
Title: An official ATS Technical Standard: Preschool Multiple Breath Washout Testing 

 

Authors: 

1. Paul D. Robinson1,2,3 

2. Philipp Latzin4 

3. Kathryn A. Ramsey5,6,7  

4. Sanja Stanojevic8,9,10 

5. Paul Aurora11,12 

6. Stephanie D. Davis13 

7. Monika Gappa14 

8. Graham L. Hall5,6,15 

9. Alex Horsley16,17 

10. Renee Jensen9  

11. Sooky Lum12 

12. Carlos Milla18 

13. Kim G. Nielsen19 

14. Jessica E. Pittman20 

15. Margaret Rosenfeld21 

16. Florian Singer22 

17. Padmaja Subbarao8,9 

18. Per M. Gustafsson23,24* 

19. Felix Ratjen8,9,25* 

*joint senior authors 

 

1The Children's Hospital at Westmead, Westmead, Australia 

2Discipine of Paediatrics and Child Health, University of Sydney, Westmead, Australia 

3Airway Physiology and Imaging Group, Woolcock Institute of Medical Research, Sydney, Australia 

4Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland 

5Telethon Kids Institute, Subiaco, Australia 

6Centre for Child Health Research, University of Western Australia, Subiaco, Australia 

7Cystic Fibrosis Research and Treatment Centre, University of North Carolina at Chapel Hill, Chapel Hill, North 

Carolina, USA 

8Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada 

9Translational Medicine, Research Institute, Hospital for Sick Children, Toronto Canada 

10Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Canada 

11Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom 

12Respiratory, Critical Care & Anaesthesia section, UCL, Great Ormond Street Institute of Child Health, 

London, United Kingdom 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/227337123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

13Section of Pediatric Pulmonology, Allergy and Sleep Medicine; Department of Pediatrics, Riley Hospital for 

Children, Indiana University School of Medicine, Indianapolis, Indiana, USA 

14Marien Hospital Wesel GgmbH, Childrens Hospital and Research Institute, Germany 

15School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia 

16Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United 

Kingdom  

17Manchester Adult CF Centre, University Hospital of South Manchester, Manchester, United Kingdom  

18Center for Excellence in Pulmonary Biology, Stanford University, Palo Alto, California, USA 

19Department of Pediatric and Adolescent Medicine, Pediatric Pulmonary Service, Copenhagen 

University Hospital, Rigshospitalet, Copenhagen, Denmark 

20Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Washington University 

School of Medicine, St. Louis, Missouri, USA. 

21Seattle Children’s Hospital, University of Washington, Seattle, Washington, USA 

22University Children’s Hospital Zurich, Zurich 8032, Switzerland 

23Department of Pediatrics, Central Hospital, Skövde, Sweden 

24The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden 

25University of Toronto, Toronto, Canada 

 

Corresponding Author: 

Dr. Paul D. Robinson 

Department of Respiratory Medicine 

The Children’s Hospital at Westmead, Locked Bag 4001,  

Westmead, NSW, 2145 Australia 

Email: paul.robinson1@health.nsw.gov.au 

 

Manuscript count: 7827 words (limit 10000)  

Word count of the overview section is not included in the overall word count (as specified by the document 

committee).  

6 Tables and 5 Figures 

  



 3 

Abstract 

Background: Obstructive airway disease is non-uniformly distributed throughout the bronchial tree, although 

the heterogeneity to which this occurs can vary among conditions. The multiple breath washout (MBW) test 

offers important insights into pediatric lung disease, not available through spirometry or resistance 

measurements. The ERS/ATS inert gas washout (IGW) consensus statement led to emergence of validated 

commercial equipment for the age group 6 years and above; specific recommendations for preschool children 

were beyond the scope of the document. Subsequently the focus has shifted to MBW applications within 

preschool subjects (aged 2-6 years) where a “window of opportunity” exists for early diagnosis of obstructive 

lung disease and intervention.  

Methods: This preschool-specific technical standard document was developed by an international group of 

experts, with expertise in both custom-built and commercial MBW equipment. A comprehensive review of 

published evidence was performed. 

Results: Recommendations were devised across areas which place specific age-related demands on MBW 

systems. Citing evidence where available in the literature, recommendations are made regarding procedures 

that should be used to achieve robust MBW results in the preschool age range. The present work also 

highlights the important unanswered questions that need to be addressed in future work. 

Conclusions: Consensus recommendations are outlined to direct interested groups of manufacturers, 

researchers and clinicians in preschool device design, test performance and data  analysis for the MBW 

technique. 
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1. Overview 

The incorporation of preschool multiple breath washout (MBW) testing into research and clinical practice is 

growing, as is evident by the increasing number of publications in this area. Initial review articles on preschool  

MBW appeared in 2005 (1, 2), and were supplemented in 2007 by a formal MBW section within an official 

ATS/ERS statement on preschool lung function testing (3). The ATS/ERS document highlighted that “few MBW 

systems adapted for preschool age group (were) commercially available”, and that remains the case a decade 

later. The ERS/ATS IGW consensus document (hereafter termed ERS/ATS consensus statement), published 

in 2013, represented an important step forward for the overall technique, providing recommendations for 

manufacturers and researchers interested in MBW equipment, testing protocol and data analysis (4). Whilst all 

age groups were mentioned, specific preschool recommendations were limited to brief statements about 

testing interface and position. Increasing interest in preschool MBW is now being driven by potential utility of 

MBW outcomes such as the lung clearance index (LCI) in specific patient groups (e.g. cystic fibrosis, CF), 

where MBW is being used as an outcome measure for clinical trials. Publications in this area were three times 

greater in number from 2011-2015, compared to the preceding five years (5). 

 

Although commercial MBW equipment exists, these devices have not been developed specifically for the 

unique requirements of the preschool age group. Several challenges have been encountered using these 

commercially available devices in preschool children that need to be considered by manufacturers, as well as 

researchers/clinicians. Higher respiratory rates, lower respiratory flows and lower lung volumes in preschool 

children place additional demands on equipment performance. This may account for the lower accuracy 

observed against smaller lung model volumes in some of the previous validation efforts in the literature (6, 7).  

Success in the infant age range illustrates that these can be overcome (8-10). In addition, initial attempts to 

replicate high historical preschool feasibility, achieved with custom built research based equipment, within the 

clinical setting using commercial equipment (or modified versions) have been unsuccessful (11, 12).  

 

This technical standards document aims to build on and complement existing documents in the literature, as 

part of the process towards clarifying clinical utility of MBW within the preschool age range. It outlines 

important recommendations on device design for manufacturers and test performance for operators specific to 

preschool children. It recognizes that whilst there are still areas that require further data for formal 

standardization, a number of important recommendations can be made that should be implemented to 

standardize the technique across institutions as the technique moves towards widespread clinical use. Current 

recommendations are based on consensus, citing evidence where available in the literature, across an 

international group of experts (Table 1). For aspects where different acceptable options exist, discussion 

focuses on the advantages and disadvantages of each option. The expertise gathered spans several types of 

research and commercial MBW equipment. The majority of both research and commercial systems employed 

to date have been open circuit based systems, although the utility of closed, rebreathing setups are also being 

explored by some groups (13). Close collaboration between researchers and manufacturers has been a key 
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aspect in achieving progress to date for MBW, and will be essential for ongoing standardization work within this 

younger age range.  

 

Important areas that need to be addressed in future work are outlined and summarized (Table 2), and will 

hopefully prove an incentive to gather the evidence necessary for further advances in standardization within 

this age group. This overall focus of this document is on MBW and reports mainly on LCI and the experience 

gained to date through studies in CF, as the most commonly utilized index and disease group, respectively. 

Other MBW indices have shown promise in CF but understanding of utility remains behind that of LCI. The role 

of these indices and the general utility of MBW in other respiratory conditions need to be explored in future 

work. Challenges of defining clinical utility are not discussed within this document; interested readers are 

directed to existing literature elsewhere (14, 15). 

2. Introduction 

In preschool children (2-6 years of age), conventional lung function tests, such as spirometry, remain 

technically challenging and relatively insensitive in identifying early airways disease in conditions such as 

cystic fibrosis (CF) (16-18). MBW for this age group has emerged as a feasible outcome measure for 

interventional studies and an area of interest for clinicians exploring its utility in clinical care. A recent CF 

foundation report, based on the discussions within a workshop hosted by the North American CF Foundation 

and Therapeutics Development Network, concluded that MBW was “a valuable potential outcome measure for 

CF clinical trials in preschool-aged patients” (15). This was echoed in concurrent recommendations from the 

European Cystic Fibrosis Society Clinical Trial Network (ECFS-CTN) Standardization Committee, which 

highlighted the “strong evidence base to support the use… in clinical trials in CF” (14). The vast majority of 

MBW studies in this age range have focused on CF, with studies of other respiratory conditions including but 

not focusing on preschool subjects (19, 20). 

3. Methods 

The working group was assembled to develop detailed technical standards for the performance of MBW in the 

preschool age range, which were lacking in the original ERS/ATS consensus document (4). As with the 

previous document this work was based largely on consensus, but sought to clearly describe evidence when 

available. Expert knowledge was supplemented by a comprehensive review of the literature (both of published 

abstracts and manuscripts contained within Embase and pubmed databases) performed with the keywords 

multiple breath washout, preschool children, preschoolers, lung clearance index (LCI), moment ratios, moment 

analysis, and functional residual capacity (FRC), as of December 31, 2016. Members of the working group 

were selected by the chair (Paul D Robinson) based on involvement with the previous ERS/ATS consensus 

work, published in 2013, and/or active research or interest in preschool MBW research. International 
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representation across the main current commercial devices was intentionally targeted. As with the previous 

ETS/ATS consensus statement, this provided wider applicability for current recommendations to be adopted in 

future MBW equipment and testing protocols. All potential conflicts of interest were disclosed and managed 

according to the policies and procedures for ATS projects. Individual sections were drafted by smaller working 

groups, merged together in the overall draft document by the chair, and all authors provided comment and 

suggestions for the final document. The methods checklist is presented (Table 3). 

4. Background  

Publications including pediatric MBW testing initially emerged in the 1960s (21, 22), whereas the inclusion of 

preschool children in studies did not occur until two decades later (23, 24). Initial data collected in the 1980’s 

suggested poor feasibility in preschool children. Using custom built equipment Couriel et al. reported feasibility 

of 49% in 82 subjects aged 3.9-6.8 years (23). Couriel et al., used an airtight snorkel mouthpiece and nose-clip 

interface and a 2-way breathing valve, and reported “great difficulty” with the technique. The authors stated 

“fear of the apparatus was the main cause of failure in the younger children” and “major difficulty…. 

maintaining a leak-free connection to the apparatus for the duration of the test.” Later the same year, Wall 

reported 80% feasibility in 40 subjects aged 3-6 years, based on two acceptable tests (24). Importantly, Wall’s 

testing protocol incorporated distraction using a portable music system and headphones. Wall speculated that 

replacement of his mouthpiece and nose-clip interface system with a “snug fitting mask system” might allow 

feasible MBW measurements in even younger children. Incorporation of a facemask-based interface was not 

reported until 2003; Gustafsson et al. used a facemask interface and replaced music with video-based 

distraction, but did not report feasibility rates (25). Shortly after, Aurora et al., in 2005, used this approach in 

preschool children and achieved feasibility of 79% across 77 subjects aged 2-6 years, based on stricter criteria 

of three acceptable tests (16). 

5. Technical considerations for preschool MBW 

 

The original ERS/ATS consensus statement included a comprehensive list of recommendations for both 

manufacturers and operators (4). In order to facilitate standardized measurement and practice, technical 

aspects with particular importance to the preschool age range are discussed in further detail within this section.  

 

5.1 Validation of FRC measurement accuracy 
Currently no available in-vitro models exist to validate accuracy of ventilation inhomogeneity (e.g. LCI) 

assessment; therefore validation efforts have mainly focused on FRC measurement accuracy, and 

recommendations in recent guidelines (4) have provided a framework for assessment. Success in older age 

groups, however, must not be extrapolated to the preschool age range. Accurate FRC measurement at these 
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smaller volumes present greater challenges (6, 8); error often increases at smaller volumes (26) and higher 

respiratory rates (7, 27). In vitro validation must therefore include representative FRC volumes of the preschool 

age range (typically 30-40 mL/kg in health or an FRC range of 0.4-1.0 liters), using respiratory rates and tidal 

volumes (VT) typical for the subjects and lung conditions encountered (typically 20-40 breaths/min in health 

and up to 60 breaths/minute in disease and VT/FRC of 0.2-0.4) (28). Dry in-vitro models (10) and those 

incorporating BTPS conditions (6) offer a two stage approach to assessment. Importantly, in-vitro accuracy 

may not directly translate to in-vivo accuracy, as suggested by preliminary data from older age groups (29). 

 

Recommendations 

1. In vitro validation for preschool MBW systems must include representative FRC volumes of the 

preschool age range, using a range of respiratory rates and tidal volumes appropriate for the subjects 

and lung conditions encountered.  

2. FRC measurement accuracy must not be extrapolated from larger FRC volumes. 

5.2 Flow measurement and breath detection  
Breath definition may be based on detection of flow zero-crossings or by integration of flows to detect breath 

volumes reaching a pre-determined significant value. Additional challenges for the manufacturer in the 

preschool setting are greater breathing irregularity and the lower tidal flows encountered, compared to older 

children, with typical peak inspiratory and expiratory flows ranging from 200-400mL/s. To ensure accurate flow 

detection, and breath identification, in this setting, flow detection thresholds should be set slightly higher than 

the noise of the flow signal and then back extrapolated to the previous zero flow crossing. VT, derived from the 

flow signal, must be accurate to within 3% or 5 mL whichever is greater (30). This accuracy should not be 

affected by the gas composition of the breath. For example, dynamic viscosity is 10% higher with 100% O2 vs. 

room air, which results in an over-reading of flow with pneumotachographs (PNT) by 10% with 100% O2 if the 

PNT is calibrated with room air. In contrast, ultrasonic flow meters measure flow using the Doppler effect; 

therefore, these devices measure linear velocity and are in principal not sensitive to changing dynamic 

viscosity, or density (molar mass), within the molar mass range encountered with current MBW inert gas 

choices. 

 

Manufacturers should be aware that potential errors introduced by higher technical drift and increased sample 

flow (sampling rate from side stream gas analysis set ups) on measured tidal flows, integrated VT and MBW 

outcomes may be relatively greater than in older subjects. However, a precise threshold for acceptability of 

technical drift remains unclear. 

 

Greater variability in breathing patterns of preschool children exists, and this should be considered for accurate 

breath detection. Software must be able to handle pauses in breathing and fragmented breaths that are 

frequently encountered in this age range. This capability has been demonstrated in different custom-built 

research software by authors within this working group (16, 31, 32) and is therefore also feasible for 
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manufacturers. Approaches used must be fully transparent to the user. In breaths split or followed by a pause, 

if no inspiration has occurred during the pause then it should be viewed as the same breath and not as two 

separate breaths. Objective thresholds for defining the occurrence of a small inspiration (i.e. minimum breath 

size) need to be formally defined and the approach used by the manufacturer should be clearly described. 

Errors in definition of inspiration or expiration may introduce FRC estimation error, given the requirement for 

accurate measurement of expired inert gas volume during the washout portion of the test, corrected for any re-

inspired inert gas. Accurate end-tidal inert gas concentration is also more challenging due to more variable 

breath size and inconsistent volume and flow profiles of preschool breaths. Small breaths may lead to 

erroneous early LCI threshold identification, due to falsely low end-tidal inert gas values, and the end-user 

must be able to examine data closely for this artifact and adjust accordingly. 

 

The manufacturer must carefully assess and report the approach used to ensure its robustness. Assessment 

requires variability in breathing pattern, which may be best provided by representative in vivo data or mimicked 

using a breath simulator. The latter may also provide a means to validate VT accuracy under ambient 

conditions. Researchers should consider supplying such data to manufacturers, as has occurred with other 

lung function techniques in the past (e.g. spirometry) (33). 

 

Recommendations: 

1. VT accuracy must be within 3% or 5 mL, whichever is greater.  

2. Flow detection accuracy must be robust and manufacturer assessment must be performed based on 

data mimicking breathing pattern variability encountered in this age group. 

3. Breath detection software must handle the pauses in breathing and fragmented breaths frequently 

encountered in this age range. The approaches used must be fully transparent to the user.   

 

5.3 Optimal synchronization of flow and inert gas concentration 

As with MBW systems used in older children, optimal synchronization of flow and inert gas concentration 

signals for preschool children is essential (4, 34, 35). Furthermore, this precise synchronization needs to be 

maintained over the entire washout period. Changes in flow, during the breathing cycle, and in dynamic 

viscosity and gas density, over the course of the washout, can further complicate this process and are of 

increasing significance the younger the child. 

 

If the point of inert gas measurement (mainstream) or sampling (sidestream) differs from the respiratory flow 

measurement point, the delay between flow and gas concentration will be affected by variation in flow within 

the breathing cycle as the flow front moves between those two measurement points (Figure 1). This flow-

dependent effect is additional to the delay time that exists in the system due to analyzer response time +/- gas 

transit time (for sidestream sampling). This flow-dependent effect has now been demonstrated across different 
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commercial equipment, by separate research groups (7, 26), and leads to an increasing delay between signals 

as flow decreases. Therefore it is particularly relevant to preschool MBW with its lower tidal flow patterns.  

 

Increasing gas dynamic viscosity and density may reduce sample flow within the sidestream sampling line (e.g. 

Nafion tubing). The magnitude of this effect, first described more than 30 years ago (36), will depend on the 

characteristics of the sample line, the sample flow rate and the magnitude of change in viscosity that occurs 

during the measurement period. This is particularly relevant to N2 MBW where O2 concentration varies 

between 21-100%, and viscosity change may result in an alteration of flow-inert gas delay times of over 10% 

across the washout portion of the test (37). Successful adjustment for this viscosity affect has been recently 

described within a commercial MBW system (10). 

 

Based on fixed synchronization approaches, FRC accuracy has been demonstrated to remain within 5% (the 

specified accuracy threshold) if synchronization error is ≤10ms between flow and inert gas concentration. This 

threshold appears to be consistent across different equipment systems (27, 35, 38) and formed the basis of 

this ERS/ATS consensus statement recommendation (4). Respiratory rate affects this relationship (37), and 

the range used must be preschool age specific when this source of error is assessed.  

 

The flow-dependent and viscosity-dependent effects described above suggest that a dynamic approach to 

synchronization may further improve accuracy and must be considered by manufacturers designing preschool 

MBW system. Accuracy of the outcome measurement (e.g. FRC) should not be extrapolated to other 

outcomes, as error magnitude may differ (7). For example, LCI threshold is very dependent on accurate end-

tidal inert gas concentration at the end of the washout where viscosity related effects may be greatest, yet 

relative exhaled inert gas volume contribution to FRC may be far less in this region of the washout. 

Recommendations to minimize flow-gas delay error to ≤10ms error across the full washout should be adhered 

to strictly, and the operator must be able to evaluate the adequacy of synchronization across all data collected.  

 

Recommendations:  

1. Synchronization accuracy must be within 10ms across the duration of the entire washout.  

2. The presence of flow-dependence, gas viscosity and density effects on synchronization of flow and 

inert gas concentration signals must be assessed within MBW systems evaluated for preschool testing. 

Manufacturers are encouraged to incorporate dynamic synchronization methods that correct for these 

factors, if present, to improve MBW system accuracy. 

3. The operator must have the ability within the manufacturer’s software to assess the accuracy of inert 

gas concentration and flow synchronization at the time of testing.  
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5.4 Technical considerations regarding inert gas choice  

 

To date, there is no clear evidence to suggest that one particular inert gas is more suitable for the preschool 

age range from a technical perspective.  

 

Of the three main inert gases used (Helium, SF6, and N2), most research to date has focused on either SF6 or 

N2. Helium use has mainly been restricted to the setting of a secondary comparison gas in preschool SF6 

studies, using custom built respiratory mass spectrometer based equipment which facilitates dual gas 

comparison. Other fast responding helium analyzers are currently lacking.  

 
Indirect inert gas concentration analysis approaches have been developed for both SF6 and N2 and are 

discussed elsewhere (4). One such method deserves further discussion in the setting of preschool MBW. The 

mainstream molar mass-based approach to SF6 calculation requires correction of the molar mass signal for the 

effect of humidity and temperature fluctuation during the breathing cycle. Correction algorithms have been 

validated for use in young infants (39) but not for preschool children and should not be used in the preschool 

age range until appropriate validation has been performed. Recent infant-based validation of an improved 

sidestream based approach, which avoids the need for this correction, holds promise for use in preschool 

subjects but awaits future validation before firm recommendations can be made (10).  

6. Physiological and developmental considerations for preschool MBW  

6.1 Physiological considerations of inert gas choice 
 

To date, there is no clear evidence to suggest that one particular inert gas is more suitable for the preschool 

age range, with respect to physiological effects and feasibility. Both SF6 and N2-based MBW appear 

appropriate inert gas choices for preschool children. 

 

6.1.1 Effect of inert gas choice on breathing pattern during testing 

Significant deviation from tidal breathing has been reported in infants during both 100% O2 and 4% SF6 

procedures (40-43). The magnitude of effect is not trivial in infants, with 100% O2 exposure causing upto a 

33% reduction in VT (40, 43, 44) . Proposed explanations include the effect of absorption atelectasis on VT or a 

blunted peripheral chemoreceptor response to increased arterial oxygenation on respiratory rate and minute 

ventilation (V’E) (43, 45). An initial priming period of a lower O2 concentration (e.g. 40%) has been shown to 

negate the effect in infants (40). This effect is not as pronounced with SF6 exposure, at a concentration of 4%, 

with data describing significant effects on V’E only (41, 42). In a recent direct comparison of the two methods, 

this effect observed with SF6 on VT was attributed to a technical artifact rather than a true physiological effect 
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(43). A described effect on respiratory rate in a sedated cohort (41) was not observed in two subsequent non-

sedated cohorts (42, 43). The degree to which the effect of 100% O2 on breathing pattern accounts for the 

difference observed between SF6 and N2-based MBW indices (e.g. LCI and FRC) remains unclear, but SF6-

based MBW is currently the preferred method in infants (43). 

 

Whilst these effects of 100% O2 do not appear to be present in early school age (46), the exact stage at which 

this effect disappears is unclear. Effects are likely to act in an age-, dose-, and disease-dependent manner (40, 

45, 47), although the impact of the subject’s status during testing (i.e. asleep/sedated in infants vs. alert and 

awake in preschoolers) is another important consideration. Initial preschool specific insight is encouraging, with 

a detectable effect, which is much smaller in magnitude than described for infants: a VT change of <10% and 

not present consistently across individuals (48). It is not felt to be physiologically relevant by this working 

group, but the exact effect on MBW outcomes remains unclear.  

 

Preschool MBW equipment must afford the operator the ability to examine and detect these effects. A 

recommended approach would be to display VT, respiratory rate and concurrent end-tidal CO2 (to detect hyper- 

or hypoventilation). Display of real time V’E should also be considered. Until further data is available, both SF6 

and N2-based MBW remain appropriate inert gas choices for preschool children.  

 

Recommendations: 

1. In preschool subjects, both SF6 and N2-based MBW appear appropriate inert gas choices for preschool 

children. 

2. Preschool MBW systems must provide the ability to monitor breathing pattern in real time during each 

test.  

 

6.1.2 Effect of inert gas diffusion across the alveolar-capillary membrane 

There are no data currently available to quantify the impact of inert gas diffusing across the alveolar-capillary 

membrane on measured MBW outcomes in preschool subjects. Whilst N2 is inert, in the sense that the human 

body does not metabolize it, it is a soluble gas, and due to the high partial pressure of the atmosphere, a large 

amount of N2 is stored within the body. As a result N2 will diffuse into the alveoli when the partial pressure of N2 

is lowered, as occurs during N2-based MBW using 100% O2 (49, 50). This process of gas diffusion across the 

alveolar-capillary membrane applies to all gases to differing degrees, and occurs to lesser degrees, and in the 

opposite direction, with both SF6 and Helium (51). The magnitude of diffusion and its effect on subsequent 

MBW outcomes has not been adequately described to date, beyond initial modeling attempts for N2 MBW (52).  

 

Several factors are likely to influence the magnitude of the impact of inert gas diffusing across the alveolar-

capillary membrane: (i) tissue N2 contribution to the alveolar N2 fraction is likely to be non-linear in nature, due 

to the influence of varying concentration gradients through the washout portion of the test, gas exchange rates, 
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and the fact that time constants for both N2 elimination and lung perfusion will vary across different lung 

compartments; (ii) the subject’s age, given that lung architecture and cardiac output change with age 

(particularly relevant in preschool subjects where these change more rapidly than in older subjects); and finally 

(iii) the degree of ventilation inhomogeneity present and the washout time (both of which are typically lower in 

preschool subjects). Adult-based data to quantify tissue N2 contribution to calculated FRC from the 1950s (49) 

should therefore not be extrapolated to preschool children. In fact, previous attempts to implement corrections 

based on this data in older school aged subjects have been reported to be problematic (21). Recent modeling 

work, based on a numeric two compartment lung model, suggested a small effect on measured adult FRC 

values (1.8%, within the 5% accuracy limit stipulated in the ERS/ATS consensus statement), but a larger 

relative effect on LCI (6.3%). The relative magnitude of error introduced worsened with increasing ventilation 

inhomogeneity and, of particular interest to preschool MBW, with decreasing FRC (although this analysis used 

FRC values for a 10 year old child and not preschool values per se) (52). However, preliminary in vivo studies 

suggest the effect of tissue N2 increases with increasing lung volume, subject size and as lung function 

worsens (54). While these findings are physiologically important, it remains to be determined whether 

correction for tissue N2 would alter the interpretation of MBW results. 

 

Recommendations  

1. Until the magnitude of error introduced and validated correction equations are available for inert gas 

diffusion across the alveolar-capillary barrier, correction of MBW data for this effect is not 

recommended.  

 

6.2 Equipment related dead space volume 
To reduce equipment-related effects on breathing pattern and end-expiratory lung volume (EELV), 

manufacturers of commercial devices must consider equipment related dead space volume (VD) carefully when 

designing systems for widespread use in general respiratory clinics. Definitions of the VD components of an 

MBW system (equipment, anatomic and physiologic) are described in detail in the ERS/ATS consensus 

statement (4). Studies in animals (55), infants (56), preschool children and adults (57, 58) have consistently 

demonstrated detrimental impacts of increased VD on ventilation inhomogeneity outcomes. Recent adult data 

illustrating this increasing detrimental effect of VD on LCI across the VD range of 0-5mL/kg is shown in Figure 2. 

The fact that there was no clear threshold under which the effect on LCI was no longer seen suggests that VD 

should be minimized wherever possible within an MBW system. 

 

Increasing equipment VD leads to increased VD/VT, decreasing effective ventilation, and may trigger a 

compensatory change in breathing pattern and/or EELV. This is particularly relevant to preschool age subjects 

as children with the smallest VT relative to fixed equipment VD will be most affected.  Furthermore, changing 

relative VD/kg as a subject grows may influence the interpretation of longitudinal data. No direct effect on 

breathing pattern was detectable in healthy preschool subjects (VD range of 1.49–2.55 mL/kg), and the 
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threshold at which effects on breathing pattern occur remains unclear (58). Correction algorithms for LCI have 

been proposed (58), but further work is required before any firm recommendations can be made. 

Recommendations to correct FRC for VD do exist and are routinely applied in practice (4). The impact of 

increased VD on EELV and therefore FRC measurement is currently unclear.  

 

Preschool children are often tested with a facemask, however the VD of a facemask is difficult to measure. 

True effective VD is affected by several factors: streaming of gases within the facemask itself (59), the amount 

of therapeutic putty used, and variation in the VD displaced within the facemask during testing by face shape 

and operator pressure applied. As such, estimates of facemask VD should not be incorporated into any 

corrections applied to the pre-gas sampling point VD for CEV or FRC calculation. Instead, introduced facemask 

VD must be minimized by selection of the smallest appropriate size, which maintains face seal and applying 

therapeutic putty (Figure 3).  

 

Recommendations:  

1. Manufacturers must minimize equipment related VD. To ensure a consistent approach across age 

ranges, equipment related VD should be kept below 2 mL/kg, as recommended in the recent ERS/ATS 

consensus guidelines. 

2. Efforts to minimize VD within an MBW system must not adversely affect overall resistance of the 

breathing circuit such that breathing pattern is altered. 

3. MBW operators must minimize facemask-associated VD by ensuring the smallest appropriately sized 

facemask is used, and by use of therapeutic putty within the facemask ensuring that no obstruction to 

airflow occurs. 

 

6.3 Environment for testing 
A detailed description of the desired skills and training of the preschool operator and environment for preschool 

lung function testing was provided by the ATS/ERS pulmonary function testing in the preschool children 

statement (3) but a number of important factors were stressed and are worth reinforcing: the importance of a 

“preschool-aged child friendly” environment; the need for the operator to engage, gain the trust of the child and 

encourage the child to participate in the test throughout the session without causing distress; adequate 

allocation of time and patience by operators trained in the techniques to help young children to perform at their 

best; ability to maintain equipment and understand the procedure well enough to know when a result is or is 

not acceptable; and additional safety precautions are necessary for preschool subjects, including, but not 

limited to, the need for constant adult supervision while the child is in the laboratory. 

 

The operator has a crucial role to play to ensure the comfort level of the child. The level of distraction must be 

enough to take the child’s attention away from his or her breathing, and minimize procedure related anxiety to 

achieve relaxed stable tidal breathing. To expand further on this last aspect, the movie/show selected should 
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encourage a calm and relaxed atmosphere and avoid sudden emotions (e.g. excitement, singing, laughter 

and/or fear). Interactive programs that encourage talking or movement should be avoided. Respiratory function 

laboratories should have a number of suitable choices from which the child can select, although best choice 

may vary between child, country and culture. Preschool children should not have direct vision of the online 

measurement software to prevent “playing with signals” or manipulating visual feedback during the test. The 

preschool child must sit upright, hands by the side, not elevating their shoulders, and may require a stool to 

rest their feet. Positioning on a parents lap may help settle the younger preschool child but should not change 

this careful positioning of the child during testing. Familiarization visits for the child and parents to experience 

equipment, testing procedure and environment used during testing are strongly recommended, and should 

also include practice with the test interface used. Two operators should be present during preschool testing: 

the first operator focuses on the child, the integrity of the interface seal and maintaining adequate distraction by 

the movie/show to achieve a relaxed stable tidal breathing pattern. The second operator focuses on data 

collection and providing detailed ongoing feedback to the first operator on quality of data collected. 

Communication should occur in a discrete way and not disrupt the child’s distraction and relaxed breathing 

pattern. Adequate time should be allowed for testing: an hour is recommended, especially in MBW naïve 

and/or younger preschool subjects, although shorter time periods are feasible in experienced subjects. 

Detrimental effects of imposed limited time periods (e.g. 20 minutes for testing) have been described (12, 60).  

 

Recommendations:  

1. The environment for preschool MBW testing should be as child friendly as possible. The environment 

should be quiet, contain suitable preschool furniture and decoration, and accommodate adult 

supervision during testing.  

2. Adequate time should be set aside for testing in this age group, particularly for those <4 years of age or 

who are attending for the first time. An hour is recommended for initial testing.  

3. Familiarization visits are recommended for the child and parents to experience equipment, testing 

procedure, test interface and the environment used during testing 

4. Distraction during the assessment must be enough to take the child’s attention away from his/her 

breathing, the operator and the immediate surroundings during each test. Appropriate movie/show 

choice is critical to the process. 

5. Two operators should perform MBW testing in this age group, regardless of interface choice.  

6.4 Preschool test feasibility 
 
Feasibility of MBW test in preschool children has been reported by several studies. In the study by Aurora et 

al., reporting a success rate of 79% across MBW naïve 2-6 year old children (16), feasibility was higher in 

healthy controls (84%) compared with CF subjects (75%) and a clear age-related effect was observed. 

Feasibility was lowest in 2-3 year old children (50%), >80% above 3 years, and highest in children 5-6 years of 

age (87%).  
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The results of recent experience with commercial equipment (11, 12, 58, 61-64) are summarized (Table 4). 

While it is encouraging to see comparable high rates of feasibility using commercial equipment, these cannot 

be directly compared as each study differed across several aspects including: (i) variation in the equipment set 

up between commercial and custom research equipment (ii) age ranges tested (iii) variation in the definition of 

acceptable data (i.e. two vs. three tests), (iv) the duration allowed for the testing session (i.e. testing duration 

and whether MBW is performed as the sole test or as part of a research protocol), and (v) the interface used 

(i.e. mouthpiece/nose-clip vs. facemask). Potential effects of these individual aspects on feasibility are 

discussed in detail later in the document. This variation in methodology highlights the importance of 

implementing the recommendations contained within this technical standards document to standardize the 

technique moving forward. 

 

6.4.1 Testing interface 
The advantages and disadvantages of the two testing interface choices in the preschool age range 

(mouthpiece and nose-clip or facemask) are summarized (Table 5). The use of a mouthpiece and nose-clip 

require the child to maintain a tight seal around the mouthpiece to prevent leak, which may be difficult in this 

age group over the extended measurement periods required for MBW testing. The mouthpiece may distract 

the child, and trigger chewing, which may present additional challenges to the operator in maintaining a stable 

breathing pattern. If too large, the mouthpiece may also be uncomfortable. The use of a facemask provides 

some advantages, particularly since the operator is responsible for maintaining an adequate seal. However, 

facemasks add VD to the apparatus, which can be mitigated by the use of therapeutic putty and may help 

facilitate a leak-free seal. Inserted putty should not obstruct the air stream during breathing, which may be 

detected by the presence of box shaped flow–volume loops. The route of breathing in a facemask is not fixed 

and nasal breathing is possible. Recently, adult data has demonstrated that nasal breathing may introduce 

variability to the test result (65, 66). Nasal and oral breathing have differing effects on relative humidity and 

temperature of expired gas, and may affect BTPS correction accuracy (67). In addition, the degree of nasal 

breathing encountered during testing is likely to vary within and between individuals in the preschool age 

range. 

 

Initial work directly comparing MBW results performed with both interface options in the preschool age range 

suggests minimal differences overall (62); however, the relatively wide 95% limits of agreement observed 

suggest mask and mouthpiece should not be used interchangeably. The same study suggested greater 

feasibility and breathing pattern stability with a facemask interface with a more pronounced difference 

observed in younger preschool subjects (62). If a facemask is used initially, transition must occur as a subject 

ages, but the best approach and timing of transition needs to be defined. Ultimately, interface choice may 

depend on several factors, including age and disease group being tested (i.e. familiarity with interface through 

regular medical treatments, e.g. use of facemasks with spacers and nebulized medications in young children), 
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outcomes being assessed (e.g. greater breathing stability is required for concentration normalized phase III 

slope (SnIII) analysis), and ability to factor in practice sessions. Beneficial effects of the latter on both 

mouthpiece and facemask feasibility have been described (17, 64). Ideally the same interface should be used 

for the duration of a study. However, this may not be appropriate for longitudinal studies spanning several 

years as children may outgrow the facemask. Careful consideration of interface choice is necessary when 

planning and analyzing the data of longitudinal studies where subjects switch interface within the study.  

 

Recommendations: 

1. Both a mouthpiece and nose-clip assembly and a facemask are supported as interface choices for use 

in preschool aged children.  

2. At the present time these interfaces must not be viewed as interchangeable within this age range, and 

careful consideration of interface choice is strongly recommended. 

 

6.4.2 Special considerations when reporting preschool MBW data  
While technical MBW measurement acceptability criteria found in the ERS/ATS consensus statement are 

applicable to preschool testing, operators may generally expect a more variable breathing pattern in this age 

range. Hence, we highlight the following aspects that will require adaptation of previously published criteria 

applicable to the preschool age range, until the required evidence for formal preschool-specific acceptability 

criteria are available. Special considerations are (i) the minimal duration of breathing stability prior to starting 

the test should be shorter than is expected in school age and older subjects (30 seconds adapted to 3-5 

breaths); (ii) the acceptable deviation in EELV at start of test should better reflect the inherent greater 

variability of EELV and VT in this age group; and (iii) operators should recognize that sighs, swallows and 

pauses may be more frequently encountered compared with older children and tests should not be rejected 

unless these have a resultant action of triggering trapped gas release or leak. Representative figures of 

acceptable MBW tests typical of the preschool subject are shown (Figure 4).  

 

Obtaining three technically acceptable washout tests may be more challenging in preschool children and may 

require multiple attempts, with co-operation lost before this target is reached. Recent work has focused on 

whether comparable information can be obtained from LCI values calculated from two technically acceptable 

tests (68-73). Firm recommendations cannot be made at this stage, as further comparative data are required 

for this approach evaluating the sensitivity to detect beneficial effects of interventions. MBW operators are 

strongly encouraged to obtain three tests, with the aim of achieving at least two technically acceptable tests to 

report outcomes. Reported LCI and FRC values “based on the average of two values” should be clearly stated. 

In the ATS 2007 preschool lung function statement, it was recommended that if two tests were used to derive 

LCI, these should have FRC values within 10% (where the highest value is compared with the lower FRC 

value). This approach for MBW-based FRC measurement accuracy had been recommended in earlier lung 

volume measurement consensus documents, not specific to the preschool age range (74, 75). Subsequent 
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work has shown that when formal 10% FRC reproducibility criteria were applied to preschool data from an 

experienced preschool MBW center it led to 60% of data being excluded. This suggests that normal FRC 

variability within the preschool age range is greater than this threshold, and importantly also did not 

significantly alter LCI estimates (69). The formal FRC 10% acceptability criterion is no longer advocated in this 

age group for LCI reporting, and requires physiological FRC variability to be better defined before specific 

preschool criteria for FRC measurement accuracy can be recommended.  

 

The impact of reducing estimates to the mean of two values for other indices (e.g. moment ratios and SnIII 

analysis) remains unclear. The increased variability (e.g. for the second moment ratio, in comparison to LCI) 

may be a factor affecting suitability for moment analysis (24). SnIII analysis requires clear visualization of the 

expirogram phase III slope, sufficient to estimate its magnitude, for both the first breath and 2/3 of breaths 

between 1.5 and 6.0 lung turnovers (TO). Given this, greater tidal breathing stability during the test is needed 

(4). Tidal breath phase III slopes (SIII) are often shorter in preschool children, compared with older children 

(76). Recent ERS/ATS consensus document recommendations that SIII should be at least 50% of the expired 

volume have significant detrimental effects on SnIII analysis feasibility in preschool subjects, suggesting that 

the historical pediatric approach of being measured across 65-95% of the expired volume may be more 

appropriate (77). For these reasons, the current approach of collating data from three technically acceptable 

tests for formal calculation may provide a more robust estimate. Initial efforts to explore this have reported a 

statistically significant effect on measured SnIII outcomes, based on two rather than three tests, in preschool 

but not older pediatric subjects (73, 78).  

 

Recommendations: 

1. The approach to individual test and overall test session acceptability in preschool children should be 

adapted to reflect differences in comparison to older subjects: preschool children require a shorter 

duration of pre-test breathing stability, may have greater variability in EELV and VT during normal tidal 

breathing, and swallows, pauses and sighs may occur more frequently during the test. 

2. Until definitive evidence is available for preschool children, MBW operators are strongly encouraged to 

perform three technically acceptable tests. Outcomes derived from only two acceptable tests must be 

clearly identified when results are reported in software. 

3. The previously recommended FRC 10% acceptability criterion for LCI reporting is no longer advocated 

in this age group. 

 

6.5 Recommendations for commercial software 
Recommendations for commercial software development and use for both manufacturers and operators are 

summarized (Table 6). Quality control should extend beyond equipment performance to include accurate real-

time biological feedback to the operator during testing. Real-time software recommendations are applicable to 

all age groups, but are of increasing importance to the operators in preschool subjects to allow efficient use of 
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test time, given the limited concentration and co-operation timespan in young children. As in older age groups, 

this must include real-time displays during both the pre-phase and washout phase of (i) inert gas concentration 

vs. time, (ii) flow volume loop (ideally with a display of the target VT range for the child, typically 8-12mL/kg), 

(iii) end-tidal CO2 (if CO2 is measured) and respiratory rate to detect hypo/hyper-ventilation or rebreathing and 

(iv) volume and flow vs. time plots to assess breathing pattern stability. Additional features that will improve 

artifact detection include auto-scaling of the inert gas concentration vs. time plot during the washout period, 

ideally with additional ability to zoom in and out both during and after each test. The utility of incentive 

feedback has yet to be established in preschool MBW. Automated start and stop functions during testing may 

be attractive to the operator but are actively discouraged until formal validation of effectiveness is clearly 

described. 

 

Recommendations: 

1. Software must enable adequate visual quality control of the volume, flow and inert tracer gases for the 

entire duration of each test.  

2. Software quality control cannot be automated until clear evidence based thresholds are available. 

3. Incentive software is not recommended in this age range. 

 

7. Reference data for preschool MBW 

For many years, reference values for MBW indices such as LCI, were assumed to be independent of age. 

Recent collated data from infancy to adolescence demonstrate an inverse relationship between LCI and height, 

most pronounced in the first three years of life, with plateauing of the upper limit of normal (ULN) from six years 

of age (79) (Figure 5). The reasons for elevated LCI values in younger healthy children have not been fully 

explored, but are most likely multifactorial: ongoing lung and chest wall development and dysanaptic growth 

between airway (bronchial) and acinar (parenchymal) volume (80) such that the conducting airway space is 

larger in relation to lung volume which increases respiratory rate and dead space per minute ventilation; use of 

sedation and supine testing position in infancy; and relatively larger equipment VD in younger subjects during 

testing. Given this, extrapolation of an ULN from older age groups is not recommended.  

 

The available collated reference data (79) were based on data collected using a custom built respiratory mass 

spectrometer-based MBW system using SF6 as the inert tracer gas. The described relationship between LCI 

and height likely exists for all inert gases and systems in early life (81), but reference ranges should not be 

extrapolated to other MBW systems and across different inert gases (82, 83). Extrapolation could lead to 

misdiagnosis of abnormal ventilation distribution, and inappropriate tracking of disease progression over time, 

especially in preschool children (83). 
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Pooling currently available data in healthy controls (e.g. from studies listed in Table 4) is challenging due to 

many aspects of the methodological variation discussed in section 6.4. Future pooled reference population 

data used to derive the ‘normal range’ for individual commercial or research MBW systems must align 

methodology to address these issues, contain sufficient numbers from the population being tested (i.e. 

preschool), and report outcome measures collected using standardized protocols, equipment and settings. 

Training of operators and confirmation of competence to collect good quality data should be part of this 

process (84). Numbers recommended for spirometry (e.g. 300 subjects) reflect the characteristics of 

spirometric indices (85) and should not be extrapolated to MBW, where the minimum number has yet to be 

defined. Collaborative efforts to achieve robust reference data are strongly recommended. 

 

Recommendations: 

1. Available reference data from older subjects must not be extrapolated to the preschool age range. 

2. Collaborative efforts to achieve robust preschool-specific reference data are strongly recommended. 

3. Until robust device specific reference equations are published for commercial systems, research groups 

must ensure that studies collect an appropriately matched control group. 

8. MBW use in preschool interventional research studies 

MBW holds exciting promise as an endpoint for early intervention strategies in CF (14, 15), and was recently 

used as the primary outcome in an international multicenter study in 6-11 year olds (84). To date only one 

small single-center CF clinical trial has used LCI as an endpoint in the preschool age range (86). This study 

was able to demonstrate strong feasibility and ability of MBW outcomes to detect a treatment effect despite a 

small sample size (N=25). Subsequent larger, multicenter trials of hypertonic saline (SHIP and SHIP-CT 

studies: clinical trial registration numbers NCT02378467 and NCT02950883, respectively, 

www.clinicaltrials.gov) and a cystic fibrosis transmembrane conductance regulator (CFTR) modulator (Vertex: 

clinical trial registration number NCT02797132) are now underway. Experience to date, within the working 

group, has highlighted the value of careful and rigorous training, a subsequent certification process targeting 

the age being tested in the study, central over-reading and ongoing quality control. This approach has 

achieved high rates of successful testing and acceptable data both in the preschool age range (17) and school 

aged children (84). A sequential approach to training with initial experience built in older volunteers, prior to 

preschool specific training, has been beneficial. Standardization of equipment set up and testing protocol 

across sites within a single study is critical for all age groups, but becomes more important in preschool 

children due to the extra demands placed on the system and the operators for testing in this age range. 

Appropriate timelines for site training and certification must be integrated into studies. Testing should be 

performed prior to any procedures that require active cooperation as it is easier to “wind-up” than “wind-down” 

the child and it has been reported that deep inhalation may alter bronchial tone (87). Interpretation of results 

from these ongoing preschool MBW interventional studies will need to consider the unknown aspects of 
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standardization outlined in this document (e.g., physiologic considerations of inert gases, testing interface, 

reference data, and minimal clinically important differences). 

9. Minimal clinically important difference  
To date the minimal clinically important difference (MCID) in preschool subjects for LCI or any other MBW 

index as well as respective intra-subject and inter-subject variability remain poorly understood (14, 15, 88). In 

addition the relationship between improvement in LCI and other surrogate endpoints such as FEV1 or rate of 

FEV1 decline remains unclear. More information is urgently needed in this area, including comprehensive, 

longitudinal studies in health and disease to elucidate how MBW outcomes change over time within individuals 

in the preschool age range. Data outlining variability over time has recently started to emerge. Aurora et al 

described a mean (95% CI) within–subject change of 0.0 (-0.2 to 0.2) units in healthy subjects measured at two 

time points (preschool and early school age), which were on average 3.7 (range 1.3–6.6) years apart (89). 

Stanojevic et al observed the same stability in healthy preschool subjects measured over several time points 

across a 12 month period. LCI within a comparison preschool CF cohort increased by 0.4 units/year, in 

contrast to FEV1 which did not change (17). Pooling of data from treatment studies within specific disease 

groups may offer opportunities to accelerate this process and the use of MBW in children with CF undergoing 

exacerbation treatment is an example of the benefits of this approach (90). 

10. Future work and conclusions 

Important areas for future work in this age group are summarized in Table 2. Replicating the strong feasibility 

of research-based equipment, whilst maintaining its sensitivity as an outcome measure in pediatric obstructive 

lung disease (16, 86), is the challenge faced by emerging commercial equipment. Many of the commercial 

systems available today were designed for older subjects, and need extensive testing, and in some cases 

modifications, before they are suitable for use in preschool children. As such, the flexibility to conduct future 

studies may be inhibited due to limitations within the commercial software. Custom research based software, 

developed for research-built MBW equipment over recent years, will also play a key supportive role in this 

progress. Commercial software developers must recognise that modifications may have a significant impact on 

MBW outcomes, and ensure that the full impact of software changes, for a range of patient demographics, are 

evaluated and transparently documented prior to formal commercial release. It remains unclear whether a 

specific inert gas choice is warranted in this age range. Until there is evidence of significant detrimental effects 

or lack of validation with one particular choice, no firm recommendations for a specific choice can be made and 

a number of choices will be supported. A choice of interface is also supported based on current evidence and 

experience. Efforts to optimise feasibility and breathing pattern stability in younger children with facemasks 

must be accompanied by development of effective strategies to define optimal training regimens and timing of 

transition to a mouthpiece and noseclip interface, so that detrimental effects on breathing stability and MBW 

outcomes are minimized at later ages. The latter in particular may be best accomplished using a co-ordinated 
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effort to perform comparison studies across multiple sites and equipment to ensure results obtained are 

generalizable.  

 

Future work must establish clear objective criteria for an acceptable test and overall test session in this age 

group, to minimize subjective assessment. These efforts to standardize reporting have commenced (91), but 

require future work, especially in preschool children. The medium term aim must be to provide an accurate 

tool, which can be feasibly incorporated into routine clinical care. Regional regulatory approval (e.g. FDA 

approved) for devices fulfilling the criteria outlined in this document, with demonstrated strong feasibility for 

testing across the preschool age group, will be an essential step in that process.  

 

Future technological advances may offer opportunity for optimizing MBW device design and must be 

encouraged. An example of one such area is advances in mainstream O2 analysis which may one day negate 

the need for sidestream O2 analysis and adjustments for associated sample flow rate (92). The development of 

mainstream analysis for not just one but all gases measured also offers opportunity to reduce analyzer 

response time further (e.g. to 10ms in this case). This is important given the increased susceptibility of 

preschool MBW to sources of technical error. Current recommendations (<2mL/kg) for equipment related VD 

target alignment with the recommendations of older age groups, but further minimization through targeted 

design and better appreciation of streaming within bacterial filters may facilitate meeting the <1mL/kg effective 

VD advocated for infant systems (93). Whether new facemasks that prevent nasal breathing would be 

beneficial to address issues raised in this document needs to be determined. Device design must also 

incorporate the needs of infection control, an increasingly important area in conditions such as CF, where 

MBW interest is currently greatest. Validation approaches should aim to extend to MBW outcomes beyond 

FRC alone, as FRC accuracy cannot be extrapolated to other outcomes (e.g. LCI). While many challenges 

remain, MBW testing in preschool children already provides an exciting approach to detect and monitor early 

lung disease. Implementation of the recommendations contained within this technical standards document are 

essential for standardization and validation in this age range and will increase the utility of the test in the future.  

 

  



 23 

11. Tables  

Table 1. Summary of key current recommendations for manufacturers and MBW operators 
 

Manufacturer directed Operator directed  

Compliance with preschool recommendations: 
Commercial MBW Systems  

 Manufacturers must provide sufficient information 
and complete transparency to the end user regarding 
their ability to comply with the preschool 
recommendations contained within this document.  

 
 

 The end user is encouraged to demand this as 
part of the marketing material accompanying 
any device. 

Validation of FRC measurement accuracy  

 In vitro validation for preschool MBW systems must 
include representative FRC volumes of the preschool 
age range, using respiratory rates and VT typical for 
the subjects and lung conditions encountered.  

 FRC measurement accuracy must not be 
extrapolated from larger FRC volumes. 

 

Flow measurement and breath detection  

 VT accuracy must be within 3% or 5mL, whichever is 
greater.  

 Flow detection accuracy must be robust and 
manufacturer assessment based on data mimicking 
the variability in breathing pattern encountered in this 
age group. 

 Breath detection software must handle the pauses in 
breathing and fragmented breaths frequently 
encountered in this age range. The approaches used 
must be fully transparent to the user. 

 

Optimal synchronization of flow and inert gas 
concentration 

 Synchronization error must be within 10ms across 
the duration of the entire washout.  

 The presence of flow-dependence, gas viscosity and 
density effects on synchronization of flow and inert 
gas concentration signals must be assessed within 
MBW systems evaluated for preschool testing. 
Manufacturers are encouraged to incorporate 
dynamic synchronization methods that correct for 
these factors, if present, to improve MBW system 
accuracy. 

 
 

 The operator must have the ability to assess 
the accuracy of inert gas concentration and 
flow synchronization at the time of testing. 

Inert Gas Choice 

 To date, there is no clear evidence to suggest which 
inert gas is most suitable for the preschool age 
range, with respect to technical, physiological effects 
and feasibility. Both SF6 and N2-based MBW appear 
appropriate inert gas choices for preschool children.  

 Preschool MBW systems must provide the ability to 
monitor breathing pattern in real time during each 
test. 

 Until the magnitude of error introduced and validated 
correction equations are available for inert gas 
diffusion across the alveolar-capillary barrier, 

 



 24 

correction of MBW data for this effect is not 
recommended. 

Equipment-related Dead Space Volume (VD) 

 Manufacturers must minimize equipment related VD. 
To ensure a consistent approach across age ranges, 
equipment related VD must be kept below 2 mL/kg, as 
recommended in the recent ERS/ATS consensus 
guidelines. 

 Efforts to minimize VD within an MBW system must 
not adversely affect overall resistance of the 
breathing circuit such that breathing pattern is 
altered. 

 

 MBW operators must minimize facemask-
associated VD by ensuring the smallest 
appropriately sized facemask is used, and by 
use of therapeutic putty within the facemask 
ensuring no obstruction to airflow occurs. 

Environment for testing  

 The environment for preschool MBW testing 
should be as child friendly and safe as 
possible, including ensuring it is quiet, contains 
suitable preschool furniture and decoration, 
and accommodates adult supervision during 
testing.  

 Adequate time should be set aside for testing 
in this age group, particularly for those <4 
years of age or who are attending for the first 
time. An hour is recommended for initial 
testing.  

 Familiarization visits for the child and parents 
to experience equipment, testing procedure, 
test interface and environment used during 
testing are recommended. 

 Adequate distraction during the assessment is 
essential and must be enough to take the 
child’s attention away from his/her breathing, 
the operator and the immediate surroundings 
during each test. Appropriate choice of movie 
is critical to the process. 

 Two operators should be used for MBW testing 
in this age group, regardless of interface 
choice. 

Testing Interface 

 Both a mouthpiece and nose-clip assembly and a 
facemask are supported as interface choices for use 
in preschool aged children.  

 

 At the present time these interfaces must not 
be viewed as interchangeable within this age 
range, and careful consideration of interface 
choice is strongly recommended. 

Special considerations when reporting preschool MBW 
data  

 Software must clearly state where reported indices 
values are “based on the average of two values 
alone”. 

 The previously recommended FRC 10% acceptability 
criterion for LCI reporting is no longer advocated in 
this age group. 

 

 
 

 The approach to individual and overall test 
session acceptability in preschool children 
should be adapted to reflect differences in 
comparison to older subjects: preschool 
children require a shorter duration of pre-test 
breathing stability, may have greater variability 
in EELV and VT during normal tidal breathing, 
and swallows, pauses and sighs may occur 
more frequently during the test. 

 Until definitive evidence is available for 
preschool children, MBW operators are 
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strongly encouraged to perform three 
technically acceptable tests. Outcomes derived 
from only two acceptable tests must be clearly 
identified as when results are reported in 
software. 

Recommendations for online software requirements for 
manufacturers 

 Software must enable adequate visual quality control 
of the volume, flow and inert tracer gases for the 
entire duration of the each test.  

 Software quality control cannot be automated until 
clear evidence based thresholds are available. 

 Incentive software is not recommended in this age 
range. 

 

Reference data for MBW in preschool age range  
 Available reference data from older subjects must not 

be extrapolated to the preschool age range. 
 Collaborative efforts to achieve robust preschool-

specific reference data are strongly recommended. 

 

 Until robust device specific reference equations 
are published for commercial systems, 
research groups must ensure that studies 
collect appropriately matched healthy control 
data.  

Footnote: CO2, carbon dioxide; EELV, end expiratory lung volume; FRC, functional residual capacity; MBW, 

multiple breath washout; N2, nitrogen; SF6, sulfur hexafluoride; VD, dead space volume; V’E, minute ventilation; 

VT, tidal volume.  

 

 

 



Table 2. Important areas of interest for future work specific to preschool MBW 

  
Area of interest Questions and/or needs 

Shortening the duration of 
testing for preschool subjects 

Analysis of MBW outcomes during the washin portion of each test (e.g. FRC 
and LCI), from two tests alone (vs. three tests), or abbreviated outcomes (e.g. 
LCI at 1/20th threshold) offers potential for shortening overall test session 
duration. This is of particular interest in preschool subjects given the more 
limited timeframe for cooperation compared to older subjects. 

Effects of pure O2 exposure 
on breathing pattern and 
EELV in preschool subjects 

Further work is required to clarify the magnitude of the effect of inert gas 
choice on breathing pattern during testing, and whether changes affect MBW 
indices. The age threshold at which the detrimental effects of pure O2 exposure 
reported in infants disappears needs to be clarified as well as the magnitude of 
effect on MBW outcomes. 

Inert gas diffusion across the 
alveolar-capillary barrier 

Further work is required to clarify the magnitude of inert gas diffusion across 
the alveolar-capillary membrane for the common inert gases used and the 
potential impact on MBW indices. Whether relative contribution of this inert gas 
diffusion effect is greater in preschool subjects compared with older age 
groups. Whether inert gas specific corrections can be developed and applied 
and if these need to be age specific. 

Artifact definition and 
exclusion 

Definition of normal preschool breathing pattern and the level at which artifact 
occurrence should lead to test rejection. 

Accuracy of flow and volume 
measurement 

Due to the lower flows and faster respiratory rates encountered, the relative 
errors introduced by sample flow, technical drifts and BTPS correction may be 
greater in younger subjects.  
Given the challenges of FRC validation for preschool specific equipment, is an 
alternate approach to BTPS correction warranted? The current fixed BTPS 
correction approach may introduce a greater relative error in preschool 
subjects due to the smaller flows and faster respiratory rates encountered, as 
well as the variable contributions of nasal and oral breathing to relative 
humidity and temperature of expired gas (67). Should a dynamic approach be 
considered? There is a lack of information about how BTPS conditions change 
during preschool MBW. 

Breath detection  Optimal approach to breath detection in an age range where breath pauses, 
low flows and volumes are more frequently encountered, as well as the 
magnitude of effect on MBW outcomes if not addressed. Should the operator 
have the ability to correct breath detection errors when they occur?  
How should minimum breath volume be defined and how does the threshold 
chosen affect accuracy of subsequent calculatedly MBW indices?  

Definition of normal 
physiological variability in the 
preschool age range 
 

Better definition of normal VT and EELV variability in this age range to 
determine accurate thresholds for breathing pattern stability. 
Optimal definition of suitable target tidal volume range - defined based on 
actual weight, ideal body weight, height or BMI? 
Definition of normal FRC variability, in comparison to older age groups, so that 
preschool specific recommendations for FRC measurement accuracy can be 
made. 

Interface transition Strategies to reduce the magnitude of effect on MBW indices when changing 
interfaces between mouthpiece and nose-clip assembly and facemask.  
Definition of best approach and timing of transition. 

Equipment related VD Can functional VD within a bacterial filter or facemask assembly be accurately 
estimated and corrected for across subjects? What is the contribution of 
increasing relative VD to the change in LCI reference values observed across 
the preschool age range (79).  
What is the optimal method for expressing VD: as a function of weight (mL/kg) 
or is BMI, percentage of VT or is height more appropriate? 
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Do other indices, which are less sensitive to the effects of VD (e.g. slope index, 
moment ratios and alveolar LCI), offer improved utility to LCI? 

Preschool specific reference 
data  

What is the true effect of lung development across the preschool age range 
once the impact of other factors such as changing relative equipment dead 
space volume have been removed? 

Minimal clinically important 
difference  
 

What is a significant difference in an individual with a particular lung disease? 
What difference signals a clinically important deterioration or risk for relapse or 
exacerbation? 
What is a significant difference in a clinical trial (i.e. on a group level)? 

Footnote: BMI, body mass index; BTPS: body temperature, ambient pressure, saturated with water; EELV, end 

expiratory lung volume; FRC, functional residual capacity; LCI, lung clearance index; MBW, multiple breath 

washout; O2, oxygen; VD, dead space volume; VT, tidal volume 
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Table 3. Methods checklist 

 

 Yes No 

Panel assembly   

 Included experts from relevant disciplines with experience across 

the main current commercial equipment exploring utility in the 

preschool age range  

X  

 Included individual who represents the views of patients and 

society at large 

 X 

 Included methodologist with appropriate expertise  NA* 

Literature review   

 Performed in collaboration with a librarian X  

 Searched multiple electronic databases X  

 Reviewed reference lists of retrieved studies X  

Evidence synthesis X  

 Applied pre-specified inclusion and exclusion criteria X  

 Evaluated included studies for sources of bias X  

 Explicitly summarized benefits and harms X  

 Used PRISMA1 to report systematic review  X 

 Used GRADE to describe quality of evidence  X 

Generation of recommendations   

 Used GRADE to rate the strength of recommendations  NA 

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses;  

GRADE: Grading of Recommendations Assessment, Development and Evaluation; NA: not applicable. 

*Required for guidelines but not a technical standards document. 

 



 

 

Table 4. Published preschool MBW feasibility to date using commercial MBW systems 

Author Subjects 
Age tested, 
(range, years)  

MBW naive 
Interface N acceptable tests required 

N subjects 
attempted 

% Subjects 
successful 

Jensen 2014# CF 2.9 – 5.0 0% Facemask ≥ 2 tests 30 83 

Benseler 2015# 

Healthy 2.8 – 5.9  
Facemask 

3 tests (successful on both 
equipment systems) 

24 83 

CF 3.3 – 5.9  27 70 

Robinson 2015# CF, Wheeze 2 – 6 years 83% 

Facemask 
3 tests 

48 
81 

2 tests  88 

Mouthpiece 

3 tests 

48 

50 

2 tests 63 

Foong 2015 

Healthy 3.0 – 6.6 

100% 

Mouthpiece 

≥ 2 tests (first visit) 60 72 

0% ≥ 2 tests (subsequent visit) 19 86 

CF 2.6 – 6.6 
100% 

Mouthpiece 
≥ 2 tests (first visit) 78 67 

0% ≥ 2 tests (subsequent visit) 59 82 

Vilmann 2015# 
Healthy, 

Asthmatics 
3 – 6 100% Mouthpiece 

≥ 2 tests 66 89 

3 tests 66 67 

Downing 2016# 

Healthy, 
PCD, CF, 
Wheeze 

2.1 – 5.9 100% Mouthpiece ≥ 2 tests within 30 minutes 116 73 

Yammine 2016¶ Asthmatic 3.1 – 6.7 100% Mouthpiece 

3 tests within 20 minutes 62 24 

2 tests within 20 minutes 62 60 

Stanojevic 2017#  Healthy, CF 2.5 – 5.9 100% Facemask 
≥ 2 tests (first visit) 150 66 

≥ 2 tests (subsequent visits) 150 89 



 

 

# Modified from off the shelf equipment in an attempt to improve suitability for preschool testing. ¶ Additional time restriction criteria 
of 20 minutes specified for total test session duration.  



Table 5. Advantages and disadvantages associated with MBW test interface choice 

 

 Mouthpiece and Nose-clip Facemask 

Factors affecting ability to 

distract during testing 

Mouthpiece stimulation within the oral 

cavity (e.g. chewing) 

Need for reminders to maintain 

mouthpiece seal 

Avoids oral stimulation. 

Pressure to face may distract if 

too great 

Equipment dead space 

volume 

Defined Difficult to define 

Seal (Mouthpiece/Mask) and 

risk of leak 

Subject determined Operator determined 

Impact of nasal airways Removed Unknown 

 

  



 

 

Table 6. Recommendations for commercial software development and use for manufacturers and 

operators. 

 

Manufacturer directed Operator directed  

 Real time biological feedback data must be displayed 
during both pre-phase and washout phases of each 
test. 

 Additional operator ability to zoom in and out both 
during and after each test to detect subtle artifact. 

 Close inspection of display for artifact during 
each test must be performed by a dedicated 
operator. Further review after each test is 
completed. Rejection of tests containing 
artifact. 

 
 Real time inert gas concentration plot against time 

must be displayed.  

 Auto-scaling of display during the washout to facilitate 
artifact detection.  

 Real time flow volume loop must be displayed for 
each breath (i.e. Flow vs. Volume plot for each 
breath), referenced to a specified number of previous 
breaths (e.g. at least 5 breaths).  

 Display of target VT range appropriate for the subject. 

 Real time display of expirogram for each breath 
during the washout portion of each test.   

 Close inspection of whether the VT size is 
appropriate for the subject (typically defined as 
8-12 mL/kg) must be performed. A clearly 
visible phase III slope of the expirogram is 
supportive of this. 

 Flow vs. volume loop display useful in 
preschool testing to detect obstruction of the 
facemask outflow tract with any therapeutic 
putty used to reduce equipment VD. 

 End-tidal CO2 must be displayed to assess for 
hyper/hypo ventilation. 

 Calculation and display of respiratory rate during each 
test . 

 End-tidal CO2 should remain within the normal 
range (typically defined as 4-6%) through both 
the pre-phase (or washin) and washout 
portions of each test . 

 Single real time VT (both inspiratory and expiratory) 
vs. time must be displayed to monitor breathing 
pattern and stability of end expiratory lung volume. 

 Evidence of breathing pattern and EELV 
stability must be present prior to starting each 
test (defined as present for 3-5 breaths). 

 Manual start and stop options of the washout portion 
of each test must be provided. 

 Until automated start and stop functions of 
testing have been validated, manual option to 
start and stop each test must be used. 

 

  



 

 

12. Figures 

Figure 1. Simulation of Flow-dependent delay between flow and gas concentration signals 

 

Foot note: Visualization of the time delay between two sensors depending on the volume between the two 

sensors and the flow rate of the measured gas. The simulations were performed assuming both sensors are 

placed inside a tube with 2ml (red line) respectively 5ml (blue line) of volume separating them. Response times 

of the sensors were assumed to be similar. The time delay plotted is the time difference by which a gas, 

flowing at a constant rate, reaches each sensor. Mathematically the flow dependence of the time delay can be 

calculated by the following relationship: time delay = (volume between sensors) / (flow rate). Delays are 

symmetric, but depending on the direction of the flow, one sensor will measure the gas first and the other one 

second or the other way round, respectively. Acknowledgment: Mr Jeremy Wolfensberger, Division of 

Respiratory Medicine, Department of Pediatrics, University of Bern, Bern, Switzerland. 

 

Figure 2. Effect of increasing equipment related dead space volume on ventilation inhomogeneity 

 

Footnote: Data displayed from 10 healthy adult subjects where LCI was calculated as mean of triplicate tests 

across five VD values (standard, +50mL, +100mL, +150mL and +200mL). The change in LCI relative to 

baseline (i.e. standard VD) is expressed as a percentage (y-axis) and VD is expressed in terms of body weight 

(x-axis). The magnitude of effect observed on LCI suggests a 10% increase in LCI for each 1mL/kg increase in 

equipment VD. Based on data contained within Benseler et al (58).  

 

Figure 3. Therapeutic putty use in facemask interfaces to reduce equipment related dead space 

volume 

 

Footnote: Additional equipment related dead space volume (VD) introduced by a facemask assembly should be 

reduced as much as possible. The smallest appropriately sized facemask should be selected. Therapeutic 

putty application will be influenced by the presence of a flange to aid a leak free seal when applied to the face 

during testing (A). In this case, putty is solely applied to reduce VD within the mask. If no flange is present then 

putty also helps create the seal (B). A combination of different therapeutic putty consistencies may be required 

to ensure putty maintains its shape and prevent migration and outflow tract obstruction during testing. 

 



 

 

Figure 4. Typical breathing pattern observed in preschool subjects. 
 
Footnote: Sequential tests (A, B, C) from the same test session, recorded using commercial N2 based MBW 

equipment, in a preschool subject. In the upper part of each panel, real time plots of tidal flow (black) and 

volume (red) are displayed, whilst the lower part of the panel displays N2 concentration. These technically 

acceptable tests are representative of the variable breathing pattern encountered in preschool subjects and 

also contain examples of swallows (solid downward arrow) and sighs (solid upwards arrow, no evidence of 

resultant trapped gas release). 

 

Figure 5. Changes in MBW indices across the pediatric age range  

 

Footnote: Data taken from a cohort across infancy to 19 years of age across a cohort of 497 subjects tested on 

659 occasions using custom built research MBW equipment and SF6 as the inert tracer gas of interest. 

Reproduced from Lum et al. (79) with the permission of the publisher. In figure A, the solid line denotes the 

predicted (50th centile) LCI for height and the dashed lines denote the upper limit of normal (ULN; 97.5th 

centile) and lower limit of normal (LLN; 2.5th centile). The typical height range of a preschool child is 75 to 

125cm. This data must be viewed as inert gas and equipment specific. 
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