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Model-free learning enables an agent to make better decisions
based on prior experience while representing only minimal knowl-
edge about an environment’s structure. It is generally assumed that
model-free state representations are based on outcome-relevant fea-
tures of the environment. Here, we challenge this assumption by
providing evidence that a putative model-free system assigns credit
to task representations that are irrelevant to an outcome. We exam-
ined data from 769 individuals performing a well-described 2-step
reward decision task where stimulus identity but not spatial-motor
aspects of the task predicted reward. We show that participants
assigned value to spatial-motor representations despite it being out-
come irrelevant. Strikingly, spatial-motor value associations affected
behavior across all outcome-relevant features and stages of the task,
consistent with credit assignment to low-level state-independent
task representations. Individual difference analyses suggested that
the impact of spatial-motor value formation was attenuated for in-
dividuals who showed greater deployment of goal-directed
(model-based) strategies. Our findings highlight a need for a recon-
sideration of how model-free representations are formed and reg-
ulated according to the structure of the environment.
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In learning from outcomes, a decision maker can exploit at least
2 distinct neurocognitive systems: a model-free system and a

more sophisticated model-based system (1). While model-based
learning strategies incorporate explicit knowledge about the
structure of the environment (2), model-free learning predicts
outcomes based solely on the success of previously taken actions (3).
To enable accurate action–outcome predictions, both systems are
faced with a challenge, namely that only a portion of the information
in the environment is predictive of a desired outcome. This entails
that both the model-based and model-free systems should base their
learning on action–outcome-relevant information alone.
Consider a child who has had a few samples of a new food.

The spatial position of food on the table and whether the right or
left hand was used to bring food to the child’s mouth are usually
considered irrelevant to the impact of its consumption. Learning
should reflect knowledge that the food carries the same value
even if placed at different spatial positions on the table or if a
different effector is required to obtain it. Disregarding value
associations for spatial-motor aspects can be challenging when,
as often is the case in the real world, these aspects are task rele-
vant and are actively held in mind during task performance (4, 5).
Such situations pose a challenge of maintaining a strict separation
between active and accessible task-relevant action representations
(e.g., currently, the food can only be grasped with a certain
movement) and representations that support action value learning
(e.g., learning the value of the food, disregarding the movement).
While the model-based system can be instructed that certain

task aspects do not predict an outcome, a fundamental question
arises as to whether and how a model-free system “knows” what
to ignore given that it has only minimal knowledge regarding

environmental structure. Previous studies examining model-
based/model-free contributions to choice (2, 6–10) consider
outcome-relevant model-free representations alone, implicitly
assuming that outcome-irrelevant information does not impact
learning. For example, a model-free system might evaluate
different objects (e.g., images) with regard to their prediction of
an outcome based solely on their identity and disregard spatial
position and the motor action required to select them. How-
ever, the possibility that model-free learning is affected by
outcome-irrelevant, yet task-relevant, information has not been
previously explored.
Here, we examine the extent to which outcome-irrelevant

model-free associations influence decision making. We admin-
istered a widely used 2-stage decision task (2, 6–12) to 769 ad-
olescents. The task required subjects to navigate in a 2-stage
transition maze to gain rewards, and this allowed us to disen-
tangle a contribution of model-based and model-free systems to
decision making. Importantly, reward probability depended on
stimulus identity (images) but not on spatial-motor information
(left/right locations and keys). Both sequential analysis and
computational modeling suggested a credit assignment to spatial-
motor task aspects in a state-independent manner (that is, re-
gardless of task states, stages, or stimulus identity). Individual
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differences analysis suggested that a greater deployment of model-
based strategies at the first stage was related to a lesser influence
of spatial-motor model-free associations on decision making.
These findings suggest a need for revision in our understanding
of model-free representations and how these are regulated
according to the structure of the task.

Results
We studied a large sample of healthy volunteers (ages 14 to 24 y)
who had completed a 2-step decision task (2) at 3 distinct time
points repeated after ∼6 and 18 mo after the first measurement
(n = 769, 63, and 568 for the 3 time measurements) (13). In the
task, participants were asked to navigate between 2 stages to gain
rewards (Fig. 1). The second stage included 2 pairs of stimuli
(i.e., fractal images). To reach these, participants made first-
stage choices that probabilistically determine the fractals pre-
sented at the second stage. Fractals were randomly allocated at
each stage and each trial to the right/left side of the screen.
Participants were instructed to use a corresponding right/left

key press to indicate their fractal selection. Therefore, the lo-
cation of the fractal on the screen and the response used to in-
dicate the selection were ostensibly task relevant. However, at
each stage and each trial, fractal identity alone, but not spatial-
motor aspects, predicted expected reward (Fig. 1). This allowed
us to disentangle credit assignment to fractal as opposed to
spatial-motor representations.

Consecutive Trial Analysis. We start by evaluating the impact of
spatial-motor model-free (i.e., MFspatial-motor) associations on
participants’ behavior using model-agnostic measures. Across
analyses, we examined whether reward history affected the prob-
ability of response key selection on the next trial (n + 1). Note
that, in this task, response key and fractal location are perfectly
confounded. For simplicity, we address value associations only for
the right/left response key (rather than fractal location).
Within-state analysis. We examined participants’ choices when
making second-stage decisions as a function of outcome (unre-
warded vs. rewarded) and response mapping (repeated or flipped
fractal-to-key mapping) exclusively for trials where the same
second-stage state repeated itself (Fig. 2A). We assumed that, for
a chooser with no influence of MFspatial-motor associations on be-
havior, the effect of reward will be exactly the same regardless of
mapping. However, if there is some involvement of MFspatial-motor

associations, we would expect an outcome × mapping interaction
such that a greater effect of reward on fractal selection would be
evident when a response mapping is repeated vs. flipped. As an
example, consider a participant who selected Fractal A with a
“right” response key and obtained a reward (Fig. 2A). Since the
predicted value of Fractal A increased, on the next trial the par-
ticipant should be more likely to pick Fractal A again. However, if
reinforcement value was also assigned to the right response key,
then there should be an enhanced tendency to press that same key
after a reward (compared with no reward). Consequently, the
latter influence will act to increase or decrease the relative ten-
dency to choose a specific fractal conditional on mapping repeti-
tion (i.e., reward × mapping interaction).
To examine this hypothesis, we calculated a mixed effect lo-

gistic regression (14) where outcome (unrewarded vs. rewarded),
mapping (flipped vs. same), and their paired interaction were
entered as fixed and random effects predicting the probability
that the participant will repeat the same fractal selection (i.e.,
fractal stay probability). We found a statistically significant
outcome × mapping interaction effect [χ2(1) = 392.09, P < 0.001],
showing a larger effect of reward on fractal stay probability when
the chosen fractal was associated with the same key on both the n
and n + 1 trials. Specifically, when mapping was flipped, reward
increased fractal stay probability by 21.39% on average compared
with 37.26% when fractal response mapping was repeated (Fig. 2B).
This result demonstrates that an effect of reward was de-

pendent on the fractal effector response mapping, despite the
fact that fractal alone predicted reward in this task. One possi-
bility is that value was assigned to a combination of fractal and
response key (for example, a different value was assigned for
Fractal A with right response key and Fractal A with left re-
sponse key). However, a second possibility is that credit was
assigned to some extent to the response key independent of the
state and outcome-relevant features of the stimuli. To arbitrate
between these possibilities, we now examine trials where a dif-
ferent pair of fractals was offered at trial n compared with n + 1.
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Fig. 1. Schematic of the 2-step task. (A) At a first stage, participants choose
between 2 options (represented by abstract fractal images) that determine
the presentation of 1 of 2 second-stage states according to a fixed transition
probability of 70% (“common”) or 30% (“rare”). At a second stage, partic-
ipants also choose between 2 fractals to gain a reward (£0 or £1 play
pounds). (B) Fractals were randomly assigned on each trial and stage to the
right/left side of the screen. Participants indicated their choice by pressing a
corresponding left/right arrow key. Therefore, the same fractal could be
selected by either a left or right key press, and a fractal’s excepted value was
unrelated to location on screen or the motor effector response used to re-
port a choice. The panel illustrates 2 random trial sequences where a com-
mon transition took place. These trial sequences demonstrate that the same
fractal selection could have been made with relation to different motor
effector responses. Additional task information can be found in SI Appendix.
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Fig. 2. Within-state effects of reward on fractal and response key selection.
(A) Example for a within-state trial sequence, where the same pair of second-
stage fractals was offered with either the same or a flipped response map-
ping. (B) Effect of outcome (rewarded vs. unrewarded) and mapping (flipped
vs. same) on the probability of choosing the same fractal at trial n + 1. Re-
sults highlight a tendency to repeat fractal selection after a rewarded trial.
Notably, a greater effect of reward was evident when the fractal was
mapped to the same compared with the alternative response key. This in-
dicates that the effects of reward are evident at the level of the relevant
fractal but also at the level of the outcome-irrelevant response key. Error
bars represent 95% confidence intervals. (C) Raincloud plot (34) showing
individual scores for the outcome ×mapping interaction effect (as calculated
in a mixed effect regression). Positive values indicate greater involvement of
spatial-motor value associations on choice behavior.
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Between-states analysis. To explore whether MFspatial-motor associ-
ations affected performance across state and stimulus features,
we examined participants’ choices at the second stage in trials
where the pair of fractal presented at the trial n differed from the
one presented in the following n + 1 trial (Fig. 3A). We calculated
a mixed effect logistic regression with outcome (unrewarded vs.
rewarded) predicting the probability that participants will repeat
their right/left response key selection (i.e., response key stay
probability). We found a statistically significant outcome effect
[χ2(1) = 101.1, P < 0.001], showing that participants were 4.07%
more likely to repeat the response key selection at trial n + 1 when
it was rewarded vs. unrewarded at trial n (Fig. 3B).
The between-state sequential effect accords with within-state

effects reported above, suggesting that participants assigned
value to spatial-motor information. While the within-state anal-
ysis could reflect a value assignment to the response key de-
pendent on the state and/or related fractal, this explanation is
inadequate for the between-state effect. The between-state
analysis suggests that, even when a different pair of fractals was
offered, reward had an effect on the next trial response key se-
lection. We believe that this can only be explained under an
assumption that value was assigned to the response key also,
independent of the outcome-relevant fractals. Still, value as-
signment might be stage dependent so that individuals assigned
value to response keys for the specific task stage, thus reflecting
some dependency on outcome-relevant features of the task. To
examine whether value assignment to response keys is indepen-
dent of all outcome-relevant features (stages, states, and fractal
identity), we examined next behavior at the first stage as a
function of choice and reward at the previous second stage.
Between-stages effects. We examined whether MFspatial-motor rep-
resentations affected performance across task stages. Specifi-
cally, we calculated a mixed effect logistic regression with outcome
(unrewarded vs. rewarded) predicting the probability that partic-
ipants will repeat their response key selection at the second stage
of trial n when performing a first-stage response key selection at
trial n + 1 (Fig. 4A). We found a statistically significant outcome
effect [χ2(1) = 147.01, P < 0.001], showing that reward increased by
4.13% the probability that participants will select at the first stage
of trial n + 1 the same response key selected at the second stage of
trial n (Fig. 4B). This finding suggests that value was assigned to
response keys and affected behavior independent of fractals, task
states, and stages.
All 3 consecutive trial analyses (within state, between states

and stages) did not correlate with age and were not reduced with
practice (SI Appendix). Additional analysis demonstrated similar
(but smaller) effects for the n + 2 trial (SI Appendix).

Computational Modeling. We next used computational modeling to
examine and disentangle the relations between spatial-motor value
associations and state representations for fractal learning (model-
based and model free). We fitted 5 computational reinforcement
learning models accounting for participants’ choices. 1) Model 1
(“null model”) did not include spatial-motor learning and accounts
for participants choices by integrating fractal value assignment for
both model-based and model-free systems (2). 2) Model 2 included
the same fractal model-free and model-based learning as Model 1,
with an additional separate learning system for MFspatial-motor. 3)
Model 3 had the same fractal model-based learning as Model 1 but
assumed that spatial-motor aspects affected model-free state rep-
resentations and were weighted along with the fractal according to a
linear function approximation to form state action values. 4) Model
4 had the same fractal model-based learning as Model 1 but also
assumed that the model-free system held separate state action
values for each pairing of fractal and response key. Finally, 5)
Model 5 assumed that spatial-motor aspects affected both model-
free and model-based state and transition matrix representations
(model-agnostic analysis examining the influence of mapping on
model-based decision making in the first stage can be found in SI
Appendix). Therefore, in Model 5, both model-based and model-
free systems held values for fractal response key pairing.
We used hierarchical fitting using expectation maximization

with Laplace approximation method (15) and compared models
by calculating Bayesian inference criteria (BIC), which penal-
izes the number of parameters (difference of 10 points or
more is considered strong evidence, with lower scores indicating
better fit) (16). We found a better fit for Model 2 vs. Model 1
(ΔBICint = 850.52), suggesting that the addition of an MFspatial-motor
influence improved the model’s ability to predict participants’
choices. For Model 3, 4, and 5, we found a worse fit compared with
the null model (ΔBICint > 27,214.47).
To examine how well the best-fitting model (Model 2) pre-

dicted the observed behavior, we took the individual parameters
from each participant and simulated data for 20 experiments
with 1,000 trials each. We then estimated the 3 model-agnostic
sequential scores from simulated data. Across individuals, we
found estimates similar to those found with the empirical data,
including the within-state effect (for mapping switches, reward
increased fractal stay probability by 20.96% on average com-
pared with 25.98% for mapping repetitions), between-states ef-
fect (reward increased response key stay probability by 2.55%),
and between-stages effect (reward increased response key stay
probability by 1.44%). At the individual level, we found good
correspondence between model and observed data reflected in a
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Fig. 3. Between-state effect of reward on response key selection. (A) Ex-
ample for sequence of trials included in the analysis, where a different pair
of fractals was offered in the current and next second-stage state. (B) Effect
of previous reward (rewarded vs. unrewarded) on the chance that the par-
ticipant will select the same response key as in trial n + 1. The result reflects
that value was assigned to the response key independent of task states or
fractal identity. Error bars represents 95% confidence intervals. (C) Raincloud
plot (34) showing individual scores for the outcome effect (as calculated in a
mixed effect regression). Positive values indicate greater involvement of
spatial-motor value associations on choice behavior.
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Fig. 4. Between-stage effect of reward on response key selection. (A) Ex-
ample for sequence of trials included in the analysis where we examine re-
sponse key selection at the first stage of trial n + 1 as a function of response
key selection at the second stage and reward at trial n. (B) Effect of reward
(rewarded vs. unrewarded) on the chance that the participant will select in
the first stage of trial n + 1 the same response key selected at the second
stage of trial n. Results suggest that value was assigned to the outcome-
irrelevant response key (or fractal location) independent of task stage, state,
or fractal identity. Error bars represents 95% confidence intervals. (C)
Raincloud plot (34) showing individual scores for the outcome effect (as
calculated in the mixed effect regression). Positive values indicate greater
involvement of spatial-motor value associations on choice behavior.
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statistically significant correlation between the 3 simulated and
empirical effects (r = 0.41, CI95% [95% confidence intervals] =
0.34 to 0.46, P < 0.001 for within-state effects; r = 0.41, CI95% =
0.35 to 0.46 for between-state effects; r = 0.52, CI95% = 0.25 to
0.38 for between-stage effects) (SI Appendix, Fig. S4). Therefore,
both across and within individuals, we found a good fit between
empirical and Model 2 simulated data. The same analysis for the
next best-fitting model (Model 1) showed poor fit between the 3
model-agnostic scores from simulated compared with empirical
data both across and between individuals (SI Appendix, Fig. S3).
The computational modeling results are, therefore, in line

with the model-agnostic sequential analysis, suggesting that in-
dividuals cached values for spatial-motor representations inde-
pendent of outcome-relevant task features. Furthermore, these
results suggest that MFspatial-motor was held and updated inde-
pendent from outcome-relevant state representations.

Relationship Between Spatial-Motor Model-Free Associations and
Deployment of Model-Based Strategies. The 2-step task makes it
possible to estimate the extent to which participants act in accord
with the transition structure of the task (i.e., reflecting model-
based behavior). Specifically, by examining decisions at the first
stage, one can estimate the extent to which individuals calculate
a probability that their actions will lead to a certain second-stage
state (2). Having a decision policy that exploits the probability
that a certain first-stage action will lead to a desired second-stage
state is considered a hallmark of model-based behavior (since
the individual is deciding according to a model of the task
transition structure). We conjectured that an individual’s task
representation might include not only information regarding the
transition structure but also, features of a current state that are
relevant to an outcome. This builds on an assumption that
MFspatial-motor associations (assigning values to the motor re-
sponse/spatial location) should be regulated according to a task
mental representation. Consequently, we hypothesized that indi-
viduals with greater deployment of model-based strategies would
also show less of an influence from MFspatial-motor associations.
We specified 2 a priori latent factors capturing involvement of

MFspatial-motor associations and model-based processing on par-
ticipants’ choices using structural equation modeling. Structural
equation modeling is a multivariate method that combines factor
analysis and multiple regression, allowing the estimation of
structural relationships between latent constructs and their
measured variables. Notably, latent factors are considered less
noisy than their counterparts (17, 18), with structural equation
modeling shown previously to increase reliability for 2-step task-
related estimates (12). Here, we estimated the relationship be-
tween 2 a priori latent variables. 1) Model-free spatial-motor
(MFspatial-motor) reflects a cognitive process of associating spatial-
motor aspects of the task with reward outcomes. This we mea-
sured from 4 scores: a model parameter (Model 2) weighting the
contribution of spatial-motor model-free associations to choice
behavior (w2) (Materials and Methods) and the 3 sequential ef-
fects described above (within-state, between-state, and between-
stage sequential effects) (Figs. 2–4). 2) model-based reflects an
ability to incorporate knowledge about task transition structure
when making a choice. This we measured from 3 scores: a model
parameter (Model 2) weighting the contribution of model-based
over model free to choice behavior (w1) (Materials and Methods)
and 2 model-agnostic measures that were previously found to be
tightly associated with model-based/model-free tradeoff, in-
cluding the outcome (unrewarded vs. rewarded) × transition
(uncommon vs. common) interaction effect on choice at n + 1
(first stage) (2, 12) and the transition effect on reaction time at
the second stage (7, 8, 12) (SI Appendix).
We fitted a confirmatory factor model and found an accept-

able model fit χ2(4) = 69.16, P < 0.001; root mean square error of
approximation = 0.074 (0.057 to 0.092); comparative fit index =
0.913; standardized root mean square residual = 0.041. In-
spection of the covariance among the 2 latent factors showed a
negative correlation between MFspatial-motor and model-based

learning (standardized covariance = −0.32, P < 0.001), suggest-
ing that high–model-based participants also exhibited lower in-
fluence of MFspatial-motor associations on decision making (SI
Appendix, Fig. S5).

Discussion
Natural environments are feature rich, and only a subset of these
features is considered to predict action–outcome associations.
An agent’s ability to exploit relevant information to predict ac-
curately an outcome is vital for adaptive, goal-directed behavior
(19, 20). While previous studies considered model-free credit
assignment to outcome-relevant features of a task (2, 6–9), here
we asked how, and to what extent, a model-free system avoids
credit assignment to outcome-irrelevant task representations.
Notably, both model-agnostic and computational analyses sug-
gest that participants assigned value to outcome-irrelevant
spatial-motor aspects of the task. We highlight here what seems
to be an obligatory model-free system credit assignment to
outcome-irrelevant task representations.
Our finding raises a question as to the nature of the observed

spatial-motor model-free associations with respect to the stim-
ulus. For example, after having reached for a grape placed on the
left side of the table with a right hand gesture, could value be
assigned to the hand gesture and/or location of the grape re-
gardless of its visual features? We found evidence that credit is
assigned to spatial-motor representations across task states and
stages and in a stimulus-independent manner. This suggests that
a model-free system assigns credit to low-level task representa-
tions, regardless of an assignment to outcome-relevant features
of the task. This conclusion is in line with diverse findings from
animal studies (21–23), focal brain damage (24, 25), and human
learning studies (26, 27), which seem to show that stimulus and
action-related value encoding are realized within distinct neural
networks.
How can a model-free system that bears only minimal knowl-

edge regarding environment structure know what representations
should be susceptible or immune to credit assignment (28, 29).
Insights arise from the observed negative relationship that we
found between the deployment of model-based strategies and the
impact of spatial-motor model-free representations. This as-
sociation suggests that those who decide according to knowl-
edge of a state transition structure (including future states in their
decisions) are also those who display a lesser influence from low-
level spatial-motor value associations. Thus, we speculate that
participants’ mental map of the environment might be more
elaborated then previously described (2, 6–9) and include in-
formation about which features of the environment best predict
a reward outcome. This information might then guide top-down
regulatory processes that dampen the influence of outcome-
irrelevant model-free associations.
Stimulus-independent motor learning might have particular

relevance for interpretation of studies in patient populations. For
example, compulsive behavior (10, 30), substance use (31), and
obesity (32) are linked to less goal-directed model-based influences.
It is nevertheless the case that these conditions are also strongly
associated with specific motor actions (e.g., eating, checking, etc.).
Therefore, a tendency to form motor–outcome associations might
be a form of learning manifest in the context of a relevant specific
outcome (e.g., movements related to food or safety). We suggest
that future studies might ask whether putative value-related im-
pairments are in fact more domain specific than previously thought.
Finally, our findings also correspond with current assumptions

regarding how human cognition assembles and regulates states
(1, 29). The reinforcement learning literature defines a “state” as
a collection of information that is relevant to a given decision
(20). Our findings might entail a tendency for certain represen-
tations to be considered part of a state, thus affecting decisions in
a state-intrinsic manner. We speculate that the learning system
has a requirement to segregate task representations (assumed to
be actively held in working memory) into state-extrinsic/intrinsic
information according to outcome relevancy. When working

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1821647116 Shahar et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821647116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821647116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821647116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821647116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821647116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1821647116


memory resources are low (or more demanding), an individual’s
ability to keep an accurate intrinsic- vs. extrinsic-state differen-
tiation between task representation might be attenuated, leading
to higher involvement of outcome-irrelevant task representations on
value-based choices.
There are limitations to our study as well as additional ques-

tions arising from our findings. First, our design could not
determine whether the effect of spatial-motor reward associa-
tions is due to unregulated learning (i.e., regulating the for-
mation of irrelevant associations), unregulated decision (i.e.,
regulating the influence of these associations on behavior), or
both. Second, our manipulation of spatial location and motor
response is perfectly confounded, with additional studies
needed to disentangle the contribution of those domains. Fi-
nally, above the stimulus-independent spatial-motor associa-
tions, participants might also assign credit for a combination of
stimulus and motor response/object location.
In summary, we uncover a substantial effect of model-free

spatial-motor outcome-irrelevant learning on behavior. Our
computational modeling suggests that cached value for the spa-
tial-motor aspects is generalized across distinct state features.
This highlights the need to address how states are structured and
represented within the model-free system.

Materials and Methods
Participants. Written informed consent was given for all participants. The
Cambridge Central Research Ethics Committee approved the study (12/EE/
0250). Data were obtained from a community-based longitudinal sample of
young volunteers (ages 14 to 24 y) living in the United Kingdom [Neuro-
science in Psychiatry Network’s study (13, 33)]. Our final dataset after ex-
clusions (SI Appendix) included 769 individuals at Time I (371 males, 398
females, mean age = 19.06, range = 14.10 to 24.99), 63 at Time II (34 males,
29 females, mean age = 19.41, range = 14.93 to 24.90), and 568 at Time III
(284 males, 284 females, mean age = 20.30, range = 15.11 to 26.48). Addi-
tional information can be found in SI Appendix.

Procedure. At all 3 time measurements, participants were invited to a lab-
oratory session in one of the United Kingdom’s collaborating institutions
(13). The mean time gap between Times I and II was 6.48 mo (range = 5.04 to
8.04 mo), and between Times I and III, it was 17.78 mo (range = 11.76 to
31.44 mo). At each measurement session, participants completed computer-
based cognitive evaluations and clinical assessments. At the end of the as-
sessment day, participants were paid a fixed amount plus a bonus based on
performance.

Reinforcement Learning Models. We fit a reinforcement learning model to
participants’ behavior, where we estimated the predicted value of each
choice at each trial based on reward history. We used a temporal dif-
ference learning algorithm, wherein predicted values for each choice
(i.e., Q value) are updated according to a prediction error teaching sig-
nal. We tested 5 models, each differing with respect to how spatial-
motor elements are integrated to affect decision making.
Model 1 (null model). Here, we integrated 2 value components following
Daw et al. (2): 1) model-free fractal value—reflecting the amount of previous
reward that followed this fractal selection—and 2) model-based fractal
value—reflecting the highest value of the 2 fractals reached by a common/
rare transition after a first-stage action. Let f1/f2 be the fractals selected at
the first/second stage of the task, and let reward at trial n be r(n)e{0,1}.
Fractal model-free Q values were initialized to 0 at the beginning of the
experiment and updated at the end of each trial according to a state–
action–reward–state–action reward prediction error algorithm (20) for first-
stage choices,

QFractal
ðf1,n+1Þ =QFractal

ðf1,nÞ+α1
�
QFractal

ðf2,nÞ −QFractal
ðf1,nÞ

�

+ α1λ1
�
rðnÞ −QFractal

ðf2,nÞ
�
,

[1]

and second-stage choices,

QFractal
ðf2,n+1Þ =QFractal

ðf2,nÞ+ α1
�
rðnÞ −QFractal

ðf2,nÞ
�
, [2]

where α1 was a fractal learning rate (free parameter) and λ1 was an eligi-
bility trace (free parameter) capturing the effect of the second-stage

prediction error on first-stage fractal value. Next, the model-based (MB)
learning strategy incorporated the empirical transition probabilities and
second-stage QFractal values to estimate the value of first-stage actions for
each Fractal F according to

QMB
ðF,nÞ =Pðs2jFÞ×max

�
QFractal

ðs2,nÞ
�
  + Pðs3jFÞ×max

�
QFractal

ðs3,nÞ
�
, [3]

where s2 and s3 represented the 2 states in the second stage (Fig. 1) and
P(s2jF) and P(s3jF) represented the transition probability. We then calculated
an integrated Q value for each fractal F, with a w parameter-quantified
model-based vs. model-free tradeoff in first-stage actions:

Qnet
ðF,nÞ =w1 ·Q

MB
ðF,nÞ + ð1−w1Þ ·QFractal

ðF,nÞ. [4]

Note that model-based and model-free predictions are identical at the
second stage; therefore, at the second stage, the integration of model-
based and model free leads to

Qnet
ðF,nÞ =QFractal

ðF,nÞ. [5]

We further examined an extension ofModel 1, where we included 2 different
learning rates for mapping repetitions vs. switches (assuming that fractal
value assignmentmight be noisier whenmapping flips). However, this did not
improve the model fit (SI Appendix).
Model 2.Model 2 assumed that fractal learning (model-based andmodel free)
was the same as Model 1. However, here we integrated a separate system
that assigned model-free values to response key (separate learning rate and
prediction error). Thus, for Model 2, we also updated response key model-
free values at the end of each trial. Let k1 and k2 be the response keys
for stages 1 and 2, respectively. Response key model-free values were
updated for the first stage according to

QKey
ðk1,n+1Þ=QKey

ðk1,nÞ+ α2λ2
�
rðnÞ −QKey

ðk1,nÞ
�

[6]

and for the second stage according to

QKey
ðk2,n+1Þ =QKey

ðk2,nÞ+ α2ð1− λ2Þ
�
rðnÞ −QKey

ðk2,nÞ
�
, [7]

where α2 was a response key learning rate (free parameter) and λ2 was a free
parameter allowing differentiation between credit assignment to the first
and second actions when they differ. We then calculated Qnet for the first
stage according to

Qnet
ðF,nÞ = w1 ·Q

MB
ðF,nÞ + ð1−w1Þ ·QFractal

ðF,nÞ + w2 ·Q
Key

ðK,nÞ, [8]

where K is the response key for selecting fractal F, and for the second stage
according to

Qnet
ðF,nÞ = QFractal

ðF,nÞ + w2 ·Q
Key

ðK,nÞ. [9]

We further examined an extension of Model 2 where we included 2 different
learning rates (α2) for mapping repetitions vs. switches. However, this did not
improve the fit of this model (SI Appendix).
Model 3. The model included the same model-based fractal learning as Model
1 (Eqs. 2 and 3 were used to estimate second- and first-stage model-based
values, respectively). However, model-free state action values (i.e., QMF)
were estimated using a linear approximation function, where fractals and
response keys served as weighted features. Specifically, Q values for the
model-free system were calculated according to

QMF
ðs,aÞ =w1f1ðs,aÞ+ . . . + wnfnðs,aÞ, [10]

where s and a denote specific state and action, respectively. fi(s,a)e{0,1} re-
presents whether a feature was available (1) or not (0) for a certain state
and action. f1 to f6 represented the 6 fractals in the task, and f7 and f8 rep-
resented the 2 response keys. w1 to w8 were the respective weights, which
were updated at the end of each trial. First-stage weights were updated
according to

wiðn+1Þ=wiðnÞ+ α2 ·
�
QMF

ðs2,a2Þ −QMF
ðs1,a1Þ

�
· fiðs1,a1Þ

+ α2 · λ1 ·
�
rðnÞ −QMF

ðs2,a2Þ
�
· fiðs1,a1Þ,

[11]

and second-stage weights were updated according to
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wiðn+1Þ =wiðnÞ+ α2 ·
�
rðnÞ −QMF

ðs2,a2Þ
�
· fiðs2,a2Þ. [12]

Finally, Qnet for first stage was calculated according to

Qnet
ðF,nÞ =wMB ·QMB

ðF,nÞ +
�
1−wMB� ·QMF

ðs,a,nÞ. [13]

Since in this model, QMB and QMF were no longer identical for the second
stage (model-free values here are also driven by the response key mapping,
which is ignored by the model-based system), we also weighted the second-
stage Qnet according to Eq. 13. We further examined an extension of Model
3, where we included 4 response key features (right/left for first/second
stages). However, this did not improve the fit of this model (SI Appendix).
Model 4. The model included the samemodel-based fractal learning asModel 1
(Eqs. 2 and 3). However, in contrast to Model 1, we assumed that model-free
state action values are held separately for each fractal response key combi-
nation. Therefore, in this model, we update 12 QMF values for each combi-
nation of fractal and response keys. For first stage, QMF values were updated
according to

QMF
ðf1,k1,n+1Þ=QMF

ðf1,k1,nÞ + α2
�
QMF

ðf2,k2,nÞ −QMF
ðf1,k1,nÞ

�

+ α2λ1
�
rðnÞ −QMF

ðf2,k2,nÞ
�
,

[14]

and for second stage, they were updated according to

QMF
ðf2,k2,n+1Þ =QMF

ðf2,k2,nÞ+ α2
�
rðnÞ −QMF

ðf2,k2,nÞ
�
. [15]

Finally, Qnet for first and second stage was calculated according to

Qnet
ðnÞ = w1 ·Q

MB
ðF,nÞ + ð1−w1Þ ·QMF

ðF,K,nÞ. [16]

Therefore, in this model, the pairing of fractal F and response key K is
conjunctively defined with the stimulus. Note that, in this model, QMB and
QMF were no longer identical for the second stage, and therefore, we also
weighted the second-stage Qnet according to Eq. 16.
Model 5.We assumed that both themodel-based andmodel-free systems held
different state representation for each pair of fractals with each available
mapping. We, therefore, updated QMF similar to Model 4 (Eqs. 14 and 15).
However, here the model-based system also calculated the probability of

reaching each pair of fractals in the second stage with each available
mapping. We define 4 second-stage states for each pair of fractals and re-
sponse mapping (s2A, s2b, s3A, s3B). Q values for the model-based system in
the first stage were calculated as follows:

QMB
ðF,nÞ = Pðs2AjFÞ×max

�
QFractal

ðs2A,nÞ
�
+ Pðs2BjFÞ×max

�
QFractal

ðs2B,nÞ
�

+ Pðs3AjFÞ×max
�
QFractal

ðs3A,nÞ
�
+ Pðs3BjFÞ×max

�
QFractal

ðs3B,nÞ
�
,

[17]

where probabilities for common transition were considered to be 35% and
probabilities for uncommon transition were considered to be 15% following
the current task design. Since model-based and model-free values are again
identical in this model in the second stage, we used Eq. 16 to integrate
model-free and model-based Q values only for the first stage.

Equally for all of the models, we added a choice bias value accounting for
1) fractal perseveration [tendency to repeat fractal selection regardless of
reward for first stage only following previous studies (2)], 2) response key
perseveration (tendency to repeat response key selection regardless of reward),
and 3) response key bias (reflecting a tendency to use one response key more
than the other due, for example, to hand dominancy effects). SI Appendix has
additional information and models.

Data and Code Availability. Data and code can be found at https://osf.io/
7dekj/?view_only=77bfbdb324db46d0aee5563759389aea.
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