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Device-independent certification of non-classical joint
measurements via causal models
Ciarán M. Lee1

Quantum measurements are crucial for quantum technologies and give rise to some of the most classically counter-intuitive
quantum phenomena. As such, the ability to certify the presence of genuinely non-classical joint measurements in a device-
independent fashion is vital. However, previous work has either been non-device-independent, or has relied on post-selection—the
ability to discard all runs of an experiment in which a specific event did not occur. In the case of entanglement, the post-selection
approach applies an entangled measurement to independent states and post-selects the outcome, inducing non-classical
correlations between the states that can be device-independently certified using a Bell inequality. That is, it certifies measurement
non-classicality not by what it is, but by what it does. This paper remedies this discrepancy by providing a novel notion of what
measurement non-classicality is, which, in analogy with Bell’s theorem, corresponds to measurement statistics being incompatible
with an underlying classical causal model. It is shown that this provides a more fine-grained notion of non-classicality than post-
selection, as it certifies the presence of non-classicality that cannot be revealed by examining post-selected outcomes alone.

npj Quantum Information (2019)5:34 ; https://doi.org/10.1038/s41534-019-0151-1

INTRODUCTION
Quantum measurements are a key resource behind most
quantum technologies1 and, moreover, they reveal some of the
most startling non-classical features of quantum theory.2,3 Indeed,
performing joint quantum measurements on composite systems is
a key feature behind quantum teleportation, superdense coding,
metrology, cryptography,4 quantum repeaters,1 and quantum
networks more generally. Hence the ability to certify the non-
classical nature of quantum measurements is vitally important for
the functioning of quantum technology and additionally, for
understanding some of the fundamental differences between
quantum and classical physics. Moreover, as the manufacturers of
quantum measurement devices may not always be trusted, such
certifications should be device-independent. That is, they should
rely only on output measurement statistics rather than any
intrinsic quantum properties, such as knowledge of the underlying
Hilbert space dimension.
Previous work on the certification of joint quantum measure-

ments largely falls into two categories. The first uses witnesses to
certify the presence of non-classical measurements,5–7 but is
manifestly not device-independent. The second is device-inde-
pendent, but requires post-selection—the ability to discard all
runs of an experiment where a specific event did not occur—to
certify the presence of a quantum measurement.8 In the case of
entanglement, such certification is accomplished by exploiting the
fact that applying an entangled measurement to two initially
independent entangled states and post-selecting the outcome,
that is considering only those runs in which a single fixed outcome
occurred, induces entanglement between the states, which can
then be certified device-independently by violating a Bell
inequality. This method hence detects quantum measurements
through their action on states. That is, it certifies an entangled
measurement through what is does, not what it is. This is in stark

contrast with entangled states, whose non-classicality is easily
certified through the violation of a Bell inequality. Such violation
implies a denial of (at least one of) the assumptions underlying
Bell’s theorem. The modern treatment of which utilises the
classical causal model framework to unify Bell’s original assump-
tions.9–11 Composite states are thus said to be non-classical if the
correlations generated by locally measuring each composite
system are inconsistent with an underlying classical causal model.
This paper remedies the discrepancy between the treatment of

non-classicality in quantum states and measurements. In analogy
with Bell’s theorem, a joint quantum measurement is said to be
non-classical if the correlations generated by performing it on
local preparations on each composite system are inconsistent with
an underlying classical causal model. In the following section this
classical causal model is introduced and a non-linear inequality on
any distribution generated by it is derived. Violation of this
inequality entails that the observed correlations are in conflict
with the classical causal model. As the inequality depends only on
observed output statistics, it is manifestly device-independent.
Additionally, it will be demonstrated that this inequality provides a
finer-grained notion of joint measurement non-classicality for
general quantum measurements than the post-selection approach
of ref. 8, discussed above, as it certifies the presence of non-
classicality that cannot be revealed by examining correlations
arising from post-selecting the outcomes of measurement alone.

RESULTS
Certifying non-classical joint measurements
Recently, tools and techniques from the classical causal models
framework have begun to see myriad applications in quantum
information.9–16 For connections between related notions of
causality and quantum information, see ref. 17–25 In this
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framework, the inputs and outputs of agents measurement and
preparation devices are represented by nodes in directed acyclic
graphs (DAGs), with the arrows denoting the causal relationship
between nodes. The structure of each DAG encodes conditional
independence relations among the nodes (here the faithfulness
condition is being assumed, see ref. 11,26 for a discussion). For
instance, the no-signalling conditions P(A|X, Y)= P(A|X), and P(B|X,
Y)= P(B|Y), follow directly11 from the structure of the DAG from in
Fig. 1. Indeed, the sructure of the DAG specifies all the conditional
independences between the nodes.26,27 In short, every relation
between the inputs and outputs of the different agents are
specified by the DAG.
Consider three agents Alice, Bob, and Charlie. Alice and Bob

both have devices which prepare a quantum state from some
ensemble of states, given a choice between different ensembles.
Charlie has a measurement device which jointly measures the
states prepared by Alice and Bob. The actions of these devices are
represented in a black-box manner. Alice and Bob’s devices have a
classical input x, y (the choice of different ensemble) respectively,
and a classical output a, b (the state prepared from the chosen
ensemble) respectively. Here it is assumed that a, b, x, y∈ {0, 1}.
Charlie has no classical input, as his device only performs a single
measurement, but has a classical output C indexing the possible
measurement outcomes. It is assumed in this section that C takes
four values and hence is indexed by two bits, C= c0c1∈ {00, 01,
10, 11}. Preparing and measuring states in this manner gives rise
to a conditional probability distribution P(a, b, c0c1|x, y).
In analogy with Bell’s theorem, a classical causal model for P(a,

b, c0c1|x, y) is described by the DAG in Fig. 1, where λ1, λ2 are
unobserved, independent random variables. If the correlations
generated by performing Charlie’s measurement on Alice and
Bob’s preparations are consistent with the DAG in Fig. 1, then
they are said to be classical. That is, they are mediated by the
hidden random variables λ1, λ2. One might wonder why there are
two hidden variables, rather than one. This is due to the
independence of Alice and Bob’s devices:
Pða; bjx; yÞ ¼Pc0c1

Pða; b; c0c1jx; yÞ ¼ PðajxÞPðbjyÞ. If the correla-
tions between Alice, Bob, and Charlie were mediated by a single
hidden variable, then Alice and Bob’s marginal distribution would
not be independent. A bound on the possible classically
generated correlated is now presented.

Result 1. A distribution P(a, b, c0c1|x, y) generated by the DAG of
Fig. 1 satisfies:ffiffiffiffiffiffiffi

jMj
p

þ
ffiffiffiffiffiffi
jNj

p
� 1; (1)

where M ¼ 1
4

X
xy

hAxByC
0i;

and N ¼ 1
4

X
xy

ð�1ÞxþyhAxByC
1i;

and hAxByC
ii ¼

X
abc0c1

ð�1Þaþbþci Pða; b; c0c1jx; yÞ:

(2)

Note that, in contrast to standard Bell inequalities, the inequality
presented above is non-linear in the joint distribution P(a, b, c0c1|x,
y). This is due to the independence of Alice and Bob’s
preparations. The proof of Result 1 is similar to the derivation of
the bilocality inequality from ref. 28, with a few key differences.
First, in the case considered here, the hidden variables can a priori
depend on the choice of preparation. That is, it does not follow
from the DAG of Fig. 1 that P(λ1|x)= P(λ1). Lastly, Alice and Bob
have preparation devices, rather than measurement devices.
Proof. Given the structure of the DAG from Fig. 1, it follows that

P(a, b, c0c1|x, y) decomposes asZZ
dλ1dλ2PðajxÞPðbjyÞPðc0c1jλ1λ1ÞPðλ1jxÞPðλ2jyÞ: (3)

Define hAxi ¼
P

a ð�1ÞaPðajxÞ, hByi ¼
P

b ð�1ÞaPðbjyÞ, and
Ci
� �

λ1λ2
¼Pc0c1

ð�1Þci Pðc0c1jλ1λ2Þ: It follows from the above
decomposition that one can write 〈AxByC

i〉 asZZ
dλ1dλ2hAxihByi Ci

� �
λ1λ2

Pðλ1jxÞPðλ2jyÞ: (4)

This, together with j Ci
� �

λ1λ2
j � 1, implies

jMj � R
dλ1

jhA0iPðλ1j0ÞþhA1iPðλ1j1Þj
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One can similarly bound |N|. The key difference being that the
+’s in the above bound are replaced with −’s due to the
occurrence of the (−1)x+y term in N. For real z, w, z′, w′ ≥ 0, it was
proved in ref. 28 that the inequality

ffiffiffiffiffiffi
zw

p þ ffiffiffiffiffiffiffiffi
z0w0p �ffiffiffiffiffiffiffiffiffiffiffiffi

z þ z0
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w þ w0p
holds. Hence
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The bound from Result 1 can be classically saturated. To see
this, consider the following. Let x, y be independent, uniformly
distributed random bits. Let Alice’s (Bob’s) device output a= x⊕1
(b= y⊕1) with probability one, and let λ1 (λ2) equal a⊕1 (b⊕1)
with probability one. Let Charlie have two independent and
identically distributed random bits μ0 and μ1. When both μ0 and μ1
equal zero, Charlie’s device outputs (c0, c1)= (λ1⊕λ2, ν) with
probability one, where ν is another random bit. When μ0 and μ1
equal one, Charlie’s device outputs (c0, c1)= (ν, λ1⊕λ2) with
probability one. When μ0 ≠ μ1 Charlie’s device outputs (c0, c1)= (λ1,
λ2,) with probability one. When μ0= μ1= 0 it follows by a
straightforward calculation that M= 1 and N= 0, and when
μ0= μ1= 1, M= 0 and N= 1. In all remaining cases M= N= 0. As
the probability that μ0= μ1= 0 is r2 and the probability that

Fig. 1 DAG representing classical causal model. This causal structure
is similar to the bilocality structure introduced in ref. 28, with a few
key differences. Firstly, Alice and Bob have preparation devices,
rather than measurement devices. Moreover, in the structure
considered here, there is an arrow from preparation outcome to
the hidden variable rather than the other way around—as is the
case in the bilocality set-up. Hence, here, the hidden variables can a
priori depend on the choice of preparation. That is, it does not follow
from the above DAG that P(λ1|x)= P(λ1)
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μ0= μ1= 1 is (1− r)2, where r= P(μ0= 0)= P(μ1= 0), all points (M,
N)= (r2, (1− r)2) can be achieved. The boundary

ffiffiffiffiffiffiffijMjp þ ffiffiffiffiffiffijNjp ¼ 1
is thus classically saturated.

Quantum violation
Recall that Alice and Bob’s devices prepare a single state from an
ensemble of two states, given a choice between two possible
ensembles. For the quantum violation of the bound from Result 1,
the preparation device used by Alice and Bob is the same. The
functioning of this device will now be specified. For x= 0 (y= 0,
respectively) one of the two states from the basis

cos
π

8

� �
j0i þ sin

π

8

� �
j1i; cos π

8

� �
j0i � sin

π

8

� �
j1i

n o
(7)

is prepared, with the value of a (b)—the preparation outcome—
denoting whether the first (‘0’th) or second (‘1’st) state is prepared.
Each state is equally likely. For x= 1 (y= 1) one of the two states
from the basis

cos
3π
8

� �
j0i þ sin

3π
8

� �
j1i; cos 3π

8
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8
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(8)

is prepared. Again, the value of a (b) denotes whether the first
(‘0’th) or second (‘1’st) state is prepared. For instance, if Alice
chooses preparation x= 1 and observes outcome a= 0, then the
state

cos
3π
8

� �
j0i þ sin

3π
8

� �
j1i (9)

has been prepared by her device. It is clear that the states received
by Charlie depend on the choice of preparation.
A simple quantum realisation of Alice’s (Bob’s) preparation

device is to prepare a maximally entangled |ψ−〉 state between
Alice’s (Bob’s) system and an ancilla, and perform a measurement
on the ancilla to prepare a state on Alice’s (Bob’s) system. Given
two distinct measurements that can be performed on the ancilla,
there are two distinct ensembles of states to which Alice’s (Bob’s)
system can be steered. The specific measurement outcome
prepares a fixed state from the ensemble associated with that
measurement. Note that as Alice has control of both her original
system and the ancilla, she knows the measurement outcome on
the ancilla system and hence what state is prepared on her
system. There is hence a mathematical correspondence between
the choice of measurement on the ancilla and the choice of
preparation on the original system. In effect, when a single agent

holds both systems, measuring one half of an entangled state is
mathematically equivalent to preparing a state on the other
system. This is schematically depicted in Fig. 2, see the caption for
further details.
Now, to achieve the specific state preparations described at the

start of this section, Alice (Bob) performs either ðσZ þ σXÞ=
ffiffiffi
2

p
(for

x= y= 0) or ðσZ � σXÞ=
ffiffiffi
2

p
(for x= y= 1) on her (his) ancilla. This

provides a concrete physical implementation of the preparation
devices held by Alice and Bob, described earlier in this section.
Finally, Charlie performs the “noisy” Bell state measurement

fEc0c1g on his system, where Ec0c1 ¼ pjψc0c1ihψc0c1 j þ ð1� pÞI=4,
and {|ψ00〉〈ψ00|, |ψ01〉〈ψ01|, |ψ10〉〈ψ10|, |ψ11〉〈ψ11|} is the Bell state
measurement. As Ec0c1 � 0; 8c0c1, and

P
c0c1 Ec0c1 ¼ I, this is a valid

measurement.
The correlations generated by the above preparation and

measurement procedure are the same as those considered in
Section III A of ref. 28, namely:

Pða; b; c0c1jx; yÞ ¼ 1
16

1þ pð�1Þaþb ð�1Þc0 þ ð�1Þxþyþc1

2

	 
� �
:

(10)

From this one obtains
ffiffiffiffiffiffiffijMjp þ ffiffiffiffiffiffijNjp ¼ ffiffiffiffiffi

2p
p

; providing a quantum
violation for p > 1/2.

Post-selection
ref. 8 demonstrated that the presence of an entangled measure-
ment can be certified in an device-independent fashion using
post-selection. This was achieved by exploiting the fact that
performing an entangled measurement on two initially indepen-
dent entangled states and post-selecting the outcome—that is
considering only those runs of the experiment in which a specific
fixed outcome occurs—induces entanglement between the states,
which can then be certified device-independently by violating a
Bell inequality (note that post-selection here does not refer to
finite sampling effects. It is hence not related to the fair sampling
loophole in Bell experiments, which concerns practical limitations
on the efficiencies of measurement devices). This method detects
entangled measurements through their action on states by
showing that for each fixed measurement outcome the induced
correlations are non-classical. In the current work a novel method
has been introduced which certifies general measurement non-
classicality not through what it does, but what it is. These two
approaches coincide for entangled measurements,8 but do they
coincide for general non-classical measurements? That is, if a
measurement is non-classical in the sense that it violates the
bound from Result 1, are the correlations induced between Alice
and Bob’s devices on post-selection of Charlie’s outcome always
non-classical? It will now be shown that, surprisingly, the existence
of a separate classical model for each post-selected measurement
outcome does not imply the measurement is classical in the sense
of Fig. 1.
Note that given the realisations, introduced in the previous

section, of Alice and Bob’s preparation devices involving steering
using projective measurements on an ancilla, it follows that non-
classical correlations between Alice and Bob’s preparation devices
are equivalent to non-classical correlations between projective
measurements performed on their ancillas.
Now, consider the following: Allow Charlie to perform a noisy

Bell state measurement with noise parameter p and post-select on
an arbitrary fixed outcome. If Alice and Bob each have their own
Bell state, then Charlie’s joint measurement on two of their
systems induces a noisy Bell state—with the same noise
parameter p—between Alice and Bob’s ancilla. For instance, if
Charlie post-selects outcome E00 ¼ pjψ�ihψ�j þ ð1� pÞI=4, then
Alice and Bob’s ancilla will be in the pjψ�ihψ�j þ ð1� pÞI=4 state.
Hence, classically simulating Charlie’s joint noisy Bell

Fig. 2 Physical realisation of Alice and Bob’s preparation devices.
The box corresponds to the preparation device, and the vertical line
emerging from it is the system Alice (Bob) sends Charlie. Here, on
the left hand side of the diagram, x denotes the different possible
ensembles and a denotes the specific state prepared from each
ensemble. As Alice and Bob control both system and ancilla on the
right hand side diagram, they know the measurement outcome a′.
Hence, they know the exact state prepared on their original system.
More specifically, the choice of measurement on their ancilla,
denoted by x, specifies the two different ensembles the original
system can be steered to. Moreover, the specific measurement
outcome a′ prepares a fixed state a from the ensemble associated
with that choice of measurement
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measurement on Alice and Bob’s preparations is equivalent to
classically simulating local projective measurements on Alice and
Bob’s ancilla’s in the induced noisy Bell state. As shown in,29 such
correlations can be classically simulated for p < 0.68. But, as shown
in the previous section, the non-post-selected measurement is
non-classical as long as p > 1/2. To summarise, the following has
been shown:
Result 2. The existence of a separate classical model for each joint

measurement outcome—adhering to the constraints imposed by Fig.
1—does not imply the joint measurement is classical in the sense of
Fig. 1 and Result 1.
An intuitive explanation of this result could be that, as Charlie’s

measurements outcomes can overlap on certain states, classical
models for each individual measurement outcome cannot always
be combined consistently.

Generalisation to n systems and 2k outcomes
The inequality from Result 1 will now be generalised to allow for n
systems, k choices for the each preparation device—each of which
have two possible outcomes—and 2k possible outcomes for
Charlie’s joint measurement, indexed using k bits c0...ck−1. Result 1
corresponds to the n= k= 2 case. As before, the classical causal
model is depicted in Fig. 3.
Result 3. A distribution

Pða1; ¼ ; anc0 ¼ ck�1jx1; ¼ ; xnÞ; (11)

with ai, cj ∈ {0, 1} and xi∈ {0,…, k− 1}, generated by the DAG of Fig.
3 satisfies the following inequality:

S :¼
Xk�1

i¼0

jIij1=n � k � 1; (12)

where Ii ¼ 1
2n
Piþ1

x1;¼ ;xn¼i hA1
x1 � � �An

xnC
ii, for i ranging from 0 to k−

1,

with Ai
k ¼ �Ai

0 and hA1
x1 � � �An

xnByi=
Pð�1Þ

biþ
Pn
j¼1

aj
Pða1; ¼ ; anc0 � � � ck�1jx1; ¼ ; xnÞ.

Proof. Given the decomposition of the distribution over the
agents preparations and Charlie’s measurement,

Pða1; ¼ ; anc0 � � � ck�1jx1; ¼ ; xnÞ; (13)

implied by the structure of Fig. 3, it follows that

jIij �
Yn
j¼1

1
2

Z
j
Xn
xj¼1

hAj
xj ipðλjjxjÞjdλj

 !
; (14)

where hAj
xj i ¼

P
aj
ð�1Þaj PðajjxjÞ.

It was shown in ref. 30 that, for cki 2 Rþ and m; n 2 N, the
following holds:

Xm
k¼1

Yn
i¼1

cki

 !1=n

�
Yiþ1

i¼1

c1i þ c2i þ � � � þ xmi
� �1=n

: (15)

Applying this result to S ¼ Pk�1

i¼0
jIij1=n yields

S �
Yn
j¼1

1
2

Z
jhAj0ipðλjj0Þ þ hAj1ipðλjj1Þj þ
�"

(16)

� � � þ jhAj
k�1ipðλj jk � 1Þ � hAj

0ipðλjj0Þj
�
dλj
i1=n

: (17)

The following upper bound holds:

1
2 jhAj

0ipðλjj0Þ þ hAj
1ipðλjj1Þjþ

�
� � � þ jhAj

k�1ipðλjjk � 1Þ � hAj
0ipðλj j0Þj

�
� k � 1:

(18)

Hence, one has

S �
Yn
j¼1

Z
k � 1ð Þndλj

 !1=n

¼ k � 1 & (19)

DISCUSSION
This paper has introduced a novel notion of non-classicality for
joint quantum measurements. This notion took its cue from Bell’s
theorem and the device-independent certification of entangled
quantum states by stipulating a joint quantum measurement to
be non-classical if the correlations generated by performing it on
local preparations are inconsistent with an underlying classical
causal model. A non-linear inequality was then derived as a
witness for this inconsistency: a violation entails non-classicality.
This inequality bounded the classically generated correlations
achievable with this causal model. In future work it would be
interesting to investigate the corresponding bounds for LOCC,
unentangled, and entangled measurements, as was done in the
semi-device independent case by refs. 5,7

Moreover, this approach was shown to provide a more fine-
grained notion of non-classicality than the post-selection method
of ref. 8 That is, there exists quantum joint measurements which
admit a classical hidden variable model for each post-selected
measurement outcome, but which are nevertheless non-classical
and violate the inequality from Result 1. It would be interesting to
determine if a quantum protocol exhibiting an information-
theoretic advantage due to this discrepancy existed. That is, can
an agent with access to the entire collection of correlations
generated by a quantum joint measurement gain an advantage
over an agent who only has access to a post-selected subset of
those correlations?
In future work, connections between the notion of non-

classicality introduced here and that of contexuality discussed in
ref. 9 will be explored. Moreover, possible extensions to other
experimental set-ups involving joint quantum measurements—
such as the “triangle scenario” studied in refs. 31,32—will also be
explored.
There has recently been a surge of interest in self-testing

entangled measurements.33,34 While these methods provide
robust methods to certify the presence of entangled measure-
ments, they do not provide a clear definition of non-classicality for
general joint quantum measurements—as Bell’s theorem does for
entangled states. The current work remedied this situation by
providing a clean notion of when a joint measurement should be
said to be non-classical. Future work will look at the connections
between these different approaches.

Fig. 3 DAG for composite joint measurement
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Note also that the work of ref. 35 gave a method to device-
independently certify the presence of local quantum measure-
ments. However, this method was relational in the sense that it
only certified how non-classical one local measurement was with
respect to another. That is, it only certified how two local
measurements relate to each other, but not what they are
individually. In the current work, the case of individual joint
quantum measurements (i.e., a single measurement acting jointly
on multipartite systems) is considered.
Finally, it is hoped that the current work will lead to further

fruitful applications of the causal model framework to research in
quantum information.
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