
Nilsson et al. Translational Psychiatry           (2019) 9:180 

https://doi.org/10.1038/s41398-019-0518-2 Translational Psychiatry

ART ICLE Open Ac ce s s

Plasma neurofilament light chain
concentration is increased in anorexia
nervosa
Ida A. K. Nilsson 1,2,3, Vincent Millischer 1,2, Virginija Danylaité Karrenbauer4,5, Anders Juréus6, Alireza M. Salehi6,
Claes Norring 7,8, Yvonne von Hausswolff-Juhlin7,8,9, Martin Schalling1,2, Kaj Blennow10,11, Cynthia M. Bulik3,6,12,13,
Henrik Zetterberg10,11,14,15 and Mikael Landén6,10

Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder with high mortality and, to a large extent, unknown
pathophysiology. Structural brain differences, such as global or focal reductions in grey or white matter volumes, as
well as enlargement of the sulci and the ventricles, have repeatedly been observed in individuals with AN. However,
many of the documented aberrances normalize with weight recovery, even though some studies show enduring
changes. To further explore whether AN is associated with neuronal damage, we analysed the levels of neurofilament
light chain (NfL), a marker reflecting ongoing neuronal injury, in plasma samples from females with AN, females
recovered from AN (AN-REC) and normal-weight age-matched female controls (CTRLS). We detected significantly
increased plasma levels of NfL in AN vs CTRLS (medianAN= 15.6 pg/ml, IQRAN= 12.1–21.3, medianCTRL= 9.3 pg/ml,
IQRCTRL= 6.4–12.9, and p < 0.0001), AN vs AN-REC (medianAN-REC= 11.1 pg/ml, IQRAN-REC= 8.6–15.5, and p < 0.0001),
and AN-REC vs CTRLS (p= 0.004). The plasma levels of NfL are negatively associated with BMI overall samples (β (±se)
=−0.62 ± 0.087 and p= 6.9‧10−12). This indicates that AN is associated with neuronal damage that partially
normalizes with weight recovery. Further studies are needed to determine which brain areas are affected, and
potential long-term sequelae.

Introduction
Anorexia nervosa (AN) is a psychiatric disorder char-

acterized by persistent restriction of food intake resulting
in significantly low body weight, combined with fear of
gaining weight or behaviours that interfere with weight
gain, and body image distortion1,2. The disorder affects
~1% of females and 0.1% of males, and an ~10% lethality
makes it the most lethal psychiatric disorder3–5. On top of
that, relapse rates and treatment failures are very

common6. The pathoetiology has not been clarified, even
though interactions among genetic, environmental, and
neurobiological factors clearly contribute1. Twin studies
have identified a strong genetic contribution, i.e., 58–70%
of variance in liability is due to additive genetic factors5,7,8.
Structural brain differences, most commonly global or
focal reductions in grey matter or white matter (WM)
volume, and sulci or ventricular enlargement, have
repeatedly been shown in individuals with AN9–11.
However, imaging studies of AN patients also exist that
show no structural brain changes, particularly with
regards to WM12,13. Importantly, structural changes
reversed upon weight restoration in several studies12,14–20,
while a few documented enduring changes13,21,22. This
heterogeneity in results encourages to evaluate potential
brain atrophy and neurodegeneration by complementary
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methods. Moreover, it is not known if the structural brain
changes seen in AN are related to degeneration of brain
cells or merely changes in fluids, as discussed by Ehrlich
and et al.23. Combining results from well-designed ima-
ging studies with analyses of markers in blood or cere-
brospinal fluid (CSF) could help further explicate the
neurobiology of AN.
In the present study, we hypothesize that neuronal

injury and/or degeneration is involved in the pathophy-
siology of AN. To explore this, we measured the levels of
neurofilament light chain (NfL), a marker reflecting
ongoing neuronal damage, which can be reliably mea-
sured in serum, plasma or CSF24–26. We analysed plasma
samples in a discovery cohort and a replication cohort,
each stratified by three groups: (i) females with AN, (ii)
females recovered from AN (AN-REC), and (iii) normal-
weight age-matched female controls (CTRLS).

Materials and methods
Participants
For the discovery cohort, females with AN (n= 12) and

weight-recovered females with a history of AN (AN-REC,
n= 11) were recruited from Stockholm Centre for Eating
Disorders (SCÄ). The general inclusion criteria for the
AN group were female patients, at least 18 years old,
meeting the DSM-IV criteria for AN2, and with at least 5
years since AN onset. AN-REC inclusion required weight
recovery (BMI > 18) for at least 1 year. Normal-weight
female controls (CTRLS, n= 12), without any own or
family history of eating disorders were recruited via
advertisements at Karolinska Institutet and internet (ki.se
and studentkaninen.se).
For the replication cohort, participants were identified

from the Swedish cohort of the Anorexia Nervosa
Genetics Initiative (ANGI-SE), for details on the recruit-
ment procedure see ref. 27. The general inclusion criteria
for the AN replication group was female patients, at least
18 years old, meeting the DSM-IV criteria for AN2, with
at least 1 year since AN onset (n= 112). For AN-REC,
weight restoration (BMI > 20), no eating disorder beha-
viours for at least a year, and being within 1 SD of the
mean for eating disorders cognitions (self-reports), were
the inclusion criteria (n= 114). Age-matched normal-
weight female controls had no history of disordered eating
behaviour (CTRLS, n= 113). See Table 1 for further
information on the study participants.
The study was approved by the Regional Ethics Review

Board in Stockholm. All participants provided oral and
written informed consent to participate.

Blood sampling and the NfL assay
For the discovery cohort venous blood was collected

into vacutainer tubes including anticoagulant (sodium
citrate) at SCÄ and processed within 2 h. For the

replication cohort venous blood was collected into
EDTA-tubes at the nearest hospital, mailed to Kar-
olinska Institutet Biobank and processed upon arrival.
After centrifugation, plasma samples were stored at
−80 °C. Samples were transported on dry ice to the
Clinical Neurochemistry laboratory at Sahlgrenska
University Hospital where NfL concentration was mea-
sured using an in-house Single molecule array method as
previously described in detail28. The measurements were
performed in one round of experiments each for the
discovery and replication cohorts. The intra- and inter-
assay coefficients of variation were below 7% for QC
samples with NfL concentrations of 20.4 pg/ml and
64 pg/ml, respectively.

Statistical analyses
Demographic and clinical characteristics are presented

using descriptive statistics.
Linear regression was used to analyse group differences

(corrected for age) and to analyse the effects of age, BMI,
and years since AN onset on plasma concentrations of NfL.
Statistical analyses were conducted using R program-

ming language (including packages emmeans and mult-
comp ref. 29). Graphs were built using ggplot2 ref. 30.
P-values <0.05 were considered statistically significant.

Table 1 Demographic and clinical characteristics of the
study participants

Characteristics AN AN-REC CTRL

Discovery cohort

n 12 11 12

Females (%) 100 100 100

Age (years)

(median [IQR])

31.0

(28.0–44.5)

28.0

(24.0–34.0)

27.5

(24.0–31.3)

BMI (kg/m2)

(median [IQR])

14.8

(13.4–16.7)

19.8

(18.8–21.8)

24.1

(21.4–26.2)

Years since AN onset

(median [IQR])

17.8

(10.5–27.3)

No info –

Replication cohort

n 112 114 113

Females (%) 100 100 100

Age (years)

(median [IQR])

26.0

(24.0–31.0)

26.0

(24.0–31.0)

26.0

(24.0–31.0)

BMI (kg/m2)

(median [IQR])

16.0

(15.0–17.0)

22.0

(21.0–24.3)

23.0

(22.0–26.0)

Years since AN onset

(median [IQR])

10.0

(6.0–14.3)

10.0

(6.0–14.0)

–

AN anorexia nervosa, AN-REC recovered from anorexia nervosa, CTRL healthy
controls, IQR interquartile range
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Results
Demographic and clinical characteristics of the study

population are summarized in Table 1. As has been
shown previously31, age at sampling was positively asso-
ciated with plasma NfL levels, in both the discovery and
the replication sample (Discovery sample: βdiscovery (±se)
= 0.45 ± 0.22 and p= 0.048; Replication sample: βreplication
(±se)= 0.37 ± 0.087 and p= 2.7‧10−5) (Fig. 1). We there-
fore corrected for age in all subsequent statistical analyses.
In both the discovery and replication sample, plasma

levels of NfL were significantly higher in AN compared
both with AN-REC (Discovery sample: medianAN=
24.8 pg/ml, IQRAN= 10.8–30.7, medianAN-REC= 9.2 pg/ml,
IQRAN-REC= 5.1–15.9, and p= 0.005. Replication sample:
medianAN= 15.6 pg/ml, IQRAN= 12.1–21.3, medianAN-

REC= 11.1 pg/ml, IQRAN-REC= 8.6–15.5, and p= 1.64‧
10–6) and with CTRLs (Discovery sample: medianCTRL=
7.8 pg/ml, IQRCTRL= 4.7–9.9, and p= 0.005. Replication
sample: medianCTRL= 9.3 pg/ml, IQRCTRL= 6.4–12.9,
and p= 1.16‧10−13). The levels in AN-REC were sig-
nificantly higher than CTRLs only in the larger replication
sample (pdiscovery= 0.967 and preplication= 0.004) (Fig. 2,
see Table 2 for results of the linear model). Plasma NfL
levels were negatively associated with BMI across all
samples (β (±se)=−0.62 ± 0.087 and p= 6.9‧10−12).
However, the slopes were significantly different in the AN
group compared with the AN-REC and CTRL groups
(p= 0.022 and 0.018, respectively). No significant differ-
ence in slopes was seen when comparing AN-REC with
CTRL (p= 0.957) (Fig. 3).

Finally, an association between the years since AN onset
and NfL levels could be detected (β (±se)= 0.31 ± 0.11
and p= 0.006), but this association did not withstand
correcting for age.

Discussion
Here, we demonstrate significantly higher plasma levels

of a marker for acute neuronal injury, NfL24–26, in female
patients with AN, compared with normal-weight females
with and without a history of AN. The difference in
plasma NfL between AN-REC and CTRLS was smaller
than the difference between AN and CTRLS suggesting
that NfL might normalize somewhat with weight recov-
ery. Elevated NfL levels have previously been documented
in blood and/or CSF in several neurodegenerative con-
ditions32–36, in ischaemic stroke37, and even in bipolar
disorder38.
As to the origin of the neuronal injury proposed by the

elevated NfL levels in AN, we can only speculate. Ehrlich
et al. evaluated the levels of other blood markers related to
neuronal or glial damage in AN: neuron-specific enolase,
glial fibrillary acidic protein (GFAP) and S100B, in AN
blood23,39. Contrary to our NfL findings, none of these
three markers were altered in patients with active AN or
recovered from AN, which might be explained by the
substantially smaller number of study subjects in these
former studies. Imaging studies of individuals with AN
have, however, also yielded heterogeneous results. While
several studies have documented structural grey matter or
WM changes both globally and focally in AN, many but
not all of these changes appear to reverse upon recovery10.
Since NfL is predominantly increased upon axonal injury,
WM is the primary suspect source of origin26. The list of
areas in which structural WM reductions have been
documented in AN includes, but is not limited to, the
dorsal striatum40, the hippocampus41, the hippocampal-
amygdala formation42, and the thalamus43. By diffusion
tensor imaging and subsequent tractography analysis
Florent and colleagues show reduced thickness of fibre
tracts in a key food intake regulating hypothalamic area in
AN compared with healthy normal weight and con-
stitutionally lean controls (Florent, Baroncini, Jissendi-
Tchofo, Lopes, Vanhoutte, Rasika, Pruvo, Vignau,
Verdun, Johansen, Pigeyre, Bouret, Nilsson and Prevot, in
preparation). The hypothalamus is an area of the brain
that among others is crucial for the regulation of food
intake and body weight, i.e., energy homeostasis44, an area
in which signs of degeneration have been documented in
the spontaneously anorectic anx/anx mouse45. Further-
more, reduced connectivity between the orbitofrontal
cortex and amygdala to the hypothalamus46, as well as
focal grey matter atrophy in the hypothalamus has been
documented in AN47. It is tempting to speculate
that degeneration of hypothalamic neurocircuitries

Fig. 1 Plasma neurofilament light (NfL) levels are correlated with age
in individuals with anorexia nervosa (AN), weight recovered from AN
(AN-REC), and normal-weight healthy controls (CTRL). Overall age
effect, β (±se)= 0.37 ± 0.087 and p= 2.7‧10−5. The shaded line around
each linear fit line represents 95% confidence interval
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responsible for energy homeostasis are involved in the
paradoxical response to underweight seen in AN, i.e., the
perpetual low food intake. In fact, AN genome wide
association study have yielded significant negative single-
nucleotide-based genetic correlations with BMI and other
anthropometric measures48–50 which mechanistically
could have its origin in the hypothalamus.
Another possibility is also that the elevated NfL levels in

AN reflects a global reduction in brain volume as indi-
cated by enlarged ventricles or CSF spaces/volumes and
sulcal widening10,12,18,21,51–55, or even a peripheral neu-
ropathy that might occur due malnutrition-related thia-
mine deficiency56,57.
The levels of NfL were negatively associated with BMI

in AN, AN-REC, and CTRLS, but the slope was much
steeper in the underweight BMI range/AN group. This is
consistent with the findings that many of the structural
brain differences reverse with recovery/normalization of
body weight10, and have even been shown to correlate
with weight loss53. Future studies should explore the
levels of NfL in constitutionally lean individuals, in order

to clarify if the increased plasma NfL in AN is exclusively
an effect of low BMI.
One limitation of this study is that the levels of NfL

were not compared with synchronized imaging in the
same individuals. Another limitation is that since NfL
levels reflect ongoing neuronal injury or degenerative
process, we cannot determine the long-term and poten-
tially permanent effects of the processes indicated by such

Fig. 2 Box plot graphs showing plasma levels of neurofilament light (NfL) in individuals with anorexia nervosa (AN), weight recovered from AN (AN-
REC) and normal-weight healthy controls (CTRL) in the discovery cohort (a) and the replication cohort (b). The median is shown as a straight line and
the box denotes the interquartile range. P-values corrected for age, **p < 0.01 and ***p < 0.001

Table 2 Results from linear regression analyses of plasma
neurofilament light (NfL) levels and effects of group and
age in the replication cohort

Independent variables Estimate (β) SE t p

Model 1 (adjusted R2= 0.1906, ANOVA: F= 27.52, n= 339, p= 6.19 e−16)

(intercept) −0.356 2.340 −0.152 0.879

Group AN-REC 3.026 1.048 2.887 0.004

Group AN 8.153 1.053 7.743 1.16e−13

Age at sample 0.374 0.080 4.683 4.11e−06

AN anorexia nervosa, AN-REC recovered from anorexia nervosa

Fig. 3 Plasma neurofilament light (NfL) levels are correlated with body
mass index (BMI) in individuals with anorexia nervosa (AN), weight
recovered from AN (AN-REC), and normal-weight healthy controls
(CTRL). Overall BMI effect, β (±se)=−0.62 ± 0.087 and p= 6.9‧10−12.
Note that the slope is significantly different in the AN group (−2.214)
compared with AN-REC (−0.265 and p= 0.022) and CTRL (−0.190 and
p= 0.018). The shaded line around each linear fit line represents 95%
confidence interval
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increased levels. The difference in plasma NfL between
AN-REC and CTRLS is smaller than the difference
between AN and CTRLS, which could indicate that the
levels normalize with time of recovery. The minimum
recovery time was 1 year in the present study. It would be
of value to evaluate the levels of NFL in plasma from
individuals recovered from AN for a longer period, e.g., 5
years. But even if the levels would normalize completely
with a longer time since recovery, it is still possible that
the neuronal injury observed during active AN or short-
term recovery has long-term structural and functional
effects on the brain. Upregulation of brain derived neu-
rotrophic factor has been documented in patients recov-
ered from AN, which might indicate a regenerative
response to a neuronal injury during the prolonged star-
vation58. Brain-imaging studies combined with long-term
follow up evaluation of NfL levels are needed to
clarify this.
Plasma and CSF levels of NfL are known to be very

highly correlated28. It is however possible that the
blood–brain barrier (BBB) becomes more permeable in
starved conditions such as AN, which allows more NfL to
leak into the circulation. In fact, in mice the BBB becomes
more permeable after fasting59. Future studies should
include evaluation of NfL in CSF of AN patients in order
to explore a potential effect of a leaky BBB in AN.
To conclude, we report for the first time that plasma

NfL levels are significantly increased in individuals with
AN, compared with AN-REC and CTRLs. The levels were
lower in recovered than underweight AN patients indi-
cating that the active neuronal injury/degenerative pro-
cess might attenuate upon recovery.
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