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Influence of crystal structure on charge carrier effective masses in BiFeO3
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Ferroelectric-based photovoltaics have shown great promise as a source of renewable energy, thanks to their
in-built charge separation capability, yet their efficiency is often limited by low charge-carrier mobilities. In this
paper, we compare the photovoltaic prospects of various phases of the multiferroic material BiFeO3 by evaluating
their charge-carrier effective masses from first-principles simulations. We identify a tetragonal phase with the
promising combination of a large spontaneous polarization and relatively light charge carriers. From a systematic
investigation of the octahedral distortions present in BiFeO3, we clarify the relationship between structure and
effective masses. This relationship is explained in terms of changes to the orbital character and overlap at the
band edges that result from changes in the geometry. Our findings suggest some design principles for how to
tune effective masses in BiFeO3 and similar materials through the manipulation of their crystal structures in
experimentally accessible ways.
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I. INTRODUCTION

The field of ferroelectric (FE) photovoltaics, dating back
to 1956 [1], experienced something of a renaissance in 2009
with the discovery of the switchable diode and bulk pho-
tovoltaic effects in the multiferroic material, bismuth ferrite
(BiFeO3, BFO) [2]. The bulk photovoltaic effect, observed
in BFO, arises from the absence of inversion symmetry in
the crystal structure of the room-temperature R3c phase [3].
This asymmetry results in a giant spontaneous polarization
(∼100 μC/cm2) [4,5] that aids in charge separation in a
photovoltaic device.

Despite the intrinsic charge separation ability, FE mate-
rials such as BFO generally suffer from low charge-carrier
mobilities, leading to high recombination losses and limited
device efficiency [6–8]. Increasing the mobilities in such
FE materials would therefore lead to enhanced photovoltaic
device efficiency.

Although mobility is a macroscopic quantity, it is the
mobility associated with the electronic band edges that is of
particular relevance to recombination rates. Since mobility is
directly related to the dispersion of these bands, a material’s
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charge-carrier mobilities can be altered by modifying the
curvature of the bands near the Fermi level. Manipulation of
the crystal structure, for example, by strain engineering, is
one such route to tuning the curvature of electronic bands.
Strain engineering, together with chemical doping, have been
widely exploited in the semiconductor industry to control
mobility in silicon-based devices [9]. In BFO, a wide range of
crystal structures can be stabilized through strain [10,11] and
interface [12,13] engineering. Of these structures, those that
lack a center of inversion symmetry are of significant interest
for photovoltaic applications. There has been a great deal of
interest in the tetragonal (space group P4mm) and tetragonal-
like phases of BFO thin films, in particular, due to their giant
spontaneous polarization of ≈150 μC/cm2 [10,11].

How do the mobilities of the charge carriers compare
across the BFO phases? In this paper, we present an investiga-
tion within density functional theory (DFT) of the electronic
properties of several FE and non-FE phases of BFO. We
begin by considering the experimentally accessible ground-
state R3c phase and the higher-temperature orthorhombic
Pnma and cubic Pm3̄m phases. We also consider the proto-
typical tetragonal P4mm phase, accessible via epitaxial strain
[10,11]. We further consider the theoretical R3̄c phase, which
is similar to the R3c phase but without the polar distortion
that gives the latter its spontaneous polarization. We compare
the charge-carrier effective masses (m∗), which are inversely
proportional to the mobilities, across these phases. We will
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show that the carriers in the room-temperature FE (R3c)
phase have considerably larger m∗ compared to some non-FE
phases. Nonetheless we find that the tetragonal phase of BFO,
which has a large spontaneous polarization, has relatively low
electron and hole effective masses.

In order to explain the differences in m∗ across the BFO
phases, we systematically study the geometric transforma-
tions that map the BFO phase with the lowest m∗, to the phase
with the highest m∗. The effects of these transformations on
the m∗ are explained in terms of changes to the orbital char-
acter and overlap at the band edges. Previous works [11] have
indicated that, with a judicious choice of substrate material,
a BFO lattice with the desired spontaneous polarization and
m∗ can be fabricated. Our results therefore provide insight
into the rational design of materials with optimum properties,
particularly for applications in light harvesting.

II. COMPUTATIONAL DETAILS

We consider the R3c, Pnma, P4mm, Pm3̄m, and R3̄c
phases of BFO. Simulations of these phases were performed
using DFT as implemented in the Vienna ab initio Simulation
Package (VASP version 5.4.1) [14–17]. We employ the version
of the generalized gradient approximation parametrized by
Perdew, Burke, and Ernzerhof (PBE) [18] as the exchange-
correlation functional, with an effective Hubbard correction,
Ueff, applied to the Fe d orbitals using the method of Dudarev
et al. [19]. This PBE + U method has been employed in this
paper to account for the known failures of standard local
density and generalized gradient approximations to accurately
describe the strong correlations in transition-metal oxides
[19]. We use a Ueff of 4 eV for all calculations as this value
has been found to best capture the electronic structure of
BFO, particularly the orbital characters at the valence-band
maximum (VBmax) and conduction-band minimum (CBmin)
[20].

All of the calculations were carried out using the projector-
augmented plane-wave method [21,22] and a plane-wave
cutoff energy of 520 eV, treating explicitly 15 electrons
for Bi (5d106s26p3), 14 for Fe(3p63d64s2), and 6 for O
(2s22p4) [23]. The 40-atom pseudocubic (pc) unit-cell setting
was consistently adopted for all but the effective mass cal-
culations in Sec. III B. The pc unit-cell setting allows us to
capture the C- or G-type antiferromagnetism (AFM) across
all of the BFO phases and allows for a more straightforward
comparison of the structures than the various primitive cells.
For reasons of efficiency, the effective mass calculations in
Sec. III B were performed using a ten-atom rhombohedral
cell setting. Brillouin-zone integrations for the relaxations and
static calculations were performed on �-centred Monkhorst-
Pack (MP) [24] grids: 9 × 9 × 9 for the pc unit cells and 11 ×
11 × 11 for the rhombohedral unit cells. Density-of-states
(DOS) calculations, requiring finer sampling of the Brillouin
zone, were performed using a �-centred 11 × 11 × 11 MP
grid in the pc unit-cell setting. We relaxed the low-energy
phases of BFO such that all force components were less than
5 meV/Å. The unit-cell shape and sizes of these phases were
optimized such that all stress components were smaller than
0.06 GPa. All of the structure files and raw data are freely
available in the Supplemental Material (SM) [25].

TABLE I. Computed effective masses in units of electron rest
mass m0, spontaneous polarization values, and relative energies of
five PBE + U relaxed phases of BFO. Note that energies, E , are
taken relative to the most stable phase: R3c.

|m∗
h| m∗

e Polarization E − ER 3 c)
Space group (m0) (m0 ) (μC/cm2) (meV per f.u.)

Pm3̄m 0.34 0.24 0.0 971
R3̄c 0.63 0.37 0.0 268
P4mm 0.54 0.33 185.3 84
Pnma 0.95 0.99 0.0 57
R3c 0.67 3.06 90.0 0

We use the modern (Berry’s phase) theory of polarization
[26,27] to calculate the spontaneous polarization of each
structure. As noted by Neaton et al. [28], much care is needed
when performing these calculations, especially in systems
such as BFO for which the spontaneous polarization, Ps, is of
the same order of magnitude as the quantum of polarization,
Q. We follow the procedure outlined in Ref. [28].

We calculate the hole and electron effective masses for
each of the considered BFO phases as follows. The curvature
[29] effective mass of a given band, n, at a particular location
in reciprocal space, k, is a 3 × 3 tensor quantity the magnitude
of which in a given direction is inversely proportional to the
band curvature in that direction. m∗ can therefore be defined as(

1

m∗

)
i j

= 1

h̄2

∂2En(k)

∂kik j
, i, j = x, y, z, (1)

where En(k) is the energy dispersion relation for the nth band,
and i and j represent reciprocal space components. To obtain
m∗, we first compute the full band structure along a path of
high symmetry. We then identify the location of the VBmax

and the CBmin in reciprocal space. The band curvatures at
these points correspond to the hole effective mass, m∗

h , and
the electron effective mass, m∗

e , respectively. Having identified
these k points of interest, we employ the method and code
outlined in Ref. [31] to obtain the full m∗ tensors. In brief,
the method involves generating a fine mesh around the k
point of interest, calculating the energy eigenvalues, and using
a finite difference method to build up the tensor of second
derivatives. The dependence of m∗ on the spacing of this mesh
was investigated, and spacings of less than 0.05 bohr−1 were
found to give consistent results. We calculate the eigenvalues
of the effective mass tensor, which correspond to the effective
masses along the principle directions. For the purposes of
this paper, in which we consider the photovoltaic prospects of
different phases, we envisage a device oriented in such a way
as to take advantage of any anisotropy in the m∗ tensor. With
that in mind, we compare the smallest effective masses of each
structure, with the full m∗ tensors presented in the SM [25].

To make the calculations tractable, we limit ourselves
to a collinear treatment of spin, thus neglecting the
long-wavelength (∼620 Å) spiral spin structure found exper-
imentally [32]. All of the low-energy phases in the present
paper, with the exception of the P4mm phase, are found to
adopt a G-type AFM ordering, consistent with previous work
[33]. The C-type AFM ordering was found to be slightly lower
(6 meV/f.u.) in energy than the G-type ordering for the
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(a) R 3 c (b) P n m a

(c) R 3̄ c (d) P 4 m m

(e) P m 3̄ m

FIG. 1. Projected bands and DOS for the (a) R3c, (b) Pnma, (c) R3̄c, (d) P4mm, and (e) Pm3̄m phases of BFO, in their (pseudo-) cubic
settings. The bands are coloured, at each k point, based on wave-function projections onto chosen orbitals. As indicated in the legend, red,
green, blue, and black represent projections onto Fe t2g, Fe eg, Bi p, and O p states, respectively.

P4mm phase, again in agreement with previous work [33,34].
A change from G-type to C-type ordering in the P4mm phase
had little effect on the character or curvature of the band
edges.

III. RESULTS

A. Effective masses of the phases of BFO

Table I shows the calculated m∗, polarization, and relative
stability of the considered BFO phases. The results for the

relative stability agree well with the literature, differing by
at most 5% with respect to the PBE + U (Ueff = 4 eV) work
of Diéguez et al. [33]. For the FE R3c phase, the calculated
Ps agrees well with both experiment and theory, which report
values of between 90 and 100 μC/cm2 [4,28,35,36]. For the
tetragonal P4mm phase, we find a Ps of 185 μC/cm2, larger
than those reported in previous theoretical (151–152 μC/cm2

[33,37]) and experimental (≈130 μC/cm2 [38]) works. Our
larger value of Ps may be due to the known tendency of the
PBE functional to overestimate c/a ratios in complex oxides.
Previous theoretical works employed the PBEsol [33] and
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FIG. 2. Kohn-Sham orbitals corresponding to top VB, summed over all k points, for the five phases of BFO investigated. These are
representative cross sections through the FeO4 plane in the case of the perfect cubic Pm3̄m structure, and at least two O atoms and one Fe atom
in the other phases, as illustrated in the bottom left diagram. The locations of the Fe and O atoms are labeled in the Pm3̄m section, and the hole
effective masses m∗

h are shown below each panel for ease of reference. The full 3D data files are available in the SM [25].

LDA [37] functionals with Hubbard corrections and found
c/a ratios of 1.28 and 1.27, respectively. Experimentally, a
c/a ratio of about 1.24 was estimated [38]. The c/a ratio
found here was 1.30, consistent with the larger predicted Ps.
Indeed, when we constrained the P4mm lattice constants to
those estimated in the experimental study [38], we obtained a
reduced value of Ps ≈ 150.0 μC/cm2.

Comparing the charge-carrier effective masses, reported
in Table I, we find the room-temperature FE phase of BFO
(R3c) to have the largest m∗

e and the second largest m∗
h . The

tetragonal P4mm phase, which is also ferroelectric, has an
m∗

e an order of magnitude smaller and an m∗
h 20% smaller

than those of R3c. The paraelectric R3̄c phase has an m∗
e

comparable to that of P4mm and an m∗
h comparable to that

of R3c. Both m∗ are smallest in the paraelectric Pm3̄m phase.
From these results we therefore observe that the ferroelectric
phases do not necessarily have lower m∗ than the paraelectric
phases.

To gain insight into the variation of m∗ with the phases,
we examine and compare the electronic structures of the BFO
phases, particularly at the band edges—the locations at which
the m∗ are evaluated. In Fig. 1 the band structure and DOS,
projected onto spherical harmonics, are shown for each phase
of BFO studied here. Considering the lowest-lying conduction
bands in order of decreasing m∗

e , i.e., from R3c to Pnma to
R3̄c to P4mm to Pm3̄m, we see that the major contribution
to the states at CBmin gradually changes from Fe t2g to Bi
p. In Fig. S1 of the SM [25], we plot the corresponding
Kohn-Sham (KS) orbitals. These orbital plots corroborate the
spherical harmonic projections, indicating that Fe t2g states
are the primary contributors to the CBmin for the R3c, Pnma,
and R3̄c phases, while the Bi p states make up the CBmin for
the P4mm and Pm3̄m phases. Our results suggest that, at the
CBmin, the presence of Bi p states leads to a lower m∗

e than
that of Fe t2g states.

Compared to the conduction bands, the topmost valence
bands in Fig. 1 show a far less dramatic difference in character
across the five phases. All of the phases considered here

have an O p dominated VBmax. However, there are minor
contributions from Fe eg states to the VBmax, most notably in
the Pm3̄m phase. To see more clearly the variation in the states
at the VBmax, we show in Fig. 2 the cross sections through
KS orbitals corresponding to the topmost valence band. The
figures show that, as m∗

h decreases from Pnma to R3c to R3̄c
to P4mm to Pm3̄m, the contribution from the Fe eg states
increases. This observation indicates that the presence of Fe
eg states at the VBmax plays a role in decreasing m∗

h .

B. Effects of structural transformations on effective masses

The different crystal structures of the BFO phases consid-
ered have been found to have a wide variation in the electronic
structures and, in particular, in their charge-carrier effective
masses. As such, a substantial yet complex relationship exists
between crystal structure and effective mass in BFO. In order
to better understand this relationship, we now consider the
geometric transformations that map the phase with the lowest
effective masses, Pm3̄m, to the phase with the largest effec-
tive masses, R3c. These transformations are (a) an antiphase
rotation of the FeO6 octahedra about the [111]pc direction
(i.e., a−a−a− in Glazer’s notation [39]) and (b) a translation
of the FeO6 octahedra along the [111]pc direction. These
transformations are illustrated in Fig. 3. More generally, these
and similar geometric transformations can describe the other
BFO phases, portrayed in Fig. 4, as follows.

(1) Pnma: an octahedral rotation out of phase along the
[100]pc and [010]pc directions but in phase along the [001]pc

direction (a−a−c+), and alternating positive and negative
translations in the [010]pc direction.

(2) R3̄c: an out-of-phase rotation about the [111]pc axis
(a−a−a−) with no translation.

(3) P 4 m m: no rotation but with a substantial translation in
the [001]pc direction.

These transformations are accompanied by some strain
to accommodate the change in the structure. We there-
fore consider the effects of strain, rotation, and translation
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(a) Rotation (b) Translation

FIG. 3. Schematic of the FeO6 octahedral (a) rotations about and
(b) translations along the [111]pc direction present in the relaxed R3c
structure. In (a) we separate neighboring octahedra along the [111]pc

axis by a semitransparent plane in order to highlight the out-of-phase
nature of these rotations. The green arrow in (b) shows the [111]pc

direction, and T is the displacement of the Fe atom from the midpoint
between successive Bi atoms along this direction. Purple, ochre, and
red spheres represent Bi, Fe, and O, respectively.

separately, particularly in relation to the ground-state R3c
structure, which has shown remarkable structural flexibility
in the context of heteroepitaxially grown BFO films [10].

1. Strain

Various experimental works have found the R3c phase of
BFO to be stable over a large range of epitaxial strain: from
−2.6 to +1.2% [40–42]. In addition, spontaneous polarization
in BFO has been found to be relatively insensitive to epitaxial
strain values of up to ±3% [35,37]. Epitaxial strain can also be
used to stabilize other phases of BFO, such as the tetragonal
P4mm phase, as summarized by Sando et al. [10,11]. Since we
are interested in the transformation from the R3c to the Pm3̄m
phase, which involves an isotropic change in lattice constants,
we consider the case of uniform, rather than epitaxial, strain.
We apply uniform strains between −5 to +5% to a BFO unit

FIG. 4. Crystal structures of five phases of BFO. For ease of
comparison, all structures are presented in their cubic or pseudocubic
settings. For the (a) R3c, (b) R3̄c, and (c) Pm3̄m structures, the three
pseudocubic axes are equivalent. The (d) P4mm and (e) Pnma struc-
tures, however, have one nonequivalent axis. For these structures the
left (right) figure has the nonequivalent axis parallel (perpendicular)
to the page. Note that in the (d) P4mm case the elongated cell causes
the FeO6 octahedra to break into square pyramidal FeO5 units.

cell constrained to the R3c symmetry. Figure 5(a) shows the
effect of such strain on the charge-carrier effective masses.

The m∗
e changes significantly, decreasing from 3.02 m0 in

the unstrained cell to 2.33 m0 under 5% compressive strain.
Under a tensile strain of between 1 and 3% we see an even
larger decrease in m∗

e , from 3.19 m0 to 0.60 m0, corresponding
to a change in the location and character of the CBmin.
Figures 5(b)–5(d) show the projected bands and DOS for the
−5, 0, and +5% strain cases. Similar figures for the other
strain values are available in Fig. S2 of the SM [25]. From
these figures a shift from an Fe t2g to an Fe eg dominated
CBmin can be observed from 1 to 3% strain, which explains the
sudden drop in m∗

e for large tensile strain, since the eg bands
are more dispersive than the t2g bands. We can understand
the shift from a t2g to an eg dominated CBmin by considering
the reduction in the splitting of the Fe d orbitals, due to the
octahedral environment, as the Fe-O bond lengths increase.

The m∗
h , however, shows little dependence on strain. Over

the range considered, |m∗
h| is largest (1.051 m0) at −5% strain,

and smallest (0.753 m0) at +5% strain. For all strain values
considered, the VBmax remains strongly dominated by O p
states as evident from Figs. 5(b)–5(d). Thus, the negligible
changes in m∗

h as the cell is strained are reflected by the minor
changes in the character of the VBmax.

2. Rotation of the FeO6 octahedron

To examine the effect of octahedral rotation on the elec-
tronic properties of BFO, we rotate the FeO6 octahedron from
the perfect cubic perovskite geometry about the [111]pc axis
in the out-of-phase manner shown in Fig. 3(a). In Fig. 6 we
plot the dependence of m∗ on the rotation angle, θ . Both m∗

e
and m∗

h increase with increasing θ . Around θ = 15◦ we see a
marked increase in the gradient of this relationship.

To understand the trends in m∗ with θ , we examine the
electronic structures at VBmax and CBmin as a function of θ . In
Fig. 7 we plot the projected bands and DOS of BFO with the
FeO6 octahedron rotated at θ = 0, 14, and 28◦. Similar figures
for the full range of θ considered can be found in Fig. S6 of
the SM [25]. As θ increases up to θ = 14◦, the Bi p bands
move up in energy but we see little change in the character of
the CBmin, and correspondingly little change in m∗

e . Around
14◦ we see a shift in the location of the CBmin from � to R.
For θ > 14◦, the character of the CBmin transitions from Bi p
to Fe t2g, and then to a possible [43] mix of Fe eg and t2g states
for large θ . The Bi p to Fe t2g transition is associated with the
large increase in m∗

e with θ shown in Fig. 6.
Within the topmost valence bands, we find that O p states

dominate for all values of θ considered. The states with minor
contributions to the VBmax can be seen more clearly in the
projected DOS. As θ increases, there is a decrease in the Fe
eg contribution, and an increase in the Bi s contribution to
the top of the VB. We therefore associate the increase in m∗

h
with a decrease in Fe eg contribution and an increase in Bi s
contribution to the top of the valence band. Real-space plots
of the KS orbitals as a function of θ can be found in Fig. S7
of the SM [25]. We also observe that for θ = 0◦ there is a
band degeneracy at VBmax, and hence we present m∗

h values
for both the heavy and light holes in Fig. 6. This degeneracy
lifts as soon as we have any rotation.
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(a) m∗

(b) -5% strain (c) 0% strain (d) +5% strain

FIG. 5. Effects of uniform strain on the (a) m∗
e (green triangles) and m∗

h (blue squares) and (b–d) projected bands and density of states.
Note that while the DOS axis has arbitrary units here the scale is the same in each subfigure. The bands are colored, at each k point, based on
wave-function projections onto chosen orbitals. As indicated in the legend in the panel, red, green, blue, and black represent projections onto
Fe t2g, Fe eg, Bi p, and O p states, respectively.

3. Translation of the FeO6 octahedron

We consider, independently, translations of distorted (ro-
tated θ = 14◦ about the [111]pc axis) and perfect (θ = 0◦)

FIG. 6. Absolute charge-carrier effective mass vs octahedral ro-
tation angle. The FeO6 octahedra are rotated out of phase about the
[111]pc axis. For each angle, θ , the m∗

h (blue squares) and m∗
e (green

triangles) were calculated. Notice that in the perfect cubic structure
(θ = 0◦) there is a band degeneracy at the top of the VB—hence the
heavy and light holes. This degeneracy breaks as soon as we have any
octahedral rotation. The rotation angle of the R3c PBE+ U relaxed
structure (θ ≈ 14.2◦) is indicated with a vertical dashed line.

FeO6 octahedra along the [111]pc direction. The former trans-
lation is as illustrated in Fig. 3(b). We find a marked difference
between the two cases, as shown in Fig. 8 where we plot the
dependence of m∗

e and m∗
h on the magnitude of the translation,

T. Translating the perfect octahedron [Fig. 8(a)] has negligible
effects on both m∗

e and m∗
h . Translating the distorted octahe-

dron [Fig. 8(b)] also has little effect on m∗
h; however, there is

a large effect on m∗
e .

Figure 9 shows changes in the projected bands and DOS
as the octahedra are translated. Once again we observe that
changes in m∗ are correlated with changes in the chemical
character of the band extrema. Figures 9(a)–9(c) confirm
that the character at the CBmin of the structure with the
perfect octahedron does not change within the range of T
considered. Figures 9(d)–9(f), however, show a shift from
Bi p to Fe t2g character in the case of the 14◦ rotated
octahedron, corresponding to the substantial increase in m∗

e .
Conversely, there is no change in character at the VBmax,
and also little change in m∗

h with T, for both the perfect and
the rotated octahedra. The VBmax degeneracy at θ = 0◦, that
was lifted with octahedral rotations in Sec. III B 2, does not
vanish in the case of octahedral translations, as indicated in
Figs. 9(a)–9(c).
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(a) θ = 0◦ (b) θ = 14◦ (c) θ = 28◦

FIG. 7. Variation in projected bands and density of states as a function of out-of-phase FeO6 octahedral rotation about the [111]pc axis.
Note that while the DOS axis has arbitrary units here the scale is the same in each subfigure. The bands are colored, at each k point, based on
wave-function projections onto chosen orbitals. As indicated in the legend in the panel, red, green, blue, and black represent projections onto
Fe t2g, Fe eg, Bi p, and O p states, respectively.

FIG. 8. Absolute charge-carrier effective mass vs [111]pc octa-
hedral translation. In (a) we translate the perfect FeO6 octahedron
(θ = 0◦), while in (b) we translate a distorted octahedron (θ = 14◦).
The angle, θ , is as defined in Sec. III B 2. The m∗

e and m∗
h are

represented by green triangles and blue squares, respectively. In (a),
the band degeneracy at VBmax gives rise to a heavy hole, HH (blue
diamonds), in addition to the light hole, LH (blue squares). The
vertical lines in each subfigure correspond to the PBE+ U relaxed
R3c Fe translation along [111]pc (≈0.412 Å).

IV. DISCUSSION

In our investigations of the electronic properties in BFO,
a clear trend between the orbital characters at the band edges
and the resulting m∗ emerges. We find that presence of Fe eg

states at the VBmax and that of Bi p states at the CBmin lead
to relatively low m∗. At the VBmax, hybridization between the
Fe eg and O 2p states leads to a more dispersive band and
hence a lower m∗

h . In the conduction bands, the Bi p states are
more dispersive than the Fe t2g, and hence structures that have
a CBmin that is dominated by Bi p states have a lower m∗

e than
those the CBmin of which is dominated by Fe t2g states.

We have demonstrated that the changes in the band-edge
characters and hence m∗ can be affected through geometric
changes to the crystal structure. Extreme tensile strain, sup-
pression of the octahedral rotation, and suppression of the
octahedral translation yield a much reduced m∗ in BFO. This
trend explains the variation in m∗ across the BFO phases. The
high m∗ values of the R3c and Pnma phases can be attributed
to the presence of octahedral rotation and translation in these
phases. When we compare the R3c and R3̄c structures, which
contain similarly rotated octahedra, we find that the phase
with the translated octahedron (R3c) has larger m∗ values
compared with the untranslated phase (R3̄c). Interestingly, we
find that when the rotation is completely suppressed (θ = 0)
translation of the octahedron (within the range of study) has
little effect on m∗. Hence the P4mm structure, which has
translation without rotation, also has lower m∗ values than
those of R3c. The Pm3̄m structure has the lowest m∗ values
of all the structures considered since it has neither octahedral
rotation nor translation.

For applications in light harvesting, materials with low
m∗ values are required to allow the charge carriers to be
transported to the electrode before the carriers recombine.
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(a) T = 0.00 Å, θ = 0◦ (b) T = 0.42 Å, θ = 0◦ (c) T = 0.62 Å, θ = 0◦

(d) T = 0.00 Å, θ = 14◦ (e) T = 0.42 Å, θ = 14◦ (f) T = 0.62 Å, θ = 14◦

FIG. 9. Variation in projected bands and density of states with FeO6 octahedral translation along the [111]pc direction. θ = 0 and 14◦

indicates the translation of the perfect (a–c) and distorted (d–f) octahedra, respectively, and T gives the translation magnitude. The bands are
colored based on projections onto chosen orbitals. As indicated in the legend, red, green, blue, and black represent projections onto Fe t2g, Fe
eg, Bi p, and O p states, respectively.

Appreciable photovoltaic responses have already been
recorded in BFO in the ground-state R3c phase [2,45–48]. Our
paper indicates that its crystal structure may be modified to
optimize m∗. Particularly in thin-film heteroepitaxial growth,
some degree of control over the octahedral tilt angle and tilt
pattern has been demonstrated experimentally in BFO and
other oxide systems [13,49–52]. While the high-temperature
Pm3̄m phase of BFO has the required geometric features to
result in low m∗, it lacks the asymmetric potential required for
the bulk photovoltaic effect. We find that the tetragonal P4mm
phase, which is experimentally accessible under compressive
epitaxial strain, has both a large spontaneous polarization and
relatively low m∗. However, the P4mm phase has been re-
ported to have a larger optical gap than the R3c phase, despite
the smaller electronic gap, which would adversely affect the
efficiency of the device [53]. Further work is required to find
a balance between these competing effects. Besides geometry
manipulation, the band-edge character can also be modified
through chemical doping [54,55], which may be an interesting
subject for future work.

Another avenue for future work would be to consider the
effects of the crystal structure on charge-carrier relaxation

times, since the electron and hole mobilities of a given phase
are, of course, not only determined by the effective mass of
the charge carriers, but also by their relaxation times. These
relaxation times depend on electron-phonon scattering [56]
and are thus expected to also be sensitive to changes in crystal
structure.

As discussed above, the “curvature” definition of m∗
adopted here is one that emphasizes the importance of the
band edges in conduction. However, in the case of materials
that have fairly flat bands with multiple valleys of similar
energy, the band curvature at these local minima (maxima)
may also influence m∗. In Fig. 1 we see that, particularly in the
R3c and Pnma phases, the valence bands of BFO do indeed
exhibit several local maxima of similar energy. In order to
explore the effect of such multiple valleys, we calculate the
“conductivity mass” as defined in Eq. (12) of Ref. [57] and
implemented in BOLTZTRAP2 [58] for the five phases of BFO
considered above. The electron conductivity masses are found
to be in good quantitative agreement with “curvature masses”
listed in Table I. The hole conductivity masses, however,
are generally larger than the hole curvature masses listed in
Table I, consistent with the presence of multiple local maxima.
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More importantly for the purposes of the present paper, the
trends in both m∗

e and m∗
h generally agree between the two

effective mass definitions. An exception to this is the hole
effective mass of the Pnma phase. While Pnma has the largest
hole curvature mass, its conductivity mass is slightly smaller
than those of the R3̄c and R3c phases. Despite this, given the
otherwise good agreement in the m∗ trends across these BFO
phases, our tests indicate that the central conclusions drawn in
this paper are not dependent on the choice of effective mass
definition. The conductivity mass tensors for the five BFO
phases considered are also available in the SM [25].

In addition to the intrinsic factors considered above, a
number of extrinsic factors may also play a role in determining
the m∗ in a given device. Factors such as temperature, charge-
carrier doping concentrations, impurities, grain boundaries,
and FE domain walls could all play important roles in deter-
mining m∗. However, since our aim is to compare m∗ between
the BFO phases, and to suggest approaches to improve m∗
further, we only consider differences in m∗. That is to say,
while factors such as temperature are likely to affect m∗, we
have made the assumption in this paper that our 0-K results are
a necessary precursor to including high-temperature effects.

The effect of spin-orbit coupling (SOC) has been found to
be significant in describing certain properties of BFO, such
as its weak (Dzyaloshinskii-Moriya) ferromagnetism [59].
We find a noticeable shift in the energy of the electronic
bands and a small, Rashba-like shift in the location of the
band edges. For example, the inclusion of SOC for the
R3c structure shifts the location of the CBmin slightly off
the high-symmetry R point. Such a shift might improve the
photovoltaic prospects of BFO by inhibiting charge-carrier
recombination. This Rashba effect, together with the effects
of SOC on the m∗ anisotropy, while beyond the scope of
the present paper, would be an interesting avenue for further
investigation.

Despite the changes to the positions of the bands, the band
curvatures around the Fermi level (and hence m∗) are largely
unaffected by SOC. For the R3c structure, we calculate the
hole effective mass to be −0.780 m0 with SOC and −0.669 m0

without SOC. Similarly, the electron effective mass changed
from 2.89 m0 with SOC, to 3.06 m0 without SOC. Note that
in these comparisons we have kept constant the direction
along which we evaluate m∗: [−0.28366, 1.00000,−0.17603]
for the hole mass and [1,1,1] for the electron mass. These
correspond to the principle directions that yield the lowest
m∗ in the non-SOC case, i.e., those that were used in Table I
for R3c. Such differences are roughly an order of magnitude
smaller than the differences in m∗ that we found by comparing
the various phases of BFO, and hence we neglect the effects of

SOC throughout this paper. Further tests of the effect of SOC
on the character of bands as a function of octahedral rotations
are available in Fig. S6 (SM [25]).

V. CONCLUSIONS

An important and often limiting factor in perovskite-based
photovoltaics is their low charge-carrier mobility. In this paper
we have employed first-principles methods to compare the
charge-carrier effective masses of both FE and non-FE phases
of BFO and explore how the effective masses are influenced
by changes in the crystal geometry. We find that the ground-
state FE R3c phase has relatively large m∗ values compared
to those of some non-FE phases. However, these non-FE
phases lack the mechanism required for charge separation
via the bulk photovoltaic effect. We therefore investigate the
m∗-determining factors in BFO, with the aim of uncovering
a FE phase with reduced m∗ values. We discover that the
differences in the m∗ values are related to the orbital character
at the band edges. BFO structures with Bi p or Fe eg states,
instead of Fe t2g states, at the CBmin have lower m∗

e due to the
localized nature of the t2g bands. Structures with hybridized
Fe eg–O p states at the VBmax, rather than pure O p states,
have lower m∗

h since the hybridization leads to a more delo-
calized state. The change in the states at the CBmin leading
to decreased m∗

e can be achieved with (i) high tensile uniform
strain, (ii) reduction of [111]pc translations of distorted Fe-O
octahedra, and (iii) a reduction in octahedral rotation about
the [111]pc axis. The Fe eg state emerges at the VBmax only
with a reduction in octahedral rotations about [111]pc. These
findings explain the reasons why the Pm3̄m phase, which
has unrotated and untranslated octahedra, has the lowest m∗
values of the BFO phases we have considered in this paper.
However, since we seek a FE phase and we find that m∗
changes little with translation when the octahedral rotation
about [111]pc is suppressed, then a structure resembling the
tetragonal P4mm phase would provide both ferroelectricity
and reduced m∗. Our results demonstrate that manipulation
of crystal geometry, which is easily achieved with advanced
growth techniques, is a viable avenue to tune the electronic
properties of materials particularly at the band edges.
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