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ABSTRACT

Recent algorithms of object scene flow estimation suffer from
low computational efficiency or unstable moving object pro-
posals. To tackle these two problems simultaneously, in this
paper we propose a new, efficient and robust algorithm for
object scene flow estimation, through making two technical
contributions. Firstly to improve the efficiency, we propose
to select only a few pixels termed support points for match-
ing cost calculation rather than using all pixels. The sup-
port points are defined as those pixels with high confidence
in feature matching. Secondly to attain stable moving object
proposals, we propose a motion magnitude-adaptive thresh-
olding scheme for ego-motion outlier detection, after patch
matching on CNN-extracted high quality features. These two
contributions, though simple, ensure a remarkable improve-
ment in both efficiency and accuracy from the original object
scene flow method, as well as making the proposed algorithm
a strong practicable alternative to much more sophisticated
state-of-the-art competitors.

Index Terms— Scene flow, Patch matching, Moving ob-
ject proposal, Energy estimation.

1. INTRODUCTION

Scene flow is commonly defined as a flow field describing 3D
motion at every point in the scene. Because 3D object mo-
tion is a fundamental input for many valuable high-level tasks
such as autonomous driving, estimating scene flow is gaining
increasing attentions. This paper focuses on estimating 3D
scene flow of changes in both depth and optical flow.

A considerable number of interesting investigations [1—
10] have been conducted in this area, facilitated by the avail-
ability of challenging benchmarks like KITTI [11]. The early
work on estimating scene flow was often formulated as a
variational problem; for example, Cech et al. [1] proposed
a seed-growing method for stereoscopic scene flow. Re-
cently, depth and optical flow were combined in the 3D mo-
tion solutions, specifically by following a strategy which first
partitions the scene into planar segments with rigid move-
ments. Vogel et al. [2-5] explored a model of piecewise

rigid scene flow in the two-frame [4] and multi-frame [5] set-
tings. They treated scenes as a collection of planar segments
with rigid motion and jointly estimated superpixel segmenta-
tion, 3D geometries and rigid movements. The object scene
flow method (OSF) [6] segmented scenes into planar super-
pixels with rigid movements. The OSF achieved impressive
results but suffered from high computational costs. Hence
many improvements of OSF have been proposed afterwards.
Lv et al. [7] proposed a method using continuous optimiza-
tion, faster than [6] but with lower accuracy. Neoral et al. [8]
explored multi-frame temporal consistency to get a higher ac-
curacy. Behl et al. [9] exploited object recognition to miti-
gate the problem of large displacement and local ambiguity.
They used a convolutional neural network (CNN) to gener-
ate a high quality prior, and achieved the state of the art on
the KITTI 2015 benchmark. Other methods such as Ren et
al. [10] used semantic segmentation to improve scene flow
prediction. However, most of these methods still suffer from
an unsatisfactory balance between computational efficiency
and estimation accuracy, the latter often affected by unstable
moving object proposals.

This paper aims to enhance both computational efficiency
and estimation accuracy of OSF, as well as providing a better
balance between efficiency and accuracy than sophisticated
state-of-the-art performers. As illustrated in the diagram of
our method in Fig. 1, we propose a new, efficient and ro-
bust algorithm for object scene flow estimation (SPSOSF),
through making two technical contributions. To attain stable
moving object proposals, we propose a motion magnitude-
adaptive thresholding scheme for ego-motion outlier detec-
tion (Section 2.2.2), after patch matching on CNN-extracted
high quality features (Section 2.2.1). To improve the effi-
ciency, we propose to select only a few pixels termed support
points for matching cost calculation rather than using all pix-
els. The support points are the pixels with high confidence
in feature matching (Section 2.3). These two contributions
ensure a remarkable improvement in both efficiency and ac-
curacy from the original OSF method (Section 3.1), as well
as making the proposed algorithm a practicable alternative to
more sophisticated state-of-the-art competitors (Section 3.2).
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Fig. 1. Diagram of our method. The CNN-based patch matching is described in Section 2.2.1; the robust initialization including
robust moving object proposals in Section 2.2.2; and the support points selection and the efficient optimization in Section 2.3.

2. OUR METHOD

2.1. Scene flow model

We follow the hypothesis that the 3D structure of a scene can
be approximated by a set of piecewise planar superpixels [4],
and that there are some finite number of foreground moving
objects in the scene against the static background.

Let S denote the set of planar superpixels and O denote
the set of moving objects. Each planar superpixel s; € S
corresponds to a region B; in the image and a vector v; =
(n;, k;)T, where n; € R? describes a 3D plane (n/ X = 1
for points X € R? on the plane, and k; € {1,...,|O|} in-
dexes the moving object with which the planar superpixel s;
is associated. Each object o, € O corresponds to a variable
wy € SE(3) composed of rotation Ry € SO(3) and trans-
lation t;, € R3. The rotation and translation can describe the
object’s moving strategy and induce the scene flow.

With the input of left and right images of two consecutive
frames, we aim to find the proper 3D geometry n; and the
object index k; of each planar superpixel, and the rigid body
motion wy, of each object, by minimizing the following two-
term energy function of conditional random fields:

E(v,w) = Z ¢i(vi, W)+ Z
s, €S "’ 8i~8§
data

wij(viavj)a (l)
N——
7 smoothness
where v = {v;|s; € S}, w = {wy|op, € O} and s; ~ s;
denotes the set of adjacent superpixels in S.

The data term in (1) is to ensure that the corresponding
points across the four images should have similar features:

$i(vi,w) = > [ki = k] - Di(mi, wy), )
o €0

where for each planar superpixel s;, [] denotes the Iverson
bracket and D;(n;, wy) is its matching cost computed by us-
ing its plane geometry n; and the rigid body motion wy:

Di(n,wg) =) Y C(p,H(n,wy) -p). (3

r peB;

Here x € {stereo, flow, cross} identifies the three pairs of im-
ages (the red arrows) in Fig. 1: The reference image is the
left image at ty; the stereo pair stands for the reference image
and the right image at ty; the flow pair stands for the ref-
erence image and the left image at ¢;; the cross pair stands
for the reference image and the right image at t;. In (3),
H(n,w) = K(R;(w) — t,(w) - nT)K~! € R3*3 denotes
the homography matrix between a pixel at location p € R?
in the reference image and at location q € R? in the target
image, in which K € R3*? is the camera intrinsic matrix and
[R, (W), t.(w)] € R3** maps a 3D point from the reference
view to a 3D point in the target view. The details of calculat-
ing the matching cost C*(p, q) will be given in Section 2.3.1.

The smoothness term in (1) is to enhance the coherence
of adjacent superpixels. For our scene flow model, we use the
smoothness term defined in [6] which is verified to be a good
regularization for adjacent superpixels.

2.2. Robust moving object proposals
2.2.1. CNN-based patch matching

For optimizing the condition random fields in (1), we need to
find a set of appropriate initial solutions {n;, k;, wy, }, where
n; can be estimated by the depths of pixels in the superpixel,
k; can be induced by a moving object proposal, and wj can
be estimated from optical flow and depth by least squares fit-
ting. However, in many cases of sparse optical flow estimated
by a method like OSF, some true moving object proposals are
missing and such misses often appear together, which leads
to high foreground scene flow errors. To overcome this issue,
we first adopt CNN to extra quality features and use these fea-
tures to attain more accurate semi-dense optical flow estima-
tion, and then develop a motion magnitude-adaptive thresh-
olding scheme to make robust moving object proposals.

We use CNN as a feature extractor to generate features
robust to geometric and radiometric distortions. Our net-
work has four convolution layers similar to the fast version
of [12]. For the optical flow and depth feature extractions,



we adopt the same network but with different training data
and loss functions: for optical flow estimation, we follow
the work in [13]; for depth computation, we follow the work
in [12]. To train the network, we randomly select 30 im-
ages from the KITTI 2015 scene flow training dataset as
the validation set and use the remaining images as the train-
ing data. We use the obtained semi-dense depth as the ini-
tial value of sps-stereo [14] which estimates the superpixel
segmentation needed by other steps. Moreover, we build
M?* = {MF|s; € S}, a set of pixels with high-confidence
matches, to be used later for robust matching cost calculation.

2.2.2. Robust moving object proposal

Moving objects are usually extracted as ego-motion outliers,
where the endpoint error between our matching and the ego-
motion correspondence is greater than a fixed threshold (de-
noted by ||[Am|3 > ~i; see below). This strategy, how-
ever, works poorly near image borders (Fig. 2(a)), where the
endpoint error often has a large magnitude due to large ego-
motion magnitude in both optical flow and depth change.

Therefore, we use a dynamic threshold adapted to the mo-
tion magnitude. That is, a matching is regarded as an outlier if
the endpoint error Am = (Au, Av, Ad) between our match-
ing and the ego-motion-induced correspondence satisfies

[Am[3 > max(yillme|l2, v2llmell2/me), @)

where me = (e, Ve, d,) is obtained by [15]: the optical flow
caused by the camera ego-motion is denoted by (u.,v.), and
the consequent change in depth induced by the optical flow is
denoted by d.; 71 = V2 and 2 = 12 are constants selected
by cross-validation; and 77, is the mean value of ||me||2.

The aim of the factor ||mg||s in (4) is to scale up thresh-
old when the absolute magnitude of ego-motion ||me||3 is too
large, in which case a larger threshold is desired to suppress
false alarms like that near image borders (Fig. 2(b)). The aim
of the factor ||me||2 /7, is to scale up threshold when the rel-
ative magnitude of ego-motion ||me||s is too large compared
with the mean value around, in which case a larger threshold
is desired to suppress noise. If a planar superpixel s; satisfies
(4), it will be proposed as a moving object in the scene.

2.3. Efficient optimization by selecting support points

After obtaining the robust initial solution, the max-product
particle belief propagation (MP-PBP) [16, 17] with sequential
tree-reweighted message passing (TRW-S) [18] can be used
to solve the optimization problem (1).

However, MP-PBP is very computationally expensive
(e.g., taking 50 minutes for one scene on a single i7 core run-
ning at 3.0 GHz), the time of which is mostly consumed by
the calculation of matching cost (3). Therefore, we propose to
use the support points only for the matching cost calculation.

Algorithm 1 Select support points
Input: I,I*, B;, MF,n
Output: Q7

1: Pixels without matching: N « B; \ M7;

2: Minimum number of support points: S, < |B;|/n;
3: Set iterative parameters: ¢ = 0, C, ¢;

4: if |[MF| > Spmin then

50 QF <« M,

6: else

7: NUM « min(Spmin — |MF|, |NF|);

8:  repeat

9: Qf < M7+ randomly selected NUM points in V,*;
10: Compute difference: e < S(I(B;), 1(QF));

11 Save Q¥ which has minimum e as Q?;

12: c=c+1;

13: untile > Core <0

14: end if

2.3.1. Matching cost

The total matching cost (3) involves, for each pixel p in region
B;, the individual matching cost C*(p, q), which represents
the dissimilarity between pixel p in the reference image and
pixel q in the target image.

As with OSF, we define this matching cost as a weighted
combination of two types of cost, the projection cost
C2 . (p,q) and the refinement cost C f(p, qQ):

pro e

C*(p,a) = 01.Cp,0(P,q) + 02.Crc s (P,q),  (5)

where 6 ,, and 6, , are weights decided via cross-validation.
The projection cost U, , is defined on the assumption that

the feature of pixel p should be similar to that of pixel q ob-
tained through projection by the homography matrix:

C* (prq) = {min(f(p,q),()nm) if p € Q%

6
pro 0 otherwise, ©)

where f(p,q) denotes the Hamming distance of the respec-
tive 5 x 5 Census descriptors [19] between pixel p in the refer-
ence image and its corresponding pixel q in the target image;
for the pixel q outside of the target image domain, we use the
outlier value Cyq4z as C,.,; and Q7 = {QF[s; € S} is the
set of support points for image pair . The selection of Q¥
will be given in Section 2.3.2.

The refinement cost C7, ; follows the assumption that the
pixel’s refined motion should be close to the initial motion for

the pixel with high-confidence matching. It is defined as

x p-(l[m*(p) —dll2) ifpe M
ref(pvq): (H ( ) H ) . (7)
0 otherwise,

where m” (p) is the pixel in the target image corresponding to
apixel pin M?®, in which M? is the set of pixels in the refer-
ence image which has high-confidence matching as obtained
in Section 2.2.1; and p, (z) = min(|z|, 7).
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Fig. 2. Lower row: moving object proposal (in red). Upper row: scene flow error (redder indicates higher). (a) OSF proposes
wrong moving objects causing high foreground scene flow errors (e.g. the car highlighted in red). (b) Our method properly
proposes moving objects achieving low foreground scene flow errors (the car more in blue).
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Fig. 3. Correlation (between the energies of three down-
sampling strategies and the original energy without down-
sampling) versus down factor. Regarding the down factor 7
of our method in Algorithm 1, indexes 1-5 on the horizontal
axis correspond to n = 1, 3, 5, 7, 10, respectively.

2.3.2. Support points selection

As region B; always contains a lot of matches with low con-
fidence and duplicated calculation, we aim to find a subset of
B; to improve the computational efficiency for matching cost
calculation while not at the expense of accuracy.

Intuitively, we can perform down-sampling to attain a
subset by randomly or regularly (e.g., via grid) selecting
points from the superpixel. However, such a way of selection
will reduce the accuracy in practice. To illustrate this, we plot
in Fig. 3 the correlation coefficient between the energy of each
of three down-sampling strategies and the original energy in
(1) obtained without down-sampling. We can observe that the
random or regular grid-based down-sampling has clearly de-
creasing correlation with the original result when sampling
fewer points (i.e., with larger down factors). In contrast, our
new down-sampling method, which is based on support points
selection, has more stable correlation for various down factors

than other down-sampling strategies.

In our down-sampling strategy, we first hold the points
that have high-confidence matching in the target image into
@7, the set of support points for superpixel s; in image pair
x. Furthermore, because holding enough points from a su-
perpixel is vital to the enhancement of robustness, but some
superpixels may not have enough points with high-confidence
matching, we have to select some points with low-confidence
matching from these superpixels to meet the minimum num-
ber of support points for a superpixel. When selecting such
points, we would like to maintain the structure of a superpixel
in the sampling process, because we will need to convert the
pixel values to other feature space by census transform.

Before we introduce the mathematical details how we
select these support points, let us establish some notation.
Firstly, I denotes the reference image, and I* stands for the
corresponding image for x € {stereo, flow, cross}; for ex-
ample, I5t*° ig the right image at t( in Fig. 1. Secondly, B;
denotes the pixel set for superpixel ¢ in the reference image,
with | B;| denoting the number of pixels in B; and I(B;) rep-
resenting pixel values for pixels belong to B; in the reference
image I; M7 is the pixel set of pixels having matching with
high confidence for superpixel s; as in Section 2.2.1. Thirdly,
7 is the down factor that control the minimum number s,,;,
of support points.

In our algorithm, the structure of superpixel is simplified
to the probability distribution of pixel values. For every su-
perpixel, we can assume the probability distribution of pixel
values is P(I(B;)). We would like to make P(I(Q7?)) sim-
ilar to P(I(B;)), where P(I(Q%)) is probability distribution
of support point values in the reference image I:

PI(B:)) ~ P(I(Q7))

If we assume that P(I(B;)) follows the Gaussian distribution



Table 1. Evaluation of proposed strategies on KITTI. Top 2

results are in bold.
Alg. \Error(%) | Dl-all [ D2-all | Fl-all | SF-all | time(s)

OSF [6] 4.53 6.97 8.32 9.66 3000
pm 4.65 5.81 7.03 8.54 3002

pm + rop 4.63 5.63 6.70 8.20 3002
pm + rop + eff 4.72 5.70 6.79 8.32 600

with mean E(I(B;)) and variance Var(I(B;)), we will have

Var(I(Q7)) = Var(I(B)), E(1(Q7)) = E(I(B)).

In the algorithm we randomly select points to get the Q¥
whose sample mean and variance are close enough to the orig-
inal values. To measure the difference, we use

N (E(I(B)) ( (@) -
(Var(I(B )) Va?"(f( Q)))* - &
(Var(I(By)) + €)? ’

3
where € is a constant used for normalization, and § controls
the difference between B; and )¥. In our experiments, C, €
and ¢ are empirically set to 20, 0.1 and 0.2, respectively. The
pseudo code of our algorithm is in Algorithm 1.

3. EXPERIMENTAL RESULTS

We evaluate our approach (SPSOSF) by comparing it with
OSF and other state-of-the-art methods on the KITTI 2015
benchmark dataset. The error is computed by the 3 pixels
evaluation threshold used by KITTI. Our experiments are all
completed on a single i7 core running at 3.5 GHz.

3.1. The proposed method vs OSF

The experimental results from comparison with OSF on the
KITTI validation set is listed in Table. 1, in which “pm”
means CNN-based patch matching, “rop” stands for robust
moving object proposal, and “eff” indicates efficient match-
ing cost estimation by using support points only. In the ex-
periments, the number of shape particles, motion particles
and MP-PBP iterations are set to 30, 10 and 50, respectively.
From Table. 1, our partial-version algorithm (pm+rop) in-
cluding robust moving object proposals can largely reduce
the error rate of OSF; and moreover, our full-version algo-
rithm with both robust proposals and support points selection
(pm+rop+eff) can further reduce the computational time re-
markably with little loss in accuracy.

To illustrate this further, we draw for our algorithm the
curve of SF-all error versus down factor 7, along with the
curve of average computational time versus 7, in Fig. 4. We
can observe from Fig. 4(a) that the accuracy of our algorithm
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Fig. 4. Evaluation of our algorithm on the validation set from
the KITTI 2015 scene flow training dataset. (a) shows the SF-
all error vs the down factor; and (b) shows average running
time vs the down factor.

Table 2. Results on KITTI. Top 2 results are in bold.
Alg. \Error(%) | Dl-all [ D2-all | Fl-all [ SF-all | time(s)

OSF [6] 5.79 7.77 7.83 | 10.23 3000
ISF [9] 4.46 5.95 6.22 8.08 600
PRSF [4] 6.24 | 12.69 | 13.83 | 16.44 150
CSF [7] 598 | 10.06 | 12.96 | 15.71 80
SPSOSF 5.02 6.68 7.46 9.55 70

is barely harmed even when the down factor 1 goes up to 7,
which can largely improve the computational efficiency (with
much less computational time needed; see Fig. 4(b)). Hence,
also for illustrative purposes, we set the minimum number of
support points as S,,in, = |B;|/7 in Section 3.2.

3.2. The proposed method vs state-of-the-art algorithms

We compare our proposed method with other state-of-the-art
two-frame methods of the best-ranked KITTI 2015 submis-
sions in the scene flow category. The results are listed in Ta-
ble 2, in which our algorithm is denoted as SPSOSF, which is
the same algorithm as pm+rop+eff but with different values
of iteration parameters for faster computation: the number of
shape particles, motion particles and MP-PBP iterations are
now set to 10, 5 and 15, respectively.

From the accuracy perspective, we reach 9.55% EPE
compared with 10.23% of the OSF algorithm. Although ISF
of [9] achieves the best results, it needs to segment instances
by object detection and segmentation computed by CNN. Our
algorithm does not need complicated pre-processing like that,
but still can achieve competitive accuracy and needs much
less computational time than ISF. From the efficiency per-
spective, our algorithm only needs 70 seconds to run with
only slightly lower accuracy than the best performer, ISF. Al-
gorithms such as PRSF [4] and CSF [7] not only are slower
than our algorithm, but also have much higher errors.

In short, the results show that our new algorithm with sup-
port points selection and robust moving object proposal can



be a strong alternative to much more sophisticated state-of-
the-art in practice, in terms of a better balance between effi-
ciency and accuracy.

4. CONCLUSIONS

In this paper we proposed a new, efficient and robust algo-
rithm for object scene flow estimation, through developing
support points selection to reduce computational time, and
through proposing robust moving object proposals. These two
contributions, though simple, ensure a remarkable improve-
ment in both efficiency and accuracy from the original object
scene flow method, as well as making the proposed algorithm
a strong practicable alternative to much more sophisticated
state-of-the-art competitors.
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