, traction, incomplete retina scans, and blinking artifacts.

The data set consisted of 2130 B-scans from 630 healthy OCT C-scans of both spectral-

domain OCT (SDOCT) (1076 B-scans: scan length 6 mm, 384x496, 1024x496 and 768x496

pixels, enhanced depth imaging off, averaged for 25 scans using the automatic averaging and

tracking feature), and swept-source OCT (SSOCT) (1054 B-scans: scan length 6mm, 512x992

pixels).

The OCT data were obtained from Heidelberg Spectralis HRA+ OCT (Heidelberg Engi-

neering, Heidelberg, Germany), and swept-source OCT from DRI-OCT-1 Atlantis DRI (Top-

con Inc., Tokyo, Japan).

Manual annotation of B-scans

The manual annotation of the ground truth for the four eye compartments was conducted by

independent human graders using an individual and password protected online tool specifi-

cally developed for OCT B-scan image annotation (Fig 1). After logging in to the grading tool,

the grader was asked to draw three lines corresponding to the demarcation line between the

hyporeflective vitreous and well-reflective inner retinal boundary marked as “internal limiting

membrane” (ILM), the internal delineation of the choriocapillaris (CC), and the choroid-sclera

interface (CSI). The vitreous was defined above the ILM reaching until the top of the image

border; the retina was defined from the ILM to and including the inner border of the CC. This

landmark was chosen because Bruch’s membrane is normally too thin and is not recognizable

in OCT as a separate line and the choriocapillaris appears dark in conventional images due the

flow. The choroid was defined below the CC to and with the CSI; and the sclera was defined

below the CSI until the lower image border.
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The resulting segmentation lines and the segmentation times for each line were stored.

Based on these acquired lines, the compartments of each OCT-image were computed, result-

ing in pixel-wise labels stored as images. These generated label images contain four types of

labels: vitreous, retina, choroid, and sclera.

All the graders used the same 20-page tutorial explaining the annotation of the required

lines.

The whole data set of 2130 B-scans was annotated with regard to the three lines once by one

ground truth expert ophthalmologist (GT EO). Sixty of those B-scans were also annotated as a

benchmark by nine human graders: 1) three OCT naïves, 2) three expert ophthalmologists

(EO), and 3) three members of a reading center (RC). For the OCT-naïves or laymen (L), non-

medical subjects were included who had no prior knowledge of OCT imaging. The expert oph-

thalmologists were three medical retina fellows from the Moorfields Eye Hospital, London,

UK. Finally, three experts from the Moorfields Eye Hospital Reading Centre were included. In

total, nine human graders manually annotated 60 benchmark B-scan images three times each

to test for reproducibility of the method. After annotating the benchmark B-scans for the first

time, they were randomly shuffled for the second and third annotation runs.

Ground truth

2070 of the OCT B-scans annotated by the GT EO were augmented by mirroring each image

once and randomly rotating each image once between -8 and 8 degrees resulting in a data set

of 6210 OCT B-scan images. This set was then split into a training set of 4968 images and a val-

idation set of 1242 images. The training data set was used to train the CNN, and the validation

set was used to determine when training should stop and for the hyper-parameter selection.

Fig 1. Illustration of the online annotation tool used for manual OCT image compartmentalization. In this example, the

ILM (arrows) was segmented. The same was done for inner border of the choriocapillaris (CC) and CSI.

https://doi.org/10.1371/journal.pone.0220063.g001
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Finally, the benchmark data set, which was annotated by nine human graders as well as the

GT EO, consists of 30 SDOCT and 30 SSOCT images. This data set was used to benchmark the

performance of the CNN and compare it to the human graders as well as the variability of the

human graders. With this comparison, we demonstrate that the compartmentalizations of the

proposed algorithm lie within the range of the variability within and among human graders.

The ground truth data sets are summarized in Table 1.

Comparison of compartmentalizations

For benchmarking the OCT image compartmentalization, the segmentation outputs were

compared to each other by calculating the pixel-based IOU or Jaccard [28] score of the com-

partments (vitreous, retina, choroid, and sclera):

IOU ¼
Intersection

Union

The closer the score is to 1, the higher is the assessed overlap/agreement.

We assessed the results of our proposed algorithm and investigated the human grader vari-

ability by comparing 1) the predictive performance of the CNN with respect to the GT EO,

from which the CNN learned, 2) the predictive performance of the CNN with respect to the

three grader groups, 3) the intra-grader variability, and 4) the inter-grader variability. The

comparisons are based on the 60 B-scans of the benchmark data set. Box plots are used to sum-

marize the results of the respective comparisons.

Statistical analyses

We performed statistical tests to investigate the significance of the difference of 1) the variabili-

ties among human graders, and 2) the variabilities between human graders and the CNN.

When IOU scores were approximately normally distributed, we performed two-sided, unpaired

t-tests assuming different variances in the two sets of IOU scores being compared. When IOU

scores were not normally distributed, we performed unpaired Mann-Whitney U-tests.

CNN architecture

For the compartment segmentation, we trained a CNN based on U-Net [29], which was imple-

mented using the TensorFlow framework [30]. The CNN architecture is illustrated in Fig 2.

The main extension to the original U-Net is the additional layer in depth that allows for images

of 512 by 512 pixels to be completely covered by the field-of-view of the network. The OCT

ground truth used for the CNN training was resized to 512x512 pixel images using bicubic

interpolation for the images and nearest neighbor interpolation for the segmentation masks.

No further preprocessing was applied.

CNN training and predictions

The CNN was trained using an unweighted pixel-wise cross-entropy loss and the weights were

adjusted using an Adam optimizer [31, 32]. The weights were initialized with the Xavier

Table 1. Overview of the three ground truth data sets.

Ground truth # Images Augmented # Graders

Training data set 4968 Yes 1

Validation data set 1242 Yes 1

Benchmark data set 60 No 9+1

https://doi.org/10.1371/journal.pone.0220063.t001
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method. A mini-batch size of four images, and a learning rate of 6e-5 were used. The neural

network was trained for 10 epochs on a single NVIDIA GTX TITAN X GPU. The training

took approximately three hours and was kept short to avoid overfitting. No further regulariza-

tion methods were applied.

For predictions, the CNN output is passed through a softmax function and each pixel is

classified according to the highest probability.

Results

The graders’ mean ophthalmic training time was 0, 6.67 (from 6 to 7), and 9.3 (from 6 to 15)

years for OCT naïves, expert ophthalmologists (EO), and reading center experts (RC), respec-

tively. The ground truth grader had 21 years’ ophthalmic expertise.

In this section, we compared the predictive performance of the CNN to the GT EO, from

which the CNN learned to segment OCT B-scans. Furthermore, we described the intra-grader

variability based on the three manual segmentations, which we obtained from each grader for

each of the 60 B-scans of the benchmark data set. We then compared the CNN-generated seg-

mentations to the manual segmentations of each of the three grader groups (RC, EO, L).

Finally, we provided the inter-grader variability within each grader group and showed that the

average difference between a CNN-generated segmentation and a manual segmentation is

similar to the average difference between two manual segmentations from any two graders of

the same grader group.

CNN versus GT EO

Examples of automated CNN compartmentalization of OCT images are depicted in Fig 3. The

CNN compartmentalization achieved average IOU scores of 0.9929 for vitreous, 0.9690 for ret-

ina, 0.8817 for choroid, and 0.9768 for sclera when compared to the 60 benchmark images

labeled by the GT EO.

Intra-grader analysis

The variability of every single grader was assessed by calculating the aforementioned IOU

scores for all three possible comparisons between the three runs of a grader. Specifically, the

images from run 1 were compared to runs 2 and 3 and run 2 was compared to run 3. This

Fig 2. Overview of the U-net structure of the CNN used in this work. The numbers denote the dimensions of tensors passed between the layers.

https://doi.org/10.1371/journal.pone.0220063.g002
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results in 180 IOU scores per grader and per compartment. Fig 4 shows box plots of the result-

ing scores for each grader per compartment class. The graders have been grouped by their

respective group RC, EO, and L.

The scores reflect how consistently each grader annotated the images. In general, the scores

for all graders are very high for vitreous and high for retina and sclera. Hence there is strong

agreement among annotation runs. The variability for vitreous and retina is low and moderate

for sclera. The choroid compartment depicts most variability and the lowest scores, in particu-

lar for the L group. Both EO and RC groups show a higher consistency for choroid labels.

Choroid and sclera scores are both influenced by the graders CSI line which has, however, a

stronger influence on the choroid score since the sclera has a larger compartment area.

Inter-grader analysis

For the inter-grader analysis, we split the analysis into the three grader groups: RC, EO, and L.

For each group we compared the first run of each grader to the first runs of the other group

members. This results in 180 IOU scores per group. In contrast, the CNN predictions and the

first runs of the three graders were compared, resulting in 180 scores, too.

Fig 3. Illustration of automated artificial intelligence OCT image compartmentalization. A spectral-domain OCT

image (A) and a swept-source OCT image (C) were automatically segmented by the CNN (B, D) into the

compartments vitreous (arrow), retina (arrow heads), choroid (double arrow heads), and sclera (asterisk).

https://doi.org/10.1371/journal.pone.0220063.g003
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The results are plotted in Fig 5. The vitreous and retina compartments show high scores

and high agreement within each group. At the same time, the variability of scores of the CNN

compared to the groups is lower and the average IOU higher. Two-sided t tests revealed that in

each group the mean IOU score between the CNN and the graders was significantly higher

than the mean inter-grader IOU score (Table 2).

For the sclera compartment, a moderately higher variability in IOU scores were observed.

In all groups, inter-grader IOU scores as well as IOU scores between CNN and graders did not

appear to be normally distributed. Therefore, non-parametric Mann-Whitney U-tests were

performed to investigate whether inter-grader IOU scores and IOU scores between CNN and

graders originated from the same distribution. At the 1% significance level, the IOU scores

were not statistically significantly different for the L and RC groups and statistically significant

for the EO group (Table 2).

The greatest disagreement in IOU scores was found for the choroid compartment.

Although the IOU scores were generally high for the choroid compartment, there was signifi-

cant variability within each group of graders. The variability of choroid IOU scores is highest

for Ls and lowest for RCs. Furthermore, a large difference between median IOU and lowest

IOU is observed for choroid, indicating a strong disagreement in only some of the images. The

Fig 4. Intra-grader variability for each grader group per compartment class:(A) vitreous, (B) retina, (C) choroid, and for the (D) sclera.

https://doi.org/10.1371/journal.pone.0220063.g004

Machine learning segmentation of ocular layers is as good as human graders

PLOS ONE | https://doi.org/10.1371/journal.pone.0220063 August 16, 2019 8 / 14

https://doi.org/10.1371/journal.pone.0220063.g004
https://doi.org/10.1371/journal.pone.0220063


choroid CNN variability is lower than the intra-group variability for all groups. Additionally,

the choroid CNN scores including the median are higher for Ls and EOs and only slightly

lower for RCs. However, Mann-Whitney U-tests did not reveal that inter-grader IOU scores

and IOU scores between CNN and graders were statistically different (Table 2).

Discussion

This study was intended to identify strengths and weaknesses of human and automated artifi-

cial intelligence (AI) annotation by means of compartmentalization of optical coherence

tomography (OCT) images. The main goal was achieved by developing a neural network that

showed to be at least as good as human graders. This is an important intermediate step in the

development of a CNN that will measure pigmented choroidal tumors fully automatically in

the future. Because this project was developed by the Institute of Molecular and Clinical Oph-

thalmology Basel (IOB), a research institute that combines basic and clinical research and is

governed as a foundation, the proposed method will be shared with the community in a novel

cloud solution at no charge.

Fig 5. Inter-grader agreement within each group for (A) layman group (L), (B) expert ophthalmologist group (EO), and (C) reading center (RC) group, with regard to the

compartments of (A) vitreous, (B) retina, (C) choroid, and (D) sclera. For each group, the predictions of the CNN were compared with the groups’ results.

https://doi.org/10.1371/journal.pone.0220063.g005

Machine learning segmentation of ocular layers is as good as human graders

PLOS ONE | https://doi.org/10.1371/journal.pone.0220063 August 16, 2019 9 / 14

https://doi.org/10.1371/journal.pone.0220063.g005
https://doi.org/10.1371/journal.pone.0220063


Despite the great progress in AI image segmentation investigation, many ambiguities still

remain as to how the technology functions in detail. There is incomplete understanding of the

decision space of deep learning [33] and its layer depth architecture [34] that can potentially

impair automated ophthalmic image analysis. Therefore, we benchmarked a hitherto unprece-

dented number of three classes and nine independent graders with two levels of ophthalmic

proficiency (EO, L) to be compared to the Moorfield’s Reading Center (RC), which is special-

ized in credible, reproducible, and methodical analysis of ophthalmic images, and specifically

to the recently developed CNN in order to find new evidence.

The study revealed interesting results regarding both the grader groups as well as the auto-

mated CNN segmentation results. The presented results are comparable to previous studies,

although it should be noted that in our study the number of images and graders was much

higher [35, 36]. The intra-grader analysis suggests that all groups segment for vitreous and ret-

ina with high consistency. Annotating the CSI, however, is the most challenging segmentation

step, which is reflected in the lower IOU scores for choroid and sclera. The group-based inter-

grader analysis confirmed the results of the intra-grader analysis: While the groups had a

strong agreement for the vitreous and retina compartments, the groups scored lower and with

higher deviation for the choroid and sclera compartments. The results of this study suggest

that the manual segmentation of the CSI must be considered with the utmost caution, because

they showed the largest deviations. Causes for the deviations can be that the choroidal layer

looked to be very closely connected to the sclera tissue, without an in-between boundary being

recognizable. In addition, a different interpretation as to whether choroidal tissue columns

should be segmented or not could have influenced the manual segmentation results.

From this perspective, laymen image segmentation tasks performed during crowd ground

truth generation for machine learning can be justified in some cases and subject to reservation,

taking into account that the CSI showed the largest deviations. Indeed, expert segmentation

such as from the Moorfield’s RCs will still result in higher quality segmentations, which can be

favored in order to train a machine, which will then be utilized and shared by numerous

researchers as we have planned in our open access case.

The automated segmentation approach using a trained CNN achieved—except for the RCs

—a more consistent result for all compartments at high scores comparable to human graders.

For vitreous and retina compartments, the CNN achieved a statistically significant higher

Table 2. Results of statistical tests comparing inter-grader IOU scores and IOU scores between CNN and graders. Two-sided t tests were performed when data was

approximately normally distributed. Non-parametric Man-Whitney U-tests were performed, when data was not normally distributed.

Group Compartment Test p-value

L Vitreous Two-sided t test 1.151e-06�

L Retina Two-sided t test 1.95e-09�

L Choroid Man-Whitney U-test 0.02895

L Sclera Man-Whitney U-test 0.1701

EO Vitreous Two-sided t test 1.369e-06�

EO Retina Two-sided t test 1.219e-10�

EO Choroid Man-Whitney U-test 0.004588�

EO Sclera Man-Whitney U-test 0.02977

RC Vitreous Two-sided t test 0.000669�

RC Retina Two-sided t test 5.056e-07�

RC Choroid Man-Whitney U-test 0.65

RC Sclera Man-Whitney U-test 0.8525

Cross symbols � indicate statistically significant results at the 1% confidence level.

https://doi.org/10.1371/journal.pone.0220063.t002
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average IOU score between CNN and graders compared to inter-grader IOU scores. In the case

of choroid and sclera compartments, inter-grader IOU scores and IOU scores between CNN and

graders were not statistically significantly different from each other, with the exception of the cho-

roid compartment in the EO group. While it would be ideal to have the images segmented by RCs

most of the time, it is known that the resources of the RC are limited and cannot be consulted for

every single OCT B-scan. Therefore, the results of this study are important, since the CNN elimi-

nates two of the greatest weaknesses of the human grader approach. Firstly, the CNN segmenta-

tion repeatedly produces the same segmentation for a given OCT B-scan, making segmentation

results reproducible and independent from the graders’ experience of segmentation. Hence, the

CNN sets a benchmark with a reliable segmentation quality for OCT image compartmentalization

for the research and clinical community. In addition, such a compartmentalization benchmark

can help to measure the initial performance of new graders and objectively quantify their progress

after training units, which is very important for a RC to make the quality of the employed graders

comparable and even compare to other reading centers.

Secondly, the CNN segmentation releases human graders from a cumbersome manual seg-

mentation, which on the one hand is time consuming, but on the other hand also represents a

tedious task demanding concentration and attention to detail. Furthermore, in contrast to

conventional AI image analysis, alternative technologies such as transfer learning algorithms

are expected to predict the subject class which can facilitate the information processing [37].

Limitations of the study are that in some cases the CSI border was not very clearly delineated

because connective tissue columns were densely intergrown and therefore no sharp dividing line

was visible. The amount of data is relatively small. However, the results are encouraging and

should be further improved. The results were collected from healthy eyes and the performance of

the algorithm in diseased eyes and other image scalings must be validated in upcoming studies.

Conclusions and future work

This study demonstrates that a deep learning neural network can segment both SDOCT and

SSOCT for the eye compartments vitreous, retina, choroid, and sclera. The CNN-based seg-

mentation provided reliable and accurate compartmentalization of retinal layers comparable

to that of human graders. This technology offers exciting potential for large-scale, high-quality

OCT image compartmentalization for both research and patient monitoring purposes.

With this work, the feasibility of automated compartmentalization of retinal zones in

healthy eyes was validated. Hence, with the help of this tool it is possible to reliably classify

large numbers of OCT B-scan stacks in a reproducible automated way. This classified data can

then be used to analyze and study 3D OCT images. This first intermediate step is an encourag-

ing result to further promote the developed technology to also enable it to detect pathologies—

for example, of pigmented choroidal tumors. For this purpose, a cloud-based platform has

already been developed, which will enable remote machine learning OCT scan analysis for

tumors to be researched, detected, segmented, and, above all, objectively quantified in 3D.

This will lead to a democratization of the machine learning technology, which will be accessi-

ble to less privileged users. Ideally, the system will be fed by the community with a larger num-

ber of cases to continuously enhance the quality. Only anonymized data must be used, for

which we already developed an OCT-specific tool that will be made available for open access.
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