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ABSTRACT 

 

The endoplasmic reticulum (ER) is a highly organized organelle that performs vital 

functions including de novo membrane lipid synthesis and transport. Accordingly, numerous 

lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident 

that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic 

enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids 

from the ER to other organelles. As such, intimate relationships between lipid metabolism 

and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the 

activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity 

of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is 

still emerging. Here, we highlight past and recent key findings on specialized ER membrane 

domains involved in efficient lipid metabolism and transport and consider unresolved issues 

in the field. This article is part of a Special Issue entitled: ER Platforms for Membrane Lipid 

Dynamics edited by Shamshad Cockcroft and Christopher J. Stefan. 
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1. Introduction 

The endoplasmic reticulum (ER) is a vast membrane compartment that extends from 

the nuclear envelope (NE) to cytoplasmic ER sheets and peripheral ER tubules [1]. While the 

ER network is continuous, it is arranged into distinct morphological and functional domains. 

Historically, ER sheets and tubules have been described as ribosome-studded rough ER and 

ribosome-free smooth ER, respectively [2, 3]. The rough ER has dedicated roles in protein 

translocation, quality control, and secretion. In contrast, vital functions for the smooth ER are 

quite diverse including calcium homeostasis [4] as well as the metabolism of membrane 

lipids [5], steroid hormones, and even toxic substances [6, 7]. To carry out these essential 

activities as needed, smooth ER cisternae and tubules are continuously formed and remodeled. 

Accordingly, an elegant electron tomography study has revealed a complex meshwork of 

peripheral ER cisternae and tubules in budding yeast cells [8]. Another recent study using 

super-resolution microscopy on mammalian cells has suggested that cortical ER structures 

that are closely apposed to the PM consist of packed ER tubules that form a dense matrix [9]. 

Thus, the ER consists of a diverse membrane network where specialized functions are 

partitioned into different structural regions. 

In addition to a variety of shapes, the ER forms an elaborate system of interactions 

with other organelles termed membrane contact sites [10-15]. A growing number of studies 

have described important roles for membrane contact sites including lipid exchange and 

transfer [16-19]. Contact sites are thought to provide an optimal environment for non-

vesicular lipid transport by maintaining a short distance (less than 30 nm) between different 

organelle compartments. Moreover, as first shown in seminal biochemical experiments, ER 

membranes associated with other compartments, such as mitochondria and the plasma 

membrane, are highly enriched in their capacity to synthesize phospholipids and sterols [20-

23]. Taken together, these findings indicate that lipid metabolism and transport are closely 

coupled at ER-organelle contact sites. Here we review key discoveries and recent findings on 

how the ER membrane is organized to achieve efficient lipid metabolism and non-vesicular 

transport and how these two processes undergo mutual cross talk to promote one another. 

 

2. Compartmentalization of phospholipid biosynthesizing enzymes in the ER  

It is well known that most phospholipids are synthesized in the ER [5] (Fig. 1). 

However, pioneering cell fractionation experiments suggested that lipid synthesis is enriched 

at specialized ER subdomains associated with other organelles such as mitochondria. 

Accordingly, with advances in live cell imaging techniques, a heterogeneous distribution of 
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phospholipid biosynthesizing enzymes (but not all) within the ER has recently emerged. In 

many cases, this occurs at membrane contact sites where lipid transfer proteins can deliver 

newly synthesized lipids to other organelles for membrane expansion and homeostasis (Fig. 

2). In this section, we highlight examples of phospholipid biosynthetic activities that display 

enriched activity within subdomains of the ER.  

 

2.1. Phosphatidylserine (PS) synthase 

One of the first studies providing compelling evidence for compartmentalization of 

phospholipid biosynthesis within the ER was performed by Dr. Jean E. Vance [20]. A 

microsomal ER fraction associated with mitochondria (called MAM, mitochondrial-

associated ER membranes) purified from rat liver showed high activity for 

phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) 

synthesis from serine [20] (Figs. 1 and 2). Contacts between the ER and mitochondria were 

first observed in hepatocytes by electron microscopy in 1952 by Bernhard and colleagues 

[24]. A few years later, Bernhard and Rouiller speculated that ER-mitochondrial contacts 

might have vital roles in ER physiology [25]. However, a clearly defined role for this 

association remained elusive until Vance’s biochemical studies decades later, revealing that 

ER-mitochondrial contacts are enriched in phospholipid biosynthetic activities (Figs. 1 and 2). 

Among them, the synthesis of PS at MAMs has been extensively analyzed [11]. In mammals, 

PS is synthesized by a base-exchange reaction from PC by PSS-1 or PE by PSS-2 (Fig. 1). 

Both PSS-1 and PSS-2 are enriched in the MAM fraction [21]. Activity of the yeast PS 

synthase, the Cho1 protein that generates PS from CDP-diacylglycerol (Fig. 1), is also 

enriched in MAM fractions [23]. Thus, an enrichment of PS synthase activity in MAM 

fractions is conserved in yeast and mammals in spite of the fact that PS is generated via 

different catalytic mechanisms in these species (Figs. 1 and 2). In yeast, PS synthase activity 

is also enriched in ER fractions associated with the plasma membrane (PM) called PAM, PM-

associated ER membranes [22]. Based on these evidences, PS synthase activity is enriched at 

ER-mitochondria contacts and also at ER-PM contacts (Fig. 2). Robust PS synthase activity 

at membrane contact sites is likely to be supported by PS transfer proteins that function at 

these sites, as PS synthase is subject to product feedback inhibition in the ER (discussed in 

greater detail in Sections 3 and 4 below). 

 

2.2. Cholinephosphotransferase (CPT) and ethanolaminephosphotransferase (EPT)   

  Most eukaryotic cells synthesize PC and PE via the CDP-choline and CDP-
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ethanolamine pathways by cholinephosphotransferase (CPT) and 

ethanolaminephosphotransferase (EPT), respectively (Fig. 1). Biochemical fractionation 

analyses have shown that both CPT and EPT activities are detected mainly in microsomal ER 

fractions isolated from rat liver [26, 27]. In mammals, the CPT and EPT reactions are also 

catalyzed by CEPT1, a dual specificity choline/ethanolaminephosphotransferase [28] that is 

localized to the ER [29]. Interestingly, enrichment of CEPT1 at the tips of growing ER 

tubules in COS-7 has been reported [30]. Thus, do novo phospholipid synthesis via CEPT1 

may drive the dynamic organization of the reticular ER network. 

 

2.3. Phosphatidylethanolamine N-methyltransferase (PEMT) 

Conversion of PE to PC is catalyzed by the enzyme PEMT (PE methyltransferase) in 

hepatocytes and by Cho2 and Opi3 in yeast via a process known as the methylation pathway 

(Fig. 1). PEMT activity is enriched in MAM fractions isolated from rat liver and PEMT 

appears to localize to MAM domains by microscopic analysis in sections from rat liver tissue 

[31]. In yeast cells, the majority of PC is generated by PEMTs [5]. Yeast PEMT enzymatic 

activities (carried out by the Cho2 and Opi3 proteins) are also readily detected in MAM 

fractions, while the proteins themselves may not be necessarily enriched at MAMs [23]. 

Another study reported that Opi3 is localized at peripheral ER structures associated with the 

PM where it may convert PE to PC in trans [32].  

 

2.4. Phosphatidylinositol (PI) synthase   

Phosphatidylinositol (PI) is generated from CDP-diacylglycerol by PI synthase (PIS) 

(Fig. 1). The site of PI synthesis has been under debate for a long time. Biochemical analyses 

have shown that PIS activity is found mainly in microsomal ER fractions derived from rat 

liver [33, 34], while PM fractions were also reported to have high PIS activity under different 

experimental conditions [35, 36]. In addition, PIS activity has also been detected in Golgi 

compartment fractions derived from rat liver and yeast [26, 37]. A study has even suggested 

that PIS is enriched in highly mobile ER-derived compartments in intact COS-7 cells [38]. 

These mobile PIS compartments transiently contact other organelle membranes [38]. Another 

study has shown that PIS-enriched assemblies are mainly formed at the leading edge of 

dynamic ER tubules in COS-7 cells. These structures also contain the phospholipid 

biosynthesizing enzyme CEPT1 (Fig. 1) [30]. Similar PIS assemblies in the ER have been 

confirmed in other cell lines (HeLa and RPE cells) [39, 40] suggesting that PIS is most likely 

present in specialized ER subdomains. Given that PIS activity is enriched in MAM and PAM 
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fractions derived from yeast cells [22, 23], the punctate PIS structures could reflect 

localization at membrane contact sites between the ER and other compartments. Localization 

to PAM fractions may play an important role in the synthesis of phosphoinositide lipids at the 

PM, as discussed by other review articles by the Balla and Cockcroft groups in this issue [41, 

42]. 

The involvement of PIS-enriched domains in autophagosome formation has been 

also reported [43]. Under starvation conditions, various autophagy-related (ATG) proteins are 

sequentially recruited to the ER membrane to induce autophagosome formation in 

mammalian cells. In spite of the fact that ATG proteins associate with the ER membrane at an 

early stage of autophagy, they do not show a typical reticular ER distribution. Instead they 

form a punctate structure at the ER, implying the existence of an ER subdomain required for 

autopahgosome formation. Interestingly, the ATG protein assemblies are recruited to a PIS-

enriched ER subdomain to initiate autophagosome formation [43]. As phosphatidylinositol 3-

phosphate (PI3P) formation is a critical step for autophagosome formation, the PIS-enriched 

domain might be involved in PI3P metabolism at ER-isolation membrane contact sites [44]. 

 

3. Phospholipid transfer between the ER and other compartments by lipid transfer 

proteins (LTPs) 

Newly synthesized lipids in the ER are delivered to their final destination via 

vesicular and non-vesicular mechanisms (see a review article by Drs. Funato, Riezman and 

Muñiz in this issue) [45]. However, bulk lipid transport is thought to occur in a non-vesicular 

fashion via lipid transfer proteins (LTPs). In general, LTPs have cytoplasmic domains bearing 

hydrophobic cavities that extract and exchange lipid molecules between membranes. Many 

proteins belong to lipid transfer protein families based on sequence homology; however 

which LTPs transport which lipids in vivo has been less clear. Several recent studies have 

revealed physiological ligands of LTPs and proposed models for lipid exchange and transport. 

In this section, we briefly summarize recent progress on phospholipid transfer proteins. 

Several other excellent reviews provide a comprehensive review of LTPs and transport of 

other lipids including sterols [16, 18, 46]. 

 

3.1. Class I PITPs 

The first phosphatidylinositol transfer protein (PITP) was purified from bovine brain and 

shown to bind, exchange, and transfer phospholipids in vitro, in particular PI and PC [47]. In 

mammals, there are five PITP proteins that are categorized into Class I and II based on 
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sequence differences [48]. Class I PITPs (PITP and PITP) consist only of a PITP domain 

and have dual ligand binding specificity for PI and PC [47, 49]. Accordingly, PITP and 

PITP efficiently transfer PI or PC between membranes in vitro [50]. The crystal structures 

of PITP and PITPreveal a hydrophobic pocket that can accommodate a single 

phospholipid molecule, either PI or PC [51-54]. Structural analysis of PITP bound to PI has 

shown that four residues (Thr-59, Lys-61, Glu-86 and Asn-90) are critical for PI binding, but 

not PC binding[52]. In contrast, the Cys-95 residue in the head group binding pocket of 

PITP is required for PC binding [55] Given that these residues are conserved in both PITP 

and PITP [52, 55], it is proposed that PI/PC exchange or transfer is the common function of 

Class I PITPs. In one model, it has been suggested that PITP transfers PI from the ER to the 

cis-Golgi compartments to facilitate phosphatidylinositol 4-phosphate (PI4P) synthesis by PI 

4-kinase [55]. At ER-PM contacts (PAM), PI exchange or transfer by Class I PITPs has been 

implicated in phospholipase C and EGF receptor signaling by promoting phosphoinositide 

kinase activities [56, 57]. However, strong arguments have proposed that Class I PITP lipid 

exchange activity (rather than lipid transfer per se) suffices for PI 4-kinase activity in vivo 

[58]. Thus, whether Class I PITPs function as PI transfer proteins or as PI exchange proteins 

in vivo remains an issue that is currently still under debate. 

 

3.2. Class II PITPs 

Class II PITPs include PITPNM1/RdgBI/Nir2, PITPNM2/RdgBII/Nir3 and 

PITPNC1/RdgB The name RdgB is derived from retinal degeneration type B describing the 

phenotype manifested in Drosophila lacking a functional RdgB protein [59]. Mammalian 

RdgBI/Nir2 (Class II), but not mammalian PITP(Class I), rescues the fly RdgB mutant 

indicating that Class I and II PITPs are functionally different [60]. A recent study has shown 

that, unlike Class I PITPs, Class II PITPs have the ability to bind phosphatidic acid, PA, 

instead of PC [61]. Consistent with this observation, Cys-95, a key residue for PC binding in 

PITP, is replaced with threonine in Class II PITPs [61]. Thus, Class II PITPs mainly 

exchange or transfer PI and PA, not PC. As such, Class II PITPs serve as key factors at ER-

PM contacts (PAM) during phospholipase C signaling and the phosphoinositide cycle (see 

two review articles by the Balla and Cockcroft groups in this issue) [41, 42]. Indeed, several 

studies have shown that Class II PITPs (Nir2, Nir3 and Drosophila RdgB) enhance 

phosphatidylinositol 4,5-bisphosphate, PI(4,5)P2, re-synthesis by exchanging PI/PA at ER-

PM contact sites in vivo [62-66]. 
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3.3. Sec14/CRAL-TRIO domain family 

Sec14 is the prototype of the Sec14 domain (also referred to as the CRAL-TRIO 

domain) superfamily, as it was first characterized as a PI/PC exchange protein essential for 

Golgi secretory function and cell viability in yeast [67-70]. Yeast mutant cells lacking Sec14 

function can be rescued by overexpression of mammalian PITPs [71, 72]. Moreover, Sec14 

and mammalian Class I PITPs show a common function for PI/PC exchange in permeabilized 

cells [73] in spite of the fact that Sec14 has no sequence or structural homology to 

mammalian PITPs. Based on genetic and biochemical evidence [74-76], it is proposed that 

Sec14 coordinates PC and PI4P metabolic pathways with Golgi network organization and 

function. Crystal structures of Sec14 and Sfh1 (the closest Sec14 homolog) demonstrate that 

the Sec14/CRAL-TRIO domain forms a hydrophobic pocket that is occupied by one 

phospholipid molecule [77-79]. Both PI and PC binding activities of Sec14 are essential for 

cell growth and stimulation of PI4P synthesis in yeast [77]. Curiously, some mammalian 

Sec14-related proteins bind other hydrophobic ligands such as 11-cis-retinol, -tocopherol, 

or squalene with high affinity rather than PI in vitro [80]. While it is unclear whether all 

mammalian Sec14 family members carry out phospholipid exchange, the Sec14-like domain 

of neurofibromin/NF1 can harbor a phospholipid molecule in vitro [80-82]. Future studies are 

needed to determine whether mammalian Sec14-like isoforms have a conserved role in the 

control of PI4P synthesis as PI exchange proteins. 

 

3.4.1. ORP/Osh protein family 

Oxysterol binding protein (OSBP) was originally identified as a cytosolic protein 

that strongly binds 25-hydroxycholesterol [83, 84]. Based on sequence homology, >12 

OSBP-related proteins (encoded by the OSBP and ORP1-11 genes) in humans and 7 OSBP 

homology (Osh: Osh1-7) proteins in yeast have been found [85]. Although physiological 

ligands of ORP/Osh proteins had been somewhat mysterious [86-96], structures of Osh 

protein-lipid complexes have provided important insight into their functions as sterol and 

phosphatidylserine (PS) exchange and transfer proteins in vitro and in vivo [97-103]. 

Importantly, while some ORP/Osh proteins bind to sterol lipids and other family members 

bind PS, they are all capable of binding PI4P [104, 105]. The PI4P headgroup interacts with 

residues that are highly conserved in ORP/Osh proteins, suggesting that PI4P is a common 
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ligand of ORP/Osh proteins [104, 105]. Thus, it has been proposed that ORP/Osh proteins 

exchange PI4P for other lipid molecules. Specifically, OSBP [106] and Osh4 [107] are 

proposed to serve as sterol/PI4P exchange proteins in the early secretory pathway and 

ORP5/8 in mammals and Osh6/7 in yeast function as PS/PI4P exchange proteins at ER-PM 

contact sites (PAM) in the control of PI4P and PS levels at the PM [108, 109]. Based on these 

findings, an elegant ‘counter current’ model has been proposed whereby ORP/Osh proteins 

transfer PS or sterol against their gradients in exchange for PI4P at the target membrane [110, 

111]. In line with this idea, additional ORP/Osh proteins show dual sterol/PI4P binding [112-

114].  

 

3.4.2. Must ORP/Osh proteins use counter currents?  

The counter current model for ORP/Osh protein function poses that a newly synthesized 

sterol or PS molecule is selectively removed from the ER and delivered to a target membrane 

organelle in exchange for PI4P continuously synthesized at that site. It is proposed that the 

PI4P-bound ORP/Osh protein must return to the ER where it releases PI4P for hydrolysis by 

an ER-localized phosphatase named Sac1. This elegant model is illustrated in detail by recent 

in vitro studies [107, 109]. However, while ORP/Osh function is essential in all eukaryotic 

cells, work in yeast and mammalian cells has shown that Sac1 activity in the ER is not an 

obligate requirement [115-117]. Even though cells require Sac1 activity for viability [115, 

118, 119], this activity may occur elsewhere than the ER (Golgi compartments, endosomes, 

and even the cytoplasm). This is likely because cells express other Sac1-like activities (such 

as the synaptojanins and even Sac2 in mammalian cells) that localize to other compartments 

in the cell including transport vesicles, Golgi compartments, and endosomes. As such, 

ORP/Osh proteins may present PI4P to Sac1 domain-containing phosphatases at target 

membranes where these enzymes reside.  

Why might subtle distinctions in the ‘counter current’ model be important? First of 

all, they could afford a net gain (+1) of lipid, as the target membrane may retain the PI 

molecule. This may be especially important for membrane expansion during de novo 

biogenesis of a membrane compartment (i.e. peroxisomes and autophagosomes) or for 

transport vesicles undergoing directed transport that undergo fission/fusion reactions and 

mature en route to their final destination. In addition, PI4P-independent and Sac1-

independent ORP/Osh protein function has been demonstrated in vitro and in vivo [107, 117]. 

Moreover, PI(4,5)P2 has been suggested to be a ligand for ORP proteins in vitro, and 

sterol/PI(4,5)P2 exchange has been proposed for mammalian ORP family members in vivo 
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[120-122]. The involvement of ORP5 and ORP8 in mitochondrial function has been also 

reported [123]. Whether PI4P is synthesized at mitochondria and is needed for ORP5/8 

function at mitochondria remains unclear. Thus, alternative modes for ORP/Osh protein 

function may exist in vivo. 

 

3.5. The START domain family 

The steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) 

domain family shares a unique structural module for harboring lipids, named as the START 

domain [124]. The START domain structure bears a hydrophobic pocket that can 

accommodate one lipid molecule [125-130]. In humans, the START domain family consists 

of 15 proteins that fall into six subgroups based on sequence and ligand-binding similarities. 

The STARD1/D3 subgroup and STARD4/D5/D6 subgroup commonly bind cholesterol in 

vitro. The founding member of START domain family members, STARD1/StAR is essential 

for cholesterol transport from the outer to the inner mitochondrial membrane to initiate 

steroid hormone biosynthesis in adrenal and gonad tissues [131]. STARD3/MLN64 is 

ubiquitously expressed and involved in cholesterol transport at ER-endosome contact sites 

[132]. STARD4, STARD5 and STARD6 are composed of only a START domain that binds 

cholesterol, bile acids, or steroids in vitro [133, 134]. In contrast, the STARD2/D7/D10/D11 

subgroup members, STARD2, STARD7 and STARD10 bind PC in vitro [125, 135, 136]. 

Notably, STARD7 maintains mitochondrial PC composition by transferring PC in vivo [137-

139]. STARD11/CERT has been well characterized as a ceramide transfer protein [140]. 

STARD11/CERT transfers ceramide from the ER to the trans-Golgi apparatus where it is 

converted to sphingomyelin. Interestingly, STARD11/CERT weakly binds diacylglycerol in 

vitro [127]. Diacylglycerol is produced by conversion of ceramide to sphingomyelin. 

Therefore, a model of ceramide/diacylglycerol exchange by STARD11/CERT has been 

proposed [18]. Diacylglycerol may be transferred back to the ER by STARD11/CERT to be 

utilized for further rounds of lipid synthesis. 

 

3.6. SMP protein family 

The SMP (synaptotagmin, mitochondrial and lipid binding protein) domain has been 

recently characterized as a lipid-harboring and transfer module. The SMP domain of 

Extended-Synaptotagmin 2 (E-Syt2) has been shown to dimerize forming an extended 

hydrophobic tube that preferentially binds glycerolipids [141], consistent with bioinformatic 

predictions [142, 143]. As E-Syt isoforms and the yeast ortholog tricalbin proteins localize to 
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ER-PM contact sites [144-146], their roles in lipid transfer between ER and the PM are 

expected. In fact, E-Syt proteins can transfer phospholipids and diacylglycerol between 

membrane bilayers with little or no headgroup specificity in vitro. The transfer is 

concentration gradient-dependent and Ca2+-dependent however [147, 148]. In a physiological 

context, it has been proposed that E-Syts transfer excess diacylglycerol from the PM to the 

ER after PI(4,5)P2 hydrolysis by PLC [147]. Another SMP containing protein, TMEM24 

(also known as C2CD2L), concentrates at ER-PM contact sites and transfers phospholipids, 

with a preference for PI, to the PM in response to PLC signaling [149]. 

A SMP domain is also found in the ERMES (ER-mitochondrial encounter structure) 

complex components Mdm12, Mmm1 and Mdm34. The ERMES complex was originally 

identified as a tethering complex that maintains ER-mitochondria contact sites in yeast [150]. 

As the conversion of PS to PC is impaired in ERMES mutants and because mitochondria can 

synthesize PE, a role for the ERMES complex in phospholipid exchange between the ER and 

mitochondria has been proposed. The overall backbone structures of Mdm12 and Mmm1 

resemble that of the SMP domain of E-Syt2, including the presence of hydrophobic cavities 

and an ability to bind phospholipids in vitro [151-153]. Accordingly, the isolated Mmm1-

Mdm12 complex carries out efficient phospholipid transfer between liposomes in vitro [154]. 

Thus the ERMES complex may mediate phospholipid transfer between the ER and 

mitochondria in vivo. Further analyses are needed to fully understand the role of ERMES 

complex in lipid transfer and metabolism in vivo.  

 

3.7. Vps13 and Atg2 

The Vps13 protein family is highly conserved in eukaryotes. Yeast has a single 

VPS13 gene, while the human genome contains four VPS13 genes (VPS13A-D). Mutations 

or perturbations in the expression of VPS13 genes are associated with various human 

disorders [155]. Yet despite their known importance, a molecular function for Vps13 family 

members had been unclear for quite some time. However, an unbiased and comprehensive 

genetic study revealed that the growth defect of yeast ERMES mutants can be bypassed by 

fortuitous gain-of-function mutations in the VPS13 gene [156]. Consequently, it was found 

that yeast Vps13 localizes to membrane contact sites between various organelles including 

ER-mitochondrial contacts [156, 157]. This led to the notion that Vps13 proteins might be 

involved in lipid transfer, and work by the De Camilli and Reinisch groups have recently 

shown that the N-terminal portion of Vps13 is tubular with a hydrophobic cavity that can 

accommodate a large number of lipids. This region of Vps13 efficiently transfers 
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glycerolipids between liposomes in vitro [158]. Interestingly, the N-terminal portion of Vps13 

is similar to the N-terminus of the Atg2 protein [159], implying that Atg2 may transfer lipids 

as well. Indeed, the crystal structure of the N-terminus of Atg2 has been recently resolved and 

its phospholipid transfer activity has been demonstrated in vitro [160, 161]. Surprisingly, a 

Vps13-Atg2 chimera in which the N-terminus of Atg2 is replaced with the N-terminus of 

Vps13 almost fully rescued impaired autophagic activity in atg2 mutant yeast cells. These 

results indicate that the N-terminus of Vps13 and Atg2 share a key function in transferring 

phospholipids [160]. As the Vps13 and Atg2 N-terminal regions have no similarity to any 

characterized lipid transfer module, they are a novel type of LTP. 

 

4. Relationships between phospholipid metabolism and non-vesicular lipid transfer  

As described above, some phospholipid biosynthesis enzymes are enriched at ER 

membrane subdomains. Similarly, some LTPs efficiently target to ER subdomains often 

corresponding to membrane contact sites where they transfer/exchange lipids between 

different organelle membranes. The similarities in their distribution imply functional 

relationships. Next we review recent findings regarding these close connections and discuss 

possible molecular mechanisms linking phospholipid metabolism and transport. 

 

4.1. LTPs enhance the activity of phospholipid metabolizing enzymes 

LTPs may promote lipid metabolism by various mechanisms (Fig. 3). A simple mechanism is 

to increase substrate concentration. As such, LTPs may stimulate lipid metabolism by 

supplying substrates to the membrane domain where enzymes localize (Figs. 3A and 3B). For 

example, it is thought that PITPs including Nir2 and TMEM24 stimulate PM-localized PI 

kinase activity by transferring PI from the ER to the PM [48, 65, 66, 149]. The Class II PITP 

Nir2 is also proposed to transfer PA from the PM to the ER where the ER-localized CDS and 

PIS enzymes convert it to PI. Another mechanism by which LTPs may facilitate lipid 

metabolism is substrate presentation. As some enzymes cannot efficiently use a lipid 

substrate within a lipid bilayer, LTPs may extract and present a lipid to an enzyme in order to 

stimulate its enzymatic reaction (Fig. 3C). This model has been proposed for the Sec14 

protein [75, 77] whereby Sec14-mediated PI/PC exchange promotes interfacial presentation 

of PI to PI 4-kinase to generate PI4P. Based on in vitro results, ORP/Osh proteins have 

similarly been suggested to present PI4P to the Sac1 phosphatase [162], but further studies 

are needed to determine whether this occurs in vivo. As some lipid metabolizing enzymes are 
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activated by lipids other than a substrate [163], LTPs might also enhance enzymatic activities 

by delivering a stimulatory lipid (Fig. 3D). In line with this model, we have recently reported 

that PS and sterol supplied by Osh proteins allosterically activate PI(4,5)P2 synthesis by 

PIP5K [164], which in turn ensures PM organization and integrity [164, 165]. On the other 

hand, some lipid metabolizing enzymes undergo product feedback inhibition [166, 167]. 

Therefore, LTPs might be needed to remove an inhibitory lipid from the membrane where 

enzymes are working to maintain their high enzymatic activity (Fig. 3E). A prime example is 

found in PS synthases (mammalian and yeast) that are inhibited by PS in the ER (product 

feedback inhibition) and the ORP/Osh proteins that transfer newly synthesized PS from the 

ER (ORP5/8 and Osh6/7). Thus, ORP/Osh protein-mediated PS transfer may sustain PS 

synthesis in the ER and stimulate PS-dependent activities at the PM (such as protein kinases, 

PIP5K, and Rho-family small GTPases) [164, 168, 169]. Indeed, inactivation of the yeast 

Osh proteins leads to a significant reduction in cellular PS levels as well as decreased PS in 

the cytoplasmic leaflet of the PM [164]. 

 

4.2. Phospholipid synthesis facilitates loading of lipid molecules to LTPs. 

Are there other reasons why phospholipid biosynthesis enzymes are 

compartmentalized within the ER? Several studies have proposed that enrichment of 

phospholipid biosynthesis enzymes might facilitate non-vesicular lipid transfer at membrane 

contact sites (Figs. 4 and 5). In 1991, Dr. Jean E. Vance reported that newly synthesized PS 

and PE are efficiently transferred between ER microsomes and mitochondria isolated from rat 

liver [170]. Similarly, another group has shown that newly synthesized PS is rapidly 

translocated from the ER to the mitochondria and metabolized into PE in permeabilized yeast 

cells [171]. A more recent study has directly demonstrated the stimulatory effect of localized 

PS synthesis on lipid transfer activity. Artificially targeting E. coli PS synthase, a peripheral 

membrane protein that has no homology to yeast or mammalian PS synthases, to ER-

mitochondria contacts (MAM) promotes PS transport from the ER membrane to 

mitochondria in yeast [166].  

 How does phospholipid synthesis enhance non-vesicular lipid exchange and transfer? 

Lipid transport by LTPs is divided into several different steps (Fig. 2). First, LTPs must dock 

to donor membranes and load a lipid ligand (Steps 1-3 in Fig. 2). One possibility is that 

localized enrichment of lipid biosynthesis enzymes can increase the local concentration of 

lipid ligands. This may be especially important, given that lipids can be flipped to the luminal 

side of the ER membrane (by either spontaneous or flippase-induced transbilayer 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 14 

movements) thereby effectively reducing their amounts on the cytoplasmic leaflet. 

Compartmentalized lipid biosynthesis within ER subdomains may establish localized 

concentration gradients of newly synthesized lipids for LTP capture (Fig. 4A and 4B). As 

phospholipid remodeling mainly occurs in the ER membranes, we also have to consider 

changes in fatty acid composition of ER phospholipids. The fatty acid composition of nascent 

lipids might be preferred by LTPs compared to lipids with prolonged ER retention times that 

are more likely to have undergone acyl chain remodeling (Fig. 4C). In support of this idea, 

the Osh6 protein preferentially transfers saturated PS in vitro [109]. It will be important to 

examine whether alterations in phospholipid remodeling pathways affect lipid exchange and 

transfer in vivo. Another possibility is a regulatory effect of lipid metabolism on LTP 

functions. Lipid metabolizing enzymes might generate stimulatory lipids (Fig. 4D) or 

consume some inhibitory lipids for LTP docking/loading steps (Fig. 4E). Indeed, given that 

PI3P stimulates Atg2-dependent lipid transfer in vitro [160], it is reasonable to consider that 

PI3P synthesis might enhance Atg2-dependent lipid transfer in vivo. In addition, at least two 

studies have proposed a key role for ER-shaping factors in phospholipid metabolism and LTP 

function [30, 172]. Phospholipid metabolic enzymes and LTPs might share similar 

preferences for membrane curvature such as ER tubules (Fig. 4F).  

 

4.3. Phospholipid metabolism and unloading of lipid molecules from LTPs 

 After lipid ligand loading, LTPs target and dock to acceptor membranes and then 

unload the ligand (Steps 5-7 in Fig. 2). As lipid metabolism may consume a lipid ligand and 

reduce its local concentration, this may effectively prevent re-extraction of the transferred 

lipid and thus promote directional transfer (Figs. 5A and 5B). Likewise, some enzymes may 

generate a competitive ligand for LTPs and facilitate an exchange of lipid ligands in the same 

membrane (Fig. 5C). A good example is Class II PITPs. After Nir2 and Drosophila RdgB 

transfer PA to the ER, the PA is converted into PI by CDS and PIS in the ER membrane 

(ligand consumption, Fig. 5B). As newly synthesized PI is also a ligand for Class II PITPs 

with a higher affinity compared to PA [66], PA is released and instead PI is loaded 

(competitor ligand, Fig. 5C). Another example is ORP5/8 in mammals and Osh6/7 in yeast. 

These ORP/Osh proteins extract PI4P from the PM and bring it back toward the ER for 

hydrolysis by Sac1 in the ER membrane (ligand consumption, Fig. 5B). The ORP proteins 

then in turn extract newly synthesized PS in the ER (competitor ligand, Fig. 5C). Although 

the binding affinity of PS to ORP proteins is less than that of PI4P [109], the concentration of 
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PI4P is thought to be extremely low in the ER due to Sac1. Alternatively, it is also possible 

that lipid metabolism generates some stimulatory lipids for unloading ligands (Fig. 5D). For 

example, PI(4,5)P2 is thought to stimulate sterol release from Osh proteins [99, 173] and 

STARD family members [174]. 

 

 

 

5. Future questions 

Although the significance of ER subdomains in lipid metabolism and transport was 

first proposed almost 30 years ago, the past few years have seen tremendous advances in our 

knowledge of lipid dynamics. Recent studies have identified physiological ligands of LTPs 

and presented insightful models for non-vesicular lipid transport machinery. In particular, 

structural analyses have facilitated a better understanding of how LTPs harbor and transfer 

lipids. Of note, some LTPs such as the E-Syt, Vps13, and Atg2 proteins not only serve as 

lipid carriers but also as tethers that form ER-organelle contact sites in vivo, further 

suggesting that lipid exchange and transfer events are coupled with membrane contact site 

formation. While these advances have pushed the field forward, many key issues remain to be 

clarified. How the directionality of lipid exchange and transfer is regulated is still a big 

mystery in this field. Some LTPs move lipids from high to low concentration, while other 

LTPs transfer them against their concentration gradients in vivo. Thus another major question 

involves how various LTPs activities are coordinated to result in net membrane lipid gain or 

changes in membrane lipid composition as needed. An additional point is that in vitro lipid 

transport by LTPs is not as high as predicted in vivo. It has been argued that there is a big gap 

between in vitro lipid transport rates and lipid demand in vivo [175-177]. These discrepancies 

might be explained by the contribution of yet uncharacterized factors in the 

loading/unloading steps of LTPs. Possibly, lipid inter-conversion and metabolism may play 

important roles in the rapid transfer rates observed in vivo. To address this issue, novel 

methods to detect and evaluate lipid movements in vivo are needed. Finally, unlike typical 

LTPs, some SMP domain proteins, Vps13 family, and Atg2 family members have a capacity 

to bind multiple lipids with little or no headgroup specificity in vitro. Therefore, it is natural 

to consider that these proteins need to be coupled with lipid metabolism enzymes to achieve 

selective lipid transport in vivo. Important questions in lipid metabolism and transport will 

undoubtedly continue to be a major focus of cell biology research. 
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Figure Legends 

 

Figure 1. Phospholipid biosynthesis pathways 

Phospholipid biosynthesis pathways in yeast and mammalian cells. Yeast-specific, 

mammalian-specific, and common pathways are shown in blue, red and black lines 

respectively. PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, 

phosphatidylserine; PI, phosphatidylinositol; PG, phosphatidylglycerol; PA, phosphatidic 

acid; lysoPA, lysophosphatidic acid; DAG, diacylglycerol; TAG, triacylglycerol; CDP-DAG, 

cytidine diphosphate-diacylglycerol; GPAT, glycerol-3-phosphate acyltransferase; LPAAT, 

lysoPA acyltransferase; PAP, phosphatidate phosphatase; DGAT, acyl-CoA:diacylglycerol 

acyltransferase; CDS, CDP-DAG synthase; PIS, phosphatidylinositol synthase; PSS, 

phosphatidylserine synthase; PSD, phosphatidylserine decarboxylase; PEMT, 

phosphatidylethanolamine N-methyltransferase; P-Ch, phosphocholine; P-Et, 

phosphoethanolamine; CDP-Ch, CDP-choline; CDP-Et, CDP-ethanolamine; CPT, 

cholinephosphotransferase; EPT, ethanolaminephosphotransferase; CEPT, 

choline/ethanolaminephosphotransferase. 

 

Figure 2. Non-vesicular lipid transfer by box-type LTPs 

[Top panel] Sequential lipid transfer by box-type lipid transfer proteins (LTPs), such as PITPs, 

ORP/Osh proteins, CRAL-TRIO family members and STARD proteins, is divided into 8 

distinct steps. (1) A LTP docks to a donor membrane. (2) The LTP extracts a lipid ligand from 

the donor membrane. (3) The LTP detaches from the donor membrane and its lid closes. (4) 

The LTP is targeted toward an acceptor membrane. (5) The LTP docks to the acceptor 

membrane. (6) The lid of the LTP opens. (7) The lipid ligand is released and transferred to the 

acceptor membrane. (8) The LTP detaches from the acceptor membrane.  

[Bottom panel] A cartoon showing membrane contact sites in cells. The endoplasmic 

reticulum (ER) is associated with other organelle membranes, such as mitochondria, the 

plasma membrane (PM), the trans-Golgi network (TGN), endosomes (End), and lipid 

droplets (LD). PAM, PM-associated membranes; MAM, mitochondria-associated membranes. 

Please see additional review articles in this issue for more information on ER-endosome and 

ER-lipid droplet contacts. 

 

Figure 3. Models for stimulation of phospholipid metabolism by LTPs 

(A) Basal enzymatic conversion of a lipid substrate to a new lipid product in the absence of 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 18 

lipid exchange and transfer. (B-E) LTPs can stimulate an enzyme by supplying substrates to 

membranes where an enzyme is localized (B), by directly presenting substrates to an enzyme 

(C), by delivering stimulatory lipids to membranes where an enzyme is localized (D), and by 

removing inhibitory lipids from membranes where an enzyme is localized (E). 

 

Figure 4. Models for stimulation of LTP loading by phospholipid metabolism. 

(A) Basal LTP lipid extraction activity in the absence of phospholipid metabolism. (B) An 

enzyme generates newly synthesized lipids and increases their local concentration to facilitate 

the loading of lipid ligands to LTPs. (C) An enzyme modifies the fatty acid compositions of 

ligands and increases amount of lipids containing fatty acid species preferred by LTPs as a 

ligand. (D) An enzyme generates stimulatory lipids and enhances membrane association of 

LTPs. (E) An enzyme consumes competing ligands and to facilitate loading of ligands to 

LTPs. (F) An enzyme and LTPs might have a similar preference for membrane curvature. 

Increased membrane curvature is proposed to decrease the energy barrier for lipid extraction. 

 

Figure 5. Models for stimulation of LTP unloading by phospholipid metabolizing 

enzymes. 

(A) Basal LTP unloading of lipid ligands to an acceptor membrane in the absence of an 

enzyme. (B) An enzyme consumes ligands in the acceptor membrane and reduces their local 

concentration, which can facilitate unloading steps of ligands from LTPs. (C) An enzyme 

generates competing ligands and increases their local concentration, which can prevent re-

extraction of transferred ligands by LTPs. (D) An enzyme generates lipid stimulators and 

enhances membrane association of LTPs, which results in an enhancement of unloading step 

of ligands from LTPs. 
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Highlights 

 Lipid metabolism is sub-compartmentalized in the endoplasmic 

reticulum. 

 

 The endoplasmic reticulum forms membrane contact sites with 

numerous organelles in the cell. 

 

 Lipid exchange and transport are facilitated by lipid transfer protein 

activities at organelle contacts. 

 

 Lipid metabolism and transport pathways undergo mutual cross talk. 
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