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Abstract
Non-adherence to assigned treatment is a common issue in cluster randomised
trials (CRTs). In these settings, the efficacy estimand may be also of inter-
est. Many methodological contributions in recent years have advocated using
instrumental variables to identify and estimate the local average treatment
effect (LATE). However, the clustered nature of randomisation in CRTs adds
to the complexity of such analyses.

In this paper, we show that the LATE can be estimated via two-stage least
squares (TSLS) regression using cluster-level summaries of the outcome and
treatment received under certain assumptions. We propose the use of base-
line variables to adjust the cluster-level summaries before performing TSLS
in order to improve efficiency. Implementation needs to account for the re-
duced sample size, as well as the possible heteroscedasticity, to obtain valid
inferences.

Simulations are used to assess the performance of TSLS of cluster-level sum-
maries under cluster-level or individual-level non-adherence, with and without
weighting and robust standard errors. The impact of adjusting for baseline
covariates and of appropriate degrees of freedom correction for inference is also
explored. The methods are then illustrated by re-analysing a CRT carried out
in a specific UK primary care setting.
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TSLS estimation using cluster-level summaries provides estimates with small
to negligible bias and coverage close to nominal level, provided the appropriate
small sample degrees of freedom correction and robust standard errors are used
for inference.

Keywords: Cluster randomised trials, non-adherence, local average treatment ef-
fect, instrument variable, cluster-level analysis.

1 Introduction

Cluster randomised trials (CRTs), which randomise groups of individuals, are com-
mon in public health and primary care. The adoption of this design is often justified
given the reduction of “cross-over contamination” between the experimental arms
and improved adherence with allocated treatment [1–3]. Nevertheless, treatment
non-adherence is as common in CRTs as it is in individually randomised trials [4].
Dealing with non-adherence is more challenging because there are at least two levels
at which deviations from protocol can occur, e.g. cluster or individual level [5]. We
say that adherence is at the cluster-level if all individuals within a cluster receive
the treatment the cluster was randomised to. In contrast, we say that adherence
is at the individual-level, if the treatment received varies across individuals within
the same cluster, so that some individuals received the treatment allocated to their
cluster, while others did not.

The standard analysis of randomised clinical trials is intention-to-treat (ITT), which
compares average outcomes across randomised groups. However, if the effect of
treatment received is confounded, in the sense that there are measured and unmea-
sured common causes of receiving treatment and experiencing the outcome, the ITT
provides the causal effect of being offered, rather than of receiving, the treatment.
An ITT analysis with poor adherence may dilute a true treatment effect [6]. Re-
cently, there has been an increased interest in estimating other estimands alongside
the ITT, as highlighted by the International Council for Harmonisation addendum
to guideline E9 (Statistical Principles for Clinical Trials). Amongst them, the causal
effect in those adhering to treatment has been singled out as being of interest for
patients [7].

In the presence of unmeasured confounding, instrumental variable (IV) methods
can estimate consistently the causal effect of an exposure under certain assumptions
[8,9]. An IV is a variable which is correlated with the exposure but is not associated
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with any confounders of the exposure–outcome association, nor is there any pathway
by which the IV affects the outcome, other than through the exposure.

Since randomised treatment is usually a valid instrument, IV methods have been
proposed to estimate the treatment causal effect in the context of randomised clini-
cal trials affected by non-adherence [10,11]. The population to which an IV estimate
applies however, depends on the assumed behaviour of the instrument [9]. When, as
it is often the case, randomised treatment influences treatment received monotoni-
cally [9], in the sense that the level of treatment received is greater when randomised
to treatment, than when randomised to the control (the precise technical definition
will be given shortly), IV methods lead to estimating the causal effect among the
adherers, known as the local average treatment effect (LATE) or complier-average
causal effect.

This estimand can be estimated via the ratio estimator or the two-stage least squares
(TSLS) approach [12]. The latter consists of a “first stage”, which regresses treat-
ment received on randomised treatment, and a “second stage”, which models the
outcome on the predicted treatment received. Additional covariates can be included
in each stage to control for measured confounding or increase precision. The regres-
sion coefficient for the predicted treatment received in the second stage model is a
consistent estimator of the LATE, provided that the first stage model is a linear
regression, containing all the variables appearing in the second stage [13,14].

Extensions of this approach for the estimation of LATE in CRTs have been proposed,
ranging from a TSLS of individual-level data with variance inflation by the design
effect factor [15], to multilevel mixture models that include the latent compliance
class membership as a regressor and a random effect for cluster [16, 17]. An alter-
native approach suggested by Schochet [18] constructs Wald-type ratio estimators
using cluster-level (CL) summaries for both treatment received and outcome.

In this paper we focus on TSLS estimation applied to CL outcome summaries. Sim-
ilar to [18], this approach exploits well-known methods from cluster-level analysis,
which consist of calculating for each cluster a relevant summary measure of the
individual-level outcomes, such as means or proportions, and then analysing these
using appropriate statistical methods, such as regression. Because each cluster pro-
vides only one data point, the units of analysis can be considered to be independent,
but the procedure is inefficient [19]. Estimation by weighted least squares, where the
weights are defined either by the cluster size or by the so-called minimum variance
weights can improve efficiency [15]. Comparing these alternative estimation strate-
gies for the implementation of TSLS estimation using CL data is the focus of this
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paper. We also demonstrate that using individual-level covariate-adjusted cluster
summaries in the (weighted) TSLS regression can increase efficiency.

The rest of the paper proceeds as follows. Section 2 provides an overview of cluster
level analysis methods, defines the estimand of interest, the LATE, and introduces
the identification assumptions and the different cluster-level TSLS approaches. The
finite-sample performance of the methods considered is evaluated using Monte Carlo
simulations, presented in Section 3. In Section 4, we illustrate the methods by re-
analysing the TXT4FLUJAB trial, a UK based CRT evaluating the effectiveness and
efficacy of text messaging influenza vaccine reminders in increasing vaccine uptake
amongst patients with chronic conditions [20]. Section 5 concludes with a discussion.

2 Methodology

Consider a two-arm CRT, with n participants, indexed by i, in J clusters, indexed
by j, each of size nj. Let Zj denote the binary treatment randomly allocated at the
cluster-level with probability 0.50. Let Yij denote the continuous or binary outcome,
and Dij ∈ {0, 1} be the treatment received by individual i in cluster j. Let Wj and
Xij be baseline covariates at cluster and individual-level, respectively (which can be
vectors of variables).

With a slight abuse of notation, we let Yj denote the CL outcome (mean or pro-

portions), i.e. Yj = 1
nj

nj∑
i=1

Yij, hereafter referred to as the unadjusted CL outcome.

Analogously, let Dj denote the unadjusted CL treatment received, Dj = 1
nj

nj∑
i=1

Dij.

In the cluster-level adherence settings, Dij is constant within clusters, and therefore
Dj is binary. In contrast, when non-adherence is at the individual level, Dj is a con-
tinuous measure that varies from 0 to 1, representing the proportion of individuals
receiving the active treatment in cluster j.

2.1 Cluster-level analysis

The unadjusted CL analysis, uses simple CL summary statistics as the outcomes in
subsequent analyses. Let σ2 denote the variance of Yij, which can be decomposed
as σ2 = σ2

ε + σ2
υ, where σ2

υ is the between-cluster variance and σ2
ε the within-cluster
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variance. The intra cluster correlation coefficient (ICC) for Yij is then ρy = σ2
υ

σ2
ε+σ

2
υ
.

The variance of Yj is

Var(Yj) = σ2
υ+

σ2
ε

nj
=
σ2
υ{1+(nj−1)}+ σ2

ε

nj

=
σ2 + σ2

υ(nj−1)

nj
= σ2

{
1+ρy(nj−1)

nj

}
, (1)

where we have used the fact that ρy = σ2
υ/σ

2 in the last equality [22].

Since CL outcomes are continuous regardless of whether the original variable was
binary, they can be thought to be approximately normally distributed provided
nj is sufficiently large. Thus, a linear regression with CL outcome Yj as dependent
variable and Zj as the explanatory variable can be fitted to estimate the ITT effects.
In the simplest setting without adjustment for other covariates, we have

Yj = α0 + αZZj + ηj, (2)

where ηj is a random error term, assumed to be independently and identically dis-
tributed (i.i.d.), with mean 0. The ITT is estimated by αZ .

Efficiency is gained by estimating this model using generalised least squares, with the
weights being either the cluster size nj, or the so-called minimum-variance weights
given by [21],

ωj =
nj

1 + ρy(nj − 1)
.

When ρy ≈ 0, minimum-variance weights are approximately equivalent to cluster
size weights, while if ρy ≈ 1, minimum-variance weights are approximately 1 [22].
These equivalences can have practical implications when the variance of ηj cannot be
consistently estimated, for example if the number of clusters is small, so weighting
by the cluster size or even no weights, are viable alternatives. Where clusters are
large, weighting by cluster size is inefficient [23].

Since the ηj can be heteroscedastic especially when cluster sizes are very imbalanced,
the standard errors should be obtained using a method that takes this into account,
such as the Huber-White standard errors (SE) [24] which are consistent when there
is heteroscedasticity [25].

Finally, because each cluster now contributes only one observation, inference should
be based on the number of clusters J . Therefore, if p is the number of parameters
being estimated, hypothesis tests and confidence intervals (CIs) should be based
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on appropriate distributions, for example tJ−p and not on normal-based approxi-
mations. We refer to this as small-sample degrees of freedom (SSDF) correction.
Where J is sufficiently large (> 40) normal approximations are adequate.

Regression analyses of CL summary outcomes can only adjust for CL covariates
directly, as using CL summaries for individual-level regressors is not appropriate
[15]. However, where there is interest in adjusting for baseline covariates at the
individual level, whether for scientific reasons or to increase statistical efficiency, this
can be done through a two-step procedure [26]. First, an individual-level regression
analysis of the outcome is performed incorporating all the relevant covariates into
the regression model except for the treatment indicator and ignoring clustering , e.g.
with only one covariate Xij, we have:

Yij = λ0 + λ1Xij + e1ij . (3)

In the second step, the sample mean of the fitted residuals for this model ê1ij is
calculated for each cluster j,

ej =
1

nj

nj∑
j=1

ê1ij .

These are then used as CL outcomes in any subsequent analyses. See the Appendix
for the formulation for binary outcomes.

We refer to these summaries as adjusted CL outcomes (adCL). Regression models
involving them can also be estimated by generalised least squares, with inference
based on normal approximations or Huber-White SEs and/or small-sample degrees
of freedom corrections, as before. Of note, if CL covariates are used to compute
adCL outcomes, the degrees of freedom must be further reduced by the number
of cluster-level regressors used to obtain the CL outcome. No such adjustment is
necessary for individual level variables [26]. In this work, we only use adCL outcomes
obtained by adjusting for individual level variables. In the remainder, we denote the
CL summary outcomes by Yj, whether they are unCL or adCL, will be clear from
the context.

2.2 LATE for CL data

2.2.1 Notation and technical assumptions

Denote by Yij(dj) the potential outcome that would manifest if, possibly contrary to
fact, the j-th cluster to which the individual belongs receives treatment dj, a vector
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of length nj of 0s and 1s, where we are assuming no interference between clusters,
i.e. the potential outcomes and potential treatment received of individuals in the
j-th cluster are unrelated to the treatment status of individuals in other clusters [5].
“No interference between clusters” is a special case of partial interference, where
individuals can be partitioned into groups such that interference does not occur
between individuals in different groups but may occur between individuals in the
same group [27]. This is commonly assumed in clustered randomised trials [16, 17].
We also assume counterfactual consistency : for j = 1, . . . , J , if Zj = z then Dij =
Dij(z), Yij = Yij(z,Dij(z)) and Yij = Yij(d) for all i = 1, . . . , nj, and z and d.

The consistency assumption implies that the outcome realised under observation of
treatment at level d will equal the potential outcome under a hypothetical inter-
vention to set treatment to value d, regardless of the nature of this hypothetical
intervention, in what is called “treatment-variation irrelevance” [28, 29]. More pre-
cisely, if we index the different ways of setting the treatment at level d by kd, the
consistency assumption says that Yij = Yij(d, kd), if Dij = dij, no matter the value
of kd.

2.2.2 Estimand of interest and identification assumptions

Assuming no interference between clusters and consistency, allows us to define the
estimand of interest, the local average treatment effect (LATE) [8].

In the setting considered here where both Zj and Dij are binary, the vector of
potential treatment received under alternative random allocation, (Dij(0), Dij(1))
partitions the participants into four different compliance classes [30]: Cij = n (never-
takers) if Dij(0) = Dij(1) = 0; Cij = a (always-takers) if Dij(0) = Dij(1) = 1;
Cij = c (compliers) if Dij(z) = z for z ∈ {0, 1}; and Cij = d (defiers) if Dij(z) = 1−z
for z ∈ {0, 1}.

The estimand of interest here is the so-called population LATE, defined as

β = EjEi [{Yij(1, Dij(1))− Yij(0, Dij(0))}|Cij = c]

=

∑J
j=1

∑nj
i=1{Yij(1, Dij(1))− Yij(0, Dij(0))}{I(Dij(1) = 1, Dij(0) = 0)}∑J

j=1

∑nj
i=1 I(Dij(1) = 1, Dij(0) = 0)

(4)

This is said to be a “local” causal effect as it is conditional on the stratum of complier
individuals.
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Following [5,31], we write the cluster version of the corresponding identification as-
sumptions [9] as follows:

(A1) Cluster-level unconfoundedness : Zj ⊥⊥ Dij(z), Yij(z,Dij(z)), z ∈ {0, 1}.

This is also known as cluster randomisation assumption, and is often stated in terms
of the cluster randomization to treatment being independent of measured and un-
measured confounders of the relationship between the treatment-received and the
outcome. In the context of cluster randomised trials, we know this holds by design.
(A2) Exclusion restriction at the individual level: Conditional on the treat-
ment received Dij = d, the treatment assignment Zj has no effect on the outcome.
In terms of potential outcomes, we have:

Yij (1, d) = Yij (0, d) , ∀d ∈ {0, 1}.

(A3) Instrument relevance: Also referred to as first stage assumption:

Zj is causally associated with treatment received Dij, i.e. Zj 6⊥⊥ Dij.

We remark that in the standard TSLS literature, a weaker version of the assumption
A3 is made instead, namely that the instrument Z and treatment received D are
only associated, but not necessarily causally. Denote this assumption by (A3’). In
the causal inference literature an “associational” instrument is known as proxy or
surrogate instrument. Now, if Z and D are associated but not causally associated,
there exists a common cause V , which is the causal instrument, and may be unob-
served. In order to define, identify and interpret the LATE causally, under A1-2 and
A3’, we further require that Z is conditionally independent from D and Y given V ,
and that V is binary. We refer the interested reader to [32] for further details.

For point identification of local treatment effects, (A4) monotonicity of the treat-
ment mechanism is often assumed: Dij(1) ≥ Dij(0). In the case of a causal binary in-
strument, as randomised treatment, the monotonicity asumption implies that there
are no individuals who would have received the active treatment when randomised
to control (Z = 0) and not received it when randomised to it. This assumption
is often referred informally to as “there are no defiers” [8]. We remark that the
definition and interpretation of the monotonicity assumption is also more complex
in non-causal instrument settings [33]. The monotonicity assumption is often jus-
tified by design, when the active treatment is not available to those in the control
group. Where this is not the case, the investigators have to argue carefully why
monotonicity is still plausible.
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We also remark that in the case of cluster-level randomisation, but with individual
level non-adherence, we need to assume that monotonicity holds at the individual
level [31]. For the cluster-level non-adherence setting, where Dij does not vary
within clusters, then this becomes monotonicity at the cluster level , i.e. Dj(1) =
1, and Dj(0) = 0.

An extra assumption necessary when using adjusted CL outcomes is that the model
used to derive them is correctly specified.

2.2.3 Cluster and individual-level non-adherence

The population-level LATE estimand β can be thought of as a weighted average of
the cluster-specific LATE βj for each cluster j, namely

β =
J∑
j=1

ψjβj, (5)

where

βj = Ei [Yij(1, Dij(1))− Yij(0, Dij(0))|Cij = c]

=
1

nc,j

nj∑
i=1

[{Yij(1, Dij(1))− Yij(0, Dij(0))}{I(Dij(1) = 1, Dij(0) = 0)}] , (6)

with nc,j is the number of individual-level compliers in each cluster j, assumed here
to be > 0 for all clusters. The weights corresponding to each βj are ψj =

nc,j∑J
j=1 nc,j

, i.e.

the number of cluster-specific compliers divided by the total number of compliers.

This result is useful when interpreting the estimates obtained using CL summaries.
We first note that the Wald ratio estimand applied to CL summaries, βCL does not
always correspond to the population LATE β. The former can be expressed as [5]:

βCL =
E[Yj|Zj = 1]− E[Yj|Zj = 0]

E[Dj|Zj = 1]− E[Dj|Zj = 0]
(7)

In the case where treatment received is at the cluster level (i.e. cluster-level adher-
ence), this CL Wald estimand indeed can be interpreted as the population LATE.

In the case where non-adherence varies at the individual level, it can be shown that
βCL =

∑J
j=1 ψCL,jβj where the CL-weights are ψCL,j =

nc,j/nj∑
j nc,j/nj

, i.e. the normalised
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proportion of individual compliers in each cluster [31]. So, CL-LATE βCL identifies
the population LATE, equation (5), only if (i) the cluster sizes nj are identical for all
j, or (ii) the cluster-specific LATEs βj are the same across all clusters, i.e. βj = β,
for all j ∈ {1, . . . , J}.

In the remainder, with individual-level non-adherence we assume that every cluster
has the same cluster-specific LATE, but allow for the cluster sizes to vary. If this is
not the case, the CL-LATE βCL identifies a weighted average of the heterogeneous
cluster-specific LATE, because of clusters with the same proportions of compliers
are weighted the same, without accounting for the cluster size.

2.3 TSLS for CL data

The conditional expectations appearing in the Wald estimand (equation 7) can be
estimated via standard TSLS regression of the CL summaries (referred to as CL-
TSLS). CL-TSLS is most easily explained for settings without weights or covariate
adjustment. The first stage fits a regression to CL treatment received Dj on treat-
ment assigned Zj. Then, in a second stage, a regression for the CL outcome on
the predicted treatment received is fitted. This can use either unadjusted CL sum-
maries, or adjusted CL summaries if there are baseline individual-level variables
predictive of the outcome, as this can help gain efficiency. Crucially both first and
second stages must be linear models for the TSLS estimator to be guaranteed to be
consistent [14,34]. We have:

Dj = γ0 + γZZj + ω1j

Yj = β0 + βIV D̂j + ω2j (8)

where ω1j and ω2j are assumed i.i.d. with mean zero and constant variance, and

such that ω1j ⊥⊥ ω2j. The estimate of CL-LATE is then given by β̂IV .

The asymptotic variance of this estimator is given by Ĉov(Y,E[D|Z])
Ĉov(D,E[D|Z])

, where we assume

that Cov(D,E[D|Z]) 6= 0. Assuming that the residuals from the second stage
ε = Y − E[Y ] − βIVD − E[D|Z]) are such that E[ε2|Z = z] = σ2

Y , the asymptotic
variance of the IV estimator simplifies to σ2(D>PZD)−1, where PZ is the projection
matrix PZ = Z(Z>Z)−1Z>Z. See [8] for further details. These variance estimators
are implemented in most commonly used software implementations of TSLS.

Cluster-level covariates can be included in the regressions to increase precision. For
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example, with one CL covariate Wj, we have

Dj = γ0 + γZZj + γWWj + υ1j

Yj = β0 + βIV D̂j + βWWj + υ2j (9)

where the error terms are as before.

As with the cluster level estimation of ITT, where the number of clusters is small,
the CIs are constructed using a t distribution with degrees of freedom equal to J−p,
where p is the number of parameters estimated by the second stage (i.e. the small-
sample degrees of freedom correction). As before, minimum-variance or cluster size
weights can be used to increase efficiency. Finally, the error terms in the CL-TSLS
are assumed to be homoscedastic. Where this is not a sensible assumption, Huber-
White SEs should be used [35].

3 Simulation study

We now perform a simulation study comparing the finite sample performance of
TSLS estimation applied to CL data. We simulate CRT individual-level data assum-
ing that the control group does not have access to the active intervention, referred
to as one-way non-compliance, at either cluster or individual level. In this setting,
there are only two compliance classes: compliers and never takers. With a fixed
expected total sample size equal to 1000, we vary the number of clusters J , and the
average cluster size nj. The marginal ICC of Y also takes two values. The effect
of individual and cluster level variables on the outcome and the treatment received
also varies, so that the strength of the confounding is either low or high, while the
value of the true LATE also has two levels. Table 1 summarises the factorial design
and the values taken by the different levels.

More specifically, we simulate cluster randomised treatment Zj ∼ Bern(0.5) and
two independent baseline covariates, a cluster-level covariate Wj ∼ N(0, σ2

W ) and
individual-level covariate Xij ∼ N(0, σ2

X) with a moderate ICC ρX = 0.05, and with
variance σ2

W = σ2
X = 0.08.

We then generate a binary adherence class indicator variable Cij, which is considered
as latent. Let Cij = 1 for the compliers, 0 otherwise. For settings where adherence
is at the cluster level, this is constant within clusters, under the following model

Cij = Cj ∼ Bern(πj) with πj = P (Cj =1)

logit(πj) = λ0 + λWWj,
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with λW = 0.05 equivalent to an odds ratio OR ≈ 1.05 per unit increase in W
(denoted “small effect”) and λW =0.7 equivalent to OR ≈ 2 (“large effect”).

For settings with individual-level adherence, the data generating model is

Cij ∼ Bern(πij) with πij = π = P (Cij = 1)

logit(πij) = λ0 + λWWj + λXXij + ζj

ζj ∼ N
(

0, σ2
ζ

)
with σ2

ζ =π2/3, so that the ICC for compliance is ρC =σ2
ζ/(σ

2
ζ + π2/3)=0.50.

We derive treatment received at the individual level as

Dij = CijZj,

so that those individuals in clusters randomly allocated to control have always con-
trol treatment, but those in clusters randomised to the active intervention can switch
to the control treatment, depending on their adherence class. We finally generate
continuous outcome Yij, under the exclusion restriction assumption,

Yij = β0 + βCCij + βCZCijZj + βWWj + βXXij + υj + εij (10)

with υj ∼ N(0, σ2
υ) and εij ∼ N(0, σ2

ε ), where the values for σ2
υ and σ2

ε are chosen
such that the marginal ICC for Y has the corresponding value according to the
simulated scenario, given that Var(Yij) = σ2 = 1.

For simplicity but without loss of generality, we assume that there is no direct
effect of complying on the outcome, and thus βC = 0, so that the mean potential
outcome in the control never-takers is equal to the mean potential outcome of the
control compliers and thus complying with the control treatment has no effect on the
outcome. Since βCZ 6= 0, there is a non-zero effect of complying with the active arm
(i.e. receiving active treatment). The choice of βC does not affect our estimation, as
the effect of βC (and the intercept β0) cancels out for the average treatment effect
in the compliers and non-compliers respectively.

The choice of the parameters’ values is reported in Table 1.
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Table 1: Factorial design of the data generating processes and values taken by the pa-
rameters in the simulations.

Parameter Label Level Value

CRT size
n Total number of individuals Moderate ≈ 1000
J Number of clusters and Moderate clusters J = 50, nj ∼ Poi(20)
nj individuals per cluster Few large clusters J = 10, nj ∼ Poi(100)

Baseline variables
Wj Cluster-level variable - Wj ∼ N(0, 0.08)
ρX ICC for Xij Moderate 0.05
Xij Individual-level variable - Xij = Xj + eij , Xj ∼ N(0, 0.004),

eij ∼ N(0, 0.076)

Adherence to treatment
π Expected probability Moderate 0.60 (cluster-level adherence)

of adherence 0.85 (individual-level adherence)
λW , λX Wj and Xij effects on Small λW = 0.05, λX = 0.05

log odds of adherence Large λW = 0.70, λX = 0.70
Cj Cluster-level adherence - Bern[expit(λ0 + λWWj)]

class
Cij Individual-level - Bern[expit(λ0 + λWWj+

adherence class λXXij + ζj)]
ζj Cluster-level random effects - ζj ∼ N(0, π2/3)
ρC ICC for Cij Moderate 0.50

Outcome
β0 intercept β0=0
βC effect of complying amongst controls βC=0
βW , βX Wj and Xij effects Small βW =0.1 σ, βX=0.1 σ

on outcome Yij Large βW =0.4 σ, βX=0.4 σ
βCZ True LATE Small, Large 0.1 σ, 0.4 σ
ρY ICC for Yij Small, Large 0.05, 0.20

We need the data generating process to result in randomised treatment Z being a
valid IV, but with this choice of parameters, some combinations may result in weak
instruments, for example, cluster-level non-adherence settings, with only 5 clusters
per arm, and the proportion of non-adherent clusters set at 40% (the median pro-
portion of non-adherent clusters reported in [4] being 44.8%). Thus, after creating
each dataset, we perform an unadjusted first stage regression of Dj on Zj and reject
simulated datasets where the resulting F−statistic is < 10, (Staiger & Stock’s rule
of thumb for weak instruments [36]). We continue this process until we have 2500
datasets per scenario.

Estimation in each scenario involves using unadjusted CL summary of treatment
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received in the first-stage, and either unadjusted or individual-level variable adjusted
CL summary outcomes, for the second stage. Each regression in the TSLS was
fitted via ordinary least squares or generalised least squares, the latter with either
cluster size or minimum-variance weights. We also consider TSLS where each stage
model is either unadjusted or adjusted for a cluster-level variable. Finally, we obtain
SEs assuming homoscedasticity or Huber-White SEs, and small-sample degrees of
freedom-based or normal approximation CIs. A summary is given in Table 2. Details
of the Stata code used for analysis are found in the web-Appendix.

Table 2: Overview of TSLS estimation and inference strategies used in the simulation
study

Analyses strategy Levels
CL outcome Unadjusted Adjusted for Xij

TSLS adjusted for Wj No Yes
Least square method Ordinary Weighted
Weights (if using) CS MV
SE estimation Normal theory HW SE
SSDF correction No Yes

CL: cluster level; HW: Huber-White; CS weights: cluster-size weights; MV: minimum variance;

SE: standard error; SSDF: Small sample degrees of freedom correction

The performance criteria used are empirical bias and coverage rates of the 95% CIs
over the 2500 replicate datasets per scenario. For the bias, we construct a 95%
confidence interval (CI) using the Monte Carlo Errors. The coverage rate sampling
error given the size of the simulation results in a valid range between 94.1% and
95.9%. See the Appendix for the formal definitions.

3.1 Results

We present the results by plotting the empirical bias with the Monte Carlo Error-
based CIs. The coverage rate valid range is represented by horizontal dashed lines.

Figure 1 and Figure 2 report the empirical bias and 95% CI coverage resulting from
each of the different CL-TSLS estimators, when adherence is at cluster or individual
level respectively, and for scenarios where the true LATE is large. The corresponding
figures for small true LATE are in the Appendix, Figure 7 and 8.
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Each figure reports results where J = 10 (Panel A, top) or J = 50 (Panel B), and
with the ICC for Y , ρY , is either small (first three columns) or large (last three
columns). In each cell, the results for alternative combinations of TSLS (unad-
justed/adjusted for Wj) applied to unCL or adCL outcomes are plotted along the
horizontal axis.The different data generation scenarios are identified by ∗,+,×, and
◦, corresponding to varying strengths of the effects of X and W on Y .

We see that all CL-TSLS estimators show some finite sample bias in settings where
the number of clusters is small (J = 10, Panel A), regardless of whether the non-
adherence was at the cluster or individual level and whether the CL summary for
Y was adjusted or unadjusted, or Wj was included or not in the TSLS regressions.
However, the Monte-Carlo error CIs includes 0 in many settings. The bias is more
severe when the ICC for Y is larger (right hand side of each Figure). The bias is
somewhat attenuated when we adjust for Wj in the TSLS, and the non-adherence is
at the cluster-level (Figures 1 and 7). In contrast, for settings with individual-level
non-adherence, this adjustment instead increases the bias, especially if W has only
a small confounding effect. In these scenarios, the estimates exhibit a small but
statistically significant bias, which disappears when the number of clusters is larger
(Figures 2 and 8). In general, the bias is not affected by the choice of weighting
strategy, nor by whether ρY is small or large. The bias is negligible for settings
where the number of clusters is moderate or large (J = 50).

Comparing the results of the 2nd, 3rd, and 4th rows in each panel (Figures 1 and 2),
we see that the coverage rate is affected by the choice of SE estimation and also by
whether small-sample degrees of freedom correction is used. When the number of
clusters is small, a small-sample degrees of freedom correction must be used as failing
to do so results in under-coverage (Panels A). The low coverage is more serious when
TSLS adjusts for W (second and fourth set of results in each panel).

Overall, the results in Panel A of each figure show that coverage is closer to the nom-
ical levels when using small-sample degrees of freedom correction when constructing
CIs (3rd and 5th rows). Using Huber-White SE or not has little to no impact if
there is no small-sample degrees of freedom correction. However, the small-sample
degrees of freedom correction for the CIs resulting from a TSLS using unCL out-
comes can lead to under-coverage, as shown in the specific case with cluster-level
non-adherence, large ρY , and large true LATE, but where only X is strongly associ-
ated with Y (Figures 1 and 7, 3rd and 5th rows of Panel A, right hand side columns,
scenario represented by × in the plots). The use of adCL outcomes (i.e. where the
CL outcome is the residual after adjusting for individual level variable X) recovers
coverage close to nominal. This is not the case when the non-adherence is at the
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individual level, and both W and X are confounders in the data generating process.

In both cluster and individual-level non-adherence settings, it can be seen that
using minimum-variance weights increases the coverage by a small fraction, when
compared with cluster size weights, especially for scenarios with J = 50 and large
ρY . However, since minimum-variance weights require an estimate of the cluster-
level variance, and this is badly estimated when the number of clusters is small
(J = 10), we can see that minimum-variance weights are less efficient than using
either no weights or cluster size weights. This is most clearly seen when no Huber-
White SE correction has been used.

We can also see that when small-sample degrees of freedom correction is used, then
not using Huber-White SE can result in small over-coverage especially for cluster-
level non-adherence settings, which is improved when Huber-White SE are used
(Figures 1 and 7, 3rd and 5th rows of Panel A). When J = 50 (Panel B), the use
of small-sample degrees of freedom-based distributions is not expected to make any
material difference, and this is indeed the case. The impact of using Huber-White
SE or the different weighting strategies is also minimal.

3.2 Additional simulations

Two extra additional scenarios are now considered to investigate the sensitivity of
the CL-TSLS performance to number of clusters and cluster size imbalances, at both
cluster and individual level adherence, but focusing on settings where confounding
is strong with a large true LATE.

In the first additional simulation, we explore the impact that the outcome ICC and
the number of clusters have on bias, while leaving the expected total sample size
fixed (= 1000).

We consider two marginal ICC for Yij (ρY = 0.05 and ρY = 0.80) and three average
cluster sizes (nj = 20, 10 and 2.5, corresponding to whether the number of clusters
varied from J = 50, 100 or 400), which includes one of the scenarios previously
considered in the main simulations for comparison. Though CRTs rarely have ICCs
above 0.10 [37], the value of ρY = 0.80 is included to evaluate the performance of
the methods in extreme settings.

In the second additional set of simulations, we explore the effect of high cluster
size imbalances. While keeping the average sample size equal to 1000, and J = 10
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or 50, we create high cluster size imbalance using a Pareto distribution to gener-
ate the cluster sizes [38]. The Pareto distribution parameters are chosen so that
approximately 40% of the clusters have a size below 15, and 60% a size above 15,
while the average cluster size is 20 and the minimum cluster size is 10, resulting in
approximately 1.8 for the shape and 9.1 for the scale.

3.2.1 Results

Figures 3 and 4, corresponding to cluster and individual level non-adherence settings,
show that for a fixed number of clusters (cells in the same row), the bias increases
with increasing ICC for Y , but that as the number of clusters increases (moving
down the column in the Figure), CL-TSLS results in negligible mean bias, even a
very large ρY . It is well known that TSLS is only asymptotically unbiased, and with
CL analyses, we expect the asymptotics to depend on the number of clusters, and
not the number of individuals. Nevertheless, the CL-summaries treated as outcomes
for the two models involved in TSLS contain less “information” when the ICC is
higher, which translates into a larger number of clusters being necessary for the bias
to be negligible.

The impact of high cluster size imbalance is reported in Figures 5 and 6, where non-
adherence is at the cluster and individual level respectively. We see that even with
the use of Huber-White SE, failure to do small-sample degrees of freedom correction
results in under-coverage, especially when is ρY large. Looking at Panel B in Figure
6, we can see that using cluster-size weights results in even lower coverage. This
is because cluster size weights are known to perform well when the cluster level
residuals are homoscedastic, which is unlikely when cluster sizes are very imbalanced
[15]. The use of small-sample degrees of freedom correction brings the coverage close
to nominal levels.

4 Illustrative example

We now illustrate the methods in practice by applying each in turn to the analysis
of the TXT4FLUJAB trial. This was a CRT of general practices in England aiming
at estimating the effect of text messaging influenza vaccine reminders on increasing
vaccine uptake in patients with chronic conditions, carried during the 2013 influenza
season [20]. General practices (GPs) were stratified by the type of software used
for text messaging and randomised to either standard care (control group, 79 GPs
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and 51136 patients) or a text messaging campaign (active group, 77 GPs and 51121
patients). Practices were not blinded to their allocation. GPs were the unit of
analysis and the outcome of interest was the proportion of influenza vaccine uptake
at the GP level.

Influenza vaccination within the GPs was automatically recorded in the clinical
system from which the data were extracted, so there are no missing data.

Since non-adherence was anticipated, the original statistical analysis plan specified
obtaining by IV regression an efficacy estimate at the GP level [20]. The origi-
nal publication reported an estimated increase in vaccine uptake from texting re-
minders of 14.3% (95% CI –0.59% to 29.2%) [20], after dichotomising adherence at
the cluster-level as either 100% of eligible patients, compared with texting < 100%.

Adherence to the intervention at the individual level could not be measured for all
practices because it was recorded in a usable form only for GPs using a specific
software. Therefore, for these re-analyses, we restrict the dataset to 116 GPs (58
in the intervention and 58 in the standard care arm) for which individual-level
adherence data are available. Six of the 58 practices (10%) in the intervention arm,
did not send any reminders. Conversely, 21 of the 58 practices (36% in the standard
care arm actually sent a reminder to at least one patient. Hence non-adherence is
two-sided. It also varies at the individual level. The median (range) of percentage
of non-adherence at the GP level was 0% (0%-78.4%) and 21.0% (0%-83.5%) in the
control and active group, respectively (Table 3).

The characteristics of the GPs and of the patients included in these analyses are
comparable across trial groups (Table 3); further the marginal ICC for individual-
level outcome (vaccination) and treatment received (text message reminder) was
0.03 and 0.84 on the log-odds scale, respectively.

Table 3: Baseline characteristics and percentages of non-adherence for the
TXT4FLUJAB trial.

Characteristics Control Active

Practice-level characteristics
Number of practices, n (%) 58 (100.0) 58 (100.0)
Open on weekends, n (%) 39 (67.2) 37 (63.8)
Patients per practice, median (range) 660 (148-1678) 684 (79-3022)

Patient-level characteristics

Continued on next page
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Table 3 Continued

Characteristics Control Active

Number of patients, n (%) 40633 (100) 41073 (100)
Male, n (%) 20 752 (51.1) 21 012 (51.2)
Has any disease, n (%) 39244 (96.6) 39672 (96.6)
Age, median (range) 50 (18-64) 50 (18-64)

Active treatment received

Patients receiving text message reminders, n (%) 2628 (6.5) 11113 (27.1)
Practices sending text message reminders, n (%) 21 (36.2) 52 (80.7)
% of patients in each GP receiving reminders, 0 (0-78.4) 21.0 (0-83.5)
median (range)

For our re-analysis, we begin by discussing the plausibility of the necessary assump-
tions.

Firstly, the consistency assumption in this setting implies that the means of sending
and receiving the text message, as well as the timings are irrelevant, in the sense
that all of these would lead to the same observed outcome. So whether the text was
pre-programmed, or sent by a doctor or a nurse, or received in the morning or at
night or weekend, it would have the same effect, of either getting the patient to get
a flu vaccine, or not, irrespective of any of these factors. This seems a reasonable
assumption for this intervention.

In contrast, there is a small risk of interference. The cluster defined by GP practice
should minimise this, as we only need to assume no interference at the cluster
level, but it could be plausible that patients interact with those outside their GP,
so that the exposure to a text message reminder of one patient may indeed affect
the potential outcome, in this case, influenza vaccination of another patient from a
different GP. The risk is small as usually close family members belong to the same
general practice.

Now, regarding the identification assumptions, we note that the unconfoundedness
of the CL randomised treatment assumption is satisfied by design. To check whether
cluster randomisation is a relevant instrument, we perform a test on the first stage of
the CL-TSLS. The corresponding F-statistic is F (1, 114) = 28.7 > 10 thus passing
Staiger and Stock’s rule of no null first-stage [36].

The exclusion restriction at the individual level implies that there is no other mech-
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anism by which the GP being randomised to sending text vaccination reminders
can affect a patient’s actual vaccination uptake beside via the sending of the mes-
sage. This assumption needs further justification, as in principle, a GP randomised
to send reminders can be more conscious of the risks the patients face during the
influenza season and use other means to remind at-risk patients, either in person,
by post or by putting out flyers and posters in the clinic. So, it is possible that
there are patients who do not receive text reminders and yet are prompted to get
vaccinated by other means, by virtue of their practice being in the active group.
However, flyers, posters and postal letters already form part of regular care, so we
believe they do not really vary by whether the GP is randomised to the active group.

Finally, the monotonicity assumption (that there are no defiers) also seems plausible
as GPs randomised to the active group were more likely to send a text message
reminder than those in the control group (see Table 3).

CL-TSLS on unadjusted CL outcomes was implemented adjusting and not adjusting
for a baseline CL covariate, namely whether the clinic was open on the weekends
(yes/no). Table 4 shows the CL-LATE estimates (expressed as mean risk differ-
ences), with 95% CIs and p-values obtained via different weighting strategies, and
corrections.

Using cluster size weights results in different point estimates from the rest. This was
expected as there is substantial cluster size imbalance (cluster size range: 148–1678
in the control group and 79–3022 in the active group (Table 3). The results obtained
using no weights or minimum-variance weights leads to point estimates that are very
close to those found in the original publication [20].

In terms of inference, the use of small-sample degrees of freedom correction in calcu-
lating CIs is not important, as the number of clusters is large, but the Huber-White
SEs paired with minimum-variance weighting provides efficiency gains, especially
for the adjusted CL-TSLS analyses. Overall however, the CIs are still very wide.

These results suggest that there is some evidence that receiving a text reminder
increases the expected proportion of patients within a compliant practice that get
vaccinated against influenza by 14% (95% CI: −0.5 to 29.3%, p = 0.058, based on
the adjusted CL-TSLS using minimum-variance weights and normal-based CI with
Huber-White SEs estimate).

Contrast this with the unadjusted CL-summaries mean risk difference ITT estimate,
which indicates a 2.89% increase (95% CI −0.17 to 5.95, p = 0.064), highlighting
the dilution effects deriving from the non-adherence.
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One of the disadvantages of TSLS is lack of efficiency. Adjusting for individual-level
baseline covariates may help obtaining narrower CIs. Since CL-TSLS cannot adjust
for individual level covariates, we now perform the analyses using adCL summary
outcomes, generated by adjusting for gender, age and the presence of disease. Results
are reported in Table 6 in the Appendix. The results do not materially change (weak
evidence of a 13% increase vaccination uptake), possibly because these individual
level covariates are not strongly associated with the outcome.

The illustrative example shows the importance of choosing and pre-specifying the
TSLS analysis according to the trial characteristics. In the example, the choice
of weights changed the point estimate to such an extent that the small evidence
in support of treatment benefit disappeared completely. So, if the trial has very
imbalanced cluster sizes, Huber-White corrections can help for the SEs, but the
point estimates may be biased, if large clusters are somewhat atypical.

Our application is limited by the availability of baseline cluster-level variables. Since
there was only one CL-variable recorded, the impact of covariate adjustment on the
CL-TSLS is negligible. Other limitations of these results include the possibility of
measurement error, for if patients received their influenza vaccine outside the prac-
tice, this would not have been recorded in the system, unless the patient informed
their GP.

Table 4: LATE of text message reminders to receive flu vaccination on the uptake of flu
vaccine in the TXT4FLUJAB trial, using unadjusted CL-summaries

Unadjusted Adjusteda

LATE (95% CI) p LATE (95% CI) p

No weighting None 0.149 (-0.006,0.305) 0.060 0.148 (-0.078,0.303) 0.063
HW 0.149 (-0.006,0.305) 0.060 0.148 (-0.005,0.301) 0.058
SSDF 0.149 (-0.009,0.308) 0.065 0.148 (-0.012,0.308) 0.069
SSDF + HW 0.149 (-0.009,0.308) 0.065 0.148 (-0.009,0.305) 0.064

Cluster size None 0.071 (-0.065,0.207) 0.307 0.074 (-0.061,0.209) 0.284
weights HW 0.071 (-0.088,0.230) 0.382 0.074 (-0.077,0.225) 0.338

SSDF 0.071 (-0.068,0.209) 0.313 0.074 (-0.064,0.212) 0.292
SSDF + HW 0.071 (-0.091,0.233) 0.388 0.074 (-0.081,0.228) 0.346

Minimum- None 0.143 (-0.008,0.293) 0.064 0.142 (-0.009,0.293) 0.065
variance HW 0.143 (-0.006,0.291) 0.060 0.142 (-0.005,0.289) 0.058
weights SSDF 0.143 (-0.011,0.296) 0.069 0.142 (-0.012,0.297) 0.071

SSDF + HW 0.143 (-0.009,0.294) 0.065 0.142 (-0.008,0.293) 0.064

Continued on next page
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Table 4 Continued

Weighting SE & Unadjusted Adjusteda

strategy correction LATE (95% CI) p LATE (95% CI) p

a Adjusted for whether clinic is opened during weekends.

HW: Huber-White; SSDF: small sample degrees of freedom.

5 Discussion

This paper demonstrates the use of TSLS regression applied to CL summaries (CL-
TSLS) as a simple and valid method for obtaining estimates of the LATE in CRTs
where non-adherence occurs at either the cluster or the individual level. To improve
efficiency of CL-TSLS estimates, we proposed adjusting for baseline variables; if
these are cluster-level, in the TSLS regression, while if these are individual-level, by
adjusting the CL-summary outcomes before performing TSLS. The performance of
CL-TSLS regression of either adjusted or unadjusted CL-outcomes, and adjusting
or not for CL-baseline variables was evaluated with different weighting strategies
(none, cluster size, minimum variance), as well as the use of different methods for
constructing CIs (alternatively using or not Huber-White SEs and/or small-sample
degrees of freedom correction) in a factorial simulation study.

We have demonstrated empirically through simulations, that under the stated suf-
ficient assumptions for identification, TSLS regression of CL summaries provides
consistent estimates of the causal treatment effect in the sub-population of compli-
ers, where non-adherence is at the cluster level. With individual-level non-adherence,
the additional assumption that the cluster-specific LATE is the same across clusters
is required for CL-TSLS to identify the population LATE [31]. Moreover, provided
that an appropriate distribution with small-sample degrees of freedom adjustment
is used when the number of clusters is small and Huber-White SEs are used if there
is high cluster size imbalance, valid 95% CIs can be constructed.

Our simulation study suggests that all weighting strategies perform similarly when
the number of clusters is not small. When the number of clusters is small, minimum-
variance weights tend to be badly estimated, and are not recommended; furthermore
when the cluster sizes are very variable, cluster size weights should not be used. Al-
though in the simulations the choice of weights did not affect the point estimates,
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these were affected in the illustrative example. Overall our results show that, un-
less there are very few clusters, or the outcome ICC is large, minimum-variance
weighting performs well [23]. An overall summary of these findings in the format of
recommendations is given in Table 5.

Although CL-TSLS is easy to implement, it suffers from being very inefficient. We
can see this in the illustrative example where all CIs for the CL-TSLS LATE es-
timates are much wider than those for the estimated ITT. There are two reasons
for this: CL-analyses are inefficient, unless the cluster sizes are (almost) equal [39],
and TSLS is known to be inefficient, although adjusting for baseline covariates can
ameliorate this [14]. In the context of CL-analysis it is only possible to include
cluster-level baseline covariates in the regressions [15]. However, we tested the per-
formance of CL outcomes which are adjusted for individual-level covariates [26], and
showed that this indeed has the potential to improve efficiency in certain settings.

For CL-TSLS analyses, inference should be based on the number of clusters, with
CIs constructed by using t− distributions with degrees of freedom equal to J − p
[40]. The outcome ICC value is important too, with higher ICCs requiring a larger
number of clusters for the asymptotical arguments to work, as well as whether the
cluster-level variances are homoscedastic [15].

Other methods for estimating causal treatment effects in CRTs with non-adherence
at the individual level exist, in particular Kang and Keele [31] have recently proposed
a finite-sample estimator that identifies the population LATE and obtains valid
inferences even when compliance is low.

We do not consider here situations where the identification assumptions are violated.
There are several options to study the sensitivity to departures from these assump-
tions. For example, if the exclusion restriction does not hold, a Bayesian parametric
model can use priors on the non-zero direct effect of randomisation on the outcome
for identification [41]. Since the models are only weakly identified, the results de-
pend strongly on the prior distributions. Alternatively, violations of the exclusion
restriction can also be handled by using baseline covariates to model the proba-
bility of compliance directly, within structural equation modelling via expectation-
maximisation [42,43].

We have only focused on LATE estimands. These are often criticised because the
estimates obtained apply to the “compliers” in the population, and these cannot be
observed in practice, thus limiting applicability. However, LATE estimates may be
used to provide information about the average causal effect in the entire population
[44]. Moreover, the average treatment effect on the compliers is often of interest

23



Table 5: Recommendations

Adherence Comments

At CL:
If the number of clusters J is small Use small sample DF correction to improve inference
If J is small and the outcome ICC is large Adjust for CL variables in TSLS to reduce bias

and improve efficiency
If an IL variable is a strong confounder Use adjusted CL-outcomes in the TSLS to improve efficiency
If CS is imbalanced Use small sample DF correction to improve inference

and avoid using CS weights

At IL:

If the number of clusters J is small Use small sample DF correction to improve inference
If J is small and the outcome ICC is large avoid adjusting for CL variables
If CS are imbalanced Use small sample DF correction to improve inference

and avoid using CS weights

CS: cluster sizes; CL: cluster level; DF: degrees of freedom; IL: individual level

to patients and medical decision makers, especially when they expect patients to
comply with the treatment [45].
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Figure 1: Bias (top row) and 95% CI coverage (rows 2–5) of CL-LATE with cluster-level
non-adherence and large true LATE. Data generation scenarios represented by ∗,+,×,
and ◦. Estimates are obtained via unadjusted or W -adjusted TSLS with different weights
(none, cluster size (CS) and minimum-variance (MV)) (by column) using CL unadjusted
or adjusted for X outcomes (“unCL” or “adCL”). Small (J = 10) and large (J = 50)
number of clusters results are shown in Panel A and B .
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Large Wj and Xij effects on Yij
Large Wj effect; small Xij effect

Small Wj effect; large Xij effect
Small Wj and Xij effects

Figure 2: Bias (top row) and 95% CI coverage (rows 2–5) of CL-LATE with individual-
level non-adherence and large true LATE. Data generation scenarios represented by
∗,+,×, and ◦. Estimates are obtained via unadjusted or W -adjusted TSLS with dif-
ferent weights (none, cluster size (CS) and minimum-variance (MV)) (by column) using
CL unadjusted or adjusted for X outcomes (“unCL” or “adCL”). Small (J = 10) and
large (J = 50) number of clusters results are shown in Panel A and B .
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Figure 3: Bias of the CL-LATE for the extra simulation where non-adherence is at the
cluster-level and a large true LATE, with high ICCs and varying numbers of clusters.
Estimates are obtained via unadjusted or adjusted TSLS with different weights (none,
cluster size (CS) and minimum-variance (MV)). Number of clusters varies by rows and
ICC by column.
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Figure 4: Bias of the CL-LATE for the extra simulation where non-adherence is at the
individual-level and a large true LATE, with high ICCs and varying numbers of clusters.
Estimates are obtained via unadjusted or adjusted TSLS with different weights (none,
cluster size (CS) and minimum-variance (MV)). Number of clusters varies by rows and
ICC by column.
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B

Large Wj and Xij effects on Yij

Figure 5: Extra simulation for very imbalanced cluster size settings. Bias (top row)
and 95% CI coverage (Huber-White SEs (or not) and SSDF corrections (or not)) of the
CL-LATE where non-adherence is at the cluster-level, and a large true LATE. Estimates
are obtained via unadjusted or adjusted TSLS with different weights (none, cluster size
(CS) and minimum-variance (MV)). Small and large number of clusters results appears in
Panel A and B respectively.
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Large Wj and Xij effects on Yij

Figure 6: Extra simulation for very imbalanced cluster size settings. Bias (top row) and
95% CI coverage (Huber-White SEs (or not) and SSDF corrections (or not)) of the CL-
LATE where non-adherence is at the individual-level, and a large true LATE. Estimates
are obtained via unadjusted or adjusted TSLS with different weights (none, cluster size
(CS) and minimum-variance (MV)). Small and large number of clusters results appears in
Panel A and B respectively.
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Appendices

A Adjusted cluster-level summaries for binary data

For binary a standard logistic regression model is usually fitted for binary outcomes,
which assumes that

logit (πij) = log

(
πij

1− πij

)
= λ1 + λ2Xij (11)
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Let Mj and M̂j be the observed and predicted number of successes in the jth cluster,

respectively. After fitting model (11), M̂j is calculated as

M̂j =
m∑
l=1

π̂ij =

nj∑
i=1

expit
(
λ̂1 + λ̂2Xij

)
.

Then the observed and predicted numbers of success are compared by computing
a residual for each cluster. If we want to estimate the adjusted RD, the residual,
known as difference-residual, for each cluster is calculated as

ej = (Mj − M̂j)/nj,

and treated as a continuous outcome in any subsequent analyses.

B Performance criteria

Let the mean of the estimated LATE across the replicate datasets in each scenario,

indexed by l = 1, ..., L, with L = 2500 be
¯̂
βIV = 1

L

L∑
l=1

β̂IVl . The following criteria

were used to assess the performance of the methods investigated

(a) Empirical bias: estimated by
¯̂
βIV − βCZ .

(b) Monte Carlo error of empirical bias =

√∑L
l=1

(
β̂IVl −

¯̂
βIV

)2
/[L(L− 1)].

(c) Coverage rate of the nominal of 95% CIs 1
L

∑L
l=1 I

(
|β̂IVl−βCZ | < 1.96si

)
,

where si denotes the model-based standard error for β̂IVl . The Monte Carlo

Error of coverage is
√∑L

l=1(0.95)(0.05)/L.
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C Results for adjusted CL summaries CL-TSLS

for TEXT4FLUJAB

Table 6: TSLS estimation of practice-level LATE of reminder text messaging to receive flu
vaccine on the percentage uptake of flu vaccine in the TXT4FLUJAB trial using adjusted
CL outcomes, adjusting for individual-level covariates gender, age and presence of disease.

Unadjusted Adjusteda

LATE (95% CI) p LATE (95% CI) p

No weighting None 0.133 (-0.016,0.282) 0.081 0.133 (-0.017,0.282) 0.082
HW (-0.016,0.282) 0.081 (-0.014,0.280) 0.077
SSDF (-0.019,0.285) 0.086 (-0.021,0.286) 0.089
SSDF + HW (-0.019,0.285) 0.086 (-0.018,0.283) 0.083

Cluster None 0.068 (-0.063,0.198) 0.310 0.071 (-0.058,0.200) 0.280
size weighting Huber-White (-0.081,0.216) 0.372 (-0.069,0.212) 0.320

SSDF (-0.065,0.201) 0.316 (-0.061,0.203) 0.288
SSDF + HW (-0.084,0.219) 0.378 (-0.073,0.215) 0.328

Minimum- None 0.128 (-0.017,0.273) 0.084 0.128 (-0.017,0.273) 0.084
variance weighting HW (-0.015,0.271) 0.080 (-0.014,0.269) 0.077

SSDF (-0.020,0.275) 0.090 (-0.021,0.277) 0.091
SSDF + HW (-0.018,0.273) 0.086 (-0.017,0.273) 0.083

a TSLS estimation was adjusted for weekend clinics (yes/no).

D Results for small true LATE
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Figure 7: Bias (top row) and 95% CI coverage (rows 2–5) of CL-LATE with cluster-level
non-adherence and small true LATE. Data generation scenarios represented by ∗,+,×,
and ◦. Estimates are obtained via unadjusted or W -adjusted TSLS with different weights
(none, cluster size (CS) and minimum-variance (MV)) (by column) using CL unadjusted
or adjusted for X outcomes (“unCL” or “adCL”). Small (J = 10) and large (J = 50)
number of clusters results are shown in Panel A and B .
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Figure 8: Bias (top row) and 95% CI coverage (rows 2–5) of CL-LATE with individual-
level non-adherence and small true LATE. Data generation scenarios represented by
∗,+,×, and ◦. Estimates are obtained via unadjusted or W -adjusted TSLS with dif-
ferent weights (none, cluster size (CS) and minimum-variance (MV)) (by column) using
CL unadjusted or adjusted for X outcomes (“unCL” or “adCL”). Small (J = 10) and
large (J = 50) number of clusters results are shown in Panel A and B .


