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Neurons in primary auditory cortex represent
sound source location in a cue-invariant manner
Katherine C. Wood 1,2, Stephen M. Town 1 & Jennifer K. Bizley 1

Auditory cortex is required for sound localisation, but how neural firing in auditory cortex

underlies our perception of sound sources in space remains unclear. Specifically, whether

neurons in auditory cortex represent spatial cues or an integrated representation of auditory

space across cues is not known. Here, we measured the spatial receptive fields of neurons in

primary auditory cortex (A1) while ferrets performed a relative localisation task. Manipulating

the availability of binaural and spectral localisation cues had little impact on ferrets’ perfor-

mance, or on neural spatial tuning. A subpopulation of neurons encoded spatial posi-

tion consistently across localisation cue type. Furthermore, neural firing pattern decoders

outperformed two-channel model decoders using population activity. Together, these

observations suggest that A1 encodes the location of sound sources, as opposed to spatial

cue values.
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Our ability to localise sounds is important for both survival
and communication. Auditory cortex (AC) is required for
sound localisation in many mammals, including pri-

mates, cats and ferrets1–5, and neurons in AC are sensitive to the
spatial location of sounds6–8. However, perceptual thresholds for
localisation are typically far narrower than spatial tuning of
neurons9–12, posing the question of how such cortical activity is
related to spatial perception.

Studies of spatial representations in AC have often focused on
the encoding of acoustic cues that support sound localisation.
These include binaural cues such as inter-aural timing and level
differences (ITDs and ILDs, respectively) that govern estimations
of azimuthal sound location13,14, and monaural spectral cues
arising from pinna shape15–18, which provide information about
stimulus elevation and resolve front–back ambiguities. While
spatial cues can provide redundant information, accurate sound
localisation in multisource or reverberant environments fre-
quently requires integration across multiple cue types19,20.
Indeed, binaural and spectral cues are combined within the
inferior colliculus21,22, potentially enabling cortical representa-
tions that are better characterised by sound location than parti-
cular acoustic features23,24. Whilst most, but not all, neurons in
AC represent sound source location relative to the head (i.e., an
egocentric representation, indicative of a cue-based representa-
tion8), it is unclear whether spatial modulation in auditory cor-
tical neurons reflects tuning to specific localisation cues, or a cue-
invariant integrated representation of source location. This is
because most studies have not considered the effects of system-
atically manipulating the available localisation cues on coding of
spatial location.

Sound location plays a critical role in the analysis of auditory
scenes and the formation of auditory objects25–27. Object-based
representations are often elucidated by employing stimulus
competition: for example, two sounds presented from different
locations can be fused together28 or repel one another29,
depending on whether other factors promote grouping or segre-
gation. Consistent with an object-based representation in AC, the
presence of a competing sound source can dramatically sharpen
the spatial tuning of auditory cortical neurons30,31, and cortical
activity is consistent with a fused location when two sources are
presented that elicit a the percept of a single intermediary sound
source32.

Although it is unclear what auditory cortical neurons are
representing about sound location, several models exist of how
neurons and neural populations represent sound location: dis-
tributed or pattern-recognition models (also referred to as
labelled-line models, but referred to as distributed models here-
after)33–37 posit that heterogeneous spatial tuning exists, with
different cells narrowly tuned to specific sound locations (or their
underlying acoustic cues) across the azimuthal plane. In contrast,
the two-channel model38,39 posits that tuning of cells is broad and
conserved across a small number of subpopulations of cells, with
space represented by the relative summed activity of two or more
subpopulations (defined either by the hemisphere of the brain in
which cells were recorded, or the hemifield of space to which cells
are tuned). Evidence for and against each model exists: in
agreement with two-channel models, spatial tuning curves of
neurons in AC are generally broad, with peaks in contralateral
space8,38,40. Similarly, spatial tuning of voxels from functional
imaging data is consistent with a two-channel representation23,39.
In contrast, distributed models are supported by recordings from
neurons in gerbil AC, where cells represent ITDs across all sound
locations rather than just one hemifield of space35. However,
some experimental evidence cannot be explained by either model;
for instance, neither model can account for deficits in con-
tralateral sound localisation observed during unilateral

inactivation of AC10,11,41. To make progress, neural activity must
be recorded with high spatial and temporal precision to avoid
averaging signals over large populations of neurons (which may
artificially favour the two-channel model).

The goal of our study is to test whether neurons in AC
represent spatial cue values or sound source location, and to
determine how population activity represents sound location.
Since behavioural-state impacts spatial tuning42, we record from
animals engaged in discriminating the azimuthal location of
sounds, while varying the availability of localisation cues. We use
the resulting neural spatial receptive fields to assess whether
primary auditory cortex (A1) encodes ‘space’ or auditory cue
values, and whether a distributed or two-channel model provides
the best description of the observed data. We find that a sub-
population of neurons has stable spatial receptive field properties
across spatial cue type, and these neurons encode the location of
auditory stimuli across cues. Furthermore, the peaks of the spatial
receptive fields are distributed across the contralateral hemifield,
consistent with a distributed architecture but, importantly, only
the contralateral hemifield is represented within each A1 con-
sistent with inactivation studies showing contralateral localisation
deficits11,41,43. Distributed decoders outperform two-channel
decoders providing further evidence for the encoding of the
location of auditory objects in A1 as opposed to representation of
spatial cues.

Results
Relative localisation with complete and restricted cues. To
understand the representation of space in A1, we engaged ferrets
in a two-interval forced-choice task, in which they reported
whether a target sound was presented to the left or right of a
preceding reference (Fig. 1). Reference stimuli were presented
from −75° to+75° in azimuth in 30° steps at 0° elevation, with
subsequent target sounds occurring 30° to the left or right of the
reference location (at ±75°, targets always moved towards the
midline). Both reference and target sounds were 150ms in
duration, separated by 20 ms of silence. Acoustic stimuli were
either broadband noise (BBN, containing complete binaural and
spectral cues), low-pass filtered noise (LPN: <1 kHz, designed to
contain only ITD information), bandpass filtered noise (BPN:
1/6th octave centred at 15 kHz, containing ILD information and
eliminating fine-structure ITDs and most spectral cues), or high-
pass filtered noise (HPN: >3 kHz, containing ILDs and spectral
cues and eliminating fine-structure ITDs).

Across locations, ferrets were able to perform the task with
each of the acoustic stimuli (binomial test against 50%, p <
0.001 for all ferrets and stimulus conditions, Supplementary
Table 1, Fig. 1c). For each ferret, performance differences with
restricted cues were assessed by measuring the effect of stimulus
type on trial outcome (logistic regression with interactions, p <
0.05, Supplementary Tables 2–5). All ferrets performed
significantly worse with bandpass than broadband stimuli
(Ferret F1302 across condition performance difference:
−11.6%, F1310: −7.5%, F1313: −6%, Supplementary Fig. 1).
Performance of ferrets with other cue-restricted stimuli varied;
two ferrets performed significantly worse with low-pass stimuli
where cues were limited to ITDs, although the magnitude of the
difference was very small (F1302: −3.6%, F1310: −3.5%). One
ferret performed worse with high-pass stimuli, where there
were no fine structure ITDs (F1302: −6.8%). Given that animals
successfully performed the task across conditions, we predicted
that any change in spatial tuning in A1 for BBN versus cue-
restricted stimuli would be modest, and most marked for the
BPN stimuli, which consistently elicited worse performance
across ferrets.
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To assess changes in spatial tuning properties of neurons with
differing spatial cue availability, we recorded the activity of 398
sound-responsive units from the left and right A1 while ferrets
performed the task (total across all stimuli, ferrets, electrodes and
recording depths, recording location confirmed with frequency
tuning and post-mortem histology, Fig. 2). Spatial tuning was
calculated during task performance by considering the neural
response to the reference sounds only (Fig. 3).

Spatial tuning in the auditory cortex of behaving ferrets. To
establish a benchmark of spatial tuning properties, we first
characterised the responses to broadband stimuli containing a full
complement of localisation cues. For each unit (e.g., Fig. 3a, b),
we constructed a spatial receptive field using the firing rate across
reference presentation (0–150 ms; Fig. 3c). We defined units as
spatially tuned if firing rates were significantly modified by sound
location (Table 1, Kruskal–Wallis p < 0.05). In total, 253 units
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Fig. 1 Relative localisation behaviour and performance. a Ferrets were trained to report the location of a target sound relative to a preceding reference, with
target and reference sounds originating from two speakers separated by 30° (main speaker locations indicated). Ferrets reported the relative location of
the target at a left (L) or right (R) response spout (positioned at ± 90°). b Ferrets were required to maintain contact with the central start spout (S) for a
pre-stimulus hold time (500–1500ms) before the reference sound (150 ms, shown here at 45°) was presented and remain there until at least halfway
through the target sound (150 ms, here at 15°) before responding. c Schematic showing the spectrum of each of the stimulus paradigms. d Mean
performance across all trials of ferrets in four different conditions, in which the stimuli were broadband noise (BBN), low-pass filtered noise (<1 kHz, LPN),
bandpass filtered noise (1/6 octave about 15 kHz, BPN) and high-pass filtered noise (>3 kHz, HPN). All animals performed the task above chance in each
condition (binomial test, p < 0.001)
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Fig. 2 Experimental procedures. a Nissl-stained brain section of F1310 showing electrode tracks in A1 marked with electrolytic lesions (black arrows) of one
column of the 4 × 4 electrode array. The locations of the electrode penetrations were clearly visible on the surface of the brain post-mortem, indicated in
(b) with each circle representing the electrode sites. The circles are coloured according to the characteristic frequency (C.F., kHz) tuning of the units
recorded from that electrode, assessed from frequency response areas (c) measured in response to pure tones. Black-filled circles indicates that no C.F.
could be estimated for that electrode. The grey outline indicates the electrode tracks shown in (a). c Example, frequency response area showing a unit with
C.F. of 7.6 kHz. d Distribution of characteristic frequencies for all recorded units. Scale bar in (a) and (b) indicates 900 µm

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10868-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3019 | https://doi.org/10.1038/s41467-019-10868-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


were responsive to BBN, of which 190 units (75%) were spatially
tuned (Table 1).

For each spatially tuned unit, we described the preferred
azimuthal direction by computing the centroid31. The majority of
units (168/190, 88%) had contralateral centroids (mean ±
standard deviation (s.d.) left hemisphere= 27.1 ± 20.2°, right
hemisphere=−32.2 ± 30.1°, Fig. 3d). We also measured modula-
tion depth and equivalent rectangular receptive field (ERRF) to
determine tuning depth and width42. Tuning was generally broad
(Fig. 3e, mean ± s.d. ERRF width, left hemisphere= 118.3 ± 10.7°,

right hemisphere= 113.9 ± 14.6°), with diverse modulation
depths (Fig. 3f, mean ± s.d. modulation depth, left hemisphere
= 42.5 ± 9.4%, right hemisphere= 43.8 ± 10.8%). There were no
significant differences in the distributions of centroid values or
modulation depths between the left and right hemispheres
(unpaired T test, p > 0.05). However, there was a very small
difference in the ERRF widths (the right hemisphere was
narrower on average by 4.4°, unpaired T test, p= 0.019).

Spike timing conveys additional information about sound
location beyond that offered by spike rates44–46. To test if our
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Fig. 3 Spatial tuning properties in response to broadband noise. a Example, raster plot from one unit, with trials ordered by the location of the reference
sound. The duration of stimulus presentation is indicated by the grey box. b Post-stimulus time histogram (spikes binned at 5 ms resolution). c Spatial
receptive field (mean ± standard error of the mean (s.e.m.)) spike rate calculated over 150ms at each location. The unit shows clear contralateral tuning
and a centroid of −58° (black triangle/line). The equivalent rectangular receptive field (ERRF) width and modulation depth are also indicated in the figure.
The dotted line represents the spontaneous firing rate. d Distribution of centroids, ERRF widths (e) and modulation depths (f) for all spatially modulated
units (N= 190) split by left (blue, N= 95) and right (red, N= 95) auditory corttices (AC). g Stimulus location decoded with a Euclidean distance decoder
on the spike response binned with 15 -ms resolution for the unit in a–c. The mutual information (MI) and percentage of maximum MI are indicated. h
Distribution of best decoder bin widths for significantly informative units (N= 153). i Mean percentage of maximum MI ± s.e.m. of significant units from
(h). Raw data are shown in grey circles. (N= 56, 54, 43). Statistics: one-way ANOVA with Tukey–Kramer post-hoc pairwise comparisons. ***p < 0.001

Table 1 Spatial tuning properties of spatially modulated units

Stimulus Total responsive units Spatially modulated
units (% of total)

Centroid
(mean ± s.d.)

ERRF width
(mean ± s.d.)

Modulation depth
(mean ± s.d.)

Spatially informative
units (% of total)

BBN 253 190 (75%) −30 ± 26° 116 ± 13° 44 ± 11% 153 (60%)
LPN 244 157 (64%) −34 ± 22° 119 ± 13° 41 ± 13% 112 (46%)
BPN 97 63 (65%) −28 ± 20° 114 ± 10° 44 ± 11% 52 (54%)
HPN 114 73 (64%) −28 ± 29° 120 ± 10° 39 ± 9% 47 (41%)
CSS 128 98 (77%) −31 ± 25° 115 ± 12° 46 ± 11% 81 (63%)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10868-9

4 NATURE COMMUNICATIONS |         (2019) 10:3019 | https://doi.org/10.1038/s41467-019-10868-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


units conveyed information about sound location in the temporal
pattern of spikes, we decoded spatial location using a pattern
classifier based on Euclidean distances between firing patterns in
response to stimuli at each location, binned at 15, 50 or 150 -ms
time resolutions (with 150 ms representing the firing rate across
the whole stimulus). Classifier performance was summarised as
the mutual information (MI) between actual and classified
locations (Fig. 3g), and spatially informative units were identified
as those with performance significantly greater than chance
(permutation test, performance was deemed significant if the
observed MI was more than the mean+ two s.ds. of the MI
calculated with shuffled sound locations, 250 iterations, effectively
p < 0.046). We first used this measure to ask what proportion of
units conveyed significant spatial information, and found that
60% (153/253) of units were spatially informative in at least one
temporal resolution. When considering the best decoding
window for each unit, all three decoding windows resulted in a
similar proportion of spatially informative responses (logistic
regression of bin width vs. constant model, χ2= 2.88, p= 0.0896,
d.f.= 1, Fig. 3h).

Whilst a similar proportion of units were spatially informative
across all bin widths, the decoding approach allows us to quantify
how much information is contained within individual responses.
We therefore considered decoding performance, expressed as the
percentage of the maximum available MI for perfect classification
performance (where the maximum was defined as log2(#
locations), see the Methods) and observed that performance
was highest with the 150 -ms bin width (i.e., a spike rate code,
Fig. 3i). Statistical comparison confirmed a main effect of bin
width on decoder performance (one-way ANOVA, F(2, 150)=
15.44, p < 0.001) with post-hoc contrasts confirming greater MI
for decoding with 150 ms than 15 ms (Tukey–Kramer corrected,
p < 0.001) and 50ms (p= 0.001) bin widths (Supplementary
Fig. 2).

It is noteworthy that decoding performance was best when
using neural activity across the whole stimulus window,
suggesting sustained activity conveys information about stimulus
location. We corroborated this finding by decoding spike rates
calculated over increasing bin widths (50, 100 and 150 ms) and
observing that significantly more units conveyed information at
the longest bin widths (logistic regression, χ2= 72.1, p < 0.001,
d.f.= 1, Supplementary Fig. 3, 62% at 150 ms compared with 12%
at 50 ms).

A1 neurons represent space, rather than localisation cues. We
addressed the question of whether the auditory cortex represents
space or localisation cue values by contrasting the spatial tuning
observed in response to broadband and cue-restricted sounds. If
an A1 neuron represents auditory space, then its tuning to sound
location should be constant across different cues.

Individual units showed similar responses to cue-restricted and
BBN stimuli (Supplementary Fig. 4A–C) and across cue-restricted
stimuli (Fig. 4a–c). Centroids of spatially modulated units
obtained in all cue-restricted conditions were neither different
than those measured with BBN (KS test, p > 0.05, Supplementary
Fig. 4D–F) nor between cue-restricted conditions (KS test, p >
0.05, Fig. 4d–f) across all units. When comparing only units
spatially modulated in both conditions, there was a small change
in the centroids between BBN and high-pass (mean ± s.d., 8.8 ±
2.7°, paired T test, p= 0.002, Supplementary Fig. 4f), but no
significant differences in the distributions of centroids for all cue-
restricted condition pairs (paired T test, p > 0.0167, Bonferroni-
corrected alpha (p= 0.0167), Fig. 4d–f) or for BBN and low-pass
or bandpass stimuli (Supplementary Fig. 4D, E). Thus, the
direction of tuning was conserved across cue-restricted conditions.

In order to assess differences on an individual cell basis, non-
parametric resampling of the data was performed to generate
estimated confidence intervals on the centroid, ERRF width and
modulation depth measurements (see the Methods section). This
revealed that very few cells that were spatially modulated in pairs
of cue-restricted conditions showed significant changes in
centroid across stimuli (open circles, Fig. 4d–f, LPN-BPN: 3/22,
LPN-HPN: 1/27, BPN-HPN: 2/23, Supplementary Fig. 5).

For ERRF width, we found significant differences when
comparing units that were spatially modulated in either condition
for broadband and high-pass (T test, p < 0.001, Bonferroni-
corrected alpha= 0.0167, Fig. 4g–i; Supplementary Fig. 4g–i) and
for low-pass and bandpass (p= 0.010), but not for any other
comparisons. However, when comparing units that were spatially
modulated in both conditions, there was only a significant
difference between broadband and high-pass stimuli (4.5 ± 1.2°,
HPN > BBN, paired T test, p= 0.001, black circles in Fig. 4g–i
and Supplementary Fig. 4g–i).

Finally, for units spatially modulated in either condition, there
were significant differences in the modulation depth between
broadband and low-pass conditions (T test, Bonferroni-corrected
p= 0.0125), broadband and high-pass (p < 0.001), and low-pass
and bandpass (p= 0.003, Fig. 4j–l; Supplementary Fig. 4j–l).
When comparing units that were spatially modulated in pairs of
conditions, there were again no significant differences in between
any cue-restricted conditions (paired T test, p > 0.0167, Fig. 4j–l).
However, there were significant differences between broadband
and low-pass stimuli (−4.1 ± 1.6%, p= 0.012), and broadband
and high-pass stimuli (−4.7 ± 1.1%, p < 0.001, Supplementary
Fig. 4j–l).

On a single-cell level, again very few units showed significant
changes in ERRF width or modulation depth (Fig. 4g–l;
Supplementary Figs 4, 5). Across the population of recorded
neurons, the changes in tuning properties observed were of the
same order of magnitude to those observed when we compared
repeated recordings of the same stimuli for the same units
(Supplementary Fig. 6).

Thus, the spatial tuning properties of individual units were
maintained across stimuli that eliminated specific localisation
cues. This suggests that A1 neurons can represent sound source
location using spatial cues in a redundant fashion, consistent with
a representation of space rather than individual (or specific)
localisation cues.

Representation of sound location across spatial cues. We next
asked whether reducing the available localisation cues impacted
the ability to accurately decode sound source location from neural
responses, and whether spatial information was conveyed over
similar timescales.

Cue-type did not affect the optimal temporal resolution for
decoding spatial information (Fig. 5a, logistic regression predict-
ing unit classification (informative/uninformative) from bin
width (15, 50 and 150 ms) and cue type: χ2= 11.5, p= 0.116,
d.f.= 4). Paired analyses for units tested in both BBN and cue-
limited conditions revealed that the amount of spatial informa-
tion (at the best bin width) in BBN and LPN conditions, and in
BBN and BPN conditions was similar (Supplementary Fig. 7A, B,
paired T-test, p > 0.05, N= 62 and 40, respectively). However,
spatial information was significantly lower in HPN than BBN
(−5.2%, Supplementary Fig. 7C, paired T-test, p < 0.001, N= 29).

We also compared the best decoder performance of each
unit (measured as the percentage of the maximum MI at the
best bin width) across cue types (Fig. 5b). We found significant
main effects of bin width (two-way ANOVA, F(2, 352)= 21.83,
p < 0.001) and stimulus condition (F(3, 352)= 5.16, p= 0.002),
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but no interaction (F(6, 352)= 0.13, p= 0.993). Post-hoc
tests (Tukey–Kramer, p < 0.05) were similar to the results
with BBN stimuli (Fig. 3), with decoding being best when
using a rate code (bin width of 150 ms). In addition, decoding
of spatial location from responses to BBN was significantly

better than to BPN and HPN conditions (Tukey-Kramer,
p < 0.05).

To elucidate whether units were representing the spatial
location of sounds independently of their underlying spatial cues,
we contrasted the number of units that were informative about
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Fig. 4 Comparison of spatial tuning properties between cue-restricted stimuli. a–c shows three example units recorded in all four cue conditions:
broadband (BBN, grey), low-pass (LPN, orange), bandpass (BPN, blue) and high-pass (HPN, green). Centroid, ERRF width and modulation depth in each
condition are indicated. The dotted lines represent the spontaneous firing rate. For panels d–l, units that were spatially tuned in both conditions (circles),
either condition alone (diamonds or triangles) or tuned in neither (squares). Open circles indicate individual units that significantly changed between
stimuli (non-parametric resampling, see Methods). Mean ± s.e.m. of the units spatially modulated in both conditions (i.e., of the black circles) is shown by
cross-hairs (circle, magenta). d–f Centroids, ERRF width (g–i) and modulation depth (j–l) of units recorded in both LPN and BPN conditions (d, g, j; both
spatially tuned N= 22, LPN tuned= 13, BPN tuned= 24, neither tuned= 11), LPN and HPN conditions (e, h, k; both spatially tuned N= 27, LPN tuned= 19,
HPN tuned= 19, neither tuned= 10) and BPN and HPN conditions (f, i, l; both spatially tuned N= 23, BPN tuned= 9, HPN tuned= 7, neither tuned= 7)
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sound location across conditions in which distinct binaural cues
were presented (i.e., LPN, containing ITDs, and either HPN or
BPN, which did not contain fine-structure ITDs). We found that
subpopulations of recorded cells were able to provide cue-
independent spatial information: 33% (23/70) of units conveyed
information about sound location across LPN and BPN and 21%
(16/75) of units conveyed information across LPN and HPN (i.e.,
conditions with mutually exclusive cue types, Fig. 5c). For units
that were informative in pairs of cue-limited conditions, there was
also no significant difference in the amount of information
(paired T-test, p > 0.05, Fig. 5d–f).

Effects of a competing sound source. If neurons encode auditory
objects, rather than simply auditory space, then competition
between objects might be expected to refine spatial tuning25,29–31.
We hypothesised that a competing sound source would increase
spatial sensitivity of neurons in A1 by causing competition
between two objects. To test this, we repeated recordings in the
presence of a competing sound source (CSS) consisting of a
broadband noise presented at 0° azimuth and +90° elevation,
whose level was randomly stepped within a range of ±1.5 dB SPL
every 15 ms to aid segregation from the target stimuli.

Adding a competing source resulted in a mild impairment in
relative localisation in one of three animals tested in this
condition (F1310: mean change: −5.8%, Fig. 6a, GLM on
response outcome with stimulus as predictor, p= 0.011, Supple-
mentary Table 4). At the neural level, there was no effect of the
competing source on the direction of spatial tuning in units

spatially modulated in both broadband and CSS conditions
(Fig. 6b–e, paired T-test test, p= 0.642, N= 59) nor on the ERRF
widths (Fig. 6f, paired T-test, p= 0.301). However, adding the
competing source sharpened spatial tuning by increasing
modulation depths (p= 0.013, Fig. 6g).

The competing source did not significantly impact decoding of
sound location; neither the proportion of units with best decoding
performance in each bin width (Fig. 6h, logistic regression: χ2=
4.98, p= 0.173, d.f.= 2) nor the information content of units
differed (Fig. 6i, j, two-way ANOVA, effect of CSS: F(1, 233)=
0.29, p= 0.590, Fig. 6i, no bin size-by-CSS interaction: F(2, 233)
= 0.63, p= 0.536). Consistent with earlier results bin width also
significantly affected decoding (F(2, 233)= 15.35, p < 0.001).
Despite these similarities, population decoding was able to reach
ceiling performance faster with BBN stimuli in the presence of a
CSS than in its absence (see below).

Decoding auditory space from population activity. Spatially
informative units conveyed on average between 15 and 19% of the
maximum MI possible, implying that some form of population
coding is necessary to reconstruct sound location perfectly.
Reflecting the dominant theoretical descriptions of how neural
circuits compute sound location, we applied three models of
population decoding (Fig. 7a): (1) A distributed code33,34 model
(also referred to as a labelled-line code35 or pattern code36,37) that
decoded sound location from the activity pattern of neurons with
heterogeneous spatial tuning, (2) a two-channel model that
compared the summed activity of neurons in each hemisphere of
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Fig. 5 Comparison of spatial information in broadband and cue-restricted conditions. The amount of spatial information (MI) from stimuli with limited cues
was compared with those where all cues were present (BBN) and between pairs of limited cue conditions. a Distribution of best decoder bin widths for all
spatially informative units (BBN (N= 153), LPN (112), BPN (52), HPN (47)). b Mean percentage of maximum MI ± s.e.m. of units from (a). The raw data
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the brain (hemispheric two-channel)37,47,48, (3) a two-channel
model that summed activity of two populations of neurons with
centroids in left and right space, respectively (opponent two-
channel)38,39.

To assess whether recorded spatial receptive fields were more
consistent with a distributed or two-channel code, we first
compared predicted and observed distributions of correlation
coefficients (R) calculated between tuning curves obtained for all
pairs of units. The distributed model predicted a graded
distribution of correlation coefficients, with many unit-pairs
falling between −1 and 1 (Supplementary Fig. 8A)33. In contrast,
the two-channel models both predicted distinct peaks in
distributions at R= ±1, as tuning curves should be strongly
correlated within (positive correlation) and between (negative
correlation) channels (Supplementary Fig. 8B). We found that the
distribution of correlation coefficients for units recorded in A1
most closely resembled the distributed model, with correlation

coefficients distributed broadly between +1 and −1 (Supplemen-
tary Fig. 8C–G). Thus, we predicted that the distributed decoder
would outperform the two-channel decoders.

We next used maximum likelihood decoders (similar to ref. 35)
to estimate sound location on single trials using the joint
distributions of spike rates (a) of individual units (distributed
code) (b) across units from each hemisphere (hemispheric two-
channel), or (c) across units tuned to each hemifield (opponent
two channel). The distributed model decoder substantially out
performed the hemispheric and opponent two-channel decoders
in all stimulus conditions (Fig. 7b–f), with little difference in
performance across stimulus conditions. The distributed decoder
reached >85% correct with a minimum of 20 units (CSS
condition) and maximum of 40 units (HPN), whereas neither
of the two-channel models exceeded 45% correct. There was little
difference between the performance of the opponent and
hemispheric two-channel models, most likely because the
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majority of neurons were tuned contralaterally (89% of units in
response to BBN).

Previous work has suggested that spatial representations in the
auditory cortex may comprise three channels49,50, or many
channels with 6° widths tiling space51. In order to investigate
these ideas further, we modified our two-channel decoder to
compare decoding performance of neural populations divided
into N channels according to spatial tuning observed in response
to BBN stimuli. Cells were ordered by their preferred locations
and divided into channels with equal numbers of units per
channel (Fig. 7g). As the number of channels increased, decoding
performance also increased (Fig. 7h). If the order of the units was
randomly shuffled so that units within a channel were sampled
without regard to their spatial tuning, performance was at chance,
with the exception of populations containing very few units per
channel (Fig. 7i). The fact that shuffled populations perform more
poorly than the two-channel models suggests that the benefit of a
system with many channels is not simply that it has more
channels but that the labels of these channels are critical for
spatial decoding.

When population size was held constant and the number of
channels increased (such that there were decreasing numbers of
units per channel, Fig. 7j, for a population of 120 units), shuffling
the order in which units were grouped into channels prior to
decoder training and testing always resulted in performance that
was worse than ordered performance. However, as the number of
channels increased and the number of units per channel
decreased, the effect of shuffling unit order diminished. In the
extreme case, where each channel had one unit, the shuffled and
ordered distribution differed only in the relationship between
channels and thus both shuffled and ordered populations
provided distributed systems.

In order to further understand the relationship between the
number of channels and the number of units per channel, we
simulated responses of cells based on the spatial receptive fields of
units that responded to BBN stimuli (units in Fig. 7g). This
allowed us to investigate the effect of increasing the number of
channels while keeping the number of units per channel constant
(Fig. 7k). Increasing the number of channels rapidly improved
decoding performance up to ~20 channels, after which perfor-
mance saturated. For high channel counts (e.g., N > 30) and low
numbers of units per channel (n <= 5), decoding performance of
shuffled and ordered populations converged and performance
levels were substantially lower. However, when the number of
units per channel was high (n= 50), shuffling degraded
performance from near ceiling to chance mirroring our
observations in recorded neurons (Fig. 7j).

These results can be explained by a dependence of the
distributed decoder on heterogeneity in the underlying tuning
functions of individual cells and channels. When the number of
units per channel was small and the number of channels was
large, the diversity of spatial tuning curves present across units
was preserved across spatial channels, and therefore the decoder
remains successful in reconstructing sound location. This is true
regardless of the order of units as, with only few units per
channel, shuffling units and averaging within a channel still
results in heterogeneity in tuning across channels. In contrast,
when there are many units per channel, the order in which units
are arranged before integration into channels is critical. When
units are ordered by spatial tuning, adjacent units have similar
spatial receptive fields and therefore the effect of integration is
primarily to decrease noise, while channels remain strongly tuned
to sound location, despite averaging. Thus, the heterogeneity of
individual units is preserved at the channel level, while decoding
performance improves due to reduction in noise. In contrast,
when units are shuffled, adjacent units have differing spatial

receptive fields and so the effect of integration is to average out
spatial tuning and make tuning very similar across channels.

Finally, if neurons represent spatial location, rather than
merely spatial cue values, it should be possible to train a decoder
with the responses to one class of stimuli and recover sound
location when tested with the responses to a different class of
stimuli. To test this, the normalised (z-scored) responses of
neurons with significant spatial information in pairs of stimulus
conditions were used to train and test the distributed model
decoder across stimulus types. We trained the distributed decoder
with responses to one condition (e.g., LPN) and tested the
decoder using responses from the same neurons to another
condition (e.g., HPN). To assess cue invariance, we chose the
conditions that differed most clearly in the available binaural
cues; the low-pass and high-pass stimuli, which contained only
ITDs, or eliminated fine-structure ITDs to leave ILDs and spectral
cues, respectively (Fig. 8). To quantify decoder performance, we
considered both the % correct score and the unsigned error
magnitude (mean observed RMS error, RMSE) and compared
these values to that observed when the identity of the cells was
shuffled prior to decoding to produce an estimate of chance
performance (Fig. 8b). The likelihood of getting the observed
difference in RMSE (or % correct) between the cross-cue decoder
and the shuffled decoder was estimated by permuting the real and
shuffled labels of the RMSE (or % correct) 1000 times. While
decoding stimulus location with a decoder trained on the cross-
cue condition resulted in worse performance than the within-cue
condition (Fig. 8a), the error magnitudes were significantly
smaller than chance (Fig. 8b) and the performance significantly
greater than chance (% correct, Fig. 8c). The decrement in
performance in the cross-cue condition was of the same order of
magnitude (20–30%) as training and testing neural responses
from the same units, to the same stimuli, but recorded on
different days (Supplementary Fig. 9).

A comparison of low-pass (ITD) and bandpass stimuli
(narrowband ILD) showed similar results (Supplementary
Fig. 10), despite larger errors and lower performance for cross-
cue testing, the results were still significantly better than chance.
Interpreting the poorer generalisation from LPN to BPN stimuli
is difficult: it might simply be that the decoding is done on a very
small number of units and therefore relatively noisy (as can be
seen in Supplementary Fig. 9). Alternatively, the narrowband
nature of the bandpass condition renders it highly unnatural, and
this manipulation had the largest effect on performance of the
ferrets in the relative localisation task when compared to their
performance with BBN (Fig. 1d). Therefore, it may be that the
impaired behavioural performance is a consequence of the poor
generalisation of cortical responses to this stimulus.

Discussion
We sought to understand how the available localisation cues
affect the encoding of azimuthal sound source location in the
primary auditory cortex (A1). Reducing the available localisation
cues (by eliminating ITD, ILD and/or spectral cues) had a weak
effect on the animals’ behaviour, and on the spatial tuning of
neurons in A1. A subpopulation (20–30%) of units maintained
their spatial tuning across conditions that contained contrasting
binaural cues and were therefore capable of representing auditory
space in a cue-invariant manner. Although tuning curves were
predominantly contralateral, we found that units in each hemi-
sphere had best azimuths that were distributed across the con-
tralateral hemifield. Distributed and two-channel decoders, based
on the spike rates of populations of neurons, both performed
above chance in all stimulus conditions, but the distributed
decoder outperformed the two-channel decoder. Together these
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results suggest that auditory space is represented in an across-
hemisphere distributed code, where spatial representation is
divided across hemispheres, rather than each hemisphere con-
taining a complete representation of space.

Ferrets were able to perform the relative localisation task using
either ILD or ITD cues as evidenced by performance when cues
were restricted to ITDs (by a low-pass noise stimulus), mainly
ILDs (bandpass noise) or ILDs and spectral cues (high-pass
noise). Many units only conveyed spatial information in the
presence of either ITDs or ILDs. However, the directional pre-
ference of cells that responded in both conditions (as measured
by centroids) was stable, and we identified a subset of roughly a
quarter of units that were significantly spatially informative when
provided with either ILDs or ITDs. Moreover, decoders trained
on the neural responses to low-pass stimuli were able to recover
location from the responses to high-pass stimuli and vice versa
(Fig. 8). Together, these results suggest that a subpopulation
of neurons in A1 provides a cue-invariant representation of
sound location. The population of neurons that we were able to
record across multiple stimuli was small (e.g., 16 units for low-
pass and high-pass noise). While these small populations repre-
sented sound location with near-perfect accuracy when trained
and tested with the same stimulus type, performance declined in
the cross-cue condition. Since this decline was of a similar
magnitude to decoders trained and tested with repeated inde-
pendent recordings to the same stimuli, it seems likely that with a
larger population of jointly sensitive neurons, performance could
be maintained across multiple stimulus types. The way in which

our animals were trained may have minimised the possibility of
observing cue-invariant neurons: in order to gain sufficient
repetitions at each location, the stimulus type was fixed in a given
testing session. If we were to interleave stimuli containing con-
trasting cues, we may have observed a greater number of neurons
that responded in multiple conditions.

The evidence we observe for cue-invariant neurons parallels
similar observations obtained using human neuroimaging, where
regions of cue-independent and cue-specific voxels were
observed23. These neuroimaging results suggest that a repre-
sentation of azimuthal space exists within AC that is independent
of its underlying acoustic cues. Our results provide the first cel-
lular resolution evidence from the AC of behaving subjects in
support of this hypothesis. It will now be important to ask how
binaural cues are integrated within A1, and, given recent obser-
vations of world-centred spatial tuning in AC8, in what reference
frame cue-invariant neurons operate. Since many spatially tuned
units were informative about sound location only when specific
cues (ILDs or ITDs) were present, it is possible that the responses
of cue-specific units are integrated within A1 to develop these
cue-tolerant responses.

We observed that a distributed decoder outperformed a two-
channel decoder, and that decoding performance scaled with the
number of spatial channels. Taken together with the observations
that (a) centroids tiled auditory space and (b) spatial tuning
curves were less correlated across units than predicted by a two-
channel model, our data support a distributed model of spatial
encoding. However, rather than space being fully represented in
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Fig. 8 Performance of the distributed model decoder across different spatial cues. a Confusion matrices showing the % of decoded location classifications
of each stimulus location when the distributed decoder was trained with responses to low-pass (LPN) stimuli and tested with responses to the high-pass
(HPN) stimuli from the same units that had significant spatial information in at least one bin width (top left), decoder trained on HPN responses and tested
on LPN responses (top right), trained and tested on LPN (lower left) and trained and tested on HPN (lower right). b Root-mean squared error (RMSE) of
the decoder (coloured symbols) was lower than when the cell identities were shuffled (grey) in each condition tested. The bars show the mean ± s.d. across
1000 iterations for observed and cell-identity shuffled decoding. P-values indicate the probability that the difference between the observed and shuffled
mean RMSE is greater than the difference obtained by chance (estimated by permuting the labels between real and shuffled decoder scores (1000
iterations) and calculating the difference in decoding, see Methods). c Mean ± s.d. % correct of the decoder (filled bars) compared with % correct when
cell identity was shuffled (grey bars). P-values indicate the probability that the difference between the actual and shuffled mean % correct would be
observed by chance. The grey dotted line indicates chance performance (1/6 chance of correct classification)
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both hemispheres (as found in the gerbil38), each hemifield of
space was represented by a distributed system within the con-
tralateral A1. This is consistent with demonstrations of con-
tralateral tuning bias in anaesthetised, passively listening or
behaving cats40,52, and ferrets8,46, and awake monkeys40. Here,
we build on these findings, by suggesting that each hemisphere
contains multiple channels tuned to locations in contralateral
space—rather than only two channels that represent left or right
space as suggested previously38. This type of spatial encoding can
explain why unilateral inactivation of A1 selectively impairs
localisation in the contralateral hemifield10,11,41. Several questions
arise and must be answered in the future: does the representation
of auditory space become increasingly cue-invariant in non-
primary AC, and what are the effects of unilateral hearing loss on
cortical representations of sound location (as distinct from
localisation cues)?

We tested a new model based on the two-channel decoder with
N channels containing similarly tuned neurons. This design
allowed us to address the possibility that there may be more than
two channels49–51, and assess the impact of within-channel
averaging on model performance. Thus, we made a version of the
population decoder that compared channels of small populations
of similarly tuned units that were summed together. We found
that, as the number of channels increased, decoder performance
increased, lending further support to a distributed encoding of
auditory space in A1, where populations of similarly tuned units
form spatial channels. Importantly, shuffling the spatial tuning of
units decreased decoder performance in all cases; although above
chance performance was observed where heterogeneity between
the channels was maintained by having very small numbers of
units per channel. This was consistent with the idea that aver-
aging heterogeneous spatial receptive fields leads to loss of
information36,37,48. Increasing the number of channels past ~20
did not substantially improve population decoding performance,
suggesting that there may be an upper limit on spatial resolution
for absolute localisation of auditory stimuli in the cortex, as has
been suggested in humans51.

The addition of a competing sound source sharpened spatial
receptive fields by increasing modulation depth, consistent with
previous findings in songbirds30 and cats53. We did not observe
any change in azimuthal spatial tuning with addition of the
competing sound source. The competing source was located at 0°
azimuth, and +90° elevation. It is therefore possible that shifts in
tuning occurred that we could not observe by recording azi-
muthal spatial receptive fields at a single elevation. However, the
observation that centroid positions were stable is consistent with
findings in cats where a centrally located masker did not alter
spatial location tuning53. Despite the sharpening of spatial tuning,
there was no overall difference in how well spatial location could
be decoded from spiking responses in the presence of a com-
peting sound source. Nevertheless, population responses reached
a ceiling with a smaller number of units than for other conditions,
suggesting that the sharpening of spatial receptive fields enables
more precise population decoding (Fig. 7). It may be that the
observed changes in tuning with addition of the competing source
reflect the neural correlates of selective attention to the beha-
viourally relevant target sound sources54. If true, then blocking
attention-mediated changes in spatial tuning should impair
relative sound localisation in the presence of a competing sound.

A distributed encoding of auditory space is consistent with the
formation of auditory objects in A1, and would allow distinct
subpopulations of neurons to represent separate sound
sources30,31. This would require that separate spatial cues asso-
ciated with the same object are integrated to generate a channel-
based representation of sound location, as observed in human
behaviour51. This process might begin in the midbrain, where

there is evidence of integration of spectral cues and binaural
cues21,22,55. Determining whether AC forms representations of
individual discriminable auditory objects (or sources) will involve
testing under more naturalistic listening scenarios, where there is
variation across multiple orthogonal properties23,56,57, and the
use of multiple sound sources in the context of a behavioural task.

Methods
Animals. All animal procedures were approved by the local ethical review com-
mittee (University College London and Royal Veterinary College London Animal
Welfare and Ethics Review Boards) and performed under license from the UK
Home Office (Project License 70/7267) in accordance with the Animal (Scientific
Procedures) Act 1986. Four adult, female, pigmented ferrets (Mustela putorius
furo) were used in this study, 1–3 years old. The weight and water consumption of
all animals were measured throughout the experiment. Regular otoscopic exam-
inations were made to ensure the cleanliness and health of ferrets’ ears. Animals
were maintained in groups of two or more ferrets in enriched housing conditions.

Behavioural task. The ferrets were trained to perform a relative localisation task
based on that performed by humans in ref. 58. Ferrets reported the location of a
target sound relative to a preceding reference sound presented from a location
either 30° to the left or right of the reference (Fig. 1b). The behavioural task was
positively conditioned using water as a reward. During testing days, ferrets did not
receive any water in their home cage, although, when necessary, water obtained
during testing was supplemented to a daily minimum with wet food.

On each trial, ferrets nose poked at a central port to initiate stimulus
presentation after a variable delay (500–1500 ms). Trial availability was indicated
by a flashing LED (3 Hz) mounted outside the chamber, behind the plastic mesh
that enclosed the chamber, ~15 cm from the floor. Following sound presentation,
subjects indicated their decision by responding at a left or right reward spout.
Responses were correct if the animal responded left when the target was to the left
of the reference, and right when the target was to the right of the reference. Ferrets
always received a water reward for correct responses from the response spout and
received an additional reward from the start spout on 5% of trials. Incorrect
responses resulted in a 7 s time out before the next trial could be initiated, and were
followed by correction trials (which were excluded from analysis) in which the trial
was repeated. All training and testing was fully automated with all sensor input,
stimulus presentation and solenoids coordinated via TDT System III hardware
(RX8; Tucker-Davis Technologies, Alachua, FL) and custom-written
software running in Open Project (TDT Software) and MATLAB (MathWorks
Inc., Natick, USA). Training stimuli were broadband noise with the sound levels on
each trial roved (55, 58, or 61 dB SPL). To maximise the number of trials per
location for neural recordings, once trained and implanted, ferrets were tested at a
single sound level, although each animal was tested with training stimuli at the
beginning of each week. An animal was considered ‘trained’ when they reached
criterion performance of 65% correct on the training stimuli (chance performance
was 50%). Once trained, ferrets were chronically implanted with electrode arrays
and subsequently tested with cue-restricted sounds and competing sound sources.

Stimuli and speaker array. All stimuli were noise bursts generated afresh on each
trial in Matlab at a sampling frequency of 48 kHz. Sound stimuli were presented
from thirteen loud speakers (Visaton SC 5.9) positioned in a semicircle of 24 -cm
radius around one end of the testing chamber (Fig. 1a). Speakers were evenly
positioned from −90° to+90° at 15° intervals, approximately at the height of the
ferret’s head when at the central start spout. Speakers were calibrated to produce a
flat response from 200 Hz to 25 kHz when measured in an anechoic environment
using a microphone (Brüel and Kjær 4191 condenser microphone). The micro-
phone signal was passed to a TDT System 3 RX8 signal processor via a Brüel and
Kjær 3110–003 measuring amplifier. Golay codes were presented through the
speakers, and the spectrum was analysed and an inverse filter was constructed to
flatten the spectrum59. All sounds were low-pass filtered below 22 kHz (FIR filter
<22 kHz, 70 dB attenuation at 22.2 kHz) and with the inverse filters applied. All the
speakers were matched for level using a microphone positioned upright at the level
of the ferret head in the centre of the semicircle; correcting attenuations were
applied to the stimuli before presentation.

In testing, stimuli were two 150 -ms broadband noise bursts filtered according
to the testing block being performed, including a 5 -ms cosine envelope at onset
and offset, presented sequentially from two speakers separated by 30° with a 20 -ms
silent interval. Locations tested were −75° to 75° at 30° intervals (−75, −45, −15,
15, 45 and 75°), although in some sessions (BBN and BPN), additional speaker
locations at −30°, 0° and 30° were included. In a small number of early recordings
(~3% of sessions from F1301 and F1302, for BBN: 19/544 and LPN: 11/339
recording sessions), speakers spanning −90° to 90° at 30° intervals were tested, in
these recordings, stimuli were also 200 ms of duration. For these recordings, spatial
tuning properties and MI decoding was performed on the first 150 ms after
stimulus onset. In population decoding, only neural responses from sounds
presented at −75° to 75° at 30° intervals were evaluated.
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For cue-restricted testing, subjects were presented with either broadband noise
at a single sound level (BBN), low-pass noise (LPN) where the stimuli were low-
pass filtered (finite-duration impulse response (FIR) filter with cut-off 1 kHz with
70 dB attenuation at 1.2 kHz), bandpass noise (BPN, filter width one-sixth octave
around 15 kHz; 47 dB attenuation at 10 kHz and 55 dB attenuation at 20 kHz), or
high-pass noise (HPN filter cut-off 3 kHz; 70 dB attenuation at 2 kHz). All stimuli
were presented at 61 dB SPL when measured at the position of the ferret’s head at
the centre spout. Low-pass stimuli were designed to present the ferret with ITD
cues only; bandpass stimuli to provide ILD cues with very limited spectral cues, at
this narrowband frequency ferrets rely on ILD cues to localise sounds14 and the
high-pass stimuli to exclude fine-structure ITD cues, but maintain ILDs and
spectral cues.

BBN stimuli were also presented with a competing sound source (CSS), which
consisted of continuous broadband noise whose amplitude was stepped within a
1.5 dB range (randomly drawn from a uniform distribution of values with mean
55 dB SPL) every 15 ms. The CSS was presented from a single speaker, located
directly above the centre of the test arena. Reference and Target stimuli were
presented at varying levels (55, 58, 61 dB SPL) in CSS recording blocks.

Ferrets were tested twice daily, Monday to Friday, with each stimulus condition
being tested in two sessions on the same day over a 2-week period. At the
beginning of each week, ferrets were run on the training stimuli and only
proceeded to testing when they reached criterion (65%).

Frequency tuning. To determine the frequency tuning of units, ferrets were placed
in an alternative testing arena with two speakers located on the left and right (24
cm from the ferret) at head height. Ferrets were provided with a constant stream of
water from a central spout and passively listened to stimuli. Speakers were cali-
brated and matched for level (as described above). Sounds of varying frequency
(150 Hz to 20 kHz at 1/3 octave intervals) at varying level (0 dB to 70 dB SPL) were
diotically presented while recordings from the auditory cortex were made.

Microdrive implantation. The microdrives comprised 16 individually moveable,
high impedance (~2MΩ), tungsten electrodes in a WARP-16 device (Neuralynx
Inc., Bozeman, MT) in a 4 × 4 array (~900 -µm spacing, adapted from60).
Microdrives were implanted into left and right auditory cortex during an aseptic
surgery. Anaesthesia was induced by a single dose of a mixture of medetomidine
(Domitor; 0.022 mg/kg/h; Pfizer) and ketamine (Ketaset; 5 mg/kg/h; Fort Dodge
Animal Health). The ferret was intubated, placed on a ventilator (683 small animal
ventilator; Harvard Apparatus) and ventilated with oxygen and isoflurane (1–3.5%)
to maintain anaesthesia throughout surgery. A local anaesthetic (Marcaine, 0.5%)
was injected under the skin where incisions were to be made. An incision was made
along the midline of the ferret’s head, and the connective tissue cut to free the skin
from the underlying muscle. For each hemisphere, the posterior 2/3 of the temporal
muscle was removed, exposing the dorsal and lateral parts of the skull. Two
anchor/ground screw holes were drilled into the posterior medial part of the skull
and self-tapping bone screws inserted. A craniotomy was made over the auditory
cortex. The microdrive was put in place over A1 using a micromanipulator so that
the bottom of the array contacted the dura. The microdrive was then retracted, the
craniotomy filled with Silastic and the microdrive replaced before the Silastic set.
The ground wires of each implant were wound around each other and wound
around the ground screws. A protective well with screw-cap was secured in place
around the array with dental cement. A metal bar with two nuts was placed in the
centre of the head to provide a head-fixing device for later electrode movement.
Further local anaesthetia (Marcaine, 0.5%) was injected around the wound margin
before the ferret was allowed to recover from the surgery. Post-operatively, ferrets
were given pain relief (buprenorphine, 0.01–0.03 mg/kg) for 3 to 5 days post
surgery and prophylactic antibiotics (Amoxycare LA, 15 mg/kg) and anti-
inflammatories (Loxicam, 0.05 mg/kg) for 5 days post surgery.

After surgery, electrodes were moved into the brain and subsequently
descended by 100–150 μm, whenever the ferret had completed a full cycle of
behavioural testing. In this manner, over the course of 1–2 years, recordings were
made from each cortical layer in each ferret. Testing was complete when the
electrodes had moved to a depth below the estimated maximal depth of the ferret
auditory cortex (2 mm). These data, combined with estimates of frequency tuning
made at each site, enabled an estimate of the location of each electrode in the
auditory cortex (Fig. 1).

Neuronal recording. Signals were recorded, amplified up to 20,000 times and
digitised at 25 kHz (PZ5, TDT). The data acquisition was performed using TDT
System 3 hardware (RZ2), together with desktop computers running OpenProject
software (TDT) and custom scripts written in MATLAB. Headstage cables were
secured to custom-made posts which screwed onto the protective caps that housed
the implants, allowing the ferret free movement within the chamber.

Spike sorting. The raw broadband voltage trace was filtered using an elliptical filter
with bandwidth 300–5000 Hz (MATLAB). The filtered trace was processed to
remove noise correlated across channels61. Spikes were detected using an ampli-
tude threshold set automatically and were clustered into ‘units' using algorithms
adopted from Wave_Clus62. Clusters were manually checked post-sorting and

assigned as multiunit or single unit. Units were defined as single if they contained
fewer than 1% of all inter-spike intervals within 1 ms and they had a consistent
spike wave-form shape. Recording sessions performed at the same depth, and
within 3 days, were combined and spike-sorted as if they were a single recording
session. The spike shapes, rasters and PSTHs of these sessions were then checked
manually for how well the recordings combined and were rejected if there was any
inconsistency (e.g., if the spike shapes were different, or if the PSTHs were different
(T test, p < 0.05)). Where spike shape etc. differed between sessions, sessions were
then spike sorted separately. Since multiple recordings were made at the same site
in the brain, if the recordings could not be combined, then the ‘best’ recording
session for the particular site was taken to ensure the same unit was not included in
the analysis multiple times. The ‘best’ recording here refers either to the recording
with the highest number of trials (for spatial tuning properties; centroid, ERRF
width and modulation depth), or the recording with the best MI (for comparison of
MI in individual units and for population decoding).

Spatial tuning features. Clusters identified in the spike sorting (see Supplemental
Methods) were deemed sound responsive if the spike rate in the 50 ms post-
stimulus onset was significantly different from the baseline firing rate in the 50 ms
preceding stimulus onset (paired T test, p < 0.05).

Spatial receptive fields were defined by calculating the mean spike count over
the 150 ms reference sound presentation, expressed relative to mean baseline
activity measured in the 150 ms prior to stimulus onset. A unit was defined as
spatially tuned, if its response was significantly modulated by location
(Kruskal–Wallis test, p < 0.05).

The spatial tuning of each unit was given by its centroid and the location of the
peak firing rate (best azimuth). The centroid was calculated in a similar way to
Middlebrooks and Bremen31: the peak rate range was determined as one or more
contiguous stimulus locations that elicited spike rates within 75% of the unit’s
maximum rate, plus one location on either side of that range. The locations within
the peak range were treated as vectors weighted by their corresponding spike rates.
A vector sum was performed, and the direction of the resultant vector was taken as
the centroid.

The breadth of spatial tuning of a unit was represented by the width of its
equivalent rectangular receptive field (ERRF)42, which corresponds to the width of
a rectangle with a total area that equals the area under the spatial receptive field,
and with a height equal to the peak firing rate. Modulation depth was defined as
((max response–min response)/max response) × 100.

To estimate confidence intervals for the centroid, ERRF width and modulation
depth of each unit, the spike rates from each location were non-parametrically
resampled with replacement 500 times, taking the same number of trials for each
location. The parameters were subsequently calculated from the resampled data
resulting in a distribution of 500 observations for each parameter. The centroid,
ERRF width and modulation depth of each unit were then taken as the mean of
each distribution with the 2.5th and 97.5th percentiles giving the confidence
intervals for each parameter.

Differences between the centroids in each stimulus condition were tested with a
two-sample Kolmogorov–Smirnov test (p < 0.05), when considering the same units
in each condition a paired T test was used (p= 0.0167, Bonferroni corrected).
ERRF widths and modulation depths in each of the stimulus conditions were tested
with paired (p= 0.0167, Bonferroni corrected) or unpaired T tests (p < 0.05),
depending whether the comparison was across all units or between the same units,
respectively.

Spike pattern decoding of individual units. Responses were binned with 15 ms,
50 ms or 150 ms resolution across the duration of the reference sound presentation.
Spike patterns were decoded using a leave-one-out cross-validation procedure that
compared the PSTH on a single test trial to template PSTHs calculated as the mean
across trials for each location being tested, with the test trial excluded from tem-
plate generation63. Test trials were classified by location according to the lowest
Euclidean distance between test PSTH and template PSTHs. Mutual information
(MI) was calculated between the actual and decoded sound location to quantify
decoder performance. To test for significance, bootstrap simulations (250 repeats
with resampling) on shuffled data were performed. The MI was deemed significant
if it was more than two standard deviations above the mean of the shuffled dis-
tribution. Since extra locations were occasionally tested (BBN and BPN; see the
section Stimuli and speaker array), the percentage of the maximum possible MI
(log2 of the number of locations tested) was calculated, so that decoder perfor-
mance could be compared across conditions with different speaker numbers.

Population decoding. Similar to Belliveau et al.35, a Bayesian maximum-likelihood
decoder was implemented to test different models of location coding. Three models
were tested for decoding sound location: The distributed, the two-channel hemi-
spheric and the two-channel opponent model. For the distributed model, the
probability of a firing rate for each neuron in the population (N), given stimulus Y,
was calculated as the product of the probabilities of the firing rate of each cell (i):

pðfiring rateN jYÞ ¼ ΠN
ði¼1Þ pðfiring rateijYÞ ð1Þ
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For the two-channel hemispheric model, two populations of neurons were
defined by the hemisphere of the brain they were recorded from. For the opponent-
coding model, two populations of neurons were defined by the side of space their
centroid occupied. The likelihood term was calculated using the mean firing rate
across all neurons in the population at each location. The joint probability of a set
of firing rates in each hemisphere was calculated as the product of the probability
of the mean firing in each hemisphere:

p firing rateleft; firing raterightjY
� �

¼ p firing rateleftjYð Þ � p firing raterightjY
� �

ð2Þ
For the modified distributed model, the whole population of neurons ordered

by best azimuth was divided into channels (1–30 channels) with equal numbers of
units. The likelihood term was calculated using the mean firing rate of all neurons
in each channel at each location. The joint probability of a set of firing rates in each
channel (i) was calculated as the product of the mean firing in each channel (for N
channels):

pðfiring rateN jYÞ ¼ ΠN
ði¼1Þ pðfiring rateijYÞ ð3Þ

Since the number of presentations of a stimulus in a given recording session was
not necessarily equal, the probability of the firing rate of each neuron at each
location was calculated using the maximum number of trials that would result in
equal presentation probability (randomly selected without replacement). Thus, for
the purposes of the population decoder, each location was presented with equal
probability. Thus p(stimulus | firing rateY) ∝ p(firing rateY | stimulus) and
therefore, the likeliest source location was defined as the max p(firing rate |
stimulus).

The models were tested for populations increasing in size from 1 to the
maximum number of units in each stimulus condition, with units randomly drawn
from all the available units with replacement (bootstrap resampling). For each
population size, a single trial from each cell was selected for decoding. This process
was repeated 250 times for each population size. For each unit of the population,
the mean and standard deviation of the spike counts from trials at each azimuth
was calculated. Any unit recordings with fewer than seven trials at any location
were excluded from the population testing. Units were selected from recordings
where the locations tested spanned −75° to 75° in 30° steps, and where at least one
of the bin widths had significant MI in the spatial location decoding. Where
multiple test sessions were made at the same recording site, the best recording was
defined as the unit with the highest significant MI value.

For testing the number of channels with fixed numbers of units (Fig. 7j), linear
interpolation between the nearest actual values was performed so that the same,
maximum number of units could be compared. For testing the effect of channel
number with constant units per channel (Fig. 7k), we fitted Gaussian tuning curves
to the population of units that responded to BBN and fulfilled the above criteria.
For each population size (i.e., the number of channels and number of units per
channel necessary), Gaussian tuning curves were selected from the population
(with replacement) and 100 trials at each location were generated by drawing spike
rates from Gaussian distributions with mean and variance of the fitted curves at
each location. For testing the distributed decoder across stimuli and between
different recording sessions of the same cells, responses were normalised by z-
scoring. HPN was not assessed across sessions since the number of units was too
low (N= 3). For cross-cue decoding, performance was compared to the
performance of a cell-identity shuffled decoder. We quantified the effect of
permuting cell identity on decoding performance by taking the mean performance
observed from recorded data and subtracting the mean performance when cell
identity was shuffled before decoding (103 iterations). To estimate whether this
effect was significantly larger than would arise by chance, we computed a null
distribution of effect size by remeasuring the difference in decoding performance
when the labels for performance values (observed or permuted) were randomized
(1000 randomizations). If cell identity was not important for decoding
performance, we would expect the observed effect of permuting cell identity to be
no larger than if the effect was computed after randomised resampling. In contrast,
we observed a large effect of shuffling cell identity in the recorded (but not
randomised) data. We estimated a p-value for our observed results as the
proportion of effect sizes resulting from randomized data that were larger than the
observed effect.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analysed in this study are available from the
corresponding authors on reasonable request. The data presented in all figures are
available from figshare with the identifier 10.6084/m9.figshare.c.4455089.

Code availability
Custom-written computer code for behavioural and neural data collection and analysis is
available from the authors on request.
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