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Optimum Average Silhouette Width Clustering Methods

Fatima Batool

Abstract
Cluster analysis is the search for groups of alike instances in the data. The two major
problems in cluster analysis are: how many clusters are present in the data? And how
can the actual clustering solution be found? We have developed a unified approach to
estimate number of clusters and clustering solution mutually. This work is about the-
ory, methodology and algorithm developed of newly proposed approach.

Average silhouette width (ASW) is a well-known index for measuring the clustering
quality and for the estimation of the number of clusters. The index is in wide use across
disciplines as standard practice for these tasks. In this work the clustering methodolo-
gies is proposed that can itself estimate number of clusters on the fly, as well as produce
the clustering against this estimated number by optimizing the ASW index. The per-
formance of the ASW index for these two tasks are meticulously investigated.

ASW based clustering functions are proposed for the two most popular clustering do-
mains i.e., hierarchical and non-hierarchical. The performance comparison for clus-
tering solutions obtained from the proposed methods with a range of clustering meth-
ods has been done for the quality evaluation.

The performance comparison for the estimation of the number of clusters of the pro-
posed methods has been made using a wide spectrum of cluster estimation indices
and methods. For this, large scale studies for the estimation of the number of clusters
have been conducted with well-reputed clustering methods to find out each method’s
estimation performance with different indices/methods for various kinds of clustering
structures.

Developing mathematical and theoretical aspects for clustering is a relatively new and
challenging avenue. Recently this research domain has received considerable atten-
tion due to the present need and importance of theory of clustering. The purpose be-
hind the theory development for clustering is to make the general nature of clustering
more understandable without assuming particular data generating structures and in-
dependently from any clustering algorithm/functions. Lastly, a considerable amount
of attention has been drawn towards the theory development of the ASW index in the
latter part of the thesis.



Impact Statement

Cluster analysis is a field where problems posed are very diverse and challenging in
one way or the other. Although there is a vast majority of clustering methods present
already, the best solutions to these problems have yet to come. While there are a few
clustering methods that can estimate the number of clusters themselves, a majority of
the present clustering methods usually deal with these two problems separately. The
researchers are trying to find more satisfactory answers to the major underlying ques-
tions in the field and are coming up with the solutions that can cover vast majority of
applications. The proposed methods in this work also seek answers to the fundamental
questions in the field. The new methods will have impact in at least three ways:

Simplicity The methods proposed in this work can be seen as a unified approach
to clustering with an aim of making their use straightforward. The users don’t have to
provide the number of clusters beforehand or choose other parameters. Only a data set
is required as an input to produce the clustering and optimal number of clusters. The
algorithms proposed here work with distances between observations, which has made
them applicable to data application from any discipline, provided that the distance
calculation is possible.

Wide applicability The two types of input commonly available for clustering are the
original data values or the distances between the data points. The algorithms are im-
plemented in a way that they work with both types of inputs. Several distance mea-
sures are provided to match various data requirements. This enables the proposed
algorithms to work for almost all kinds of clustering applications.

In particular we have considered novel data applications from single cell RNA sequenc-
ing data clustering problems, and clustering of weather stations based on rainfall data.
The proposed algorithms have performed better or on par with the competitors, due
to their extra advantages of simplicity, less computational time in some instances, and
capability of estimation of number of clusters.

Better clustering quality The proposed algorithms have always improved the quality
of clustering for all the data settings included in the studies as compared to the ASW
index. Therefore, the use of the proposed methods will always guarantee improved
clustering quality.
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Chapter 1

Introduction

Clustering is a powerful tool to find underlying grouping patterns in data. A wide range
of clustering methods and algorithms has been proposed in literature. The cluster-
ing methods can be broadly classify as partitioning and hierarchical methods. The
partitioning methods are based on minimizing or maximizing a numerical function.
They usually utilize the concepts of separation and homogeneity to perform clustering
Everitt et al. (2011), i.e., objects within a group are closely located (intra - cluster com-
pactness) and have cohesive structure, and they are well separated from the objects in
other clusters (inter - cluster separation). There are a few major challenges while per-
forming cluster analysis. The two major challenges among these are how many clusters
are present in the data and which clustering algorithm is suitable to retain the cluster-
ing structure for the data application at hand. A lot of clustering algorithms need the
number of clusters to be provided as a parameter. The process of determining the
number of clusters is not straightforward and neither is the selection of the clustering
algorithm. Another vital concern while performing cluster analysis is to validate the
clustering results using some external criterion. The tasks of validation of clustering
results and estimation of number of clusters are closely related. In this study two uni-
fied clustering methodologies are introduced using the clustering quality index for val-
idation. This is based on the idea of optimizing the ASW index proposed by Rousseeuw
(1987).

The task of cluster validation can be be broadly classify into two categories, namely,
the internal validation indices that do not require any external information on cluster-
ing or the complementary to this that require external information to validate the clus-
tering results such as true clustering or even the clustering computed from some other
method than the one under evaluation. There are various cluster validation indices
both internal and external proposed in literature. These indices are usually based on
some criterion meaningful for clustering for instance within cluster compactness or
between cluster separation.
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1.1 Basic concepts related to validation indices

Diameter: The diameter of a cluster is defined by the distance between its two farthest
objects (Hartigan (1975), Han et al. (2011), Hennig et al. (2015)). For a cluster C , be-
longing to a clustering C on X , the diameter can be defined as:

Di am(C ) = max
x1,x22C

d(x1, x2).

Separation: The separation of a cluster tells the degree to which a cluster is distinct
from other clusters. There are various definitions for separation ( Dunn (1974), Davies
and Bouldin (1979), Milligan (1981), Halkidi et al. (2000), Halkidi and Vazirgiannis (2001),
Liu et al. (2013)). For instance one way of defining it is: take the minimum distance out
of all the pairwise distances between the observations of clusters in a clustering. Math-
ematically, for any two clusters C , C§ 2C it can be written as follows:

Sep(C ) = mi n
x12C , x22C§

d(x1, x2).

Compactness: The compactness or homogeneity of a cluster is defined by the intra-
cluster variation. There are numerous ways of defining compactness. For instance the
sum of squared deviation from mean can be used, as implied in k-means. For other
definitions one can consult Halkidi and Vazirgiannis (2001), Hennig et al. (2015).

Generally the uniform separation and diameter across clusters are expected to en-
sure balanced clusters. For the compact clusters the small diameter value and high
separation value are desirable.

Isolation: Another desirable property for a cluster is isolation. Usually, it is based on
the concepts of diameter and separation. A well-isolated cluster is the one whose inter-
nal differentiation is lesser than external differentiation. There can be slightly different
ways to apply this practically. For instance, a simple way to ensure this is by keeping
the diameter of a cluster smaller than its separation. For other definitions of isolation
see Gordon (1982) and Fred and Leitão (2003).

Connectedness/Cohesion: This concept ensures to what extend observations are con-
nected within a cluster, i.e., cohesion within a cluster. It is based on observing local
densities and checking whether the neighbouring items are in similar clusters or not.
As the clusters should be well connected, similar/uniform densities within clusters are
desirable. They are good in finding a wide range of clustering shapes. Many density
based clustering indices have been proposed, for instance Halkidi and Vazirgiannis
(2001), Halkidi and Vazirgiannis (2008) and Moulavi et al. (2014).

The selection of the indices for cluster validation depends upon the application
at hand (see Hennig (2017) and Hennig (2015b)). If for a cluster application small
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within cluster distances are required to define clusters k-means algorithm (Hartigan
and Wong (1979)) can be used to produce clustering because its object function tries
to minimize the distance of cluster points from the cluster mean. This clustering can
be validate by the index based on the same objective, for instance, the Calinski and
Harabasz index (Caliński and Harabasz, 1974). However, if there are more than one
objectives required for clustering, for instance, the cluster should be well separated or
as far as possible from each other as well as the cluster should be compact and must
be represented by a centroid then the primary object can be used while clustering and
the complementary criteria can be involved to validate clustering results. The numer-
ical measure of how much of the other objectives has been achieved by this clustering
can be measured using validation indices. It is particularly, useful to bring in the addi-
tional requirements for the situations when more than one criterion is needed that no
clustering methods offer together yet. The aims of fulfilling several objects while clus-
tering single data can be alternatively achieved by optimizing more than one objec-
tive functions in a weighted settings known as multi-objective or ensemble techniques
(Handl and Knowles, 2007). To validate this clustering one can adopt similar approach
in which one can use several criterion of interest in weighted setting as introduced in
(Hennig, 2017). In this thesis we have taken an alternative approach to clustering from
several criteria and focus on one criterion that is a combination of two objectives i.e.,
within cluster compactness and between cluster separation and developed a straight
forward approach for clustering.

1.2 Definition of a cluster:

Hennig (2015b) argues that there is no general true clustering definition. The “true”
cluster definition purely depends upon the aim of clustering and desirable character-
istics. While defining clusters one need some intuitive assumptions and concepts. For
instance, a cluster is a set of points that shares some characteristics or dissimilarity
between neighboring points within a cluster should be smaller than dissimilarity be-
tween points between clusters. Different clustering methods aim at finding different
kinds of clusters and no method is universally suitable for all problems. Usually, it de-
pends in what domain clustering is required and what characteristic make sense in a
given application, then these characteristics are matched with the clustering methods.
For instance, the required characteristic can be translated into clustering language as
within-cluster dissimilarities should be small, clusters should be of equal sizes, cluster
can be represented by centroids, clusters should be well-separated, clusters should be
of certain shapes (like elliptical), the number of clusters should be low or high, clusters
should be stable or features within clusters should be independent etc. Each clustering
methods have their own definition of clusters. Some methods take one value from the
clusters like a centroid, a medoid or a clusteroid like k-means (Lloyd (1982)) or PAM
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(Kaufman and Rousseeuw (1990)) to represent a cluster. For some other methods a set
of points from each clusters represents cluster, for instance, CURE (Guha et al. (1998)).
Sometimes the clustering is done through probability models and the clusters are de-
fined by the densities, for instance, clusters may be coming from multivariate normal
distributions. In general, the formalisation of clusters is not straightforward, and for
real life data it is usually unknown what the true clustering is, and there may not be
any clearly identifiable clusters present. Finding a true clustering is usually not a prob-
lem if clustering is only required for administrative reasons but if the further analysis
is based on the clustering results, like in image analysis or pattern recognition, it is
imperative to find a clustering that depicts the real phenomenon as closely as possible.

If the number of clusters is not known in advance they can be first separately es-
timated by using some cluster quality index. The idea here is to choose the number
of clusters that give the best clustering quality. The clustering solution is obtained for
various numbers of clusters and a clustering quality index is calculated against all of
these numbers to choose the best according to the criterion. Usually, different num-
ber of clusters are tried first with a clustering method and then one best among these
clusterings is chosen using some index for measuring clustering quality in a relative
comparison setup.

There are some problems in this approach. Firstly, the index used to access the
quality of clustering is based on different statistical theories and concepts than the
algorithm used to find clustering solution (for instance use of ASW with k-means algo-
rithm or hierarchical clustering methods —Chen et al. (2002), Bolshakova and Azuaje
(2003), Reynolds et al. (2006), Saitta et al. (2007), Ganesan and Sukanesh (2008), Nguyen
et al. (2015)). This also applies, if first some formal method for the estimation of num-
ber of clusters is separately applied before finding the clustering against this estimated
number. Secondly, performing these two tasks separately in real life problems is not
straightforward and convenient for the users as highlighted in Jain and Law (2005).
These problems are discussed in somewhat more detailed in the following paragraphs
to motivate the need of the work conducted in this thesis.

The clustering algorithms, clustering quality measures and methods for the estima-
tion of the number of clusters are based on some objective function. These objective
functions are based on some criterion, for instance, homogeneity or compactness of
clusters. Often in practice the users utilize one criterion to estimate the number of
clusters, for instance, a criterion based on cluster separation, and use another clus-
tering method for instance, based on cluster compactness to perform clustering. In
reality, true cluster are not known and in some disciplines it is essential to apply clus-
ter analysis before the actual data analysis, for instance functional magnetic resonance
imaging (fMRI) data analysis, single cell RNA sequencing data analysis and analysis of
the data simulated from climate models. The analysis to follow afterwards will rely on
the clusters found in the beginning.
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In situations where it is not known which kind of clusters to look for, the selection
of method to estimate number of cluster and task of clustering become more challeng-
ing. From literature it is not hard to find the examples where optimization function
that is used to estimate the number of clusters and the one that is used to get final data
clustering differs in their functioning (Liu et al. (2003), Ganesan and Sukanesh (2008)).
For instance k-means Lloyd (1982) (has its own notion of clustering which is to min-
imize the with-in cluster sum of squares, and this is different from the notion of ASW
which is cluster compactness and septation) has been used with ASW index extensively
to estimate number of clusters.

In this work we have a focus on developing clustering methods that are based on
the same criterion to estimate the number of clusters and to define the objective func-
tion to get the final clustering solutions. The idea is if a criterion is acceptable for the
estimation of number of clusters, then the clustering solution formed by this should
also be acceptable. The advantage of this is that it will make the task of clustering
somewhat simpler, and the users don’t have to deal with the two tasks separately.

In this study we have defined a coherent framework to estimate the number of clus-
ters and a clustering solution using the average silhouette width (ASW) proposed by
Rousseeuw (1987). A clustering method can be defined by optimizing the objective
function based on the ASW index. This index measures the clustering quality to esti-
mate the number of clusters and has shown good performance for the estimation of
the number of clusters. The motivation is that if an index is really good in estimating
number of clusters then it should also be good in getting the final clustering solution.

The ASW is a well-reputed and trusted clustering quality measure. The index has
been well received by the research community and is widely used for the estimation of
the number of clusters. The index has been used across disciplines in various clus-
tering applications for the estimation of the number of clusters and for comparing
the clustering quality obtained from different clustering algorithms. There have been
comparisons in the literature with other existing methods that validate the good per-
formance of the index as compared to other indices. ASW was top performing index
in Arbelaitz et al. (2013). In the next paragraph several references are provided from
literature that conclude the good performance of index.

The ASW has been extensively used to estimate the optimal number of clusters
(with a combination of various clustering methods), to compare the performance of
clustering methods and for the quality assessment of clustering obtained from many
clustering methods. Some empirical studies have also been designed to evaluate per-
formance of the ASW in comparison with other famous indices. The index has been
used for cluster analysis in a diverse range of data clustering problems and setups
across disciplines, for instance geo-spatial analysis: Ng and Han (1994), clustering of
time series: Kalpakis et al. (2001), for document clustering: Recupero (2007), for micro-
array analysis: Kennedy et al. (2003), Bandyopadhyay et al. (2007), Cho et al. (2010), for
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genotype assesment Lovmar et al. (2005) and for brain analysis: Craddock et al. (2012),
for image segmentation: Hruschka and Ebecken (2003), Ganesan and Sukanesh (2008),
Kannan et al. (2010) to mention a few. For clustering quality measures, and clustering
method comparisons see Chen et al. (2002), Liu et al. (2003), Reynolds et al. (2006),
Kannan (2008), Ignaccolo et al. (2008) and Arbelaitz et al. (2013).

A somewhat different use of the ASW index appeared in Lletı et al. (2004), where
a method to determine the noise variables from the data was proposed. The authors
have introduced various noise variables generated from the uniform distribution to
the data and then tried to retrieve the original number of variables present in the data
by optimizing the ASW index for k-means clustering. Campello and Hruschka (2006)
have extended ASW to a fuzzy clustering regime. Some interesting variations and mod-
ifications have also been proposed, for instance, density based ASW by Menardi (2011)
and the slope statistics by Fujita et al. (2014).

It is important to understand the behaviour or functioning of the index not only to
propose a clustering method based on it but also to understand how the index works
for the estimation of number of clusters.

For this work, we don’t define in advance, what is the definition of clusters we are
looking at, because this is not clear from the ASW definition what it actually tries to
achieve. One can only roughly understand what ASW is aiming for. The definition
does not fully specify what the shape of clusters are. For ASW one can roughly de-
fine what will be the characteristics of the resulting clustering based on ASW. It has
it’s own notion that looks for homogeneous clusters, and separation from the closest
cluster. There can be various ways of defining or achieving homogeneity and separa-
tion in a mathematical formula and ASW is one of them. There are also various ways
of defining both within cluster homogeneity and between cluster separation. For in-
stance ASW measures homogeneity by within cluster distances, thus for ASW it means
small within-clusters distances. It is not so clear how separated and homogeneous
clusters ASW can deliver, and in what situations it fails.

A few other things are however also understandable from the definition of ASW.
For instance it is clearly different from the criterion like single or complete linkage that
does not try to find compromise between these two aims of homogeneity and sep-
aration. Complete linkage looks for homogeneity and ignores separation and single
linkage ignores homogeneity and delivers separated clusters.

There are other methods in the literature that roughly try to achieve the same goals
i.e., homogeneity and separation of clusters, for instance k-means algorithm Slonim
et al. (2013), or CH index Caliński and Harabasz (1974) or index proposed in Halkidi
and Vazirgiannis (2001). The exploration of the similarity between ASW and other
methods is not the primary focus of this thesis i.e., in what sense they are same and
in what sense they are not. However, comments has been made if they deliver different
results and if the reason behind this is so apparent.
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It can not be said in advance what will be the shapes of clusters produced by ASW.
Also, we can’t make statements like the clusters produced by ASW will be, for instance,
elliptical, symmetric in a sense that they are of equal sizes, or are define by distribu-
tions such that the densities goes down very quickly and there are very few points in
the tails of the distribution curve. ASW is also not a parametric measure of defining
clusters for instance take mixture of Gaussian distributions as an example such that it
can’t be expected that the resulting clusters will look like them. This is something yet
to explore that what kind of mixtures ASW is good in identifying and for what it is not
so good. It is also worthwhile to explore what exactly happens in cases where it fails.

To develop more understanding about the ASW index we want to explore in this
work in what situations this index can deliver true clusterings? As in real life applica-
tion the purpose of clustering can be very different so to simulate these cases various
data generating processes were considered. In reality clusters can be from Gaussian,
Uniform, exponential distributions or other arbitrary shapes. To include various pos-
sibilities in this work, we generate data against many scenarios of real interest, to see,
how ASW based clustering methods perform in each of these circumstances. There-
fore, for us the true clusters mean the cluster generated from these cluster generating
models. For the evaluation of clustering results obtained we use ARI to compare clus-
tering using the true data generating clustering labels.

It is also worthwhile to explore if the ASW based clustering methods do not deliver
the clusters as defined by the data generating process then what do they get and how do
they make sense. Its worthwhile to explore, for what kind of data generating processes
ASW is fine, and for what its not good and why? What exactly happens in the situations
where it is problematic i.e., what characterises these situations, and why does it go
wrong, and is there a possibility to argue that even where it goes wrong in terms of
recovering true clustering i.e., if the proposed method gives a larger ASW as compared
to existing methods but gives low ARI, does it still do something that may be useful in
some sense. Thus we are interested in exploring to what extent and where does ASW
deliver good ARI for recovering clusters as defined by the data generating processes,
and where it doesn’t, and how can it be characterised what it delivers instead?

1.3 Objectives and contributions of the thesis

The current dissertation covers practical and theoretical aspects of clustering. The pri-
mary objective of the current thesis is the investigation of the ASW based clustering
methods. Are they good in finding any sensible clustering and if so what kinds of clus-
ters they can retrieve. Are there some data structures that only these methods can
find and existing clustering methods fail at finding? If this is so then a unified cluster-
ing method can be proposed based on this. The word unified is used here in a sense
that the method can not only produce clustering but can also estimate the number
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of clusters. For this kind of exploration the first question one face even before this is
the standalone exploration of the ASW index. The goal in this thesis is to compare the
performance of proposed and existing methods without favouring any of them. The
thesis embodies the results of extensive simulations for the investigation of the newly
proposed clustering function that is based on the idea of optimisation of the ASW.

(i) To learn which existing method can work well with the ASW index? In principle
ASW can be used with any clustering method to estimate number of clusters.
However, some clustering methods can better capture certain kind of pattern in
the data as compared to others, therefore, the performance of ASW will vary with
the clustering methods. Goal here is to evaluate the performance of ASW with
different clustering methods for two aims defined as (a) performance of ASW
for finding clustering solution, and (b) performance of ASW for the estimation
of number of clusters.

(ii) ASW based clustering functions have been proposed in two most popular clus-
tering domains, i.e., hierarchical and non-hierarchical. These algorithms are
named as HOSil, OSil and fast versions of OSil. The performance comparisons
of the proposed methods have been done with a range of clustering methods
through simulations. The motivation for setting up these simulations was to il-
lustrate the characteristics, and types of clusters the proposed algorithms can
capture and identify. For this we define the two aims: (a) performance of the
proposed algorithms for finding clustering solution, and (b) performance of
the proposed algorithms for the estimation of number of clusters.

(iii) To find out the best way to initialization OSil since initialization can effect the
algorithm’s output greatly (Arthur and Vassilvitskii, 2007). The algorithm pro-
posed in the non-hierarchical settings (OSil) needs an initial clustering solution.
For this several initialization methods were compared and evaluated against both
aims.

(iv) To extensively evaluate the performances of other indices in comparative set-
ting for the estimation of number of clusters in combination of various clus-
tering methods. Milligan and Cooper (1985), Brun et al. (2007), Arbelaitz et al.
(2013) have conducted studies of empirical comparisons of validation indices
and clustering methods. Milligan and Cooper (1985) covered 30 indices pro-
posed during the period of 1965 to 1983 with 4 hierarchical clsutering methods.
Brun et al. (2007) covered 8 validation indices with 8 clustering methods. Lastly,
Arbelaitz et al. (2013) covered 30 validation indices with three clustering meth-
ods. These or other such studies can not be fully generalized due to the availabil-
ity of vast majority of clustering methods, validation indices, synthetic data sets,
real data sets and characteristics of interests. To the best of our knowledge the
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Gap Tibshirani et al. (2001), prediction strength Tibshirani and Walther (2005),
bootstrap instability Fang and Wang (2012) , and CVNN Liu et al. (2013) indices
never appeared in a comparative study together with other indices in a system-
atic setup with such a wide range of clustering methods considered in this work.

(v) Development of the axomatic theory for the ASW index. There are different
ways to investigate the quality and characteristics of clustering methods such
as validation indices using simulations and real data experiments, model-based
theory (Edwards and Cavalli-Sforza (1965), Binder (1978), Banfield and Raftery
(1993), Bock (1996), and Fraley and Raftery (2002)), and non-model-based the-
ory known as the axiomatic theory (Jardine and Sibson (1968), Fisher and Ness
(1971), Kleinberg (2003) and Ben-David and Ackerman (2009)). In this work we
have not only taken the empirical approach of validation of clustering results
while simulations but also focus on the development of the axiomatic theory.

1.4 Outline of the thesis

The work conducted in this thesis has three broad divisions, which are as follows: The
hierarchical clustering schemes, the non-hierarchical clustering schemes and finally
the underlying fundamental theory development for the ASW index. In Chapter 2 basic
concepts of clustering are introduced, terminologies and clustering methods and clus-
ter estimation methods are defined to be used later in this thesis. The major challenges
in cluster analysis are also discussed in there. In Chapter 3 a new linkage method is de-
fined based on ASW optimization for the hierarchical clustering. We begin with the
hierarchical clustering algorithm due to the advantage that it doesn’t need any initiali-
sation and the number of clusters are not needed to be specified beforehand. A major
concern here is to explore the characteristics of the ASW index standalone in the var-
ious clustering settings together with the existing clustering methods and cluster esti-
mation methods. We have then extended this approach to the non-hierarchical clus-
tering. In Chapter 4 clustering methods based on optimization of ASW are proposed
for the non-hierarchical clustering domain. A major part of this chapter is devoted for
the exploration of the various initialization methods to find the optimal one for the
proposed method. The behaviour of ASW is explored extensively. The runtime com-
plexity issue for the algorithm is also taken into account for the proposed methods,
and fast versions are introduced together with their exploration. A fairly large portion
of Chapter 4 consists of a discussion of the simulations and summary of the results.
Chapter 5 is a step towards the theoretical foundation for ASW. Chapters 3, 4 and 5 are
independent from each other. The work done here points out towards various further
challenges, issues and problems to be addressed, which points towards a vast possi-
bilities for the future research. These directions are discussed in Chapter 6. The sim-
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ulations conducted in this thesis are based on the probability distributions which are
defined in Appendix A. Some additional results for the simulations in Chapter 3 and 4
are given in Appendix B and Appendix C, respectively. A numeric example related to
the proof of Chapter 5 is presented in Appendix D.
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Chapter 2

Clustering Overview

2.1 Some clustering applications

Clustering is a widely used multivariate data analysis procedure enjoying popularity
in diverse scientific disciplines, for instance artificial intelligence, machine learning,
computer vision, natural language processing, text analytics, sequence analysis, crime
analysis, web searching and evaluation, archaeology, climatology, taxonomy, genetics,
neuroscience and medicine, to name a few. The main objective is to classify similar
objects into sensible groups called clusters according to some (dis)similarity criterion.
Every clustering problem is unique, therefore there does not exist any universally ac-
ceptable definition of clustering. It is also possible that within a domain, there are
several possible purposes to do grouping, and often there are several possible ways for
grouping the subjects.

In genomics, clustering algorithms are used to automatically assign genotypes or
to find biologically important subsets of gene from gene expression to infer population
structures. Many clustering algorithms have been applied to find mutated genes i.e.,
to identify different diseases like cancer or diabetes. Some reference includes Eisen
et al. (1998), Alon et al. (1999), Van’t Veer et al. (2002), Sturn et al. (2002) and Jiang et al.
(2004).

Clustering helps neuroscientists in understanding brain functioning by looking at
activation levels of different parts of the the brain. Clustering techniques are used to
define regions of homogeneity in the brain volume or on the cortical surface with re-
spect to information provided by one or several images or task related activities. Clus-
tering is used to provide the labels for voxels according to their similarity to identify the
regions of interest for connectivity analysis for Functional Magnetic Resonance Imag-
ing (fMRI) time series to isolate zones with similar activation or to investigate two vox-
els having similar behaviour. For instance see Heller et al. (2006), Craddock et al. (2012)
and Thirion et al. (2014).
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Clustering has been used for many environmental data sets for instance, real time
storm detection and flood forecasting. Climate models are developed based on physi-
cal relationship between and within ocean and atmosphere. Many researchers have
tried to implement clustering methods to climate data sets in order to understand
different environmental factors and to classify climate zones. This is a progressive
field where climatologists are trying to improve the climate models by investigating
climate phenomena. For instance, El Nino Southern Oscillation (ENSO) is a very pop-
ular global climate signal phenomenon that affects the land temperature across the
globe and is used to extract climate indices for different time slices at a location. In the
process of extraction of important climate indices clustering is a vital step. The data are
first clustered according to potential predictors such as continent or area of ocean or
patterns in atmospheric pressure, etc., to identify these indices. For insight on the im-
portance of selection of appropriate clustering method and their contribution towards
the deeper understanding of climate process, see Steinhaeuser et al. (2011).

Galaxies are not randomly distributed in space, and they are of different colours,
sizes and shapes. Their different properties make different types of clusters. Some of
them are spiral shaped, for instance the milky way galaxy. Other observed shapes are
elliptical, lenticular (disc shaped), rings, toothpick like shape and irregular galaxies.
Clusters in galaxies are found based on their colours, shapes, locations and density.
Recently, density based clustering algorithms have been modified for galaxy detection
and classification for instance, see Tramacere et al. (2016) where they modify the DEN-
CLUE1 algorithm for identifying structures in galaxies. This is also a very active and
flourishing research area.

Clustering algorithms are widely used for text mining and information retrieval by
web search engines for quickly finding the nearest neighbours of a document to fulfil
web search queries. Documents can be clustered on the basis of terms they contain or
co-occurring citations to retrieve similar documents from the large set of documents
efficiently. For instance see critical reviews and a collection of studies in this area in
Cooley et al. (1997), Willett (1988), Srivastava et al. (2000), and Berkhin (2006).

In human motion analysis, it is important to know when the distribution of hu-
man pose changes (Zhou et al. (2008)). Human movements can be seen as multidi-
mensional time series where clustering is used to segment these actions which helps
in revealing unusual activities in videos. Similar applications are in decomposition of
stream of facial behaviour into facial gesture where unusual facial expressions can be
detected through the analysis of outlying temporal patterns. In forensic science and
biometric systems (Uludag et al. (2004)), record databases are massive which requires
rapid and efficient searching methods. Clustering makes this process of identification
and verification of feature sets efficient by partitioning large biometric databases into
most homogeneous groups, for instance, fingerprints, iris patterns, facial features, sig-

1DENCLUE is a DENsity CLUstEring algorithm proposed by Hinneburg and Gabriel (2007)
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natures etc.
Clustering can be used for dimensionality reduction, as the two are closely related.

Dimensionality reduction methods use the closeness and correlation between dimen-
sions to find a new set of reduced dimensions. The purpose of clustering in this case is
to group the similar dimensions/variables based on some correlation measure instead
of putting different instances across the dimensions in similar groups, which gives a re-
duced number of features in the original data set by keeping the loss of information as
small as possible. Also, clustering provides labels for each object in the data, therefore
it can also be used as a pre-processing step for supervised classification if the classes
are not known a priori.

Clustering analysis has solved many machine learning problems. For instance,
problems related to pattern recognition and image processing. Image segmentation
is a typical clustering problem where the task is to partition pixels in such a way that
pixels belonging to a region are similar to each other in order to identify objects, text
or digits in an image (for instance see Shi and Malik (2000) and Chuang et al. (2006)).
A challenging research area is photo OCR (optical character recognition) problem. Ap-
plication includes car navigation systems where the car can read the street signs to
navigate to the required destination.

Clustering methods are also been used for community detection (Ye et al. (2008),
Leskovec et al. (2010), Malliaros and Vazirgiannis (2013)), market segmentation, under-
standing customers’ behaviour and anomaly detection (for instance credit card fraud
detection). There has been an increased trend in using clustering algorithms for tem-
poral data mining in recent decades. Clustering time series have applications in eco-
nomics, business, demography and medicine. For instance, clustering can be done to
find countries sharing similar economic indicators. Forecasting can then be done by
just predicting future trends for representative time series only from each group. This
helps in forecasting a large number of time series by saving significant amounts of time
and cost. For a literature survey on time series clustering see Liao (2005).

In the rest of this chapter a very brief overview of some basic concepts for cluster
analysis are presented. This is then followed by essential definitions related to this
work. Finally, the clustering methods, algorithms and cluster validation indices used
later in this work are reviewed.

2.2 Preliminary definitions and concepts

Cluster analysis depends upon many concepts. Clustering algorithms differ according
to certain properties like crisp versus fuzzy or deterministic versus stochastic cluster-
ing methods. The following subsections are designed to give all the important defini-
tions and concepts to understand the background of this work. Here a purpose is also
to setup general notations. However, only the elementary notations are defined here,
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and more notations will appear as and when needed throughout the thesis. For the
ease of readings the major notations are always briefly recalled before use.

2.2.1 Types and format of data

Clustering algorithms have been proposed for a variety of data types, for instance ordi-
nal, nominal, ratio and mixed type data. Examples of these data include text data (so-
cial media, web, social networks), multimedia data (images, audio, video from Face-
book, YouTube etc), time series data, sequence data (from web blogs, biological se-
quences) and stream data. Generally, the algorithms take data in two formats, namely
variable/pattern/data matrix or proximity/affinity matrix. Depending upon the do-
mains different names are more commonly used.

Definition 2.2.1. Variable matrix: Let n objects have p measurements then the vari-
able matrix Xn£p is the one that displays a variable in each row against objects in
columns. Formally, we can write

Xn£p =
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,

where xi j , i = 1, . . . ,n; j = 1, . . . , p represent the value of the j th variable on the i th

object. Across various domains different names are used for the rows of the above
matrix such as an object or a pattern or instances/individuals/cases/sample that are
considered for clustering, whereas the columns are known as features or variables of
interest. The data matrix can be simply seen as cases times variables. Thus we have
observations from n objects over the p variables of interest.

The data is often represented in another format which is mostly used in this work.
Let the n observations be X = {x1, . . . , xn}, where each xi 2 X , i = 1, . . . ,n is a column
vector of length p representing the p observed variables on the i th observation.Moreover,
X will be used only to represent the variable matrix instead of Xn£p .

Proximity matrix:
From the variable matrix some index of proximity or affinity can be established be-
tween pairs of patterns. This proximity index can be a similarity or dissimilarity. A sim-
ilarity index indicates how similar the objects are to each other whereas a dissimilarity
index is complementary to it. A dissimilarity index otherwise known as the distance
function d , measures the pairwise distances between objects in X .
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LetR be set of real numbers,R+ be the set of positive real numbers andNn the set
of natural numbers excluding 0, up to n. LetRp represents a p-dimensional Euclidean
space.

Definition 2.2.2. Distance function: A function d : X £X !R+, is called a distance on
X if, it satisfies the following properties.

(i) Non-negativity: 8 xi , xh 2X , where i ,h 2Nn , d(xi , xh)> 0

(ii) Reflexivity: 8 xi 2X , d(xi , xi ) = 0 , distance of an object to itself is zero

(iii) Symmetry: for xi , xh 2X , d(xi , xh) = d(xh , xi )

A function d 0 : X £X !R+ is called a metric on X , if in addition to above properties,
the following properties also hold,

(i) Identity: 8 xi , xh 2X d(xi , xh) = 0, () xi = xh

(ii) Triangle inequality: 8 xi , xh , xr 2 X , where i ,h,r 2Nn , d(xi , xr ) 6 d(xi , xh)+
d(xh , xr ).

Definition 2.2.3. Minkowski distance: The Minkowski distance of order q between two
objects xi and xh in X , X 2Rp is defined as follows

dq (xi , xh) =
√

p
X

j=1

Ø

Ø

Ø

xi j °xh j

Ø

Ø

Ø

q
!(1/q)

.

This distance is mostly used with q = 1 (Manhattan distance) or q = 2 (Euclidean dis-
tance).

2.2.2 Data clustering/partitioning

The purpose of clustering or partitioning is to split the data into k groups called clus-
ters. The task is to divide the data into coherent structures. More formally, denote a
partitioning of X into k groups by the set Ck . The members of Ck will be called clus-
ters. Let k be an integer such that 1 6 k 6 n be the number of subsets in a particular
partitioning Ck .

Definition 2.2.4. A k-clustering Ck = {C1, . . . ,Ck } of a data X is a partition of X into k
disjoint subsets of X .

Clustering function/criterion:
A clustering function fk takes as an input a set X and a distance function d , and a
pre-known fixed number of clusters, say k, to return a clustering of X.
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Definition 2.2.5. A partitioning function fk (X ,d) = Ck ; Ck = {C1, . . . ,Ck } provides k -
partitions such that, ÿ Ci =; for i 2Nk , Ci \C j =; for i 6= j , and [k

i=1Ci =X .

Note that according to the above definition fk needs some definition of distance func-
tion d and number of clusters k as an input to get the clustering for X . The above def-
inition ensures that the clustering functions fk gives a clustering such that no mem-
ber Ck in a k-clustering is empty. All the members are pairwise disjoint and all the
members are collectively exhaustive. Examples of the clustering criterion functions
that operate like this are partitioning around medoids (PAM) or hierarchical clustering
methods formally defined in Section 2.4. Note that not all clustering criterion function
provide k disjoint (see Section 2.2.3) subsets of X .

Alternatively, there are some clustering methods that take as an input the data ma-
trix as given in Definition 2.2.1 instead of the proximity matrix to cluster the data and
a known number of clusters beforehand such as the k-means clustering method. This
partitioning function can be defined by f §

k (X ) = Ck . Finally, there are also some clus-
tering methods that take only a data matrix as an input and they can estimate number
of clusters, say k̂, themselves to return a clustering. In this situation the clustering
function can be defined as f 0(X ) = Ck̂ . More details on these types of functions will
come in the section where these methods are reviewed. Various clustering algorithms
has been studies in this work. Not all of them required same kind of input. We will use
both variable matrices and proximity matrices as an input to clustering algorithms in
this work and also the three kinds of clustering functions just defined in the study. Fi-
nally, the two special clustering cases defined as k = 1, when all the data forms a single
cluster and k = n, when each point forms its own cluster are not of interest for the work
done here.

Definition 2.2.6. Clustering labels: For a given partition, the clustering label set defines
the cluster memberships of all the observations in the variable matrix. For xi 2 Cr ,
r 2 Nk , the label of xi for i 2 Nn is ci = r . Therefore, a complete labels’ vector for a
partition is (c1, . . . ,cn), where ci represents a label for object ‘i’ and each of ci 2Nk .

Clustering label vector is an integer vector which has values between 1 and k. The
length of this vector is equal to the number of observations n in the data. For each
index i , i 2 Nn , the coordinate ci is equal to the number r , r 2 Nk representing the
cluster number observation xi belongs to.

2.2.3 Crisp versus fuzzy clustering

Clustering is often differentiated into crisp or fuzzy. Crisp, also known as hard clus-
tering, is the one for which all objects in the data just belong to exactly one cluster.
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Mathematically, we can write the cluster labels returned from a hard clustering algo-
rithm as k £n matrix H as followed:

H =

2
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6

6
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4

c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...
ck1 ck2 . . . ckn ,
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7

7

7

7

5

where n denotes number of objects in a data set, k denotes the number of clusters and
cr i satisfies

cr i 2 {0,1}, 16 r 6 k,16 i 6 n, (2.1a)

k
X

r=1
cr i = 1, 16 i 6 n, (2.1b)

n
X

i=1
cr i > 0, 16 r 6 k. (2.1c)

Each row of matrix H is a binary vector. The rows represents cluster membership and
column represents the observations. Constraint (2.1a) ensures that each object either
belongs to a cluster or not, Constraint (2.1b) shows that each object just belongs to one
cluster, i.e., only one element in each column of matrix H will be one and all others
will be zero. cr i = 1 means that observation ‘i ’ belongs to cluster r . Constraint (2.1c)
is because each cluster should contain at least one object. Note that the label vector
(c1, · · · ,cn) defined in Definition 2.2.6 represents hard clustering and can be converted
to a matrix H defined above. Whereas, in soft or fuzzy clustering, each object belongs to
each cluster with a certain cluster membership score also called degree based on how
similar the object is to other objects in that cluster. For instance, for each data point xi ,
a certain degree for each cluster in a clustering can be calculated depending upon the
closeness of the point to the center of a clusters. For fuzzy clustering constraint (2.1a)
changes to

cr i 2
£

0,1
§

, 16 r 6 k,16 i 6 n.

Note that the description above for fuzzy clustering is very basic and is just in-
tended to give an idea to differentiation between these two types of clustering domains
to identify the present interest of this work. In fuzzy clustering the membership scores
are not necessarily probabilities i.e., they don’t always fulfil (2.1b) and can be defined in
other ways. In this thesis only hard clustering methods are used. As fuzzy clustering is
not required for this work hence not discussed in further detail. To summarize, a crisp
clustering generates hard assignments of objects to clusters as for any two clusters Cr

and Cr 0 , we have, Cr \C 0
r =; such that [k

i=1Ci =X . This also agrees with the definition
of a partitioning function given in Definition 2.2.5.
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2.2.4 Partitional versus hierarchical clustering methods

All partitioning based clustering methods give flat clustering , meaning that they par-
tition the data into non-overlapping clusters and treat these clusters at the same level
in clustering i.e., clusters are not nested inside clusters. They return a single partition-
ing of a data instead of series of partitions, and no further structures are seen within
clusters. If a cluster is further sub-divided into different clusters, then the formed clus-
ters are at different levels. The hierarchical clustering, gives the clusters in a hierarchy.
Smaller clusters are merged into the bigger clusters, or bigger clusters could be further
partitioned such that the hierarchy of nested clusters is generated. There are some key
differences between the two methods in terms of assumptions, clustering results, in-
put parameters and runtime. Hierarchical clustering does not require the number of
clusters or a set of initial points to begin with as many partitioning clustering methods,
instead just the similarity or dissimilarity measure is needed to perform the clustering.
Partitioning methods are typically faster than hierarchical clustering methods.

2.2.5 Deterministic vs. stochastic clustering methods

Deterministic clustering methods always arrive at the same clustering result for the
given data for instance see Chi and Lange (2015) and Everitt et al. (2011). Some ex-
amples are average linkage, complete linkage, Ward’s method and McQuitty’s meth-
ods. All these methods are hierarchical clustering methods, and are defined in Section
2.4.1. Examples of other deterministic clustering methods include the PAM algorithm
reviewed in Section 2.4.2, spectral clustering reviewed in Section 2.4.4 or the dbscan
algorithm. In contrast, stochastic methods do not reach at same clustering solution if
run more than once with the same parametric choices on the same data, for instance,
the standard k-means method reviewed in Section 2.4.2.1 for a different set of initial
points chosen as starting centres can reach different local minima resulting in differ-
ent clustering solutions. Similarly, model-based clustering defined in Section 2.4.3 is
also a stochastic clustering method. Also, both k-means and model-based clustering
can be run in deterministic fashion. In this work we have used both deterministic and
stochastic clustering methods. The new proposed algorithms in this work, can be clas-
sified as stochastic clustering methods.

2.3 Challenges in cluster analysis

There are various challenges in clustering, for example, what is the suitable distance
measure for the given data? How many clusters are present in the data? How do we
validate the clustering results once found? Do we need to standardize the data before
clustering? Is the clustering method robust to outliers? Are the clustering results sta-
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ble and reproducible? Is the clustering method scalable to large databases? Are the
clustering results obtained generalizable to new features or to new observations of the
same features? Are the results interpretable? Some of these issues relevant to this work
are discussed in some detail in the following subsections.

2.3.1 Selection of the proximity measure

The clustering methods are sensitive to the distance measure used. The selection or
definition of a suitable distance measure is an important concern in clustering. What
is a meaningful similarity between the objects for a particular application and how
variables should be weighted in construction of such measures is an interesting ques-
tion. There is a whole range of different similarity and dissimilarity measures suitable
for different applications and for different types of spaces, see for instance Deza and
Deza (2009). The most commonly used ones are Euclidean, Minkowski, Mahalanobis,
Manhattan, Canberra, Geodesic, correlation, cosine angle, hamming, simple match-
ing coefficient, Jaccard and its variations known as Tanimoto distances. Note that the
last two mentioned in this list are similarity measures. For a detailed description of
some of these for binary, categorical, continuous and mixed data types the reader are
refered to Chapter 3 of Everitt et al. (2011). The choice of proximity measure depends
upon various factors such as meaning of closeness in a certain application, what types
of clusters are to be discovered, the type of the data (e.g., binary, continuous or mixed),
the space of the data (e.g., Euclidean or non Euclidean), nature of the analysis and the
clustering method to use. For hierarchical clustering methods one also has to decide
what linkage method to use, which will also influence the shape of the clusters formed.

2.3.2 Estimation of the optimal number of clusters

It is crucial to decide the appropriate number of clusters for the data set. This is hard to
identify, as there is no single operational definition of a cluster and objects are cluster
with different purposes in mind. A careful analysis is needed to find the appropriate
number of clusters in the data. There are many methods available, for instance see Mil-
ligan and Cooper (1985) for the relative comparison of some most often used methods.
Some methods to estimate the number of clusters includes average silhouette width
(Kaufman and Rousseeuw (1990)), gap statistics (Tibshirani et al. (2001)), prediction
strength (Tibshirani and Walther (2005)), distortion curve (Sugar and James (2003b)),
Calinski and Harabasz’s index (Caliński and Harabasz (1974)), Dunn’s Index (Dunn
(1974)), Hartigan’s rule (Hartigan (1975)), Kranowski and Lai criterion (Krzanowski and
Lai (1988)) and Bayesian information criterion (Fraley and Raftery (1998)). One should
keep in mind that different representations of the same data may give different num-
bers of clusters from the same clustering method. The relationship between the vari-
ables is vital information to identify an appropriate number of clusters. Thus, the user
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has to choose a suitable representation of data and features/variables to use in the
analysis, and the number of clusters found will depend upon these choices.

2.3.3 Validation issues

Clustering validation is the evaluation of accuracy, quality and goodness of clustering
results. It is an essential task to determine the usefulness of clustering obtained. Most
clustering algorithms will give some partition of the data even if there are no inherent
clusters present. Therefore, it is important to assess whether the dataset contains any
meaningful clusters or not in the first place. This problem is known as clusterability
(Ackerman and Ben-David (2008)), that is, to check the clustering tendency and to val-
idate whether some non-random structure is present in the data or not, and whether
cluster analysis is sensible to perform. Another issue is that, the different clustering
algorithms (or even the same algorithm run twice) may yield different partitions of a
data set leaving the decision to the users to chose the one that is most meaningful for
them. Clustering validation is an exploration process to help users to find out which
among the candidate partitions make most sense for the given application.

The task of clustering quality validation and estimation of number of clusters are
closely related. Many of the clustering quality indices are used for the estimation of
number of clusters. The number of clusters can be chosen by optimizing a quality in-
dex. Keep in mind not all the indices will work for the estimation of number of clusters.
Some indices will systematically give higher (or lower) values for larger (or smaller)
numbers of clusters so that they are hard to compare across different numbers of clus-
ters. For example, criteria such as within cluster sum of squares will become smaller
and smaller if the number of clusters is increased, and so optimising them cannot be
done for estimating the number of clusters.

Clustering quality measures can be classified as external and internal validation
measures (Handl et al. (2005), Halkidi et al. (2001)). External validation methods take
knowledge of known class labels to validate clustering algorithms on data sets to learn
about the performance of a method and to prepare them for more challenging real
data sets. They are also used to compare the clustering results coming from different
methods. In situations where external labels are not known, internal validation mea-
sures can be used to validate the clustering. Internal validation measures explore how
well the clustering fits the data set using some criterion. A special case of the latter
is the evaluation of clustering consistency or stability through resampling methods,
see Fridlyand and Dudoit (2001). Beside these, there are relative measures that com-
pare different clusterings on a given data set resulting from various parametric choices
for an algorithm. This is often used to decide the optimal number of clusters for the
data sets. For an introduction about validation procedures, Jain and Dubes (1988a)
and Hennig et al. (2015) are good references to start. For comparison between dif-
ferent clustering validation methods see Halkidi et al. (2001), Bolshakova and Azuaje
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(2003), Handl et al. (2005), Brun et al. (2007), Arbelaitz et al. (2013), Xiong and Li (2013,
chap. 23) and Lei et al. (2017).

There are different clustering aims, and what the "best" clustering is and how this is
measured depend on these. There is no unique best clustering in a dataset and there is
no unique best criterion or index to measure this. Likewise, different indices are based
on different objectives as they measure different characteristics of clusterings, most of
which are legitimate and of interest in at least some applications, but some of them
may contradict some others. It is, however, not well understood and investigated how
to exactly characterise what different indexes do and how they differ, so that in a given
situation a user could have a clear idea which one to choose. No literature exists, that
explains as precisely as possible, for what specific situation an index is good and for
which it is not so appropriate.

The relationship between the clustering method and the index is not clear and can-
not be generalized. Therefore, not all the validation indices can be used with all cluster-
ing methods. The properties associated with validation measures are important when
selecting the index. Like clustering algorithms, clustering validation measures are also
based on certain concepts. For instance, some internal validation measure may be
strongly connected to the concepts of separation, isolation, or compactness. Due to
these properties some of the indices can give a higher value of index for a clustering
method with which they share their criterion. A validation criterion based on within
cluster sum of squares like CH, H, Gap etc are appropriate to validate clustering that
aims at minimizing average within cluster distances like k-means. On the other hand,
if a criterion which is not based on within cluster sum of squares is not useful for as-
sessing clustering obtained from a method based on within cluster distances criterion.

Another important challenge in cluster analysis is the definition of clusters. i.e.,
what truth the researchers are trying to recover. This is discussed together with what
is the definition of clusters for this work after reviewing ASW index. Therefore, this is
provided in Section 1.2 after ASW is reviewed.

2.4 Clustering methods review

Several clustering methods have been proposed in literature. The classification of the
clustering methods is not straightforward and different authors classify them in differ-
ent categories based on different factors. For instance some based their classification
on input requirement of methods and on outputs. Yet some classify based on clus-
tering criterion e.g., distance-based, search-based, density based. A slightly different
classifications can be founds accross literature, see for instance Murtagh (1983), Handl
et al. (2005), Berkhin (2006), Han et al. (2011, chap. 10), and Hennig et al. (2015). The
methods can be broadly classified as distance based methods, density based methods,
grid based methods, graph or network clustering methods, kernel clustering methods,
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constraint based methods, Bayesian parametric and non-parametric clustering meth-
ods. Many clustering methods have specially been designed by keeping in mind the
complexity issues of the data or the existing clustering methods have been scaled up
for big data sets. Many hybrid clustering methods have also been introduced using
combinations of these methods. Among the distance based methods we have parti-
tioning and hierarchical methods. The following sections provide a review to the clus-
tering methods that are relevant to this work.

2.4.1 Hierarchical clustering methods

Hierarchical clustering is based on a concept that builds clusters gradually and gives a
series of partitions from an individual cluster to n clusters or vice versa. The number of
clusters are not needed to be fixed in advance, however, if the desired number of clus-
ters k is known already the partitioning can be stopped when the required clusters are
obtained. The standard hierarchical clustering methods are deterministic and further
classified in literature as agglomerative (bottom-up) and divisive (top-down) methods
(see, for instance, Everitt et al. (2011)). The classification may be represented by a tree-
like diagram called dendrogram which shows the data partitioning at each stage. This
helps in evaluating the data structure and deciding the appropriate number of clusters.
Only the agglomerative hierarchical clustering (AHC) methods are used in this thesis.

At level 0, a root represents an individual data point to be clustered, thus all the
roots are the data points to be clustered (see Hennig et al., 2015, chap. 6). These roots
form "singleton" clusters in the beginning. At every level, the root nodes are further
merged. Every level in the hierarchy corresponds to a set of clusters, thus, returning a
sequence of clusterings. This sequence of clusterings is usually represented by a tree
diagram. The tree can be cut at a certain height to get a single partitioning of the data.
More formally, let X be the data to be clustered, where xi j represents the j th mea-
surement taken on the i th object. A dissimilarity d on X is required to calculate a
pairwise distances between data points. Let a single partition of data be represented
by C= {C1, . . . ,Ck }. Let a sequence of partitions be represented by P= {C1, . . . , CL},
where L 6 n and n 2N. Let k1, . . . , kL be the cardinalities of these partitions, then at
a particular hierarchy level a single partition can be denoted by Cl = {C1, . . . ,Ckl }, for
l = 1, . . . ,L. Note that k1 = n and kL = 1. Hierarchical clustering will satisfy the following
conditions on a sequence of partitions P,

(i) k1 > k2 > ·· · > kL , where kl =
Ø

ØCl
Ø

Ø , l = 1, . . . ,L and
Ø

ØCl
Ø

Ø is the cardinality of Cl .

(ii) Ci \C j =Ci or Ci \C j =C j or Ci \C j =; for all Ci 2 Ci and for all C j 2 Cj with
i < j .

Hierarchical clustering methods need to measure proximities between clusters to
merge or split the clusters in agglomerative and divisive clustering respectively, com-
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monly known as linkage methods. These proximities can be measured in form of sim-
ilarities or dissimilarities. Hierarchical clustering can be done with any similarity or
distance measure and for any type of variables, for instance categorical or numeric as
long as a distance measure can be defined. A linkage is a measure of proximity between
two clusters Berkhin (2006). A distance measure for the inter-cluster pair of observa-
tions and the linkage criterion which are the functions of these pairwise distances are
needed to amalgamate clusters. After each split or merge the total number of clusters
increases or decreases by one.

There are many linkage methods, all of which can be derived from the Lance and
Williams (1967)’s dissimilarity formula. A list consists of standard linkage methods to-
gether with their definitions are given in Table 4.1, Page 79 of “Cluster Analysis” by
Everitt et al. (2011). Before presenting the AHC’s algorithm some linkage methods are
recalled below to be used later in this work.

2.4.1.1 The average linkage

The average linkage by Sokal and Michener (1958) takes the average of pairwise dis-
tances between all the points in the two clusters considered for merging. Those two
clusters at the same level in hierarchy are merged that give the minimum average. Con-
sider any two clusters C , C 0 2 C, and let nC and nC 0 denotes the number of objects in
these clusters then average linkage can be defined as

Da(C ,C 0) = 1
nC nC 0

nc
X

xi2C

nC 0
X

x j2C 0
d(xi , x j ),

where Da is the distance between two clusters and any distance measure can be used
to calculate the distance d(xi , x j ) between pairs of points. Da(C ,C 0) is calculated for
all clusters in a partition at a certain level and those two clusters are merged that give
the minimum average linkage.

2.4.1.2 The single linkage

Single linkage is among the oldest clustering methods, see Graham and Hell (1985) for
the history of its development. It was developed by McQuitty (1957) independently
among others. It takes the minimum pairwise distances between the members of two
clusters, i.e., it joins the two closest clusters to form a new cluster. Mathematically,
single linkage can be defined as follows:

Ds(C ,C 0) = min
xi2C , x j2C 0

d(xi , x j ).

The two clusters are combined that give the minimum Ds(C ,C 0) over all clusters.
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2.4.1.3 The complete linkage

Complete linkage (Sorensen (1948)), joins the least similar pairs in clusters together,
i.e., it takes the maximum distance between two objects in clusters to form a new clus-
ter. Mathematically, complete linkage can be defined as follows:

Dc (C ,C 0) = max
xi2C , x j2C 0

d(xi , x j ).

The Ds(C ,C 0) is calculated between all the clusters in a partition at a certain level and
those two clusters are combined that give the minimum Ds .

2.4.1.4 The McQuitty method

McQuitty (1966) has proposed a method to calculate the proximity between clusters
using both, the measure of distance or similarity. This method is also known as Mc-
Quitty similarity analysis. Some measure of association between objects has to be
calculated first, for instance, it can be the correlation between multiple responses of
the objects as used in McQuitty (1966). For the n observations taken over p variables
compute correlation between each pair of object. These similarities are stored in the
matrix. To start off, as per hierarchical clustering rule construct the first hierarchy by
putting each observations in its own cluster. There will be C1, · · · ,Cn clusters. Next,
note the first maximum and the second maximum values from the similarity tables
and combine the corresponding clusters to them. Let C1 and C2 be the clusters that
were just merged into one cluster, denote this newly formed cluster as C1 [C2. After
merging these two clusters the new matrix of similarity is to be calculated. For this
delete two individual rows C1 and C2 from the previous similarity matrix and add a
combined row for C1 [C2. For this the similarity of C1 [C2 needs to be calculated to
all other rows (clusters). This is done through the McQuitty similarity. Let Cr represent
any other cluster from Cl , where Cl denotes a partition at hierarchy level l . Let the en-
tries in the similarity matrix (for instance similarity between C1 and C2) is denoted by
a(C1[C2). Then the McQuitty similarity for a cluster formed by joining two clusters C1

and C2, now denoted as cluster C1[C2 with another cluster Cr is calculated as follows.
For all Cr 2 Cl calculate

Si mMc (C1 [C2,Cr ) = a(C1,Cr )+a(C2,Cr )
2

.

After construction of the new matrix, the maximum entry of the whole matrix is noted
again to merge the corresponding clusters. The process is continued in the analogous
ways until every object is in one cluster. Thus this measure joins those two clusters
whose average similarity value is highest.

Note that as described in McQuitty (1966) the McQuitty similarity will give higher
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weight to those two clusters that have fewer pairs of objects in them as compared to
the pair of clusters that have higher numbers of pair of objects in them. For instance
let nC1 = 2, nC2 = 3 and nCr = 5 then 1

nC1 nCr
> 1

nC2 nCr
. Due to this unequal weighting this

method is often criticized. We have decided to include this method in the analysis as
for the ASW it is still not clear and well understood how it deals with different sizes of
clusters or how these differences in the numbers of pairs in different clusters affect its
performance, so we hope to learn something by including this method for ASW.

2.4.1.5 The Ward’s minimum variance method

Proposed by Ward Jr (1963), this criterion looks at how much the total within clusters
sum of squares increases when two clusters are combined. In agglomerative hierarchi-
cal clustering, since every object forms a cluster on its own in the beginning, we have
a zero sum of squares within clusters. Ward’s linkage will combine two clusters if the
sum of squares deviation from the mean of the newly formed cluster is minimum of
all combinations of clusters. Let SSE denotes the sum of squared errors for clustering,
then mathematically we can define it as follows:

SSE(C) =
k
X

r=1

nr
X

i=1
(xi r ° c̄r )2,

where d is the Euclidean distances, xi r is the i th object in the r th cluster, nr is the
number of objects in the r th cluster and c̄r is the mean of the r th cluster.

There are many versions of agglomerative hierarchical clustering algorithms de-
pending upon different linkage metrics. There are some methods that represent clus-
ters with some kind of statistical averages also called prototypes like the centroids or
medoids, and the decision about merging the clusters is based on the distance between
the centroids or medoids of the clusters. Centroid, medoids or mode are the commonly
used averages, all of these are the most representative points of a cluster. A centroid is
calculated by taking the average of all the points in the clusters. A medoid is restricted
to the actual data point from the cluster, usually a medoid is that data point, which
gives the minimum average dissimilarity from all the other data points in a cluster. In
this work we will not use these kinds of linkage measures that require clusters to be
represented by some averages, as the proposed method in this work is free of cluster
averages.

The choice of the linkage metric will significantly influence the clustering solution,
as they are based on a particular concept of propinquity. Hierarchical clustering can
capture clusters of arbitrary shape. The choice of metric influences the shape of clus-
ters strongly. There are certain properties attached to each linkage method. Each of
these linkages and others not defined here, are good at performing well in certain sit-
uations and fail in others. For instance, single linkage is relatively good at handling
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AHC algorithm

Initialize
Set l = 1. Initialize n singleton clusters i.e., every object forms its own cluster,

C1 =
n

C1, . . . ,Ck1

o

=
n

{x1}, {x2}, . . . , {xn}
o

, k1 = n.

Repeat

(i) Calculate the pairwise distances between all the pairs of clusters in partition Cl , i.e., D(Ci ,C j )
for Ci , C j 2 Cl .

(ii) Merge the pair (Ci , C j ) that minimizes D(Ci ,C j ) for Ci , C j 2 Cl , i.e., merge the least dissimilar
pair, such that at hierarchy level “l”;

C l+1 = Cl [ (Ci [C j )\{Ci ,C j }, kl+1 = kl °1,

l = l +1.

(iii) Stop when l = n, i.e., kl = 1 and Cl = {X }.

Note: Ci [C j means that cluster Ci and C j are amalgamated and \ represent the set division. This

means that the two individual clusters Ci and C j from Cl are excluded, and one cluster which is formed

by merging these two clusters is added to Cl .

In case a similarity method is used to merge two clusters, the pairwise similarities between all the pairs

of clusters is maximized.

complex shapes as it joins two clusters if even one pair of points is close enough. Like
many other methods, it is also good in identifying outliers as singletons if they are suf-
ficiently far away from clusters. Single linkage ensures separation, it doesn’t care about
compactness and produces chain-like clusters. Complete linkage usually forms homo-
geneous clusters of almost equal sizes. Single and complete linkage are invariant to the
ordering of objects.

Ward’s method assumes the points to be in Euclidean space and tries to find spher-
ical and equally sized clusters. The McQuitty similarity is good in finding uneven sized
clusters. Also its performance is often close to the single linkage method. For a detailed
discussion of these methods the readers are referred to Chapters 4 & 6 of Everitt et al.
(2011) and Dunn and Everitt (2004), and the references therein.

Hierarchical clustering has a close connection with graph or network clustering (
Karypis et al. (1999), Schaeffer (2007)). It can be viewed as multilevel decomposition
of graphs in a tree structure. The observations in the data set can be seen as nodes or
vertices and these nodes can connect by weighted edges/links based on some similar-
ity measure such that the original graph is divided into clusters. A point’s neighbours
are those that are similar to it in some sense, and some similarity function can be used
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to measure this similarity, where the similarity function can be metric or non-metric.
Zhang et al. (1996) proposed BIRCH (Balanced Iterative Reducing and Clustering

using Hierarchies), which recodes the statistical summary of clusters as a clustering
feature tree of a dense data portion and stores the summary information about each
cluster to update clusters through scanning data. It pre-clusters the data and then uses
a centroid based hierarchical algorithm to give a final clustering of the pre-clustered
data. BIRCH can only find spherical clusters.

CURE (Clustering Using REpresentatives) proposed by Guha et al. (1998) tries to
take advantage of the good properties of both partitioning and hierarchical methods.
CURE first chooses a constant number of representative points that can capture pos-
sible clusters present in the data. These points are then moved towards the centroid of
the cluster by a shrinking fraction to reduce the effect of outliers on clustering. Two
clusters are merged by measuring the closeness between the pair of representative
points in these clusters.

ROCK (RObust Clustering using linKs) proposed by Guha et al. (1999) is an agglom-
erative hierarchical algorithm for boolean and categorical variables. It establishes links
between data points instead of distances or the Jaccard coefficient to measure close-
ness. A link is the number of common neighbours between two points. The objective
function maximizes the sum of links between all the pairs of points in a single cluster.

Karypis et al. (1999) proposed CHAMELEON, a two-phase algorithm using a dy-
namic model to account for special characteristics of individual clusters. In the first
phase using a K - nearest neighbour (K NN) graph, it clusters data into a large number
of small sized clusters. Then in the second phase it uses an agglomerative hierarchi-
cal algorithm to combine these clusters to get the final clustering. Weighted edges were
used as the similarity between the nodes. For merging two clusters CHAMELEON takes
advantages of both CURE and ROCK. It combines two clusters if inter-connectivity and
closeness between two clusters (ROCK) are high as compared to the internal inter-
connectivity of the clusters and the closeness of items within the clusters (CURE).

All the algorithms mentioned here suffer from some kind of limitation. Either their
time complexity is too high for even a few thousands data points, or they impose re-
strictions on clusters’ shapes and are designed only for specific data sets. Linkage met-
ric based methods have non-linear time complexity, O(n2l og (n)) and O(2n) (see for
instance Sibson (1973), Defays (1977)) where n is the number of observations, so they
are not efficient for large input data.

Some general limitations also apply to hierarchical clustering methods. For in-
stance, if a split/merge has been made at an earlier stage it cannot be undone, i.e., two
individuals that have been joined in a cluster will remain in the same cluster forever
and cannot be subsequently separated at later joining stages. The hierarchical cluster-
ing methods are based on local search and have no clear global optimization goal, and
it is non-trivial to choose an appropriate distance measure.

27



2.4.2 Partitioning clustering methods

The partitioning methods are based on minimizing or maximizing a numerical func-
tion. They usually utilize the concepts of separation and homogeneity to perform clus-
tering (Han et al. (2011)), i.e., objects within a group are closely located (intra - cluster
compactness) and have cohesive structure, and they are well separated from the ob-
jects in other clusters (inter - cluster separation). These methods attempt to divide
the data into k non-overlapping groups by optimizing a criterion function. Many clus-
tering criterion functions are prototype-based, meaning that they try to capture the
closeness of the data to some particular point or set of points known as prototype(s) of
the cluster. A prototype defines a cluster and can be a centroid for instance, the mean,
the medoid, the median, or the mode. Other hybrid ideas, for instance, CURE based
on centroid based and hierarchical clustering can also be used.

k-means is one of the most popular and widely used clustering methods. It is also
recognized as widely cited and used algorithm, and is considered among the most in-
fluential data mining algorithms. Some kind of implementation of the algorithm exists
in almost all well-known and widely used statistical software systems. The origin of
k-means and its various algorithms can be found in Bock (2008). Perhaps the idea was
for the first time proposed by a Polish mathematician (Steinhaus (1956)2) in French.
Though the paper did not use the term k-means, it yet defines its principle for contin-
uous data in finite dimensions. However, no data application was presented.

Lloyd in 1957 essentially worked on the same idea which was published much later
in Lloyd (1982). Forgy (1965) also came up with the same method except the difference
from Lloyd was that he considered a continuous distribution instead of using the dis-
crete distribution for the data. They have exactly the same procedure apart from this
difference. MacQueen et al. (1967) for the first time used the term k-means and pro-
posed an algorithm that is efficient for large data sets compared to the earlier two just
mentioned. The Hartigan and Wong (1979) algorithm is widely applicable and is cur-
rently the default algorithmic choice in k-means’ R implementation, available through
the function "kmeans()" in the base package "stats".

2.4.2.1 The k-means algorithm

Let X be n observations to cluster. Let the clustering produced by k-means be denoted
by Ck = {C1, . . . ,Ck }. Let m1, . . . ,mk be the centroids of k clusters and ci = r be the label
of an observation xi 2 Cr , for i 2 Nn and r 2 Nk . Let nr , r = {1, · · · ,k} denotes the
number of observations in r -th cluster. Before running the k-means algorithm the
users have to decide the distance measure, number of clusters, the method to chose
the initial centroids, method to assign the points to centroids, and the iterative way in

2The English translation of the title of the paper is "On the division of material bodies" by Laurent
Duval.
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which the centres are to be updated. These issues are discussed after the algorithm is
presented. The general steps of the k-means algorithm are given as follows:
The k-means algorithm

Initialize
Decide an initial set of centroids, i.e., input m1, . . . ,mk .
Iterate

(i) Assign cluster labels to each observation by selecting the closest centroid to it, i.e.,
chose c1, . . . ,cn that minimize the following objective function:

M(C,m1, . . . ,mk ) =
n
X

i=1
kxi °mci k

2,

such that
ci = argmin

r2{1,...,k}
kxi °mr k, i 2Nk .

(ii) Compute the new cluster centroids by computing means mk = 1
nr

P

ci=r xi .

Stop iterating if (i) and (ii) do not change.

k-means algorithm needs an initial set of centroids to begin. It then iteratively im-
proves the initial solution by recalculating centers after every cluster assignment. The
final solution depends upon the initialization. That’s why this method does not guar-
antee a unique solution. Various suggestions for efficient initializations methods have
been suggested, for instance, see Fayyad et al. (1998) and Celebi et al. (2013). One such
widely used method is random sampling of set of centroids from the data by Forgy
(1965). To get well distributed centres across the data, the chosen centres should be
located as far as possible. If data is divided into random parts equal to the desired
number of centroids and then the means of these sampled parts are taken as initial
points, the risk is that initial points will almost coincide. Therefore, it is recommended
to do several random initializations. All such suggestions are capable of finding local
optima only. If the initial points are not carefully chosen it can affect the stability of the
algorithm, can take longer time to converge, and the solution may not be good.

For the k-means’ algorithm the users have to decide the number of clusters to use.
There are many k-means’ algorithms. These algorithms differ in method used for the
initialization of the starting clusters, and how the cluster centres should be updated.
The clustering objective is to assign points to the clusters in such a way that the to-
tal within clusters sum of squares is minimum. Since mathematically the total within
clusters sum of squares is minimum when means are used as centres, therefore each
algorithm updates the centres by calculating arithmetic mean. In Lloyd/Forgy algo-
rithm, the k centroids are decided by chosing k observations randomly from the data
set. Each observation in the data is then assigned to closest centres to form clusters.
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The cluster centres are recalculated once all the observations are assigned to the clos-
est centres (see Kaufman and Rousseeuw (1987)). The selection of initial centriods for
the MacQueen algorithm is same as that to the Lloyd/Forgy algorithm but the centroid
update process is different.

MacQueen chooses a random sample of k points from the data to decide the initial
centroids. It starts with the k groups each having one point in it and then starts adding
observations from data to clusters. Each time an observation is added to a cluster, the
center is updated. Thus here, the points are allocated to their closest centroid and the
centres are updated each time a new assignment is made unlike the Lloyds/Forgy algo-
rithm where the centroids are updated only once and that is at the end of assignment
of all points to centres. The algorithm is stopped if centres do not change or if no point
changes the cluster membership.

For the Hartigan and Wong algorithm, to decide an initial set of centres, the authors
suggested the following method. Let k be the number of clusters to be found. Sort the
data according to their distance from the overall mean of the data. They then take the
sample of k observations from the ordered data, by applying k times, the sampling rule:
(( j °1)n/k+1), where j 2 {1, . . . ,k} and n is the total number of observation in the data.
Assign each observation to their closest cluster center. Calculate the new centroids by
taking mean of the assigned points. If a centroid is updated then the membership for
the data points is decided by calculating the within-cluster sum of squares error (SEE).

k-means has certain limitations and some drawbacks. As the mean is sensitive to
outliers so is k-means. It is limited to Euclidean distances only. It is also sensitive to
the initialization method. The k-means optimization problem tries to optimize the
variance of clusters globally but often terminates at a local optimum (MacQueen et al.,
1967). However, the majority of the algorithms designed to optimized the k-means
objective function will always converge at least to a local minimum and have linear
time complexity.

Generally, clustering algorithms based on the partitioning principle will give dif-
ferent clustering solutions with several different initializations. These algorithms need
to pre-specify the number of clusters k and the final solution depends upon k. Parti-
tioning techniques might perform bad if points in a cluster are not close to the cen-
troids/medoids of their own cluster but rather to the center of another cluster.

There are various modifications and extensions to k-means, as some people try to
improve the limitations, others propose alternative methods. Some modifications aim
at finding the better initilization methods, for instance, kmean++ proposed by Arthur
and Vassilvitskii (2007). Some try to find the best number of clusters k, for instance
ISODATA by Ball and Hall (1967). Some try to make k-means robust (Cuesta-Albertos
et al. (1997)). k-medians is a simple modification of k-means where medians are used
as centroids instead of means. K-modes by Huang (1997) provides an extension of
k-means to categorical data by introducing a dissimilarity measure “simple matching
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co-efficient” for categorical objects and a frequency - based method to update modes
instead of means. Other attempts to extend similar ideas based on k-means to other
clustering methods are fuzzy c-mean (Ruspini (1969)) for the soft cluster assignments
rather than the hard ones.

2.4.2.2 The partitioning around medoids algorithm

The k-medoids clustering method was proposed by Kaufman and Rousseeuw (1987).
It tries to find k representative members from the data set to reflect the structure of the
data. To apply this method the authors have designed the program PAM (Partitioning
Around Medoids) that consists of two phases, build and swap, available through the R
package “cluster" (Maechler et al. (2017)). The build phase aims at obtaining the initial
set of medoids by minimizing the average distance of objects from their representative
object. The first representative is the most centrally located object in the data and
the rest are selected iteratively. In the swapping phase this set of initial medoids is
improved by replacing each selected medoid by a non selected object and minimizing
the average distance for all potential medoids.

Partitioning around medoids (PAM) gives a partitioning of n objects in k clusters.
Let X be the n objects to be clustered and d : X £X !R+ be some dissimilarity mea-
sure. PAM chooses a set of k medoids {m1, . . . ,mk } 2X and assigns each object a cluster
label cr

i ; i 2N= 1, . . . ,n;r 2N= 1. . . ,k for objects in X in such a way that the following
objective function is minimized:

P (C,m1, . . . ,mk ) =
n
X

i=1
d(xi °mcr

i
).

The Kaufman and Rousseeuw (1990)’s implementation of PAM algorithm has been
used in this work. PAM works with both a data matrix and a proximity matrix. It is
flexible in terms of defining closeness, as it is not based on any specific distance metric.
The computational complexity of PAM is O(k(n°k)2) which makes it very slow for large
data sets. To make PAM efficient for large data sets much effort has been done, for
instance, CLARA (Clustering LARge Applications) by the authors of PAM. CLARA works
for Euclidean data and takes several small samples of data and computes medoids. The
data set is applied to the resulting medoids for each sample. The best solution among
these is picked according to the objective function. Lucasius et al. (1993) have noticed
that CLARA performs poorly as the numbers of clusters increases.

PAM has gained immense popularity and has been applied to many clustering prob-
lems in various fields. Some studies have compared the performance of PAM with
other methods, see Reynolds et al. (2006). Various attempts have been made towards
making PAM faster by modifiying initilization of PAM in a k-means manner, for in-
stance, see Park and Jun (2009). Some other attempts include, but are not limited to,
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The PAM algorithm

Let X be set of n objects to cluster into k groups. Let M is set of tentative selected medoids. The Build
phase choose the members m1, · · · ,mk of the set M . Let C = X ° M be the set of unselected objects
which contains candidate for inclusion in M . Let D j be the dissimilarity between object x j and the
closest object in M .
Build (Choose k representative points for k clusters)

(i) Calculate for i 6= h, d(xi , xh), (i ,h) 2Nn .

(ii) Select the object as the first medoid that is most centrally located in the data i.e., choose that
point as m1 that gives

m1 = argmin
xh2X

n
X

i=1
d(xi °xh).

(iii) Set q = 2. Consider i 2C as a candidate for the next medoid to be included in M .

(iv) For an object j 2C ° {i }, compute D j .

(v) Let E j i = max{D j °d( j , i ),0}.

(vi) Compute the total gain obtained by adding i to M as Gi =
P

j2C E j i .

(vii) Choose the object i that maximizes Gi .

(viii) Let M = M [ {i }, C =C ° {i }, and q = q +1.

(ix) Stop when q = k.

Swap (Improve the value of objective function, if possible)

(i) q = 1. Replace each of {m1, . . . ,mk } with a non-selected medoid xi (i.e., now consider every
object in the data as a medoid other than {m1, . . . ,mk } and denote the new set of medoids by
{m§

1 , . . . ,m§
k }.

(ii) For each of the pairs (xi ,mr ), where xi › {m§
1 , . . . ,m§

k }, compute P§
(i ,r ) = P (C(i ,r ),m§

1 , . . . ,m§
k ),

where C(i ,r ) represents the optimal assignment of xi to the closest medoid m§
r .

(iii) P (q) = argmin
(i ,r )

P§
(i ,r ).

(iv) If P (q)
(i ,r ) 6 P (q°1)

(i ,r ) , it means that the objective function can be further improved with this swap.

Replace m§
r with object xi and go to (i). If P (q)

(i ,r ) >P (q°1)
(i ,r ) , no further improvement in the objec-

tive function can be made. Stop.

application of PAM to time series, financial, medical or spatial data sets for instance,
see a survey by Rani and Sikka (2012).
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2.4.3 Model-based clustering methods

Let us have n observations which consist of k different sub-populations. Let the ob-
servations be p dimensional. Let the i th observation belong to the r th sub-population
which has the density: f §

r (x;µr ), where µr are the unknown parameters of interest. Let
∏r for r = 1, . . . ,k be the mixture parameters. Let '(x;ø) be the mixture density model
for this population, where ø= (∏,µ) are the parameters of the mixture model. The mul-
tivariate mixture density can be written as:

'(x;ø) =
k
X

r=1
∏r f §

r (x;µr ), (2.2)

where ∏r 2 [0,1] and
Pk

r=1∏r = 1, f §
r is the density of the r th component in the mixture.

The likelihood for the mixture model given in (2.2) with k components for x1, . . . , xn

observations inRp can be written as follows:

`(ø|x) =
n
Y

i=1

k
X

r=1
∏r f §

r (xi ;µr ).

f §
r (x;µ) are often taken as k multivariate Gaussian densities gr with µ = (µr ,ßr ), given

as follows:

gr (x|µr ,ßr ) =
exp{°1

2 (xi °µr )tß°1
r (xi °µr )}

(2º)p/2)
Ø

Øßr
Ø

Ø

1/2
. (2.3)

The parametric vector ø can now be fully written as
ø= (∏1, . . . ,∏k°1,µ1, . . . ,µk ,ß1, . . . ,ßk ). The maximum likelihood estimation of the para-
metric set ø is usually obtained through the expectation maximization (EM) algorithm
under some constraint for covariance matrix ßr . In case of multivariate Gaussian den-
sities the clusters are centered at µr with ellipsoidal densities. These ellipsoidal struc-
tures of the clusters are determined by three geometric features shape, volume and ori-
entation defined by the covariance matrix ßr . Various parametrization for ßr exist in
literature allowing to vary only one, two or all of three features. One way to allow each
cluster’s shape, volume and orientation to differ isßr =Ær Or Wr OT

r whereÆr is a scalar
and determines the volume of r th ellipsoid, Or is the orthogonal matrix consisting of
the eigenvectors of ßr which determines the orientation and Wr is the diagonal ma-
trix with elements proportional to the eigenvalues of ßr , which determines the shapes
of the ellipsoids (density contours). For more detailed decomposition and geometric
interpretation of a list of options available forßr see Scrucca et al. (2017), where the au-
thors have currently implemented ten covariance structures in the R package “mclust”
(Scrucca et al. (2017)).

How many mixture components should be used to fit the data and which of the
covariance structures fit the data best can be handled as a model selection problem
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(Dasgupta and Raftery (1998)). This can be done either by using Bayes factors or us-
ing the Bayesian information criterion, see for instance Jeffreys (1935) and Kass and
Raftery (1995).

Without having the cluster membership of the observations, the data is assumed to
be incomplete. Let xi be in one of the k clusters represented by zi r such that

zi r =

8

<

:

1, xi 2 r thcluster

0, otherwise.

zi r is known as missing data and needs to be initialized first while estimation. Let yi =
(xi , zi ) represent the complete data. The log likelihood for the complete data denoted
by `c can be written as follows:

`c (µr ,∏r |zi r , y) =
n
X

i=1

k
X

r=1
zi r log(∏r f §

r (xi ;µr )). (2.4)

After choosing the constraint on the covariance matrix and by fixing the number of
components, the maximum likelihood estimation of the mixture model defined in (2.4)
using the Gaussian mixture model given in (2.3) for the incomplete data is usually done
by the EM algorithm (Dempster et al. (1977)). The EM algorithm approximates the
model parameters when some data is missing. It iterates between the E and the M step.
It first takes the initial values for zi r and performs the M step. The EM algorithm for
maximum likelihood estimation for multivariate Gaussian mixtures is given as follows:
The EM algorithm for model-based clustering

Set q = 0
Initialize z(q)

i r
Iterate
M-step:
Given z(q)

i r , compute

n0
r =

Pn
i=1 zi r , ∏(0)

r = nr
n , µ(0)

r = 1
nr

Pn
i=1 zi r xi ,

where estimation of ßr depends upon the model, see (Celeux and Govaert (1995)).
E-step:
Given the MLEs of parameters, compute z(q)

i r

z(q)
i r =

∏r f §
r (xi |µr ,ßr )

Pk
j=1∏r f §

j (xi |µ j ,ß j )
,

where f §
r (xi |µr ,ß j ) is replaced by gr as defined in (2.3).

q = q +1

Stop

when convergence criteria are met.
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For the initilization of zi r one can use the model-based AHC suggested by Fraley
and Raftery (1998) and implemented in R package “mclust” (Scrucca et al. (2017)). The
model-based AHC starts with every object in its own cluster. From n clusters it then
starts to merge the two closest clusters in one cluster, based on some similarity among
them by optimizing the classification likelihood function. Let cr

n = (c1, · · · ,cn) be the
labels for xi and the r -th sub-population is f §

ci
(xi |µ). Then µ and crn is choosen to

maximize `cl (µ,c|xi ) defined as follows:

`cl (µ,c|xi ) =
n
Y

i=1
f §

ci
(xi |µci ), (2.5)

where ci = r (if xi is assigned to r th cluster), is the classification of the data and fr (xi )
is defined in (2.3). To terminate the EM algorithm some criterion is needed. For in-
stance, the algorithm can be stopped if there is no significant increase in the likelihood
function.

Presented here is just the main idea, very briefly of a very vast topic. Note that there
are many other criteria available for model selection, techniques for mixture model
estimation and various versions of EM algorithms. Model-based clustering has been
well explored by many authors and been applied in various disciplines, for instance,
see Banfield and Raftery (1993), Celeux and Govaert (1995), Fraley and Raftery (1998),
Yeung et al. (2001), Dortet-Bernadet and Wicker (2007), Neumann et al. (2008) and
Scrucca and Raftery (2015). For a review on model-based clustering methods in con-
text of their limitations for the high-dimensional data sets readers are refer to see ?.

2.4.4 Spectral clustering methods

Spectral clustering can be viewed as an approach to partition similarity based graphs.
It is based on a connectivity concept to cluster data, rather than on compactness. It
clusters the data with the notion that intra-cluster similarity should be high and inter-
cluster similarity should be low. It does not apply any specific assumptions on the
clusters a priori and can find non-convex clusters. To have a comprehensive overview
on this method, Von Luxburg (2007), Filippone et al. (2008) and (Meila, 2015, §7) can
serve as good reference points to start.

Let X be the n data points to be clustered. From the data matrix an undirected,3

weighted4 graph is constructed. Let G= (V ,E , A) be the similarity graph (also known
as network) where V represents set of vertices (also known as nodes) of the graph and
each vertex vi in V represents a data point xi . The edges (or links) between two vertices
vi and v j represent similarity between them and are represented by set E . Thus, the
graph G is also called the similarity graph. The adjacency is an n £n matrix A, whose

3In an undirected graph the edges between each pair of vertices are bidirectional.
4In a weighted graph each edge has an associated weight attached to it.
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entries contain the weights of the edges of the graphs connecting vertices i and j . If
ai j represents the elements of matrix A then the adjacency between two points can be
defined as

ai j =

8

<

:

'(xi , x j ), i f i 6= j

0, otherwise

The function ' can be any similarity measure between pairs of data points. To built
the adjacency matrix, several options for ' are available such as the Gaussian kernel

exp
µ

°
∞

∞

∞

xi °x j

∞

∞

∞

2
/(2æ2)

∂

where
∞

∞

∞

xi °x j

∞

∞

∞

2
is the Euclidean distance between the obser-

vations i and j . There are also different types of similarity graphs available, for in-
stance, the "-neighbourhood graph or the n-nearest neighbour graphs. The similari-
ties ai j are used as the weights of edges between pairs of vertex i and j . The elements of
A are non-negative i.e., we assume each edge between two vertices has a non-negative
weight ai j > 0. If ai j = 0 this means the vertices vi and v j are not connected through
an edge. To perform clustering the aims is to partition the similarity graph such that
the edges between different groups have low weights and edges within a group have
high weights. The partitioning of set V of a graph into k subsets will define clusters
and is known as graph cut. To separate a subset C from the set of vertices V from the
complementary set C = V \C an optimization function is needed to perform a graph
cut. The value of cut between two subsets C and C of V is defined as follows

cut (C ,C̄ ) =
X

i2C

X

j2C

ai j .

The optimal partitioning into two subsets is determined by minimizing the cut value.
The cut can be extended to k subsets. To obtain a k groups partition Ck = (C1, . . . ,Ck ),
where Ci \C j =; and [k

r=1Cr =V , one can use the following cut.

cut (C ) = 1
2

k
X

r=1
cut (Ck ,C k ).

This is the simplest function to optimize the cut and is known as minmax cut (Ding
et al. (2001) ). The minmax cut is prone to find singleton clusters or prefers to cut
small sets of isolated nodes in a graph more often, see Section 5 in Von Luxburg (2007),
therefore other definitions can be used to avoid this problem. For instance normalized
cut (N cut ) by Shi and Malik (2000) can be used. For formally defining this cut we need
to define the degree matrix and the volume of a cluster. The degree of a vertex vi 2V is
defined as:

deg (vi ) =
X

j2V
ai j .
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From here a diagonal matrix having degrees deg (v1), . . . ,deg (vn) on diagonals can be
defined as the degree matrix eD .
One among the other possible definitions to measure size of C can be defined by adding
the weights of all the edges associated to the vertices in subset C . Symbolically we can
write it as follows:

vol (C ) ¥
X

i2C
deg (vi ).

The normalized cut (N cut ) is defined as follows:

N cut =
k
X

r=1

cut (Cr ,C r )
vol (Cr )

, where C r =V \Cr ,

or the ratio cut by Hagen and Kahng (1992) can be used with the difference from the
above in the definition of size of the subset of V i.e., replace the volume of subset
vol (Cr ) by its size. Ratio cut uses |Cr | in the denominator instead of vol (C ), where
|C | represents the number of vertices in C . Several other functions are available to per-
form graph cut for instance see Dhillon et al. (2004).

Spectral clustering can be divided into two main streams. One that is just de-
fined above which takes the approach of first separating the whole large graph into
two small pieces by removing the connected edges in graph. It then recursively mini-
mize cut on exiting segments to extend the bi-partitioning to k-partitions. A limitation
of this method is that the minimizing task for the N cut or ratio cut is the NP-hard5

discrete graph partitioning problem 6. Alternatively, a relaxation to NP-hard can be
made by defining the semi-optimal cut using the graph’s Laplacian. As mentioned in
Von Luxburg (2007), relaxing N cut leads to normalized spectral clustering while relax-
ing ratio cut leads to un-normalized spectral clustering.

One can use the Laplacian matrix instead of using the adjacency matrix A directly.
A Laplacian matrix is a matrix defined on relationships of the adjacency matrix, and
clustering can be performed using the eigenvectors of this matrix. There are many
forms of this matrix. For instance two are given as follows:
The normalized Laplacian: L = I ° eD° 1

2 A eD° 1
2

5Different decision task have different complexity classes. These are P, NP, NP-complete and NP-hard.
P in language of algorithm complexity means that the problem is solvable in “polynomial time” on a Tur-
ing machine whereas NP stands for “non-deterministically polynomial time” meaning that the problem
can’t be solved in polynomial time but can be verified in polynomial time on a Turing machine. Many
NP problems are solvable by transforming them to P class, however, it is not known whether each prob-
lem in the class of NP can be solved, i.e., are reducible into P class. A problem is NP-complete if it can
be transformed into polynomial time (P) problem. A problem is NP-hard when it can be polynomially
reduced from an NP-complete problem, but it is not known whether it belongs to NP.

6A discrete partitioning problem is one where the solution vector can only take one out of two pos-
sible values. In the relaxation of ratio cut this restriction is waived off such that the solution vector can
take any value. This relaxation leads to the un-normalized graph Laplacian.
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The un-normalized Laplacian: L = eD ° A.
Their properties and discussions on them can be found in Mohar et al. (1991) and
Chung (1997). The algorithm by Ng et al. (2001) has been used in this work.

The Normalized Laplacian algorithm

(i) Construct the Adjacency matrix A 2Rn£n using the Gaussian similarity function.

(ii) Construct the degree matrix eD and the normalized Laplacian matrix L = I ° eD° 1
2 A eD° 1

2 .

(iii) Compute the first k eigenvectors w1 . . . , wn of L and define a new matrix W 2 Rn£k by storing
the vectors w1 . . . , wn in the columns of W .

(iv) Construct a matrix Y from matrix W by normalizing rows of W to norm 1, i.e., apply the trans-
formation yi j = wi j /(

P

j w2
i j )1/2.

(v) For i = 1, . . . ,n, let rows of Y : y1, . . . , yn 2Rk . Cluster the rows of Y into k groups by applying
k-means algorithm.

(vi) Assign the cluster memberships to observations i 2X corresponding to the cluster membership
of row i of matrix Y .

The computational complexity of the spectral clustering algorithm is high, which
makes it unsuitable for datasets having values in the thousands. The complexity for the
construction of similarity graph is O(n2), computation of the eigenvalues of Laplacian
matrix is O(n3) and the k-means application to rows of normalized matrix W for the
eigenvalues decomposition is O(npks), where n is number of data points, p is number
of variables, k is number of clusters and s is number of iteration taken by k-means to
converge.

For other views and algorithms of spectral clustering see Meila and Shi (2000) and
Shi and Malik (2000). There have been some attempts in the literature to automati-
cally find the number of groups in spectral clustering by analysis the eigenvalues of the
adjacency matrix, see for instance Zelnik-Manor and Perona (2004).

2.5 Definition of validation indices

In this work we use validation indices in three ways. Firstly, to check how well the clus-
tering fits the data. For this we will use external indices. These indices measure how
well the two clusterings match. Since for the synthetic datasets the data generating
models are known, we can use these labels to validate clustering obtained from the
proposed method. Also there are many real data sets for which there exists a consen-
sus of researchers or experts from the fields on the correct data partitioning, which can
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serve as a benchmark. Secondly, internal validation indices are used to categorize the
proposed algorithms. For instance, if an index is based on the within clusters variation
concept (or other definitions like separation or compactness), calculating this index for
the clustering can inform about which among the considered clustering methods can
give best separated or compact or homogeneous clusters. Lastly, we have used several
existing indices for the estimation of the number of clusters to compare the estimated
number of clusters from the proposed methods.

All the validation indices and methods for the estimation of number of clusters
used in this work are reviewed in the following subsection.

2.5.1 Methods for estimation of the number of clusters

The problem of finding structure in the data go in hand with the problem of the esti-
mation of the number of groups in the data. Various approaches have been proposed
in the literature for the estimation of number of clusters, but it is still a difficult prob-
lem, as it heavily relies on the clustering methods used. In this section we will review
the methods used in this study for the estimation of the number of clusters.

To estimate the number of clusters a randomness hypothesis can be tested against
k clusters are present in the data (Jain and Dubes (1988b)). The null hypothesis in this
case is that there is no structure present in the data, or these data is drawn completely
at random from a certain distribution i.e., k = 1. Among the used null hypotheses the
most common is the random position hypothesis. In other words this hypothesis tests
for the spatial randomness of the data points. A way to ensure this is to state that the
data is a random sample from a p-dimensional Gaussian distribution (see Jain and
Dubes (1988b) for more details on this).

It is expected that the null hypothesis of randomness will be rejected with high
probability if the data contain clear clusters or non-random patterns. The evidence
against the null hypothesis can be obtained by constructing test statistics based on
information of the data (see Jain and Dubes (1988b)). Statistics based on characteris-
tics of clustering like compactness, connectedness etc., formally known as internal in-
dices, can also be used, for instance, within and between cluster sum of squares. One
crucial thing in developing these statistics is to define a rejection criterion i.e., to set a
threshold that decides whether the statistics/index is large or small enough to reject a
hypothesis.

A common approach in this regard is to not formally test a null hypothesis, but
rather to look for the optimal value of the statistics/index used. Let K denote the max-
imum number of clusters allowed while estimation. Then one way of estimating the
number of clusters is to find k̂, 1 6 k̂ 6 K for 1 6 K 6 n such that the optimum value,
maximum or minimum depending upon the index used, is attained. We now define the
indices used in our study to estimate the number of clusters, namely the Calinski and
Harabasz index, the Hartigan index, the Gamma index, the C index, the Krzanowski
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and Lai index, the Gap method, the Jump method, the prediction strength method, the
bootstrap instability method, the CVNN index and the average silhouette width index.
Another approach is based on estimating the number of clusters by modelling the data
from Gaussian mixtures and then it estimates the number of components in a mixture
through the BIC.

Let X = x1, · · · , xn , be the n observations where each of the xi is a column vector
of length ‘p’ representing p variables on the i th observation, that is, xi = (xi 1, · · · , xi p ).
The data is assumed to be partition into k clusters. Let the integer vector c represent a
partition of the data with values between 1 to k. The length of c is equal to the number
of observations n. For each index i 2X , the i th entry in the vector c is such that ci = r ,
(1 6 r 6 k) indicates the cluster number to which each observation xi is allocated.
Let the clustering solution of the data be represented as Ck . For each Cr 2 Ck , let
nr , r = {1, . . . ,k} be the number of observations in these clusters. Let µ me the overall
mean vector of data of length p, where xi are Euclidean is assumed. Letµr be the mean
vectors of clusters Cr , r = {1, . . . ,k}. Let ≠r stand for the set of indexes corresponding
to the observations which are belonging to cluster Cr .
The total dispersion matrix for clustering Ck is TCk can be defined as follows:

TCk =
n
X

i=1
(xi °µ)(xi °µ)t .

Since each xi is a column vector as (xi 1, · · · , xi p )p£1 and µ is (µ1, · · · ,µp )p£1, therefore,

(xi °µ) =
≥

(xi 1, · · · , xi p )° (µ1, · · · ,µp )
¥

= (xi 1 °µ1, · · · , xi p °µp )p£1,

such that

(xi °µ)(xi °µ)t =

2

6

6

4

xi 1 °µ1
...

xi p °µp

3

7

7

5

h

xi 1 °µ1, · · · , xi p °µp

i

. (2.6)

Note that the dimension of matrix given in (2.6) is (p £p) and there will be n of such
matrices one for each xi 2X to sum up to get a final (p £p) matrix for TCk . The diago-
nal entries in this matrix is variances whereas the off-diagonals are co-variances such
that the matrix is symmetrical. The total sum of squares can be obtained by taking the
trace of this matrix. The trace of a matrix is calculated by taking the sum of the diagonal
entries of a square matrix. The total dispersion is splitted as TCk = WCk +BCk , where
WCk and BCk are within and between clusters dispersions respectively.
The within clusters dispersion for a clustering Ck represented by WCk can be defined
as:

WCk =
k
X

r=1

X

i2≠r

(xi °µr )(xi °µr )t . (2.7)
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Since xi = (xi 1, · · · , xi p ) and µr = (µr
1, · · · ,µr

p ), such that

(xi °µr )(xi °µr )t =

2

6

6

4

xi 1 °µr
1

...
xi p °µr

p

3

7

7

5

h

xi 1 °µr
1, · · · , xi p °µr

p

i

. (2.8)

For a cluster Cr 2 Ck having the number of observations nr , there will be nr matrices
like the matrix given in (2.8) due to the sum

P

i2≠r giving dispersion for each cluster
and finally there will be k of such matrices of dimensionality (p £p) due to the outer
sum

Pk
r=1in (2.7). The within cluster sum of squares is obtained by taking trace of WCk .

The between clusters dispersion, represented by BCk can be defined as:

BCk =
k
X

r=1
nr (µr °µ)(µr °µ)t .

Note that BCk is also p £p matrix.

2.5.1.1 The Calinski and Harabasz index

The Caliński and Harabasz (1974) index is defined as follows

C Hk =
tr (BCk )/(k °1)

tr (WCk )/(n °k)
,

where “tr ” represents trace of a matrix. Note that C H1 is not defined and the index
should be maximized for k.

2.5.1.2 The Hartigan index

The Hartigan (1975) index is defined as follows:

Hk =
√

tr (WCk )

tr (WCk+1 )
°1

! ,

(n °k +1).

The estimated number of cluster is the smallest k > 1 such that Hk 6 10.

2.5.1.3 The Gamma index

There are n(n ° 1)/2 number of distinct pairs of points in the data X . Similarly, for
a single cluster Cr in a clustering Ck there are nr (nr ° 1)/2 pairs of points where nr

represents the number of points in Cr . Let nw represent the total number of pairs of
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points within k clusters of Ck , then

nw =
k
X

r=1

nr (nr °1)
2

.

Let ≠w represent the indices for the pairs of points that are in the same clusters
and ≠b represent the indices for the pairs of points that are not in the same cluster.
Let xi ªC xi 0 represent the two points xi and xi 0 are in the same cluster and xi ⌧C

xi 0 other wise. Let n+ represent the count for the distance between two points in the
same cluster (d(xi , xi 0) such that xi ªC xi 0) is smaller than the distance between the
two points in different clusters (d(xi , xi 0) such that xi ⌧C xi 0). Let n° represent an
opposite situation to n+, i.e., it gives the count for the total number of times for which
the distance between the points belonging to same cluster is higher than the pair of
points belong to different clusters. We can write these as follows:

n+ =
X

(h,h0)2≠b

X

(i ,i 0)2≠w

1{d(xi ,xi 0 )<d(xh ,xh0 )},

and
n° =

X

(h,h0)2≠b

X

(i ,i 0)2≠w

1{d(xi ,xi 0 )>d(xh ,xh0 )}.

Note that the ties are ignored, i.e., the case d(xi , xi 0) = d(xh , xh0) where xi ªC xi 0 and
xh ⌧C xh0 is excluded. The Gamma index proposed by Baker and Hubert (1975) for a
clustering Ck is defined as

Gammak = n+°n°
n++n°

.

The index value ranges between 0 and 1 and should be maximized over k.

2.5.1.4 The C index

The C index proposed by Hubert and Schultz (1976) depends upon the distances be-
tween the pairs of points within each cluster. Let Dw denote the sum of within cluster
distances, more formally as follows:

Dw =
X

xiªCxi 0
d(xi , xi 0)

Let Dmi n denote the sum of the smallest distance between pair of points from each
cluster. Note that if their are k clusters this will be sum of k distances, one from each
cluster, such that a distance is chosen between two object that is smallest in a cluster.
Let Dmax denote the complementary of Dmi n i.e., the sum of maximum distances be-
tween a pair of objects (one from each cluster) within each cluster. The C index can be
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defined as follows:

Ck = Dw °Dmi n

Dmax °Dmi n
.

The index lies between [0,1] and the best k is the one that gave minimum value of the
index.

2.5.1.5 The Krzanowski and Lai index

The Krzanowski and Lai (1988) index is defined as

K Lk =
Ø

Ø

Ø

Ø

Ø

di↵ k

di↵ k+1

Ø

Ø

Ø

Ø

Ø

,

where
di↵ k = (k °1)2/p

WCk°1 °k2/p
WCk .

The index is not defined for k = 1 and should be maximized over k.

2.5.1.6 The Gap method

Tibshirani et al. (2001) take the approach of testing a null hypothesis of no clustering
versus the alternative hypothesis of k clusters in the data. They do so for k = {2, · · · ,K }
clusters to find the optimal k for the data. For the observed data Xn£p , starting from
k = 2 clusters, perform the clustering using any clustering method and calculate the
within cluster sum of squares tr (WCk ) as defined in (2.8). The Gap statistics is defined
as under:

Gapk =En

≥

log
°

tr (WCk )
¢

¥

° log
°

tr (WCk )
¢

,

whereEn is the expectation of sample of size n under the reference distribution.
For the null hypothesis of no clusters present in the data, a null reference distribu-

tion is needed. For this, generate the data for p variables in the data over the range of
the observed p variables. Let X 0

1, · · · , X 0
p denote the p variables in X . Note that each of

X 0
j , j = {1, · · · , p} is a vector of length n. Let mi n{ j } and max{ j } denote the minimum

and maximum values of X 0
j , j = {1, · · · , p} respectively. Then draw p reference variables

over the range of observed variables as R j ª U
°

mi n{ j },max{ j }
¢

of size n, where U is
the continuous Uniform distribution. Let the reference data be drawn from the refer-
ence distribution be denoted as R= (R1, · · · ,Rp ). The next step is to generate several
reference data sets say M . For each of the M reference data sets perform a clustering
from any clustering method (denote the resulting clustering by eCkm) and compute the
within cluster dispersion matrix. Let W

eCkm
denote the within cluster dispersion matrix,

i.e., the trace of this matrix will give within cluster sum of squares for each replicate of
the reference data i.e., m = {1, · · · , M }, and for k = {2, · · · ,K }. Compute the estimated
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Gap statistic as follows:

dGapk = 1
M

M
X

m=1
log

°

tr (W
eCkm

)
¢

° log
°

tr (WCk )
¢

.

The purpose is to estimate En

µ

log
°

tr (WCk )
¢

∂

by an average log
°

tr (W
eCk

)
¢

over the M

replicates of datasets from the reference distribution.
To evaluate the sampling distribution of the Gap statistics, the standard error is

needed over the M replicates, which is (M+1)/M times the standard deviation of W
eCkm

calculated from the m = {1, · · · , M } replicates for fix k. Let the standard deviation of
log(W

eCk
) from the M replicates be denoted by sdk , then the standard error (se) is given

by sek = sdk
p

1+1/M . Choose the number of clusters k̂ as the smallest of k > 1 such
that ÅGapk > ÅGapk+1 ° sek+1.

2.5.1.7 The Jump method

Sugar and James (2003a) introduced the jump method based on distortion, idealized
from information theory approach used for the compression of data in engineering.
The idea is to minimize the Mahalanobis distance between cluster centres and the data
points allocated to these centres. Let xi , i 2Nn be a p- dimensional random variable.
The distortion can be defined by assuming k components Gaussian mixture on data
or a non-Gaussian distribution such as the uniform distribution on p - dimensional
clusters to generalize the approach for other data settings. Let the data be from a k
component Gaussian mixture each with covariance matrix ß, and we want to fit a k
cluster model with candidate cluster centres ∫1, . . . ,∫k . Let ∫xi be the closest cluster
center to xi . The distortion for the k-component model w.r.t. the data can be calcu-
lated as follows:

±k = 1
p

argmin
∫1,...,∫k

E
£

(xi °∫xi )tß°1(xi °∫xi )
§

.

Let K be the maximum number of clusters to fit the data. For 1 6 k 6 K . To estimate
±k Sugar and James (2003a) proposed to apply the k-means clustering algorithm to the
data to calculate the estimated distortion ±̂k . Calculate the ‘jump’ as Jumpk = ±̂°Y

k °
±̂°Y

k°1, where Y is an transformation power for dataset that captures the relationship
between clusters and distortion and should be greater than zero. It is hard to decide
the power and it is recommended to check various values. Sugar and James (2003a)
provide a somewhat detailed discussion on this. Choose the number of clusters such
that k̂=argmax k>1Jumpk .

The setting of Jumpk is such that if there are no clusters in the data, the ‘jump’
should choose k = 1. Another way of choosing the number of clusters is to see the
point where the distortion curve (formed by plotting ±̂k verse k) flattens off. The curve
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is expected to decrease monotonically and one should expect this decrease to be very
slow for k greater than the true number of clusters.

2.5.1.8 The prediction strength

Proposed by Tibshirani and Walther (2005) the prediction strength is a way to estimate
the optimal number of clusters based on clustering stability. Let the data to be clus-
tered be called the training data Xtr having n independent observations over p vari-
ables of interest. Cluster this data by some clustering function into k clusters., and get
the clustering solution denoted as C(tr,k). Call the cluster centres obtained from train-
ing set clustering as k training set cluster centres. From this clustering define a 0-1
matrix ™ that determines whether or not each pair of observations in Xtr is together
in a cluster or not in C(tr,k). Let C(tr,r ) represents the r th cluster for r 2 {1, · · · ,k} =Nk in
clustering C(tr,k). For two distinct observations (xi , xi 0) 2 Xtr , let xi ªC(tr,k) xi 0 refer to
the case that xi and xi 0 are in same cluster C(tr,r ) of a clustering C(tr,k). Let xi ⌧C(tr,r ) xi 0

represent the complementary case. For all (xi , xi 0) 2 Xtr the matrix ™ of dimensions
n £n can then be defined as follows:

™i i 0[C(tr,k),Xtr ] =

8

<

:

1, i f xi ªC(tr,k) xi 0 ,

0, otherwise.

Tibshirani and Walther (2005) refer to the entries of ™ as co-memberships. Let an in-
dependent sample of size m from p variables taken from the same population from
which the training sample is drawn is also available. Let this sample be called the test
data denoted by Xte . Cluster the test data into k clusters and denote the clusterings
as C(te,k). Call these clusters as the k test clusters. Let nr =

Ø

ØC(te,r )
Ø

Ø for r 2 {1, · · · ,k}.
Let≠(te,r ) for r 2 {1, · · · ,k} be the k sets of indices for the observations in k test clusters.
Now classify the test data to the clusters of training data. Assign the observations of test
data to one of the closest k cluster centres of training data. Call this classification ofXte

using the training centres C§
te (Xtr ,k). The idea for the prediction strength is to cluster

the training data into k clusters and using these cluster centres classify the observa-
tions of test data to clusters again. Then measure for each pair of observations that are
together in test clusters, determine whether were the training centres also assign them
to same training centre.
The prediction strength for a k-clustering ps(k) is defined as follows:

ps(k) = min
16r6k

1
nr (nr °1)

X

i 6=i 0

i ,i 02≠(te,r )

1{™§
i i 0 [C

§(Xtr ,k),Xte ]=1}.

One should choose the optimal k by maximizing the ps(k) over k. The ps mea-
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sures how well the k cluster centres obtained from the training set can predict the co-
memberships for the observations in the test set.

In practice the population of the data is not known and hence the test set is not
available. In this situation the authors have suggested one can split the data into two
disjoints halves (2-folds) several times randomly and use first halves as a training set
and other as the test set. Note that in this situation the final ps will be obtained by
averaging the ps obtained from these several random splits of the data. The idea is if
almost similar clustering is obtained every time from the samples of the data then the
clustering is stable. For the stable clustering the training set and test set will be similar
and ps for the clustering will be high.

2.5.1.9 The bootstrap instability method

Proposed by Fang and Wang (2012) the bootstrap instability method also defines the
optimal number of clusters based on an instability measure calculated by taking sev-
eral bootstrap samples from the data. Let we have a data X having p-dimensional n
observations. Generate 2 independent bootstrap samples of size n from X , M times.
Let the 2 samples is denoted as X 0

m and X §
m , m = {1, · · · , M }. Cluster the two sample

data sets into k clusters and denote the resulting clusterings as C(X 0
m ,k) and C(X §

m ,k), for
all m. The next step is to calculate the distance between the two clusterings obtained
from X 0

m and X §
m . Before we formally define a distance between two clustering we

need to define an indication function for a clustering. Let º be an indication function
which determines the two observations are in same clusters or not i.e., it can either
return the value 0 or 1. For any two distinct observations i and i 0 in X 0, º is defined as
under:

ºi i 0 =

8

<

:

1, i f c 0i = c 0i 0
0, i f c 0i 6= c 0i 0 .

Let c 0 and c§ be two clustering vectors of length n representing clusterings on two
samples X 0 and X § respectively. Calculate the difference between the two clusterings
C(X 0

m ,k) and C(X §
m ,k) as follows:

D(C(X 0
m ,k), C(X §

m ,k)) =
1

n2

n
X

i=1

n
X

i 0=1

Ø

Ø

Ø

ºi i 0(c 0i = c 0i 0)°ºi i 0(c§i = c 0i§)
Ø

Ø

Ø

.

Note that the difference between the two indicator functions can return -2, -1, 0 or 1.
The clustering instability measure is defined as follow:

ŜM (k) = 1
M

M
X

m=1
D(C(X 0

m ,k), C(X §
m ,k)).
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The clustering stability is calculated for a range of numbers of clusters. Lets the max-
imum number of clusters tried were K . A smaller value of ŜM (k) indicates a stable
clustering. Chose the optimal number of clusters as: k̂ = argmin

26k6K
ŜM (k).

2.5.1.10 The cvnn index

The cvnn index proposed by Liu et al. (2013) is based on some kind of normalized intra-
cluster compactness and inter-cluster separation, where both of these measures are
defined differently then the others introduced previously. Let Ck = {C1, · · · ,Ck } repre-
sent a clustering on data Xn£p . Let nr for r 2 {1, · · · ,k} represent the number of ob-
servations in a cluster Cr from the clustering Ck . Let the Sep§(Ck ,¡) denote the inter
cluster separation and Com§(Ck ) denotes the intra cluster compactness. Let i and i 0

be two distinct observations from a cluster Cr . The intra cluster compactness is de-
fined as follows:

Com§(Ck ) =
k
X

r=1

"

µ

2
nr (nr °1)

∂ nr
X

i ,i 02Cr

d(xi , xi 0)

#

,

i.e., the compactness for a clustering can be defined as averages of the pairwise dis-
tances within clusters, and then a final sum over all clusters in a clustering.

Further assume that ¡ 2N denotes the nearest neibours of a point, let ∫i denotes
the count for the nearest neighbors of an observation xi 2 Cr that are outside of the
cluster Cr , let nr be the number of observations in Cr . Let i be an index representing
the observations in cluster Cr then the inter cluster separation can be defined as:

Sep§(Ck ,¡) = max
r={1,··· ,k}

1
nr

nr
X

i=1

∫i

¡
.

thus the inter cluster separation for a clustering is defined as choosing the one maxi-
mum value from the average of vi over all clusters. Let Sep(Ck ,¡) and Com(Ck ) be the
normalized Sep§ and Com§ respectively, defined as follows:

Com(Ck ) = Com§(Ck )
max

k
Com§(Ck )

, Sep(Ck ,¡) = Sep§(Ck ,¡)
max

k
Sep§(Ck ,¡)

.

The cvnn index for a clustering Ck , denoted by cvnn(Ck ,¡), is defined as follows:
cvnn(Ck ,¡) = Sep(Ck ,¡)+Com(Ck ).

The index should be minimized to find the optimal number of clusters i.e.,
k̂ = argmaxk={2,··· ,K } cvnn(Ck ,¡).

The indices reviewed above have been used later in this work for comparison pur-
poses to illicit the performance of the newly proposed methods, and also to compare

47



the performances of the already exisitng methods. A large number of indices proposed
in literature is based on within and between clusters sum of square measures. Among
these some are better known for their good performance as identified by comparison
studies in the literature, for instance in Milligan and Cooper (1985), CH, Gamma and
H index were the top performing indices. Milligan and Cooper (1985) did a study for
the comparisons of the existing indices, but since then many other methods have been
proposed in literature, especially after 2000, that are based on somewhat different ideas
than the within and between cluster dispersions, like re-sampling using Monte Carlo
or boot strapping strategies. Since Milligan and Cooper (1985), there has been no such
big scale study to compare these new methods together with the previously proposed
methods based on cluster dispersion idea. In this thesis a vast spectrum of indices have
been included that are known for their good performance in the literature.

2.6 The average silhouette width

Kaufman and Rousseeuw (1990) proposed the Average Silhouette Width (ASW) to es-
timate the number of clusters using PAM. The silhouette width (SW) for an object in
data represents how well the object fits in its present cluster. Let X = {x1, . . . , xn} be
the data set of size n and d be a distance function over X and Ck = {C1, . . . ,Ck } a clus-
tering identified by some clustering function fk on X . Let i represents the index for
observations xi 2 X . Let the clustering labels be represented in the standard column
vector denoted by

°

l (1), . . . , l (n)
¢

2Nk determined by l (i ) = r , r 2Nk , i 2Nn , whereNk

and Nn set of natural numbers upto n and k. Let the cluster sizes are determined by
nr =

Pn
i=1 1(l (i ) = r ), r 2Nk . For each objects i 2Nn calculate,

a(i ) = 1
nl (i ) °1

X

l (i )=l (h)
i 6=h

d(xi , xh), (2.9)

and,

b(i ) = min
r 6=l (i )

1
nr

X

l (h)=r
d(xi , xh). (2.10)

For a given clustering Ck , the silhouette width for a data object having index i , i 2Nn ,
is

Si (Ck ,d) = b(i )°a(i )
max{a(i ),b(i )}

, (2.11)

such that °16 Si (Ck ,d)6 1.
In other words, a(i ) is the average dissimilarity of object xi from all the other ob-

jects in the cluster Cr , to which xi belongs. b(i ) defines the minimum average distance
of object xi from all the objects in another cluster, except the cluster Cr of which xi is
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a member. a(i ) is not defined for singletons and to calculate b(i ) there should be at
least two clusters. Therefore SW is only defined for k > 1. For a good clustering the
“within” clusters dissimilarity should be less than the “between” clusters dissimilarity.
Therefore, if a(i ) is much smaller than the smallest between clusters dissimilarity b(i )
we get evidence (larger s(i ), close to 1 is better in this case), that object xi is in the
appropriate cluster. On the other hand, s(i ) close to -1, points towards the wrong clus-
ter assignment for object xi . In this case a(i ) > b(i ), meaning that object “i ” is more
close to its neighbouring cluster than to its present cluster. A neutral case occurs when
s(i ) º 0, i.e., object xi is approximately equally distant from both, its present cluster
and neighbouring cluster.

The SW averaged over all the members of a cluster can be used as a measure of
a cluster’s quality. The ASW averages SW over all members of a data set X . It is a
global quality measure for clustering. Formally, for the clustering Ck it can be written
as follows:

S̄(Ck ,d) = 1
n

n
X

i=1
Si (Ck ,d). (2.12)

The best k can be selected by maximising S̄(Ck ,d) over k.
The ASW can be thought of as a combinational index because it is based on the

two concepts which are separation and compactness that define a unified concept of
isolation. It is a ratio of inter cluster variation and intra cluster variation. It measures
how homogeneous the cluster are, and whats the separation between them. Thus the
ASW tells us about the coherent structure of clustering.

2.7 The PAMSIL algorithm

Van der Laan et al. (2003) have proposed a clustering method by optimizing the ASW
based on medoids. They first run the PAM algorithm to get a clustering, i.e., they first
choose a set of k medoids using the PAM build phase, and then consider all possible
swaps (see swap phase of the PAM algorithm in Section 2.4.2.2) to further improve the
values of objective function obtained in the build phase. At the end of the PAM algo-
rithm, one gets a set of medoids and a clustering. Based on these medoids they then
define an algorithm called PAMSIL to maximize the ASW. This algorithm is the same
as the PAM swap phase, except that it does an extra step. After swapping each non-
medoid to a medoid and assigning all the data points to these medoids based on min-
imum distance to define clustering, they then use this clustering to calculate the ASW
value as well. At the end a set of medoid is chosen which gave the maximum value of
ASW. Thus PAMSIL tries to find a clustering that maximize the ASW based on medoids.
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PAMSIL algorithm

bwasp
Get a set of medoids from the PAM algorithm. Denote the medoids by Mk = {m1, · · · ,mk }.
Set q = 1.
silswap

(i) Replace every non-medoid object i , i 2 Nn with one of the medoids, say mr 2 Mk .
Represent the new set of medoids by M§

(i ,r ) = {m§
1 , . . . ,m§

k }.

(ii) Assign each object to the closest medoid, i.e., argmin
i2Nn

d(xi , M§
k ). Denote the resulting

clustering by C§
k .

(iii) Calculate f(i ,r ) = S̄(C§
k ,d).

(iv) Assign (h, s) = argmax
(i ,r )

f(i ,r ), f (q) = f(h,s) and C(q) = C§.

(v) Stop if f (q) > f (q°1), else q = q +1, repeat (i) - (v).

2.8 Clustering comparison measures

Clustering comparison measures are used to compare the different clusterings of the
same data set. They are extensively in use to measure the agreement between two clus-
terings, usually as an external validation when the ground truth (usually the true labels
corresponding to which the data has been generated) is known. The adjusted rand in-
dex (ARI) is one such measure to evaluate a clustering obtained from a method/algorithm
against a ground truth. In this work we have used ARI for the clusterings’ evaluation.
To calculate the ARI two clusterings are required. Usually, one of them is the external
ground truth and other is the clustering result obtained from an algorithm one wishes
to evaluate against ground truth. The use of ARI is not limited to this scenario and can
be used in other ways for instance, not to compare a clustering with ground truth but
instead to calculate the similarity for two clustering on a data set obtained from two
different clustering methods.

2.8.1 Adjusted rand index

Let we have two clusterings as Ck and C0
q having k and q clusters respectively on the

data set X having n observations. Let {C1, · · · ,Ck } and {C 0
1, · · · ,C 0

q } be the disjoint sets
representing clusters for Ck and C0

q , respectively. Let |Cr | = nr for r = 1, · · · ,k and
|C 0

h | = n0
h for h = 1, · · · , q denotes the number of objects in clusters of the two clus-

terings Ck and C0
q , respectively. Naturally,

Pk
r=1 nr = n = Pq

h=1 n0
h . The agreement or

similarity between two clusterings Ck and C0
q can be measure by counting the pair of
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points of X that has been assigned to same clusters in both clusterings. For a pair of
points from X one of the following four cases will always hold:

n0
11: The number of pairs of points that are in the same clusters in Ck : and in the same

cluster in C0
q

n0
10: The number of pairs of points that are in the same clusters in Ck and in different

cluster in C0
q

n0
01: The number of pairs of points that are in different clusters in Ck and in the same

cluster in C0
q

n0
00: The number of pairs of points that are in different clusters in Ck and in different

cluster in C0
q

Using these four cases several measures for clustering similarity or dissimilarity has
been proposed in literature. These four cases can be obtained from a contingency ta-
ble. The contingency table is a k £q table for two clusterings Ck and C0

q whose r h-th
element is the number of points in the intersection of clusters Cr of Ck and C 0

h of C0
q ,

i.e., in both clusters Cr and C 0
h . Let nr h = |Cr \C 0

h |, i.e., nr h represents the number of
object in both clusters Cr and C 0

h . Let nr · and n·h represents the row sum and column
sum of contingency table respectively. Thus n0

11 and n0
00 can be mathematically written

as:

n0
11 =

1
2

k
X

r=1

q
X

h=1
nr h(nr h °1),

and

n0
00 =

1
2

√

n2 +
k
X

r=1

q
X

h=1
n2

r h °
Ω k

X

r=1
n2

r · +
q
X

h=1
n2
·h

æ

!

.

Note that n0
11+n0

10+n0
01+n0

11 = n(n°1)/2. The Rand index porposed in Rand (1971)
is given as:

RI (Ck , C0
q ) =

n0
11 +n0

00

n(n °1)/2
.

The problems with Rand index and other such related indices are well explored for
instance refer to Hubert and Arabie (1985). One problem is that the expected value of
the index is not constant. Another is, the number of pair of points for which the clus-
terings Ck and C0

q disagrees (n0
00) is often as large as

°n
2

¢

. An implication of this is that
the index will approach its maximum value as number of clusters increases. This gives
a false impression of closeness of two clusterings when in fact in reality two clusterings
are further from each other. Hubert and Arabie (1985) proposed an adjustment to the
Rand index. Let E(RI ) represents the expected value of RI (Ck , C0

q ), then ARI is given
as:
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ARI (Ck , C0
q ) =

RI (Ck , C0
q )°E(RI )

1°E(RI )
.

Note that the expression n0
11 +n0

00 can be simplified as
Pk
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Pq

h=1

°nr h
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¢

and

E
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Such that the ARI can be written as follows:

ARI (Ck , C0
q ) =

Pk
r=1
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2
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The index lies between 0 and 1 and a larger value indicates greater similarity between
clusterings.
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Chapter 3

The Optimum ASW Based Linkage
Criterion

3.1 Preliminary notations

In this chapter we will introduce a new agglomerative hierarchical clustering method
by introducing a new linkage criterion based on optimum average silhouette width.

Let X = {x1, . . . , xn} be the data set to be partitioned, where xi represents the i th ob-
servation and each xi represents a p-dimensional variable. We will here only consider
crisp clustering, thus every object will belong to one cluster only and there will be no
overlapping between clusters in the hierarchy. There will be n total hierarchy levels.
Let k1, · · · ,kn be the number of clusters in a clustering at each hierarchy level. Let the
full hierarchy of X be given by P = {C 1

n , . . . ,C n
1 }. The superscript in C l

kl
2P represents

the hierarchy level, where l = 1, · · · ,n and kl = n, (n ° 1), · · · ,2,1 denotes the number
of clusters at each hierarchy level. In hierarchical clustering we start with n clusters in
the beginning. Thus if l represents a particular hierarchy level, then at l = 1 we have
kl = n clusters, i.e., each observation forms a separate cluster. The number of clusters
subsequently reduce as hierarchy level proceeds. For simplicity assume that only one
pair of clusters merges at each hierarchy level.

Let C l
kl

= {C l
1, · · · ,C l

kl
}, where C l

r 2 C l
kl

, r = 1, · · · ,kl represents an r -th cluster in a
clustering at hierarchy level l . The members of a cluster at hierarchy level l = 1 can be
further written as C 1

1 = {x1}, C 1
2 = {x2}, . . . , C 1

n = {xn}, thus C1 = {{x1}, {x2}, . . . , {xn}} and at
the (nth) final hierarchy level, C n

1 = {x1, x2, . . . , xn}, thus C n
1 =X . Let∞l (x1,r ), . . . ,∞l (xn ,r );

r = 1, · · · ,kl represent the clustering label vector at hierarchy level l . At a hierarchy level
l , r indicates to which cluster observation xi has been assigned.

Let Hierarchical Optimum Silhouette width agglomerative hierarchical clustering
algorithm be called HOSil. The algorithm can’t start from l = 1. This is because for the
calculation of a(i ), i 2 C there should be at least one cluster in the clustering, with at
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least two observations and for calculation of b(i ) there should be at least two clusters
in a clustering solution. Therefore, for (l = 1, k1 = n) and (l = n, kl = 1) calculation of
ASW is not possible. So we can start calculating ASW from at least k2 = n °1 and must
stop at rn°1 = 2. For l = 1 the two closest observations are joined to form a cluster.

3.2 HOSil algorithm and description

An agglomerative hierarchical clustering algorithm can be defined based on a linkage
criterion that optimizes ASW. Two clusters are merged together to form a single cluster
if this gives the maximum ASW after the merge. Each time all possible cluster merges
are tried out and those clusters are finally merged that give maximum ASW.

HOSil can also be used to find the best number of clusters (k) for the data. Accord-
ing to this criterion a best k will be the one that gives maximum value of ASW among
all hierarchies level.

3.2.1 Algorithm’s description

To understand how the algorithm works we take a small data set of 12 instances as an
example. The data is plotted in Figure 3.1.
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Figure 3.1 An example with 12 instance in two dimensions to illustrate the HOSil algo-
rithm.
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HOSil algorithm

Input

Input n(n °1)/2 pairwise distances between points in X , , i.e., d(xi , x j ) for xi , x j 2X .

Initialize

(i) Set l = 1. Start with n clusters i.e., every object forms its own cluster,

C l
kl
=

n

C l
1, . . . ,C l

kl

o

=
n

{x1}, {x2}, . . . , {xn}
o

, kl = n.

(ii) Update l = 2. Join the two observations into one cluster that have minimum d(xi , x j ). Denote

the resulting clustering as C l
kl

=
n

C l
1, · · · ,C _kl

o

, kl = (n °1), and clustering labels for this clus-

tering as ∞l (X ,r ) = ∞l (x1,r ), . . . ,∞l (xn ,r ) where r = 1, . . . , kl .

(iii) Calculate f (l ) = S̄(C l
kl

,d) where S̄(·) as defined in (2.12).

Repeat

(i) Combine every cluster i with every other cluster j in the clustering C l
kl

. For all pairs (i , j ) of

cluster combinations denote a set of labels as ∞l
(i , j )(x1,r ), . . . ,∞l

(i , j )(xn ,r ), where r = 1, · · · , (kl °1)
and denote the corresponding clustering as C §

(kl°1).

(ii) Calculate f(i , j ) = S̄(C §
(kl°1),d), where S̄(·) as defined in (2.12).

(iii) (i§, j§) = max f(i , j ), and denote the the corresponding label vector as ∞l (X ,r ).

(iv) Merge the cluster pair (C l
i§ , C l

j§ ), such that,

C l+1
kl+1

=C l
kl
[ {C l

i§ [C l
j§ }\{C l

i§ ,C l
j§ }, kl+1 = kl °1.

Let l = l +1.

(v) Assign f (l ) = f(i§, j§).

Stop

When l = n °1, i.e., kl = 2.

Return

f (l ) and ∞l (X ,r ) for all l = 2, · · · , (n °1).
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Table 3.1 Pairwise Euclidean distances for the example data set
1 2 3 4 5 6 7 8 9 10 11

2 2.50
3 5.41 2.92
4 13.65 12.65 12.35
5 12.35 11.93 12.38 3.20
6 16.29 15.65 15.70 3.61 4.03
7 11.95 13.00 14.92 10.63 7.43 10.30
8 14.30 15.21 16.92 10.74 7.62 9.55 2.50
9 16.10 17.00 18.67 11.71 8.73 10.00 4.24 1.80

10 12.38 14.87 17.73 23.09 20.50 24.33 15.03 17.18 18.44
11 12.78 15.26 18.18 21.93 19.14 22.80 13.04 15.01 16.13 2.83
12 8.515 11.011 13.901 19.53 17.12 21.05 12.50 14.87 16.35 3.91 4.61

Start when every object is in its own cluster with the label vector having values from
0 to 11. Calculate the pairwise distance between the clusters to identify the most sim-
ilar clusters. The Euclidean distances for the example data set are shown in the Table
3.1. The smallest distance is between instances/clusters 8 and 9, bold entry in the ta-
ble just mentioned. Form a new cluster by joining these two observations together.
Thus we get 11 clusters and the resulting labelling set for this clustering can be given
as (1,2,3,4,5,6,7,0,0,8,9,10). The ASW for this clustering is 0.07116. Now at each hier-
archy step we will reduce one cluster by combining those two clusters that give max-
imum ASW for the resulting clustering. For this purpose each cluster is grouped with
every other cluster and ASW is calculated for each possible labels’ set. There are 55 pos-
sible combinations of 11 clusters combining pairwise. For instance, cluster number "0"
can be combined with all the other 10 clusters (0,1), (0,2), . . . , (0,10). The cluster labels
are generated for each of these 55 unique possibilities and ASW is calculated. Thus,
checking out the possibility of attaining the maximum ASW that can be attained at this
hierarchy. One best clusters’ combination was chosen out of these 55 combinations
based on maximum ASW for the clustering.

For the example data set there are (n °2 = 9) possible hierarchy levels. All possible
clusters combinations for the example data set are displayed in Table 3.2.1. Some of
the clustering labels vector generated for each of these possible combinations at each
hierarchy are listed in Table 3.2.1. Similarly other labels can be generated. Table 3.2.1
shows the calculated ASW values for each case. For l = 1, 0.149 is the maximum value
of the ASW obtained, which is corresponding to combination (0, 7) given in Table 3.2.1.
Thus cluster numbers "0" and "7" must be combined at this hierarchy. Table 3.5 gives
the best labels selected and corresponding ASW values from all possible combinations
at a particular hierarchy level.

At l = 2, k = 10 and starting label set is (1, 2, 3, 4, 5, 6, 0, 0, 0, 7, 8, 9). Again all
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possibilities of combinations are generated which is
10

C 2 = 45. The labels at each hi-
erarchy depends upon the labelling set obtained from previous hierarchy. So for the
above selected label vector from l = 1 , combining clusters (0, 1) at l = 2 will give (0, 1,
2, 3, 4, 5, 0, 0, 0, 6, 7, 8). But if (0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 8, 9) was selected instead from
l = 1, then combining cluster (0, 1) will give different labels as (0, 0, 1, 2, 3, 4, 5, 6, 0, 0,
7, 8). Thus we make sure that at each hierarchy level the possibility of combining each
pair of clusters is considered, and those clusters who have already been combined in
previous hierarchy remain combined at all latter stages. The same observation in dif-
ferent set can get different label. Therefore, the particular label as a cluster label for an
observation does not matter but the membership of the cluster for the observation in
a cluster matters. The process continues until we reach two clusters clustering.

Table 3.2: Total possibilities of combination of clusters for example data set at each
hierarchy

11
C 2 = 55 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0,9) (0, 10)
l = 1 (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9) (1, 10)

(2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10)
(3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (3, 9) (2, 10)
(4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10)
(5, 6) (5, 7) (5, 8) (5, 9) (5, 10)
(6, 7) (6, 8) (6, 9) (6, 10)
(7, 8) (7, 9) (7, 10)
(8, 9) (8, 10)

(9, 10)

10
C 2 = 45 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0,9)
l = 2 (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9)

(2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (2, 9)
(3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (3, 9)
(4, 5) (4, 6) (4, 7) (4, 8) (4, 9)
(5, 6) (5, 7) (5, 8) (5, 9)
(6, 7) (6, 8) (6, 9)
(7, 8) (7, 9)
(8, 9)

9
C 2 = 36 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8)

l = 3 (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)
(2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8)
(3, 4) (3, 5) (3, 6) (3, 7) (3, 8)
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(4, 5) (4, 6) (4, 7) (4, 8)
(5, 6) (5, 7) (5, 8)
(6, 7) (6, 8)
(7, 8)

8
C 2 = 28 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)

l = 4 (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)
(2, 3) (2, 4) (2, 5) (2, 6) (2, 7)
(3, 4) (3, 5) (3, 6) (3, 7)
(4, 5) (4, 6) (4, 7)
(5, 6) (5, 7)
(6, 7)

7
C 2 = 21 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)

l = 5 (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 3) (2, 4) (2, 5) (2, 6)
(3, 4) (3, 5) (3, 6)
(4, 5) (4, 6)
(5, 6)

6
C 2 = 15 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)

l = 6 (1, 2) (1, 3) (1, 4) (1, 5)
(2, 3) (2, 4) (2, 5)
(3, 4) (3, 5)
(4, 5)

5
C 2 = 10 (0, 1) (0, 2) (0, 3) (0, 4)

l = 7 (1, 2) (1, 3) (1, 4)
(2, 3) (2, 4)
(3, 4)

4
C 2 = 6 (0, 1) (0, 2) (0, 3)
l = 8 (1, 2) (1, 3)

(2, 3)

3
C 2 = 3 (0, 1) (0, 2)
l = 9 (1, 2)
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Table 3.3: Clustering labels for all the combinations

Sr. No. 1 2 3 4 5 6 7 8 9 10 11 12

x 6.0 4.0 1.5 8.0 10.5 11.0 16.0 17.5 19.0 15.0 17.0 12.5

y 3.5 5.0 6.5 17.0 15.0 19.0 10.0 12.0 13.0 -5.0 -3.0 -2.0

Initial Labels

l = 0 1 2 3 4 5 6 7 0 0 8 9 10

l = 1

(0,1) 0 1 2 3 4 5 6 0 0 7 8 9

(0,2) 1 0 2 3 4 5 6 0 0 7 8 9

(0,3) 1 2 0 3 4 5 6 0 0 7 8 9

(0,4) 1 2 3 0 4 5 6 0 0 7 8 9

(0,5) 1 2 3 4 0 5 6 0 0 7 8 9
...

... . . .
... . . .

...

(8,10) 2 3 4 5 6 7 8 1 1 0 9 0

(9,10) 2 3 4 5 6 7 8 1 1 9 0 0

l = 2

(0,1) 0 1 2 3 4 5 0 0 0 6 7 8

(0,2) 1 0 2 3 4 5 0 0 0 6 7 8

(0,3) 1 2 0 3 4 5 0 0 0 6 7 8
...

... . . .
... . . .

...

(7,9) 2 3 4 5 6 7 1 1 1 0 8 0

(8,9) 2 3 4 5 6 7 1 1 1 8 0 0

l = 3

(0,1) 1 2 3 4 5 6 0 0 0 0 0 7

(0,2) 0 2 3 4 5 6 1 1 1 0 0 7

(0,3) 2 0 3 4 5 6 1 1 1 0 0 7
...

... . . .
... . . .

...

(7,8) 3 4 5 6 7 0 2 2 2 1 1 0

l = 4

(0,1) 1 2 3 4 5 6 0 0 0 0 0 0

(0,2) 0 2 3 4 5 6 1 1 1 0 0 0

(0,3) 2 0 3 4 5 6 1 1 1 0 0 0
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...
... . . .

... . . .
...

(6,7) 3 4 5 6 0 0 2 2 2 1 1 1

l = 5

(0,1) 0 0 2 3 4 5 1 1 1 0 0 0

(0,2) 0 0 2 3 4 5 0 0 0 1 1 1

(0,3) 0 0 0 3 4 5 2 2 2 1 1 1
...

... . . .
... . . .

...

(5,6) 1 1 4 5 0 0 3 3 3 2 2 2

l = 6

(0,1) 0 0 0 2 3 4 1 1 1 0 0 0

(0,2) 0 0 0 2 3 4 0 0 0 1 1 1

(0,3) 0 0 0 0 3 4 2 2 2 1 1 1
...

... . . .
... . . .

...

(4,5) 1 1 1 4 0 0 3 3 3 2 2 2

l = 7

(0,1) 0 0 0 0 0 3 2 2 2 1 1 1

(0,2) 1 1 1 0 0 3 2 2 2 0 0 0

(0,3) 1 1 1 0 0 3 0 0 0 2 2 2
...

... . . .
... . . .

...

(3, 4) 2 2 2 1 1 0 0 0 0 3 3 3

l = 8

(0,1) 0 0 0 0 0 0 2 2 2 1 1 1

(0,2) 1 1 1 0 0 0 2 2 2 0 0 0

(0,3) 1 1 1 0 0 0 0 0 0 2 2 2
...

... . . .
... . . .

...

(2,3) 2 2 2 1 1 1 0 0 0 0 0 0

l = 9

(0,1) 0 0 0 0 0 0 0 0 0 1 1 1

(0,2) 1 1 1 0 0 0 0 0 0 0 0 0

(1,2) 0 0 0 1 1 1 1 1 1 0 0 0
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Table 3.4: ASW for each set of clustering labels at different hierarchies for example data
set. Bold values represent the maximum ASW attained against all possible clustering
vectors at a particular hierarchy level.

11
C 2 = 55 -0.165 -0.189 -0.195 -0.157 -0.119 -0.133 0.149a -0.167 -0.185 -0.181
l = 1 0.113 -0.003 -0.061 -0.062 -0.069 -0.002 -0.060 -0.066 -0.038

0.095 -0.050 -0.060 -0.068 -0.005 -0.066 -0.072 -0.053
-0.059 -0.059 -0.066 -0.007 -0.069 -0.075 -0.061
0.093 0.078 0.017 -0.072 -0.079 -0.072
0.039 0.024 -0.069 -0.075 -0.067
0.005 -0.073 -0.078 -0.072
-0.009 0.002 0.012
0.127 0.072
0.032

10
C 2 = 45 -0.024 -0.040 -0.059 0.010 0.087 0.039 -0.054 -0.037 -0.027
l = 2 0.214 0.094 0.036 0.052 0.029 0.031 0.031 0.059

0.191 0.047 0.056 0.030 0.026 0.024 0.044
0.038 0.056 0.032 0.023 0.021 0.036
0.204 0.176 0.030 0.019 0.025
0.147 0.049 0.042 0.049
0.019 0.018 0.024
0.217 0.168
0.129

9
C 2 = 36 -0.136 0.007 0.003 -0.008 -0.023 0.003 -0.023 0.319

l = 3 0.055 0.022 0.001 0.070 0.147 0.099 0.115
0.281 0.155 0.096 0.112 0.089 0.177
0.256 0.107 0.116 0.090 0.170
0.104 0.117 0.093 0.168
0.270 0.237 0.174
0.214 0.193
0.170

8
C 2 = 28 -0.038 0.225 0.199 0.174 0.132 0.168 0.124

l = 4 0.161 0.137 0.117 0.186 0.263 0.215
0.405 0.288 0.230 0.246 0.223
0.366 0.223 0.232 0.206
0.213 0.232 0.209
0.379 0.352
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0.335

7
C 2 = 21 0.209 0.071 0.518 0.246 0.248 0.210

l = 5 0.045 0.313 0.223 0.254 0.210
0.269 0.265 0.336 0.287
0.356 0.377 0.362
0.458 0.425
0.408

6
C 2 = 15 0.334 0.179 0.406 0.450 0.406

l = 6 0.204 0.350 0.4000 0.361
0.398 0.474 0.424

0.5889 0.560
0.544

5
C 2 = 10 0.405 0.295 0.3967 0.720

l = 7 0.406 0.250 0.515
0.276 0.476
0.553

4
C 2 = 6 0.496 0.329 0.640
l = 8 0.545 0.425

0.435

4
C 2 = 3 0.484 0.319
l = 9 0.507

Table 3.5 gives the maximum ASW at l = 7. An empirical behaviour of ASW for ex-
ample data set is, it keeps increasing from the hierarchy level 0 until level 7 and after
that it starts decreasing. Of course this behaviour can be different for clusters of dif-
ferent natures which can only be explored in simulation. For the example data set the
best number of clusters is four based on ASW linkage.

3.2.2 Some notes on implementation

The algorithm first calculates the pairwise distances between all the instances if not
provided. It then joins the two most similar observations into a cluster and calculates
ASW for this clustering. The algorithm is written in C++ and an interface is provided
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Table 3.5 Best labels selected at each hierarchy based on HOSil

No. of
clusters

Hierarchy
level

Clustering Labels ASW

k = 11 l = 0 1 2 3 4 5 6 7 0 0 8 9 10 0.0712
k = 10 l = 1 1 2 3 4 5 6 0 0 0 7 8 9 0.1487
k = 9 l = 2 2 3 4 5 6 7 1 1 1 0 0 8 0.2170
k = 8 l = 3 2 3 4 5 6 7 1 1 1 0 0 0 0.3193
k = 7 l = 4 0 0 3 4 5 6 2 2 2 1 1 1 0.4054
k = 6 l = 5 0 0 0 3 4 5 2 2 2 1 1 1 0.5178
k = 5 l = 6 1 1 1 0 0 4 3 3 3 2 2 2 0.5886
k = 4 l = 7 1 1 1 0 0 0 3 3 3 2 2 2 0.7200
k = 3 l = 8 1 1 1 0 0 0 0 0 0 2 2 2 0.6402
k = 2 l = 9 0 0 0 1 1 1 1 1 1 0 0 0 0.5065

in the R language R Core Team (2015) through the Rcpp (Eddelbuettel et al. (2011))
package. The algorithm needs a special form of input. The lower triangular distance
matrix obtained through R function “dist()” is stored in a vector with an additional
entry zero stored at first place to pass to C++. Thus this vector will have n£(n°1)/2+1
entries. This is because of the programming logic of the algorithm implementation
and users don’t have to worry about this input as an additional function called “filldys”
is included to prepare the required input.

The algorithm is implemented in such a way that it can be used with data matrix
or with the calculated distances obtained from any measure to return a set of dissim-
ilarities as similar to the function “dist()” in the R package “cluster” (Maechler et al.
(2017)). The algorithm just needs data to cluster, and no other additional parameter is
needed. It can estimate the best number of clusters itself. However, in the experiments
in Section (3.5), the clustering results against the true number of clusters were always
examined. The output is designed in such a way that it is possible to retrieve clustering
results against any k. One advantage of this is that we can handle the two tasks i.e.,
finding clustering and estimation of number of clusters in the same framework, so that
we can also compare them. This can help in understanding whether the algorithm is
capable of finding the true clustering or not for the fixed k even if it failed estimating
the correct k. It is quite possible for some data sets that the clustering obtained against
estimated k is different than the one with fixed known k. In such situations it is worth-
while to explore what this clustering looks like and what makes HOSil to produce such
a clustering. How should a clustering look based on optimum ASW criterion? We will
try to explore in simulations how likely it is for the proposed method to estimate the
true number of clusters k and why it gives the clustering it gives.
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3.3 Characteristics of interest for clustering

We have generated various data sets having different clustering characteristics and
complexity to test the proposed method. In this section we will introduce all the syn-
thetic data sets used in the experiments. We simulated data sets for several scenarios
covering clustering difficulties of various kind. Some of these characteristics are listed
below

(i) Clusters with different variations among observations, i.e., compact and widely
spread clusters,

(ii) Equal and unequal sized clusters,

(iii) Clusters from different distributions assuming every individual cluster is com-
ing from a single distribution. For instance, clusters from Gaussian, Student’s t ,
Gamma or Beta distributions,

(iv) Clusters from skewed distributions,

(v) Different types of clusters for instance, spherical, non-spherical, elongated or
arbitrarily shaped clusters,

(vi) Close and far away clusters, i.e., the distance between the means of clusters are
varied,

(vii) Overlapping and well-separated clusters,

(viii) Nested clusters,

(ix) Clusters with correlated variables within clusters,

(x) Different number of clusters,

(xi) Different number of variables/dimensions,

and more. Note that a good mixture of most of the above characteristics is made within
a single data set to make the clustering task more challenging. In addition, we com-
pared the runtime asymptotic consistency of the algorithm. We checked how many
observations the algorithm can handle efficiently to cluster and what will be the effi-
ciency of the algorithm as the number of clusters, the number of observations, and the
number of dimensions increases.
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3.4 Definition of data generating processes

For the data generating processes (DGPs) several probability distributions have been
used. We first define the notations for these distributions. Let Np (µp ,ßp£p ) repre-
sent the p-variate Gaussian distribution with mean µp and covariance matrix ßp£p .
Let SN (≥,!,Æ,ø) represent a skew Gaussian univariate distribution with ≥,!,Æ,ø as
location, scale, shape and hidden mean parameters of the distribution respectively.
Let U(a,b) represent the uniform distribution defined over the continuous interval a
and b. Let tv represent Student’s t distribution with v degrees of freedom. Let tr (∫)
represent the non-central t distribution with r degrees of freedom and ∫ be the non-
centrality parameter. Let Gam(Æ,Ø) represent Gamma distribution where Æ and Ø
are shape and rate parameters, respectively. Let NBeta(v1, v2,∏) represents the non-
central Beta distribution of Type-I with v1, v2 be two shape parameters and ∏ being the
non-centrality parameter. Let Exp(∏) represent the Exponential distribution with ∏
being the rate parameter. Let F(v1,v2)(∏) represent the non-central F distribution with
v1, v2 degrees of freedom and ∏ be the non-centrality parameter. Let W(ø,≥) repre-
sent the Weibull distribution with ø,≥ as shape and scale parameter, respectively. The
definitions of all distributions used in data generating processes (DGPs) are given in
Appendix A. Let Ip be the identity matrix of order p, where p represents the number of
dimensions. The DGPs are defined as below.

Model 1:

Two clusters of equal sizes are generated in two dimensions coming from different dis-
tributions. 100 observations are generated from the Gaussian distribution with identity
covariance matrix centred at (0, 5). 100 observations drawn from U(°10,1) indepen-
dently along both dimensions. The result is one compact spherical cluster located at
the corner of a uniformly distributed cluster.

Model 2:

Two Gaussian clusters of unequal sizes and variations were generated in two dimen-
sions independently. The clusters contain 50 and 100 observations centred at (1.5, 5)
and (0, 5), respectively, with 0.1I2 and 0.5I2 covariance matrices, respectively. The re-
sult is one small, compact spherical cluster lying close to a bigger widely spread spher-
ical cluster.

Model 3:

Three clusters of unequal sizes and variations were generated in two dimensions. Two
clusters were generated from independent bi-variate Gaussian distributions with 50
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and 100 observations centred at (0, 5) and (0.5, 5.5), respectively, with covariance ma-
trix as 0.1I2 and 0.2I2 respectively. The third cluster with 50 observations was generated
from a non-central t distribution with t25(5) and t25(10) independently. The clusters
are of such nature that the generated non-central t cluster has a wider spread than the
two Gaussian clusters which were kept close to each other as compared to the bigger
spread cluster.

Model 4:

Three Gaussian clusters in two dimensions of unequal variations. The clusters con-
tains 50, 50, and 100 observations, with covariance matrices as 0.1I2, 0.1I2 and 0.5I2,
while the clusters are centred at (-2, 5), (2, 5), (0, 5), respectively. The result is one big-
ger, spherical widely spread cluster located between two small, spherical and compact
clusters.

Model 5:

Three Gaussian clusters of unequal sizes having different variations along dimensions
were generated independently in two dimensions. The clusters were randomly chosen
to have 25, 50 and 75 observations without replacement such that the total sample size
is 150 always. The clusters are centred at (0, 5), (2, 5), (-2, 5) respectively. The first
cluster has covariance matrix as 0.5I2, the other two clusters have common covariance

matrix defined as ß =
"

0.1 0
0 0.7

#

. The result is one spherical cluster located between

two clusters having wider spread across one dimension as compared to the others.

Model 6:

Three Gaussian clusters in two dimensions of equal sizes, different variations and dif-
ferent shapes. 50 observations were generated from (0, 5) with covariance matrix as
0.5I2. 50 observations were generated from Gaussian distribution with means (1.5, 5)

with covariance matrix as ß=
"

0.1 0
0 0.7

#

. 50 observations were generated from (1.5, 7)

with co-variance matrix as 0.1I2. The clusters look like a wider spread spherical cluster
located left to the vertical cluster and a smaller compact cluster located just at the top
of the vertical cluster.

Model 6.A:

The Gaussian cluster with centre (1.5, 7) in Model 6 is re-centred at (-1.5, 7). The pur-
pose is to move the location of the compact cluster far from the dense region of other
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two clusters.

Model 6.B:

A fourth cluster of 50 observations from Gaussian distributions centred at (-1.5, 3) with
covariance matrix as 0.1I2 is is added to Model 6.A.

Model 7:

Four almost touching spherical clusters of equal sizes and variations. The clusters were
generated from Gaussian distributions each with 50 observations and 0.2I2 covariance
matrix. The clusters were centred at (1, 1), (1, 2), (2, 1), and (2, 2).

The touching cluster problem is well known in clustering literature for instance see
Zhong et al. (2010). These cluster have slightly different versions in literature. For in-
stance, a pair of cluster is called touching clusters that are joined together by a small
neck and removal of this neck produces two separate clusters like in Zhong et al. (2010)
or Aggregation (from Gionis et al. (2007)) data set. The term touching clusters is also
used in literature for clusters that have very close or joining boundaries with each other
for instance the Tetra data set in the Fundamental clustering problem suite (FCPS), see
Ultsch (2005). These kind of data sets is of natural interest for ASW based clustering
method. It is not known what should be the level of separation between clusters that
ASW can determine them as two separate clusters.

Model 8:

Four clusters of equal sizes each having 50 observations were generated in two dimen-
sions. One cluster was generated from independent non-central t distributed variables
with parameters t7(10) and t7(30). One cluster was generated fromU(10,15) indepen-
dently along both dimensions. One cluster was generated from bivariate normal distri-
bution parametrized by mean (2, 2), and covariance I2 generated independently across
both dimensions. The fourth cluster is also from independent bivariate Gaussian dis-

tributions parametrized by, mean (20, 80) with covariance matrix ß=
"

0.1 0
0 2

#

.

Model 9:

Four clusters with correlated variables in 2 dimensions. Two clusters were generated
having 25 and 50 observations, and, centred at (7.5, 4) and (-2.5, 3) with a common

covariance matrix ß=
"

1 0.7
0.7 1

#

, respectively. The other two clusters contains 50 and
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75 observations centred at (-7.5, 4) and (2.5, 3) with a common covariance matrix ß=
"

1 °0.7
°0.7 1

#

, respectively.

Model 10:

Five clusters in two dimensions from different distributions. The clusters are parametrized
from Chi-squared, F, t , Gaussian and skewed Gaussian distributions as ¬2

7(50) and
¬2

10(80), F(2,6)(4) and F(5,5)(4), t40(100) and t35(150), N ((100,0),0.9I2), SN (20,0.9,2,4)
and SN (200,0.8,3,6). The clusters contains 50 observations each and were generated
independently along both dimensions.

Model 11:

Six clusters from different distributions in two dimensions. The clusters are parametrized
asU(°6,°2), Exp(10), Beta(2,3,120),W(10,4), Gam(15,2) in both dimensions, whereas
one cluster from SN (5,0.6,4,5) along first dimension and SN (0,0.6,4,5) across second
dimension. The clusters contains 50 observations each and were generated indepen-
dently along both dimensions.

Model 12:

Six correlated Gaussian clusters in two dimensions. The clusters are centred at
(-10, -10), (5, -2), (20, 0), (-30, -5), (-40, 40), (-50, 30) with covariance matrices as

ß1 = ß3 =
"

9 10.8
10.8 16

#

, ß2 = ß4 = ß6 =
"

9 °10.8
°10.8 16

#

, respectively. Cluster 5 has

covariance matrices as ß5 =
"

9 1.2
1.2 16

#

. Cluster 1 to 4 contains 50 observations each

whereas cluster 5 and 6 contains 25 observations each.

Model 13:

Fourteen Gaussian clusters in two dimensions. Two clusters were generated with 25
observations each having common co-variance matrix as 0.5I2 centred at (0, 2) and (0,
-2). Six clusters were generated with 25 observations each having common covariance

matrices as

"

0.1 0
0 0.7

#

. The clusters are centred at (-4, -2), (-3, -2), (-2, -2), (2, -2), (3,

-2), and (4, -2). The remaining six clusters have common covariance matrix as 0.1I2

and 25 observations each centred at (-4, 2), (-3, 2), (-2, 2), (2, 2), (3, 2), and (4, 2).
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Model 14:

Three elongated clusters in three dimensions having 100 observations each. Let v ª
U (°0.5,0.5). Generate the first cluster along three dimensions namely x, y and z as x ª
v+N (0,1), y ª v+N (0,1) and z ª v+N (0,1). Generate cluster 2 along three dimensions
as x ª v +N (0,1)+2, y ª v +N (0,1)+2 and z ª v +N (0,1)+2. Generate cluster 3 in the
same way by adding value 4 in each dimensions respectively.

Model 15:

Eight Gaussian clusters surrounding a cluster formed by uniformly distributed points
in a unit circle. The unit circle contains 33 observations and is centred at [0, 0, 0].
The 8 Gaussian clusters contain 25 observations each. Four clusters are centred at (-
7, -0.2, -0.2), (0.2, -4, -4), (0.5, 3, 3), and (7, -1, -1) with a common covariance matrix
as 0.1I3. Two clusters are centred at (-5.5, 2.5, 2.5) and (4.5, -3, -3) with a common

covariance matrix

2

6

4

0.6 0 0
0 0.8 0
0 0 0.6

3

7

5

. The remaining two clusters are centred at (-7, -0.2,

-0.2), (0.2, -4, -4), (0.5, 3, 3), and (7, -1, -1) with a common covariance matrix 0.1I3. Two
clusters are centred at (-4, -2.5, -2.5) and (5, 1.5, 1.5) with a common covariance matrix
2

6

4

0.4 0 0
0 0.3 0
0 0 0.4

3

7

5

.

Model 16:

Ten clusters in 100 dimensions. The clusters are centred at -21, -18, -15, -9, -6, 6, 9, 15,
18, 21. The clusters are in 100 dimensions such that the 100 dimensional mean vectors
of these values were generated for all clusters. The number of observations for these
ten clusters are 20, 40, 60, 70, and 50 each for six of the remaining clusters. The number
of observations for the means of clusters were not fix. Any cluster can take any number
of observations from these such that any six clusters have equal number of observa-
tions i.e., 50 and the remaining four has different observations each, which is one out
of 20, 40, 60, 70 values. The total size of the data is always 490 observations. The covari-
ance matrix for each of these clusters is one out of 0.05I100, 0.1I100, 0.15I100, 0.175I100,
0.2I100 matrices. The covariance matrix for each cluster was chosen randomly with re-
placement out of these, such that as a result, all the clusters can have same covariance
matrix, two or more clusters can have same covariance matrix or all of the 10 clusters
can have different same covariance matrices.
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Model 17:

Three clusters in 1000 dimensions. Each cluster contains 40 observations from stan-
dard Gaussian distributions with each of the first 100 coordinated centred at -5, 0 and
5 respectively. The remaining dimensions of all clusters are centred at 0.
A data sets generated from each of the 17 models is displayed in Figure 3.2.
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(b) Model 2
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(d) Model 4
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(e) Model 5
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(f) Model 6
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(g) Model 6B
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(h) Model 6C
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(i) Model 7
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Figure 3.2 Plots of all data sets, each generated from the DGPs included in the study.
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(m) Model 11
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Figure 3.2 Plots of all data sets, each generated from the DGPs included in the study.

3.5 Simulation design

All the data generating processes just defined above were considered for simulation.
The simulation was done in R language (R Core Team (2015)). Along with the proposed
algorithm we have applied various widely applicable clustering algorithms with Eu-
clidean distances, namely k-means, partitioning around medoids (PAM), hierarchical
clustering algorithms (with single, complete, average, Ward, McQuitty methods), spec-
tral clustering, model-based clustering method and PAMSIL clustering algorithm. For
all the hierarchical clustering methods we use function ‘hclust()’ available with R base
package “stats”. For Ward’s method we use option “Wards.D2” for the method argu-
ment of ‘hclust()’. For k-means and PAM we use functions ‘kmeans()’ (with nstart =
100) and ‘pam()’ also available through R base “stats” and R package “cluster” (version:
2.0.6, Maechler et al. (2017)), respectively. For spectral and model-based clustering we
have used the R packages “kernlab” (version: 0.9.25, Zeileis et al. (2004)) and “mclust”
(version: 5.2.3, Scrucca et al. (2017)) implementation, available through the ‘specc()’
and ‘Mclust()’ functions, respectively. For PAMSIL we have used the standalone C func-
tion written by Van der Laan et al. (2003). For all the methods, we used the default set-
tings except otherwise stated. Let the number of data sets generated are denoted by B .
We have generated B = 50 data sets for each DGP.

We have also tried DBSCAN algorithm proposed by Ester et al. (1996). DBSCAN

71



is a density based clustering algorithm, and an implementation for this is available in
R through function ‘dbscan()’ in package “dbscan” (Hahsler and Piekenbrock (2018)).
The algorithm has two parameters epsilon and minimum points (‘eps’ and ‘MinPts’ ar-
guments in function dbscan()). The algorithm finds the density regions which are de-
fined by the number of points within certain region of each point. Let xi and x j be two
points in the data X to cluster. The basic idea is that there exists at least a minimum
number of points (MinPts) in the eps-neighborhood of a point say xi , where the eps-
neighborhood of the point xi itself is defined by E N B(xi ) = {x j 2 X |d(xi , x j ) 6 eps}.
Although the authors provided some advise to chose the two parameters yet it is hard
to fix these in advance as they are purely data driven. The current available implemen-
tation of density based clustering method ‘dbscan’ is not suitable for simulations as it
is hard to choose the parameters of the algorithm suitable for the experiments. The
performance of the algorithm can be greatly improved by experimenting and visual
analysis of the clustering results against the parameters, rather than sticking with the
default recommendation of the parameters, as they are not always good. This is hard
to do in a simulation setup. For some of the simulated models we have taken several
‘eps’ values in a particular range at a constant frequency. Firstly for different models
this common range was not useful, secondly, it is hard to decide an appropriate range
for each model. Many times the algorithm assigns everything to one cluster and identi-
fies a few points as noise, which makes it unfit for the calculation of further results, for
instance, internal/external indices or the estimation of number of clusters considered
in the simulations.

We have also considered the estimation of number of clusters from several internal
indices with combinations of several clustering methods. We have applied k-means,
PAM and agglomerative hierarchical clustering with five linkage methods with 11 dif-
ferent methods of estimation of number of clusters namely, H, CH, KL, ASW, Gap,
Jump, PS, BI, BIC, PAMSIL and HOSil. For the estimation of number of clusters with
ASW index we have also considered model-based and spectral clustering methods.

Note that BIC was used only with model-based clustering method and we did not
use all other internal estimation indices with model-based clustering. In principle all
of these internal indices can be used with model-based clustering for the estimation of
number of clusters but this is not a standard practice. Since BIC is based on maximum
likelihood it’s not logical to use BIC with clustering methods that don’t maximise the
likelihood. One can anticipate that maximum likelihood will always be better in terms
of BIC such that its a natural choice for model-based clustering. On the other hand,
a somewhat similar argument holds for the use of other internal validation indices to-
gether with model-based clustering i.e., for some of these combinations it’s either not
logical to combine two different or even conflicting aims or it is not quite obvious and
well explored in literature that the use of these together make sense or not.

The maximum number of clusters was set to 15 for the estimation of number of
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clusters. For H, CH, KL, BI and ASW we have considered the number of clusters from
2-15 and for PS, Gap and BIC from 1-15 number of clusters were used. For H, CH, KL
and Gap we have used R package “clustersim” (version: 0.45.2, Walesiak and Dudek
(2017)). ASW is calculated through R package “cluster” (Maechler et al. (2017)). For PS
and BI we have used R implementation through package “fpc” (version: 2.1.10, Hennig
(2015a)). For the Jump method we have used the R code provided by the author see
Sugar and James (2003a) for reference. We have used various transformation powers
for the Jump method in simulation, particularly, we have estimated ±̂k (see Section
2.5.1.7 for details) using Y = p/2, Y = p/3, Y = p/4, Y = p/5, Y = p/6 and Y = p/7.

In a nutshell, for each DGP, we have first performed clustering for 10 clustering
methods mentioned above for 2 to 15 numbers of clusters. From the DGP the true
number of clusters are known which are referred as fixed or known number of clus-
ters (k). For the fixed known k we have calculated ASW values and ARI for k-means,
pam, single, complete, average, Wards, McQuitty, Spectral, and model-based cluster-
ing methods. For PAMSIL and HOSil we have calculated ASW values and ARI values.
The ARI was calculated using the true clustering labels for each DGP. For these clus-
tering methods we have only reported mean ASW and ARI values. Only for PAMSIL
and HOSIL we have reported results for both fixed and estimated k. We have then es-
timated the number of clusters with H, CH, KL, Gap, Jump, PS, BI, ASW, BIC, PAMSIL,
HOSil using the clustering results calculated from the clustering methods.

From these simulations we can infer many interesting results. For instance, HOSil
clustering characteristics, analysis of HOSil for the estimation of k, and comparison of
HOSil with existing methods for clustering. Also this systematic study has provided an
insight about how existing clustering methods results differ from each other.

3.5.1 Discovering the true clustering

The major findings of the simulation are discussed in this section. Note that all dis-
cussions are based on the results on the B = 50 runs except for Model 13 which was
computationally expensive because of greater number of observations and number of
clusters. From Model 13, only B = 25 data sets were generated. Clustering results for
each DGP and clustering method included in the study are displayed in figures in Sec-
tion B.1 of Appendix B. These clustering results are only for one out of the 50 runs to
give the readers an idea about the clustering solution found by various methods and to
make discussions more understandable. Let HOSilk and HOSilk̂ denote the situation
when we used HOSil for the true known fixed k and when k was estimated by HOSil,
respectively. Similarly, PAMSILk and PAMSILk̂ notations hold for PAMSIL method. In
the following discussions whenever the term “size of clusters” is used, we mean to refer
the number of observations in clusters. The clustering represented in these figures are
for the known k case for all clustering methods included in the study except for HOSil
for which results are plotted for both known and estimated k. Moreover, cluster labels
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are represented by colors and digits.
The aggregated values for B = 50 of ASW and ARI data sets for each DGP are re-

ported in Tables 3.6-3.24. These results and results presented in Sections B.1, and B.2
(used in next section) of Appendix B are results of one simulation and are comparable.

Model 1 All the clustering methods performed well overall with a few misclassified
points (see Figure B.1). The best ASW was obtained from k-means method and highest
ARI was obtained from spectral clustering method (see Table 3.6). PAMSIL gave higher
ASW value as compared to HOSil but with a smaller value of ARI as compared to HOSil.

Model 2 k-means, model-based clustering and HOSil performed well. PAM, spec-
tral and PAMSIL clusterings have a few misclassified points whereas all the hierarchical
methods were not able to identify the desired known clustering result for Model 2 (see
Figure B.2). The highest ASW value was obtained from k-means clustering whereas
the best ARI was obtained from model-based clustering (see Table 3.7). PAMSIL have
achieved higher ASW value but lower ARI value as compared to HOSil.

Table 3.6 Results for Model 1.

fixed k
Methods ASW SE ARI
true 0.6340
k-means 0.6402 0.0017 0.8750
PAM 0.6400 0.0017 0.8902
single 0.5224 0.0297 0.7761
complete 0.6291 0.0043 0.9122
average 0.6323 0.0021 0.9163
Ward’s 0.6184 0.0058 0.9040
McQuitty 0.6184 0.0058 0.9040
Spectral 0.6259 0.0018 0.9946
model-based 0.6138 0.0046 0.9689
PAMSIL 0.6461 0.0031 0.8845
HOSil 0.6354 0.0026 0.9797

estimated k
PAMSIL 0.6461 0.0031 0.8845
HOSil 0.6354 0.0026 0.9797

Table 3.7 Results for Model 2.

fixed k
Methods ASW SE ARI
true 0.5575
k-means 0.5794 0.0029 0.7527
PAM 0.5820 0.0028 0.8074
single 0.3038 0.0179 0.0317
complete 0.4252 0.0143 0.2859
average 0.5400 0.0125 0.5561
Ward’s 0.4061 0.0199 0.2872
McQuitty 0.4061 0.0199 0.2872
Spectral 0.5543 0.0075 0.8179
model-based 0.5618 0.0036 0.9887
PAMSIL 0.5854 0.0034 0.8565
HOSil 0.5697 0.0032 0.9438

estimated k
PAMSIL 0.5854 0.0034 0.8565
HOSil 0.5699 0.0031 0.9363

Model 3 All the clustering methods combined the two closely related Gaussian
clusters together and divided the cluster with bigger spread among observations into
smaller clusters. Figure B.3 depicts the clustering results obtained for this model. Sin-
gle linkage gave a one point cluster for an observation far from the dense region of the
data. Only PAM and HOSil were able to retain the desired clustering for the fixed k.
PAMSIL was not able to recover the correct clustering even for the fixed known k. The
highest ARI was obtained for PAM and then for HOSil clustering for fixed k (see Table
3.8).
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Model 4 Complete, single, and k-means methods didn’t gave the correct clusterings
(see Figure B.4). All the hierarchical clustering methods have gave very low ARI values
(Table 3.9).

Table 3.8 Results for Model 3.

fixed k
Methods ASW SE ARI

true 0.5821
k-means 0.7884 0.0017 0.4651

PAM 0.5845 0.0034 0.9062
single 0.7873 0.0061 0.5103

complete 0.7869 0.0029 0.4753
average 0.8028 0.0026 0.5068
Ward’s 0.7916 0.0036 0.4839

McQuitty 0.7916 0.0036 0.4839
Spectral 0.7441 0.0213 0.4822

model-based 0.7350 0.0225 0.5409
PAMSIL 0.8070 0.0031 0.4960

HOSil 0.6354 0.0139 0.8358

estimated k
PAMSIL 0.8456 0.0018 0.5249

HOSil 0.8463 0.0012 0.5270

Table 3.9 Results for Model 4.

fixed k
Methods ASW SE ARI

true 0.6750
k-means 0.6837 0.0027 0.9177

PAM 0.6841 0.0028 0.9250
single 0.5342 0.0276 0.6784

complete 0.5707 0.0177 0.5905
average 0.6792 0.0029 0.9554
Ward’s 0.5359 0.0187 0.6563

McQuitty 0.5359 0.0187 0.6563
Spectral 0.5239 0.0357 0.9476

model-based 0.6758 0.0041 0.9984
PAMSIL 0.6898 0.0033 0.9447

HOSil 0.6799 0.0026 0.9927

estimated k
PAMSIL 0.6898 0.0033 0.9447

HOSil 0.6799 0.0026 0.9927

Model 5 Single, complete, Ward, McQuitty have not identified different covariances
and sizes of clusters correctly (Figure B.5). PAMSIL has also not identified this cluster-
ing structure correctly. The remaining methods performed good for this model. The
ASW values obtained were smaller from both PAMSIL and HOSil than the maximum
ASW value. HOSil has produced smaller ASW but greater ARI value as compared to
PAMSIL (see Table 3.10).

Model 6 Only Model-based clustering, PAMSIL and HOSil performed well (see Fig-
ure B.6). Although PAMSILk̂ and HOSilk̂ estimated the correct number of clusters, they
gave a few misclassified points. Table 3.11 represents the ASW and ARI values obtained
for this model. PAMSIL got higher ASW values but with smaller ARI values for both
fixed and estimated k as compared to HOSil.

Model 6.A is a variation of Model 6 where cluster 3 was moved away from the top
of cluster 2. All the hierarchical clustering method and k-means performed poorly
here. Only model-based clustering and HOSil gave an exact classification (Figure B.7).
The performance of k-means, PAM and spectral was also close to the methods just
mentioned, but they have combined a few points from cluster 1 with cluster 2. PAM-
SIL and HOSil was not able to estimate the numbers of clusters here as three. They
have combined the two clusters that were far away from a compact cluster. The maxi-
mum ARI was obtained from model-based clustering method (Table 3.12). HOSil pro-
duced smaller ARI as compared to PAMSIL. Similar results were observed for Model
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Table 3.10 Results for Model 5.

fixed k
Methods ASW SE ARI

true 0.5878
k-means 0.5917 0.0039 0.9448

PAM 0.5921 0.0039 0.9471
single 0.5164 0.0198 0.7096

complete 0.4963 0.0146 0.7091
average 0.5838 0.0066 0.9155
Ward’s 0.5265 0.0150 0.7641

McQuitty 0.5265 0.0150 0.7641
Spectral 0.5352 0.012 0.9308

model-based 0.5147 0.0172 0.9903
PAMSIL 0.5831 0.0054 0.9649

HOSil 0.5814 0.0037 0.9722

estimated k
PAMSIL 0.5992 0.0088 0.8610

HOSil 0.5959 0.0058 0.8929

Table 3.11 Results for Model 6.

fixed k
Methods ASW SE ARI

true 0.6021
k-means 0.6357 0.0033 0.8194

PAM 0.6354 0.0032 0.8462
single 0.3163 0.0359 0.1377

complete 0.5217 0.0124 0.5606
average 0.6076 0.0092 0.865
Ward’s 0.5082 0.0128 0.5977

McQuitty 0.5082 0.0128 0.5977
Spectral 0.5473 0.0174 0.8829

model-based 0.6080 0.0039 0.9834
PAMSIL 0.6390 0.0035 0.8677

HOSil 0.6716 0.0427 0.9415

estimated k
PAMSIL 0.6402 0.0034 0.8476

HOSil 0.6716 0.0428 0.9192

6.B (Figure B.8), where HOSil again combined the previously mentioned two clusters
and added a new compact cluster to the data. For this model HOSil produced smaller
ARI and ASW values as compared to PAMSIL (Table 3.13).

Table 3.12 Results for Model 6.A.

fixed k
Methods ASW SE ARI

true 0.6345
k-means 0.6505 0.0025 0.9114

PAM 0.6503 0.0025 0.9183
single 0.5007 0.0129 0.5972

complete 0.5615 0.0124 0.7071
average 0.6247 0.0073 0.8321
Ward’s 0.5573 0.0117 0.7098

McQuitty 0.5573 0.0117 0.7098
Spectral 0.5901 0.0204 0.8904

model-based 0.6375 0.0029 0.9873
PAMSIL 0.6486 0.0036 0.9266

HOSil 0.5912 0.0030 0.7853

estimated k
PAMSIL 0.6823 0.0027 0.5764

HOSil 0.6867 0.0022 0.5890

Table 3.13 Results for Model 6.B.

fixed k
Methods ASW SE ARI

true 0.7055
k-means 0.7137 0.0021 0.6834

PAM 0.7135 0.0021 0.6839
single 0.5953 0.0118 0.7029

complete 0.6210 0.0088 0.6605
average 0.6895 0.0058 0.7083
Ward’s 0.6171 0.0084 0.6812

McQuitty 0.6171 0.0084 0.6812
Spectral 0.6290 0.0292 0.6100

model-based 0.7026 0.0024 0.9907
PAMSIL 0.7174 0.0022 0.9522

HOSil 0.6432 0.7098

estimated k
PAMSIL 0.7278 0.0021 0.8049

HOSil 0.7216 0.7838

Model 7 k-means, PAM, Model-based clustering, PAMSIL and HOSil gave the clus-
tering with a few misclassified points (see Figure B.9). Single linkage performed very
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bad for this data resulting the lowest ARI (0.3042) among all methods. HOSil has pro-
duced smaller ARI values (0.9293) as compared to PAMSIL (0.9686) and many other
clustering methods (see Table 3.14).

Model 8 The cluster labels 1, 2, 3 and 4 in panel (b) of the Figure B.10 represent the
clusters generated from Student’s t (t ), Gaussian (N ), Uniform (U) and N distributions
respectively. Single, complete, Ward’s, McQuitty methods have combined many points
from the t distributed cluster to the U distributed cluster. k-means and PAM were not
much different in this respect. Average linkage has combined the N distributed cluster
with the U distributed cluster by putting a few points from the U distributed cluster
in a separate cluster. Spectral clustering has divided the N cluster into two clusters
and combined the t andU clusters. Only Model-based clustering, PAMSIL and HOSil
were able to identify the t andU clusters (fixed k). However, many methods including
HOSil, PAMSil failed to estimate the numbers of clusters as four here. They put all the
three clusters from N ,U and t distributions together in one cluster. PAMSIL produces
higher ASW value as compared to HOSil (see Table 3.15). The maximum ASW was ob-
tained from average linkage method and this maximum was higher than ASW value
achieved from PAMSIL. However, the ARI value for HOSil was higher than PAMSIL and
from all other clustering methods except from model-based clustering for fixed k. For
estimated k the ARI for both PAMSIL and HOSil are very low.

Table 3.14 Results for Model 7.

fixed k
Methods ASW SE ARI

true 0.5963
k-means 0.6029 0.0026 0.9633

PAM 0.6027 0.0026 0.9633
single 0.0743 0.0335 0.3042

complete 0.5778 0.0056 0.8861
average 0.5955 0.0028 0.9350
Ward’s 0.5388 0.0086 0.8697

McQuitty 0.5388 0.0086 0.8697
Spectral 0.4932 0.0216 0.8988

model-based 0.6029 0.0028 0.9623
PAMSIL 0.6076 0.0030 0.9686

HOSil 0.5965 0.0031 0.9293

estimated k
PAMSIL 0.6076 0.0030 0.9686

HOSil 0.5965 0.0031 0.9293

Table 3.15 Results for Model 8.

fixed k
Methods ASW SE ARI

true 0.7388
k-means 0.7634 0.0019 0.8830

PAM 0.7673 0.0017 0.9159
single 0.5941 0.0091 0.6520

complete 0.6558 0.0052 0.6424
average 0.6753 0.0046 0.6425
Ward’s 0.6630 0.0056 0.6714

McQuitty 0.6630 0.0056 0.6714
Spectral 0.5484 0.0322 0.8100

model-based 0.7279 0.0045 0.9787
PAMSIL 0.7650 0.0031 0.9273

HOSil 0.7560 0.9659

estimated k
PAMSIL 0.7793 0.0025 0.5811

HOSil 0.7758 0.0020 0.5211

Model 9 has four correlated Gaussian clusters. Model-based, PAMSIL, k-means,
PAM, average linkage and HOSil were able to identify the clustering most closely re-
lated (in order names are mentioned) to the true clustering (see Figure B.11) based on
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ARI values (see Table 3.16). Spectral clustering and single linkage methods have com-
bined two clusters and formed a fourth cluster by just isolating 2 and 1 observations,
respectively. All the other hierarchical clustering methods performed poorly as well.
HOSil has produced higher ASW values as compared to PAMSIL.

Model 10 has five clusters each coming from ¬2, F, t , N and SN distributions. Sin-
gle, Ward’s, McQuitty and spectral clustering were not able to return the desired clus-
tering results (Figure B.12). These methods have produced smaller ARI values as com-
pared to other methods (see Table 3.17). PAMSIL has produced higher ASW and ARI
values as compared to HOSil for both fixed and estimated number of clusters.

Table 3.16 Results for Model 9.

fixed k
Methods ASW SE ARI

true 0.6295
k-means 0.6417 0.0018 0.9679

PAM 0.6415 0.0018 0.9674
single 0.2994 0.0396 0.5652

complete 0.5500 0.0123 0.7760
average 0.6367 0.0022 0.9548
Ward’s 0.5421 0.0132 0.7798

McQuitty 0.5421 0.0132 0.7798
Spectral 0.5369 0.0274 0.8875

model-based 0.6400 0.0019 0.9769
PAMSIL 0.6329 0.0035 0.9733

HOSil 0.6374 0.0023 0.9546

estimated k
PAMSIL 0.6341 0.0032 0.9323

HOSil 0.6395 0.0020 0.8611

Table 3.17 Results for Model 10.

fixed k
Methods ASW SE ARI

true 0.8227
k-means 0.8251 0.0014 0.9857

PAM 0.8250 0.0014 0.9834
single 0.6887 0.0109 0.8159

complete 0.7704 0.0141 0.9158
average 0.8205 0.0030 0.9766
Ward’s 0.8061 0.0066 0.9573

McQuitty 0.8061 0.0066 0.9573
Spectral 0.5877 0.0318 0.8210

model-based 0.7645 0.0078 0.9405
PAMSIL 0.8259 0.0016 0.9863

HOSil 0.8240 0.0016 0.9845

estimated k
PAMSIL 0.8259 0.0016 0.9863

HOSil 0.8240 0.0016 0.9845

Model 11 has six clusters formed from Weibull, Exponential, skew-Gaussian, Gamma,
non-central Beta and Uniform distributions represented by the labels 1 to 6 respec-
tively, displayed in Figure B.13 panel (b). Single linkage has combined clusters number
3 and 5 and has divided cluster number 4 into two clusters. Complete, average, Ward’s
and Mcquitty have combined clusters 1, 2, 3 and 5 by splitting cluster 4 into four clus-
ters. k-means, PAM and spectral methods have combined clusters 1 and 2 and have
divided cluster 4 into two clusters. Model-based clustering returns a model with 5
components by considering cluster 1 and 2 as a single component. Only HOSil and
PAMSIL have estimated the correct number of clusters and correct solution for clus-
tering (refer to Figure B.13). In terms of ASW and ARI both HOSil and PAMSIL gave
very close values with HOSil doing slightly better in terms of ASW value for estimated
k (Table 3.18). Both HOSil and PAMSIL performed much better than all other methods
in terms of ARI values.
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Model 12 has 6 correlated Gaussian clusters. Only k-means, model-based cluster-
ing and HOSilk have discovered the true clustering as depicted in Figure B.14. Many
clustering methods have combined the two closely located Gaussian clusters into one
cluster and have divided one of the other four clusters into two clusters. Model-based
clustering method performed best in terms of ARI values among all methods (Table
3.19). After this average linkage, HOSil and PAMSIL has performed good in terms of
ARI values. HOSil has produced higher ASW value but lower ARI values as compared
to PAMSIL.

Table 3.18 Results for Model 11.

fixed k
Methods ASW SE ARI

true 0.7479
k-means 0.7213 0.0013 0.7710

PAM 0.7445 0.0018 0.9598
single 0.5654 0.0098 0.5967

complete 0.5738 0.0026 0.2982
average 0.5798 0.0050 0.3755
Ward’s 0.5730 0.0041 0.2938

McQuitty 0.5730 0.0041 0.2938
Spectral 0.6425 0.0164 0.7932

model-based 0.7330 0.0018 0.8176
PAMSIL 0.7485 0.0019 0.9966

HOSil 0.7478 0.0022 0.9888

estimated k
PAMSIL 0.7488 0.0018 0.9942

HOSil 0.7493 0.0016 0.9924

Table 3.19 Results for Model 12.

fixed k
Methods ASW SE ARI

true 0.6392
k-means 0.6406 0.0021 0.9655

PAM 0.6412 0.0021 0.9539
single 0.5400 0.0124 0.7008

complete 0.5355 0.0096 0.7182
average 0.6299 0.0048 0.9385
Ward’s 0.5605 0.0099 0.7916

McQuitty 0.5605 0.0099 0.7916
Spectral 0.5305 0.0203 0.8819

model-based 0.6099 0.0077 0.9853
PAMSIL 0.6502 0.0027 0.8962

HOSil 0.6634 0.0023 0.8914

estimated k
PAMSIL 0.6735 0.0025 0.9110

HOSil 0.6814 0.0024 0.8944

Model 13 has 14 Gaussian clusters each having different covariance matrices. HOSil
has shown best performance for fixed k and estimation of k for ASW and ARI values
among all methods considered. After HOSil, single, average, and PAM methods have
also performed close to it. The clustering results are displayed in Figure B.15. Model-
based, PAMSIL, complete, and spectral clustering performed poor here for both fixed
and estimated k. Table 3.20 shows the numerical results for this model.

Model 14 has 3 clusters. All the methods included in the study were able to retrieve
desired clustering solution except model-based clustering for fixed k. Figure B.16a rep-
resents the clustering result obtained by all clustering methods except model-based
clustering. Model-based clustering was not able to determine any clustering results
for this model for fixed k therefore ASW and ARI can not be calculated. It has always
estimated 1 number of clusters. All clustering methods gave same ASW with ARI=1
except spectral clustering method which performed bad ( see Table 3.21).

Model 15 has 9 clusters. Figure B.16b depicts the clustering results found by k-
means, PAM, single, average, model-based, and HOSil clustering methods. These meth-
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Table 3.20 Results for Model 13.

fixed k
Methods ASW SE ARI

true 0.4331
k-means 0.7369 0.0042 0.9549

PAM 0.7541 0.0016 0.9969
single 0.7508 0.0037 0.9958

complete 0.5930 0.0104 0.7710
average 0.7498 0.0029 0.9899
Ward’s 0.7187 0.0078 0.9295

McQuitty 0.7187 0.0078 0.9295
Spectral 0.5371 0.0199 0.7855

model-based 0.4354 0.0228 0.6396
PAMSIL 0.6280 0.0030 0.7316

HOSil 0.7568 0.0017 0.9985

estimated k
PAMSIL 0.6460 0.0025 0.7207

HOSil 0.7579 0.0016 0.9944

Table 3.21 Results for Model 14.

fixed k
Methods ASW SE ARI

true 0.8111
k-means 0.8111 0.0023 1

PAM 0.8111 0.0023 1
single 0.8111 0.0023 1

complete 0.8111 0.0023 1
average 0.8111 0.0023 1
Ward’s 0.8111 0.0023 1

McQuitty 0.8111 0.0023 1
Spectral 0.6971 0.0364 0.9105

model-based NA NA NA
PAMSIL 0.8111 0.0023 1

HOSil 0.8144 0.0023 0.9992

estimated k
PAMSIL 0.8111 0.0023 1

HOSil 0.8144 0.0023 0.9992

ods were able to retrieve the correct clusterings with ARI=1 (Table 3.22). Complete,
Ward, McQuitty, and PAMSIL also performed well.

Model 16 The true clustering for this model in two dimensions are depicted in Fig-
ure B.17a and numerical results are presented in Table 3.23. All the methods gave
correct clustering results as well as ARI=1 except k-means (ARI=0.9775), model-based
(ARI=0.8945) and spectral methods (ARI=0.8045).

Model 17 The graphical and numerical clustering results are presented in Figure
B.17b and Table 3.24, respectively. All the clustering methods performed well and pro-
duced ARI=1 except PAMSIL and HOSil for the estimation of number of clusters. These
two methods have always estimated 2 number of clusters resulting in a smaller ARI
than 1. However, they were able to produced the desired clustering results for the fixed
k always, resulting in the ARI=1.
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Table 3.22 Results for Model 15.

fixed k
Methods ASW SE ARI

true 0.8036
k-means 0.8036 0.0011 1

PAM 0.8036 0.0011 1
single 0.8036 0.0011 1

complete 0.8014 0.0017 0.9964
average 0.8036 0.0011 1
Ward’s 0.8033 0.0011 0.9993

McQuitty 0.8033 0.0011 0.9993
Spectral 0.6337 0.0202 0.8810

model-based 0.8036 0.0011 1
PAMSIL 0.8037 0.0011 0.9983

HOSil 0.8062 0.0011 1

estimated k
PAMSIL 0.8037 0.0011 0.9983

HOSil 0.8062 0.0011 1

Table 3.23 Results for Model 16.

fixed k
Methods ASW SE ARI

true 0.9230
k-means 0.9101 0.0042 0.9775

PAM 0.9230 0.0027 1
single 0.9230 0.0027 1

complete 0.9230 0.0027 0.9998
average 0.9230 0.0027 0.9998
Ward’s 0.9230 0.0027 0.9998

McQuitty 0.9230 0.0027 0.9998
Spectral 0.5846 0.0315 0.8045

model-based 0.8737 0.0028 0.8945
PAMSIL 0.9230 0.0029 1

HOSil 0.9083 0.0027 0.9995

estimated k
PAMSIL 0.9230 0.0029 1

HOSil 0.9083 0.0027 0.9995

Table 3.24 Results for Model 17.
fixed k

Methods ASW SE ARI
true 0.3299

k-means 0.3299 2e-04 1
PAM 0.3299 2e-04 1

single 0.3299 2e-04 1
complete 0.3299 2e-04 1
average 0.3299 2e-04 1
Ward’s 0.3299 2e-04 1

McQuitty 0.3299 2e-04 1
Spectral 0.3299 2e-04 1

model-based 0.3299 2e-04 1
PAMSIL 0.3299 2e-04 1

HOSil 0.3299 2e-04 1

estimated k
PAMSIL 0.3834 2e-04 0.5673

HOSil 0.3855 2e-04 0.5673

3.5.2 Performance for the estimation of k

In this section comparisons of different clustering method and validation indices for
the estimation of number of clusters is made. The results are presented in Appendix
B.2. The table represents the counts obtained for estimated k from 1-15 from each

81



combination of clustering method and validation indices considered in the study. The
percentage performance rate (PPR) is reported throughout in this section for compari-
son which is calculated by dividing the count for desired value which is the true known
k by total data sets generated which is B=50 or 25 (for Model 13 only).

Model 1 Table B.1 represents the number of clusters estimated by various clustering
methods and various indices used. ASW (complete, average, k-means, PAM, spectral,
model-based), Jump (with p/3), PS (with k-means), BI (with k-means), PAMSIL, and
HOSil were consistent in the estimation of the number of clusters in all runs. The per-
formance of Hartigan’s method was not good.

Model 2 has two clusters. The results for the estimation of the number of clusters
are given in Table B.2. H and KL have lowest performance rate. The Jump method is
also not good, as it has estimated the numbers of clusters as 2, just 16 times out of 50
runs. CH and BI also have low overall performance rate. PS (98%) and BI (94%) have
also performed well just with k-means. The maximum percentage of correct estima-
tion of the number of clusters for Gap (with PAM) was 84%. ASW (with k-means, PAM,
spectral, model-based), model-based clustering (with BIC), PAMSIL and HOSil have
PPR at 98%, 100%, 100% and 98% respectively.

Model 3 has three clusters. The counts received for all the methods are displayed
in Table B.3. None of the indices included suggested 3-clusters solution very often.
In fact, the maximum number of choices for 3-clusters was obtained from PS (single
linkage:64%, PAM: 62%), and H (with k-means:48%). All the methods were in favour of
the 2-cluster solution here.

Model 4 (Table B.4) has three Gaussian clusters, where the bigger cluster (in size
and spread) is located between two smaller and compact clusters. H, CH and KL per-
form poorly. Gap, PS and BI performed very bad with all clustering methods except k-
means. ASW (average, k-means, PAM, model-based), Jump (p/3, p/4), PS (k-means),
BI (k-means), model-based, PAMSIL, and HOSil showed 100% PPR. Gap with average
linkage have a PPR of 88%. All the other choices had much lower PPR than 50%.

Model 5 (Table B.5) has 3 Gaussian clusters of unequal sizes and variations. Only
HOSil has a better PPR(96%) here. Gap (using PAM), model-based (with BIC), ASW
(using PAM), and PAMSIL gave 80%, 65%, 64%, and 63% PPR, respectively. H, CH, KL
and Jump performed poorly here.

Model 6 (Table B.6) has three clusters of different variations among observations
and of equal sizes. ASW (with k-means and PAM), PS (with k-means and PAM), BI
(with PAM), model-based (with BIC), PAMSIL and HOSil performed well.

Model 6.A (Table B.7) only Gap (k-means), PS (Ward, k-means and PAM), and model-
based clustering suggest the three cluster solution with higher percentages. ASW with
all the clustering methods, PAMSIL, and HOSil suggest two clustering solutions by
combining cluster 1 and 2 together.

Model 6.B (Table B.8) ASW, PAMSIL, and HOSil suggest number of clusters three
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instead of four majority of times. Adding a new cluster did not help in identification of
cluster one and two in Model 6.B. However, PS (Ward, k-means, PAM), BI (PAM) and
model-based (with BIC) clustering suggest a 4-clusters solution with 90%, 84%, 100%,
98% and 100% of the time, respectively.

Model 7 has four very close clusters. H, KL and Gap methods did not perform well.
Overall, the performance of estimation methods with clustering methods was good
here. Many combinations achieved 100% PPR for this model.

Model 8 has four clusters. Most of the methods were not able to suggest 4-cluster
solution. Only model-based clustering found a 4-cluster solution for 66 times out of
100 for this model. The inclinations of all the other methods were towards two and
three cluster solutions (results reported in Table B.10). PAMSIL (28 counts) and HOSIL
(34 counts) is in favour of 2-cluster solution. ASW also suggest 2-cluster solutions with
all the methods with majority counts.

Model 9 (Table B.11) has 4 correlated Gaussian clusters. Many methods failed to
estimate 4-cluster solution here. Only CH (complete: 92%), Jump (p/3/p/3: 100%), PS
(k-means: 70%), model-based clustering (BIC: 100%), ASW (Complete:80%, PAM:86%,
model-based:94%), PAMISL(90%), and HOSil (80%) were able to estimate 4-cluster so-
lution here.

Model 10 (Table B.12) has five clusters. H, CH, KL, and model-based (BIC) per-
formed poorly. ASW (single, complete, spectral), Gap (single, complete, Ward, k-means,
PAM), PS (single, k-means), BI (single, k-means) performed poorly. Only Jump, PS
(Ward, PAM), PAMSIL, and HOSIL gave 100% PPR.

Model 11 (Table B.13) has 6 clusters. H, CH, KL, ASW (except PAM), Gap, BS, BI,
PS (except PAM) have no high preference for any single number of clusters. They have
estimated a range of different numbers of clusters. Jump(p/3) suggests 6 numbers of
clusters 40 times out of 50. Model-based clustering with BIC suggests the 5-cluster so-
lution 45 times. ASW with model-based clustering have always estimated 5-cluster so-
lution (50 times) and with PAM clustering it has favoured 6-cluster solution (40 times).
HOSil suggests the 6-cluster solution 48 times and PAMSIL 47 times.

Model 12 (Table B.14) has six Gaussian clusters where the variables used to gener-
ate 2 dimensions within clusters are correlated. H, CH and KL have no high preference
for any number of clusters. ASW, PAMSIL, and HOSil suggest a five clusters solution.
Only model-based (BIC) clustering and Gap (average, PAM) suggest a six clustering so-
lution 36, 32 and 36 times out of 50, respectively.

Model 13 (Table B.15) has 14 clusters. Many methods failed entirely to estimate
the number of clusters as 14 here including H, KL, Gap, PS, BI, model-based (BIC) and
PAMSIL. Among other methods, only few combinations performed well. CH (single,
average), ASW (single, average) and HOSil have estimated the correct number of clus-
ters, and the PPR for the correct estimation were 96, 92, 92, 88, and 84, respectively.
Gap, PS and BI suggested the numbers of clusters to be two for a majority of times.
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Model-based clustering has estimated 8 and 9 clusters 5 and 20 times, respectively.
Model 14 has three elongated clusters shown in Figure B.16a. The estimation of the

number of clusters is shown in Table B.16. H, CH and KL were not able to estimate three
clusters except a very few times. Jump(p/7) has estimated three clusters 47 out of 50
times. ASW, PS, BI, PAMISL, and HOSil estimated the correct number of clusters with
all the clustering methods included for a majority of the times. Model-based clustering
with BIC always suggested a 1-cluster solution for this model.

Model 15 has 9 clusters shown in Figure B.16b. CH (only with single linkage), Gap
(single), Jump, PS (only with Ward and PAM), BI (only with Ward and PAM), model
based (BIC) clustering, ASW (except with k-means and spectral), PAMSIL, and HOSil
have 100% PPR. H, KL, CH and Gap with other clustering methods were not able to
estimate nine clusters a majority of times. The complete results for the estimation of
the number of clusters are given in Table B.17.

Model 16 has ten clusters in 100 dimensions. Many methods failed to estimate
correct clusters here. The Jump method could only estimate 10 clusters 16 times out of
50 with transformation power p/2. The maximum number of times CH estimated 10
clusters was only 20 with single linkage. KL could not estimate the numbers of clusters
to be 10 even once with any of the clustering methods included. Gap estimated 14
clusters mostly. BI always estimated 2 clusters. Only PS (except with k-means), model-
based with BIC, ASW (except with k-means and spectral), PAMSIL, and HOSIL have
always estimated 10-cluster solution.

Model 17 has three clusters in 1000 dimensions. Gap (single, average, McQuitty),
aand model-based clustering with BIC estimated the correct number of clusters al-
ways. BI (complete linkage) and PS (Ward) have also performed well with 96% and
82% PPR, respectively. H, CH, KL, ASW, PAMSIL and HOSil suggested two clusters for
this model. Jump always estimated 15 clusters. See Table B.19 for complete results.

Summary The performance of the H and KL indices was not good for the majority
of the models included. The CH method performed well only for very few models and
that was only for one or two clustering methods. The Jump method also estimated
correct number of clusters for a very few models (never for Model 3, 13, 17) and very
low PPR for (Model 2, 5, 6.A/6.B, 8, 12, 16). The results for the Gap method were below
average for the majority of the models included in the analysis. The BI and PS also
performed badly for majority of the models except for a few of them with one or two
clustering methods only. Model-based clustering has estimated k̂ other than expected
for Models 3, 5, 8, 10, 11, 12, 13 and 14. HOSil clustering also estimated k other than
the true k for Models 3, 6.A/B, 8, 12 and 17. PAMSIL was also not able to estimate
the correct number of clusters for all the models mentioned for HOSil and in addition
Model 13 and had much smaller PPR for Model 5.
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3.6 Further exploration

As found in the previous section, HOSil has shown potential for retrieving the correct
clustering aligned with the DGPs for the known k case and has shown good perfor-
mance for the estimation of the true k for the majority of the models. We have also
explored other models than the ones considered in the previous section in order to dig
in more into what other kind of clustering structures HOSil can identify. We don’t in-
tend to give all of these models for brevity sake and only a few more datasets are given
below followed by the discussions on them. The selection of these models has been
made keeping in mind to provide insight not only about what other types of clustering
challenges HOSil can achieve but also to make reader aware of the models where HOSil
will fail.

Model 18:

Five clusters in two dimensions: Four clusters with I2 covariance matrix each having 50
observations were generated from a Gaussian distribution centred at (0, 8), (8, 0), (0, -
8), (-8, 0). 50 realizations from a uniform distribution were generated in the interval (-2,
2) along both dimensions independently. The resulting clusters look like one square-
shaped cluster surrounded by 4 spherical clusters.

Model 19:

7 Gaussian clusters were generated through independent variables in 2 dimensions.
The data set contains a Gaussian cluster of size 100 with mean (0, 0.1) and covariance
"

0.3 0
0 0.1

#

. The remaining 6 clusters contain 50 observations each with covariance

matrix as ß=
"

0.1 0
0 0.3

#

. The clusters are centred at (-1, 2.5), (-1, 7.5), (0, 2.5), (0, 7.5),

(1, 2.5) and (1, 7.5).

Model 20:

9 equally sized differently shaped clusters in 2 dimensions. Four elongated clusters
are added to the corners of Model 18. For this four different Gaussian bi-variates were
added to a uniformly generated variable. Let x and y denote the first and second di-
mensions of clusters and v ª U(°1,1). Generate cluster 1 as: x = y ª v + N (°7,0.1),
cluster 2 as: x = y ª v +N (7,0.1), cluster 3: as x = v +N (°7,0.1), y = v +N (7,0.1), and
cluster 4 as: x = v +N (7,0.1), y = v +N (°7,0.1). Each cluster contains 50 observations.
This model was designed by combining the situations in Model 14 and Model 18 to see
will HOSil also be able to handle these situations combined.
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Four Shapes:

200 observations were generated from the “mlbench.shapes” data set from the R pack-
age “mlbench” (version: 2.1.1, Leisch and Dimitriadou (2010)). The data set contains
four different shapes lying very close to each other. The four shapes are a Gaussian,
square, triangle and a wave in two dimensions. The purpose is to check whether HOSil
can identify each shape or not.

The following data sets are also freely available and taken from the Fundamental
Clustering Problems Suite (Ultsch (2005), FCPS)

Diamonds:

The data set contains two clusters of diamond shape in 2 dimensions and has 800 ob-
servations. Note that we have just included 400 observations to reduce the runtime of
the algorithm. Each of the clusters has 200 observations. The clusters are defined by
the densities. The purpose is to check whether HOSil can identity two similar clusters
separately if such a situation arises in real life.

Tetra:

The data set contains 4 clusters in three dimensions and has 400 observations. The
clusters are almost touching and have no clear separation between them.
These data sets are shown in Figures 3.3 and 3.4.
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Figure 3.3 Data plots for (a) Model 18, (b) Model 19, and (c) Model 20.
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Figure 3.4 Data plots for (a) Dimonds data, (b) Four Shapes data, and (c) Tetra data
dimensions 1 and 2, and (d) Tetra data dimensions 1 and 3.

For the dataset defined above, HOSil returns the expected clustering results with
an advantage of estimating the numbers of clusters correctly itself. Figure B.18 depicts
the clustering results obtained by HOSil against estimated k for Model 18, 19 and 20.
For all of these models HOSil was successful in capturing the clustering results as well
as the estimation of number of clusters as defined by DGPs. All the other existing clus-
tering methods also returned the correct clustering with the correct estimated k except
model-based clustering for the Four Shapes data set(see Figure B.19c), which does not
agree with the desired clustering identified by the other methods.

We now define some of the data sets to give an idea what kind of clusterings HOSil
cannot identify. HOSil was not always successful in giving the expected clustering re-
sult that comply with DGPs for the fixed k case, and this is also true for the existing
clustering methods. The data sets are first defined below followed by the discussion on
them.

Model 21:

13 clusters in 2 dimensions. 100 observations are generated from the non-central t
distributions independently parameterized as t25(5) and t25(10). 12 clusters are gener-
ated from Gaussian distribution each having 25 observations and common covariance
matrix as 0.12I2. The clusters are centred at (0, 5), (0, 8), (0, 20), (0.5, 0.3), (2, 13), (2, 17),
(4, 5), (7, 18), (8, 5), (8, 15), (10, 5) and (10, 20).

Smiley:

200 observations were generated from the “mlbench.smiley” data set from R "mlbench"
package. The data set contains two Gaussian eyes, one trapezoid nose and a parabolic
mouth. The purpose was to check whether HOSil can identify different parts of the face
included each as a cluster.
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Lsun:

The data set contains 3 clusters and 400 observations in two dimensions. The clusters
differ in their variance and have unequal inter cluster distances. This data set is from
FCPS (Ultsch (2005)).

Aggregation

The data set has 7 clusters in 2 dimensions and contains 788 observations. The dataset
is taken from Gionis et al. (2007). All the seven clusters have different shapes, have
different cluster diameters, sizes and cluster distances from each other. The four data
sets are displayed in Figure 3.5.
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Figure 3.5 Data plots for Model 21, Smiley, Lsun, and Aggregation data sets.

For Model 21 (Figure B.20), many clustering methods have split the bigger central
cluster into 2 or 3 smaller clusters. On the other hand they have also combined smaller
clusters into one bigger cluster. For the Lsun data (Figure B.21), only single linkage was
able to capture desired clustering. For Aggregation data, HOSil estimated 5 as number
of clusters by putting the three spherical balls into one cluster. Only average linkage
was able to retain the desired clustering here (see Figure B.22). Figure B.23 shows the
clustering results for the Smiley data set. Only single linkage, spectral clustering and
HOSilk were able to return the Smiley data classification. HOSil did not estimate the
correct number of clusters here.

A common characteristic in Model 21, Smiley, and Aggregation data is they don’t
have same within cluster distances. In order to get a good ASW value, the within-
cluster dissimilarities should be small as compared to between clusters dissimilarities.
In case of wide spread of observations within clusters i.e., large distances between clus-
ters the small within-cluster dissimilarities requirement of ASW index dominate and it
splits this bigger cluster into smaller clusters such that rather than having one cluster
with bigger within cluster distances it prefers to split this cluster into nicely compacted
smaller clusters.
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One of the major results of the simulations was that for some data models the ASW
based clustering optimiser function can produce the desirable clusters but might not
estimate that number of clusters, for instance Model 3, 6.A, 6.B, 8, 12 and smiley data
sets. Which is surprising result because ASW is in extensive use for the estimation of
number of clusters rather than for finding clustering.

3.7 Complexity Analysis

The time complexity of calculating the Euclidean distance between a pair of points
having p dimensions has a linear time complexity, i.e., O(p) for two unique obser-
vations in data say X1 = (x11, · · · , x1p ) and X2 = (x21, · · · , x2p ). There are total n(n °
1)/2 unique pair of points in a data sets of n points such that the total complexity is
O(pn(n ° 2)/2). HOSil takes as an input the pairwise dissimilarities between the ob-
jects to cluster. Therefore, this complexity doesn’t add to HOSil’s complexity. We now
calculate the complexity of HOSil as below.

For a data set of size n to build the full hierarchy there will be n levels in the hier-
archy. Let the level of hierarchy is denoted by l . Starting from the bottom at level l = 1
there will be n clusters. At level l = 2 there will be n °1 clusters, so on such that when
we reach near the top, at level l = n ° 2 there will be three clusters, at level l = n ° 1
there will be two clusters and finally, at level l = n there will be just one cluster. For
ASW optimization there should be at least two points in one cluster therefore we can
not start at l = 1 and there should be at least two clusters in a clustering therefore, we
must stop at l = n°1 when there are two clusters. The total hierarchy where operations
will actually take place are l = 2, · · · , l = n °2.

At each hierarchy level there are certain combinations to be checked. These are,
(n°1)

C 2,
(n°2)

C 2,
(n°3)

C 2, · · · ,
3
C 2,

2
C 2 for hierarchy levels l = 2, l = 3, · · · , l = n °3, l = n °2.

This can be summarized as (n ° 3)
(n°i )

C 2, i = 1,2, · · · , (n ° 3). The time complexity is
equal to the maximum number of combinations there are to calculate. This gives a
time complexity of O(n

n
C 2) (ignore the constant terms gives the maximum complex-

ity). The highest complexity that comes from here is (n °3)
(n°1)

C 2. As data size n will
grow the combination will grow, and hence the complexity will grow.

At each hierarchy level for each of the combinations the algorithm has to perform
a set of different operations which involves nested loops. The algorithm has main
function that calls other functions which involves a sorting algorithm (quadratic time
O(n2)), and four set of nested loops used to implement the ASW formula. Three sets
out of these four set of loops has 2 nested loop hence Quadratic time O(n2) complexity.
The only remaining set has 3 nested loops hence the cubic complexity. Note that these
four set of loops have “if” and “if-else” statements at different levels which are only as-
signment statements thus time complexity is constant O(1) and they don’t contribute
towards the reduction in the nested loops’ complexity. These are ignored because the
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smaller or constant complexities are ignored in presence of higher complexities. Ag-
gregating these becomes 4O(n2)+O(n3) . Multiplying this with the earlier complexity
we get the total complexity of the algorithm as O(n

n
C 2)[4O(n2)+O(n3)]. Which sim-

plifies to O(n
n
C 2)O(n3) =) O(n4 n

C 2).

3.7.1 Runtime complexity

The proposed method takes more time than the other clustering algorithms consid-
ered in this work. Since there are lots of nested loops involved, we have implemented
the algorithm in C++ and have provided an interface for its call in the R language (R
Core Team (2015)). We have compared the runtime of the proposed method with the
existing algorithms for all the simulated data sets of various sizes, dimensions and
numbers of clusters used in the simulation. The computations were done using the
UCL super computing facility Legion, and MacBook Pro 2.8 GHz i7 processor with a
16 GB of RAM memory. Table 3.25 contains the runtime of HOSil. Note that only time
taken by the proposed algorithm is mentioned, however, the time for each method was
recorded. The time reported here does not include the time for distance calculations.
Although the proposed algorithm’s performance for retrieving an accurate clustering
is good with the advantage that it can also estimate the number of clusters provided
the time it takes. It is not good for the data sets with more than (500-800) observations.
Thus, the algorithm is only useful for the smaller data sets. However larger p is not a
problem for the algorithm (for instance see data Model 16 and 17) because it’s not rep-
resented in distances. The algorithm is implemented in such a way that if k is known,
then the algorithm can be stopped at the desired hierarchy level. It is worthwhile to
look for some fast approximation to improve the algorithm’s performance potential for
the data sets of bigger sizes. In the next section we make a proposal with the potential
of reducing the computational time complexity of the HOSil algorithm.

3.8 A faster approximation

One immediate suggestion could be to combine the hierarchical clustering with par-
titioning methods to reduce the computational cost. The idea is to first partition the
data for very large k from a partitioning clustering algorithm and then from there start
building the hierarchy to take advantage of this method. Since partitioning methods
take less time, they should be computationally more efficient than HOSil for relatively
bigger data sets. The choice of k depends upon how large we can go such that its afford-
able for HOSil to build hierarchy. We have noticed from the simulation that building
hierarchies based on HOSil for n = 200 takes reasonable time. Thus for a data set of
larger n say n = 500 if we first cluster the data from any partitioning clustering method
for instance, k-means clustering for very large number of clusters say v = 200 and then
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Table 3.25 Time taken by various models for HOSil clustering algorithm for simulated
data sets.

DGP k n p runtime

Model 1‡ 2 200 2 11m§

Model 2‡ 2 150 2 2.5m§

Model 3‡ 3 200 2 10.6m§

Model 4 3 200 2 10m§

Model 5 3 200 2 2.6m§

Model 6 3 250 2 35m§

Model 6.A 3 250 2 4.4m§

Model 6.B 4 300 2 19m §

Model 7‡ 4 200 2 11.6m§

Model 8‡ 4 200 2 10m§

Model 9 4 200 2 19m§

Model 10 5 250 2 32.5m§

Model 11 6 300 2 2.7h§

Model 12 6 250 2 1h§

Model 13 14 350 2 6h§§

Model 14 3 300 3 4m§

Model 15‡ 9 233 3 43m§

Model 16 10 250 500 1h§

Model 17‡ 3 120 1000 1.4m§

Model 18 5 250 2 36m
Model 19 7 400 2 13h
Model 20 9 450 2 24h
Model 21 13 400 2 12h
Four Shapes 4 200 2 1.6h
Diamonds 2 400 2 11h
Tetra 4 400 3 12h
Smiley 4 200 2 11m
Lsun 3 400 2 1.6h
Aggregation 7 788 2 5h†

m = minutes, h = hours.
§ represents run time averaged over B = 50 runs.
§§ represents run time averaged over B = 25 runs.

The values without § in last column represent time only for single data set.

The Models with ‡ in first column represent the simulations that were done on MacBook 2.8 GHz
i7 processor. Simulations for all other models were run on Legion.
† represents time taken by PAM with v = 400. See the next section for more details. Calculations
only for this data set was done using fast version of HOSil.

Note that R returns a runtime in seconds. The reported run time here is subject to approximation
to minutes and hours. 91



start building hierarchy from 200 clusters, can result in reasonable time. Note that we
want to keep v as close to n as possible to take maximum benefit of HOSil, but we need
to find the cutoff where HOSil is computationally not too painful.

One benefit of HOSil’s implementation code is that it can start building hierarchies
from any level. It just needs the corresponding clustering label vector to begin. One
can do the initial clustering through some partitioning clustering algorithm to reduce
the computational cost in terms of time and then build a hierarchy on top of it to see
what observations go in which cluster based on hierarchical clustering. In principle
any partitioning clustering algorithm can be used. We have used PAM because of its
flexibility to use with any distance measure.

The model used for an experiment here was the same as that of Model 7 with a
difference that 100 observations were generated from each cluster such that n = 400,
k = 4, p = 2. Let the new model be called Model 7.B. We have checked the reduction
in time for various values of v . Table 3.26 gives the experimental results for Model
7.B. First the time taken by PAM for v number of clusters is reported. After getting a
clustering with v clusters, the HOSil algorithm was applied to construct hierarchy. The
time taken by HOSil is reported in the next column. Note that the first row in the table
represents the time taken by direct calculation form HOSil. These experiments were
performed on Legion.

Table 3.26 Time taken by Model 7.B for different values of v .

Runtime
v PAM HOSil

- - 13.6h
150 3.563s 40m
200 3.281s 1.62h
250 2.371s 3.4h
300 1.141s 6.3h

Note that the experiments for four values of v were done independently. More re-
search is needed to explore how combining PAM and HOSil will effect the clustering re-
sults and optimum value of ASW. An important point to note here is, some of the nodes
of Legion are very old (for a detailed specification of nodes please see UCL supercom-
puting website) and take much longer than needed. Therefore, there can be significant
decrease in the time reported here. For instance, Aggregation data only took 5 hours
(see Table 3.25) to cluster with a much greater model complexity i.e., v = 400, n = 788
and k = 7, whereas Model 7.B took 6.3h to cluster with the relatively less model com-
plexity as v = 300, n = 4 and k = 4. Clearly there will be significant reduction to the time
taken which we have noticed here. Since a user can’t control his submitted job will be
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allocated to which Legion’s node and is this node old or new. Due to these reasons it
should not be surprising that in the Table 3.26 PAM took much less time to produce a
clustering for 300 clusters than for 150 clusters. Indeed the latter one should take lesser
time.Thus the Table 3.26 just gives a rough idea of the reduction in time by using PAM
first to skip the hierarchy from the bottom level and to raise the starting hierarchy level
to v .

3.9 Applications

In this section we will apply the proposed clustering methodology to real life applica-
tions.

3.9.1 Tetragonula bee data clustering

We here considered the data set by Franck et al. (2004) to find the number of clusters.
The data set is available for free download from the international federation for the
classification society (IFCS) Cluster Benchmark Data Repository1. The data set is the
taxonomy of 236 species among the Tetragonula bees. The dataset gives the genetic
information of these bees at 13 microsatellite loci from eastern Australia and between
Indian and Pacific Ocean. The 13 variables are categorical. Each entry of these 13
variables is a string of a 6 digit code representing pairs of alleles for microsatellite loci.
The purpose of clustering for this data is to find how many bee species are present. The
authors have provided 9 true species of the bees based on morphological information
in addition to genetic information, which can be used as the true clustering.

We have applied the HOSil algorithm for the newly proposed ASW based linkage to
perform agglomerative hierarchical clustering on the bees’ data set for species delim-
itation. The distance measure used was the "shared allele dissimilarity” particularly
designed for calculation of genetic dissimilarities between species by Bowcock et al.
(1994). The distance measure is implemented through the package ‘prabclus’ (Hennig
and Hausdorf (2015)) available through the statistical programming language R.

Hennig (2014) lists four possibilities for the required characteristic of clustering
for species delimitation as: (1) Small within cluster cluster gaps, (2) Well-separated
clusters (depends upon geographical locations), (3) Within cluster’s homogeneity, and
(4) Cluster stability (see Hennig (2014) for detailed definitions). Since the ASW link-
age is based on the concept of cluster separation and compactness, it makes sense
to apply this method to the bees dataset for clustering. According to the ASW link-
age criterion the best number of species present in the data is 10. The 4 best ASW
values obtained with adjusted rand index in bold together with the number of clus-
ters were 0.48406(0.914795, k = 10), 0.47999(0.91082, k = 9), 0.47673(0.834181, k = 11),

1
http://ifcs.boku.ac.at/repository/data/tetragonula_bee/index.html
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0.47058(0.907194, k = 8). The value of the ASW monotonically decreases for the k be-
fore and after k=10(see Figure 3.6 for k = 2 to 16).

The manual species delimaition by Franck et al. (2004) can’t be taken as 100% ground
truth as discussed in Hennig (2014). This is because even the experts will not agree on
the number of clusters as there is no formal definition of a “species” (see Hausdorf
(2011) for subject matter knowledge on the species concepts). Hennig (2014) has also
applied average linkage hierarchical clustering using the earlier mentioned distance
measure and concluded that the k=9 is the best cluster number regarding the second
characteristic mentioned above and k=10 for the third characteristic.

The heatplot of the data set (shown in Figure 3.7) favours 9, 10 or 11 clusters. From
the map it is evident that there are 9, 10, or 11 bee clusters present in the data. A di-
mensionality reduction method was applied to the dataset to visualize the data in 2-
dimensions. Multidimensional scaling (MDS) is a method to visualize the relative po-
sitions of the data points using the pairwise distances between them. This is a way to
observe the distance matrix directly and interpret the dissimilarity between data points
on a low (often 2 or 3) dimensional scatter plot. The classical MDS is available from R
base package “stats”. The classical MDS plot for the Tetragonula bees data is shown in
Figure 3.8 using the true classification provided by Franck et al. (2004) and using the
HOSil clustering results.
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Figure 3.6 ASW value obtained from HOSil for the range of number of clusters from 2
to 16. The maximum value of ASW is obtained at k=10.
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Figure 3.7 Heatplot for the Teteragonula dataset.
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Figure 3.8 The classical multidimensional scaling of the Tetragonula dataset. Left panel
represents the species delimitation provided by Franck et al. (2004), and right panel
represent the HOSil clustering results.
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3.9.2 French rainfall data clustering

Finding spatial or temporal patterns in climate data sets based on statistical techniques
is of crucial importance for climatologists. For instance, clustering of earth regions
based on similar climate attributes can provide insight about the physical environmen-
tal changes, or clustering maxima can provide insight for understanding the causes of
the occurrence of extreme rainfall events in weather. Heavy rainfall is a well known
extreme weather event. Not all the clustering algorithms can be applied straight away
to climate applications. For instance, since k-means makes use of clusters’ means for
minimizing sum of squares of within cluster distances, it’s not suitable for the appli-
cations where arithmetic means are not applicable. Bernard et al. (2013) proposed
a clustering algorithm based on a combination of PAM algorithm and a distance mea-
sure for geostatistics data called the F-madogram for the clustering French weather sta-
tions based on maxima of rainfall data. F-madogram is a distance measure for calcu-
lation of the pairwise distance among time series of maxima proposed in Cooley et al.
(2006). We have considered the data used in Bernard et al. (2013) available through the
software they wrote to apply the newly proposed algorithm here for the clustering of
french weather into climate regions based on rainfall precipitation maxima observed
at the stations. The data is for 92 French weather stations for the three months of fall,
from September to November for 19 years. The weekly maxima of hourly precipitation
from 1993 to 2011 were considered. The length of each time series used was 288. The
purpose of clustering is to find the pattern among stations i.e., spatial clustering.

The application of the HOSil algorithm to this data has more advantages as com-
pared to the algorithm proposed in Bernard et al. (2013). The definition of the dis-
tance measure for the maxima of time series is dependent on the generalised extreme
value (GEV) family of distributions (see Cooley et al. (2006)). As discussed in Bernard
et al. (2013) an important point to note here is that the averages of GEV distributed
variables are not GEV distributed and the averages of maxima are not maxima such
that F-madogram distance becomes uninterpretable in this situation. Therefore, all
the statistical clustering methods based on averages can’t be applied here. HOSil does
not make use of any kind of cluster representative like centroids for clustering. It works
with the individual data points. Therefore, it will deal directly with the time series of
maxima rather than any kind of averages of these maxima.

Bernard et al. (2013) have listed three preprocessing steps to perform before apply-
ing their algorithm in Section 2 of their paper. The first is the calculation of the pair-
wise F-madogram distances between time series, the second is to specify the number
of clusters and the third is to initialize the set of medoids to run the algorithm. While
the R software implementation of the PAM algorithm has a default way of choosing the
set of medoids, one still needs to specify the number of medoids. As discussed already
the HOSil algorithm just needs the pairwise distances and it can give an estimate of
the number of clusters based on the maximum ASW value itself. Thus out of the two
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remaining preprocessing steps only one is required for HOSil.
The algorithm is applied to the rainfall data, and spatial locations were taken into

account. The underlying philosophy behind the clustering here is that if the local con-
ditions at two weather stations are similar, then the two maxima precipitation series
at these stations are not independent and the two weather stations should be in one
cluster. For two identical locations the F-madogram distance for these two time series
is close to zero, and for locations far away from each other the F-madogram distance is
close to 1/6.

The resulting clustering from HOSil algorithm is plotted in Figure 3.9. The results
are displayed for 2 to 7 numbers of clusters. For numbers of clusters two the HOSil has
classified french weather stations in (clock-wise) the east, south and south-west re-
gions of France together in a cluster (red cluster in Figure 3.9a, say Cluster 1) and from
south-west, north uptill east in the other cluster (say cluster 2, blue cluster). This is
due to the presence of the highest mountain peaks of the Alps in the east and Pyrenees
(second highest mountain peaks) in the south of France. The two weather stations in
Corsica, which has the third highest mountain peaks, are also classified in this cluster.
This is a slightly different clustering result from Bernard et al. (2013) (see Figure 2(a) of
their paper). Since PAM looks for equally sized clusters, Bernard et al. (2013) got an al-
most equal number of weather stations in the north and south clusters dividing France
along the Loire valley line. HOSil for number of clusters three further separates, the
cluster 1 in south-east and south-west fashion i.e., isolating the regions with the Alps
and Pyrenees. For the numbers of clusters four, the HOSil has further isolated central
France from the northern region. For the numbers of clusters five the upper north-
ern region is further divided into west to north-west and from north-west to the north
regions. As the number of clusters increases, the clusters are located consistently with
the geographical regions. This finding is consistent with results of Bernard et al. (2013).
For seven numbers of clusters Nice, Bastia, and Ajaccio were put together. This is an
indication that the climate patterns of Nice, Bastia, and Ajaccio are more similar to
each other as compared to other stations in this region. Geographically, Nice is closer
to Corsica(Bastia and Ajaccio) as compared to Toulon from Corsica. The weather in
Toulon is more similar to Marseille and the Mediterranean coastal line south of it e.g.,
Montpellier down till Perpignan and hence it is put together with these.

In terms of the number of clusters, the highest ASW value was obtained for k=2
(0.1390), indicating the strongest weather pattern, meaning that the climates of these
two regions differs most significantly in the country. The second best ASW value was
achieved for k=3(0.1251). After that, the strongest climate pattern was observed for
k=7(0.1166). The fourth best ASW was obtained for k=6(0.1135).

The best numbers of cluster suggested by the implementaton of the PAM algo-
rithm by Bernard et al. (2013) was k=2 based on the optimal value of ASW. The first few
best choices for the number of clusters proposed by this algorithm together with their
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ASW values are: k=2(ASW=0.1225), k=5(0.1116), k=4(0.1101) and k=7(0.1058). For k = 2
the far regions from the north-west of France are classified together with the south-
ern cluster because of the presence of the Armorican mountains in that region, which
makes the climate appear more similar to the other mountainous regions in south of
the country.
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Figure 3.9 Clustering results from HOSil algorithm. Panels from (a) - (f) denote cluster-
ing against k=2 to k=7.

3.10 Closing remarks

HOSil suffers from a high computational cost which makes it unfit to be used for data
values larger than 800. This method is good for only small data sets. More discussion
and data application about HOSil algorithm will be presented at the end of next chap-
ter. We have applied HOSil on single cell RNA sequencing data clustering problems
and the results are reported in Section 4.17.7, together with the methods purposed in
next chapter for the comparisons.
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One way to improve HOSil is to make it computationally faster. We have proposed
a fast approximation of HOSil to further improve its computational cost in last chapter.
However, for now we didn’t work further to improve computational cost of HOSil and
focus to move towards other clustering domains that can be naturally faster for larger
data sets. We decided not to compromise on the performance of HOSil with a caveat
that it is only suitable to small datasets. Therefore, focus from now on is on the de-
velopment of another algorithm based on non-hierarchical clustering methods since
they are in general faster than hierarchical methods.
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Chapter 4

The Optimum ASW Partitioning
Clustering Method

4.1 Background and preliminary notations

In this chapter we will introduce a partitional algorithm for the optimization of ASW
for clustering. The new method needs an initial clustering solution to begin like the k-
means or PAM algorithm. This is because ASW is originally an index which is computed
for a given clustering. We will call the initial clustering solution as the initialization of
the method. Based on some clustering method, for instance, random initialization,
k-means, PAM, agglomerative hierarchical clustering (AHC), or even HOSil itself as an
initialization, an initial clustering solution can be found. Then these solutions can be
improved further by maximizing the silhouette width for every point in the data.

Suppose that the aim is to cluster a data set X of size n where n > 2 into k > 2
clusters, i.e., each object to cluster is a p dimensional vector as set in Definition 2.2.1.
Let d(xi , xh) be some distance measure such that d : X £X !R+. The pairwise dis-
similarities between n objects can be represented as a symmetric square matrix of size
n. The main diagonal of such a matrix will be zero due to Definition 2.2.2 - (ii), and its
lower and upper triangular matrix are the same due to Definition 2.2.2 - (iii). Therefore,
we only need the lower triangular matrix whose entries are determined by the distance
function. For all (xi , xh) 2X and i 6= h 2Nn a function d(xi , xh), determines the entries
of the following matrix as:

D =

2

6

6

6

6

4

d(x2, x1)
d(x3, x1) d(x3, x2)

...
...

. . .
d(xn , x1) d(xn , x2) . . . d(xn , xn°1)

3

7

7

7

7

5

(4.1)
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Any distance measure, for instance Minkowski distance as introduced in Definition
2.2.3 or mentioned in Section 2.3.1, or any other distance measure can be used.

Note that although we used Rp for the simulation of the data X in experiments,
however the proposed algorithm in this and the previous chapter works with the data
from other spaces i.e., we don’t need to assume that data is from Rp . The proposed
algorithms also work with general distances, thus, specifying X belongs to some space
S characterised by distances d : S £ S ! R+, such that X , the data is a subset of S is
enough for the formalism.

There are two trivial clustering cases which are not of interest in this work. They
are defined as: all the data points belong to one cluster only i.e., k = 1, and each data
point forms its own cluster i.e., k = n. Let P (X ) be the set of all non-trivial partitions
on X . Let Ck 2 P (X ) such that Ck = {C1,C2, . . . ,Ck } be a clustering with any size k
characterised by any clustering method.

4.2 OASW clustering

The Optimum Average Silhouette Width (OASW) clustering of X is defined by maxi-
mizing the function given in (2.12), over all Ck 2P (X ), where P (X ) represents the set
of all possible non-trivial clusterings Ck on X . We recall (2.12) as follows:

S̄
°

Ck ,d
¢

= 1
n

n
X

i=1
Si

°

Ck ,d
¢

,

where Si
°

Ck ,d
¢

is defined in (2.11). The objective function can be defined in differ-
ent ways all of which are useful, which we give now. Let l (X ,k) be a brief notation for
(l (1), . . . , l (n)), where l (i ) = r ;r 2 {1, . . . ,k}, i 2 {1, . . . ,n} be the vector of labels for clus-
tering Ck . Since a clustering Ck is determined by its label set i.e., an identification of
cluster membership for each object in the data, replacing Ck by l (X ,k) in above equa-
tion will make the objective function more clearly understandable in terms of what
exactly is needed to maximize the objective function. Therefore, replacing Ck by the
clustering label set gives the following representation:

S̄l
°

l (X ,k),d
¢

= 1
n

n
X

i=1
Sli

°

l (X ,k),d
¢

. (4.2)

The OASW clustering objective function is defined as follows:

f
°

l (X ,k),d
¢

= arg max
l§(X ,k)2L

S̄l
°

l§(X ,k),d
¢

, (4.3)

where L represents a set of all possible label vectors l§(X ,k) for all possible non-trivial
clusterings Ck 2P (X ). Back substitution in (4.3) will give us a full definition of the ob-
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jective function through one equation. First substitute (2.11) in (4.2) keeping in mind
that Ck is now replaced by l (X ,k) and then substituting this result in (4.3) gives the
following expression,

f
°

l (X ,k),d
¢

= arg max
l§(X ,k)2L

1
n

n
X

i=1

b(i )°a(i )
max{a(i ),b(i )}

, (4.4)

where l§(X ,k) is required for b(i ) and a(i ) which are defined in (2.9) and (2.10) respec-
tively.

We define the following implementation named as OSil of the Optimum average
Silhouette width clustering.
OSil algorithm

Initialize

(i) For all (xi , xh) 2X , where (i ,h) 2Nn and i 6= h, calculate d(xi , x j ).

(ii) Calculate a clustering using any crisp clustering criterion and initialize the clustering
label vector with k clusters as l (X ,k) = (l (1), . . . , l (n)).

(iii) Calculate f (0) = f
°

l (X ,k),d
¢

.

(iv) Set q = 1. Let l (1)(X ,k) = l (X ,k).

Swap

(i) For all pairs (i ,r ) such that l (q)(i ) 6= r , for i 2Nn and r 2Nk , assign l (i ) = r and denote
the new label set as l§(i ,r )(X ,k) = (l§(1), . . . , l§(n)).

(ii) Compute f(i ,r ) = f (l§(i ,r )(X ,k),d).

(iii) (h, s) = argmax
(i ,r )

f(i ,r ), f (q) = f(h,s), l (q)(X ,k) = l§(h,s)(X ,k).

Stop
If f (q) 6 f (q°1). Else q = q +1. Repeat Swapping: Step (i)-(iii).
Return

f (q) and l (q)(X ,k).

The objective of OASW clustering is to find a clustering for which S̄(l (X ,k),d) is
maximum from all the possible clusterings Ck of X . The set L is determine by all
the possible combinations of an object with the membership of a cluster for an initial
clustering label vector l (X ,k). This is achieved by changing the membership of each
observation i in cluster Cr to every other cluster of which it was not previously mem-
ber of, i.e., by performing all possible swaps between observation and cluster mem-
berships and calculating objective function in (4.4). These are in total n£ (k °1) swaps
per iteration. If a swapping increases the objective function we get a new label set to
restart the swapping for all n objects again and this continues till convergence. Thus
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the OASW clustering objective function is in search of a non-trivial clustering Ck such
that no other contender can further optimize this objective function.

OSil is a combinatorial algorithm that directly assigns each observation to a cluster
(Friedman et al. (2001)). OSil is one way of trying to solve the problem in (4.4). The
algorithm does not exactly solve but only tries to solve the optimization problem given
in (4.4) and will only get a local optimum. The algorithm continues its search iteratively
that will maximize the value of function in (4.4). Since the algorithm takes one step at
a time therefore, it only guarantees local optimum.

4.3 Implementation of the OASW method

The algorithm first finds an initial clustering solution to start. This is done in the “ini-
tialize” step. The initial label set obtained from an initial clustering is denoted by
l (X ,k) or l (1)(X ,k), and f (0) represents the value of the objective function for these
initial labels. Then we shift every object i , i = 1, . . .n into a cluster Cr to other than its
present cluster. This will change the values of SW of the observations and the ASW.
This is numbered as q = 1. Note that for each observation i there will be (k °1) possi-
ble clusters to consider for swapping. Thus the total number of possible swaps at each
iteration (q value) will be n£(k°1). In f(h,s) the index h holds the observation number
i and s holds the cluster number r against which the maximum of objective function
was achieved. This best swapping indicator (h, s) then gives us the label set to start the
next (q+1)th iteration, and f(h,s) gives the best value of the objective function from this
iteration.

Note that it is possible that while swapping observations between clusters we find
more than one such case (i.e., combination of (i ,r )) that improves that value of the ob-
jective function from where we started this iteration. For instance at q = 1 we have f (0)

as a starting value of the objective function, and we could get more than one such pair
(i ,r ) such that f(i ,r ) > f (0). The above defined algorithm uses argmax meaning that at
each iteration it chooses that swap from all possible swaps between observation i and
cluster r to define the clustering label set for the next iteration that gives the maximum
impact to the value of the objective function. Thus, out of n £ (k °1) possibilities we
only swap one observation to one other cluster at each iteration. Then we update the
objective function with the value obtained for the swap (this is f(h,s)). Go to the next
iteration, consider swapping every observation to every other cluster again and finally
update the objective function and so on. Stop the process if the objective function
value in f (q) at the current iteration is not improved as compared to its value at the
previous iteration. This means that there is no such swap that can increase the value
of the objective function further. The algorithm searches for a better value of the ASW
by iteratively incrementing it, and will always converge. The increment is performed
by moving one element of the solution and it keeps going until no further improve-
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ment can be made. The main algorithm is written in “C++” language due to its known
computational power. Since most of the clustering algorithms are available in R due
to the popularity of the language and the flexibility of use, we have also integrated the
algorithm in R through the package ‘Rcpp’ (version: 0.12.10, Eddelbuettel et al. (2011)).
Our implementation is similar to Van der Laan et al. (2003)’s C implementation.

Note that it is possible that the algorithm terminates at the first iteration and it
does not find any further improvement in the value of objective function that is re-
ceived from the initial clustering. The number of iterations taken by the OASW de-
pends upon the initialization method used. For instance, the algorithm always takes
more iterations to optimize the ASW when average linkage was used as an initialization
as compared to k-means.

4.4 Simulation setup

To find out the best initialization method(s) for OSil, and for the comparison of it’s
performance with the existing methods, extensive simulations have been conducted.
The first concern here was to find out what’s the best ways of initializing the algorithm
to maximize ASW for the majority of the data conditions. Careful initialization of the
algorithms can improve the performance of the algorithms greatly. For instance Arthur
and Vassilvitskii (2007) demonstrate this for the k-means algorithm and shows how just
changing initialization not only speeds up the computational time for the algorithm
but also improves the accuracy of the results.

The other motivation for setting up these simulations was to illustrate the charac-
teristics, and what kinds of clusters OASW clustering can capture. The simulations in
this regard were conducted in two fundamentally different ways. First two simulations
(namely, Simulation I and simulation II) were run for various data generating processes
(DGPs), and a third simulation is run using an experimental design approach (namely,
Simulation III) to explore the characteristics that can’t be learn through the DGPs.

Simulation I (Section 4.5) is for the known true number of clusters case, and Simu-
lation II (Section 4.6) is for the estimation of number of clusters case. This case distinc-
tion is because, first we want to learn, the performance of the method for the known
true number of clusters, i.e., OSil can produced the true clustering defined by DGPs or
not. Through this we can learn two things, firstly, what kind of clusters OSil can pro-
duce, and secondly, to get an idea how different initialization methods are performing
for different DGPs. The performance was then explored for the estimation of number
of clusters.

Simulation III (Section 4.7) was run using the experimental design approach where
factors were defined and varied systematically. This setup was designed to vary various
factors of interest, like how the OSil clustering will be affected if the difference between
the means of clusters and various co-variance structures vary. The experimental design
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setup was run for the overlapping, not well-separated, very close and nested clustering
structures. These types of clustering structures are hard for many methods to identify.
This setup was run for the fixed/known k case and the focus was on the comparison of
the ASW values obtained for various methods under different conditions.
We now define the DGPs used for Simulation I & II in the following subsection.

4.4.1 Definitions of data generating processes

To explore the characteristics of the proposed algorithm and what kind of clusters it is
good in finding, much attention has been given to data sets in two and three dimen-
sions so that the clustering results can be visualized. Several DGPs were defined based
on the characteristics listed in Section 3.3. The DGPs were made more challenging
in this chapter as compared to previous by increasing the observation spread within
clusters, or by decreasing the difference between the mean of clusters. The DGPs are
defined now as under.

Model 1:

2 clusters in 2 dimensions: 50 observations each were generated from two indepen-
dent Gaussian random variables, to form two spherical clusters in two dimensions, of
unequal variations. One cluster has mean (0, 5) with covariance matrix as 0.1I2 and
the other cluster has mean (2, 5), where t represents the transpose, with covariance
matrix as 0.7I2. The result is one bigger spherical cluster with wider spread lying next
to a compact spherical cluster.

Model 2:

3 clusters in 2 dimensions: The observations in each of the three clusters were gener-
ated from independent Gaussian random variables centred at (-2, 0) and covariance
matrix 0.1I2 for cluster 1, mean (0, 0) and covariance matrix 0.7I2 for cluster 2, and
mean (2, 0) and covariance matrix 0.1I2 for cluster 3. The cluster contains 50 observa-
tions each. The clusters are of such nature that the cluster with greater observational
variation is located between the two clusters having less variations among observa-
tions.

Model 3:

4 clusters in 2 dimensions: Cluster one was generated from two independently dis-
tributed non-central t variables with parameters t7(10) and t7(30). Cluster two was
generated from U(10,15) along both dimensions independently. Cluster 3 was gen-
erated from independent Gaussian distribution having mean (2, 2) with covariance
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matrix ß=
"

2 0
0 4

#

. Cluster four was also generated from independent Gaussian distri-

butions with mean (20, 80) and covariance matrixß=
"

1 0
0 2

#

respectively. Each cluster

contains 50 observations.

Model 4:

5 clusters in 2 dimensions: the clusters are parametrized from F, Chi-squared, Gaus-
sian, skewed Gaussian and t distributions respectively as: F(2,6)(4) along first dimen-
sion and F(5,5)(4) along second dimension, ¬2

7(35) and ¬2
10(60), N (100,2) and N (0,2),

SN (20,2,2,4) and SN (200,2,3,6), t40(100) and t35(150) respectively. This cluster order-
ing is also reflected in the data plot generated from this DGP shown in Figure 4.4b as
well i.e., a label 1 represents an F distributed clusters and so forth. The clusters con-
tains 50 observations each and were generated independently along both dimensions.

Model 5:

6 clusters in 2 dimensions: the clusters 1 and 2 are generated from Uniform and ex-
ponential distributions as U(°6,°2), Exp(10) in both dimensions. The cluster 3 is
NBeta(2,3,220) along one dimension and N Bet a(2,3,120) across the other dimension.
Cluster 4 is from SN (5,0.6,4,5) and SN (0,0.6,4,5). Cluster 5 isW(10,4) across both di-
mensions. Cluster 6 is Gam(15,2) and Gam(15,0) along first and second dimension
respectively. This ordering of clusters are reflected in the data plot generated from this
DGP shown in the Figure 4.5a as well. The clusters contains 50 observations each and
were generated independently along both dimensions.

Model 6:

5 correlated dimensions within 5 clusters are generated from multi-variate Gaussian
distributions each containing 50 observations. The clusters are formed as follows:

Cluster 1 is centred at (0, 0, 0, 0, 0) with ß=

2

6

6

6

6

6

4

9
1 17
1 °1.4 12

0.4 0.6 0.5 2
°1.2 °1.6 °1.4 °0.6 16

3

7

7

7

7

7

5

.
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Cluster 2 is centred at (40, 80, 15, 30, 22) with ß=

2

6

6

6

6

6

4

25
0.2 9
0.2 °0.2 16
°0.2 °0.2 0.2 1
°0.2 °0.2 °0.2 °0.2 49

3

7

7

7

7

7

5

.

Cluster 3 is centred at (15, 40, 40, 55, 80) with ß=

2

6

6

6

6

6

4

25
0.3 9
0.3 °0.3 16
°0.3 0.3 0.3 1
°0.3 °0.3 °0.3 °0.3 49

3

7

7

7

7

7

5

.

Cluster 4 is centred at (70, 80, 70, 70, 70) with ß=

2

6

6

6

6

6

4

5
0.1 0.9
0.1 °0.2 1.6
°0.7 0.2 0.2 1
°0.2 °0.9 °0.2 °0.2 4.9

3

7

7

7

7

7

5

.

Cluster 5 is centred at (100, 100, 100, 100, 100) withß=

2

6

6

6

6

6

4

2
0.2 9
0.2 °0.1 3
°0.3 0.2 0.1 1
°0.1 °0.1 °0.2 °0.9 4

3

7

7

7

7

7

5

.

Model 7:

7 clusters in 10 dimensions having 50 observations each. All the clusters are from the
Gaussian distributions. The clusters are present in the first two dimensions only. Clus-

ter 1 has mean (0, 5) with covariance matrix

"

0.5 0
0 0.2

#

. Cluster 2 has mean (-0.5, 3.5)

and covariance matrix

"

0.2 0
0 0.1

#

. Cluster 3 has mean (0, 3.5) with covariance matrix
"

0.4 0
0 0.3

#

. Cluster 4 has mean (0.5, 3.5) and covariance matrix

"

0.2 0
0 0.1

#

. Cluster

5 has mean (-0.5, 6.5) and covariance matrix

"

0.2 0
0 0.1

#

. Cluster 6 has mean (0, 6.5)

and covariance matrix

"

0.3 0
0 0.2

#

. Cluster 7 has mean (0.5, 6.5) and covariance ma-

trix

"

0.3 0
0 0.2

#

. Further dimensions 3 to 6 of cluster 1 were generated by subtracting

the values 3, 6, 9, 12 from its second dimension. Dimensions 7 to 10 of cluster 4 were

107



generated by adding the values 3, 6, 9, 12 from its second dimension. Dimensions 3
to 10, of clusters 2 to 4 were generated by adding the values 3, 6, 9, 12, 15, 18, 21, 24
to the second dimensions of these clusters. For dimensions 3 to 10, of cluster 5 to 7,
the values 3, 6, 9, 12, 15, 18, 21, 24 are subtracted from the second dimensions of the
respected clusters.

Model 8:

10 cluster in 500 dimensions. This model is same as the Model 16 of Chapter 3. The
motivation for including this dataset is specifically the estimation of k case. Since the
clusters are of unequal sizes and variations the intuition is most of the existing cluster-
ing methods to estimate number of clusters will fail in estimating the correct number
of clusters majority of times.

Model 9:

3 clusters in 1000 dimensions. Each cluster contains 40 realizations from standard
Gaussian distributions with each of first 100 coordinates centred at -3, 0, and 3 respec-
tively. The remaining coordinates of all clusters have mean 0. All the clusters have I1000

covariance matrices.

Model 10:

7 clusters in 60 dimensions with 500 observations: This is a data structure designed
by Van der Laan et al. (2003) to simulate gene expression profiles like structure for
three distinct types of cancer patients’ populations. Suppose that in reality there are
3 distinct groups 20 patients each corresponding to a cancer type. Three multivari-
ate normal distributions were used to generate 20 samples each having different mean
vectors. For the first multivariate distribution (first cancer type) the first 25 dimen-
sions(genes) are centred at log10(3), dimensions 26-50 are centred at (° log10(3)) the
remaining 450 dimensions are centred at 0. For the second multivariate distribution
(second cancer type) the first 50 dimensions(genes) are centred at 0, the next 25 di-
mensions (51-75) are centred at log10(3), dimensions 76-100 are centred at (° log10(3))
and the remaining 400 dimensions are also centred at 0. For the third multivariate dis-
tribution (third cancer type) the first 100 dimensions(genes) are centred at 0, dimen-
sions 101-125 are centred at log10(3), dimensions 126-150 are centred at (° log10(3))
and dimensions 151-500 are also centred at 0. The three multivariate distributions has
diagonal covariance matrix with diagonal elements as (log(1.6))2. Note that the de-
scribed data has 20 samples each of 3 types of cancer patients each containing 500
genes. The purpose here is to cluster genes not patients. Therefore, the transpose of
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the data is required to transfer it to the standard format and the number of clusters to
seek are 7 in 60 dimensions of 500 observations.

4.5 Simulation I: Fix k case

Each data generating process (DGPs) has certain kinds of clustering problem(s) to solve.
We expect from the algorithms to retrieve the clustering as defined by the DGPs. Through
comparisons we will learn which clustering algorithm is good in reproducing the cer-
tain kinds of clusters. To find the best initialization method for the algorithm several
existing clustering methods were used as an initialization for OSi l , namely, k-means,
PAM, model-based, spectral, agglomerative hierarchical linkage methods using aver-
age, complete, single, McQuitty and Ward’s method were used which are reviewed in
Section 2.4. The simulation is done in the R language. For all the clustering methods,
the known number of clusters from the corresponding DGPs were used. For all the
clustering methods we have used their R functions as described in Section 3.5 with the
default parametric choices except otherwise stated. For k-means we have set random
centres to be chosen 100 times (this is argument ‘nstart’ of the function ‘kmeans()’).
This is because the performance of k-means improves if one allows the algorithm to
optimize the objective function by taking several set of cluster centres. For the ASW
calculations of the clustering solutions obtained from the clustering methods other
than OSil we used the ‘silhouette()’ function in the R package ‘cluster’. For the ARI cal-
culation the function ‘adjustedRandIndex()’ from the package ‘mclust’ was used.

Let the number of data sets generated for each DGP is denoted by B . For each DGP,
B = 25 data sets were generated. Clusterings were performed using the 9 clustering
methods just mentioned. We then note the ASW and ARI values for these clusterings
together with their standard errors (SE). We then pass these clustering solutions to the
OSil algorithm as initializations, i.e., with each initialization method OSil was run sep-
arately. This will result in 9 different OSil clusterings. We then recorded the ASW and
ARI values together with their SE for these OSil clusterings as well.

For comparison, the aggregated results, i,e., averages of 25 runs of the ASW value
for each initialization method considered are reported together with their average SE.
The average number of iterations (abbreviated as ‘iter’ in tables of Appendix C) and
the average runtime in seconds taken by OSil are also reported. The time reported
in the tables is in seconds and includes initialization time as well. The box-plots for
the ASW values are also plotted. The empirical distributions for ASW obtained from
OSil are plotted as histograms against each initialization method. For each generated
data set we have also computed the PAMSIL clustering solution for the comparison.
Note that ‘init’ represents the average ARI values against the clustering obtained from
the existing clustering methods before passing these clusterings as initializations to
OSil. Since the clustering methods used to initial OSil algorithm are well developed
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clustering methods as their own, therefore, we used the clustering results (referred to
as the initial clustering in the following discussions) obtained from these to compare
OSil clustering.

Note that PAMSIL is not same as OSil initialized with PAM. The difference between
the two is that PAMSIL each time makes a non-medoid object a medoid. It reassigns
the cluster memberships based on the new set of medoids, and then calculates the
ASW for this clustering. OSil doesn’t work based on medoids. It just uses the cluster
labelling vector. OSil changes the cluster membership of each object to each cluster
i.e., it tries to optimize the silhouette width of each individual object in the data. OSil
initialized with PAM optimizes the value of the ASW on top of the PAM clustering solu-
tion, whereas PAMSIL optimises ASW on top of PAM-like medoids.

4.5.1 Results discussion

For the results discussion below the first evaluation principle is the value of ASW achieved.
The higher the value of ASW obtained from OSil the better the results is in terms of op-
timization of ASW. We have however, also compared the ARI values obtained in order
to learn how good the best OASW clustering will perform in delivering the know true
clustering structures defined by DGPs.

(Model 1) Figure 4.1a represents a data plot generated from Model 1. Table 4.1
represents above mentioned statistics for Model 1. The box and histogram plots of
ASW against each initialization method and PAMSIL are plotted in Figure 4.1b and C.1,
respectively. The best values for ASW and their ARI together with the best runtime
are made bold in the corresponding columns. PAM clustering gave the highest ASW
value, however the highest ARI was obtained for model-based clustering. The high-
est ASW was obtained for a number of initialization methods, namely k-means, PAM,
Ward’s, spectral clustering, model-based clustering and PAMSIL. The highest ARI value
(0.8603) was achieved by OSil clustering with Ward’s, spectral clustering and model-
based clustering initializations. An important point to note here is that although k-
means and PAM have given maximum ASW they have not given the best ARI. Another
interesting finding is, OSil reached at the best ASW value for many ASW values obtained
from these initialization methods. See Table 4.1 where ASW obtained for k-means,
pam, Ward’s, model-based clustering, spectral clustering and PAMSIL are different but
ASW values obtained from these methods are same. This is true for many other DGPs
as well. Another important thing to note here is that the best ARI value achieved for
OSil clustering is actually lesser than the best ARI achieved by the existing clustering
method. Ward’s method, spectral clustering and model-based clustering initializations
performed best for Model 1 based on the best ARI and ASW values obtained by OSil.
The minimum time to optimize ASW was obtained by the PAM initialization.
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Figure 4.1 (a) represents a synthetic data plot generated from Model 1. (b) Boxplots
for the average silhouette width values obtained from the clustering methods and OSil
initialized with these methods. The mean value for all the methods are plotted as black
diamonds and the outliers are red triangles.

(Model 2) Figure 4.2a represents a data plot generated from Model 2. Table 4.2 shows
the statistics of interest for Model 2. The box and histogram plots of ASW against
each of initializations and PAMSIL are plotted in Figure 4.2b and C.2, respectively. The
maximum ASW was achieved by k-means clustering, whereas the maximum ARI was
achieved by model-based clustering. The best ASW was obtained from 4 initialization
methods (see table). The best ARI for OSil was attained only for model-based initial-
ization method. The highest ARI value achieved for OSil was smaller than the highest
value of ARI obtained against the maximum ASW clustering. The minimum time for
OSil is observed with k-means initialization.

(Model 3) Figure 4.3a represents a data plot generated from Model 3. Table 4.3 repre-
sents the statistics of interest for Model 3. The box and histogram plots of ASW against
each initialization method and PAMSIL are plotted in Figure 4.3b and C.3 respectively.
Among all clustering methods, the PAM clustering gave the best ASW, but model-based
clustering gave the best ARI value. However, note that the model-based clustering did
not give the highest ASW value. In comparison, the best ASW was obtained by OSil ini-
tialized with PAM, model-based clustering and PAMSIL method. However the best ARI
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Table 4.1 Results for Model 1 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.6684 0.0044 0.6697 0.0043 2 0.0189 0.8197 0.8573
PAM 0.6689 0.0044 0.6697 0.0043 2 0.0140 0.8351 0.8573

single 0.4008 0.0288 0.4782 0.0225 6 0.0304 0.1172 0.1742
complete 0.5701 0.0208 0.6588 0.0114 14 0.0616 0.4831 0.8239
average 0.6217 0.0178 0.6345 0.0176 3 0.0188 0.6652 0.6836
Ward’s 0.6596 0.0047 0.6697 0.0043 3 0.0265 0.9387 0.8603

McQuitty 0.5161 0.0229 0.6489 0.0151 18 0.0800 0.3569 0.7823
model-based 0.6488 0.005 0.6697 0.0043 4 0.0856 0.9920 0.8603

spectral 0.6589 0.0046 0.6697 0.0043 4 0.0957 0.9575 0.8603
PAMSIL - - 0.6697 0.0043 2 0.0232 - 0.8448

The second column represents the average ASW obtained against the existing cluster-
ing methods. The third column represents the average standard error (SE) for ASW.
The fourth column represents the ASW when the solutions from the existing clustering
methods are passed to OSil. The fifth column is average SE for ASW. The sixth column
is the average number of iterations taken by OSil for convergence. The seventh column
is the average time taken by OSil including initialization time. The last two columns
represents the ARI for the clustering found by the existing methods and OSil.

Table 4.2 Results for Model 2 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.7114 0.0030 0.7118 0.0030 2 0.0647 0.8463 0.8556
PAM 0.7103 0.0031 0.7118 0.0030 2 0.0808 0.8491 0.8556

single 0.2976 0.0677 0.4161 0.0515 7 0.2255 0.3844 0.3535
complete 0.6128 0.0102 0.6859 0.0113 17 0.5026 0.6039 0.7631
average 0.6851 0.0105 0.6968 0.0084 5 0.1521 0.8161 0.7985
Ward’s 0.6975 0.0044 0.7118 0.0030 5 0.1541 0.9140 0.8570

McQuitty 0.5889 0.0123 0.6726 0.0119 18 0.5172 0.5912 0.7313
model-based 0.6780 0.0040 0.7118 0.0030 8 0.2841 0.9880 0.8577

spectral 0.6164 0.0451 0.6536 0.0335 6 0.3469 0.8704 0.7993
PAMSIL - - 0.7117 0.0030 3 0.0992 - 0.7967
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Figure 4.2 (a) represents a synthetic data plot generated from Model 2. (b) Boxplots
for the average silhouette width values obtained from the clustering methods and OSil
initialized with these methods. The mean value for all the methods are plotted as black
diamonds and the outliers are red triangles.

for ASW was achieved by PAMSIL only. The maximum ARI obtained from OSil clus-
tering is smaller than the ARI obtained from the maximum ASW clustering. The PAM
initialization took the minimum time for OSil.

(Model 4) Figure 4.4a represents a data plot generated from Model 4. Table 4.4 repre-
sents the statistics of interest for Model 4. The box and histogram plots of ASW against
each initialization method and PAMSIL are plotted in Figure 4.4b and C.4 respectively.
The best ASW value was achieved by k-means but the best ARI was achieved by Ward’s
method. The best ASW was achieved by average linkage initialization but the best ARI
was by PAMSIL. The ASW clustering has increased the ARI as compared to the clus-
tering obtained with the maximum ASW value. The k-means initialization takes the
minimum time.

(Model 5) Figure 4.5a represents a data plot generated from Model 5. Table 4.5 repre-
sents the required statistics for Model 5. The box and histogram plots of ASW against
each initialization method and PAMSIL are plotted in Figure 4.5b and C.5 respectively.
PAM gave the best ASW value and the best ARI value as well. The best ASW was achieved
for PAM initialization and PAMSIL clustering but the maximum ARI was obtained by
PAMSIL. However, OSil with PAM initialization performed very close to PAMSIL in
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Figure 4.3 (a) represents a synthetic data plot generated from Model 3. (b) Boxplots
for the average silhouette width values obtained from the clustering methods and OSil
initialized with these methods. The mean value for all the methods are plotted as black
diamonds and the outliers are red triangles.

Table 4.3 Results for Model 3 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.6923 0.0023 0.6939 0.0023 3 0.3340 0.8711 0.8881
PAM 0.6936 0.0023 0.6940 0.0023 2 0.1924 0.8857 0.8871

single 0.4446 0.0407 0.5804 0.0234 11 1.0654 0.4219 0.3999
complete 0.6234 0.0075 0.6590 0.0078 13 1.2271 0.7054 0.7643
average 0.6385 0.0057 0.6535 0.0041 6 0.5426 0.6681 0.6661
Ward’s 0.6770 0.0040 0.6914 0.0034 7 0.6937 0.9125 0.8866

McQuitty 0.6021 0.008 0.6457 0.0071 16 1.4817 0.6704 0.7122
model-based 0.6470 0.0038 0.6940 0.0023 10 0.9892 0.9920 0.8910

spectral 0.5770 0.0384 0.6670 0.0081 15 1.7418 0.8321 0.7941
PAMSIL - - 0.6940 0.0023 3 0.2283 - 0.9352
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Figure 4.4 (a) represents a synthetic data plot generated from Model 4. (b) Boxplots
for the average silhouette width values obtained from the clustering methods and OSil
initialized with these methods. The mean value for all the methods are plotted as black
diamonds and the outliers are red triangles.

Table 4.4 Results for Model 4 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.8254 0.0021 0.8255 0.0021 2 0.4671 0.9845 0.9845
PAM 0.8254 0.0020 0.8255 0.0020 2 0.6651 0.9837 0.9853

single 0.6887 0.0164 0.7445 0.0064 5 1.2910 0.8029 0.7990
complete 0.7876 0.0083 0.8008 0.0047 15 4.0142 0.9374 0.9568
average 0.8247 0.0074 0.8255 0.0028 5 1.3531 0.9830 0.9845
Ward’s 0.8239 0.0023 0.8255 0.0021 4 1.0016 0.9846 0.9845

McQuitty 0.7996 0.0134 0.8145 0.0056 17 4.4438 0.9444 0.9686
model-based 0.8143 0.0042 0.8255 0.0021 7 1.8341 0.9744 0.9853

spectral 0.5899 0.0388 0.6660 0.0079 17 5.0266 0.8457 0.8478
PAMSIL - - 0.8255 0.0020 3 0.7344 - 0.9853
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terms of the ARI for this model. These two best ARI values for ASW clusterings are
higher than the ARI obtained from the maximum ASW clustering. The minimum time
taken was by k-means initialization.
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Figure 4.5 (a) represents a synthetic data plot generated from Model 5. (b) Boxplots
for the average silhouette width values obtained from the clustering methods and OSil
initialized with these methods. The mean value for all the methods are plotted as black
diamonds and the outliers are red triangles.

(Model 6) Figure 4.6a represents a data plot generated from Model 6. Table 4.6 repre-
sents the statistics of interest for Model 6. The box and histogram plots of ASW against
each initialization method and PAMSIL are plotted in Figure 4.6b and C.6, respectively.
This data model is particularly tough due to complex covariance matrices designs for
clusters across five dimensions. The covariance matrices for each of the five clusters
in Model 6 vary. The correlation among the dimensions are positive as well as nega-
tive. The clusters are also overlapping in some dimensions. McQuitty similarity gave
the best ASW value and single linkage gave the best ASW. Ward’s method gave the max-
imum ARI value among the existing clustering methods as well as for OSil. The ARI
from the OSil clustering is smaller than the ARI for maximum ASW clustering. The
minimum time was taken by the k-means initialization for OSil.
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Table 4.5 Results for Model 5 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.7159 0.0020 0.7163 0.0020 2 0.9600 0.7716 0.7733
PAM 0.7398 0.0021 0.7448 0.0019 3 1.8634 0.9806 0.9984

single 0.5731 0.0036 0.6197 0.0025 5 2.5304 0.5218 0.5170
complete 0.5737 0.0029 0.5851 0.0024 7 4.1459 0.2845 0.2856
average 0.5812 0.0041 0.5934 0.003 6 3.0568 0.3012 0.3006
Ward’s 0.7138 0.0021 0.7163 0.0020 3 1.7466 0.7750 0.7743

McQuitty 0.5745 0.0033 0.5927 0.0032 8 4.4237 0.2810 0.2830
model-based 0.7033 0.0036 0.7197 0.0022 8 4.7016 0.7762 0.7822

spectral 0.5995 0.0288 0.6796 0.0122 15 9.6341 0.7535 0.7841
PAMSIL - - 0.7448 0.0019 3 1.3833 - 1

(a)

0 20 40 60 0 20 40 60 80 0 20 40 60 0 20 40 60 0 25 50 75 100

0.0

0.1

0.2

0.3

0.4

0

20

40

60

80

0

20

40

60

0

20

40

60

0

25

50

75

100

(b)

0.2

0.4

0.6

0.8

k−
m
ea
ns

os
_k
−m

ea
ns

pa
m

os
_p
am

si
ng
le

os
_s
in
gl
e

co
m
pl
et
e

os
_c
om

pl
et
e

av
er
ag
e

os
_a
ve
ra
ge

W
ar
d

os
_W

ar
d

M
cq
ui
tty

os
_M

cq
ui
tty

M
od
el
−b
as
ed

os
_m

od
el
ba
se
d

sp
ec
tra
l

os
_s
pe
ct
ra
l

PA
M
SI
L

 

A
SW

Figure 4.6 (a) represents a synthetic data plot generated from Model 6. (b) Boxplots
for the average silhouette width values obtained from the clustering methods and OSil
initialized with these methods. The mean value for all the methods are plotted as black
diamonds and the outliers are red triangles.
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Table 4.6 Results for Model 6 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.7327 0.0015 0.7327 0.0015 1 0.3739 0.9795 0.9822
PAM 0.7325 0.0015 0.7327 0.0015 1 0.4296 0.9784 0.9822

single 0.7476 0.0107 0.8282 0.0040 3 0.6821 0.7842 0.7786
complete 0.7570 0.0045 0.7912 0.0070 9 2.4306 0.7386 0.7586
average 0.7623 0.0059 0.8170 0.0068 4 1.0423 0.7909 0.7926
Ward’s 0.7307 0.0016 0.7328 0.0015 3 0.7090 0.9992 0.9834

McQuitty 0.7668 0.0034 0.8200 0.0059 10 2.547 0.7511 0.7710
model-based 0.7366 0.0032 0.7427 0.0055 3 0.9263 0.9697 0.9565

spectral 0.5970 0.0439 0.7225 0.0147 13 3.8811 0.8967 0.8930
PAMSIL - - 0.7813 0.002 4 1.0125 - 0.7657

(Model 7) Figure 4.7a represents a data plot generated from Model 7. Table 4.7 repre-
sents the statistics of interest for Model 7. The box and histogram plots of ASW against
each initialization method and PAMSIL are plotted in Figure 4.7b and C.7. Model-
based clustering gave the best value of ASW whereas single linkage initialization gave
the best value for the ASW. However average linkage gave the best value of ARI for both
the initial clustering and the OSil clustering. The ARI from the OSil clustering is greater
than the ARI for maximum ASW clustering. Single linkage took the minimum time.

(Model 8) Figure 4.8a represents a data plot generated from Model 8. Table 4.8 repre-
sents the statistics of interest for Model 8. The box and histogram plots of ASW against
each initialization method and PAMSIL are plotted in Figure 4.8b and C.8 respectively.
Model-based clustering and PAMSIL clustering gave the maximum ASW, respectively.
Model-based clustering gave the maximum ARI values for initial clustering, whereas,
the maximum value for OSil clustering was achieved by PAM initialization. The mini-
mum runtime is taken by PAM initialization for OSil. The ARI from the OSil clustering
is greater than the ARI for maximum ASW clustering. One thing to note here is that the
PAMSIL gave the highest ASW value but too low ARI value.

(Model 9) Table 4.9 represents the statistics of interest for Model 9. The box and his-
togram plots of ASW against each initialization method and PAMSIL are plotted in Fig-
ure 4.9 and C.9, respectively. All the clustering methods reached at the same ASW val-
ues except the spectral clustering method. All the methods also gave the ARI value
equal to 1 except the spectral clustering method. The minimum time was taken by
complete and average linkage initializations.
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Figure 4.7 (a) represents a synthetic data plot generated from Model 7. (b) Boxplots
for the average silhouette width values obtained from the clustering methods and OSil
initialized with these methods. The mean value for all the methods are plotted as black
diamonds and the outliers are red triangles.

Table 4.7 Results for Model 7 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.6748 0.0055 0.6785 0.006 5 6.0188 0.6434 0.6469
PAM 0.6500 0.0079 0.6543 0.008 8 8.9586 0.6535 0.6509

single 0.5908 0.0275 0.8691 0.0024 5 5.8560 0.5351 0.5315
complete 0.6618 0.0050 0.7215 0.0076 21 22.73 0.6444 0.6701
average 0.6957 0.0075 0.7693 0.0042 10 10.63 0.6839 0.6939
Ward’s 0.6668 0.0066 0.6911 0.0083 13 14.65 0.6477 0.6558

McQuitty 0.6611 0.0085 0.7196 0.0098 19 22.19 0.6421 0.6702
model-based 0.7052 0.0083 0.7167 0.0095 7 8.4592 0.6473 0.6537

spectral 0.5987 0.0162 0.7117 0.0129 17 22.65 0.6790 0.6907
PAMSIL - - 0.7790 0.0103 6 6.3595 - 0.4923
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Figure 4.8 (a) represents a synthetic data plot generated from Model 8. (b) Boxplots
for the average silhouette width values obtained from the clustering methods and OSil
initialized with these methods. The mean value for all the methods are plotted as black
diamonds and the outliers are red triangles.

Table 4.8 Results for Model 8 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.7801 0.0123 0.7814 0.0122 3 2.2126 0.9019 0.9101
PAM 0.7820 0.0122 0.7834 0.0119 3 1.7200 0.9145 0.9185

single 0.6884 0.0242 0.7481 0.015 4 2.8365 0.7855 0.7787
complete 0.7214 0.0126 0.7462 0.0115 10 6.5182 0.7963 0.8335
average 0.7720 0.0129 0.7792 0.0122 4 2.6371 0.9028 0.9034
Ward’s 0.7751 0.0128 0.7836 0.0120 6 3.5233 0.9139 0.9119

McQuitty 0.7244 0.0159 0.7553 0.0144 11 7.1804 0.8279 0.8495
model-based 0.7716 0.0126 0.7838 0.0119 5 4.0705 0.9418 0.9173

spectral 0.6045 0.0244 0.6995 0.0188 16 10.57 0.7614 0.7608
PAMSIL - - 0.7875 0.0114 3 1.8779 - 0.7885
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Figure 4.9 Model 9: Boxplots for the average silhouette width values obtained from the
clustering methods and OSil initialized with these methods. The mean value for all the
methods are plotted as black diamonds and the outliers are red triangles.

Table 4.9 Results for Model 9 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.5725 1e-04 0.5725 1e-04 1 0.3771 1 1
PAM 0.5725 1e-04 0.5725 1e-04 1 0.0200 1 1

single 0.5725 1e-04 0.5725 1e-04 1 0.0328 1 1
complete 0.5725 1e-04 0.5725 1e-04 1 0.0196 1 1
average 0.5725 1e-04 0.5725 1e-04 1 0.0196 1 1
Ward’s 0.5725 1e-04 0.5725 1e-04 1 0.0204 1 1

McQuitty 0.5725 1e-04 0.5725 1e-04 1 0.0204 1 1
model-based 0.5725 1e-04 0.5725 1e-04 1 0.6461 1 1

spectral 0.4972 0.0386 0.5217 0.0269 4 0.2824 0.9113 0.9283
PAMSIL - - 0.5725 1e-04 2 0.0450 - 1

(Model 10) Table 4.10 represents the statistics for Model 10 whereas Figure 4.10 and
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C.10 display the box and histogram plots. All the clustering methods reached at the
same ASW and ARI values, except smaller values for model-based and spectral cluster-
ing methods.
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Figure 4.10 Model 10: Boxplots for the average silhouette width values obtained from
the clustering methods and OSil initialized with these methods. The mean value for all
the methods are plotted as black diamonds and the outliers are red triangles.

The empirical distribution of ASW values obtained from OSil for various initializa-
tions are not same. These are shown as histogram figures which displays the hit counts
of the different ASW values obtained at each run, for each initialization method. Note
the presence of more than one local optima in each histogram. The distributions are
quiet varied ranging form positive skewed, to symmetrical to negatively skewed.

All the methods used for the initialization of the ASW clustering are well developed
standalone clustering methods on their own. The ASW method can also be seen as the
improvement in clustering quality relative to these clustering methods used as initial-
ization.

4.5.2 Summary

In Simulation I, we have investigated OSil clustering for clustering quality using ASW
values for a range of clustering methods and have validated them against an external
index using ARI values. The results of simulation I are further summarized in this sec-
tion in tables and the most important findings are discussed. Comments based on the
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Table 4.10 Results for Model 10 against fixed k.

Methods
ASW
(init) SE

ASW
(OSil) SE iter runtime

ARI
(init)

ARI
(OSil)

k-means 0.6461 3e-04 0.6461 3e-04 1 1.51 1 1
PAM 0.6461 3e-04 0.6461 3e-04 1 1.37 1 1

single 0.6461 3e-04 0.6461 3e-04 1 1.35 1 1
complete 0.6461 3e-04 0.6461 3e-04 1 1.34 1 1
average 0.6461 3e-04 0.6461 3e-04 1 1.34 1 1
Ward’s 0.6461 3e-04 0.6461 3e-04 1 1.34 1 1

McQuitty 0.6461 3e-04 0.6461 3e-04 1 1.33 1 1
spectral 0.1660 0.0349 0.5520 0.0336 221 284.7 0.4788 0.9123

model-based 0.5327 0.0233 0.5709 0.0152 15 20.09 0.7491 0.805
PAMSIL - - 0.6461 3e-04 2 1.73 - 1

clustering methods used as the initialization are made based on their overall perfor-
mances across all DGPs.

Table 4.11 summarises ARI values and the best ASW value obtained for the cluster-
ing methods used as an initialization methods to OSil across all the DGPs. The table
indicates which clustering method gave the best ASW and ARI values against the true
labels of the data generating process.

The best ASW values were mostly obtained from k-means, PAM or model-based
clustering methods whereas the best ARI values were mostly obtained for model-based
or Ward’s clustering methods. Table 4.12 summarizes which among the initialization
methods performed best to optimize ASW1.

The single linkage hierarchical clustering is an attractive clustering method due
to its mathematical properties rooted in topology (Carlsson and Mémoli (2010), Carls-
son and Mémoli (2013)). For model 6, 7 and 9 single linkage gave the maximum ASW
with very poor ARI values. The resulting clusterings were not meaningful as often Sin-
gle linkage has combined two points together and every thing else in another cluster.
We have observed for the models included in this study that they often combined very
few points, mostly one or two, together in one cluster that were a bit far from densely
populated area of data. This is a verification of well known behaviour of single link-
age, which is its tendency of making undesirable long thread-like clusters due to its
chaining phenomenon. The chaining occurs because single linkage tries to merge two
clusters based on the minimum distance between the two closest elements in the dif-

1Note that Tables 4.11 and 4.12 are directly comparable and the best of these two are also of interest.
These two tables with Table 4.13 can be used to draw the comprehensive conclusions about all DGPs in
Simulation I.
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Table 4.11 Summary table for Simulation I for ASW and ARI values.
DGMs k-means PAM single complete average Ward McQuitty spectral model-based

Model 1 3 =

Model 2 3 =

Model 3 3 =

Model 4 3 =

Model 5 3 =

Model 6 = 3

Model 7 = 3

Model 8 3 =

Model 9 = 3

Model 10 3 = 3 = 3 = 3 = 3 = 3 = 3 =

A 3represents a clustering method that gave best ASW for the clustering results obtained from the existing clus-
tering methods whereas a = represents a clustering method which has given best ARI value obtained for these
clustering methods.

Table 4.12 Summary table for Simulation I for ASW and ARI values.
DGMs k-means PAM single complete average Ward McQuitty spectral model-based PAMSIL

Model 1 3 3 3 = 3 = 3 = 3

Model 2 3 3 3 3 =

Model 3 3 = 3 3 =

Model 4 3 =

Model 5 3 =

Model 6 3 =

Model 7 3 =

Model 8 = 3

Model 9 3 3 =

Model 10 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 =

A 3represents a clustering initialization method that gave best ASW from OSil whereas a = represents an initialization method which has

given best ARI for OSil.

ferent clusters. This means that several clusters can be joined together if any two data
points, one belonging to each cluster are within close proximity to each other, even
though many of other data points in each cluster may be at a far distance. Due to this
property single linkage fails in separating the spherical clusters despite the fact that it
is a theoretically well developed clustering method. This behaviour is confirmed by
the very poor value of the ARI for the models mentioned earlier for single linkage OSil
clustering.

The complete linkage hierarchical clustering method has given the best ASW and
ARI value for one data structure (Model 10) included in this study but this is also achieved
by all the other models. When it comes to the consideration about keeping this method
as an initialization we have decided to drop this method. McQuitty similarity method
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has only given the best ASW once for Model 6 with a very low ARI as compared to the
maximum achieved by Ward’s method for this model. Other than this it has never given
maximum ASW and ARI.

The spectral clustering has only improved ASW once (as compared to other clus-
tering methods) namely Model 1 with the best ARI value as well. But many other meth-
ods also achieve this best value for the ARI. For all the other models spectral clustering
has never achieved the best ASW, and the ARI values were also very low. This is also
a computationally expensive method as compared to others. It might be the case that
the potential of the spectral clustering method does not come up in the data generating
models included here.

We have reported while discussing the results for each model individually in Sec-
tion 4.5.1 that, the OSil clustering has decreased the best ARI values for some DGPs as
compared to the best ARI values obtained for the maximum ASW clustering. In particu-
lar, the best ARI values from OSil clustering for the Models 1-3, 6 and 8 have decreased.
This is an indication that either optimizing ASW is not a good idea for clustering these
models if the purpose of clustering is to retrieve the known true clusters. On the con-
trary, the OSil has increased the ARI for Model 4, 5, and 7. For Model 4 both PAMSIL
and OSil performed same. For Model 5, PAMSIL has performed best in terms of ARI,
keeping in mind OSil with PAM initialization has also performed very close to this. For
Model 7, OSil performed best for ARI. For Models 9 and 10 many methods gave ARI=1.
This information is summarized in the Table 4.13.

Table 4.13 Summary table for ARI comparison for ASW and PAMSIL methods in Simu-
lation I.

DGMs Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

ASW ? ? ? ? ? ? ?

OSil ? ? ? ? ?

PAMSIL/OSil ? ? ?

A ? represents that a higher value of ARI was obtained from a method as compared to its competitors. If a ? appears more than once in a

column, this means that all corresponding methods gave the same ARI values.

However, it is interesting to note that, although for Models 1-3, 6 and 8 the best
ARI values obtained from OSil has decreased but OSil has improved the individual ARI
values for several clustering methods for these and other models. We now summa-
rize these results in the Table 4.14. A 3, 7, and = represents that OSil has increased,
decreased, and not changed the ARI values when a clustering method was used as an
initialization for OSil as compared to the ARI values obtained from the same clustering
methods for their standalone use.
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Table 4.14 Summary table for the comparison of the ARI values obtained from OSil
clustering and the maximum ASW clustering for Simulation I.

DGMs k-means PAM single complete average Ward McQuitty spectral model-based

Model 1 3 3 3 3 3 7 3 7 7
Model 2 3 3 7 3 7 7 3 7 7
Model 3 3 3 7 3 7 7 3 7 7
Model 4 = 3 7 7 3 = 3 3 3
Model 5 3 3 7 3 7 7 3 3 3
Model 6 3 3 3 3 3 7 3 7 7
Model 7 3 7 7 3 3 3 3 3 3
Model 8 3 3 7 3 3 7 3 7 7
Model 9 = = = = = = = 3 =

Model 10 = = = = = = = 3 3

The PAMSIL algorithm has given the best ASW only for Model 8, but with very low
ARI (with a difference of 0.13) as compared to the ARI value for OSil with a slightly low
(with a difference of 0.0041) ASW value. However, it has achieved the same ASW value
as those of OSil for some other models. PAMSIL has overall given best ARI values for
Models 3, 4 (higher than OSil as well but lower than ASW), Model 5 (higher than OSil as
well as other clustering methods). PAMSIL performed good partially, for Model 3 and
5. For Model 3 it gave the same ASW value as OSil but a higher ARI value but this ARI is
smaller than the ARI achieved from existing clustering methods with maximum ASW.
For Model 5, OSil and PAMSIL achieved the same ASW values again, but PAMSIL gave
the highest ARI value as compared to OSil and existing clustering methods.

Although in about half of the models ASW (both OSil and PAMSIL) approach has
reduced the ARI as compared to the ARI got from the existing clustering methods for
the maximum ASW, the superiority of OSil as compared to PAMSIL is evident from the
following points.

(i) The ASW value obtained from OSil are much higher than those of PAMSIL for
Models 4, 6, 7 and 9. Out of these, for model 4, the ARI for PAMSIL is higher than
OSil, whereas the ARI for Models 6 and 9 for PAMSIL was very low as compared
to OSil.

(ii) The models 1 and 2 for which PAMSIL gave similar values of ASW as that from
OSil, its resulting ARI values are very low as compared to OSil.

(iii) For Model 8 PAMSIL gave a higher ASW value but with very low ARI as compared
to OSil.

Another important finding regarding ASW is that it is not necessary that a cluster-
ing method which will give the maximum ASW will also give the maximum ASW. Many
initialization methods for some of the DGPs included in the study have reached the
maximum ASW value with several initial ASW they have started with. PAM, Ward’s and
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model-based clustering methods have given the best ASW values consistently across
DGPs, whereas k-means and average linkage have also shown potentially positive per-
formances to be used as initialization methods for optimizing the ASW for some DGPs
included in the study.

The empirical distributions of the ASW vary greatly across the initialization meth-
ods. The distribution is mostly not symmetric but left or right skewed. For a few times
the distribution was also observed to be left or right J shaped for instance see spectral
clustering initialization for Model 2.

Lastly, we don’t know yet that how each of these initialization methods will perform
in terms of the estimation of the number of clusters, which we will study in next Section
4.6.

Before we close this section, we discuss a final observation related to model-based
clustering. Among the existing clustering methods considered here, the best ARI val-
ues were observed from model-based clustering method for 4 DGPs (Model 1, 2, 3 & 8)
despite the fact that it did not give the best ASW for any of these models. We check out
whether ASW or ASW brings any improvement in the estimation of numbers of clus-
ters as compared to BIC with model-based clustering method? Thus, we will further
investigate how this performance is compared to the number of clusters estimated by
the BIC in combination with model-based clustering, and finally what are the ARI val-
ues for these clusterings? It would be useful to learn how the performances of model-
based clustering with BIC varies for ASW and what the resulting ARI values for these
clusterings are? We will investigate this further in Section 4.6.3 once the performance
of clustering methods is being explored with respect to estimation of k.

4.6 Simulation II: Estimation of k case

In this section we will conduct simulation for the estimation of the number of clusters.
Let the maximum number allowed to estimate the number of clusters is K 2Nn . The
number of clusters were estimated for 2 to K clusters. The OSil algorithm was then run
for each value of k using the corresponding initial clustering results. The best number
of clusters was decided based on the best ASW value obtained for the number of clus-
ters in each case. Note that this was done for all the initialization methods listed in the
previous section. For model-based clustering, the number of clusters was estimated
using the BIC criterion, and using the maximum ASW criteria. For the data sets having
correct number of clusters in the range 2°6 we have fixed K at 12, whereas for those
having the number of clusters in the range 7° 10, the clusters were estimated in the
window ranging from 2°20. We have estimated number of clusters for PAMSIL as well
for comparisons.

For the estimation of the number of clusters, we considered the proposed method
and a broad spectrum of existing methods for comparisons. We have considered again
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the 10 DGPs as defined for simulation I. For each data generating model we have again
used all the 9 clustering methods, namely k-means, PAM , five hierarchical methods,
namely single, complete, average, Ward’s, McQuitty, spectral clustering and model-
based clustering methods. The number of clusters were estimated from the 9 cluster-
ing methods as standalone methods and then 9 OSil clusterings, one initialized from
each of the 9 clustering methods. Thus we have 18 clustering solutions in total, for
each simulated data set of a DGP. For each of these clusterings, we have noted cluster-
ing results and statistics of interest for known fixed k as well as estimated k, which was
estimated based on maximum ASW values. In addition we have calculated clustering
and estimated number of clusters from PAMSIL.

Among the already existing estimation methods for the number of clusters, we have
used H, Gamma, C, KL, CH, Gap, Jump, PS, BI, CVNN, model-based, ASW along with
OSil with 11 clustering methods. For all the values of k ranging from 2 to K the clus-
terings were first calculated from all the 9 clustering methods in each run of the sim-
ulation and then these were used to pass to OSil to optimized ASW. These calculated
clusterings for each value of k were also used to estimate the number of clusters from
all the estimation indices for the estimation of the number of clusters. For H, KL,
CH, Gap index, the functions index.H(), index.KL(), index.G1(), index.Gap() of “clus-
terSim”, for Gamma “clusterCrit”, for PS, BI, CVNN functions prediction.strength(), ns-
electboot(), cvnn() of “fpc” packages were used, respectively, and for the Jump method
Sugar and James (2003b) implementation (code available from their website) was used.
For PS, BI, and Gap the parameters ‘M’(numbers of time the data set is divided into two
halves), ‘B’(number of times to resample from data) and ‘B’(the number of reference
data sets to compute the gap statistic, see 2.5.1.6) of their R functions were fixed at 15
each. For Jump method six transformation powers were used, namely p/2, p/3, · · · ,
p/7 (see 2.5.1.7 for detail). The model-based and spectral clustering methods are not
available to estimate the number of clusters with the Gap statistics with it’s current R
implementation. Also note that the use of model-based clustering for the estimation
of k is two-fold here. Firstly, we have estimated the number of clusters using all the
estimation indices included in the study with model-based clustering. Secondly, the
number of clusters was also estimated using the BIC criterion with model-based clus-
tering as implemented in Scrucca et al. (2017) for comparison. Therefore, in a single
run of a simulation we have estimated the number of clusters, from range 2 to K, with
105 methods (10 indices £ 9 clustering methods + Jump method with 6 transformation
powers + PAMSIL + model-based clustering with BIC −2 (exclude two clustering meth-
ods for Gap method) + 9 (OSil initialized with 9 clustering methods)) for a single data
set. In total 105 £ 25 (runs) £ 10 (data models) = 26,250 times the numbers of clusters
were estimated. All the simulations were done on a 2.8 GHz Intel core i7 processor.

The discussion hereafter is divided into two themes. First we will report the values
of ASW and other statistics of interest to make a comparison of ASW values for the
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estimation of k, and then we will investigate how each of these methods performed
with estimation indices for the estimation of the number of clusters.

4.6.1 ASW Results

The results for ASW and ASW values are overall consistent with what we got earlier. For
Model 6-8 many methods were able to give the best ASW and ARIs and there was no fur-
ther increment observed for the value of ASW from OSil. In the following subsection we
discuss the performance of each of cluster estimation methods. Throughout the expla-
nation, the percentage performances of indices are reported. If an index estimates the
known number of clusters correctly for 15 out of 25 runs, the index performance rate
is 60% and so on. The bars in the charts in Appendix C.2 also represent this percent-
age. In the discussions below whenever we refer to the standard use of model-based
clustering as proposed in Fraley and Raftery (1998), we will refer to it together with BIC
criterion. If model-based occurs with a particular index, say CVNN, we mean that the
number of clusters there are estimated by CVNN not by BIC.

Figure C.11a - C.20b represent the box-plot and density plot for the estimation of
k for Model 1 to Model 9. Tables C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.8, C.9 and C.10
represent the mean ASW with their SEs and ARIs for Model 1 to Model 10, respectively.
The summary Tables 4.15 and 4.16 are prepared based on the results mentioned in
these tables.

Note that Tables 4.15 and 4.16 are also comparable and best of these is also of in-
terest. These two tables can be integrated with Table 4.17 to draw the conclusions
about all DGPs. For instance, for Model 1, for the estimation of k, k-means clustering
method gave the best ASW value (first row of Table 4.15), whereas Wards method gave
the best ASW value (first row of 4.16), keeping in mind that the ASW value obtained was
greater than ASW value. Next the best ARI value achieved was from McQuitty cluster-
ing method against maximum ASW value and this value was higher than the best ARI
achieved from maximum ASW value (first row of Table 4.17). Similarly, the conclusions
about the other DGPs can also be drawn from these three tables.
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Table 4.15 Summary table for Simulation II for ASW and ARI.
DGMs k-means PAM single complete average Ward McQuitty spectral model-based

Model 1 3 =

Model 2 3 =

Model 3 3 =

Model 4 3 =

Model 5 3 =

Model 6 3 = 3 = 3 = 3 = 3 = 3 = 3 =

Model 7 = 3 3 3 3 3 3

Model 8 3 = 3 = 3 = 3 = 3 = 3 = 3 =

Model 9 = 3

Model 10 3 = 3 = 3 = 3 = 3 = 3 =

A 3represents that an initialization method gave the best ASW from clustering methods on average for 25 runs and esti-
mated k from 2 to K whereas a = represent if that initialization gave the best ARI value for clustering.

Table 4.16 Summary table for Simulation II for ASW and ARI.
DGMs k-means PAM single complete average Ward McQuitty spectral model-based PAMSIL

Model 1 3 =

Model 2 3 3

Model 3 3 = 3 =

Model 4 3 = 3 3

Model 5 3 = 3 =

Model 6 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 =

Model 7 = 3 3 3 3 3 3 = 3

Model 8 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 =

Model 9 3 =

Model 10 3 = 3 = 3 = 3 = 3 = 3 = 3 =

A 3represents that an initialization method gave best ASW from OSil on average for 25 runs and estimated k from 2 to K whereas a = represent
that an initialization gave the best ARI for OSil.

Table 4.17 Summary table for ARI comparison for ASW and PAMSIL methods in Simu-
lation II.

DGMs Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

ASW ? ? ? ? ? ? ?

OSil ? ? ? ? ? ? ?

PAMSIL/OSil ? ? ? ? ?

A ? represents that a higher value of ARI was obtained from a method as compared to its competitors. If a ? appears more than once in a
column, this means that all corresponding methods gave the same ARI values.

4.6.2 Comparison with other indices

All the discussions in this section are based on the results presented in the figures and
tables in Appendix C.2. Figures 4.11, 4.12, 4.14, 4.16, 4.18, 4.20, 4.22, 4.24, 4.25 and 4.26
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represent the bar charts for the number of clusters estimated at the desired value by all
the combinations of clustering methods and estimation indices for all the DGPs using
the percentage counts. Since many of these combinations fail to estimate the number
of clusters at the desired level for these DGPs, detailed tables are prepared to represent
the exact counts for the estimated numbers of clusters for each of these combinations.
These Tables are C.11, C.12, C.13, C.14, C.15, C.16, C.17, C.18, C.19 and C.20, which rep-
resent the frequency count for each combination for the estimated number of clusters
for Models 1-10. We now discussion the overall performance of the individual indices
with respect to various clustering methods.

CH has not performed very well. Ward’s, McQuitty and spectral clustering have per-
formed well with CH only for Model 1. For the rest of the models, CH has either failed
to estimate k with many clustering methods or has performed below 40%.

H index has performed very poorly for all models except for Model 8. PAM has never
estimated the correct number of clusters with the H index except for Model 8. The
Gamma and the C indices have consistently performed poorly except for Model 4 & 8.
These two indices have failed with many clustering methods in the estimation of the
number of clusters. KL has also performed poorly with all clustering methods.

Gap method has performed above 60% except with single linkage for Model 1. Gap in
combinations with all clustering methods has performed lowly for Model 2, poorly for
Models 3, 5, 6, 7 and well for Model 4 (except with single linkage).

Jump has estimated the correct number of clusters with p/3 (87.5%) for Model 1, p/3
(97%) for Model 2, p/5 (58%) for Model 3, p/2 (100%) for Model 4 and 6 and never for
Model 5, 7, 8, or 9.

PS has performed poorly with complete linkage clustering. It has performed 100%
with model-based clustering for Model 1, with k-means and model-based clustering
for Model 2, with PAM and model-based clustering for Model 4, with PAM for Model 5,
with PAM, Ward and model-based clustering for Model 6, with PAM, single, complete,
average, Ward, McQuitty and model-based clustering for Model 8. It has estimated the
desired number of clusters for Model 3 with k-mean, PAM and Ward about 3%, single
linkage 37%, average linkage about 12%, McQuitty about 10%, model-based clustering
about 82% and for Model 7 only with single linkage (about 30%). PS has never been
able to estimate the numbers of clusters at the desired value for Model 9.

BI has never been able to estimate the correct number of clusters for Model 6. Only a
few clustering methods performed well in combination with this index for Model 1 and
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2. Model-based clustering with BI has never been able to estimate the correct number
of clusters. BI has performed well only for Model 4 with all clustering methods except
k-means and single linkage clustering.

CVNN has performed well only for Models 1, 2, 3, 4 (except single linkage). It has per-
formed poorly for Models 5, 7, 8, 9 in combinations with all clustering methods. It has
performed well with Model 6 only with Ward’s and model-based clustering.

BIC in combination with model-based clustering method has estimated the correct
number of clusters 100% of the times for Models 1, 2, 6, 35% for Model 3, less than 30%
for Model 4, very poorly for Model 5 and never for Models 7, 8 and 9.

ASW shows an overall good performance with Models 1 and 2, a very good performance
for Models 4, 8, and 10, and a poor performance for model 3. It also performed well for
Model 5, but only with a few clustering methods, and it was never able to estimate the
correct number of clusters for Models 6, 7, and 9. ASW mostly showed better perfor-
mance than PAMSIL in combination with k-means and spectral clustering.

PAMSIL has estimated the correct number of clusters for 100% of the simulations for
Models 4, 5, 8 and 10. The performance rate is 80% for Model 1, 28% for Model 2, 12%
for Model 3 and never for Models 6, 7, and 9.

OSil has 88% performance rate for Model 1 for the estimation of number of clusters.
It has shown good performance (100%) for the estimation of number of clusters for
Models 4, 5, 8, 9, 10 with various initialization methods. It performed poorly for Mod-
els 2, Model 3(estimated number of clusters as 2 instead of 3 majority of the times), 6
(always estimated 4 as a number of clusters instead of 5), 7 (always estimated number
of clusters as 3 instead of 7).

Single linkage has consistently performed poorly for all the estimation procedures for
the estimation of the number of clusters for all DGPs except very few.

We now expand the discuss about the performance of indices and clustering meth-
ods in more detail with respect to each DGP. Other possible artificial clustering solu-
tions for the DGPs are also considered.

(Model 1) OSil performed better for Model 1 as compared to all clustering methods
with ASW, except a slightly smaller value of ASW for spectral clustering method only.
PS and BI in combination with k-means and model-based clustering methods and BIC
also performed very well for this model. Many other methods failed to estimate the
number of clusters at desired level or performed very poorly. Table C.11 represents the
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number of clusters estimated by each of these methods.
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Figure 4.11 Bar plots for the estimation of k for Model 1. Each bar represents the per-
centage count of correct estimate of k.
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(Model 2) The Jump method, PS, and BI in combination with k-means and model-
based clustering, CVNN with model-based clustering and BIC with model-based clus-
tering have performed best for Model 2. OSil increased the performance rates of the
single, complete, Ward’s and McQuitty methods. Table C.12 represents details of the
numbers of clusters estimated by these methods.

(a) CH

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(b) H

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(c) Gamma

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(d) KL

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(e) gap

0

25

50

75

100

km pam sngl comp ave Ward McQ
clustering methods

%
 c

or
re

ct

(f) jump

0

25

50

75

100

p/2 p/3 p/4 p/5 p/6 p/7
clustering methods

%
 c

or
re

ct

(g) PS

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(h) BI

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(i) CVNN

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(j) BIC/PAMSIL

0

25

50

75

100

model−based pamsil
clustering methods

%
 c

or
re

ct

(k) ASW

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(l) OSil

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

Figure 4.12 Bar plots for the estimation of k for Model 2. The C index was never able to
estimate correct number of clusters for Model 2.

(Model 3) Only CVNN with model-based clustering has been able to estimate the num-
ber of the clusters at desired level 100% of the times for Model 3. All the other methods
performed poorly. However, OSil increased the value of ASW in combination with k-
means, average, McQuitty, spectral and model-based clustering methods. Overall the
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ASW family for this model didn’t work well like many other estimation methods. Ta-
ble C.13 represents details of the numbers of clusters estimated by these methods. For
Model 3 the distances between the clusters are very small and a clustering solution
with 2 clusters or 3 clusters also makes sense, despite the fact that that the data was
generated originally as 4 clusters. The 2-clusters and 3-cluster are shown in the Figure
4.13a and 4.13b below.
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Figure 4.13 Artificially generated clustering solutions for Model 3. Figure (a) a 2-cluster
solution, and (b) a 3-cluster solution.

The Gap method has estimated the 3-clusters solution most of the time for this
model. KL has shown a greater frequency for the numbers of clusters 2 and 3 as com-
pared to the other methods. PS and BI have shown the same trend. CVNN has a major-
ity trend for the numbers of clusters 3 or 4. ASW based clustering approach have pro-
posed 2 as an estimate with higher frequency with all the clustering methods than any
other method indicating the distance between the clusters as mean factor for this in-
dex. Some methods have also break the cluster with bigger observation spread, which
is t distributed here, into two smaller clusters as shown by the Jump method. Some
other methods like CH, C and Gamma have further split the clusters into more clusters
and propose an even higher numbers than these as the estimate. Methods that are try-
ing to form clusters with bigger spread can prefer the cluster solution shown in Figure
4.13a over the solution shown in Figure 4.13b. For a combination of clustering method
and the estimation index, that heavily depend upon the distance between clusters and
within cluster distances the solution in Figure 4.13b will be preferable.

(Model 4) For Model 4, ASW has estimated the correct number of clusters 100% of the
times in combination with PAM and Ward, whereas OSil has estimated k 100% of the
times with PAM, Ward and model-based clustering. OSil has also increased the per-
centage of all clustering methods, for the estimation of the correct k, as compared to,
estimation of the number of clusters from these methods using ASW. The model-based

135



(a) H

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(b) Gamma

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(c) C

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(d) KL

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(e) CH

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(f) gap

0

25

50

75

100

km pam sngl comp ave Ward McQ
clustering methods

%
 c

or
re

ct

(g) jump

0

25

50

75

100

p/2 p/3 p/4 p/5 p/6 p/7
clustering methods

%
 c

or
re

ct

(h) PS

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(i) BI

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(j) CVNN

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(k) BIC/PAMSIL

0

25

50

75

100

model−based pamsil
clustering methods

%
 c

or
re

ct

(l) ASW

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(m) OSil

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

Figure 4.14 Bar plots for the estimation of k for Model 3.
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clustering method in combination with BIC has estimated the correct k for about 45%
of the times, whereas model-based clustering in combination with ASW and OSil has
estimated the correct k about 95% and 100% of the times respectively. Table C.14 repre-
sents details of numbers of clusters estimated by these methods. Figure 4.15 represents
the 4, 3, and 2 clusters’ clustering solutions for Model 4.
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Figure 4.15 Artificially generated clusterings for Model 4 other than true number of
clusters. Figure (a) a 4-cluster solution, (b) another 4-cluster solution, (c) a 3-cluster
solution, (d) and (e) two different 2-cluster solutions.

(Model 5) This model has 6 clusters, where each cluster has the same number of ob-
servations. The structure of clusters, distance between clusters, and spread of observa-
tions within clusters vary greatly as clusters are generated from different distributions
like Uniform, Gamma, Beta, Exponential and Weibull distributions. Only PAMSIL and
OSil with PAM were able to estimate the correct number of clusters 100% of the times
for Model 5. ASW in combination with PAM performed 95%. k-means, Ward’s, spectral
methods in combination with both ASW and OSil performed below 50%. The remain-
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Figure 4.16 Bar plots for the estimation of k for Model 4.
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ing clustering methods in combination with ASW or OSil were never able to estimate
the correct number of clusters. Model-based clustering in combination with BIC per-
formed below 3%. Table C.15 represents the number of clusters estimated by each
method. Since the distances between the clusters are not the same, some estimation
methods or clustering methods can merge the two nearest clusters as one cluster re-
sulting in fewer number of clusters, any value from 5 to 2 instead of 6. Figure 4.17
represents these other possible clustering solutions for Model 5.

Figure 4.17b shows just the four clusters which lie in the middle of data sets gener-
ated from Model 5. The clusters are generated from Unifrom (label 1 in figure), Expo-
nential (label 2), Beta (label 3) and skewed normal (label 4) distributions to highlight
the fact, that for a five cluster solution the exponential cluster is closer to the beta clus-
ter to the Weibull and skewed normal clusters, and it is more intuitive for a method
to combine Uniform and exponential cluster first in a cluster. Figures 4.17d and 4.17e
both represent two different 3 cluster solutions for this model. The Uniform cluster
and the pair of Weibull and skewed normal clusters are roughly equally distant from
the pair of Exponential and Beta clusters hence the two different 3 cluster solutions.
Figure 4.17f represents a two clusters solution. Note that although the Gamma cluster
is also almost at the same distance from the central four clusters as compared to the
Uniform cluster, it has a wider spread, it is more natural for the methods to combine
the Uniform cluster with these 4 central clusters rather than the Gamma cluster. How-
ever, OSil has always estimated 6 clusters for this model.

(Model 6) Model 6 is a particularly difficult model for the estimation of the number of
clusters. Recall that there are 5 clusters in 5 dimensions. Two clusters are very close to
each other in all dimensions. The remaining three clusters are also close to each other
(but not equally distant) and far from the other two clusters. These clusters contain
equal numbers of observations but the spread among the observations within clusters
is not the same. PAMSIL and ASW were never able to estimate the correct number of
clusters for Model 6. Only OSil with k-means (11%) was able to estimate correct num-
ber of clusters. Note that although model-based clustering performed 100% for the
estimation of k with BIC, it was never able to estimate the correct k with ASW or OSil.
Other methods, namely Gamma, C, and BI were never able to estimate the correct k
in combination with any clustering method. KL, Gap, and CVNN were able to esti-
mate the correct number of clusters with a very low performance rate and with only a
few clustering methods. CH, PS, in combination with complete, McQuitty and model-
based clustering, Jump with (p/2 and p/3), and model-based clustering with BIC were
able to estimate k with 100% rate.

Table C.16 shows the estimated numbers of clusters according to these indices for
Model 6. For the majority of the clustering methods there is no agreement over the
number of clusters by indices. The estimation of k with the H index with various clus-
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Figure 4.17 Artificially generated clustering solutions for Model 5 other than true num-
ber of clusters. Figure (a) represents 5-cluster solution, (b) the middle four clusters,
(c) a 4-cluster solutions, (d) and (e) two distinct 3-cluster solutions, and (f) 2-cluster
solution. 140
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Figure 4.18 Bar plots for the estimation of k for Model 5. The Jump method was never
able to estimate correct number of clusters for Model 5.

tering methods varies greatly. Gamma, C and BI always estimated the number of clus-
ters as 2. KL has estimated 2, 3, or 4 clusters. Only Ward’s, PAM, and model-based
clustering in combination with CH have 100% performance rates. All the other clus-
tering methods with CH have estimated 4, 5, 6, or 7 clusters. With the Gap method the
majority of the clustering methods has estimated 4 as the number of clusters. Jump
(with p/2 and p/3), PS (with Ward’s, PAM, model-based clustering) and model-based
clustering (with BIC) have 100% performance rates. PAMSIL has always estimated 4 as
the number of clusters. ASW has estimated 4 as the number of clusters a majority of
the times. k-means and spectral clustering with ASW have estimated 2 as the number
of clusters 44% of the time each. OSil has always estimated 4 as the number of clusters
as well except for some occasional variations with k-means and spectral clustering.
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Figure 4.19 shows 2, 3, and 4 cluster solutions for Model 6. As a three cluster solu-
tion, any solution from Figures 4.19b or 4.19c or 4.19d can occur because two out of
three clusters are always very close to each other resulting in three possibilities. How-
ever, for the 4-cluster solution, since two clusters are close to each other as compared
to the other three, therefore, 4.19e is the most intuitive possibility.
(Model 7) All clustering methods in combinations with all estimation methods have
performed very poorly in estimating 7 clusters for Model 7. Table C.17 shows the esti-
mated number of clusters by each index. The majority of the methods have estimated
the number of clusters from 2-5. Figure 4.21 shows the three cluster solution for Model
7.
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Figure 4.22 Bar plots for the estimation of k for Model 7. The Jump, model-based clus-
tering with BIC, PAMSIL, ASW and OSil were never able to estimate correct number of
clusters for Model 7.
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Figure 4.19 Artificially generated clustering solutions for Model 6 for various number
of clusters. Figure (a) a 2-cluster solution, (b), (c), and (d) the three different 3-cluster
solutions, and (e) a 4-cluster solution.

143



(a) CH

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(b) H

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(c) KL

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(d) gap

0

25

50

75

100

km pam sngl comp ave Ward McQ
clustering methods

%
 c

or
re

ct

(e) jump

0

25

50

75

100

p/2 p/3 p/4 p/5 p/6 p/7
clustering methods

%
 c

or
re

ct

(f) PS

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

(g) CVNN

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct
(h) BIC/PAMSIL

0

25

50

75

100

model−based pamsil
clustering methods

%
 c

or
re

ct

(i) OSil

0

25

50

75

100

km pam sngl comp ave Ward McQ spec mb
clustering methods

%
 c

or
re

ct

Figure 4.20 Bar plots for the estimation of k for Model 6. The Gamma, C, BI, PAMSIL
and ASW were never able to estimate correct number of clusters for Model 6.
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Figure 4.21 An artificially generated 3-cluster solution for Model 7. Shown are the first
two dimensions of the data.

(Model 8) This model has 10 clusters. PAMSIL, ASW and OSil (except with k-means
and spectral clustering) have 100% estimation rates. KL, gap, jump, CVNN, model-
based (with BIC) were never able to estimate the correct number of clusters. CH and
BI have performed poorly as well. H and PS (never with k-means, spectral), Gamma
and C (never with k-means, and very low with spectral clustering) have estimated the
correct number of clusters 100% of times except with those mentioned above. Table
C.18 shows the estimated number of clusters with each estimation method in combi-
nation with each of the clustering methods with the frequencies for each estimated k.
Most of the methods have mostly estimated 8, 9, 11 or 12 clusters. KL has estimated
8 or 9 clusters. CH has estimated 10, 11 or 12 clusters. Jump has always estimated 5
number of clusters. BI has estimated 2 or 4 clusters. Model-based in combination with
BIC has estimated 9 clusters. CVNN has shown a very poor performance here and has
estimated the number of clusters between 2 to 8.

For Model 8 there are 2 other different numbers of clusters solution possible as
shown in Figure 4.23. For this model the design is of such kind that the 2 cluster solu-
tion and 4 cluster solution looks intuitive. Since there are two global clusters and the
difference between their means is highest in the data therefore 2 number of clusters
makes sense here as well. Also since each of these global clusters further is of such
kind that the difference between 2 groups of 3 clusters, and 2 groups of 2 clusters are
same, methods can estimate 4 clusters as well, as shown in the right panel of the figure.
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Figure 4.23 Artificially generated clustering solution for Model 8. Left panel a 2-cluster
solution, and right panel a 4-cluster solution.

(Model 9) This model has three clusters of equal sizes in 1000 dimensions. Overall
the estimation methods have not performed well here. A few methods failed entirely
or performed very poorly. The H was never able to estimate three clusters. BI (with
k-means, PAM, single and average linkage), CVNN (with spectral method) were never
able to estimate 3 clusters. KL, BI and PS have performed poorly. Many indices have
shown low performance for the estimation of the correct number of clusters with the
k-means clustering methods. Table C.19 displays the details on the estimates of k. A
majority of the methods have shown 100% performance except those mentioned.

(Model 10) For this model the majority of combinations agrees. Many methods
have estimated the correct k except, the H index has estimated 6 clusters instead of 7.
KL has either estimated 5 or 6 clusters a majority of times. Jump has always estimated
5 clusters. BI with k-means has shown a 6-cluster solution a majority of times.

4.6.3 Summary

– The distance between clusters turned out to be a very significant characteristic for
many clustering methods and indices to estimate the correct number of clusters.
Many clustering methods, especially H, Gamma, C and KL performed badly for the
models with unequal difference between clusters’ locations. Also, varying spread
among the observations between the clusters is hard for many combinations to de-
termined correctly. This includes different shaped clusters in the data like compact
as well as wide clusters or other shapes like as generated from Uniform distributions.
The Gaussian clusters with different shapes and orientations across the different di-
mensions were not identified by the methods correctly. Even the methods that are
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Figure 4.24 Bar plots for the estimation of k for Model 8. The KL, Gap, Jump, CVNN
were never able to estimate correct number of clusters for this model.
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Figure 4.25 Bar plots for the estimation of k for Model 9. The H index was never able to
estimate 3 number of clusters for Model 9.
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Figure 4.26 Bar plots for the estimation of k for Model 10.
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designed especially for Gaussian data failed quite often, for instance, see the model-
based clustering results for Models 6, 7, 8, and 9. For ASW based clustering objective
functions (including OSil and PAMSIL), the difference between the clusters mean lo-
cations turns out to be a challenging situation.

– Another important observation is that when some method can’t estimate the known
or correct number of clusters for a DGP, they choose the maximum number in the
range (i.e., K) as the estimate of k. This is mostly the case for C, Gamma, and CH
index.

– A ranking of the indices included in the study is plotted in Figure 4.27. The bars in
the plot is made from the block sums of each index in Table C.21. For instance, for
CH sum of overall column is 543 and success rate is (543/25*9*9)*100. The model-
based clustering with BIC, PAMSIL and Jump methods were not added in the figure
as they do not corresponding to the same total.
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Figure 4.27 Overall results for the indices and clustering methods aggregated for Simu-
lation II across all DGPs.

– The choice of clustering method with the indices matters and has an effect on the
estimation of the number of clusters. For instance, for Model 2, PS and BI were never
able to estimate the desired number of clusters using PAM, complete, single, Ward’s,
McQuitty and spectral. On the other hand they were able to estimate clusters at the
desired level 100% of the times with k-means and model-based clustering. There is
plenty of other such evidence. The performance of each index with one model across
these clustering methods differs greatly.

As defined in the above paragraph, various indices has shown good performance
with a particular clustering method only. Figure 4.28 shows the % success rate of
each clustering index with the top performing clustering method. One best row for
each index in Table C.21 was used to construct the plot.
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Figure 4.28 Overall results for Simulation II aggregated over all DGPs for the indices in
combination with clustering methods.

– Table 4.18 shows the performance of OSil as compared to ASW for all the clustering
methods and DGPs for the estimation of number of clusters. The comparison is done
using the percentage performances rate (PPR) of estimating the correct numbers of
clusters. OSil has either performed the same or better than standard use of ASW with
all the clustering methods except at a new occasions.

Table 4.18 Performance comparison of ASW values obtained from OSil as compared to
other clustering methods for all DGPs.

DGMs k-means PAM single complete average Ward McQuitty model-based spectral

Model 1 = = X X X X X X £
Model 2 £ X £ X £ X X X £
Model 3 X = X X X X £
Model 4 = = = £ = = X X £
Model 5 = X X £
Model 6 X
Model 7
Model 8 = = = = = = = = X
Model 9 ? ? X ? ?

Model 10 X = = = = = = =
=, X, £ represent the same, increase, and decrease in percentage performance of OSil as compared to ASW, respectively.
?means only OASW was able to estimate the correct number of clusters, whereas an empty box represent that neither OSil
nor other clustering methods using ASW were able to estimate the number of clusters at the desired value.

– One important observation regarding the use of ASW with spectral clustering is that
the OSil initialized with spectral clustering has slightly decreased the performance
rate as compared to ASW obtained from standalone spectral clustering method for
Models 1 to 5. ASW has shown a poor performance with the spectral clustering
method to estimate the correct number of clusters for Model 3 (8%), has shown good
performance for Model 2 (48%), Model 4 (56%), Model 5 (40%) and Model 8 (28%).
This combination has a performance rate of 96% for Model 1. However, this com-
bination never worked for Models 6, 7, and 9. OSil has further reduced the perfor-
mance rate for the estimation of k with spectral clustering for Models 1 to 5. This
combination also never worked for Models 6, 7, and 9. However, OSil only improved
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the performance rate for Model 8 from 28% up to 48%. Overall, ASW approach does
not look a good fit for spectral clustering to estimate number of clusters.

– Table C.21 presents aggregated results for all the estimation indices included in the
present study together with all the clustering methods across all the DGPs. One thing
to keep in mind before using this table is that the purpose of presenting these results
is not to compare the overall count calculated by taking into account all the cluster-
ing methods of each index across DGPs. These results in this manner are not compa-
rable across indices, because not all of them contain an equal number of clustering
methods. Therefore, if an overall ranking of these indices is required, best perform-
ing row should be used to create such a ranking rather than the overall count at the
end of each block. For instance, for CH the maximum count is with model-based
clustering, which is 60, thus only this value should be used to determine the rank
of CH among the estimation indices. However, the overall count at the end of each
block can be used for overall performance comparison of estimation indices that
have the same number of clustering methods. Spectral clustering performed poorly
with most of the indices for all DGPs (see Table C.21). It only performed a bit better
with OSil (87/225), ASW (93/225) and CH(78/225) as far as estimation of number of
clusters is concerned.

– OSil has always increased the frequency count for all the methods to estimate the
clusters at the desired value except a slight decay for model-based clustering. The
OSil approach is indeed better than the use of ASW with standalone clustering meth-
ods for the estimation of the number of clusters, as the overall counts for the two
methods with all the clustering methods included are 1061 and 1026, respectively.

– The index that showed the best performance is PS with PAM (168 count) with a 75%
success rate. ASW with PAM clustering (158 count) being second with a 70% success
rate. OSil with PAM on third rank (156 count) with 69% success rate, and PAMSIL
being 4th (154 count) at 68% success rate. Many indices other than these performed
closely: model-based with BIC (151), PS with model based clustering (146 count),
ASW with Ward (140 count), OSil with Ward (139), CVNN with PAM (131 count), and
CVNN with model-based clustering (130 count).

– For the Jump method, p/3 is the best transformation power choice for the majority
of DGPs. Estimation of the numbers of clusters for the spectral clustering method is
the big challenge. Many indices with this clustering method have performed poorly
for the estimation of the number of clusters.

– It was observed that PAMSIL has given a higher ASW value for a few models but with
too low ARI as compared to OSil. So far we have learnt that OSil is better than PAM-
SIL for the estimation of the number of clusters. Finally we look into which method
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among the ASW family (ASW, OSil and PAMSIL) gives the best ARI for each DGP
when the number of clusters are estimated from these. For many DGPs more than
one methods have given the same ARI. The purpose here is to see how each of these
methods performs in terms of obtaining clustering solutions for the estimated num-
ber of clusters. The results are summarized in Table 4.19 below based on the ARI
values reported in Tables C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.9, and C.10.

Table 4.19 Best ARI values indication among ASW and OSil methods for the estimation
of k for each DGP.

DGPs
Methods 1 2 3 4 5 6 7 8 9 10

8 clusterings X X X X X X
PAMSIL X X X X

OSil(8 initializations) X X X X X X X

The first row in the table above shows the one best ASW value based on the 8 existing
clustering methods as mentioned already. OSil produced the best ARI for the max-
imum number of models. Thus OSil not only produces better value of the ASW, it
has also shown a better performance for the number of clusters estimation as well.
Also, if we only compare OSil with PAMSIL, it has produced much higher values of
ARI as compared to PAMSIL, see for instance, Model 1, 2, 3, 7, and 9. It is also able to
achieve the same ARI for the remaining models (4, 5, 6, 8) as PAMSIL.

– We now continue our investigation on model-based clustering left at the end of the
Subsection 4.5.2. Table 4.20 below shows the percentage of the correct number of
clusters estimated by model-based clustering using the BIC, maximum ASW crite-
rion.

Table 4.20 PPR for model-based clustering using BIC, ASW and OSil.

DGPs
Methods 1 2 3 4 5 6 7 8 9 10

BIC 100 100 60 44 4 100 0 0 0 60
ASW 80 52 12 96 0 0 0 100 0 56
OSil 84 36 12 100 0 0 0 100 4 56

OSil has shown 100% performance as compared to BIC (44%) for Model 4, which
contains non-Gaussian clusters. A similar result is true for model-based clustering
using ASW and OSil initialized with model-based clustering for Model 8, where BIC
was never able to estimate correct number of clusters.
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For Model 6, OSil has estimated 6 clusters a majority of the times, except for model-
based clustering with which it has estimated 5 cluster solution. For model-based
clustering it is hard to separate the two small clusters very close to each other as two
components.

4.6.4 Some general comments

The purpose of the experiments was not only to compare the performance of the pro-
posed method with the existing competitors, but also to find out whether the idea of
OASW clustering is worthwhile at all for the estimation of number of clusters in com-
parison to the ASW. Another motivation for setting up this experiment is to system-
atically investigate the behaviour of the existing estimation indices as well. Milligan
(1981) conducted a study to evaluate the clusterings obtained from 4 hierarchical clus-
tering methods using 30 internal criterion. The clustering methods used were single
link, complete link, group average, and Ward’s minimum variance. The data model
considered had a strong clustering structure and 4 clusters. The clusters were compact
and well separated. The indices included in the study was chosen from the proposed
indices during the period of 1967 and 1980. In another study, Milligan and Cooper
(1985) has conducted an experiment with 4 artificially generated data sets having 2 to
5 number of clusters. 30 methods to estimate number of clusters were considered with
four hierarchical clustering methods mentioned previously. The indices included in
the study was chosen from the proposed indices proposed during the period of 1965
to 1983. Recently, Arbelaitz et al. (2013) have conducted the cluster validation study
using the 30 indices proposed during the period of 1973 to 2011. For many indices,
their several versions were included to compare their performance. The experiment
was conducted to estimate the numbers of clusters from each index. They considered
three clustering methods, namely average linkage, Ward’s method and k-means. The
artificial data sets were generated considering five factors, that were number of clus-
ters (allowed values were 2, 4, and 8), dimensions, cluster overlap, cluster density, and
noise level. They also considered 20 real data sets ranging from 2 to 15 clusters.

The strength of the experiments done here is that they include a larger number of
clustering methods for evaluation with indices covering wide spectrum of methods,
and artificial data sets having various clustering structures than those used in previ-
ous such studies. The Gap, PS, BI, and CVNN indices never appeared in a compara-
tive study together with other indices in such extensive systematic simulations. The
most promising and widely used indices were chosen for the comparative study here.
These widely used indices are paired with various fundamentally different clustering
methodologies that are in use across disciplines. It has been observed that researchers
mostly tend to show the good performances of these indices for a few data sets by par-
ing them with a clustering method with which they show good performance, and do
not discuss at all how these indices will perform in other situations.
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Authors have shown a way too rigid focus on ideas and methods for clustering or
estimation indices which will perform well on easy challenges or toy data and fail to
propose indices which can perform reasonably well for even fairly general situations.
Real data sets are complex and demanding. A single data set may contain some clusters
that are compact as well as others that have wide variations. The data sets here are
designed with the focus that several of the clustering challenges were present in one
data set. We have evaluated the performance of these indices for very complex data
structures for clustering solutions as well as for the estimation of number of clusters.

Van der Laan et al. (2003) has shown that PAMSIL is good for detecting small sized
clusters in presence of bigger sized clusters, where the clusters have same covariances.
By small sized clusters they mean number of observations in clusters. They have set
an experiment (this is Model 10) where 6 clusters have 25 observations and one cluster
has 350 observations. The clusters only differ in mean and are equally distant from
each other. The clusters also have the same co-variance matrix. However, we think
that this is a too simple clustering challenge and quite often in practice, clusters will
not only differ in shapes, and number of observations, they will be non-Gaussian as
well as unequally distant. Therefore, we have included PAMSIL for its in-depth analysis
based on much diverse data sets generated from Gaussian and other distributions. We
have not only included small clusters, as just defined but also other concepts related
to small clusters i.e., different spread in clusters and also from different distributions.

4.7 Simulation III: Overlapping data structure

In this section we perform an experimental design study for understanding the be-
haviour of OSil algorithm. In experimental design, the experimental conditions are
called factors and the output performance is called the response. The goal of the exper-
imental design for the simulations was to see how each factor (experimental condition)
will affect the response (for instance the value of the ASW) in a systematic manner. For
this study we have multiple response variables of interest. We want to judge how each
factor will affect these response variables. One purpose of the study is also to iden-
tify which of these factors are more important than others and have greater effect on
the response. The factors are based on major concerns that can contribute to the final
clustering solution. There are various important issues here, which we are interested
in investigating. Which initialization method will give the best ASW value? How good
is the developed technique in discovering/fitting the simulated data generating struc-
ture? How will the sizes and relative sizes of the clusters, the spread of the clusters and
clusters coming from different distributions affect the value of ASW and the discovered
clustering structure? Evaluation of run time complexity of the algorithm as factor ef-
fecting time will grow such as n and k. How many iterations the algorithm will take
to converge? This is to observe the increase in number of iterations by increasing the
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observations or clusters.
Suppose that there are m factors each at v levels and m0 factors at w levels. We

have used a vm £w m0
factorial experiment. We now first list the factors included and

their corresponding levels in the experiment below. Each of these are discussed in
more detail right after we list them below, together with the details of how to exactly
generate the data.

(i) Number of observations (Levels: n1 = 225, n2 = 625).

(ii) Number of dimensions (Levels: p1 = 2, p2 = 30, p3 = 200)

(iii) Number of clusters (Levels: k1 = 2, k2 = 5, k3 = 10)

(iv) relative sizes of clusters (Levels: s1 (equal): all clusters are of equal sizes. s2 (one
small): one cluster contains 15% of the observations and rest are equally sized. s3

(one big): one cluster contains 70% observations and the remaining observations
are equally sized among other clusters.)

(v) Cluster separation (distance between means of clusters) (Levels: ≠1: overlapping
clusters (0.01),≠2: close clusters (0.1),≠3: well separated clusters (0.3).

(vi) Covariance structures among clusters. Levels: ≥1 (small variations): all clusters
have equal covariance matrix. ≥2 (big variations): one cluster has smaller covari-
ance matrix and ≥3 (mixed variation): one cluster has smaller covariance matrix
along dimensions.

The number of observations in each cluster depends upon the levels of factors 1,
3 and 4 above. The corresponding sample size calculation for the design considered
here is given Table 4.21. Let µ1k1 = (0.5,1), µ2k1 = (0,°1), µ1k2 = (0.5,1,3.5,5,6.5), µ2k2 =
(0,°1,0.5,°0.5,1), µ1k3 = (0.5,1,3.5,5,6.5,°0.5,°2,°3.5,°5,°6.5), and
µ2k3 = (0,°1,0.5,°0.5,1,0,°1,0.5,°0.5,1). For k1 the cluster means were generated as
(µ1k1 +≠1) in the first dimension and (µ2k1 +≠1) in the second dimension. For k2 the
cluster means were generated as (µ1k2+≠1) in the first dimension and (µ2k2+≠1) across
all the remaining dimensions. Finally for k3 the cluster means were generated as (µ1k3+
≠1) in the first dimension and (µ2k3 +≠1) across all the remaining dimensions.

Let Op and Ip represents the null and identity matrices of order p. The size of these
matrices will depend upon the dimensions of the data. The covariance matrix for the
data sets depends upon the levels of covariance structures, number of dimensions and
number of clusters. Lets define the following matrices first:

ß1 =

2

4

°1 O

O I

3

5 , ß2 =

2

4

°2 O

O I

3

5 , and ß3 =

2

4

°3 O

O I

3

5 ,
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Table 4.21 Sample size calculation in each cluster against 3 levels of number of clusters
and relative sizes of clusters considered in the simulation study. Use n = n1 = 225 and
n = n2 = 625 for calculations.

No. of Clusters Relative size of clusters No. of observations in each cluster

k1 = 2 s1= equal n
2

s2 =1 small 15%n, 85%n
s3 =1 big 70%n, 30%n

k2 = 5 s1= equal n
5

s2= 1 small 15%n;
85%n

4 (remaining each)
s3 =1 big 70%n;

30%n
4 (remaining each)

k3 = 10 s1= equal n
10

s1= 1 small 15%n;
85%n

9 (remaining each)
s3 =1 big 70%n;

30%n
9 (remaining each)

where

°1 =

2

6

6

6

6

6

4

0.3
0.1 0.3
0.1 0.1 0.3
0.1 0.1 0.1 0.3
0.1 0.1 0.1 0.1 0.3

3

7

7

7

7

7

5

, °2 =

2

6

6

6

6

6

4

0.7
0.5 0.7
0.5 0.5 0.7
0.5 0.5 0.5 0.7
0.5 0.5 0.5 0.5 0.7

3

7

7

7

7

7

5

,

and

°3 =

2

6

6

6

6

6

4

0.3
0.1 0.2
0.1 0.2 0.3
0.1 0.2 0.3 0.4
0.1 0.2 0.3 0.4 0.5

3

7

7

7

7

7

5

.

For p1 only the first 2£2 dimensions ofß1, ß2 andß3 were used. For p2 the dimensions
of O and I were O25, I25 and for d3, O195, I195.

The covariance structures in clusters differ in two ways. Firstly there are basic co-
variance matrix structures. These are:

• ß1: small observational spread (across the first five dimensions),
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• ß2: bigger observational spread (across the first five dimensions),

• ß3: Mixed variations among observations (across the first five dimensions).

Secondly, to achieve these variations observational spreads, not all the clusters were
generated with the same covariance matrices:

• Equal covariance matrix: all clusters were generated using small observational
spread, i.e., ß1

• One cluster has smaller variation than the others’ that have bigger observational
spread, i.e., all clusters were generated from ß2 except one from ß1

• One cluster has smaller variation than the others’ that have mixed variations
among observations , i.e., all clusters were generated from ß3 except one from
ß1

For k1 and k2 (number of clusters), the three covariance structures ≥1, ≥2 and ≥3

were achieved in the same fashion as defined above. To allow other variational pat-
terns like negative correlation within cluster dimensions, more observational varia-
tion was added for k3. For k3 (10-clusters) and ≥1 (small variation among observations
within-clusters) all clusters were generated from ß1. For k3 and ≥2 nine clusters were
generated from ß2 and one was generated from ß1. For k3 and ≥3 one cluster each was
generated from ß1, ß4, ß5, ß6, ß7 and the remaining clusters from ß3, where the new
ß’s are defined as under.

ßi =

2

4

°i O

O I

3

5 , i = 4,5,6,7,

where

°4 =

2

6

6

6

6

6

4

0.01
0.001 0.01
0.001 0.001 0.01
0.001 0.001 0.001 0.01
0.001 0.001 0.001 0.001 0.01

3

7

7

7

7

7

5

,°5 =

2

6

6

6

6

6

4

0.2
°0.05 0.2
°0.05 °0.05 0.2
°0.05 °0.05 °0.05 0.2
°0.05 °0.05 °0.05 °0.05 0.2

3

7

7

7

7

7

5

,

°6 =

2

6

6

6

6

6

4

0.5
°0.09 0.5
°0.09 °0.09 0.5
°0.09 °0.09 °0.09 0.5
°0.09 °0.09 °0.09 °0.09 0.5

3

7

7

7

7

7

5

,°7 =

2

6

6

6

6

6

4

0.3
0.09 0.3
0.09 0.09 0.3
0.09 0.09 0.09 0.3
0.09 0.09 0.09 0.09 0.3

3

7

7

7

7

7

5

.
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A complete balanced factorial experiment gives: number of observations (2)£Num-
ber of variables (3) £ number of clusters (3) £ size of clusters (3) £ cluster separation
(3) £ covariance structures (3) = 3521 = 486 unique data conditions. B = 3 data sets
of each type were generated, resulting in 1458 data sets. The clusters are generated
independently from the Gaussian distribution. Each of the generated data sets was
initialized with seven initialization methods (k-means:with 100 random initialization,
PAM, average linkage, Ward’s similarity, spectral, model-based). ASW, adjusted rand
index (ARI) and standard error (SE) were calculated for each clustering obtained. Each
of these seven initial clusterings were then passed to the OSil algorithm to find the ASW.
We look at the ASW, SE and ARIs for these as well. The setup is run for a fixed/known
number of clusters.
Performance evaluation
To examine the performance of each initialization method 1) we look at the ASW for
the initialization and the ASW value obtained from OSil together with their standard
errors. Note that as the ASW is a clustering quality index to compare different cluster-
ing methods, therefore ASW can also be used here to examine the best fitted solution
among all considered methods. 2) For comparison of how good the resulting cluster-
ing matches the data generating process, we have calculated the adjusted rand index
(ARI). 3) For each case in our study we have computed the time taken by the methods
and, number of iterations taken by the algorithm to converge.

4.7.1 Results discussion

Some data sets are plotted in Figures 4.29 to give the impression of what kind of clus-
tering structures are to be identified by the clustering methods in this setup.

Table 4.22 (at the end of this section) represents the ASW values obtained against
various clustering methods and ASW when initialized with these clustering methods
together with their standard errors. Each cell represents an average counts of 1458/3=486
data sets except for the number of observations case which has 1458/2=729.

The best ASW value among the clustering methods is obtained through the average
linkage hierarchical clustering method. OSil with all the initialization methods have
always improved the value of the ASW obtained from the existing clustering methods.
Among these improved values the bold values in Table 4.22 represent the highest values
of the ASW obtained. The best values for the ASW were always obtained from the av-
erage linkage agglomerative hierarchical clustering initialization passed to OSil. Note
that PAMSIL never gave a best value of ASW.

Among the cluster separation factor, ASW was maximised for the well-separated
clusters case. Among different co-variance structure factor, the ASW value was max-
imised for the mixed variation case. As the number of observations increases, the
ASW value decreases for all the initialization methods except for model-based clus-
tering, whereas the ASW value decreases only for some initialization methods namely
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Figure 4.29 Few data condition plots from experimental design study. The factors and
their levels are: (a) p3 = 200 (number of variables, shown are the first two dimensions);
≠1:overlapping (separation level); n2 = 625 (number of observations); k1 = 2 (num-
ber of clusters); s1:equal clusters (relative cluster sizes); ≥2:big variations (covariance
structure). p3 = 200;≠1:overlapping; n2 = 625 in all figures. (b) k1 = 2; s2:one small; ≥1:
small variations. (c) k2 = 5; s2:one small cluster; ≥1: small variations. (d) k2 = 5; s3:one
big cluster; ≥1: small variations. (e) k3 = 10; s1:equal clusters; ≥1: small variations. (f)
k3 = 10; s3:one big cluster; ≥3: mixed variations.
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k-means and Ward’s method. As the number of clusters increases, the ASW value de-
creases, except for the model-based clustering initialization, where the maximum oc-
curs in the order k2, k1, and k3. Furthermore, OSil initialization by Ward, spectral, and
model-based clustering methods never gave the best ASW values.

On the other hand the ARI value for the OSil clustering are never better than for
the existing clustering methods. Table 4.23 represents the ARI values obtained for ex-
perimental conditions and initialization methods in Table 4.22. The bold values rep-
resent the maximum ARI for the existing clustering methods and the OASW clustering
schemes. The maximum ARI for the existing clustering methods was attained for k-
means clustering method except for two data conditions (k3 and s1) where average
linkage was predominant.

The best ARI values obtained were never from OSil or PAMSIL, indicating that opti-
mizing ASW might not be a good method for the clustering solution itself for this data
structure. The best ARI for OSil clustering was obtained from the Ward’s method for
agglomerative hierarchical clustering initialization except for two data conditions (k3

and s1) where average linkage initialization took the lead.
OSil initialized with PAM (italic values in Table 4.23) gave the better ARI values as

compared to the PAM clustering for all the data conditions. Note that PAMSIL has
never given a better value of the ARI than OSil initialized with PAM. For k2, k3 and p1,
OSil initialized with spectral clustering have gave higher ARI values as compared to ARI
obtained from just the spectral clustering method.

An important thing to note here is that the best values of ARI are obtained for the
clustering method (which is k-means) that has not given the best ASW value for most
of the data conditions. For instance, for number of clusters as two the best value of ARI
(0.2441) is obtained from the k-means clustering method, whereas the ASW obtained
with k-means clustering is not the highest (0.0824). The best ASW value (0.0903) was
obtained from the average linkage clustering method for the number of clusters as two.

In the summary, we have learnt that the existing clustering method that gave the
best value of the ASW also gave the best value of the ASW when used for initialisation
for OSil. The existing clustering method that gave the best value of ASW don’t gives the
best value of ARI. The proposed clustering method never gave a better value of the ARI
as compared to the existing methods for this data structure. This indicates that it’s not
necessary that a clustering method that gave the best value of ASW will give the best
ARI value as well.

Table 4.24 represents the time taken by the OSil algorithm run with each initializa-
tion. Each cell is calculated from an average of 162 data sets except for the number of
observations factor of the design which have just two levels hence the average is for 243
data sets. The OSil algorithm is computationally more expensive than existing cluster-
ing methods including PAMSIL. The time reported here is in seconds and also includes
the initialization time. As expected, as the number of clusters increases or the num-
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ber of observations increases or the number of dimensions increases the computation
time also increases. The OSil initialization with the model-based clustering method,
spectral clustering method, PAM algorithm and Ward’s clustering methods consumed
almost equal time. These are the methods who took the highest time. k-means is the
second best in terms of time, whereas average linkage takes the minimal time among
these methods.

In conclusion OSil clustering with average linkage initialization performed best
in terms of achieving the best ASW value and have the smallest computational time,
whereas the highest ARI value for OSil was achieved from Ward’s initialization method,
keeping in mind that this highest ARI is always lower than the highest ARI value achieved
from the clustering methods that gave maximum ASW.
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Table 4.22: ASW and its standard error (SE) for the initialization methods and OSil with its SE for the factorial experiment
design.

Factors Initialization Methods
k-means PAM Average Ward Spectral Model-based

init
SE

OSil
SE

init
SE

OSil
SE

init
SE

OSil
SE

init
SE

OSil
SE

init
SE

OSil
SE

init
SE

OSil
SE

PAMSIL
SE

Overall 0.2159 0.2378 0.1931 0.2422 0.2288 0.2831 0.2069 0.2466 0.1955 0.2619 0.1934 0.2606 0.2607
0.0044 0.0078 0.0060 0.0091 0.0126 0.0095 0.0057 0.0108 0.0169 0.0129 0.0143 0.0144 0.0111

Clusters
2 0.2471 0.2653 0.2108 0.2658 0.2710 0.3078 0.2410 0.2683 0.2447 0.2924 0.2186 0.2540 0.2936

0.0069 0.0087 0.0074 0.0081 0.0157 0.0117 0.0071 0.0102 0.0166 0.0145 0.0119 0.0151 0.0127
5 0.2110 0.2430 0.1948 0.2506 0.2175 0.2885 0.2022 0.2514 0.1965 0.2757 0.2043 0.2762 0.2693

0.0033 0.0084 0.0061 0.0116 0.0125 0.0101 0.0055 0.0108 0.0172 0.0130 0.0128 0.0140 0.0088
10 0.1896 0.2051 0.1737 0.2103 0.1978 0.2530 0.1774 0.2202 0.1452 0.2174 0.1574 0.2515 0.2193

0.0032 0.0062 0.0046 0.0076 0.0094 0.0066 0.0045 0.0113 0.0169 0.0111 0.0183 0.0140 0.0119
Dimensions

2 0.2767 0.2989 0.2568 0.2994 0.2932 0.3487 0.2665 0.3031 0.2449 0.3240 0.2575 0.3242 0.3229
0.0078 0.0101 0.0082 0.0099 0.0166 0.0121 0.0084 0.0117 0.0234 0.0164 0.0187 0.0181 0.0144

30 0.2567 0.2710 0.2418 0.2737 0.2683 0.3291 0.2429 0.2825 0.2378 0.3121 0.2327 0.2976 0.3093
0.0037 0.0080 0.0062 0.0096 0.0147 0.0091 0.0066 0.0145 0.0217 0.0151 0.0133 0.0167 0.0125

200 0.1143 0.1435 0.0806 0.1537 0.1249 0.1715 0.1113 0.1543 0.1038 0.1495 0.0900 0.1600 0.1500
0.0018 0.0053 0.0037 0.0079 0.0063 0.0072 0.0021 0.0062 0.0056 0.0071 0.0109 0.0084 0.0064

Observations
225 0.2167 0.2382 0.1937 0.2422 0.2294 0.2826 0.2074 0.2468 0.1961 0.2603 0.1933 0.2598 0.2606

0.0045 0.0075 0.0065 0.0090 0.0124 0.0100 0.0059 0.0107 0.0170 0.0131 0.0142 0.0139 0.0113
625 0.2151 0.2374 0.1925 0.2423 0.2282 0.2837 0.2064 0.2465 0.1948 0.2635 0.1935 0.2614 0.2609

0.0044 0.0081 0.0056 0.0093 0.0128 0.0090 0.0055 0.0109 0.0168 0.0127 0.0144 0.0149 0.0110
Cluster Size

Equal 0.2237 0.2365 0.2139 0.2427 0.2242 0.2614 0.2133 0.2384 0.2056 0.2524 0.1878 0.2340 0.2523
0.0036 0.0070 0.0054 0.0086 0.0109 0.0077 0.0049 0.0075 0.0151 0.0100 0.0125 0.0097 0.0061

One small 0.2226 0.2460 0.1778 0.2535 0.2349 0.2824 0.2170 0.2495 0.1978 0.2654 0.2098 0.2719 0.2718
0.0060 0.0076 0.0067 0.0098 0.0120 0.0112 0.0060 0.0095 0.0179 0.0138 0.0150 0.0168 0.0096

One big 0.2014 0.2309 0.1875 0.2306 0.2272 0.3055 0.1903 0.2519 0.1831 0.2679 0.1827 0.2758 0.2581
0.0038 0.0087 0.0060 0.0091 0.0147 0.0096 0.0062 0.0154 0.0176 0.0149 0.0154 0.0167 0.0177

Separation
Well-separated 0.2175 0.2385 0.1944 0.2435 0.2312 0.2834 0.2087 0.2467 0.1908 0.2585 0.1937 0.2590 0.2592

0.0045 0.0070 0.0062 0.0076 0.0124 0.0094 0.0058 0.0095 0.0185 0.0131 0.0146 0.0150 0.0103
close 0.2163 0.2383 0.1930 0.2426 0.2280 0.2826 0.2066 0.2480 0.1983 0.2616 0.1928 0.2622 0.2610

0.0041 0.0077 0.0064 0.0096 0.0124 0.0097 0.0056 0.0119 0.0159 0.0128 0.0144 0.0135 0.0115
over-lapping 0.2139 0.2366 0.1918 0.2406 0.2272 0.2833 0.2053 0.2452 0.1973 0.2655 0.1938 0.2605 0.2619

0.0048 0.0086 0.0054 0.0101 0.0128 0.0094 0.0057 0.0110 0.0162 0.0127 0.0139 0.0146 0.0116
Co-Variance Structure
small equal variation 0.2158 0.2351 0.1943 0.2381 0.2282 0.2838 0.2073 0.2439 0.1968 0.2614 0.1980 0.2597 0.2556

0.0045 0.0068 0.0057 0.0075 0.0134 0.0088 0.0055 0.0109 0.0161 0.0126 0.0136 0.0152 0.0113
big unequal variation 0.2099 0.2359 0.1844 0.2404 0.2197 0.2739 0.1989 0.2455 0.1879 0.2564 0.1813 0.2531 0.2614

0.0041 0.0086 0.0061 0.0096 0.0118 0.0111 0.0058 0.0110 0.0176 0.0132 0.0157 0.0143 0.0103
mixed variation 0.2221 0.2424 0.2005 0.2483 0.2385 0.2917 0.2144 0.2504 0.2018 0.2678 0.2010 0.2690 0.2651

0.0047 0.0079 0.0062 0.0103 0.0125 0.0086 0.0058 0.0104 0.0169 0.0128 0.0136 0.0136 0.0118
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Table 4.23: ARI for initialization methods and OSil clustering obtained for factorial experiment design.

Factors Initialization Methods
k-means PAM Average Ward Spectral Model-based

init
ARI

OSil
ARI

init
ARI

OSil
ARI

init
ARI

OSil
ARI

init
ARI

OSil
ARI

init
ARI

OSil
ARI

init
ARI

OSil
ARI

PAMSIL
ARI

Overall 0.7214 0.6323 0.5322 0.6001 0.6700 0.5893 0.7125 0.6520 0.6219 0.5953 0.5846 0.5072 0.5814
Clusters

2 0.7324 0.6045 0.5247 0.6051 0.5867 0.4703 0.7287 0.6055 0.6493 0.5632 0.5019 0.3389 0.6000
5 0.8287 0.7608 0.6025 0.6970 0.7294 0.6761 0.8226 0.7694 0.7096 0.7148 0.6952 0.6609 0.5968

10 0.6030 0.5316 0.4695 0.4983 0.6940 0.6215 0.5861 0.5811 0.5067 0.5078 0.5565 0.5219 0.5474
Dimensions

2 0.6269 0.5783 0.4991 0.5616 0.5905 0.5591 0.6258 0.5907 0.5704 0.5738 0.5611 0.5257 0.5718
30 0.6815 0.6248 0.5369 0.5903 0.6768 0.6102 0.6684 0.6449 0.5870 0.5726 0.5798 0.4975 0.5610

200 0.8557 0.6937 0.5607 0.6485 0.7428 0.5986 0.8432 0.7204 0.7082 0.6393 0.6127 0.4985 0.6113
Observations

225 0.7248 0.6311 0.5352 0.6025 0.6721 0.5929 0.7131 0.6513 0.6253 0.5991 0.5862 0.5185 0.5750
625 0.7179 0.6334 0.5293 0.5978 0.6680 0.5857 0.7118 0.6527 0.6184 0.5915 0.5829 0.4959 0.5878

Cluster Size
Equal 0.8270 0.7739 0.7070 0.7351 0.6252 0.6196 0.7813 0.7753 0.7040 0.6811 0.5358 0.5104 0.6364

One small 0.7689 0.5890 0.4614 0.5403 0.6620 0.5314 0.7575 0.5885 0.6507 0.5501 0.6328 0.4913 0.5387
One big 0.5682 0.5339 0.4283 0.5249 0.7229 0.6169 0.5985 0.5922 0.5109 0.5545 0.5850 0.5200 0.5691

Separation
Well-separated 0.7281 0.6325 0.5317 0.6000 0.6701 0.5765 0.7143 0.6472 0.6251 0.5953 0.5779 0.5141 0.5843

close 0.7266 0.6332 0.5360 0.6005 0.6674 0.5888 0.7119 0.6532 0.6227 0.5947 0.5806 0.5025 0.5774
over-lapping 0.7094 0.6312 0.5290 0.5999 0.6725 0.6027 0.7112 0.6556 0.6177 0.5958 0.5951 0.5051 0.5825

Co-Variance Structure
small equal variation 0.7448 0.6638 0.5580 0.6278 0.6941 0.6141 0.7326 0.6826 0.6446 0.6189 0.6006 0.5273 0.5948
big unequal variation 0.6613 0.5650 0.4743 0.5422 0.6267 0.5377 0.6584 0.5874 0.5811 0.5452 0.5485 0.4550 0.5426

mixed variation 0.7580 0.6681 0.5645 0.6303 0.6893 0.6161 0.7464 0.6860 0.6400 0.6217 0.6045 0.5394 0.6067
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Table 4.24: Time (in seconds) taken by the OSil algorithm including initialization time in the factorial experiment design
setup.

Factors Initialization Methods

k-means PAM Average Ward Spectral Model-based PAMSIL
Clusters

2 7.82 20.08 2.95 14.28 8.60 17.85 1.54
5 114.15 243.59 84.93 153.07 221.23 162.19 13.07

10 327.93 501.96 158.52 489.56 455.21 451.47 36.86
Dimensions

2 3.12 5.63 1.96 4.21 5.39 6.85 1.06
30 69.93 86.79 89.14 189.02 161.60 172.45 21.20

200 376.84 673.21 155.30 463.68 518.06 452.21 29.21
Observations

225 142.96 251.82 78.34 205.30 216.34 198.91 16.15
625 156.96 258.60 85.93 232.65 240.35 222.10 18.16

Cluster Sizes
Equal 136.14 195.59 60.00 139.47 180.10 194.81 13.76

One small 123.41 212.01 50.56 136.68 170.73 160.80 13.56
One big 190.34 358.04 135.84 380.76 334.21 275.90 24.16

Separation
Well-separated 122.93 220.65 51.13 133.42 160.32 142.56 10.02

close 163.18 263.02 91.35 234.02 246.17 215.93 19.22
over-lapping 163.78 281.97 103.91 289.48 278.54 273.02 22.24

Co-variance structure
small equal variation 128.36 238.59 83.50 190.19 204.61 188.13 16.96

big unequal variations 198.65 290.30 94.48 273.83 278.69 245.16 18.61
mixed variations 122.87 236.74 68.42 192.90 201.74 198.22 15.90
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4.8 Runtime complexity

The runtime complexity of OSil is high. The formal complexity is done for the final
algorithm. For a given initial clustering, each observation i 2Cr , r = 1, . . . ,k, is shifted
to every other cluster. Hence there are n £ (k °1) possibilities to run at each iteration
till convergence. The practical runtime of the algorithm will depend on the number of
iterations required to optimize ASW. Table 4.25 represents the runtime for a few com-
binations of the number of clusters and the number of observations in the data. The
data was generated from the Gaussian distribution. In the beginning two clusters were
generated having equal number of observations centred at (0,0) and (0,1). For other
values of k clusters were added one by one. The total number of observations were al-
ways divided equally among clusters. The highest value in the table is corresponding
to n = 1000 and k = 10. For this case the data is shown in Figure 4.30.
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Figure 4.30 Data set generated for n = 1000 and k = 10 for runtime evaluation.

The runtime reported in the tables are in seconds and are based on just a single data
sets. It is quite possible that in other runs the algorithm does not take that long and
converges much faster than this, or can take even longer based on the number of iter-
ations. Also from the reported values for runtime for DGPs considered in Simulation I
and II in the tables, it is evident that the algorithm is taking longer than other methods.
This is an indication that the algorithm is slow and alternative ways for speeding it up
are necessary to explore.
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Table 4.25 Time taken by OSi l algorithm for various combinations of n and k.

k
n 100 200 300 400 500 600 700 800 900 1000

2 0.024 0.151 4.872 2.544 10.65 29.63 2094 118 28.04 380
3 0.049 0.614 0.750 1.817 4.36 83.94 64.86 72 293 293
4 0.113 1.002 8.795 17.89 29.53 195 182 618 294 1948
5 0.081 1.049 14.93 18.77 82.44 114 462 519 581 2428
6 0.081 1.266 3.486 36.54 55.94 200 148 400 486 948
7 0.076 2.126 22.53 22.95 160 224 572 211 579 2142
8 0.109 1.258 12.98 51.67 61.19 233 200 386 1386 1924
9 0.160 1.971 8.478 25.33 183 218 319 1554 1257 2596

10 0.219 1.857 4.346 51.08 72.12 279 220 1232 1556 4321

4.9 Best OASW algorithm selection

In this section we will present the final version of OSil algorithm based on the best
initialization methods. From Simulation I, II, and III we have identified the best clus-
tering methods for the initialization based on their performance to optimize the ASW.
We initialize the algorithm every time with each of these best performing initialization
methods and use only one of these based on maximum ASW to initialize the OASW
clustering algorithm. The algorithm is named as OSil1. The OSil1 algorithm can esti-
mate the numbers of clusters as well. The algorithm starts with k = 2 clusters and finds
out the clusterings from several clustering methods listed below, where we present the
algorithm formally. It then chooses one best initialization based on the maximum ASW
value to start performing OASW clustering. The next step is the PAM style swapping
phase to find out the best possible value of ASW. The algorithm then repeats these
steps to estimate the number of clusters.

Let the dataset denoted byX of size n is to be clustered into k clusters. Let the num-
ber of clusters be estimated from the range 2, · · · ,K . Recall all notations from section
2.6. In addition a few more notations are needed. Let l j (X ,k) = (l j (1), · · · , l j (n)) repre-
sents the clustering labels for j 2 {1,2,3,4,5}, where each value of ‘j’ represents a clus-
tering method namely, k-means, PAM, average linkage, Ward’s method, and model-
based clustering, respectively. We now present the OSil1 algorithm.
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OSil1 algorithm

Set number of clusters k = 2 and maximum number of clusters K .
Initialize

(i) Calculate d(xi , xh), 8i 6= h 2Nn .

(ii) Calculate the clustering using k-means, PAM, average linkage, Ward’s method and model-based
clustering and initialize the five clustering label vectors obtained from these methods with k clus-
ters as l j (X ,k) = (l j (1), . . . , l j (n)), j 2 {1, · · · ,5}, respectively.

(iii) Calculate f (0) = argmax
j

f
°

l j (X ,k),d
¢

, j = {1, · · ·5} as defined in (4.3).

(iv) Set q = 1.

Swap

(i) For all pairs (i ,r ) such that xi › Cr , for r 2 Nk , assign xi 2 Cr and denote the new label set as
l§(i ,r )(X ,k) = (l§(1), . . . , l§(n)).

(ii) Compute f(i ,r ) = f (l§(i ,r )(X ,k),d).

(iii) (h, s) = argmax
(i ,r )

f(i ,r ), f (q) = f(h,s), l (q)(X ,k) = l§(h,s)(X ,k).

Stop
If f (q) 6 f (q°1). Else q = q +1. Repeat Swap: Step (i)-(iii).

Repeat

(i) Assign f(k) = f (q), l(k)(X ,k) = l (q)(X ,k). k = k +1.

Repeat all steps from Initialize-(ii) to Repeat until k = K .

Estimate k
k̂ = argmax

k=2,··· ,K
f(k)

Return

k̂, f(k̂) and l(k̂)(X ,k).

Recall that one of the results of the Simulation I (fixed k case) was an indication
that it is not necessary that an initialisation methods which gave the maximum ASW
value will only give the maximum ASW value for OSil clustering. In fact, we have ob-
served for model 6 and 7 that an initialization with a lesser value of ASW can also give
maximum ASW value for OSil. Based on this finding we now present another version
of OSil algorithm named as OSil2. This version of the algorithm does not decide a best
initialization of the data based on ASW but instead it takes all of these 5 initializations
to the swapping phase and produces 5 different OASW clusterings. One best cluster-
ing out of these 5 OASW clusterings is chosen at the end based on the maximum ASW
value. It then repeats this whole process to estimate the best number of clusters. We
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now formally present this algorithm.
OSil2 2lgorithm

Set number of clusters k = 2 and maximum number of clusters as K . Set q = 1.
Initialize

(i) Calculate d(xi , xh), 8 i 6= h 2Nn .

(ii) Calculate the clustering using k-means, PAM, average linkage, Ward’s method and model-based
clustering and initialize the five clustering label sets with k clusters as l j (X ,k) = (l j (i ), . . . , l j (i )),
j = {1, · · · ,5}, respectively.

Swap

(i) For all pairs (i ,r ) such that xi ›Cr , for r 2Nk , assign xi 2Cr and denote the new label vector as
l§j ,(i ,r )(X ,k) = (l§j (1), . . . , l§j (n)), for all j .

(ii) Compute f j ,(i ,r ) = f (l§j ,(i ,r )(X ,k),d).

(iii) j , (h, s) = argmax
(i ,r )

f j ,(i ,r ), f (q)
j = f j ,(h,s), l (q)

j (X ,k) = l§j ,(i ,r )(X ,k).

(iv) f (q) = argmax
j

f (q)
j

Stop
If f (q) 6 f (q°1). Else q = q +1. Repeat Swapping: Step (i)-(iv).

Repeat

(i) Assign f(k) = f (q), l(k)(X ,k) = l (q)(X ,k). k = k +1.

Repeat all steps in Initialize-(ii) up to Repeat until k = K .
Estimate k
k̂ = argmax

k=2,··· ,K
f(k)

Return

k̂, f(k̂) and l(k̂)(X ,k).

We now compare OSil1 and OSil2 performance. We considered first 4 DGPs defined
in Subsection 4.4.1. All the setup is same as before, i.e., we consider 25 runs. The
number of clusters k, were estimated from the range 1, · · · ,K , where we set K = 12. Let
the estimated number of clusters be denoted by k̂. The results for Model 1 to 4 are
presented in Table 4.26 for the two proposed versions.

The column named “k̂ = k count” in Table 4.26 represents the count for the correct
estimated k by OSil1 and OSil2. The time reported in the tables is in seconds and ini-
tialization time is included. For the ture/known k both versions gives the same ASW,
but for the estimation of k, OSil2 gave a little higher value with a worse ARI value. Also
OSil1 shows a better performance in terms of the estimation of numbers of clusters.

First thing to note here is that OSil2 has only given a slightly higher value of ASW
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Table 4.26 OSil1 and OSil2 results comparisons for Models 1, 2, 3, and 4 for true k and
estimated k̂.

True k (Model 1) True k (Model 2)
Method ASW SE ARI ASW SE ARI
OSil1 0.6683 0.0055 0.8536 0.7098 0.0032 0.8571
OSil2 0.6683 0.0054 0.8579 0.7098 0.0032 0.8592

k̂ = k (Model 1)
Method ASW SE ARI time(s) k̂ count
OSil1 0.6701 0.005 0.8335 0.4452 23
OSil2 0.6704 0.005 0.8213 4.2546 22

k̂(Model 2)
Method ASW SE ARI time(s) k̂ = k count
OSil1 0.7219 0.0022 0.8080 1.822 8
OSil2 0.7227 0.0021 0.8056 17.906 8

True k (Model 3) True k (Model 4)
Method ASW SE ARI ASW SE ARI
OSil1 0.6986 0.0031 0.9078 0.8354 0.002 0.9956
OSil2 0.6986 0.0031 0.9078 0.8354 0.002 0.9956

k̂(Model 3)
Method ASW SE ARI time(s) k̂ = k count
OSil1 0.765 0.0027 0.3212 4.45 0
OSil2 0.765 0.0027 0.3212 48.5923 0

k̂ (Model 4)
Method ASW SE ARI time(s) k̂ = k count
OSil1 0.8354 0.002 0.9956 7.603 25
OSil2 0.8354 0.002 0.9956 74.098 25

twice. The gain in the ASW values obtained from it is very small (0.0002 for Model 1
and 0.0008 for Model 2), which is insignificant. Second, OSil1 has shown the better
performance in term of estimation of k only once (for Model 1). Third, note that ARI
values, both OSil1 and OSil2 has shown larger values of ARI twice, rest being the same.
For the data sets which have well-separated clusters like Model 4 both versions of the
algorithm will give the same results. However, a clear advantage which OSil1 has is its
less computational time. From the table it is clear that OSil1 is much faster that OSil2.
In general the results for OSil1 and OSil2 were consistent with each other and showed
the same trend without any major difference.

As mentioned above there are four things here to consider before choosing one
out of two versions, ASW value, estimation of k performance, ARI values, and runtime.
The ASW is a clustering quality measure and the number of clusters can be estimated

170



from it using the maximum ASW value. So one should first look which algorithm is
giving the best ASW value, and then accept whatever performance it is giving for the
estimation of number of clusters for that maximum value. One could also argue that,
it is not convincing to obtain a higher value of ASW with a bad clustering i.e., lesser
ARI value. As the true clustering and number of clusters are not well-defined and in
general debatable, algorithm selection based on ARI and the number of clusters is also
debatable. In this work we are interested in investigating, what ASW do? Therefore
we are concerned in obtaining best ASW values. Since the difference in ASW values
obtained were not significant, we decide to proceed with OSil1, provided that it is much
more faster than other.

4.10 Fast version

As we have already observed that OSil is computationally expensive, so we worked on
speeding up OSil1. We have tried several ideas and compared them to identify one best
fast version. In the following section, we first propose a fast version, and then briefly
talk about its other legitimate variants that we tried. We then make the computational
comparison between the proposed fast versions to decide one best. We then compare
the performance of OSil1 and it’s best fast version together in the section to follow.

4.10.1 FOSil algorithm

We take the approach of the random sampling to speed up the OSil1 algorithm. This is
a common and widely developed idea in literature. Clustering is first done only for a
smaller subset of data or the objective fuction is optimized only using slices/sample of
data, example includes, mini-batch algortihm to scale k-means to big data sets (Baraldi
and Blonda (1999), Sculley (2010)). Other ideas of using the sampling approaches to
speed up the algorithms appeared in Guha et al. (1998), Zhang et al. (1996), and Karypis
et al. (1999).

The idea behind proposing a fast version of OSil1 is not to run the OSil1 algorithm
on the entire data set directly, but to run it instead on a sample from the actual data.
A random sample of size s is first drawn from the data and clustered by OSil1, which
we refer to as the partial clustering of the data. The final data clustering is obtained
using OSil1 partial clustering result. The remaining data points are then assigned to
the partially clustered data based on the maximum ASW value. For each data point, k
clusterings are defined by assigning each data point to all clusters. ASW is calculated
for these k clusterings and point’s membership is chosen based on maximum ASW. We
call this clustering as FOSil1 clustering, where ‘F’ stands for fast. We don’t just take one
random sample from the data set, but several of these to calculate the partial clustering
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solution using OSil1. One out of these partial clustering is chosen based on the best
ASW value to perform full clustering.

The cluster memberships for all the points in the remaining data set are first de-
cided one by one, and then assigned all together at once to the clusters to get the fi-
nal clustering. The clusters were not updated each time separately for the remaining
points. If we add the remaining points one by one to clusters, the silhouette widths
and the overall ASW will be sensitive to the ordering of the remaining data. The clus-
ters’ average silhouette width for that cluster which got a new point will change every
time. This will also change the silhouette width of other clusters for which this cluster
was selected as nearest cluster due to the “min” in the definition of b(i ). This will cause
the ASW of the entire clustering to change every time. In this scenario, the clustering
will be sensitive to the ordering of the remaining data and with different ordering, one
can get different clusterings.

We now recall some notation to present the FOSil algorithm. Let X = {x1, . . . , xn}
be the data set with n points and Ck = {C1, . . . ,Ck } is a k-clustering identified by some
clustering function fk on X as usual. Let the clustering labels be

°

l (1), . . . , l (n)
¢

2Nk

determined by l (i ) = r , r 2 Nk , i 2 Nn . Let us define (2.12) for the five initialization
methods separately as

S̄ j (Ck ,d) = 1
n

n
X

i=1
Si (C(k, j ),d), (4.5)

for j = 1,2,2,4,5, where each value of j represents k-means, PAM, average linkage,
Ward’s method, and model-based clustering methods, respectively, and C(k, j ) denote
the clustering from each of the j methods.

Rewriting (4.5) for the label vector l (X ,k) instead of clusterings set Ck , to get the
equivalent representation of (4.2) for j methods, gives:

S̄ j (l j (X ,k),d) = 1
n

n
X

i=1
Si (l j (X ,k),d), (4.6)

where l j (X ,k) is the clustering label vector for each j .

Let ± 2R+ denote the proportion of the actual data to sample, such that the sample
size(number of points) is s = ±£n. Further assume that the sampled data is denoted by
S and remaining data by S0. Let the number of clusters k be to be estimated from the
range 2 to K, where K is the maximum number of clusters allowed for estimation. Let
the number of random samples of size s be denoted by M 2N. Let m be an index for
the M samples such that m 2 {1, · · · , M }. Let l 0(S,k) denotes the clustering label vector
for the best clustering selected from the five initialization clustering methods based on
the maximum ASW for each m. Let l (m)(S,k) representation the clustering label vector
corresponding to each sample M . Let l 00(S,k) represent the best clustering label vector

172



obtained from l (m)(S,k) from M samples.
The number of data points in S0 will be (n°s). Let x 0

h 2 S0, where h = 1, · · · , (n°s) and
c(S0,k) = (c(x 0

1), · · · ,c(x 0
(n°s))), where c(h) = r 0, r 0 2 {1, · · · ,k} and h 2 S0 be the clustering

label vector for S0. Let X 0 represents the new ordering of the data set as X 0 = (S,S0).
The numbers of clusters estimated from FOSil1, is based on the sample data clus-

tering using the ASW i.e., before performing the final data clustering. Before presetting
the FOSil1 algorithm formally, we present the steps of algorithm as follows:

(i) Take a sample from the data. Let m = 1

(ii) For this sample calculate the 5 clusterings to initialize.

(iii) Choose one best out of these clusterings based on maximum ASW.

(iv) Let m = m +1 and repeat (ii) to (iv) until m = M .

(v) Choose one best clusterings out of M clusterings based on maximum ASW. Call
this as initial clustering.

(vi) Pass the initial clustering to OSil1.

(vii) For k = 2, · · · ,K , perform OSil1 step and get one OSil1 clusterings for each value
of k. These will be (K °1), OSil1 clusterings in total.

(viii) Choose k̂ from (K °1) OSil1 clusterings based on best ASW value. Call the clus-
tering corresponding to k̂ as partial clustering.

(ix) Assign remaining points to the partial clustering based on maximum ASW.

We experimented with several value of K , M and ±. We recommend m = 25. We
tried 25, 50, 75, and 100 samples and found that m = 25 is good for the models in-
cluded. We did not observe further improvement in results from other values of m.
We observed that s between 2% to 20% of the the actual size of data gave good perfor-
mance.

From experiments it was observed for data sets that have well separated clusters,
that there will be no difference between ASW values obtained from OSil1 and FOSil1,
and also that multiple sampling is not needed. Multiple sampling is good for the data
sets that have overlapping, close clusters or widespread clusters.

There are several other ideas which we tried in the hope to further improve FOSil1

clustering. For instance, to assign the remaining data to the partial clusters, we could
decide their cluster memberships based on the maximum ASW value instead of the
maximum ASW value. But in doing so, as the size of the sampled data s will approach
the actual data size n, we will have the same computational complexity issue.
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FOSil1 algorithm

Choose K , M and ±. Set k = 2 and m = 1.
Sampling

(i) Take a random samples of size s from X . Let sample data be S and remaining data be S0.

Initialize

(i) Calculate the pairwise dissimilarities d(xi , xh ), between all pairs of objects (xi , xh ) 2 S.

(ii) Calculate the clustering of S using k-means, PAM, average linkage, Ward’s method and model-based clus-
tering, and initialize the five clustering label sets with k clusters as l j (S,k) = (l j (1), . . . , l j (s)), j 2 {1, · · · ,5}
for each of the five clustering methods, respectively.

(iii) Calculate j 0 = argmax
j

S̄ j
°

l j (S,k),d
¢

, j 2 {1, · · ·5}, where S̄ j
°

l j (S,k),d
¢

is defined in (4.6). Let l 0(S,k) =

l j 0 (S,k). Let m = m +1.

(iv) Calculate f (m) = S̄
°

l 0(S,k),d
¢

, where S̄(·) is defined in (4.2). Assign l (m)(S,k) = l 0(S,k).

(v) Repeat Sampling-(i) and (iv) until m = M .

(vi) f (0) = max f (m). Let l 00(S,k) = l (m)(S,k) be the corresponding labels belonging to f (0).

Estimate k

(i) Calculate f (k) = f (l 00(S,k),d), with f (·) as defined in 4.3. Let the resulting clustering be denoted by Ck =
{C1, · · · ,Ck }.

(ii) k = k +1, repeat all steps from Sampling up to now until k = K .

(iii) k̂ = argmax
k=2,··· ,K

f (k).

Let the resulting clustering be denoted as Ck̂ be called Partial Clustering. Let p(S, k̂) = l 00(S,k) be the

clustering label vector belonging to Ck̂ . Note that the full label vector is written as p(S, k̂) = (p(1), · · · , p(s)).

Remaining Cluster Labels
To calculate the cluster membership for the points in S0 using maximum ASW. Let c§(h) denotes a candidate label
for a data point h in S0. Find the clustering label vector c(S0,k) = (c(x0

1), · · · ,c(x0
(n°s))) for S0 as:

(i) For each pair (h,r 0), where h 2 {1, · · · , (n ° s)} and r 0 2 {1, · · · , k̂}, assign c§(h) = r 0. Generate a label vector
for (s +1) points as l§(h,r 0)((S,h), k̂) = (p(1), · · · , p(s),c§(h)).

(ii) Compute f(h,r 0) = f (l§(h,r 0)((S,h), k̂),d), where f (·) defined in (2.12).

(iii) (h§,r§) = argmax
(h,r 0)

f(h,r 0).

(iv) Assign the label as c(h§) = r§.

(v) Return c(S0, k̂) = (c(x0
1), · · · ,c(x0

(n°s))).

Final Clustering

(i) Assign X 0 = (S,S0) and l (X 0, k̂) = (p(S, k̂),c(S0, k̂)).

(ii) Calculate fX 0 = f (l (X 0, k̂),d), with f (·) as defined in (4.3).

Return

k̂, fX 0 and l (X 0, k̂).
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We tried to improve FOSil1 clustering further by following two separate ideas. We
describe them one by one. Considered the clustering obtained from FOSil1 algorithm.
Now from each cluster take a random sample of data points of size q , so that we have
a sample of size q £k in total. For each of these sampled points change their cluster
membership to other clusters to see if we get a further improvement in ASW values. We
do this by calculating the ASW after performing swaps. A swap is good if ASW is higher
for this clustering as compared to the ASW value we noted earlier. When tried out this
idea on data sets, we have actually observed a decrease in ASW results. The reason is
that if the sampled points were among those points that were located in the center or
dense areas of the cluster, then the ASW is decreased. This idea could work better for
the points on cluster edges because there is a high chance that they are misclassified.
One reason for this could be that the clusters are updated at once at the end, and not
one by one. If the clusters are updated point-wise, then ASW will be updated each
time, and these points might be assigned to other clusters. Therefore, recalculating the
ASW values after swapping all the points on the edges of clusters or doing so only after
sampling from points on the edges, if there are many of these could further improve
the ASW. However, we didn’t try this.

It is advisable to keep s much smaller than n to keep the time complexity as low as
possible, but the smaller size could work fine only for the data sets that have compact
and well separated clusters, for the identification of correct clusters. For the data sets
that have overlapping or wide and less dense clusters, the numbers of clusters may be
estimated wrongly based on sample data, because in sample data the less dense region
of a same clusters might appear as separate clusters rather than one cluster. To tackle
this, some kind of re-evaluation for the estimated number of clusters from FOSil1 based
on the entire data set might help in identifying correct clusters. One idea is, once the
FOSil1 clustering is found, split each cluster into (√£k) sub-clusters, where √ can be
any natural number. For instance √ between 2 and 5 is reasonable. The idea is to re-
estimate the number of clusters k from the range 2 and (√£k). Calculate the ASW for
this clustering. Next choose q% representative points from each of the (k£√) clusters.
Only swap these representative points to other clusters and calculate ASW i.e., estimate
k from argmax

k2{2,··· .(√£k)}
S̄(Ck ,d) as defined in (2.12). However, we didn’t try this idea.

In FOSil1 we have estimated the number of clusters based on sample data only.
FOSil1 performance was poor for the estimation of k (results will be presented later).
We now present another idea for FOSil clustering which we named as FOSil2. FOSil2

will estimate the number of clusters using the OASW clustering on the entire data set.
FOSil2 performs clustering on the entire data set for 2 to K clusters. It stores clus-

tering label vectors, the new data ordering and ASW values from 2 to K numbers of
clusters. FOSil1 estimates the number of clusters on the sample data only and needs
much less storage space. Whereas, FOSil2 estimates the number of clusters on the en-
tire data and will take more computational time than FOSil1. We now compare the two
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FOSil2 algorithm

Choose K , M and ±. Set k = 2 and m = 1.
Sampling
Take a random samples of size s from X . Let sample data be S and remaining data be S0.
Initialize

(i) Calculate the pairwise dissimilarities d(xi , xh ), between all pairs of objects (xi , xh ) 2 S.

(ii) Calculate the clustering of S using k-means, PAM, average linkage, Ward’s method and model-
based clustering, and initialize the five clustering label sets with k clusters as l j (S,k) =
(l j (1), . . . , l j (s)), j 2 {1, · · · ,5} for each of the five clustering methods, respectively.

(iii) Calculate j 0 = argmax
j

S̄ j
°

l j (S,k),d
¢

, j 2 {1, · · ·5}, where S̄ j
°

l j (S,k),d
¢

is defined in (4.6). Let

l 0(S,k) = l j 0 (S,k). Let m = m +1.

(iv) Calculate f (m) = S̄
°

l 0(S,k),d
¢

, where S̄(·) is defined in (4.2). Assign l (m)(S,k) = l 0(S,k).

(v) Repeat all steps from Sampling till Initialize-(iv) until m = M .

(vi) f (0) = max f (m). Let l 00(S,k) = l (m)(S,k) be the labels belonging to f (0).

Partial clustering

(i) Calculate f (k) = f (l 00(S,k),d), with f (·) as defined in (4.3). Let the resulting clustering be de-
noted by Ck = {C1, · · · ,Ck }. Note that the full label vector is written as l 00(S, k̂) = (l 00(1), · · · , l 00(s)).

Remaining Cluster Labels
To calculate the cluster membership for the points in S0 using maximum ASW. Let c§(h) denotes a can-
didate label for a data point h in S0. Find the clustering label vector c(S0,k) = (c(x0

1), · · · ,c(x0
(n°s))) for S0

as:

(i) For each pair (h,r 0), where h 2 {1, · · · , (n ° s)} and r 0 2 {1, · · · ,k}, assign c§(h) = r 0. Generate a
label vector for (s +1) points as l§(h,r 0)((S,h),k) = (l 00(1), · · · , l 00(s),c§(h)).

(ii) Compute f(h,r 0) = f (l§(h,r 0)((S,h),k),d), where f (·) defined in (2.12).

(iii) (h§,r§) = argmax
(h,r 0)

f(h,r 0).

(iv) Assign the label as c(h§) = r§.

(v) Return c(S0,k) = (c(x0
1), · · · ,c(x0

(n°s))).

Final Clustering

(i) Assign X 0 = (S,S0) and l (X 0,k) = (l 00(S, k̂),c(S0, k̂)).

(ii) Calculate f k = f (l (X 0,k),d), with f (·) as defined in (4.3).

(iii) k = k +1, repeat all the steps from Sampling up to now until k = K .

(iv) k̂ = argmax
k=2,··· ,K

f (k).

Return

k̂, f (k̂) and l (X 0, k̂).
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versions of FOSil. Table 4.27 represents the results for the comparisons. For Model
1, Model 2, and Model 3 it is clear that FOSil2 is performing much better than FOSil1.
However, the follwing table also shows if the clustering structure is clear, FOSil1 is also
able to estimate the correct number of clusters based on the sample data. For instance
see the results for Model 4 in Table 4.27.

Table 4.27 FOSil1 and FOSil2 comparisons for Model 1, 2, 3, and 4, for true k and esti-
mated k.

True k (Model 1) True k (Model 2)
Method ASW SE ARI ASW SE ARI
FOSil1 0.6685 0.0057 0.6623 0.709 0.0038 0.6296
FOSil2 0.668 0.0059 0.7942 0.7062 0.0067 0.6856

k̂ (Model 1)
Method ASW SE ARI time(s) k̂ count
FOSil1 0.6306 0.0109 0.7227 2.5933 13
FOSil2 0.6691 0.0054 0.8159 3.0303 23

k̂ (Model 2)
Method ASW SE ARI time(s) k̂ count
FOSil1 0.6991 0.0052 0.7572 1.6217 9
FOSil2 0.716 0.003 0.8334 2.2963 14

k̂ (Model 3) k̂ (Model 4)
Method ASW SE ARI ASW SE ARI
FOSil1 0.701 0.0033 0.4958 0.8206 0.0019 0.9174
FOSil2 0.7031 0.0027 0.5036 0.8207 0.0018 0.9888

k̂ (Model 3)
Method ASW SE ARI time(s) k̂ count
FOSil1 0.7652 0.0041 0.3687 1.9187 1
FOSil2 0.7693 0.0021 0.3203 2.9747 0

k̂ (Model 4)
Method ASW SE ARI time(s) k̂ count
FOSil1 0.81 0.0062 0.9728 2.1163 21
FOSil2 0.8207 0.0018 0.9888 3.4095 25

Finally, we apply two more ideas in order to seek improvement in the ASW value for
FOSil2. From Table 4.27 for Model 1 and 2, especially for the estimation of k case, we
observed that FOSil2 was giving slightly smaller values of the ASW than OSil1, which is
fine because FOSil2 is an approximation, but we still tried to further improve this ap-
proximated value. First, in the “Initialize” phase of the algorithm one could proceed
differently after step (i i i ) of the FOSil2 algorithm. Step (i i i ) decides the best initial-
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ization method based on the maximum value of the ASW. After choosing one best ini-
tialization from the five methods, this best initialization could be then passed to OSil1.
Thus the best initialization chosen from M samples is based on best ASW instead of
just ASW. We call this FOSil3 algorithm which is different than FOSil2 just in the initial-
ization phase. Note that all the steps are same, except Initialize(iv) is now calculated
as follows:

FOSil3 algorithm

(iv) f (m) = f (l 0(S,k),d), with f (·) as defined in (4.3).

The second idea is similar to the initialization as done in OSil2. We have already
observed from OSil2 that passing all initialization to OSil to perform clustering is way
more expensive than just passing one best initialization based on ASW. But doing so on
the sample data will not incur the same expenses, and we can get a better ASW value
than what we currently get from FOSil2. We call the new algorithm formed by this as
FOSil4, which is basically passing all the 5 initializations to OSil1 and then decide one
best at the end based on maximum value of ASW for the sampled data. This algorithm
is different from FOSil2 in the Initialize phase only. After (ii) of the Initialize in FOSil2,
we pass all the five initializations to OSil1 separately. We now present Initialize for
FOSil4 formally as follows:

FOSil4 algorithm

Initialize

(i) Calculate the pairwise dissimilarities d(xi , xh), between all pairs of objects (xi , xh) 2 S.

(ii) Calculate the clustering of S using k-means, PAM, average linkage, Ward’s method and
model-based clustering, and initialize the five clustering label sets with k clusters as
l j (S,k) = (l j (1), . . . , l j (s)), j 2 {1, · · · ,5} for each of the five clustering methods, respec-
tively.

(iii) Calculate f ( j ) = f (l j (X ,k),d), where f (·) as defined in (4.3). Let l 0j (S,k) be the corre-

sponding label vectors for f ( j ). Let m = m +1.

(iv) Calculate f (m) = max f ( j ), and l m(S,k) be the label set belonging to f (m).

(v) Repeat all steps from Sampling up to now until m = M .

(vi) f (0) = max f (m). Let l 00(S,k) = l m(S,k) be the labels belonging to f (0).

Continue from the Partial Clustering step of FOSil2.

In a nutshell, FOSil1 differs from FOSil2 in terms of estimation of number of clusters
only. Since FOSil1 performed poorly for the estimation of k, we decide to work further
with FOSil2. In an attempt to improve the performance further we introduces FOSil3
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and FOSil4 that differ from FOSil2 in the Initialize phase only. In the Initialize phase,
first the five clustering methods are used to get the five clusterings. The remaining
initialization steps for the three algorithms are summarized as follows. For FOSil2

(i) Choose one best out of 5 clusterings using maximum ASW

(ii) Repeat this for M samples

(iii) Choose one best out of M clusterings based on maximum ASW

For FOSil3

(i) Choose one best out of 5 clusterings using maximum ASW

(ii) Pass this best to OSil1

(iii) Repeat this for M samples

(iv) Choose one best out of M clusterings based on maximum ASW

For FOSil4

(i) Pass 5 clusterings to OSil1

(ii) Choose one best out of 5 OSil1 clusterings based on maximum ASW

(iii) Repeat this for M samples

(iv) Choose one best out of M clusterings based on maximum ASW

We now compare the results for FOSil2, FOSil3 and FOSil4. Table 4.28 represents the
results for these models. From the Table 4.28 it is clear that FOSil2 produces high val-
ues for ASW for the majority of models for fixed and estimated k. However, note that
for a few cases FOSil3 produces better values of the ARI and shows better estimates of
the number of clusters for two models, but this is not a drastic improvement as com-
pared to FOSil2. Among these three faster approximations, FOSil2 takes the least time
and consistently produces the highest ASW values. FOSil4 takes much more time than
FOSil2 and does not produce as high ASW values as FOSil2.

179



Table 4.28 FOSil2, FOSil3 and FOSil4 comparisons for Models 1 to 4.
True k (Model 1) True k (Model 2)

Method ASW SE ARI ASW SE ARI
FOSil2 0.6636 0.0032 0.7454 0.6999 0.0056 0.6477
FOSil3 0.6634 0.0032 0.7827 0.7013 0.0049 0.6923
FOSil4 0.6636 0.0032 0.7125 0.7024 0.004 0.6379

k̂ (Model 1)
Method ASW SE ARI time(s) k̂ count
FOSil2 0.6641 0.0031 0.8182 3.5673 22
FOSil3 0.6635 0.0032 0.8249 5.5071 23
FOSil4 0.6641 0.0032 0.8001 20.1853 21

k̂ (Model 2)
Method ASW SE ARI time(s) k̂ count
FOSil2 0.7112 0.0026 0.8116 2.4304 13
FOSil3 0.7085 0.0023 0.8107 2.6666 16
FOSil4 0.7111 0.0025 0.8238 4.0578 12

True k (Model 3) True k (Model 4)
Method ASW SE ARI ASW SE ARI
FOSil2 0.7025 0.0028 0.4988 0.8203 0.002 0.9924
FOSil3 0.6993 0.0044 0.5013 0.8201 0.002 0.9924
FOSil4 0.6952 0.0064 0.4817 0.8189 0.0024 0.9702

k̂ (Model 3)
Methods ASW SE ARI time(s) k̂ count
FOSil2 0.7689 0.0023 0.3204 2.8454 0
FOSil3 0.7687 0.0022 0.3221 3.2928 0
FOSil4 0.7688 0.0022 0.3201 5.9061 0

k̂ (Model 4)
Methods ASW SE ARI time(s) k̂ count
OSil1 0.8205 0.002 0.996 8.4993 25
FOSil2 0.8203 0.002 0.9924 3.2187 25
FOSil3 0.8201 0.002 0.9924 3.956 25
FOSil4 0.8189 0.0024 0.99 8.2414 24

4.11 OSil and FOSil comparison

Based on our comparisons in the last two sections OSil1 and FOSil2 are better in opti-
mizing the ASW. In this section we will compare the performance of the fast version to
the regular version as well as with the existing clustering methods. Here we will present
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results for the comparisons for DGPs defined in Subsection 4.4.1.
Results of the simulations for the Models 1-5 are in Tables 4.29 to 4.33. The time

mentioned in the tables is in seconds. Since FOSil2 is an approximation, it is not sur-
prising that it gave ASW and ARI values smaller than OSil1. In fact it has performed very
close to OSil1. PAMSIL has performed as good as OSil1 in terms of ARI values, whereas
OSil1 takes less computation time and reaches higher values of the ASW as compared
to PAMSIL.

Table 4.29 Comparison of OSil1 and FOSil2 with existing methods for Model 1.
True k k̂

Methods ASW SE ARI ASW SE ARI time(s) k̂ count
k-means 0.6693 0.0038 0.8434 0.6693 0.0038 0.8434 0.0031 25
PAM 0.6696 0.0037 0.8556 0.6696 0.0037 0.8556 0.0156 25
average 0.6059 0.0198 0.6385 0.6562 0.0048 0.8605 0.0011 18
Ward’s 0.6626 0.0045 0.9191 0.6626 0.0045 0.9191 0.0012 25
model-based 0.6471 0.0052 0.9904 0.6477 0.0052 0.9763 0.218 24
spectral 0.6538 0.0088 0.95 0.6611 0.0043 0.9147 0.5788 24
BIC-mb - - - 0.6444 0.0055 0.9889 0.1954 24
PAMSIL 0.6705 0.0036 0.8721 0.6707 0.0036 0.8656 0.6628 24
OSil1 0.6707 0.0036 0.8721 0.6707 0.0036 0.8656 0.4923 24
FOSil2 0.6644 0.0054 0.8272 0.6655 0.0047 0.844 1.8845 24

Table 4.30 Comparison of OSil1 and FOSil2 with existing methods for Model 2.
True k k̂

Methods ASW SE ARI ASW SE ARI time(s) k̂ count
k-means 0.7107 0.003 0.8417 0.7214 0.0028 0.8075 0.0037 12
PAM 0.7105 0.003 0.8521 0.7223 0.0023 0.8011 0.0266 11
average 0.6782 0.0117 0.8097 0.7142 0.0034 0.8204 0.0013 6
Ward’s 0.6981 0.0038 0.9257 0.7111 0.0028 0.8444 0.0012 10
model-based 0.6782 0.0044 0.9936 0.6876 0.0039 0.9294 0.2977 12
spectral 0.6014 0.0363 0.8643 0.7093 0.0029 0.827 1.1047 6
BIC-mb - - - 0.6782 0.0044 0.9936 0.2901 25
PAMSIL 0.7113 0.003 0.8539 0.7257 0.0021 0.792 1.8846 7
OSil1 0.7254 0.003 0.853 0.7254 0.0021 0.7952 1.6739 8
FOSil2 0.7076 0.0032 0.6389 0.7178 0.0027 0.8133 2.5061 12
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Table 4.31 Comparison of OSil1 and FOSil2 with existing methods for Model 3.
True k k̂

Methods ASW SE ARI ASW SE ARI time(s) k̂ count
k-means 0.6734 0.0099 0.8194 0.7584 0.003 0.3171 0.0042 0
PAM 0.7028 0.0028 0.9146 0.7594 0.0026 0.3172 0.061 0
average 0.6424 0.0038 0.638 0.7574 0.0028 0.3238 0.0023 0
Ward’s 0.6911 0.0041 0.9749 0.7572 0.0028 0.3264 0.0033 0
model-based 0.6786 0.0043 0.9984 0.748 0.0037 0.3298 0.2977 0
spectral 0.5177 0.0505 0.3276 0.7557 0.0028 0.8498 2.8976 0
BIC-mb - - - 0.65 0.0106 0.9614 0.2608 14
PAMSIL 0.7037 0.0028 0.9185 0.7623 0.0024 0.3216 4.5714 0
OSil1 0.7623 0.0028 0.9174 0.7623 0.0024 0.3216 3.931 0
FOSil2 0.7012 0.0031 0.5031 0.761 0.0026 0.3195 3.0282 0

Table 4.32 Comparison of OSil1 and FOSil2 with existing methods for Model 4.
True k k̂

Methods ASW SE ARI ASW SE ARI time(s) k̂ count
k-means 0.6853 0.0275 0.8415 0.7702 0.0105 0.9349 0.0054 12
PAM 0.8194 0.002 0.9948 0.8194 0.002 0.9948 0.0818 25
average 0.8187 0.002 0.9944 0.8187 0.002 0.9944 0.0067 25
Ward’s 0.8185 0.0021 0.9944 0.8185 0.0021 0.9944 0.004 25
model-based 0.8108 0.0034 0.9838 0.8108 0.0034 0.9838 0.3174 25
BIC-mb - - - 0.7688 0.0107 0.9604 0.2461 12
PAMSIL 0.8195 0.002 0.9964 0.8195 0.002 0.9964 6.8964 25
OSil1 0.8195 0.002 0.9964 0.8195 0.002 0.9964 10.0383 25
FOSil2 0.819 0.0021 0.9952 0.819 0.0021 0.9952 3.4667 25

Table 4.33 Comparison of OSil1 and FOSil2 with existing methods for Model 5.
True k k̂

Methods ASW SE ARI ASW SE ARI time(s) k̂ count
k-means 0.6844 0.0128 0.828 0.7253 0.0044 0.7036 0.0061 11
PAM 0.7422 0.0024 0.9572 0.7437 0.0019 0.971 0.0986 20
average 0.5724 0.0065 0.3025 0.6978 0.0021 0.1908 0.0039 0
Ward’s 0.7155 0.0019 0.7757 0.7232 0.0026 0.7614 0.0048 14
model-based 0.6934 0.0038 0.7795 0.7304 0.0023 0.8166 0.4022 1
BIC-mb - - - 0.7279 0.0029 0.8164 0.3278 4
PAMSIL 0.7468 0.002 0.9872 0.7475 0.0018 0.989 8.9691 21
OSil1 0.7473 0.0024 0.9603 0.7473 0.0019 0.9819 9.6599 22
FOSil2 0.7453 0.0023 0.9714 0.7462 0.0021 0.9868 3.9418 24

For Model 6 and Model 7, FOSil2 and OSil1 produced same ASW value. This ASW
value was also same as ASW values obtained from other clustering methods except for
model-based and spectral clustering methods. All the methods failed for the estima-
tion of number of clusters here. For Model 6 clustering methods estimated 4 number of
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clusters not 5. For Model 7, the methods have estimated 3 number of clusters instead
of 7.

For models 8, 9, and 10 OSil1 and FOSil2 gave exactly same results for ASW values
and ARI. They have estimated correct number of clusters for these models as well as
produced the correct clustering. The other clustering methods also gave the best ASW
value equivalent to the ASW value except k-means and spectral clusterings methods
for Model 8 and Model 9, and k-means, spectral and model-based clustering methods
for model 10. For Model 8, all the methods have estimated correct number of clusters
except for k-means and spectral clustering methods. For Model 9, all the methods
have estimated correct number of clusters except for k-means clustering methods. For
Model 10, all the methods have estimated correct number of clusters except the k-
means, spectral and model-based clustering methods.

4.12 Closing remarks for simulations

Our purpose for setting the simulations was not to show the performance of the pro-
posed algorithms for strong or clear structures, but rather to find out, how tough clus-
tering challenges the proposed method can handle and how existing methods will per-
form in these situations. Because real life applications might not contain strong clus-
tering structures and they are not as easy as the ones, one can set in simulations. There
are several other well-separated, coherent existing data sets where OSil and FOSil will
perform as good as existing methods.

This study is an exploration of a wide range of well-reputed clustering methods
in practice. OSil has improved the performance of many clustering methods in two
respects. The first is to find the correct clustering and the second is to estimate the
desired number of clusters. The biggest benefit was observed regarding the estimation
of number of clusters through McQuitty, complete and single linkage as observed in
Simulation II.

We now report the clustering results of OSil1 and FOSil2 for the DGPs considered
in Chapter 3. From 17 DGPs considered for simulations in Section 3.4, of Chapter 3,
seven models were initially chosen for experiments in this chapter, plus we defined a
few more DGPs. Note that these 7 models covered a wide range of clustering charac-
teristics. Model 2 in Chapter 3 is similar to Model 1 in this chapter. Similarly, Model 4,
Model 8, Model 10, Model 11, Model 16 and Model 17 of Chapter 3 are same as Model 2,
Model 3, Model 4, Model 5, Model 8 and Model 9 of this chapter, respectively. Although,
the seven DGPs’ structures are same in both chapters, however, the parameters are not
exactly the same. In fact, in this chapter these models were made more challenging.
For instance, by bring the cluster’s means further close to each other or by increasing
the within clusters observational spread. The OSil1 and FOSil2 performs well for the
parametric choices in this chapter for these 7 DGPs, since these choices made here
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are more challenging, clearly OSil1 and FOSil2 will also perform well for the parametric
choices in previous chapter.

We now report the clustering results of OSil1 and FOSil2 for the remaining DGPs
of Chapter 3. We also consider PAMSIL algorithm. We run OSil1, FOSil2 and PAMSIL
algorithms on one data sets generated for the DGPs to find out whether they will be
able to produce the desired clustering on not.

Model 1 OSil1, FOSil2 and PAMSIL were able to estimate the correct number of clus-
ters as well as produced the correct clusterings. This performance is similar to the
HOSil performance observed earlier in Chapter 3.

Model 3, Model 5 OSil1, FOSil2 and PAMSIL didn’t estimate three number of clusters
but two for both models. They were also not able to produce the desired clustering
results even for the fixed known number of clusters. This performance is not similar to
HOSil, which estimated correct number of clusters for both models as well as produced
correct clustering.

Model 6 OSil1 and FOSil2 estimate the correct number of clusters as well as produce
the correct clustering for both fixed known k as well as for the estimated k. This per-
formance is same as HOSil. However, PAMSIL estimates the correct number of clusters
but returns the clustering for the fixed known k and for the estimated k with many
misclassified points.

Model 9 OSil1, FOSil2 and PAMSIL were able to estimate the correct number of clus-
ters as well as produced the correct clusterings. This performance is similar to HOSil.

Model 12 OSil1 produced the correct clustering for the fixed known k, however, it esti-
mated 5 number of clusters instead of 6. FOSil2 and PAMSIL didn’t produce the correct
clustering for the fixed known k and didn’t estimate the correct number of clusters.
HOSil performed same as that to OSil1.

Model 13 OSil1 produced the correct clustering for the fixed known k, however, it
estimated 5 number of clusters instead of 14. FOSIL2 estimate 4 number of clusters
and didn’t produced the correct clustering even for the fixed known k cases. PAMSIL
also fail in producing the correct clustering even for the fixed known k. It estimates
the maximum number provided as the number of clusters. We try the estimation of
number of clusters by PAMSIL using maximum number K as: 16, 20, and 24. For these
three values PAMSIL estimates k as 16, 20, and 24. HOSil has performed best for this
model. It not only estimate the correct number of clusters but also produce the desired
clustering.
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Model 14, Model 15 OSil1, FOSil2 and PAMSIL estimate correct number of clusters
and produce the correct clustering for fixed known k and estimated k. This perfor-
mance is similar to HOSil performance observed earlier in Chapter 3.

We now report the result for the DGPs considered in Section 3.6 of Chapter 3

Model 18, Model 19, Model 20 OSil1, FOSil2 and PAMSIL estimate correct number of
clusters and produce the correct clustering for fixed known k and estimated k. This
performance is aligned with HOSil performance.

Model 21 OSIL1, FOSIL2 and PAMSIL are not able to produce the correct clustering
for the known fixed k case. They estimate 14 number of clusters. HOSil also performed
in this fashion.

Four Shapes, Diamonds, Tetra OSIL1, FOSIL2 and PAMSIL estimated the correct num-
ber of clusters and correct clustering for both fixed known k as well estimated k. This
performance is aligned with HOSil performance.

Smiley OSil1 and FOSil2 produce the correct clusters for the fixed k, however PAMSIL
did not. The three methods estimated number of clusters as 6. This performance is
aligned with HOSil performance.

Aggregation, Lsun The three methods fail here, both in terms of estimation of num-
ber of clusters as well as producing clustering for the fixed known number of clusters.
This performance is aligned with HOSil performance.

4.13 OSil1 complexity

OSil1 takes as an input the data matrix of size n £ p, where n is number of points
in p-dimensional space. The first step is to calculate the pair wise distance matrix
between observations. There are n(n ° 1)/2 uniqure entries in the proximity matrix,
which gives the complexity as O(pn(n ° 1)/2). We begin calculating the complexity
of the algorithm for fixed k case. The OSil1 algorithm can be divided into two parts
where the first part is comprised of the Initilize step and second part is comprised of
Swap, Stop, Repeat steps. In the Initilize phase the five clusterings of the data sets are
computed to initialize the algorithm. These 5 clusterings are k-means, PAM, average,
Ward, Model-based clustering. The k-means algorithm by Lloyd (1982) or Kaufman
and Rousseeuw (1987) has time complexity O(nkpq), where k is number of clusters
and q is the number of iteration for convergence (Garey et al. (1982), Mahajan et al.
(2009), Aloise et al. (2009)). The PAM by Kaufman and Rousseeuw (1987) has the time
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complexity of O(k(n °k)2q) (Schubert and Rousseeuw (2018)). The hierarchical clus-
tering algorithms has O(n3) time complexity (Day and Edelsbrunner (1984), Firdaus
and Uddin (2015)). The EM algorithm for model-based clustering has the complex-
ity O(npq) (Firdaus and Uddin (2015)). The total complexity from the 5 initialization
is O(nkpq)+O(k(n °k)2q)+2O(n3)+O(npq). One best out of these 5 clusterings is
chose to pass to the second part.

The second part of the OSil1 algorithm is implemented using two functions named
as si l _l ab_sw ap() and clust y anl y s(). They second function is invoke once the first
has finished. The final complexity of the algorithm will be decided by adding the
complexity of these two functions. We now give the expression for the complexity of
each of these as follows. The function si l _l ab_sw ap() calls another function named
si l _l ab(). This function further calls two functions named as g r ab() having O(1) com-
plexity, hpsor t () is sorting of a vector of length n from smallest to largest having O(n2)
(quadratic) complexity. Thus the complexity of si l _l ab() is given as under: L1 = 3O(nk)+
O(nk)O(n2)+ c1O(n)+ c2O(1), where c1,c2 2 N are some constant number of opera-
tions having linear and constant time complexities respectively. L1 can be simplified
as L1 =O(nk)+O(n3k)+O(n)+O(1) =) O(n3k).
The complexity of si l _l ab_sw ap() is as under:

L2 = L1+2O(n)+q£[nkL1+O(n2k)+O(n)+O(1)], where q is the number of iteration
taken by the algorithm to converge.
The complexity of clust y anl y s() is: L3 =O(k)+O(n)+2O(nk).

The total complexity of the algorithm is O(n(n°1)/2p)+O(nkpq)+O(k(n°k)2q)+
2O(n3) +O(npq) + L2 + L3. If in a program there are operations involved that have
various O complexities, then a superior bound defines the final complexity. Solving
this gives the complexity of the OSil1 algorithm as O(qn4k2) where q is the number of
iterations, n is number of data points, and k are number of clusters.

This complexity is for the fixed k only. If number of clusters are also being estimated
then the complexity raise to O(qn4k2K ), where K is the maximum number of clusters
tried out.

4.14 FOSil2 complexity

The FOSil2 algorithm has Sampling, Initialize, Partial clustering, Remaining Cluster
Labels, Final Clustering parts in its implementation. The most computationally ex-
pensive are the first three parts. We begin to calculate the complexity for the algorithm
for fixed k first. The new part in FOSil2 algorithm as compared to OSil1 is Sampling.
The computational complexity of the Sampling phase is as under: The random sam-
pling is done without replacement using the “sample()” function in R. The sample of
size d < n is taken without replacement. This has the O(d log d) quasilinear complex-
ity (Walker (1974), Becker et al. (1988)). The random sampling is not done only once
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but several times. Let M represents the number of times the random sampling is done.
This gives the Sampling complexity as O(Md log d). The Initialize phase is carried out
in the same way as described for the OSil1 in Section 4.13 with the only difference that
the initial clustering is performed only for a reduced data size which is d . The com-
plexity is O(dkpq)+O(k(d °k)2q)+2O(d 3)+O(d pq). The Partial clustering call OSil1

clustering. This has the complexity of O(qd 4k2) . The Remaining Cluster Labels has
complexity of ((n °d)5k2). The Final Clustering has the time complexity O(nk) com-
plexity. The overall complexity of FOSil algorithm is: O(Md log d)+O(dkpq)+O(k(d°
k)2q)+2O(d 3)+O(d pq)+O(qd 4k2)+((n°d)5k2)+O(nk). This simplifies to O(qd 4k2).
For the estimation of k this complexity becomes: O(qd 4k2K ).

4.15 OASW clustering: Compact and well-separated clus-
ters

By definition the average silhouette width (ASW) is an average of all the silhouette
widths for the individual data points. This means that for each data point the bigger
silhouette width is better. A large silhouette width can be obtained if a(i ) is as small as
possible and b(i ) as large as possible. A small a(i ) means small within cluster distance
resulting in compact clusters. A large b(i ) leads to large between cluster distances re-
sulting clusters as separate as possible. The clustering methods based on optimization
of ASW will try to find the best silhouette width values for all the data points i.e., it
will try to achieve a(i ) as small as possible and b(i ) as large as possible. The resulting
clustering based on the optimization of ASW criterion will produce compact and well
separated clusters.

For the illustration consider a data set with 2 clusters generated from the Gaussian
distribution parametrized as µ1: (0, 0) and µ2: (2, 2) with common covariance ma-
trix I2. Each cluster contains 10 points. Figure 4.31 represents a data plotting against
true cluster labels and OSi l1 clustering. Let x and y represents the first and second
dimension respectively. The silhouette widths calculations for this data based on the
true labels is given in Table 4.34. The ASW for the known data labels is 0.252. A few
points have a negative silhouette width (column 5 of table) in the data. The silhouette
width for these points can be improved by changing their membership to the neigh-
bouring clusters. Column 6 in Table 4.34 present labels obtained from OSi l1. The ASW
for these labels are 0.487. The optimum average silhouette width works for compact
and well separated clusters.
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Figure 4.31 Left is the plot of data against true labels, and right is plot of data against a
set of optimum labels obtained from OSi l1 clustering.

Table 4.34 SW calculations for true labels and a set of optimum labels returned from
OSi l1 clustering algorithm.

x y
True

labels
neighbor SW

OSi l1

labels
neighbor SW

2.127 1.231 1 2 -0.519 2 1 0.500
-0.380 0.580 1 2 0.471 1 2 0.589
0.167 0.246 1 2 0.451 1 2 0.617
1.600 0.388 1 2 -0.185 1 2 0.043
0.196 -2.155 1 2 0.390 1 2 0.477
0.228 0.975 1 2 0.283 1 2 0.471
-1.149 -0.711 1 2 0.492 1 2 0.570
-0.071 0.628 1 2 0.442 1 2 0.586
-0.562 -0.136 1 2 0.528 1 2 0.625
0.434 -1.588 1 2 0.408 1 2 0.514
2.068 1.293 2 1 0.408 2 1 0.493
1.554 1.865 2 1 0.324 2 1 0.337
3.466 2.338 2 1 0.507 2 1 0.640
1.159 0.867 2 1 -0.025 1 2 0.145
0.971 -0.248 2 1 -0.364 1 2 0.480
3.818 3.188 2 1 0.436 2 1 0.551
0.685 0.556 2 1 -0.339 1 2 0.477
2.511 1.332 2 1 0.479 2 1 0.597
3.337 1.961 2 1 0.519 2 1 0.655
2.982 0.338 2 1 0.340 2 1 0.382
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As the backbone of the optimization function presented in this work is the ASW, we
now summarize the factors which will affect the ASW the most. The most important
factors are, (i) the distances between the means of clusters (this affects b(i )), (ii) the
spread of observation within the clusters (this affects a(i )) and (iii) the number of ob-
servations in clusters (this affects both a(i ) and b(i ) due to the involvement of the av-
erages). For the explanation we will make use of a small data set with 2 clusters having
10 observations each generated from the Gaussian distribution with the two dimen-
sional mean vectors as µ1: (0, 0) and µ2: (2, 2) respectively, with common covariance
matrix as 0.25£ I2. Let this be called Condition O. The following three operations were
performed on condition O to generate other data conditions for comparison.

(i) Condition A: Change the location of one cluster such that it comes closer to the
other as compared to the original data. For this let a = 1 be a scalar added to all
the values of cluster 1 such that the mean of the cluster becomes µ1 +a.

(ii) Condition B: Change the spread of one cluster. For this let b = 4 be a scalar mul-
tiplied by all the observations in cluster 1. Note that this will automatically affect
the mean of this cluster as well. As a result to this the mean of the cluster 1 will
be b £µ1 and co-variance matrix will be b2 £0.25£ I2.

(iii) Condition C: Change the spread of both clusters and bring cluster mean loca-
tion closer. For this multiply all the observations in cluster 1 and 2 by the above
defined scalar b. Define a new scalar quantity a1 = a °2£b. In addition to mul-
tiplying all observation of cluster 2 with b add a1 to all the observations of the
second cluster as well. This will locate the second cluster closer to first in terms
of cluster means.

The graphical representation of these data are given in Figure 4.32.
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Figure 4.32 Panels (a)-(b) shows data plots using true data labels against Condition O,
A, B and C respectively.

189



Table 4.35 SW for each data point for condition O, A, B and C.

Data SWO SWA SWB SWC SWO0

1 0.693 0.130 -0.746 -0.379 0.927
2 0.862 0.722 0.451 0.247 0.956
3 0.875 0.738 0.455 0.148 0.961
4 0.793 0.503 -0.231 -0.338 0.944
5 0.798 0.633 0.429 0.117 0.923
6 0.842 0.657 0.204 0.068 0.954
7 0.835 0.699 0.502 0.249 0.938
8 0.866 0.722 0.418 0.205 0.959
9 0.867 0.743 0.533 0.263 0.955

10 0.824 0.667 0.450 0.096 0.938
11 0.868 0.724 0.869 0.074 0.959
12 0.844 0.675 0.846 -0.122 0.951
13 0.839 0.707 0.838 0.262 0.939
14 0.821 0.581 0.825 -0.274 0.951
15 0.730 0.282 0.738 -0.291 0.934
16 0.793 0.642 0.792 0.212 0.914
17 0.769 0.414 0.776 -0.347 0.941
18 0.870 0.738 0.870 0.177 0.958
19 0.851 0.722 0.850 0.268 0.945
20 0.821 0.637 0.819 0.132 0.944

The ASW values using the true data labels for all of these conditions are given as follows:

Conditions ASW

O 0.823
A 0.617
B 0.534
C 0.038

The silhouette width for each individual data point in the condition A, B and C has
decreased as compared to condition O, meaning that a(i ) has increased and b(i ) has
decreased under conditions A, B and C affecting the SW for these points negatively. The
SW calculations for these data conditions are given in the Table 4.35. The last column
for the table is referred later in the discussion.
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A comparison of condition O with A also reveals that as the clusters move farther
from each other, the ASW increases. To see another example, we define a condition O0

by adding a constant a0 = 8 to all the observations of cluster 1. For the resulting data
the ASW with two clusters is 0.944. The SW for each point in this data is mentioned in
the last column of Table 4.35.

This explains the reason for the HOSil estimating number of clusters as 2 for Model
6.A in Chapter 3. Even though ASW based optimization is capable of estimating the
correct clustering here for the fixed true number of clusters, the maximization of the
ASW will not give the desired estimate for the number of clusters. We recall the model
definition here first for the explanation. Cluster 1 was generated from a Gaussian distri-

bution with means (1.5, 5) with covariance matrix ß=
"

0.1 0
0 0.7

#

. Cluster 2 was gener-

ated from mean (0, 5) with covariance matrix 0.5I2. Cluster 3 was generated from mean
(-1.5, 7) with co-variance matrix 0.1I2. Each cluster contains 50 observations. The ASW
for the three cluster solution for a data set generated from this model is 0.6423. The
ASW for two cluster solution, which is formed by putting cluster 1 and 2 together, is
much higher (0.6863) than for the 3-cluster solution. This is due to the fact that the SW
for many data points in cluster 3 will increase due to the bigger b(i ) for them (which
is now based on all the data points in cluster 1 and 2) resulting in a bigger ASW for the
2-clusters solution. As the relative locations of the clusters matter for the ASW, mov-
ing cluster 1 further from cluster 2 (for instance using mean (2.5, 5) instead of (1.5, 5))
will result in number of clusters estimate as 3 from ASW, HOSil, OSil and FOSil. Or one
could bring cluster 3 closer to other two clusters, for instance (using mean (0.5, 7) or as
in Model 6 instead of (-1.5, 7)) will result in number of clusters estimate as 3. Similar
reasons hold (involvement of the factors explained above) for HOSil estimating other
than true number of clusters for Model 3, 8, 12 in Chapter 3 and OSil for Model 3, 6 and
7 for Chapter 4.

It is not necessary that the methods based on the optimization of the ASW will only
find spherical clusters. As we have seen, they are capable of finding uniform clusters
and moon like shapes (smiley data). Also the method has a capability of finding clus-
ters that are not linearly separable at least for the fixed k case. The methods based
on optimization of the ASW are capable of finding the clusters with different spread
among the observations as well as with different number of observations in the clus-
ters.

4.16 Distance metric comparison

The clustering results can be sensitive to the distance metric used. The choice of ap-
propriate distance metric for a given data is important because with various metric
used to cluster data the results can differ substantially (Jain and Dubes (1988b), Jain
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et al. (1999), de Amorim and Komisarczuk (2012), Cordeiro De Amorim and Komisar-
czuk (2012), de Amorim and Hennig (2015)). The distance metric has an impact on the
clustering algorithm’s output and not all the metrics can handle all data structures. For
instance Euclidean distance can capture the spherical and compact clusters present
in the data but are not suitable for the complex or irregular shaped data sets (New-
ton et al. (1992)). Some metric are known for the data sets from a specfic domain, for
instance, Pearson’s correlation coefficient, cosine angle distance or Spearman’s rank-
order correlation coefficient for the gene expression clustering (see Jiang et al. (2004)).
Mimmack et al. (2001) conducted a study to analysis the effect of two distance metrics
on climate data sets and concluded that the clustering of station data or grid points
is highly sensitive to the distance metric used. This section is devoted to understand
the influence of various clustering methods on the algorithms proposed in the current
thesis.

4.16.1 Simulation scenario

We have done experiments with two different clustering structures. One of these struc-
tures have equal number of observations in clusters, the clusters have same within
cluster variations, and the cluster’ means are equally distant from each other. How-
ever, the other data structure is opposite to this. We now define the data structures and
their results one by one below.

For the experiment we have first considered Model 7 defined in Chapter 3. The
clustering structure is of such kind that the four clusters are equally distant from each
other having equal number of observations. We have considered the three distance
metrics namely Manhattan, Euclidean and Minkowski to observe the differences in
the clustering results obtained by the proposed algorithms together with the existing
methods. The Minkowski distance was run with the power 3. Each cluster contains 50
observations and 50 data sets were generated and clustering were calculated from k-
means, PAM, average, Ward, model-based, spectral, PAMSIL, HOSil, OSil1, and FOSil2.
The results are reported in Table 4.36. All the values reported in the table are for the
estimated k.

4.16.2 Results

Overall, from all the methods the optimization performance gained from Minkowski
metric is the highest. The ASW values obtained for all the methods showed same trend
and the values obtained from the Minkowski metric were greater than the Euclidean
metric and the values obtained from the Euclidean metric were greater than the Man-
hattan metric. The overall best ASW value obtained among all the clustering methods
was from PAMSIL with Minkowski metric.
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There is no clear trend for one distance metric in terms of the clustering perfor-
mance. For different clustering methods different metrics gave the highest ARI values.
The best ARI for PAM, Ward, model-based, PAMSIL and OSil1 was obtained from Man-
hattan distance. However, the best ARI values for k-means, average and HOSil was ob-
tained from Minkoswki distance among the three metric. The overall best ARI among
all clustering methods and three distance were achieved by PAMSIL with Manhattan
distance. For the estimation of number of clusters all metric performed same. Spec-
tral clustering has the lowest PPR among all clustering methods including all of the
three metrics. It performed relatively better with the Euclidean distance as compared
to other two.

However, these results are not generalisable as the performance of the distance
metrics depend upon the clustering structures. This is evident from the results cal-
culated for the Model 5 of Chapter 3. The simulation setup was same as described
above except that the data structure now contains 3 clusters of unequal sizes and dif-
ferent within cluster variations. The clusters are also not equally distant from each
other. For this model the largest clustering optimization values were obtained from
Manhattan distance for all the methods except for k-means and model-based clus-
terings where the Euclidean metric outperforms. The best ASW value among all the
clustering method was obtained from OSil1 clustering with Manhattan distance. In
terms of clustering performance Manhattan metric gave the largest ARI values among
the three distance metrics for all the clustering methods always. The best ARI value
among all the clustering methods was obtained from OSil1 clustering using Manhat-
tan distance. For the estimation of number of clusters Manhattan metric outperforms
the other two and Minkowski metric performed the lowest among the three.

Table 4.36: Comparison of ASW values obtained from the distance metrics for various
clustering methods.

Manhattan Euclidean Minkowski (power=3)

ASW SE ARI PPR ASW SE ARI PPR ASW SE ARI PPR

Model 7: k=4, n=200, p=2, B=50
k-means 0.5747 0.0040 0.9588 90 0.6033 0.0022 0.9634 98 0.6124 0.0027 0.9642 98
PAM 0.5820 0.0023 0.9671 100 0.6042 0.0021 0.9605 100 0.6137 0.0023 0.9629 100
average 0.5756 0.0025 0.9405 100 0.5967 0.0026 0.9338 100 0.6064 0.0028 0.9415 100
Ward 0.5759 0.0025 0.9391 100 0.5962 0.0024 0.9313 100 0.6042 0.0033 0.9376 100
model-based 0.5823 0.0022 0.9671 100 0.6047 0.0021 0.9647 96 0.6140 0.0023 0.9661 96
spectral 0.5558 0.0063 0.8581 68 0.5778 0.0068 0.8669 76 0.5792 0.0078 0.8583 68
PAMSIL 0.5840 0.0020 0.9691 100 0.6076 0.0021 0.9686 100 0.6166 0.0022 0.9689 100
HOSil 0.5982 0.0044 0.9336 100 0.5745 0.0043 0.9286 98 0.6082 0.0040 0.9362 100
OSil1 0.5823 0.0022 0.9660 100 0.6047 0.0021 0.9653 100 0.6140 0.0023 0.9653 100
FOSil2 0.5820 0.0022 0.6822 100 0.6043 0.0021 0.6837 100 0.6138 0.0023 0.6829 100

Model 5: k=3, n=150, p=2, B=50
k-means 0.6171 0.0057 0.8437 60 0.6192 0.0070 0.7837 36 0.6026 0.0072 0.7521 26
PAM 0.6217 0.0051 0.8737 72 0.6206 0.0068 0.8137 46 0.6047 0.0069 0.8044 42
average 0.6170 0.0046 0.9002 70 0.6103 0.0059 0.8486 46 0.5916 0.0062 0.8326 34
Ward 0.6180 0.0045 0.9262 78 0.6091 0.0057 0.8694 50 0.5917 0.0059 0.839 38
model-based 0.5999 0.0055 0.8628 42 0.6014 0.0058 0.8284 18 0.5855 0.0057 0.8378 28
spectral 0.6111 0.0054 0.9360 70 0.604 0.0058 0.8902 44 0.5875 0.0059 0.9004 38
PAMSIL 0.6141 0.0051 0.9032 76 0.5992 0.0062 0.8610 62 0.5958 0.0065 0.8388 52
HOSil 0.6043 0.0055 0.9066 74 0.5903 0.0057 0.8996 68 0.5903 0.0057 0.8996 68
OSil1 0.6237 0.0051 0.9730 72 0.6219 0.0067 0.9714 46 0.6060 0.0068 0.9398 36
FOSil2 0.6234 0.0051 0.3995 72 0.6211 0.0067 0.3527 46 0.6053 0.0068 0.3446 34
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4.17 Applications

4.17.1 Tetragonula bee’s data revisited

We now reconsider the Tetragonula bees data presented in Section 3.9.1 in Chapter 3.
We have applied PAMSIL and OSil1 algorithm to this data. For comparison we have ap-
plied k-means, PAM, average linkage, Ward’s method, model-based clustering to esti-
mate number of clusters using ASW. In addition we have estimated number of clusters
from BIC using model-based clustering method. The results are presented in the Table
4.37. HOSil results from Section 3.9.1 are also recalled in the table.

Table 4.37 Clustering results for the bee’s data.
True k Estimated k

Methods ASW ARI ASW ARI k̂
True lab 0.4754
k-means 0.2500 0.6359 0.2500 0.6359 9
PAM 0.1396 0.152 0.4131 0.6661 3
average 0.4754 1 0.4832 0.9515 10
Ward’s 0.4708 0.8491 0.4711 0.8599 11
model-based 0.1234 0.5121 0.3003 0.3772 3
BIC-mb - - 0.1234 0.5121 9
PAMSIL 0.4715 0.9386 0.4839 0.9447 10
OSil1 0.4787 0.9994 0.4847 0.9440 10
HOSil 0.4800 0.91082 0.4841 0.9148 10

Average linkage, OSil1 and PAMSIL has estimated 10 clusters with very close ARI val-
ues. k-means with ASW and model-based clustering with BIC have estimated number
of clusters as 9, but with too low ARI values. For k=9, the best ARI values were achieved
from average linkage, OSil1 and PAMSIL respectively, with 0, 1, and 38 misclassified
points, respectively. All the other methods gave very low ARI values for k=9. The data
clustering from PAMSIL and OSil1 for true k and estimated k is plotted in Figure 4.33
using 2-dimensional classical MDS plot. OSil1 has performed better than HOSil here
both in terms of clustering as well as significant reduction in time.
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Figure 4.33 Classical MDS plot for the Bee’s data. (a) OSil1 clustering results for k=10, (b)
OSil1 clustering results for k=9, (c) PAMSIL clustering results for k=10, and (d) PAMSIL
clustering results for k = 9.

4.17.2 France rainfall data revisited

The OSil1 clustering result for the French weather station data considered in Section
3.9.2 is given in the Figure 4.34. OSil1 has put together Bastia and Perpignan together
in one cluster and all other stations in other cluster for number of clusters k=2. For the
number of clusters k=3, the north-east region is separated from the rest of the north.
The north-east region with three mountain ranges of Aedennes, Vosges and Jura was
separated from the north-west region. Bastia in the north-east of the Corscia island is
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mapped together with the north-east climate region of France and Ajacco at the west
coast of the island is put together with the west and south region of France. For the
number of clusters k=4, Corscia island is clustered together with the north-east cluster
of France instead of the south cluster. For k=5, k=6, and k=7 the clustering solutions
were coherent with the geographical locations. For instance, the 5-cluster solution is
coherent with the local mountain regions. OSil1 classified the Armorican mountain
series in the north-west together (blue cluster in Figure 4.34d), the Aedennes, Vosges
and Jura in the north-east together (purple cluster), the central mountain series Mor-
van (with its northern extension) together (yellow cluster), the Alps and the Medeterian
coastal region together (red cluster), and separated Pyrenees in the south (green clus-
ter). In terms of the number of clusters, the best ASW was obtained for k=2(with ASW at
0.1865). The second best is k=3(with ASW at 0.1581) and the third best is obtained for
k=7(with ASW at 0.1253). The clustering produced by OSil1 for the number of clusters
k=2 does not look much convincing, whereas the clustering obtained for either 5, 6 or
7 number of clusters appear more coherent with the rainfall patterns in the country.
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Figure 4.34 Clustering results from OSi l1 algorithm. Panels from (a) - (f) denote clus-
tering against k = 2 to k = 7.

196



(a)

-4 -2 0 2 4 6 8

42
44

46
48

50

Longitudes

La
tit
ud
es

(b)

-4 -2 0 2 4 6 8

42
44

46
48

50

Longitudes
La
tit
ud
es

(c)

-4 -2 0 2 4 6 8

42
44

46
48

50

Longitudes

La
tit
ud
es

(d)

-4 -2 0 2 4 6 8

42
44

46
48

50

Longitudes

La
tit
ud
es

(e)

-4 -2 0 2 4 6 8

42
44

46
48

50

Longitudes

(f)

-4 -2 0 2 4 6 8

42
44

46
48

50

Longitudes

La
tit
ud
es

Figure 4.35 Clustering results from PAMSIL. Panels from (a) - (f) denote clustering
against k = 2 to k = 7.

The PAMSIL clustering results for the numbers of clusters 2 to 7 are plotted in Figure
4.35. It’s hard to find a climate justification for the clusters produced by PAMSIL. For
instance for the numbers of clusters two, Bastia is put together with Perpignan and
Carcassonne rather than Nice or Toulon and the upper Alps region is put together with
the northern cluster rather than the southern cluster. In terms of the estimation of the
number of clusters PAMSIL gives the highest ASW at k=2(0.1684). The second best is
k=3(0.1281) and third best is k=4(0.1224). PAMSIL has consistently separated the Alps
regions into two parts. For 4-cluster clustering the upper Alps are put together with
the north-eastern region and the lower Alps with the Mediterranean region. The east
part of France with the Alps must be together with the Nice, Toulon and Corsica or the
south cluster rather than with the north cluster. For a number of clusters higher than 4
similar inconsistencies can be observed.
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4.17.3 Genetics background

There are many different kinds of cells in Eukaryotic organisms, for instance skin cells,
muscle cells, blood cells, nerve cells, or stem cells. These cells are specialised to per-
form certain functions, except stem cells. The stem cells are unique cells that have the
ability to divide and provide new cells to the body as it grows. These cells can divide to
more stem cells or other specialized cells like blood cells or muscles cells etc.

Inside the cell, there is nucleus. Inside the nucleus there are many thread like struc-
tures called chromosomes. The chromosomes are formed as strings of DNA (Deoxyri-
bonucleic acid). DNA is a molecule that contains all the instructions to build a living
organisms and its consistent growth and functioning. A DNA is never ending long in-
tertwined double (two strands) helix structure. Chromosomes keep this never ending
structure of DNA by wrapping it compactly around a protein called Histone. Proteins
carry many important functions in cells for instance act as a messenger to communi-
cate between cells, tissues and organs to perform or maintain their functions.

The double helix structure can be unwind and flattened to understand the chemi-
cal structure inside it. Each strand is called a polynucleotides consists of many simpler
units called nucleotides. A nucleotide has three components namely a sugar group,
a phosphate group and one of the four possible nitrogenous basis called Adenine (A),
Thymine (T), Guanine (G) and Cytosine (C). The phosphate groups are bound together
to combine all the nucleotides to each other to make the single strand and the hydro-
gen bound between the bases, pairs the two strands to form the double helix. The order
of these bases defines the unique instruction or genetic code to make a certain kind of
protein. T can only pair with A and G can only pair with C.

Within the DNA are section called genes. A gene can be seen as a set of letters
(some thing like: GTCACGATTT). About 99% of DNA contains the non-coding genes.
The non-coding genes do not contain instructions for making protein. The non-coding
DNA is active and relatively new and less popular research domain. About just only 1%
DNA encode proteins meaning that each part (a gene) of the DNA contains a set of in-
structions to make a protein. The complete set of genes is called genome. The genome
is spilt between 23 pairs of chromosomes. A genome is a complete set of instruction to
build an entire organism. For every person the arrangement of genes in the genome is
same but small differences in the sequence of the bases make them unique.

Broadly speaking there are three types of information known so far that are en-
coded in genome. Firstly genes that encode protein, secondly regulatory regions that
control when genes are expressed/active, what’s the activation level and thirdly the re-
gions of genes that encode RNA (Ribonucleic acid essential for expression of genes)
molecules.

Gene expression is a process by which genetic code (the nucleotide sequence: GT-
CACGATTT) from a gene is used by enzymes for the synthesis of protein for construc-
tion of cell structure. DNA sequencing allows the researchers to determine the order of
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bases in a DNA sequence. This sequence of genome is divided into pieces to read the
letters by genome sequencing machines.

To produce proteins DNA must be readout or copied into RNA, i.e., DNA is tran-
scribed into RNA, which is then translated into protein. The genes readouts are called
transcripts and a transcriptome is a collection of all the genes readout from a cell. Thus
the transcriptome contains all the RNA molecules within a cell. Each cell in the multi-
cellular organism carries same DNA or genome but transcriptome varies widely across
cell types and functions and can tell many things about genes activity.

Not all the genes are expressed/active all the time. We need to know when a gene
is expressed/active. A gene is active when it makes a copy of itself, also the activation
level of a gene can vary from cell to cell. The activation of the genes determines certain
traits are present in the individual or presence of a disease. Genes are not only active
(on) or not active (off) but also, they have certain level of activation. There are sev-
eral factor which can turn on a gene. It is also possible that gene(s) relate to a certain
disease is present in a human but this does not necessary mean the person will get a
disease. This gene can be active to do other things.

There are various gene expression profiling techniques probably the most famous
one and active in research are serial analysis of gene expression (SAGE), DNA microar-
ray, RNA sequencing and more recently single cell RNA sequencing among others.
These are the ways to measure the activation level of a gene in samples. Through these
techniques one can learn how genes activation level is varied due to external stimu-
lus or before or after drug dosages. These techniques can also be used to compare
the gene of cells that are affected by a disease versus the genes of cells that are not af-
fect by the disease by examining which genes were expressed and how much they are
transcribed? This comparison between the normal cells with the mutated cells tells
about the genetic mechanism causing the difference. The process can identify struc-
tural variations and detect novel genes. They can also be used to study the difference
between the cells at different stages of a disease.

DNA microarray is more common choice of researcher when conducting transcrip-
tional profiling experiments. The reason is for RNA-seq the data analysis is complex,
need more data storage and expensive in terms of time. However, gene transcripts
profiling through both DNA microarray and RNA-seq uses the bulk of cell samples si-
multaneously. They can’t give the cell-to-cell heterogeneity.

4.17.4 Introduction to scRNA-seq technique

The most recently known technique, single cell RNA sequencing (scRNA-seq) is a way
to analyse an individual cell and it can inform how each cell is different from other.
Single-cell RNA sequencing is a technique to profile the transcriptome of individual
cells. The technology was first published in Tang et al. (2009). Since scRNA-seq is a
way to analyse an individual cell, it can inform how each cell is different from other.
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This has brought revolution in many areas of medical sciences. One important ex-
ample is cancer research. Identification of the composition of a tumor is crucial in
order to understand its biological process. This is also crucial for targeting a cure. For
many decades it was believed that a tumor is made up of identical cell populations
with identical characteristics. More recently, it is known that cancer tumor is not made
up of only one identical cell population but several sub-populations each having dif-
ferent characteristics. These sub populations can substantially differ in terms of their
properties. It is very difficult to study the sub-population of tumor because using the
earlier mentioned two techniques the tumor can be analysed as a pool of cells only.
scRNA-seq is a way to look at the individual cells within a tumor. Through scRNA-seq
we can constructed gene expression profile of each cell within the tumor. This will give
enough information about the properties and characteristic of each individual cell and
can give the architecture of complex tumor composition. By identifying the individual
sub-population with in the tumor we can actually identify the sub-population, which
propagates the tumor growth. By studying the properties of tumor propagated popula-
tion it becomes much more easier to design a target therapy for the suffering patients.

4.17.5 Identification of cell population

In this thesis we will apply the proposed algorithm to the identification of cell popu-
lation using scRNA-seq data. The cells are fundamental units in biology. Identifica-
tion of cell types in several tissues and organs from the mass of heterogeneous cells
is an important task in cell biology. This is considered as the first step in the biologi-
cal analysis of single-cell RNA sequencing (scRNA-seq) data. Using scRNA-seq many
different studies have already been conducted on various organs either during devel-
opment or at fixed time. For instance, in early embryonic development (Biase et al.
(2014), Goolam et al. (2016)) or various regions of brain (Zeisel et al. (2015)).

4.17.6 scRNA-seq data analysis workflow

There are various technical steps involved through out the sequencing process (see
Hwang et al. (2018), Shapiro et al. (2013) and Mardis (2008) for the pipeline). The pro-
cess can be broadly divided into three main steps/categories each of which involves
several steps. The first step is to prepare the sequencing library, the second is to se-
quence and third is data analysis. At a high level description, first, solid tissues are dis-
sociated into single cells. Then after cells are isolated, the messenger RNA (mRNA) is
separated and reverse transcribed to complementary DNA (cDNA) for high throughput
sequencing. Once the sequencing library is prepared the scRNA-seq data is obtained
through sequencing.

Sequencing generates the raw data, which is a large collection of the cDNA reads.
As a first step this is ensured that the reads are of high quality using standard tools. Af-
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ter trimming the low quality reads, they are mapped to the reference genome and the
quality of the mapping is checked. The next step is the qualification of the reads i.e.,
to quantify the expression level of each gene for each cell. The units of measurements
of the gene expressions depend on the protocol used. Although scRNA-seq technology
has principle steps but within each steps the methodologies differ. The standard gene
expression quantification methods used in scRNA-seq are read counting and unique
molecular identifier (UMI). The quantified gene expressions are summarized as an ex-
pression matrix. Each row of the matrix represents gene and each column represents a
cell. The expression matrix is then consider for cleaning. Poor quality cells are removed
because they introduce noise in the expression matrix.

The expression matrix is normalized to eliminate the technical variation which is
introduced in the gene expression during the sequencing process so that the biological
difference of interest are not masked. Depending upon the normalization strategies
used the data have other units. Other units are R/CPM (Reads/Counts Per Million),
RPKM (Reads Per Kilobase Million), FPKM (Fragments Per Kilobase Million), or TPM
(Transcripts Per Million). The normalization strategy used can have a strong affect
on downstream analysis. Many normalization methods in scRNA-seq are adhere from
bulk RNA sequencing. Vallejos et al. (2017) discussed in detail about the technical con-
siderations while normalizing and showed the difference in results between commonly
used normalization methods.

After sequencing, the process of obtaining raw data and transforming it to expres-
sion matrix is known as low-level analysis, whereas the further biological analysis is
known as downstream analysis. For the efficient storage, quality control (QC) and nor-
malization of the expression matrix software tools has been developed. “SingleCellEx-
periment” Lun and Risso (2017) is an R package to store the scRNA-seq data. For the
low-level analysis, the R libraries (QC, normilization) of scRNA-seq data are “scater”
McCarthy et al. (2017) and “scran” Lun et al. (2016b) available through Bioconductor.
A step by step workflow to conduct the low-level analysis using these libraries is pre-
sented in Lun et al. (2016a).

4.17.7 Clustering scRNA-seq

The development of the novel clustering methods for scRNA-seq is of vital importance.
scRNA-seq data clustering is of interest at its own or can be of interest to be used as first
step for further analysis. Since much of the downstream analysis is based on clustering
the final conclusions may be strongly affected by clustering. Definition or discovery of
a new cell type via clustering is an important area of research in the field, for instance,
Villani et al. (2017) discovered several new putative cell sub-populations using novel
clusters.

There are a few clustering methods specifically designed for scRNA-seq data. A
list of these can be found in the Table 1 of Kiselev et al. (2019). Each of these suffers
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from some kind of limitations. Some of them are specifically designed for a purpose,
example includes identfication of rare cell types. Many of them are not scalable to
big data sets or for the estimation of large number of clusters. For instance, “SC3”
(Kiselev et al. (2017)) is not scalable to big data sets and “Seurat” (Butler et al. (2018))
can handle big data sets but it performs poorly for small data sets as reported in Kiselev
et al. (2017).

There are a few challenges while clustering scRNA-seq data (Kiselev et al. (2019)).
One of these is the high dimensionality. The total number of genes measured in the
experiment is known as dimensionality, that is often at least a few thousands. The two
main approaches to deal this issue is to use only a subset of genes or to project the data
to some low dimensional space.

Before considering scRNA-seq data clustering SC3 package has been reviewed which
offers a specific clustering methods for scRNA-seq data. The SC3 package uses princi-
ple component analysis method for the dimensionality reduction. We start the review
from it now.

Principal component analysis is a standard linear dimensionality reduction method.
The principal components are found by calculating the eigenvectors and eigenvalues
of the covariance matrix of data. The eigenvectors with the corresponding eigenvalues
gives the directions in which the data has some proportion of the variance of data. The
eigenvector with the largest eigenvalue define the direction of the maximum variation
of data and hence known as the first principal component of the data set.

Let X be the data matrix having n observations and p dimensions and ß be the
sample covariance matrix of X of order p £ p.The first step of PCA is to calculate the
eigenvalues and eigenvectors from the covariance matrix. For a square matrix of order
p £ p there will be p eigenvalues. Let ∏1,∏2, · · · ,∏p represents the p eigenvalues of ß
and y1, y2, · · · , yp represents the p eigenvectors. Note that each y j is a column vector of
length p. The roots of the characteristics equation

°

|ß°∏I | = 0
¢

gives the eigenvalues
of ß, where ∏ is a scalar and I is an identity matrix of order p £p. For p £p matrix ß
there will be p roots of the equation resulting in p eigenvalues as ∏1,∏2, · · · ,∏p . Let O
represents the null column vector of length p. The p eigenvectors are then calculated
from (ß°∏ j I )y j =O, j = 1, · · · , p. For each value of ∏ the equation just mentioned will
result in a system of p equations to solve simultaneously to get the p co-ordinates of
each eigenvector.

Let § be a diagonal matrix of order p whose diagonal elements are eigenvalues of
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ß. Let© be a p£p matrix, whose columns are the eigenvectors of ß, written as follows:

§=

2

6

6

6

6

4

∏1 0 · · · 0
0 ∏2 · · · 0
...

...
. . .

...
0 0 · · · ∏p

3

7

7

7

7

5

,©=
h

y1 y2 · · · yp

i

.

The©matrix is orthogonal matrix i.e.,©©t =©t©= I , the eigenvectors are normalized
to unit magnitude, such that ©tß© = §. The © matrix is the linear transformation of
data points where the transformed data variables in the new coordinate system are un-
correlated. The correlation matrix of the new data is§ having all off diagonal elements
as zero.

The next step is to order the eigenvectors by eigenvalues from largest to smallest.
This gives the components in order of importance. Suppose we want d < p dimen-
sional data, the first d eigenvectors will give the reduced dimensional representation
of the original data. Let ©§ be the matrix made up of the first d eigenvectors such that
its order is (p £d). Let X § = X °µ j , j = 1, · · · , p, where µ j is the means of the columns
in X . Find the d-dimensional new data as: (©§)t (X §)t . Note that the new data matrix
will have the order (d £n) such that the dimensions are in rows and the observations
are along columns now.

SC3 clustering package SC3 stands for single cell consensus clustering. It takes as
an input the expression matrix where genes are stored in rows and cell are stored in
columns. It produces the clustering using PCA and k-means clustering method. There
are seven steps involved in SC3 clustering and at each stage several parameters are
needed, which the package sets automatically. It first filters the gene from the expres-
sion matrix. The distance measure is then calculated using the filtered gene matrix,
which is then followed by the transformation step. At the transformation the linear
PCA is applied to get the d eigenvectors. k-means clustering is performed on each of
these eigenvectors. A consensus matrix is constructed from these d clusterings, which
is then used to produce final clustering. We now describe in detail each of these steps.

SC3 takes as an input the SingleCellExperiment object. It uses both counts (for gene
filtering) and logcounts (both normalised and log-transformed expression matrix for
clustering). Gene filter removes two types of genes, rare genes and ubiquitous genes.
The rare genes are those that are expressed in less than Y% of cells where the ubiquitous
gene are those that are expressed in (100-Y)% of cells. These genes are not informative
for clustering and removing these reduces the dimensionality greatly (see Kiselev et al.
(2017)).

The Distance calculation is done using three methods namely, Euclidean, Pear-
son and Spearman on the filtered expression matrix. The resulting distance values are
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stored in matrix form. For each distance matrix calculated transformation is done
using two methods namely, PCA and eigenvectors of the graph Laplacian (L = I °
eD° 1

2 A eD° 1
2 , see Section 2.4.4 of Chapter 2). The clustering is performed on the columns

of the resulting matrices stored in ascending order with respect to their associated
eigenvalues. k-means clustering is performed on the first d eigenvectors using the
kmeans() function in R with the Hartigan and Wong algorithm (Hartigan and Wong
(1979)), the number of starts set to 1,000, and the maximum number of iterations is set
to 109.

Finally a Consensus matrix is computed using cluster-based similarity partition-
ing algorithm (CSPA, see Strehl and Ghosh (2002)). CSPA is a binary similarity matrix
based on the intuition that the two objects have similarity of 1 if they are in same clus-
ter otherwise, their similarity is 0. If there are n cells (after gene filtration) to cluster
the similarity matrix is of order n £n. For each clustering obtained a binary similar-
ity matrix is constructed for cells and a consensus matrix is calculated by averaging all
individual similarity matrices. The resulting consensus matrix is clustered using hier-
archical clustering with complete linkage to produce final clustering. User specified
number of clusters are used or otherwise SC3 estimates it.

Estimation of number of clusters is done from the log-transformed filtered gene ex-
pression matrix. A z-score transformation is performed on this matrix i.e., from each
column of log-transformed matrix, means are subtracted and then divided by the stan-
darded deviations. Let the z-transformed matrix is denoted by Z . The eigenvalues
of A = Z t Z are calculated. The number of clusters are estimated by the number of
eigenvalues that are significantly different than Tracy–Widom distribution (see Patter-
son et al. (2006) for detail).

We now consider the scRNA-seq data clustering. For this we consider already pub-
lished data sets for which the true cell types are originally identified by the authors. In
addition we have also considered SC3 clustering.

4.17.7.1 Yan et al. (2013) data

Study type: human embryonic development. The author has defined the development
stages (cell types) of the cells. The data set contains 90 cells and 20214 expressed gene.
The authors have identified 7 cell types as oocyte (3 samples), zygote (3 samples), 2-cell
(6 samples), 4-cell (12 samples), 8-cell (20 samples), lateblast (30 samples), and morula
(16 samples). The data is available from Gene Expression Omnibus under accession
number GSE36552.

The QC and normalization were performed using “scater” with default settings, for
this and the all other scRNA-seq data sets considered in this section. We have used
“runPCA()” function of “scater” for dimension reduction using principal component
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analysis. Euclidean distances between cells were used for clustering for all data sets.
The maximum number allowed for the estimation of number of clusters is 10.

Three principal components were used for clustering. The PCA plot of the data
is shown in Figure 4.36. The 1st, 2nd and 3rd components define 53%, 26% and 3%
variances respectively.
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Figure 4.36 Data plots of first three principal components.

Table 4.38 Yan et al. (2013) data clustering results.
True k Estimated k

Methods ASW ARI ASW ARI k̂
True labels 0.6557
k-means 0.7265 0.7554 0.9145 0.6850 3
PAM 0.7916 0.8939 0.7916 0.8939 7
average 0.7916 0.8939 0.8028 0.8773 8
Ward’s 0.7916 0.8939 0.7916 0.8939 7
model-based 0.6807 0.7176 0.7554 0.6850 3
spectral 0.3676 0.7224 0.7762 0.7905 5
BIC-mb - - 0.6976 0.7288 8
SC3 0.8859 0.6408 0.9713 0.6212 3
PAMSIL 0.7916 0.8939 0.8028 0.8773 8
OSil1 0.7916 0.8939 0.8028 0.8773 8
HOSil 0.7916 0.8939 0.7963 0.7956 6

The results for this data are reported in Table 4.38. The ASW using the known clas-
sification (true labels) was calculated using the distance between the data obtained
from principal components. Only Wards and PAM clustering methods have estimated
correct number of clusters. Average linkage, PAMSIL, HOSil and OSil1 have shown the
same performance. SC3 produced higher value of ASW with too low ARI.
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4.17.7.2 Biase et al. (2014) data

Study type: the cell fate decision during early embryo development. This data set
contains 49 cells and 3 cell types. There are 1-cell (9 samples), 2-cell (20 samples),
and 4-cell(20 samples) embryos. The data is available through the accession num-
ber GSE57249 from NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/geo/). The data has FPKM unit and 25737 genes.

For this data set the two principal components were used. The 1st and 2nd prin-
ciple components defines 37% and 14% variance respectively. The data is plotted in
Figure 4.37 with colours representing the true cell types classification by the authors.
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Figure 4.37 Data plots of first two principal components. The cell-types are: 1-cell
(black), 2-cell (green) and 4-cell (red).

Table 4.39 Biase et al. (2014) data clustering results.
True k Estimated k

Methods ASW ARI ASW ARI k̂
True labels 0.8052
k-means 0.4673 0.051 0.6917 0.5091 4
PAM 0.8052 1 0.8052 1 3
average 0.8066 0.9483 0.8066 0.9483 3
Ward’s 0.8052 1 0.8052 1 3
model-based 0.8052 1 0.8052 1 3
spectral 0.8066 0.9483 0.8066 0.9483 3
BIC-mb - - 0.5773 0.5756 6
SC3 0.9270 0.9483 0.9270 0.9483 3
PAMSIL 0.8066 0.9483 0.8066 0.9483 3
OSil1 0.8066 0.9483 0.8066 0.9483 3
HOSil 0.8066 0.9483 0.8066 0.9483 3

Table 4.39 shows the result for Biase et al. (2014) data clustering using all the clus-
tering methods considered earlier in this work. FOSil2 was not applied due to small

206



number of cells. The performance for PAMSIL, OSil1 and HOSil is same. These meth-
ods have estimated correct number of clusters but have miss classified one cell. Av-
erage linkage and spectral clustering methods has also performed equivalent to these
methods. However, PAM, Ward’s and Model-based (with ASW) clustering gave the best
results. They have not only estimated the correct number of clusters but also do not
miss classified any points. The performance of k-means was poor among all meth-
ods for this data. Overall, SC3 gave the highest value of ASW with ARI performance
equivalent to other methods.

4.17.7.3 Goolam et al. (2016) data

Study type: pre-implantation development. The data has 124 cells. There are 5 distinct
cell types. 2-cell(16 samples), 4-cell(64 samples), 8-cell(32 samples), 16-cell(6 samples)
and 32-cell(6 samples). The data is available from under accession number E-MTAB-
3321 from ArrayExpress (https://www.ebi.ac.uk/arrayexpress).

The data was reduced to three components and Euclidean distances were used be-
tween cells to perform clustering. The data set was projected to 3 principled compo-
nents plotted in Figure 4.38. The colour represents the true cell classification by the
authors. The principal components covered 39%, 7%, and 6% variance respectively.
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Figure 4.38 Data plots of first three principal components. Shown in red are 2-cell,
green are 4-cell, blue are 8-cell, black are 16-cell and light blue are 32-cell stages.

Table 4.40 shows the results for this data. PAMSI, OSil, HOSil, average linkage and
Wards clustering methods estimated correct number of clusters and gave the highest
ARI value. Although SC3 has produced higher ASW values than all other clustering
methods included in the study but it gave low ARI value.
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Table 4.40 Goolam et al. (2016) data clustering results.
True k Estimated k

Methods ASW ARI ASW ARI k̂
True label 0.4905
k-means 0.5502 0.5439 0.5995 0.8831 3
PAM 0.5502 0.5439 0.6365 0.8602 4
average 0.6668 0.9097 0.6668 0.9097 5
Ward’s 0.6668 0.9097 0.6668 0.9097 5
model-based 0.5502 0.5439 0.6365 0.8602 4
spectral 0.2617 0.6365 0.329 0.8602 4
BIC-mb - - 0.5925 0.475 8
SC3 0.8968 0.6874 0.9793 0.6299 2
PAMSIL 0.6668 0.9097 0.6668 0.9097 5
OSil1 0.6668 0.9097 0.6668 0.9097 5
HOSil 0.6668 0.9097 0.6668 0.9097 5

4.17.7.4 Kolodziejczyk et al. (2015) data

Study type: mouse embryonic stem cell growth under different culture conditions. The
data has 704 cells. The three culture conditions are serum (250 cells), 2i(295 cells) and
2ai(159 cells). The number of clusters are three, where each cluster correspondence
to a culture condition. There are sub-populations within each culture condition. The
serum grown cells have 3 sub-populations, cell grown under 2i has 4 sub-populations
and lastly cell grown under a2i has 2 sub-populations. The data is available from Ar-
rayExpress under accession number E-MTAB-2600.

The data was projected onto 3 principle components shown in Figure 4.39. The 1st,
2nd and 3rd components defined 14%, 9%, and 4% variance respectively.
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Figure 4.39 Data plots of first three principal components. Shown in black are 2i cells,
red are 2ai cells and green are serum cells. The labels shows sub-population within
each cell type.
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Table 4.41 Kolodziejczyk et al. (2015) data clustering results.
True k Estimated k

Methods ASW ARI ASW ARI k̂
True label 0.3659
k-means 0.4754 0.4366 0.5346 0.5042 7
PAM 0.4704 0.4493 0.5346 0.5042 7
average 0.4632 0.5727 0.5239 0.6090 5
Ward’s 0.4742 0.3895 0.5300 0.5316 7
model-based 0.446 0.6165 0.5205 0.5006 6
spectral 0.4742 0.3895 0.5333 0.5225 7
BIC-mb - - 0.3382 0.3852 9
SC3 1 1 0.92 0.8317 5
PAMSIL 0.4760 0.4442 0.5354 0.5105 7
OSil1 0.4760 0.4442 0.5353 0.5077 7

Table 4.41 shows the clustering results. HOSil clustering was not applied to this
data due to greater numbers of cells. The ARI values and true ASW reported in the
tables were calculated using data labels for three clusters. There is strong separation
between the sub-populations of clusters/cell-types therefore, the methods have esti-
mated number of clusters more than 3. We have also done all calculations using num-
ber of clusters as 9. The ARI values were higher with k=9 as compared to k=3. None of
the methods estimated number of clusters as 3 here. SC3 has performed better than
other methods here. For the fixed number of clusters (i.e., 3) it gave the true known
classification of data correctly, however, it has also not estimated the number of clus-
ters at desired.
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Chapter 5

Theoretical foundation

“The generalizations are true, only within a limited scope.”
Fatima Batool

5.1 Background discussion

There has been some advancement in developing a general theoretical framework for
clustering functions and algorithms. The aim is to characterize the clustering meth-
ods by identifying the mathematical properties which are reasonable to claim as the
axioms for clustering. This will allow to understand the task of the clustering indepen-
dently from the data structures, clustering algorithms or objective functions Kleinberg
(2003). Due to numerous clustering applications, a wide range of clustering methods
and algorithms have been proposed in literature. Clustering methods are data driven
and motivated by a specific data problem. Therefore, many clustering heuristics are
not guaranteed to be the optimal in a situation outside the scope for which they were
initially developed. In practice it is usually not trivial which clustering method to em-
ploy to solve a given problem in hand. The users are always in trouble to choose a
clustering method that will fit best in a particular application. It is usually impossible
to determine the best clustering procedure as in practice there is a little information
available to compare the appropriateness of massive set of algorithms.

There can be agreement on the general purpose of clustering but not on how to
achieve this and how to define clusters. Also, if the characteristics are known for the
required clustering, these characteristics can be defined in more than one ways. Also,
for a given clustering definition, there can be many ways to mathematically achieve it.
For instance, if homogeneous patterns are to be sought out from the data, then some
notion of homogeneous clusters is required to perform clustering. There is no univer-
sally acceptable definition of homogeneity through which clusters are defined. Not all
clustering methods can reveal all kinds of clusters in data. Some methods can be good
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in uncovering spherical clusters of equal size, for instance k-means, or some can find
clusters with unequal sizes and orientation like Gaussian mixtures. Techniques like
spectral clustering can identify various shapes for instances rings, but none of them
can find out all types of clusters.

Usually it is expected that the user should not only have the knowledge of clustering
techniques and related issues, but also the knowledge of the application domain. For
instance in what situation these techniques perform best, what kinds of clusters each
of these techniques are good in finding, and what are their limitations, also as well as
what clustering characteristics are sensible to apply for a data application. It is crucial
for users to identify what is the purpose of clustering and what types of clusters they
are aiming for.

While some experts have guided users to think about their clustering needs and
why they want to cluster data and what they want to achieve from the results aftawards,
for instance see Von Luxburg et al. (2012), where they argue that it is meaningless to
view clustering as a domain independent mathematical task. Also, in reality there is
no universally acceptable definition of true clusters, because cluster analysis has been
applied with very different aims in various domains. Since every application is unique,
Hennig (2015b) argues that the definition of a good clustering depends heavily on the
context and intent for clustering.

On the other hand it was vital to bring some clarity and system to identify homo-
geneities between clustering approaches and systematically design generic concepts
to select a suitable algorithm among diverse approaches to help the community us-
ing these techniques. The development of the axiomatic theory for clustering is vital
because it can provide directions for the selection of clustering algorithms in prac-
tical applications. Once a user has decided what properties they are looking for to
solve a clustering problem, they can match these requirements with various clustering
methods based on the properties developed through axioms for clustering methods.
These properties defined by a set of axioms also allow to compare the performance of
the clustering methods or their quality and to speak about the unique advantages that
come with each of them.

While it is also debatable which of these axioms are appropriate to force on a clus-
tering method and useful for the practical applications, these axioms can at least pro-
vide some guide for at least some clustering methods, if not for all, by classifying them
into categories in a systematic way. Another concern in this regard is that it is not clear
whether a clustering method which fulfils these axioms theoretically will also perform
well for a variety of real life applications as well. For instance the single linkage cluster-
ing method has been shown to satisfy various axioms (see Jardine and Sibson (1968),
Zadeh and Ben-David (2009) and Carlsson and Mémoli (2010)) but this method often
fails in practice for a variety of real life applications.

The task of developing a general theory for clustering is not easy as many clustering
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methods are very different in nature, whereas for those who have the same motivation,
there is no guarantee that they will behave in the same manner for every problem. The
aim of developing a general theory for clustering is not new and various approaches
have been introduced in the literature. We will discuss some of these in the next sec-
tion.

Usually the work in this direction is began by defining some reasonable require-
ments/rules/properties/axioms that every clustering methods should follow, for in-
stance, the set of admissibility criteria by Fisher and Ness (1971), and then classifing the
clustering methods according to these rules. In the following section we have reviewed
some of these major approaches, and then focus on the work of Kleinberg (2003) and
Ben-David and Ackerman (2009), which is more closely related to our work.

5.2 Existing literature

Researchers are working in different directions for the development of theoretical clus-
tering, for instance, developing axioms for clustering functions/algorithms, develop-
ing axioms for clustering quality measures, developing the axiomatic framework by
designing clustering problems in weighted setting, developing notions and measures
of clusterability. Most often these depend upon the ideas of separation, compactness,
stability, consistency and robustness. We don’t intend to review all of these topics as
our work is the development of the the theory for clustering functions, algorithms and
quality measures. These sets of axioms are usually proposed for hierarchical and non-
hierarchical (partitional) clustering setups.

Among the earliest attempts in this direction is Rubin (1967). He classified the clus-
tering criteria by taking into account several foundational points including purpose of
clustering, types of clusters, types of clustering functions and types of distance mea-
sure. He took into account the similarities and difference between different clustering
tasks. First of all he required that there should be a well defined mathematical func-
tion to find a clustering. Rubin called it splitting function instead of clustering func-
tion. The splitting function evaluates many possible clusterings on a set of objects and
defined on the base of its optimal value which clustering among them is the best. Ru-
bin then took into account the purpose of clustering which can be different in various
domains. He only considered those splitting functions which give non-overlapping
clusters. He then classified the splitting functions into two broad classes, one based
on geometric measure and other on statistical measure. A statistical measure is based
on a probability model of data and a geometric measure that depends upon measure
of similarity or dissimilarity between pairs of points. For these he considered measure
based on coefficient of similarity and stability. He then defined the set of elementary
rules for each of these groups that are reasonable to demand from any clustering meth-
ods under these categories. These rules includes characteristics such as well-separated
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clusters, homogeneous clusters, and strong clustering structures among others.
Later Jardine and Sibson (1968) outlined properties that any clustering function

should satisfy based on dissimilarities among data points and showed many common
clustering functions failed to fulfil these. See references therein for earlier work on a
theoretical framework for clustering. Following this work, Fisher and Ness (1971) gave
a set of nine properties for admissibility of clustering methods based on decision the-
ory. By admissible properties they mean such properties which are reasonable for any
clustering procedure to satisfy in general or in particular applications. By restricting
clustering procedures with these properties, they hope that the chance of selection of a
bad clustering algorithm will vanish. However, these properties are not sufficient alone
to choose the best method. Some of these properties are more general. We present only
those properties here that are related to this work. Let X = {x1, · · · , xn} be the n obser-
vations, where each xi is a column vector. Let Ck = {C1, · · · ,Ck } be a clustering on X
with k clusters.

Definition 5.2.1. Image admissibility: Suppose the points inX are ordered as x 0
1, . . . , x 0

n
such that

C1 = {x 0
1, . . . , x 0

j1
}, C2 = {x 0

j1+1, . . . , x 0
j1+2}, . . . , Ck = {x 0

j1+···+ jk°1+1, . . . , x 0
n}.

Let y1, . . . , yn be any re-ordering of the points and define

C 0
1 = {y1, . . . , y j1 }, C 0

2 = {y j1+1, . . . , y j1+2}, . . . , C 0
k = {y j1+···+ jk°1+1, . . . , yn},

where C 0
1, . . . ,C 0

k is an image of C1, . . . ,Ck . A clustering is called image admissible if it
does not have an image which is uniformly better in the sense that

• d(x 0
i , x 0

j )> d(yi , y j ) when i th and j th points are in same cluster, and

• d(x 0
i , x 0

j )6 d(yi , y j ) when i th and j th points are in different cluster,

where strict inequality holds for at least one pair of (i, j).

Definition 5.2.2. Well structured clustering: A clustering is well structured if all within-
cluster distances are smaller than all between-cluster distances.

Puzicha et al. (2000) developed axioms for clustering methods based on optimiza-
tion criteria for both non-hierarchical and hierarchical clustering methods based on
both similarity and dissimilarity measures. Most of these axioms were based on clus-
tering homogeneity and compactness concepts using invariance, perturbation and ro-
bustness properties.

Another line of work in this regard is to develop a set of axioms for weighted clus-
tering settings by considering that each data object has an associated weight, see, for
instance Wright (1973). A somewhat different approach was adopted by Pollard et al.
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(1981) for k-means, where he developed the convergence for the clustering criterion
as the sample size increases.

Recently Kleinberg (2003) defined three axioms for any reasonable clustering func-
tion to obey. The axioms are appealing and sensible to demand from clustering func-
tions but yet he showed that no clustering method can fulfil all three rules. On contrary,
Ben-David and Ackerman (2009) claim that Kleinberg’s impossibility result is due to
their specific formulation, and that these axioms can serve as a consistent set of axioms
by redefining them for clustering quality measures instead of clustering functions.

Similar approaches to Kleinberg (2003) are Correa-Morris (2013) and Zadeh and
Ben-David (2009), where they further extend this work in similar way. Correa-Morris
(2013) has mentioned some key factors ignored in Kleinberg (2003) formulation. They
made some adjustment to Kleinberg (2003) formulation by introducing three types of
consistency. All of their axioms were strongly linked to robustness of the clustering
functions. Zadeh and Ben-David (2009) also followed the notion of Kleinberg (2003)
and introduced a relaxation to consistency axiom of the paper mentioned latter, to
make the set of axioms consistent. Carlsson and Mémoli (2013) focused mainly on the
hierarchical clustering setup, in particular on single linkage. They modified Kleinberg
(2003)’s axioms to show that all of the three axioms are satisfied within their formalism.

Ben-David and Ackerman (2009) proposed a consistent set of axioms, for clustering
quality measures, namely scale-invariance, consistency and richness. In this work we
have followed their work and have shown that ASW satisfies this set of axioms. We now
define notations and review in detail Kleinberg (2003) and Ben-David and Ackerman
(2009) before proving the axioms proposed by the latter authors for the ASW index.

5.3 Preliminaries

LetX = {x1, · · · , xn} be the data set with n observation taken over p variables of interest.

Definition 5.3.1. A distance function d is defined over X as a mapping of each pair
in X to the positive real domainR+ i.e., d : X £X !R+ satisfying the symmetry and
reflexivity properties 8 xi , x j 2X .

Definition 5.3.2. For a distance function d over X and a positive real ¥, the scalar
multiplication of d with ¥ is defined for every pair xi , x j 2 X , as (¥ · d )(xi , x j ) = ¥ ·
d(xi , x j ).

We call a clustering function a k-free clustering function when the number of clus-
ters is not needed to be fixed a prior to clustering function.

Definition 5.3.3. A k-free clustering function f takes a pair (X , d) as an input and re-
turns a possible partitioning C 2S (X ) of X , where S (X ) denotes a set of all possible
partitions of X .
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Definition 5.3.4. A k-clustering function f takes a triplet (X , d , k) where 1 6 k 6X ,
and outputs a clustering Ck having k clusters of X .

A k-free clustering function does not need k in advance to be provided to perform
clustering, and it can return any number of clusters, whereas a k-clustering function
will need a predefined k a priori to pass to the function to return a clustering for that
chosen number of clusters.

A k-clustering is denoted as Ck = {C1, . . . ,Ck }, where Cr , r 2Nk denotes the clus-
ters in Ck . Since the number of clusters do not need to be fixed in advance for these
axioms, we will work with a clustering say C which can have any number of clusters.
Let xi ªC x j , if observation xi and x j for i 6= j 2 Nn belong to the same cluster in a
partition C and xi ⌧C x j , otherwise.

Let d and d 0 be two distance functions on a partition C of X .

Definition 5.3.5. A distance function d 0 is a C -transformation of d, if d 0(xi , x j ) 6
d(xi , x j ) for all xi ªC x j and d 0(xi , y j )> d(xi , x j ) for all xi ⌧C x j for all i , j 2Nn.

d 0 is defined by increasing the between cluster distances and by decreasing the
within cluster distances. One illustration of that is given in Figure 5.1, where the right
hand panel represents the C -transformation on the data shown on left hand panel.
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Figure 5.1 An example of C -transformation on a data set obtained by shrinking the
within cluster distances and increasing the distances between cluster centres on the
data set shown in the left panel.

Kleinberg (2003) suggested three simple properties for any standard clustering func-
tion (CF) f . Let S (X ) represent the collection of all possible partitions of X . The
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clustering function takes the data set in form of pair (X , d) as input and returns the
clustering C as an output ( f (X ,d) = C 2 S (X )). The first property requires that the
output of a clustering function should not be affected by the measurement units of (X ,
d).
CF Scale Invariance: For all¥> 0, a function f is invariant to uniform scaling if f (X ,d) =
f (X ,¥ ·d).
The second property states that a clustering function should be capable of yielding any
partition C of X from S (X ) by constructing a distance function d on X .

CF Richness: A CF is rich if for every possible partition C 2S (X ), there exists a corre-
sponding d on X such that f (X ,d) =C .

Let d be a distance function on X and d 0 be another distance function on X de-
fined by shrinking distances within clusters and expanding distances between clusters.
A CF is consistent if the clusterings it produces on X are the same using d and d 0.
CF Consistency: A function f is consistent if f (X ,d) = f (X ,d 0), where d 0 is a C - trans-
formation of d .

The aim of developing natural properties/axioms of Kleinberg (2003) for cluster-
ing is no doubt useful and relevant for developing understanding to general purpose
of clustering. These axioms can distinguish the clustering algorithms from each other
and leads to more informed decisions for the selection of the clustering algorithms for
a given data application. Scale invariance is useful because it is reasonable to demand
that the output of the a clustering function should not change due to the change of
measurement scale. Consistency is a rather intuitive requirement based on a view that
one wants to have clusters that are at the same time homogeneous (low distances) and
separated (large distances to other clusters). Consistency is about decreasing within-
cluster distances and increasing between-cluster distances. This states that the con-
sistent changes to distance does not change the clustering output. If a method doesn’t
fulfill this, a practitioner interested in this kind of clustering may not want to use that
method. Richness is relevant in practice insofar that if this is not fulfilled, certain clus-
terings are impossible to achieve, and the practitioner needs to keep in mind that these
clusterings were not ruled out properly by the data but were not possible for any data
to achieve in the first place. So the data was not the reason why such a clustering wasn’t
found.

Kleinberg states the impossibility theorem refering that there is no clustering func-
tion that satisfies all of the above three properties. Ben-David and Ackerman (2009)
identify that the three desired properties can be achieved if we modify them for clus-
tering quality measures instead of clustering functions. They have discussed that the
Kleinberg (2003)’s impossibility result occurs mainly because of the consistency prop-
erty on clustering functions, which requires that the original clustering remains the
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same after consistent changes to the distances. The consistency property basically
states that if consistent changes (i.e., C -transformation) are made to the distances, the
clustering function should not nominate some other clustering as the best clustering
than it gave before. However through C -transformation there could be many possi-
bilities to get some other clustering whose quality is better than the original clustering
while also maintain the quality of the original clustering. In fact C -transformation al-
lows much flexibility to redefine the within and between clusters distances in such a
way that some other clustering can be an even better contestant than the original clus-
tering. For instance one can introduce bigger between cluster gaps for only few clusters
using C -transformation to create some better clustering instead of introducing same
between cluster gaps for all clusters. Once the restriction of getting the same cluster-
ing quality after C -transformation is replaced with the same and better quality for the
CQMs rather than CF the impossibility theorem no longer exists.

The process of clustering quality assessment tells us about the goodness and use-
fulness of the clustering structure obtained from any algorithm. A clustering quality
measure (CQM) ¶ takes the pair (X , d) and a clustering C over (X , d) and returns a
non-negative real number. In addition, a CQM can also satisfy additional properties.
We now give Ben-David and Ackerman (2009)’s three requirements for CQMs:
CQM Scale Invariance: A CQM ¶ is scale invariant if for all ¥> 0, and every C of (X ,
d),¶(C , (X ,d)) =¶(C , (X ,¥ ·d)).

CQM Consistency: A CQM¶ is consistent measure if for every clustering C over (X , d),
¶(C , (X ,d 0))>¶(C , (X ,d)) holds, provided that d 0 is a C -transformation of d.

CQM Richness: A CQM ¶ is rich for every possible non-trivial clustering C 2 S (X ) of
X there exist a distance function d over X such that C = argmaxC ¶(C , (X ,d)).
Richness is defined only for non-trivial clusterings. There are two cases which are con-
sidered trivial. This is when every observation forms a cluster such that there are n
singleton clusters for a data set of size n. The other trivial clustering case is when all
the observations are in one cluster.

Definition 5.3.6. Consistent set of axioms: Every object from the class of objects (for
instance clustering functions) for which the set of axioms have been defined should
follow all axioms individually.

See Ben-David and Ackerman (2009) for a detailed discussion on the consistency for
the set of axioms in the Section 4.2 of their paper.

Theorem 1 (Ben-David and Ackerman (2009)). Scale-invariance, richness and consis-
tency for clustering-quality measures form a consistent set of axioms.
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5.4 Characterization of the ASW

Here we will explore which of the three requirements given in Ben-David and Acker-
man (2009) are satisfied by the ASW. In order to make it easy for the readers to follow
the proofs, intuition for the proofs before the start of the proof is also provided.

Definition 5.4.1. Let X = {x1, . . . , xn} be the data set of n objects and d be a distance
function over X and C be some clustering characterized on X . Let the clustering la-
bels be l (1), . . . , l (n) 2 Nk determined by l (i ) = r , i 2 Nn and cluster sizes are deter-
mined by nr = Pn

i=1 1(l (i ) = r ), r 2 Nk . The silhouette width for a data index i 2 Nn

is

Si (C ,d) = b(i )°a(i )
max{a(i ),b(i )}

, (5.1)

where

a(i ) = 1
nl (i ) °1

X

l (i )=l ( j )
i 6= j

d(xi , x j ) and b(i ) = min
r 6=l (i )

1
nr

X

l ( j )=r
d(xi , x j ).

Definition 5.4.2. The Average Silhouette Width (ASW) of a clustering C is defined as

S̄(C ,d) = 1
n

n
X

i=1
Si (C ,d).

Theorem 2. The ASW is a Scale Invariant CQM.

Proof. For any ¥ > 0 and any distance function d on X , let ¥ ·d = d 0. Let a0(i ), b0(i ),
S0

i (C ,d) and S̄0(C ,d) be based on d 0. Therefore, a0(i ) = ¥·a(i ) = ¥
nl (i )°1

P

l (i )=l ( j )
i 6= j

d(xi , x j )

and b0(i ) = ¥ ·b(i ) = ¥ ·mi nl (i )6=r
1

nr

P

l ( j )=r d(xi , x j ), by Definition 5.3.2.

Now S0
i (C ,d) = Si (C ,¥ ·d) = b0(i )°a0(i )

max{a0(i ),b0(i )} =
¥·b(i )°¥·a(i )

¥·max{a(i ),b(i )} = Si (C ,d).

hence, S̄(C ,¥ ·d) = S̄(C ,d) is always true. Thus for any ¥ > 0 and any clustering C of
(X ,d), we have,¶(C , (X ,¥ ·d)) =¶(C , (X ,d))

Consistency is about getting the same or higher clustering quality after decreasing
within-cluster distances and increasing between-cluster distances. For every individ-
ual point the b(i ) becomes bigger and the a(i ) smaller, so all the numerators of the sil-
houette width will improve. However it may happen that denominators also become
bigger, and therefore one has to go through these cases looking at whether a(i ) or b(i )
in the denominator (which may change when changing the distances) to show that in
fact the silhouette width always becomes better or at least not worse. In order to prove
consistency for an index one has to observe what change in the value (or the individual
expressions and how they all add up) of the index will happen with a consistent change
in distances.

218



Theorem 3. The ASW is a consistent CQM.

Proof. Let d 0 be a C -transformed distance function of d and a0(i ), b0(i ), S0
i (C ,d 0),

S̄0(C ,d 0) be based on d 0. The following two inequalities hold by Definition 5.3.5:
d 0(xi , x j )6 d(xi , x j ) for all xi ªC x j and minxi⌧C x j d 0(xi , y j )>minxi⌧C x j d(xi , x j ).
This implies that

a0(i )6 a(i ), (5.2)

and
b0(i )> b(i ). (5.3)

For consistency we need to prove,

S0
i (C ,d)> Si (C ,d),

, b0(i )°a0(i )
max{a0(i ),b0(i )}

° b(i )°a(i )
max{a(i ),b(i )}

> 0. (5.4)

There can be four possible cases:

Case I: max{a(i ),b(i )} = a(i ), max{a0(i ),b0(i )} = a0(i ). (5.5)

Case II: max{a(i ),b(i )} = a(i ), max{a0(i ),b0(i )} = b0(i ). (5.6)

Case III: max{a(i ),b(i )} = b(i ), max{a0(i ),b0(i )} = a0(i ). (5.7)

Case IV: max{a(i ),b(i )} = b(i ), max{a0(i ),b0(i )} = b0(i ). (5.8)

We will now check whether the inequality given in (5.4) will hold for each of these cases.
Case I: We have a(i ) > b(i ) and a0(i ) > b0(i ). Combining these two conditions with
(5.2), (5.3) we can draw the following scale to understand the relationship between
these four quantities.

10 b(i ) b0(i ) a0(i ) a(i )

Using (5.5) in (5.4) we need to show,

b0(i )°a0(i )
a0(i )

° b(i )°a(i )
a(i )

> 0,

b0(i )
a0(i )

° b(i )
a(i )

> 0,

L0 °L > 0, (5.9)

where L0 = b0(i )
a0(i ) and L = b(i )

a(i ) . Note that (5.9) will be always true if L is smaller than
L0. Since b0(i ) > b(i ), the numerator of L0 is bigger than the numerator of L. Also, the
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denominator of L is smaller than the denominator of L0 because a0(i ) > a(i ). Thus (5.9)
will always hold1.
Case II: We have a(i )> b(i ) and b0(i )> a0(i ). Using (5.6) in (5.4) we need to show,

a0(i )
b0(i )

+ b(i )
a(i )

6 2. (5.10)

(5.10) will always hold due to (5.6), which will keep both ratios on left hand side of
(5.10) less than one.

Case III: We have b(i ) > a(i ) and a0(i ) > b0(i ). Then a0(i ) > b0(i ) > b(i ) > a(i ), which
is a contradiction to (5.2), hence this case will never exist.

Case IV: We have b(i ) > a(i ) and b0(i ) > a0(i ). Combining these two conditions with
(5.2), (5.3) we can draw the following scale to understand the relationship between
these four quantities.

10 a0(i ) a(i ) b(i ) b0(i )

Using (5.8) in (5.4) we need to show,

b0(i )°a0(i )
b0(i )

° b(i )°a(i )
b(i )

> 0 ,

a(i )
b(i )

° a0(i )
b0(i )

> 0 ,

L°L0 > 0, (5.11)

where L = a(i )
b(i ) and L0 = a0(i )

b0(i ) . For (5.11) to be true, L0 6 L should hold always. Now
the numerator of L is greater than numerator of L0 and denominator of L is less than
denominator of L0. The relationships between these quantities are of such kind that
(5.11) will always hold2.

Recall that ASW is the average of Si (C ,d) over all i 2 Nn , from above results it
follows that S̄(C ,d) 6 S̄0(C ,d) always true. Thus, ¶(C , (X ,d 0)) > ¶(C , (X ,d)) always
holds.

Richness involves optimisation (argmax) and state that it is not possible to get a

1both L0 and L are less than one in the entire proof.
2The smallest (a0(i )) in these four quantities is divided by the largest (b0(i )). Which will insure L0

is never greater than L. When the values of these four quantities are far from each other this is quite
obvious, whereas if the values of these quantities lies close to each other L°L0 will also be close to zero.
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better clustering than C with a given distance definition of X . The distance can be
defined in any way because richness requires that it should be possible to construct the
distance for any desired partition C in order to make this partition the best partition of
the X for that distance Kleinberg (2003). This is done in literature by defining distance
that has all within-cluster distances (of C ) small and all between-cluster distances (of
C ) large (Kleinberg (2003), Zadeh and Ben-David (2009), Ben-David and Ackerman
(2009)). In order to prove richness holds for an index one has to consider all other
possible clusterings than C and show that none of them give a better value of index for
that given distance definition.

There are some indices like Gamma (see Ackerman (2012), chap 3) for which it is
possible to set the distance definition in such a way that the maximum value of the
index can be achieved, such that for any other clustering, the value of the index can
only decrease. For ASW it is not possible to achieve the exact maximum value of the
index. For instance, for a(i ) = 1,b(i ) = 2, (̄s) = 0.5, and for a(i ) = 1,b(i ) = 1000, (̄s) =
0.999. The purpose here is not to achieve the maximum value of the index but in fact
to show what ever value of index is achieved, no other clustering can give higher value
than this value for this given distance. We only need to consider the within-cluster
distance to be some real value say r1 and between-cluster distance, say, r2, such that
r1 < r2.

Therefore, the strategy for proving richness for ASW is first construct a distance
function and calculate the ASW value with it. Next, one needs to then show that no
other clustering can give better value than what one got already. Surely putting points
together that are not together in C , one can generate a large within-cluster distance,
which is bad (for the a(i ) of the silhouette width of these points). If one split up clusters
of C , this will generate small between-cluster distances, which is bad for the b(i ) of the
silhouette width of these points. Therefore, one needs to show that in these cases in
fact the ASW becomes worse. There needs to be a separate treatment for one-point
clusters (in C and in the clustering to which C is compared), because these have no
within-cluster distances and are handled by separate definition.

All the possible cases to proof richness are presented in Figure (5.2). In order to
proof the theorem one has to consider all possible unique cases for C . There are two
cases possible for C for ASW because of the separate definition for the ASW for single-
ton clusters. These are named as “Case 1” and “Case 2” in the figure. Next for these
cases one has to consider all possible clusterings say C 0 other than C . For C 0 one has
to again consider singletons separately. The proof then considers all of these cases sep-
arately for the evaluation of the ASW value. An example in the Appendix D provides the
intuition on how to calculate the ASW values for C 0 using the distance defined for C .

Theorem 4. The ASW is a Rich CQM.

We first sketch proof of the theorem 4. In order to prove ASW is a rich CQM we need
to consider every possible non-trivial clustering C and construct a distance function d
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for it such that no other clustering C 0 is a better opponent i.e., no other clustering can
give an improved ASW value beyond C .

There exist more than one possibility for C and C 0. Each of these possibilities is
drawn in Figure (5.2).

Cases
for C

Case 1: No
singleton
permitted

Case 2:
singleton
permitted

Cases
for C 0

No
singleton

at least
one

singleton

Cases
for C 0

(a) at least a pair to-
gether in C but not in
C 0 or at least a pair not
together in C but in C 0

(b) No
singleton

(a) greater
number of

singletons in
C 0 as com-
pared to C

Figure 5.2 All possible cases to consider for the proof of richness theorem for ASW.

There can be two other cases under Case 2 which is smaller or equal number of
singletons in C 0 than C but since the same arguments applies as in Case 2(b) therefore
separate case distinctions have not been made for these cases. Some of these cases
have sub-case distinctions. They are presented in the proof. A simple case of Case 1(a)
presented in Figure 5.2 has been stated and proved first separately in Lemma 1. In the
proof of theorem itself the generalization of this has been discussed. The argument for
the special case and general case is not same but the argument for the latter case is
followed from lemma, therefore proved first.

Lemma 1. Let C be a clustering of X with no singletons, obtained by some clustering
function f using the distance function d as: d(xi , xi ) = 0 and d(xi , x j ) = 1 if xi ªC x j

and d(xi , x j ) = 2 if xi ⌧C x j for all i , j 2Xn. If C 0 is a clustering such that it is similar to
C in all respects except that there is only one pair of points that is together in Ck but not
in C 0, then S̄(C 0,d) < S̄(C ,d).
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Proof of Lemma 1. Due to definition of d for all points i 2 X , a(i ) = (nr§°1)£1
(nr§°1) = 1 and

b(i ) = (nr † )£2
nr †

= 2, where nr§ and nr † are the numbers of objects in some clusters Cr§

and Cr † of C . This gives Si (C ,d) = 0.5, for all i 2X such that S̄(C ,d) = 0.5.
Let Cr§ and Cr † be two clusters in C , and C 0 be a clustering such that the point

h in cluster Cr§ 2 C is now in cluster Cr † 2 C . Let the corresponding clusters to Cr§

and Cr † in C be denoted by C 0
r§ 2 C 0 and C 0

r † 2 C 0 respectively. For the point h 2 C 0
r † ,

Sh(C 0,d) = 1°2
2 = °0.5 opposite of what it had earlier due to the definition of d . The

Si (C 0,d) for all the points in the cluster C 0
r§ 2 C 0 and Si (C 0,d) for all the points in

C 0
r † 2C 0 will reduce from 0.5.

The reason for the reduction in Si (C 0,d) 2 C 0
r§ for all i ’s in C 0

r§ is the reduction in
b0(i ) values from 2 whereas there will be no change in a0(i ) as compared to the a(i ) in
Cr§ 2C . This reason of reduction in b0(i ) is due to the fact that one point that was pre-
viously the member of this cluster has moved out to other cluster which has provided
a new lower value than 2 of between cluster distances for the points in this cluster.
Since now one of the d(xi , x j ) is 1 for the case xi ⌧C x j which were all 2 previously,
will reduce the value of b0(i ). Note that, as a result to this b0(i )°a0(i ) < b(i )°a(i ) will
always hold for all i ’s in C 0

r§ . Next we have to look for the minimum value b0(i ) can
take to determine max{b0(i ), a0(i )}. Let nC 0

r§
be the number of objects in cluster C 0

r§ ,

then b0(i ) = min
r 6=r§

1
nC 0

r

P

nC 0
r

j=1,i 6= j d(xi , x j ). Since d(xi , x j ) is either 1 or 2 and in addition we

know that one of the d(xi , x j ) = 1 for xi ⌧ x j which were all two previously therefore,
1 6 b0(i ) < 2. Since a0(i ) = 1 and b0(i ) can not be equal to 2 any more but remains less
than it and can decreased to at most 1 therefore max{a0(i ),b0(i )} = b0(i ) except when
b0(i ) = 1 where we no longer need to care about max. Also, note that b0(i )° a0(i ) can
at most be as small as 0. Since for all i ’s in C 0

r§ , 1 = a0(i ) 6 b0(i ) < 2 therefore, this will
ensure Si (C 0,d) < Si (C ,d). In general, if there are nCr§ points in cluster Cr§ there will
be nCr§ values of Si (C 0,d) less than Si (C ,d).

The reason for the reduction in Si (C 0,d) 2C 0
r † is the increase in a0(i ) whereas b0(i )

for i 2 C 0
r † in C 0 will not change as compared to i 2 Cr † in C . The a0(i ) will increase

from 1 because of the object h in cluster Cr † . Since one of the d(xi , x j ) = 2 for xi ªC x j

which were all 1 previously, resulting in all a0(i ) > a(i ) for all i 2 Cr † . Note that for all
i 2Cr † , a0(i ) > a(i ) resulting in b0(i )°a0(i ) < b(i )°a(i ). Also, this is possible to derive
the maximum value which a0(i ) can achieve. Let nC 0

r †
be the number of points in the

cluster C 0
r † , then a0(i ) = 1

(nC 0
r§

°1)
P

(nC 0
r †
°1)

j=1,i 6= j d(xi , x j ). Since d(xi , x j ) is either 1 or 2 and

in addition we know one of the d(xi , x j ) = 2 for xi ªC x j , therefore, 1 < a0(i ) 6 2. The
highest a0(i ) can achieve is 2 such that max{a0(i ),b0(i )} = b0(i ). Also note that b0(i )°
a0(i ) = 0 in this case as well. Since 1 < a0(i ) 6 2 and b0(i ) = 2, therefore Si (C 0,d) 2 C 0

r †

for all i 2 C 0
r † . In general, if there are nCr † number of observations in Cr † there will be
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nCr † number of values of Si (C 0,d) less than Si (C ,d).
Also note that the Si (C 0,d) will remain unchanged for the points in the clusters

that are same in both clusterings C and C 0. Thus there are atleast (nCr§ + nCr † ) in
total of Si (C 0,d) less than Si (C ,d) which will make S̄(C 0,d) strictly less than 0.5. To
recapitulate, for some of the points Si (C 0,d) will remain same as for Si (C ,d), for the
point that changed cluster membership it’s -0.5 and for some other points Si (C ,d) <
0.5, thus clearly S̄(C 0,d) < S̄(C ,d).

We have learnt few things from Lemma 1 which are given below as remarks while
keep in mind that all the set up remain same as in lemma. These remarks will provide
more insight for the Case 1 (a) presented in the Figure 5.2 for the Theorem 4.

Remark 1. It is obvious that if one of the Si (C 0,d)’s will reduce from 0.5 and all other
remains 0.5 the ASW will reduce from 0.5. We have seen that as one point changes its
cluster membership this will adversely affect Si (C 0,d)’s of all i ’s in these two clusters
involved. Since C and C 0 are two unique clusterings, to prove C is a rich CQM it is
enough to show only for one i 2 C 0 that Si (C 0,d) < 0.5 while others remain at 0.5. This
can be attained by only considering one pair of points that is together in C but not in
C 0. As the number of such pairs will increase, this will cause bigger reduction in S̄(C 0,d)
as compared to just one pair. Since C 0 is a different clustering than C , in fact there can
be me more such pair of points that were in some clusters in C but are in some other
clusters in C 0. Of course the situation in Lemma 1 can be generalized to many pair of
points that are together in C but not in C 0 which is done in the proof of theorem 4.

Remark 2. Suppose that C is a clustering such that some point i belongs to some cluster
Cr of it. Suppose that this clusterings is based on distance d such that all within cluster
distances are 1 and all between cluster distances are 2. Since all the clusters are equally
distance from each other by definition of d therefore, all clusters other than Cr are closest
neighbours of Cr and any one can provide b(i ). But if a point moves out of a cluster Cr

to some cluster Cr§ 2C then a) Cr§ will provide the b(i ) value for all the points in Cr i.e.,
Cr§ will become the closest cluster to cluster Cr . b) Cr will provide the b(i ) value for the
point i that moved out of Cr .

Remark 3. Suppose that C is a clustering such that the point i belongs to some clus-
ter Cr§ of it. Suppose that this clusterings is based on distance d such that all within
cluster distances are 1 and all between cluster distances are 2. Suppose point i 2 Cr§

now changes its cluster membership and i › Cr§ but i 2 Cr † . As a result to the point i
changing it’s cluster membership the following three things will happen

(i) The b( j ) for all j 2Cr§ will change (decrease) and a( j ) will remain unaffected

(ii) The a( j ) for all j 2Cr † will change (increase) and b( j ) will remain unaffected
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(iii) For the point i , a(i ) and b(i ) both will change, in fact their values will be inter-
changed.

For the generalization of the case presented in Lemma 1 we have to think that there
can be more pairs of points that are not together in C 0 but were together in C . If this
will happen, the values of a0(i ) and b0(i ) can change together unlike in Lemma 1. This
is because various pair of points in various clusters C 0 are not together now affecting
both a0(i ) and b0(i ) simultaneously. We now give the proof of the Theorem 4.

Proof of Theorem 4. In order to prove that the ASW is a rich CQM, we need to consider
every possible non-trivial clustering C and construct a distance function d for it such
that no other clustering C 0 is a better opponent i.e., no other clustering can give im-
proved ASW value beyond C . There exist two possibilities for the clustering C to con-
sider in this proof. To prove the theorem for each of these possibilities we will divide
the proof in two cases. We define the cases now. Case 1: C is a non-trivial clustering
where all clusters have more than one object, Case 2: C is a clustering where there is at
least one one-point cluster.

Case 1: Given C , construct a distance function d such that d(xi , xi ) = 0, d(xi , x j ) = 1
if xi ªC x j ,and i 6= j , and d(xi , x j ) = 2 if xi ⌧C x j for all i , j 2Xn . Note that for all points

xi 2 X , a(i ) = (nr§°1)£1
(nr§°1) = 1 and b(i ) = (nr † )£2

nr †
= 2, where nr§ and nr † is the number of

objects in some clusters Cr§ and Cr † of C . This gives Si (C ,d) = 0.5 for all i 2X , such
that S̄(C ,d) = 0.5. We claim that this is the only optimal clustering of X and for any
other clustering C 0 of X , S̄(C 0,d) will be smaller than S̄(C ,d), which we show now.

There is more than one possibility for clusterings C 0. First assume that C 0 is a clus-
tering in which there is no single point cluster. Note that since C 0 is some clustering
other than C therefore some points in some clusters of C will now be in some other
clusters in C 0. Because of the points that are now in different clusters the S̄(C 0,d) will
reduce from 0.5 due to the change in the Si (C 0,d), which we will show now.

Since C 0 is some other clustering than C , one of the following two possibilities
must hold: (a) there is at least one pair of points that are together in C but not in C 0

or (b) there is at least one pair of points that are not together in C but in C 0. First,
due to the definition of d , in C the distances can be either 1 or 2, which implies that
16 a0(i )6 2 and 16 b0(i )6 2 for any i 2C 0. This implies Si (C 0,d)6 0.5 for any i 2C 0.
This will hold for both (a) and (b) as shown now. Consider (a) now. There are two
possibilities for Si (C ,d) for all i 2 C 0 which are (a.1) for i 2 C 0, Si (C ,d) can be either
less or (a.2) equal to 0.5. While these two conditions may or may not occur together or
just (a.1) can occur for all i’s but note that only (a.2) can’t occur for all i 2 C 0. This is
because of (a). Now under (a.1) there will be at least one i in C 0 for which d(xi , x j ) = 2,
for xi ªC x j because there is at least one such pair that is not together in C 0 but was in
C . Now since all the within cluster distances are either 1 or 2 in C 0, 1 < a0(i ) 6 2. Next
we look at b0(i ) for these i 2C 0. Note that there is at least one i for which d(xi , x j ) = 1,
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for xi ⌧C x j , which implies 1 6 b0(i ) < 2. Note that max{a0(i ),b0(i )} can be either a0(i )
or b0(i ) but will be only from [1,2]. Since b0(i ) 6= 2 but less than it and a0(i ) 6= 1 but
greater than 1 for at least one i in C 0 therefore, b0(i ) < b(i ) and a0(i ) > a(i ). Under (a.2)
which is to include the possibility some clusters remain same in both clusterings C and
C 0, for such i ’s Si (C 0,d) = Si (C ,d). Hence for at least one i , Si (C 0,d) < Si (C ,d) and
for no i 2C 0, Si (C 0,d) can be greater than 0.5 which implies that S̄(C 0,d) < S̄(C ,d).

Next assume that C 0 is a clustering such that there is at least one single point cluster
in it. Let the member of a one-point cluster be denoted by i , such that Si (C 0,d) = 0 by
definition. Also for the remaining (n °1) points, S j (C 0,d) 6 0.5. Denote S j (C 0,d) = v j

where °16 v j 6 0.5. This will lead to S̄(C 0,d) =
P(n°1)

j=1 v j

n < 0.5.
Case 2: There is at least single one-point cluster in the clustering C . Construct a dis-

tance function d such that d(xi , xi ) = 0, d(xi , x j ) = 1, i 6= j , if xi ªC x j and d(xi , x j ) = 2,
if xi ⌧C x j . Let there be t 2N, (1 6 t < n) one-point clusters. Since there are t clusters

which contain just one point, the ASW for this clustering will be S̄(C ,d) =
Pn

i=1 Si (C ,d)
n =

Pt
i=1 Si (C ,d)+P(n°t )

i=(t+1) Si (C ,d)
n = t£(0)+(n°t )£0.5

n = (n°t )£0.5
n . We will now consider all the possi-

ble non-trivial clustering C 0 and show that they will not give better value of ASW than
(n ° t )£0.5/n.

There are two possibilities to consider for C 0. As a first possibility assume that C 0 is
such a clustering that there is no one-point cluster in it i.e., all clusters have more than
one point. In such a situation t one-point clusters have merged into other clusters.
The Si (C 0,d) for the points that were forming one-point cluster will remain 0 even if
they now move to other clusters. This is because now b0(i ) = a0(i ) for these points.
For these points b0(i ) = b(i ) = 2 but now a0(i ) = 2 instead of 1. In the other hand the
clusters which got the points that were previously one-point clusters the a0(i )’s for the
remaining values in these clusters will increase. This is because these clusters have
now at least one such pair of points that has d(xi , x j ) = 2, if xi ªC x j which were all
previously 1. Hence b0(i )°a0(i ) < b(i )°a(i ) where i represents the index for the points
that are in those clusters that are merged with one-point clusters and Si (C 0,d) cannot
become better for any point. Therefore, it is clear that S̄(C 0,d) < S̄(C ,d).

Note that C 0 can be also a clustering such that there is at least single one-point
cluster in it, but the number of single point clusters in C 0 is smaller than the number
of single point clusters in C . In such a situation there will be t§ < t clusters in C 0 that
have been merged into other clusters. For such a case the same logic given in previous
paragraph holds.

As a second possibility assume that the number of one-point clusters in C 0 is greater
than the number of one-point clusters in C . Let there are t 2N, for t < n one-point
clusters in C and t † 2N, for (t † < n, t † > t ). In such a situation there will be t † points in

C 0 for which Si (C 0,d) = 0 such that S̄(C 0,d) =
P(n°t†)

j=1 v j

n , which will be always less than
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S̄(C ,d) = (n°t )£0.5
n due to t † > t and no Si (C 0,d) can become better than 0.5. 3

3In addition note that there can be more data points i 2C 0 for which Si (C 0,d) = 0, this is because even
if the single point clusters of C are amalgamate with other non-singleton clusters in C 0 their Si (C 0,d) =
0 because for such i ’s a0(i ) = b0(i ) = 2.
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Chapter 6

Future aspects

The objective of the current thesis was to develop the clustering methods based on the
optimization of the ASW index. We have developed the theory, methodology and al-
gorithms for the proposed methods. We began with proposing a clustering algorithm
named HOSil in hierarchical setting in Chapter 3 and have thoroughly investigated it
against various clustering scenarios for (a) measuring clustering quality, (b) validated
this clustering using external validation index —ARI, and (c) for the estimation of num-
ber of clusters. Alongside we have investigated the performance of ASW index for mea-
suring the clustering quality and for the estimation of number of clusters. This com-
parison was conducted against many internal indices and clustering methods. The
proposed algorithm turns out to be computationally expensive. We have proposed a
fast version of this by designing a methodology that make use of both partitional and
hierarchical schemes.

We have developed a second coherent clustering method by proposing an algo-
rithm OSil for the optimization of the ASW index in non-hierarchical setting in Chapter
4. This algorithm needs an initial clustering to start the optimization process. The algo-
rithm’s performance was learned by initializing it using several clustering algorithms.
We then proposed a final version of the algorithm and worked our way through the
development of the fast version FOSil for optimum ASW clustering.

The proposed versions has been applied to the real life applications. We have also
provided a small study to give an insight about the effect of various distance metric on
the methods used in the study.

Apart from validating the quality delivered by ASW index empirically, we took the
approach of the axiomatic theorydeveloped and proved that the index satisfies the
three properties namely, scale-invariance, consistency and richness proposed in Klein-
berg (2003).

The work presented here can be seen as first step towards developing OASW based
clustering methods. There are many ways in which these algorithms can be improved,
modified for different applications or extended to other domains. Improvement of the
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clustering algorithms particularly to make them scalable to large dataset with the best
approximation possible has always been of interest for clustering analysis community.
In the following subsections a few suggestions are made to improve the work presented
in Chapter 3, 4, and 5.

6.1 An alternative HOSil algorithm suggestion

In this section we will suggest an algorithm for the fast calculation of agglomerative
hierarchical clustering to optimize the ASW. In the clustering literature one practice to
scale algorithms to large data sets is to take several samples of the data and to opti-
mize the objective function based on the sampled observations only. The algorithm
proposed here also makes use of this approach.

Consider a data set having n observations. Take a random sample from data set of
size v/n § 100.Selection of v depends upon factors such as the computational power
of the processors available, the size of the data and the number of clusters. We rec-
ommend to use v between 150 and 300 based on our experience from HOSil. Use the
HOSil clustering algorithm presented in Section 3.2 to cluster the sample of data. The
difference is that at each hierarchy level first a proportion of data is clustered only, then
assign the remaining data points to these clusters by optimizing the SW of clustering
for each observation. For instance after the clustering is obtained for a proportion of
data, take an observation from the remaining data and try putting it in every cluster
and calculate resulting ASW. Assign the observation to the cluster which gave maxi-
mum ASW for all. Complete the assignment of all observations to get a clustering for
the whole data at this hierarchy level. Now for the next hierarchy level take a sample
from each cluster such that the overall sample size is v/n §100. Any sampling scheme
can be used that gives a representative sample, for instance simple proportional allo-
cation sampling scheme or probability proportional to size etc. We don’t recommend
to use the clustering here which was obtained from the sample from the previous hier-
archy level before finding the complete clustering. Taking a sample from the clustering
obtain from entire data set at previous hierarchy will give more accurate clustering as
compared to the clustering on the sample data only. Again decide which two (or more)
clusters should be combined at this hierarchy level based on HOSil for this sample.
Obtain the clustering for the whole data at this hierarchy level as described earlier. Re-
peatedly complete all the hierarchy level from bottom to top.

6.2 OSil further improvement and extensions

Approximation algorithms to reduce computational burden The OSil1 algorithms
proposed in Chapter 3 was computationally expensive therefore, it’s fast version was
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proposed which has reduced the computational cost of OSil1. However, other ways
of implementation of the OSil1 algorithm to make it computational faster can be ex-
plored. One possible direction in this line of work could be to optimize the ASW for
clustering using simulating annealing algorithms. As mentioned already clustering
is a combinatorial optimization problem that finds the optima of functions against
discrete variables. Broadly speaking the combinatorial optimization problem can be
solved using optimization algortihms or approximation algorithms Merendino and Celebi
(2013). The optimization algorithms are good option in theory because they return the
best solution but they can be hard to implement and computational slow or prohibitive
in practice. An alternative way to solve the combinatorial optimization problem is the
approximation algorithms also known as heuristics. One popular choice among these
is the simulating annealing algorithms (Metropolis et al. (1953)). Adaptation of these
algorithms for OASW clustering can decrease the computational time and will lead to
algorithm(s) applicable to big data sets. The computational complexity burden of the
optimization algorithm proposed in this work can be reduced by taking the simulated
annealing approach.

Another appraoch is to go for the stochastic optimization schemes. For instance,
the evolutionary algorithms (Hruschka et al. (2009)) or otherwise known as the genetic
algorithms (Lucasius et al. (1993), Davis (1991), Maulik and Bandyopadhyay (2000))
can be also used to get fast approximation but they are not primarily known for this.
They are good in avoiding local optima and also give the global or near global opti-
mum. Although the algorithm proposed in this work were able to get higher ASW qual-
ity for clustering for most of the clustering structures than their competitors but this
quality was merely a local optimum. Development of the genetic algorithm for OASW
clustering will further improve the clustering quality and can offer a global optimum
solution. These algorithms are slow but there has been work in literature to speed them
up, for instance Sheng and Liu (2006) proposed a genetic k-medoids algorithm (see
also Lucasius et al. (1993)).
How will the results of OSil/HOSil clustering change for various distance metrics?

This questions has been touched very briefly in this work. As concluded in Section
4.16 the distance metric performance is dependent on the clustering structures. More
research is needed in order to explore the behaviour for other clustering structures and
other distance metrics. This could also be then expended to other data types that are
categorical or mix type (Huang (1998)), and data coming from spaces other than Eu-
clidean.
Effect of outliers and noise on OASW clustering The performance of the algorithms
proposed in this work will be greatly affected by the presence of noise or outliers in the
data. Depending upon the type of noise or outliers in the data, the clustering results
can completely change. For instance for k-means and many other algorithm several
heterogeneous clusters can be combined and isolated outliers can form separate clus-
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ters. The presence of outliers can also affect greatly the estimation of the number of
clusters performance of the algorithms. The algorithms proposed in this dissertation
are not robust to outliers. For instance, Figure 6.1 shows the clustering results of the
OSil1 algorithm for three different types of outliers (single outlier, multiple clustered
outliers, uniform noise) introduced in Model 1 defined in Chapter 4. This data has two
Guassian clusters. Panel (a) in the figure is an OSil1 clustering result with estimated k
when a single outlier (shown in +) is added to the data. OSil1 has estimated 3 clusters
here and formed a third cluster with just one point, which is the outlier. Panel (b) shows
the clustering result with fixed known k for this data set. Panels (c) represent data clus-
tering when 5 outliers are added to the data (shown in +) with estimated number of
clusters from OSil1. Panel (d) represent the results for the same data for the known
number of clusters from OSil1. The distance of the outliers/noise from the clusters
also affects the clustering results. Panels (e) and (f) show the one outlier and multiple
outliers added to the data further away from the clusters as compared to panel (a) and
(c), respectively. The clustering output of OSil1 has changed. It has now estimated 2
number of clsuters instead of 3. Lastly, panels (g) and (h) represent the clustering re-
sults for estimated and known number of clusters when noise generated from Uniform
distribution is added to the data. Exploring the ways to make the algorithm proposed
in this work robust is a worthwhile project to deal real life data sets that has noise. For
instance the scanned brain images taken from fMRI machines. In this respect there is
a good amount of literature available on the robust cluster analysis, for instance see
Coretto and Hennig (2016) and de Amorim and Hennig (2015).
Missing data handling In real life applications missing data also known as incomplete
data is a very common problem. There can be situations where there is some data
missing for instance, it could be that some variables have no observations for a few
objects. Missing data might occur due to various reasons, for instance, for DNA mi-
croarray this might be due to scratches on the slide. The clustering methods need a full
data matrix to cluster. A common way to deal with missing data is to use imputation
methods. For cluster analysis this can be done as a pre-processing step. However, the
analysis based on simply replacing the missing values with row mean is not realiable.
Therefore, more sophisticated solutions has been developed, for instance kNN (Troy-
anskaya et al. (2001)), or model-based (Ghahramani and Jordan (1995)) approaches
for imputation. Although the imputation methods will create new data values to fill
the missing values, however analysis based on the newly generated estimated data will
suffer from the realiability issue as these data values will not exist in real (see Troyan-
skaya et al. (2001)). An alternative clustering method that does not create new data
values was proposed in Wagstaff (2004). They proposed a k-means clustering method
for missing values for multiple feature that do not make use of imputation methods. It
is of real interest to research further in this regard and develop missing data handling
solutions for the methods developed in this thesis.
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Figure 6.1 OSil1 clustering results for various kinds of outlier/noise in the data. The
plus symbol represents the outliers and colours represent clusters. For a complete de-
scription of the figure see Section 6.2 last paragraph.

6.3 Future theory development

There is a huge scope of work in the direction of theory development in line with what
we have proposed in Chapter 5. In this work we have proved the set of axioms for the
ASW as a clustering quality measure and have not investigated the clustering functions
and algorithms based on optimization of this index.

The first task in this regard is to investigate which of the set of axioms the clus-
tering functions and algorithms proposed in this work will satisfy i.e., the taxonomy
of the clustering functions and algorithms based on OASW for hierarchical and non-
hierarchical versions can be developed. In Chapter 3 we have developed a new linkage
criterion for clustering based on the ASW index and an algorithm to implement this.
Ackerman et al. (2010a) have proposed a characterization of linkage-based hierachical
clustering methods following their work in Ben-David and Ackerman (2009). Following
their strategy, one could characterize the linkage based clustering function proposed
in this work.

Ackerman et al. (2010b) have proposed a set of properties for general clustering
functions by extending their work in Ben-David and Ackerman (2009). The properties
proposed there are isomorphic invariance, scale invariance, consistency, and richness.
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They have proposed other properties related to scale invariance, consistency, and rich-
ness. For instance, the inner and outer consistent properties for clustering functions
by introducing relaxation on the consistency axiom. If a function satisfies consistent
it is both inner and outer consistent, but if not one can check separately which prop-
erty from inner and outer consistency the function fulfils. It seems that the clustering
functions based on ASW will also fulfil these properties because ASW fulfils them. One
property proposed there is locality, which loosely means that a clustering function de-
pends upon within cluster distances only. ASW on the other hand also takes into ac-
count between cluster distance (in the definition of b(i )), and therefore it might not
satisfy this property.

Another useful extension to this work could be the generalization of OASW clus-
tering methods to weighted data settings. Among the nine admissibility properties of
the Fisher and Ness (1971) there is the following property which is related to weighted
clustering settings:

Definition 6.3.1. Point Proportion Admissibility: A clustering procedure is point pro-
portion admissible if after duplicating one or more points the clusters’ boundaries do
not change.

Margareta Ackerman and Loker (2012) have build on these and have introduced
three notions in weighted settings i.e., weight sensitivity, weight robustness and weight
considering. Loosely speaking, weight robust clustering methods are those that are
not affected by weights on the data object and for all kind of weights they yield the
same clustering output. The weight sensitive clustering algorithms are those that can
yield different clusterings on data if different weights for the objects are applied. This
property is opposite to the point proportional admissible property of Fisher and Ness
(1971). Finally, the weight considering clustering algorithms are those for which the
different weights may or may not affect their output, i.e., there will be some cluster-
ings by algorithms that will be weight sensitive whereas some others will not be weight
sensitive. We now give formal definitions analogous to CQMS in weighted settings.

Definition 6.3.2. Weight responsiveness: A CQM¶ is weight responsive on a clustering
C of (X ,d) if

(i) there exists a weight function w so that¶(C , (w[X ],d)) =¶(C , (X ,d)), and

(ii) there exists a weight function w 0 so that¶(C , (w 0[X ],d)) 6=¶(C , (X ,d))

Definition 6.3.3. Weight sensitivity: A CQM¶ is weight sensitive if for all (X ,d) and all
C 2S (X ),¶ is weight responsive on C .

Definition 6.3.4. Weight robustness: A CQM ¶ is weight robust if for all (X ,d) and all
C 2S (X ),¶ is not weight responsive on C .
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Definition 6.3.5. Weight considering: A CQM¶ is weight considering if

(i) There exist a (X ,d) and a clustering C of (X ,d) so that¶ is weight responsive on
C

(ii) There exist a (X ,d) and C 2S (X ) so that¶ is not weight responsive on C

An interesting extension for the theory development for ASW and clustering func-
tions defined by its optimization is to extend them to weighted clustering setting. Mar-
gareta Ackerman and Loker (2012) have shown that many partitional methods includ-
ing k-means and PAM are weight sensitive. As ASW is not a robust index, our intuition
is that clustering functions based on optimum ASW will not be weight robust and will
be affected by some kind of weights in some sense and so does the clustering algo-
rithms based on it. But under which of these weighted definition it will exactly fall can’t
be sensed without proper investigation. Probably ASW will not be weight sensitive but
weight considering.

Another, extension in this regard would be the development of the general cluster-
ing axioms for robust clustering functions and testing them for ASW index and cluster-
ing functions and algorithms based on it.

Consider the following two properties from the set of admisibility properties of
Fisher and Ness (1971).

Definition 6.3.6. Cluster Proportion - Admissibility: A clustering procedure is cluster
proportion admissible if after replicating each point within the same cluster, the same
number of times, the clusters’ boundaries do not change.

Definition 6.3.7. Cluster Omission - Admissibility: A procedure is cluster omission
admissible if in the case that all points in any one of the k - clusters say Ch , are removed
from X , the procedure gives the original clusters except for Ch when applied to the
subset X °Ch to get k °1 clusters.

Further in this line one can also try to prove the above two properties of Fisher and
Ness (1971).

Yet another line of work very useful in this regard would be translating the Mar-
gareta Ackerman and Loker (2012) properties plus the above two properties to CQMs.
These analogous properties for CQM can tell more about the behaviour of the ASW
index and can be extended to other CQMs.
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Appendix A

Statistical distributions for data
generation

All the continuous probability distributions used to generate synthetic datasets are de-
fined in this section

The multivariate Gaussian distribution
Let X j 2Rp for p > 1 be i.i.d. random variates. Let√X (x;µ,ß) represent the probability
density function (pdf) of these p variates where µ 2Rp represents the mean vector and
ß be p£p covariance matrix for these variates. Let xi ; i = 1, . . . ,n be the i.i.d. sample re-
alization for random variables Xi . The p - variate Gaussian distribution can be define
as:

√X (x;µ,ß) = 1
2ºp/2|ß|1/2

exp

√

° 1
2

(x °µ)tß°1(x °µ)

!

, x 2 (°1,+1),

where °16µ6+1, æ> 0 and

ß=

2

6

6

6

6

4

Cov(X1, X1) Cov(X1, X2) . . . Cov(X1, Xp )
Cov(X2, X1) Cov(X2, X2) . . . Cov(X2, Xp )

...
...

. . .
...

Cov(Xp , X1) Cov(Xp , X2) . . . Cov(Xp , Xp )

3

7

7

7

7

5

.

The covariance between two variables can be further written as Cov(X j , X j 0) = æ j j 0 =
Ω j j 0æ jæ j 0 , where Ω j j 0 denotes the correlation between two variables j and j 0. We will
use Xp ª Np (µp ,ßp£p ) to denote Gaussian random variates.
The skew Gaussian distribution
Let '(Z ) be a continuous random variable with pdf on Rp defined as follows:

f (z;Æ) = 2'(z)©(Æz), °1< z <1
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where Æ is the shape parameter and '(z) is a standard normal pdf given as follows:

'(z) = 1
p

2º
exp°z2/2, °1< z <1

and©(z) is the cumulative distribution function given as :

©(z) =
ZÆz

°1
'(t )d t .

The variable X = ≥+!Z , (≥ 2 R,! 2 R+), will be a skew-normal variate with the lo-
cation parameter ≥, scale parameter ! and shape parameter Æ. In case of extended
skew normal distribution an additional parameter ø is used to define the hidden mean
of distribution. We will use X ª SN (≥,!,Æ,ø) to represent a variable following a skew
Gaussian distribution.
The non-central Chi-squared distribution
Let X =Pr

¥=1 Y¥, where Y¥ be the r independent Gaussian variables with mean µ¥ and
variances æ2

¥. Let ∏ be the sum of means of these r variates, i.e., ∏ = Pr
¥=1µ¥. Let

'X (x;∏,r ) denotes the pdf of non-central Chi-squared distribution where ∏ is called
the non-centrality parameter and r is the degree of freedom. The pdf can be defined
as

'X (x;∏,r ) = 1
2

e°(x+∏)/2
µ

x
∏

∂r /4°1/2

Ir /2°1(
p
∏x), x 2 [0,+1)

where Ir (y) is the Bessel function given by

Ir (y) = (y/2)r
1
X

m=0

(y2/4)m

m!°(r +m +1)
.

We will use X ª¬2
r (∏) to specify a Chi-squared distribution for a random variable.

The Student’s t-distribution Let Y i .i .d .ª N (µ,æ), then X = (Ȳ °µ)
SY /

p
n

is a t - distributed ran-
dom variable with v = n °1 degrees of freedom. The pdf can be written as

fX (x; v) =
°
° v+1

2

¢

p
vº°

° v
2

¢

√

1+ x2

v

!° v+1
2

, x 2 (°1,+1).

We will use X ª tv to represent a random variable following a t-distribution.
The non-central t-distribution
Let Z be a standard normal variate: Z ª N (0,1) and V be chi squared variate with r
degrees of freedom : V ª ¬2

r , then, X = Z+∫p
V /r

, is a non-central t- distributed random
variable with r degrees of freedom and ∫ as a non-centrality parameter. We will use
X ª tr (∫) to represent a random variable following a non-central t-distribution.
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The continuous Uniform distribution
The continuous uniform distribution gives the constant probability to select any num-
ber from the continuous interval between a and b. The pdf for a random variable
X ªU(a,b) can be written as

f (X ; a,b) =
(

1
b°a if a 6 x 6 b
0 if x < a or x > b,

where °1< a < b <+1.
The Gamma distribution
Let X be a random variable following a Gamma distribution and Æ, Ø be the shape and
rate parameters of the distribution. The pdf can be written as

fX (x;Æ,Ø) = ØxÆ°1e°xØ

°(Æ)
; x 2 (0,+1), Æ, Ø> 0,

where °(Æ) is the Gamma function.We will use X ª Gam(Æ,Ø) to denote a random vari-
able coming from Gamma distribution.
The Beta distribution
Let X be a random variable following a beta distribution, then the pdf can be written
as

fX (x;Æ,Ø) = 1
B(Æ,Ø)

x(Æ°1)(1°x)(Ø°1); x 2 (0,1),

where B(Æ,Ø) is beta function defined as B(Æ,Ø) = °(Æ)°(Ø)
°(Æ+Ø) . The real quantities Æ >

0 and Ø > 0 are the two shape parameters of the distribution. We will denote X ª
Beta(Æ,Ø) to represent a random variable following Beta distribution.
The non-central Beta distribution
Let X1 ª ¬2

r (∏) and X2 ª ¬2
m , then the variable X = ¬2

r (∏)
¬2

r (∏)+¬2
m

follows the non-central

Beta distribution of Type-1 with two real shape parameters v1, v2 > 0 and a real non-
centrality parameter ∏ > 0. Here v1 = r /2 and v2 = m/2. We will use the notation
X ª NBeta(v1, v2,∏) to represent a non-central Beta variate.
The Exponential distribution
Let X follows the exponential distribution with ∏ rate parameter. The pdf can b e writ-
ten as

fX (x;∏) =∏e°∏x ; x 2 [0,1), ∏> 0.

We will denote X ª Exp(∏) to represent a random variable following exponential distri-
bution.
The non-central F-distribution
Let the random variables Y1 follows the non-central Chi squared distribution with v1

degrees of freedom and ∏ be mean and Y2 following central Chi-squared distribution
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with v2 degrees of freedom, then the variable X = Y1/n1
Y2/n2

will follow non-central F distri-
bution with (v1, v2) degrees of freedom. The pdf can be written as

gX (x; v1, v2,∏) =
1
X

m=0

e°∏∏m

m!
fv1+2m,v2 (x); x 2 (0,1), v1, v2 2 (0,1), ∏ 2 [0,1),

where fv1+2m,v2 (x) is the central F distribution with (v1 +2m, v2) degrees of freedom.
For x 2 (0,1) the pdf for central F distribution is defined as

fv1+2m,v2 (x) =
(v1 +2m)°

µ

(v1 +2m)/2+ v2/2
∂

v2°

µ

(v1 +2m)/2
∂

°(v2/2)

√

v1+2m
v2

x

!(v1+2m)/2°1

√

1+ v1+2m
v2

x

!(v1+2m)/2+v2/2
.

v1 and v2 are the shape parameters of the distribution. ∏ is same as defined in Section
A and is the non-centrality parameter of the distribution. We will denote X ªF(v1,v2)(∏)
to represent a random variable following non-central F distribution.
The Weibull distribution
The pdf for a random variable following the Weibull distribution is defined as

fX (x;ø,≥) = ø

≥

√

x
≥

!ø°1

e°(x/≥)ø ; x 2 [0,+1); ≥, ø 2 (0,+1).

ø is the shape and ≥ is the scale parameter of the distribution. We will denote X ª
W(ø,≥) to represent a random variable following Weibull distribution.
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Appendix B

HOSil Algorithm results

This Appendix has two parts, each of which contains the results of Chapter 3. Appendix
B.1 presents graphical clustering results for all the DGPs. For the DGPs used in simu-
lation, clustering results for one iteration of the simulations are shown. Appendix B.2
reports the frequency counts for the estimation of number of clusters for the DGPs
used in simulation for all the clustering methods and estimation methods used in the
study.
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B.1 HOSil clustering visualization

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure B.1 Clustering results from clustering methods for a simulated dataset from
Model 1, (a) the raw data, (b) data plotting against true labels, hierarchical clus-
tering solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f)
Ward’s method, (g) Mcquitty similarity, (h) k-means clustering (i) PAM clustering (j)
spectral clustering (k) model-based clustering (l) PAMSILk /PAMSILk̂ clustering, (m)
HOSilk /HOSilk̂ clustering against true and estimated k.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure B.2 Clustering results from clustering methods for a simulated dataset from
Model 2, (a) the raw data, (b) data plotting against true labels, hierarchical clus-
tering solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f)
Ward’s method, (g) Mcquitty similarity, (h) k-means clustering (i) PAM clustering (j)
spectral clustering (k) model-based clustering (l) PAMSILk /PAMSILk̂ clustering, (m)
HOSilk /HOSilk̂ clustering.
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Figure B.3 Clustering results from clustering methods for a simulated dataset from
Model 3, (a) the raw data, (b) data plotting against true labels, hierarchical cluster-
ing solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering (i) PAM clustering (j) spectral
clustering (k) model-based clustering (l) PAMSILk clustering, (m) HOSilk clustering,
(n) HOSilk̂ and PAMSILk̂ clustering.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure B.4 Clustering results from clustering methods for a simulated dataset from
Model 4, (a) the raw data, (b) data plotting against true labels, hierarchical cluster-
ing solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering (i) PAM clustering (j) spectral
clustering (k) model-based clustering (l) PAMSILk , PAMSIlk̂ , HOSilk , HOSilk̂ cluster-
ings.
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(n)

Figure B.5 Clustering results from clustering methods for a simulated dataset from
Model 5, (a) the raw data, (b) data plotting against true labels, hierarchical cluster-
ing solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means, (i) PAM, (j) spectral, (k) model-based, (l)
PAMSILk /PAMSILk̂ , and (m) HOSilk /HOSilk̂ clusterings.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure B.6 Clustering results from clustering methods for a simulated dataset from
Model 6, (a) the raw data, (b) data plotting against true labels, hierarchical cluster-
ing solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering, (i) PAM clustering, (j) spec-
tral clustering, (k) model-based clustering, (l) PAMSILk /PAMSILk̂ clustering, and (m)
HOSilk /HOSilk̂ clustering.
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Figure B.7 Clustering results from clustering methods for a simulated dataset from
Model 6.A, (a) the raw data, (b) data plotting against true labels, hierarchical cluster-
ing solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering, (i) PAM clustering, (j) spectral
clustering, (k) model-based clustering, (l) PAMSILk clustering, (m) HOSilk clustering,
(n) PAMSILk̂ and HOSilk̂ clustering.
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Figure B.8 Clustering results from clustering methods for a simulated dataset from
Model 6.B, (a) the raw data, (b) data plotting against true labels, hierarchical cluster-
ing solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering, (i) PAM clustering, (j) spectral
clustering, (k) model-based clustering, (l) PAMSILk clustering, (m) PAMSILk̂ clustering,
(n) HOSilk , and (o) HOSilk̂ clustering.
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(i) (j) (k) (l)

Figure B.9 Clustering results from clustering methods for a simulated dataset from
Model 7, (a) the raw data, (b) data plotting against true labels, hierarchical cluster-
ing solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering, (i) PAM clustering, (j) spec-
tral clustering, (k) model-based clustering, (l) PAMSILk /PAMSILk̂ and HOSilk /HOSilk̂
clustering.
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Figure B.10 Clustering results from clustering methods for a simulated dataset from
Model 8, (a) the raw data, (b) data plotting against true labels, hierarchical clustering
solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) spectral clustering, (i) PAM and PAMSILk clus-
tering, (j) k-means clustering, (k) model-based clustering, (l) HOSilk clustering, (m)
PAMSILk̂ and HOSilk̂ clustering.
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Figure B.11 Clustering results from clustering methods for a simulated dataset from
Model 9, (a) the raw data, (b) data plotting against true labels, hierarchical clustering
solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering, (i) PAM clustering, (j) spec-
tral clustering, (k) model-based clustering, (l) PAMSILk /PAMSILk̂ and HOSilk /HOSilk̂
clustering.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure B.12 Clustering results from clustering methods for a simulated dataset from
Model 10, (a) the raw data, (b) data plotting against true labels, hierarchical cluster-
ing solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering (i) PAM clustering (j) spectral
clustering (k) model-based clustering (l) PAMSILk /PAMSILk̂ and HOSilk /HOSilk̂ clus-
tering.
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Figure B.13 Clustering results from clustering methods for a simulated dataset from
Model 11, (a) the raw data, (b) data plotting against true labels, hierarchical cluster-
ing solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering (i) PAM clustering (j) spectral
clustering (k) model-based clustering (l) PAMSILk /PAMSILk̂ and HOSilk /HOSilk̂ clus-
tering.
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Figure B.14 Clustering results from clustering methods for a simulated dataset from
Model 12, (a) the raw data, (b) data plotting against true labels, hierarchical clustering
solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering (i) PAM clustering (j) spectral
clustering (k) model-based clustering (l) PAMSILk clustering (m) PAMSILk̂ (n) HOSilk

clustering (o) HOSilk̂ clustering.
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Figure B.15 Clustering results from clustering methods for a simulated dataset from
Model 13, (a) the raw data, (b) data plotting against true labels, hierarchical clustering
solution with (c) single linkage, (d) complete linkage, (e) average linkage, (f) Ward’s
method, (g) Mcquitty similarity, (h) k-means clustering (i) PAM clustering (j) spectral
clustering (k) model-based clustering (l) PAMSILk clustering (m) PAMSILk̂ clustering
(n) HOSilk /HOSilk̂ clustering.
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Figure B.16 Data plot generated from (a) Model 14 (b) Model 15. All the clustering
methods included in the study were successful retrieving the true clustering
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Figure B.17 The left panel represents Model 16 and right panel is Model 17, where the
colours represents the true labels according to the data generating clustering models.
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Figure B.18 HOSilk̂ clustering results (a) Model 18 (b) Model 19 (c) Model 20.
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Figure B.19 HOSilk̂ clustering results on (a) 2 Dimonds data (b) Four Shapes data, (c)
represents the model-based clustering results on Four Shapes data, (d) Tetra data
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure B.20 Clustering results for Model 21, (a) raw data (b) cluster colours against true
labels, hierarchical clustering results using (c) single (d) complete (e) average (f) Ward’s
(g) McQuitty methods, (h) k-means clustering (i) PAM clustering (j) spectral clustering
(k) model-based clustering (l) HOSilk (m) HOSilk̂ .
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure B.21 Clustering results on Lsun data (a) raw data (b) cluster colours for the true
labels, hierarchical clustering results using (c) single (d) complete (e) average (f) Ward’s
(g) McQuitty methods, (h) k-means clustering (i) pam clustering (j) spectral clustering
(k) model-based clustering (l) HOSilk (m) HOSilk̂ .
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Figure B.22 Clustering results on Aggregation data (a) raw data (b) plotting against true
labels (c) average (d) complete (e) single (f) McQuitty (g) Ward’s (h) spectral (i) k-means
(j) PAM (l) model-based clustering (m) HOSilk (n) HOSilk̂ . (v = 400)
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Figure B.23 HOSil clustering comparison with other clustering methods for Smiley data
set (a) the raw data (b) color represent true cluster numbers (c), (d), (e), (f) and (g)
represents clustering by average, complete, single, McQuitty and Ward’s methods (h)
shows results obtained by spectral clustering (i) and (j) are k-means and pam cluster-
ing results (l) represents model-based clustering results, (m) and (n) are HOSilk and
HOSilk̂ clusterings.
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B.2 HOSil estimation of number of clusters

Table B.1: Results for estimation of number of clusters k̂ from indices and clustering
methods included in the study for Model 1. The true number of clusters are made bold.
Note that C H , K L, ASW , B I , PAMSI L and HOSi l can not estimate k̂ = 1.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 22 13 7 5 3 0 0 0 0 0 0 0 0 0 0
Complete 0 0 0 0 0 0 3 1 0 1 5 5 35 0 0
Average 1 1 0 0 2 2 4 15 13 4 3 4 1 0 0
Ward 0 0 0 3 3 2 4 4 6 2 4 7 15 0 0
McQuitty 0 0 0 3 3 2 4 4 6 2 4 7 15 0 0
kmeans 0 3 5 7 9 12 8 3 3 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 2 7 2 3 7 29 0 0

CH
Single 0 39 4 0 1 0 1 0 2 1 0 0 1 0 1
Complete 0 37 0 3 10 0 0 0 0 0 0 0 0 0 0
Average 0 33 0 0 11 1 0 0 0 0 0 0 1 1 3
Ward 0 34 0 2 11 1 0 0 0 0 0 0 0 0 2
McQuitty 0 34 0 2 11 1 0 0 0 0 0 0 0 0 2
kmeans 0 36 0 4 7 0 0 0 1 0 1 1 0 0 0
PAM 0 29 0 2 14 0 0 1 0 0 0 1 1 1 1

KL
Single 0 3 4 3 3 2 9 4 4 8 5 5 0 0 0
Complete 0 2 7 14 5 2 1 3 3 3 8 2 0 0 0
Average 0 2 7 13 2 7 3 3 4 3 3 3 0 0 0
Ward 0 1 13 7 2 4 1 5 2 5 4 6 0 0 0
McQuitty 0 1 13 7 2 4 1 5 2 5 4 6 0 0 0
kmeans 0 22 10 4 3 2 2 0 2 1 4 0 0 0 0
PAM 0 7 3 7 4 5 2 3 5 5 4 5 0 0 0

Gap
Single 10 36 4 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 18 27 5 0 0 0 0 0 0 0 0 0 0 0
Average 0 19 26 5 0 0 0 0 0 0 0 0 0 0 0
Ward 0 28 16 3 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 26 21 3 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 11 31 7 1 0 0 0 0 0 0 0 0 0 0
PAM 0 12 24 14 0 0 0 0 0 0 0 0 0 0 0

Jump
p/2 0 1 0 4 9 0 0 0 2 3 4 6 7 8 6
p/3 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
p/4 43 7 0 0 0 0 0 0 0 0 0 0 0 0 0
p/5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 47 3 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 47 2 1 0 0 0 0 0 0 0 0 0 0 0 0
Average 18 28 4 0 0 0 0 0 0 0 0 0 0 0 0
Ward 18 44 3 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 47 3 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
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PAM 0 44 6 0 0 0 0 0 0 0 0 0 0 0 0
BI

Single 0 0 0 0 0 0 0 0 0 0 0 2 4 18 26
Complete 0 0 2 3 10 22 12 0 0 0 0 0 0 0 1
Average 0 2 0 0 1 4 14 11 10 4 2 0 2 0 0
Ward 0 28 4 3 7 6 1 0 0 0 0 0 0 0 1
McQuitty 0 0 1 0 7 23 13 4 1 0 0 0 0 0 0
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 32 18 0 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 39 4 0 1 0 1 1 1 1 1 0 0 0 1
Complete 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 48 0 1 0 0 1 0 0 0 0 0 0 0 0
McQuitty 0 48 1 0 0 1 0 0 0 0 0 0 0 0 0
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 48 0 0 1 0 1 0 0 0 0 0 0 0 0
Model-based 0 49 0 0 0 0 0 1 0 0 0 0 0 0 0

BIC
Model-based 0 43 3 4 0 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.2: Results for the estimation of number of clusters from indices and clustering
methods for Model 2.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 2 0 3 3 1 8 1 4 6 9 2 11 0
Average 0 10 6 4 5 1 4 3 1 0 0 0 0 9 0
Ward 0 5 6 3 2 9 4 1 7 3 1 3 0 0 0
McQuitty 0 5 6 3 2 9 4 1 7 3 1 3 0 0 0
kmeans 0 0 0 5 13 13 8 11 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 6 5 12 12 6 4 5 0

CH
Single 0 2 8 3 5 5 6 3 2 4 2 2 2 2 4
Complete 0 4 1 3 1 2 0 3 3 2 0 3 3 10 15
Average 0 24 0 1 1 0 1 0 1 1 0 5 4 2 10
Ward 0 11 2 2 4 0 1 1 3 3 2 2 3 7 9
McQuitty 0 11 2 2 4 0 1 1 3 3 2 2 3 7 9
kmeans 0 29 2 6 4 3 2 1 0 0 0 0 1 2 0
PAM 0 29 1 4 0 2 2 0 1 3 2 1 1 1 3

KL
Single 0 1 5 6 10 2 8 3 5 3 4 3 0 0 0
Complete 0 3 4 12 4 6 7 3 4 2 3 2 0 0 0
Average 0 5 4 4 1 6 4 5 4 7 4 6 0 0 0
Ward 0 4 4 2 2 11 4 5 6 7 3 2 0 0 0
McQuitty 0 4 4 2 2 11 4 5 6 7 3 2 0 0 0
kmeans 0 23 2 2 3 2 4 3 1 3 3 4 0 0 0
PAM 0 10 4 1 4 5 5 4 5 3 6 3 0 0 0
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Gap
Single 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 19 28 2 1 0 0 0 0 0 0 0 0 0 0 0
Average 17 33 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 25 22 3 0 0 0 0 0 0 0 0 0 0 0
McQuitty 27 20 3 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 40 9 1 0 0 0 0 0 0 0 0 0 0 0
PAM 0 42 7 1 0 0 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 3 0 0 3 0 1 4 5 3 8 12 11
p/3 34 16 0 0 0 0 0 0 0 0 0 0 0 0 0
p/4 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 1 20 23 6 0 0 0 0 0 0 0 0 0 0 0
Complete 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 40 10 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 42 8 0 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 49 1 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 1 49 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 3 45 2 0 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 8 0 1 0 0 0 0 0 0 0 0 1 11 29
Complete 0 0 0 0 0 0 0 0 0 5 4 10 10 9 12
Average 0 0 0 0 0 0 0 0 0 0 1 1 3 9 36
Ward 0 0 0 0 0 0 1 3 10 11 3 5 0 6 11
McQuitty 0 0 0 0 0 0 0 0 0 0 6 5 9 12 18
kmeans 0 47 0 0 0 0 0 0 0 0 0 0 0 0 3
PAM 0 28 6 0 0 0 1 1 0 0 0 0 2 6 6

BIC
Model-based 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 28 8 2 2 3 1 2 1 1 0 1 0 0 1
Complete 0 13 3 5 1 1 1 3 2 1 5 3 3 3 6
Average 0 32 10 1 0 2 2 0 0 0 0 1 1 0 1
Ward 0 15 5 0 3 5 3 4 2 0 1 2 3 5 2
McQuitty 0 15 5 0 3 5 3 4 2 0 1 2 3 5 2
kmeans 0 49 0 1 0 0 0 0 0 0 0 0 0 0 0
PAM 0 49 0 1 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 49 0 0 0 1 0 0 0 0 0 0 0 0 0
Model-based 0 49 0 0 0 0 0 0 0 0 0 0 0 1 0
PAMSIL 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table B.3: Results for the estimation of number of clusters from indices and clustering
methods for Model 3.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 2 8 11 6 9 4 4 2 3 0 0 0 1 0
Complete 0 0 0 0 0 5 3 4 9 6 8 6 5 3 0
Average 0 0 3 6 3 5 5 7 8 5 5 3 0 0 0
Ward 0 1 0 0 0 5 3 4 9 6 8 6 5 3 0
McQuitty 0 1 0 0 0 5 3 4 9 6 8 6 5 3 0
kmeans 0 2 24 18 6 0 0 0 0 0 0 0 0 0 0
PAM 0 5 0 0 0 1 9 7 7 9 7 1 2 2 0

CH
Single 0 41 8 1 0 0 0 0 0 0 0 0 0 0 0
Complete 0 32 11 0 2 1 1 1 0 0 0 0 1 0 1
Average 0 42 2 1 0 2 0 1 1 1 0 0 0 0 0
Ward 0 39 4 2 2 2 0 0 0 1 0 0 0 0 0 0
McQuitty 0 39 4 2 2 2 0 0 1 0 0 0 0 0 0
kmeans 0 47 3 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 37 0 0 0 0 0 0 0 0 0 0 1 3 9

KL
Single 0 5 4 2 4 6 6 3 6 4 3 7 0 0 0
Complete 0 18 3 4 2 6 2 2 5 2 2 4 0 0 0
Average 0 7 5 4 2 6 5 4 4 5 5 3 0 0 0
Ward 0 5 3 3 8 4 6 1 7 6 4 3 0 0 0
McQuitty 0 5 3 3 8 4 6 1 7 6 4 3 0 0 0
kmeans 0 4 5 6 3 2 4 3 6 7 5 5 0 0 0
PAM 0 12 6 5 10 4 0 2 2 4 3 2 0 0 0

Gap
Single 8 34 8 0 0 0 0 0 0 0 0 0 0 0 0
Complete 9 25 15 1 0 0 0 0 0 0 0 0 0 0 0
Average 5 35 7 3 0 0 0 0 0 0 0 0 0 0 0
Ward 6 29 14 1 0 0 0 0 0 0 0 0 0 0 0
McQuitty 6 29 14 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 38 12 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 49 1 0 0 0 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 0 0 1 1 1 4 5 6 6 6 11 9
p/3 0 30 0 0 0 0 0 1 3 2 1 4 1 5 3
p/4 0 47 0 0 0 0 0 0 0 0 1 0 0 1 1
p/5 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0
p/6 28 22 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 2 10 32 6 0 0 0 0 0 0 0 0 0 0 0
Complete 2 48 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 1 42 7 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 49 1 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 4 45 1 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 34 16 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 18 31 1 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 27 4 0 0 0 0 0 0 0 0 0 0 3 0
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Complete 0 17 0 0 0 0 0 1 5 10 11 4 2 0 0
Average 0 29 0 0 0 0 0 0 0 0 0 2 0 9 10
Ward 0 49 1 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 18 0 0 0 0 0 0 0 1 5 5 8 7 6
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0

BIC
Model-based 0 47 1 0 0 0 1 0 1 0 0 0 0 0 0

ASW
Single 0 41 8 1 0 0 0 0 0 0 0 0 0 0 0
Complete 0 36 12 1 0 1 0 0 0 0 0 0 0 0 0
Average 0 45 5 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 43 5 1 1 0 0 0 0 0 0 0 0 0 0
McQuitty 0 43 5 1 1 0 0 0 0 0 0 0 0 0 0
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Model-based 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 49 1 0 0 0 0 0 0 0 0 0 0 0 0

Table B.4: Results for the estimation of number of clusters from indices and clustering
methods for Model 4.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 16 13 4 2 1 0 0 0 0 0 0 0 0 0
Complete 0 0 0 2 0 0 1 0 0 2 9 4 7 25 0
Average 0 0 10 10 3 6 5 5 4 3 1 2 0 1 0
Ward 0 3 0 4 3 6 4 12 7 2 2 3 4 0 0
McQuitty 0 3 0 4 3 6 4 12 7 2 2 3 4 0 0
kmeans 0 0 1 12 15 11 6 12 1 1 0 0 0 0 0
PAM 0 0 0 0 0 0 0 1 1 4 12 12 6 14 0

CH
Single 0 1 20 15 5 7 1 1 0 0 0 0 0 0 0
Complete 0 0 1 2 2 2 3 3 4 9 8 6 2 3 5
Average 0 0 15 1 0 0 2 0 3 5 3 6 3 5 7
Ward 0 0 2 0 5 4 3 6 4 2 1 6 5 4 8
McQuitty 0 0 2 0 5 4 3 6 4 2 1 6 5 4 8
kmeans 0 0 0 3 15 17 6 4 4 1 0 0 0 0 0
PAM 0 0 0 2 9 9 9 7 3 1 4 2 3 0 1

KL
Single 0 13 6 7 2 5 2 3 2 6 2 2 0 0 0
Complete 0 13 4 13 6 5 2 0 4 1 2 0 0 0 0
Average 0 21 0 2 4 1 2 5 5 1 4 5 0 0 0
Ward 0 7 8 3 4 1 5 6 4 4 3 5 0 0 0
McQuitty 0 7 8 3 4 1 5 6 4 4 3 5 0 0 0
kmeans 0 19 3 9 5 3 1 0 3 1 4 2 0 0 0
PAM 0 1 12 4 5 6 4 4 3 5 2 4 0 0 0

Gap
Single 14 16 20 0 0 0 0 0 0 0 0 0 0 0 0
Complete 4 11 17 9 7 1 1 0 0 0 0 0 0 0 0
Average 2 0 44 4 0 0 0 0 0 0 0 0 0 0 0
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Ward 6 13 19 7 4 1 0 0 0 0 0 0 0 0 0
McQuitty 6 13 18 8 4 1 0 0 0 0 0 0 0 0 0
kmeans 2 0 9 23 16 0 0 0 0 0 0 0 0 0 0
PAM 6 0 6 18 19 1 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 14 0 1 0 3 1 2 1 1 4 6 6 11
p/3 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
p/4 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
p/5 40 0 10 0 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 15 33 2 0 0 0 0 0 0 0 0 0 0 0 0
Complete 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 42 8 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 49 0 0 1 0 0 0 0 0 0 0 0 0 0 0
McQuitty 49 1 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
PAM 46 0 1 3 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 0 0 0 0 0 0 0 0 0 1 0 5 10 34
Complete 0 0 0 0 0 0 3 10 8 9 5 5 1 3 6
Average 0 0 0 0 0 0 1 1 1 1 3 6 10 10 17
Ward 0 0 0 3 6 10 10 9 3 2 0 0 0 2 5
McQuitty 0 0 0 0 0 0 3 5 8 5 8 8 7 4 2
kmeans 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 18 23 6 2 0 0 0 0 0 0 1 0

BIC
Model-based 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 6 20 15 3 5 0 1 0 0 0 0 0 0 0
Complete 0 0 19 1 5 5 4 3 4 5 1 0 0 1 2
Average 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 1 22 3 5 2 3 4 3 0 1 1 2 1 2
McQuitty 0 1 22 3 5 2 3 4 3 0 1 1 2 1 2
kmeans 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 0 38 6 3 1 0 1 1 0 0 0 0 0 0
Model-based 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

Table B.5: Results for the estimation of number of clusters from indices and clustering
methods for Model 5.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 13 13 19 5 0 0 0 0 0 0 0 0 0 0 0
Complete 0 1 1 0 0 2 2 3 2 2 8 6 4 21 0
Average 0 5 15 11 5 3 2 2 2 1 2 2 0 0 0
Ward 0 6 2 3 3 3 4 5 6 7 4 4 1 2 0
McQuitty 0 6 3 3 3 3 5 5 6 7 4 3 1 1 0
kmeans 0 0 1 6 6 10 12 12 2 2 1 1 0 0 0
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PAM 0 0 0 0 0 0 0 1 1 3 6 7 9 23 0
CH

Single 0 10 21 9 6 2 1 0 0 0 0 0 0 0 1
Complete 0 0 3 0 1 0 0 1 0 1 2 2 3 11 26
Average 0 2 19 2 0 0 0 1 1 0 2 2 4 3 14
Ward 0 1 11 2 3 0 1 2 1 2 1 6 4 4 13
McQuitty 0 1 11 2 3 1 1 2 1 2 1 6 4 4 13
kmeans 0 1 2 1 1 0 1 1 1 1 2 10 7 10 12
PAM 0 0 2 0 0 0 0 1 1 0 2 2 5 9 28

KL
Single 0 7 6 4 5 2 3 5 5 2 6 5 0 0 0
Complete 0 6 6 5 6 3 4 5 5 3 3 2 0 0 0
Average 0 2 2 4 3 6 7 5 5 5 6 4 0 0 0
Ward 0 8 8 6 3 5 3 4 3 3 2 4 0 0 0
McQuitty 0 8 8 6 3 5 3 4 3 5 2 3 0 0 0
kmeans 0 13 4 4 5 5 3 3 3 2 4 2 0 0 0
PAM 0 4 8 3 2 10 5 3 4 3 4 2 0 0 0

Gap
Single 13 13 24 0 0 0 0 0 0 0 0 0 0 0 0
Complete 3 24 21 2 0 0 0 0 0 0 0 0 0 0 0
Average 3 8 39 0 0 0 0 0 0 0 0 0 0 0 0
Ward 7 23 18 2 0 0 0 0 0 0 0 0 0 0 0
McQuitty 5 23 20 2 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 19 30 1 0 0 0 0 0 0 0 0 0 0 0
PAM 0 6 40 3 1 0 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 0 0 0 0 1 1 0 2 5 8 15 17
p/3 4 12 19 2 1 0 0 1 0 0 1 2 3 1 4
p/4 37 13 0 0 0 0 0 0 0 0 0 0 0 0 0
p/5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 21 27 3 0 0 0 0 0 0 0 0 0 0 0 0
Complete 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 48 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 38 11 0 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 3 31 15 0 0 0 0 0 0 0 0 0 0 0 0
PAM 17 32 0 0 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 1 0 0 0 1 3 3 2 4 4 5 3 9 14
Complete 0 0 0 0 0 0 0 0 0 0 0 0 1 5 43
Average 0 0 0 0 0 0 0 1 0 1 1 3 2 11 30
Ward 0 1 0 0 0 0 0 0 0 0 0 1 2 10 38
McQuitty 0 0 0 0 0 0 0 0 0 0 1 1 1 8 39
kmeans 0 27 3 0 0 0 0 0 0 0 0 0 1 7 12
PAM 0 11 0 1 0 0 0 0 1 0 0 1 1 3 32

BIC
Model-based 0 16 32 2 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 20 16 9 3 1 1 0 0 0 0 0 0 0 0
Complete 0 28 16 4 0 0 1 0 0 0 0 0 0 0 1
Average 0 19 27 4 0 0 0 0 0 0 0 0 0 0 0
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Ward 0 26 19 4 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 26 19 4 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 23 24 3 0 0 0 0 0 0 0 0 0 0 0
PAM 0 17 32 1 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 23 25 2 0 0 0 0 0 0 0 0 0 0 0
Model-based 0 24 22 4 0 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 18 31 1 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 0 48 2 0 0 0 0 0 0 0 0 0 0 0

Table B.6: Results for the estimation of number of clusters from indices and clustering
methods for Model 6.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 40 10 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 0 0 3 0 0 0 0 0 3 3 4 39 0
Average 2 2 12 6 4 2 3 3 7 4 1 1 2 0 0
Ward 1 0 1 1 6 4 6 1 10 12 5 3 0 0 0
McQuitty 1 0 1 1 6 4 6 1 10 12 5 3 0 0 0
kmeans 0 0 0 11 20 6 10 0 2 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 2 4 8 6 30 0

CH
Single 0 8 0 4 6 9 1 2 8 6 1 1 2 0 2
Complete 0 0 0 0 0 0 1 1 1 3 6 8 10 10 10
Average 0 0 3 1 1 0 0 0 2 0 9 8 16 8 3
Ward 0 0 0 0 5 0 6 1 2 4 10 0 8 8 2
McQuitty 0 0 0 0 6 0 5 2 2 8 14 0 4 8 2
kmeans 0 0 2 24 2 4 4 2 2 2 3 0 2 1 1
PAM 0 0 0 4 0 0 1 10 2 12 4 1 1 8 7

KL
Single 0 2 6 8 1 2 11 9 5 0 6 0 0 0 0
Complete 0 1 13 1 10 7 2 2 8 4 2 0 0 0 0
Average 0 2 1 8 10 7 6 2 0 6 5 3 0 0 0
Ward 0 1 8 1 8 8 1 7 11 0 1 4 0 0 0
McQuitty 0 1 8 1 8 8 1 3 12 0 1 7 0 0 0
kmeans 0 22 3 2 1 1 0 9 1 3 2 6 0 0 0
PAM 0 22 0 0 8 2 2 2 3 1 2 5 0 0 0

Gap
Single 42 8 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 12 1 30 7 0 0 0 0 0 0 0 0 0 0 0
Average 1 3 32 4 0 0 0 0 0 0 0 0 0 0 0
Ward 17 1 28 2 2 0 0 0 0 0 0 0 0 0 0
McQuitty 16 3 28 1 2 0 0 0 0 0 0 0 0 0 0
kmeans 0 1 18 31 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 13 37 0 0 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 1 0 1 0 5 0 2 2 6 14 3 16
p/3 0 0 25 14 0 0 0 0 2 0 1 4 2 1 1
p/4 49 0 1 0 0 0 0 0 0 0 0 0 0 0 0
p/5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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PS
Single 33 12 5 0 0 0 0 0 0 0 0 0 0 0 0
Complete 8 42 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 10 20 20 0 0 0 0 0 0 0 0 0 0 0 0
Ward 10 1 29 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 30 20 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 7 42 1 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 45 5 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 8 6 1 1 0 0 0 1 3 0 0 6 6 18
Complete 0 0 0 0 0 0 0 1 1 12 12 5 7 9 4
Average 0 0 3 3 1 0 0 0 0 1 0 1 5 10 25
Ward 0 0 26 0 2 0 1 8 3 10 0 0 0 0 0
McQuitty 0 0 0 0 0 0 0 1 2 1 3 3 12 16 13
kmeans 0 27 23 1 0 0 0 0 0 0 0 0 0 0 0
PAM 0 1 44 5 0 0 0 0 0 0 0 0 0 0 0

BIC
Model-based 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 1 22 0 0 4 4 2 0 6 6 1 1 1 1 1
Complete 0 0 22 10 6 0 6 0 1 3 0 2 0 0 0
Average 0 1 36 1 2 2 3 0 1 2 1 1 0 1 0
Ward 0 6 23 1 2 2 5 0 1 4 2 1 0 1 0
McQuitty 0 6 23 2 3 2 5 0 1 3 2 1 0 1 0
kmeans 0 0 48 2 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 49 1 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 5 33 9 3 0 0 0 0 0 0 0 0 0 0
Model-based 0 3 38 5 1 0 0 0 0 0 0 0 1 2 0
PAMSIL 0 0 44 3 1 0 1 0 0 1 0 0 0 0 0
HOSil 0 0 44 6 0 0 0 0 0 0 0 0 0 0 0

Table B.7: Results for the estimation of number of clusters from indices and clustering
methods for Model 6.A.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 41 4 0 1 1 0 0 0 0 0 0 0 0 0 0
Complete 0 1 0 0 0 1 1 0 5 11 9 6 16 0 0
Average 4 9 7 3 7 5 7 4 3 0 0 1 0 0 0
Ward 1 0 5 5 2 9 8 5 3 6 0 3 2 0 0
McQuitty 1 0 5 5 2 9 8 5 3 6 0 3 2 0 0
kmeans 0 16 9 13 5 4 3 0 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 2 3 6 11 10 10 8 0 0

CH
Single 0 41 6 3 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 0 0 0 1 0 1 4 5 5 3 3 10 18
Average 0 0 1 0 1 0 0 3 0 5 7 5 7 14 7
Ward 0 0 2 1 1 1 0 3 4 3 3 3 3 12 14
McQuitty 0 0 2 1 1 1 0 3 4 3 3 3 3 12 14
kmeans 0 0 4 2 3 1 6 3 0 5 4 11 2 5 4
PAM 0 0 0 0 2 0 2 2 4 5 11 3 6 6 9

KL
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Single 0 3 10 2 5 5 4 4 3 7 4 3 0 0 0
Complete 0 8 11 4 4 1 4 5 4 4 5 0 0 0 0
Average 0 6 4 5 3 4 8 2 9 6 1 2 0 0 0
Ward 0 11 4 2 2 3 5 5 3 6 3 6 0 0 0
McQuitty 0 11 4 2 2 3 5 5 3 6 3 6 0 0 0
k-means 0 2 12 4 7 8 6 6 2 1 1 1 0 0 0
PAM 0 6 8 1 5 0 8 4 8 2 3 5 0 0 0

Gap
Single 3 43 4 0 0 0 0 0 0 0 0 0 0 0 0
Complete 4 20 22 4 0 0 0 0 0 0 0 0 0 0 0
Average 0 12 37 0 1 0 0 0 0 0 0 0 0 0 0
Ward 3 22 22 3 0 0 0 0 0 0 0 0 0 0 0
McQuitty 3 22 24 1 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 0 44 5 1 0 0 0 0 0 0 0 0 0 0
PAM 0 0 34 12 1 3 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 0 0 0 0 1 3 2 12 5 8 6 13
p/3 0 1 25 6 1 0 2 1 2 1 3 3 0 3 2
p/4 15 17 18 0 0 0 0 0 0 0 0 0 0 0 0
p/5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 1 17 26 4 1 0 1 0 0 0 0 0 0 0 0
Complete 15 35 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 30 17 2 1 0 0 0 0 0 0 0 0 0 0
Ward 0 7 42 1 0 0 0 0 0 0 0 0 0 0 0
McQuitty 4 44 2 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 2 48 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 1 48 1 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 40 2 0 0 1 1 0 0 0 0 0 2 0 4
Complete 0 10 0 0 0 0 0 0 1 2 0 2 14 21 0
Average 0 44 0 0 0 0 0 0 0 0 0 1 0 0 5
Ward 0 37 11 0 0 0 0 0 0 0 1 1 0 0 0
McQuitty 0 20 0 0 0 0 0 0 0 0 0 1 1 4 24
kmeans 0 41 9 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 18 31 0 0 1 0 0 0 0 0 0 0 0 0

BIC
Model-based 0 0 49 1 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 46 3 1 0 0 0 0 0 0 0 0 0 0 0
Complete 0 36 4 4 0 1 0 0 1 1 2 0 0 1 0
Average 0 47 3 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 36 7 3 2 0 1 0 0 0 1 0 0 0 0
McQuitty 0 36 7 3 2 0 1 0 0 0 1 0 0 0 0
kmeans 0 43 7 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 40 8 2 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 48 2 0 0 0 0 0 0 0 0 0 0 0 0
Model-based 0 48 2 0 0 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 48 2 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 47 2 1 0 0 0 0 0 0 0 0 0 0
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Table B.8: Results for the estimation of number of clusters from indices and clustering
methods for Model 6.B.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 1 37 6 4 1 0 0 1 0 0 0 0 0 0 0
Complete 0 0 0 0 0 0 0 0 0 0 2 2 46 0 0
Average 0 7 5 7 3 5 3 4 7 4 2 0 3 0 0
Ward 0 2 1 1 2 7 5 9 6 5 4 1 7 0 0
McQuitty 0 2 1 1 2 7 5 9 6 5 4 1 7 0 0
kmeans 6 1 17 13 8 4 0 0 1 0 0 0 0 0 0
PAM 0 0 0 0 0 0 1 0 2 6 8 6 27 0 0

CH
Single 0 0 23 2 13 4 4 0 1 0 1 0 0 1 1
Complete 0 0 0 0 1 0 0 2 2 0 1 5 5 12 22
Average 0 0 0 0 0 0 0 1 3 3 3 3 10 9 18
Ward 0 0 0 0 1 0 1 1 5 3 2 8 5 11 13
McQuitty 0 0 0 0 1 0 1 1 5 3 2 8 5 11 13
kmeans 0 0 0 1 5 3 3 3 5 6 2 8 4 9 1
PAM 0 0 0 0 0 1 0 2 4 8 3 7 8 10 7

KL
Single 0 3 10 5 8 7 4 5 0 5 0 3 0 0 0
Complete 0 7 6 17 2 3 2 3 1 4 3 2 0 0 0
Average 0 3 6 6 1 2 4 11 3 3 6 5 0 0 0
Ward 0 4 17 6 2 3 3 0 4 5 1 5 0 0 0
McQuitty 0 4 17 6 2 3 3 0 4 5 1 5 0 0 0
kmeans 0 34 1 1 3 4 0 5 1 0 1 0 0 0 0
PAM 0 5 11 4 1 11 5 3 0 6 4 0 0 0 0

Gap
Single 0 1 47 2 0 0 0 0 0 0 0 0 0 0 0
Complete 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 26 0 7 8 9 0 0 0 0 0 0 0 0 0 0
Ward 34 0 11 3 2 0 0 0 0 0 0 0 0 0 0
McQuitty 31 1 12 3 3 0 0 0 0 0 0 0 0 0 0
kmeans 49 0 0 1 0 0 0 0 0 0 0 0 0 0 0
PAM 45 0 0 0 3 2 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 0 0 1 0 8 2 3 7 7 6 7 9
p/3 0 0 2 30 5 0 0 2 0 0 3 2 2 1 3
p/4 0 0 32 18 0 0 0 0 0 0 0 0 0 0 0
p/5 43 0 6 1 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 3 0 24 10 6 4 3 0 0 0 0 0 0 0 0
Complete 33 1 7 9 0 0 0 0 0 0 0 0 0 0 0
Average 0 0 15 33 2 0 0 0 0 0 0 0 0 0 0
Ward 0 0 4 45 1 0 0 0 0 0 0 0 0 0 0
McQuitty 27 2 14 7 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 0 8 42 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 2 29 0 0 3 1 0 0 0 1 0 1 6 7
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Complete 0 0 1 1 0 0 0 0 0 0 0 0 3 18 27
Average 0 0 13 17 3 0 0 0 0 0 0 0 1 2 14
Ward 0 0 13 33 0 0 0 0 0 0 0 1 3 0 0
McQuitty 0 0 2 3 0 0 0 0 0 1 0 0 1 8 35
kmeans 0 0 9 35 4 0 1 0 0 0 0 0 1 0 0
PAM 0 0 1 49 0 0 0 0 0 0 0 0 0 0 0

BIC
Model-based 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 0 47 2 1 0 0 0 0 0 0 0 0 0 0
Complete 0 0 23 8 11 1 0 0 1 1 2 2 0 1 0
Average 0 0 37 13 0 0 0 0 0 0 0 0 0 0 0
Ward 0 0 35 7 3 0 2 1 0 0 0 1 1 0 0
McQuitty 0 0 35 7 3 0 2 1 0 0 0 1 1 0 0
kmeans 0 0 23 23 3 0 0 1 0 0 0 0 0 0 0
PAM 0 0 28 19 3 0 0 0 0 0 0 0 0 0 0
Spectral 0 0 31 11 4 1 2 1 0 0 0 0 0 0 0
Model-based 0 0 38 10 2 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 0 28 14 7 1 0 0 0 0 0 0 0 0 0
HOSil 0 0 36 10 4 0 0 0 0 0 0 0 0 0 0

Table B.9: Results for the estimation of number of clusters from indices and clustering
methods for Model 7.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 0 1 1 0 0 3 4 1 7 4 6 23 0
Average 0 0 0 35 4 4 6 0 0 0 0 0 1 0 0
Ward 0 0 1 9 2 5 4 4 4 7 2 3 6 2 0
McQuitty 0 0 1 9 2 5 4 4 4 7 2 3 6 2 0
kmeans 0 0 0 0 8 4 4 9 10 7 4 1 2 1 0
PAM 0 0 0 0 0 0 0 0 0 1 0 2 6 41 0

CH
Single 0 1 2 0 4 3 4 7 5 7 2 5 5 4 1
Complete 0 0 0 42 7 0 1 0 0 0 0 0 0 0 0
Average 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
Ward 0 0 0 42 4 0 0 0 0 0 0 1 1 1 1
McQuitty 0 0 0 42 4 0 0 0 0 0 0 1 1 1 1
kmeans 0 0 0 48 2 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

KL
Single 0 0 4 4 3 7 5 7 3 6 7 4 0 0 0
Complete 0 0 24 1 4 2 1 4 5 1 5 3 0 0 0
Average 0 0 15 3 5 5 4 6 5 0 5 2 0 0 0
Ward 0 21 1 3 3 5 4 2 3 1 3 4 0 0 0
McQuitty 0 21 1 3 3 5 4 2 3 1 3 4 0 0 0
kmeans 0 48 2 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 16 0 5 3 0 8 3 2 4 5 4 0 0 0

Gap
Single 44 3 3 0 0 0 0 0 0 0 0 0 0 0 0
Complete 14 9 0 26 1 0 0 0 0 0 0 0 0 0 0
Average 5 14 0 31 0 0 0 0 0 0 0 0 0 0 0
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Ward 19 15 0 16 0 0 0 0 0 0 0 0 0 0 0
McQuitty 18 12 0 20 0 0 0 0 0 0 0 0 0 0 0
kmeans 19 17 0 14 0 0 0 0 0 0 0 0 0 0 0
PAM 27 12 0 11 0 0 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
p/3 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
p/4 29 0 0 21 0 0 0 0 0 0 0 0 0 0 0
p/5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 13 0 0 37 0 0 0 0 0 0 0 0 0 0 0
Average 1 0 0 49 0 0 0 0 0 0 0 0 0 0 0
Ward 1 0 0 49 0 0 0 0 0 0 0 0 0 0 0
McQuitty 28 0 0 22 0 0 0 0 0 0 0 0 0 0 0
kmeans 1 0 0 49 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 0 1 0 1 1 1 1 4 3 0 4 5 7 22
Complete 0 0 0 49 0 0 0 0 0 0 0 0 0 0 1
Average 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
Ward 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 0 0 36 8 0 0 0 0 0 0 1 0 1 4
kmeans 0 0 0 49 1 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

BIC
Model-based 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 16 5 4 9 3 4 3 2 1 1 0 2 0 0
Complete 0 0 0 49 1 0 0 0 0 0 0 0 0 0 0
Average 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
Ward 0 0 0 48 1 1 0 0 0 0 0 0 0 0 0
McQuitty 0 0 0 48 1 1 0 0 0 0 0 0 0 0 0
kmeans 0 0 0 48 2 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 0 1 44 5 0 0 0 0 0 0 0 0 0 0
Model-based 0 0 0 48 2 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

Table B.10: Estimation of number of clusters from different indexes and clustering
methods for Model 8.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 15 10 9 7 4 1 0 0 0 0 0 0 0 0
Complete 0 1 1 3 4 0 1 0 0 2 3 5 7 24 0
Average 0 2 11 8 8 2 4 6 6 7 3 0 2 1 0
Ward 0 1 4 8 4 3 3 6 7 4 3 3 4 1 0
McQuitty 0 1 4 9 13 6 6 6 7 4 3 3 3 2 0
kmeans 0 0 5 16 13 6 6 2 1 0 0 0 0 0 0
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PAM 0 0 0 0 0 1 0 3 7 8 10 4 4 1 0
CH

Single 0 0 1 1 2 4 2 2 3 5 4 6 4 5 10
Complete 0 0 0 0 3 4 7 12 11 8 9 8 12 13 6
Average 0 0 0 0 1 6 6 5 8 7 5 6 3 1 0
Ward 0 0 0 0 1 5 3 7 7 4 6 5 2 2 5
McQuitty 0 0 0 0 2 6 3 7 7 4 6 5 2 2 5
kmeans 0 0 0 1 7 8 12 5 3 2 1 1 2 3 3
PAM 0 0 0 0 3 10 5 3 2 1 1 4 3 6 12

KL
Single 0 3 4 5 5 7 6 5 2 5 3 3 0 0 0
Complete 0 6 5 7 12 6 5 2 2 1 1 0 0 0 0
Average 0 12 1 9 10 5 5 4 2 2 0 1 0 0 0
Ward 0 2 6 14 10 6 5 1 2 1 0 2 0 0 0
McQuitty 0 3 7 14 10 6 5 1 1 1 0 1 0 0 0
kmeans 0 13 14 10 4 3 1 1 1 2 1 0 0 0 0
PAM 0 3 9 8 2 1 5 3 3 6 5 4 0 0 0

Gap
Single 4 25 18 2 0 0 0 0 0 0 0 0 0 0 0
Complete 1 7 28 10 2 2 1 0 0 0 0 0 0 0 0
Average 3 12 20 10 3 2 0 1 0 0 0 0 0 0 0
Ward 5 10 20 9 3 2 0 1 0 0 0 0 0 0 0
McQuitty 5 11 20 8 2 2 1 0 0 0 0 0 0 0 0
kmeans 0 0 16 16 7 3 1 0 0 0 0 0 0 0 0
PAM 0 4 0 1 8 27 10 1 0 0 0 0 0 0 0

Jump
p/2 0 0 0 0 8 3 1 1 1 1 1 6 7 13 8
p/3 0 0 0 10 25 4 1 1 1 1 1 1 2 2 2
p/4 0 0 0 22 24 2 0 1 0 0 0 0 1 1 0
p/5 0 3 0 26 18 2 0 0 0 0 0 0 0 0 0
p/6 42 0 0 0 26 18 0 0 0 0 0 0 0 0 0
p/7 49 0 0 1 0 0 0 0 0 0 0 0 0 0 0

PS
Single 10 16 6 2 0 0 0 0 0 0 0 0 0 0 0
Complete 17 3 30 1 0 0 0 0 0 0 0 0 0 0 0
Average 1 23 25 2 0 0 0 0 0 0 0 0 0 0 0
Ward 0 5 44 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 25 1 22 1 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 46 8 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 2 46 2 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 6 1 0 0 0 0 0 0 0 1 1 2 6 34
Complete 0 2 10 0 0 1 3 11 7 2 3 1 2 2 5
Average 0 15 3 0 0 1 1 1 7 8 3 3 3 1 2
Ward 0 29 6 1 1 1 2 6 13 11 2 0 1 1 1
McQuitty 0 0 8 0 0 0 1 6 13 11 3 2 1 2 3
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 22 16 7 1 0 1 2 1 0 1 1 0 0 0

ASW
Single 0 42 3 1 1 1 1 1 1 1 0 0 0 0 0
Complete 0 30 0 1 4 7 3 2 1 1 1 1 0 0 0
Average 0 37 0 1 5 5 0 1 1 1 0 0 0 0
Ward 0 28 0 2 3 5 8 4 5 2 0 1 1 0 0
McQuitty 0 28 0 2 3 5 4 2 3 1 0 1 1 0
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kmeans 0 38 0 5 6 0 1 0 0 0 0 0 0 0 0
PAM 0 28 0 8 10 2 1 0 0 0 0 0 0 0 0
Spectral 0 34 0 2 7 7 0 0 0 0 0 0 0 0 0
Model-based 0 32 0 6 5 5 0 2 0 0 0 0 0 0 0

BIC
Model-based 0 0 0 33 15 2 0 0 0 0 0 0 0 0 0
PAMSIL 0 28 0 9 8 3 2 0 0 0 0 0 0 0 0
HOSil 0 34 0 5 10 1 0 1 0 0 0 0 0 0 0

Table B.11: Results for the estimation of number of clusters from indices and clustering
methods for Model 9.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 20 6 6 1 0 0 0 0 0 0 0 0 0 0 0
Average 0 0 18 4 3 4 3 4 6 3 2 0 3 0 0
Complete 0 0 0 0 0 0 0 3 2 5 8 6 26 0 0
Ward 1 3 5 1 2 3 8 9 5 6 4 1 2 0 0
McQuitty 1 3 5 1 2 3 8 9 5 6 4 1 2 0 0
kmeans 0 2 0 4 5 13 10 10 3 1 2 0 0 0 0
PAM 0 0 0 0 0 0 0 1 0 4 2 6 35 0 0

CH
Single 0 4 2 7 11 5 10 4 2 1 1 2 0 1 0
Complete 0 0 0 46 0 0 1 1 0 1 0 0 0 1 0
Average 0 0 0 13 4 3 1 8 5 3 0 7 1 0 5
Ward 0 0 0 14 3 2 3 10 4 2 2 4 2 0 4
McQuitty 0 0 0 14 3 2 3 10 4 2 2 4 2 0 4
kmeans 0 0 0 35 4 0 1 3 1 3 0 2 1 0 0
PAM 0 0 0 30 1 0 1 9 3 2 2 1 1 0 0

KL
Single 0 4 8 5 11 5 2 5 2 4 2 2 0 0 0
Complete 0 0 18 7 3 5 4 3 2 2 4 2 0 0 0
Average 0 0 14 6 8 4 7 4 1 0 3 3 0 0 0
Ward 0 14 8 6 3 2 2 3 5 2 2 3 0 0 0
McQuitty 0 14 8 6 3 2 2 3 5 2 2 3 0 0 0
kmeans 0 45 5 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 34 3 0 0 0 6 0 0 2 2 1 2 0 0 0

Gap
Single 17 21 6 6 0 0 0 0 0 0 0 0 0 0 0
Complete 20 23 1 2 2 2 0 0 0 0 0 0 0 0 0
Average 20 28 0 2 0 0 0 0 0 0 0 0 0 0 0
Ward 21 28 0 0 0 0 0 1 0 0 0 0 0 0 0
McQuitty 21 29 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 23 2 23 2 0 0 0 0 0 0 0 0 0 0
PAM 1 21 0 20 8 0 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 49 0 0 0 1 0 0 0 0 0 0 0
p/3 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
p/4 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0
p/5 36 0 0 14 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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PS
Single 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 15 0 35 0 0 0 0 0 0 0 0 0 0 0
PAM 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 0 0 0 0 0 0 0 0 0 1 0 2 11 36
Complete 0 0 0 0 0 0 0 0 0 0 0 0 0 2 48
Average 0 0 0 0 0 0 0 0 0 0 0 0 0 7 43
Ward 0 0 0 0 0 0 0 0 0 0 0 1 1 5 43
McQuitty 0 0 0 0 0 0 0 0 0 0 0 0 0 2 48
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 0 0 0 0 8 42

BIC
Model-based 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 17 6 9 8 3 2 3 1 1 0 0 0 0 0
Complete 0 10 0 40 0 0 0 0 0 0 0 0 0 0 0
Average 0 26 5 18 0 1 0 0 0 0 0 0 0 0 0
Ward 0 26 7 16 1 0 0 0 0 0 0 0 0 0 0
McQuitty 0 26 7 16 1 0 0 0 0 0 0 0 0 0 0
kmeans 0 11 0 39 0 0 0 0 0 0 0 0 0 0 0
PAM 0 7 0 43 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 2 6 36 5 1 0 0 0 0 0 0 0 0 0
Model-based 0 0 0 47 3 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 5 0 45 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 10 0 40 0 0 0 0 0 0 0 0 0 0 0

Table B.12: Results for the estimation of number of clusters from indices and clustering
methods for Model 10.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 1 32 12 3 1 1 0 0 0 0 0 0 0 0
Complete 1 0 1 0 0 0 0 0 0 0 1 2 45 0 0
Average 1 0 1 1 11 6 7 5 3 2 4 4 5 0 0
Ward 0 0 1 1 1 1 1 3 4 3 3 8 24 0 0
McQuitty 0 0 1 1 1 1 1 3 4 3 3 8 24 0 0
kmeans 0 1 9 23 16 1 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 0 0 1 49 0 0

CH
Single 0 0 0 6 9 8 11 4 4 3 1 2 0 1 1
Complete 0 0 0 0 0 0 1 0 1 0 2 3 3 6 34
Average 0 0 0 0 6 1 0 1 1 1 3 4 5 7 21
Ward 0 0 0 0 3 0 1 2 3 3 4 3 8 7 16
McQuitty 0 0 0 0 3 0 1 2 3 3 4 3 8 7 16
kmeans 0 0 0 0 11 6 3 6 4 5 3 4 4 2 2
PAM 0 0 0 0 0 0 1 0 0 3 1 1 5 17 22

KL
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Single 0 5 9 9 9 6 5 1 1 2 2 1 0 0 0
Complete 0 0 0 32 11 1 2 0 1 2 1 0 0 0 0
Average 0 0 0 38 3 1 2 0 0 3 0 3 0 0 0
Ward 0 0 36 3 1 4 1 1 0 1 3 0 0 0 0
McQuitty 0 0 36 3 1 4 1 1 0 1 3 0 0 0 0
kmeans 0 0 29 9 6 3 1 0 0 1 0 1 0 0 0
PAM 0 0 34 2 4 0 4 0 1 1 2 2 0 0 0

Gap
Single 0 0 1 40 9 0 0 0 0 0 0 0 0 0 0
Complete 0 6 4 4 26 6 3 1 0 0 0 0 0 0 0
Average 0 1 0 1 45 3 0 0 0 0 0 0 0 0 0
Ward 0 11 1 2 29 7 0 0 0 0 0 0 0 0 0
McQuitty 1 12 1 2 30 4 0 0 0 0 0 0 0 0 0
kmeans 4 2 1 8 29 6 0 0 0 0 0 0 0 0 0
PAM 10 0 0 0 24 5 9 1 1 0 0 0 0 0 0

Jump
p/2 0 0 0 0 28 0 0 0 0 0 1 5 4 5 7
p/3 0 0 0 0 49 0 0 0 0 0 0 0 0 1 0
p/4 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
p/5 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
p/6 1 0 0 0 49 0 0 0 0 0 0 0 0 0 0
p/7 43 0 0 0 7 0 0 0 0 0 0 0 0 0 0

PS
Single 0 0 0 42 6 2 0 0 0 0 0 0 0 0 0
Complete 7 0 0 0 43 0 0 0 0 0 0 0 0 0 0
Average 0 0 0 0 43 7 0 0 0 0 0 0 0 0 0
Ward 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
McQuitty 8 0 0 0 40 2 0 0 0 0 0 0 0 0 0
kmeans 5 42 0 0 3 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0

BI
Single 0 0 0 37 3 5 2 0 0 1 0 0 0 0 2
Complete 0 0 0 0 24 2 0 0 0 0 0 0 4 3 17
Average 0 0 0 6 43 1 0 0 0 0 0 0 0 0 0
Ward 0 0 0 5 45 0 0 0 0 0 0 0 0 0 0
McQuitty 0 0 0 0 31 3 0 1 0 0 0 0 0 2 13
kmeans 0 2 0 1 9 19 8 8 0 1 0 1 0 0 1
PAM 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0

BIC
Model-based 0 0 0 1 17 19 10 3 0 0 0 0 0 0 0

ASW
Single 0 0 0 24 10 8 6 1 1 0 0 0 0 0 0
Complete 0 0 0 0 36 12 1 0 0 0 0 0 1 0 0
Average 0 0 0 0 48 2 0 0 0 0 0 0 0 0 0
Ward 0 0 0 0 44 4 1 1 0 0 0 0 0 0 0
McQuitty 0 0 0 0 44 4 1 1 0 0 0 0 0 0 0
kmeans 0 0 0 4 38 4 3 1 0 0 0 0 0 0 0
PAM 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
Spectral 0 0 1 7 20 13 2 2 3 1 1 0 0 0 0
Model-based 0 0 0 0 49 1 0 0 0 0 0 0 0 0 0
PAMSIL 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
HOSil 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
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Table B.13: Results for the estimation of number of clusters from indices and clustering
methods for Model 11.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 14 8 9 7 4 2 2 1 0 0 0 0 0 0 0
Complete 0 2 3 11 16 6 0 0 0 0 1 1 10 0 0
Average 5 2 10 15 6 0 1 3 4 1 1 2 0 0 0
Ward 4 4 11 13 14 2 1 0 0 1 0 0 0 0 0
McQuitty 4 4 11 13 14 2 1 0 0 1 0 0 0 0 0
kmeans 0 7 14 11 9 6 2 1 0 0 0 0 0 0 0
PAM 0 0 0 11 0 0 0 0 1 0 1 0 37 0 0

CH
Single 0 0 8 10 4 1 1 1 1 2 1 5 0 7 9
Complete 0 0 0 0 0 0 0 8 10 6 4 3 6 9 4
Average 0 0 0 0 0 0 0 3 13 8 9 5 1 5 6
Ward 0 0 0 0 0 0 0 2 10 7 8 6 6 6 5
McQuitty 0 0 0 0 0 0 0 2 10 7 8 6 6 6 5
kmeans 0 0 0 0 4 5 11 8 7 5 3 2 3 1 1
PAM 0 0 0 0 0 0 0 1 0 1 3 7 12 12 14

KL
Single 0 3 5 4 4 4 4 8 3 5 5 5 0 0 0
Complete 0 0 0 0 0 0 9 21 14 4 2 0 0 0 0
Average 0 5 1 0 1 6 10 11 7 7 1 1 0 0 0
Ward 0 0 0 0 2 4 7 15 9 9 2 2 0 0 0
McQuitty 0 0 0 0 2 4 7 15 9 9 2 2 0 0 0
kmeans 0 2 6 6 3 6 4 5 5 5 6 2 0 0 0
PAM 0 0 0 1 17 12 2 3 2 3 4 6 0 0 0

Gap
Single 11 17 11 9 2 0 0 0 0 0 0 0 0 0 0
Complete 0 39 11 0 0 0 0 0 0 0 0 0 0 0 0
Average 2 17 31 0 0 0 0 0 0 0 0 0 0 0 0
Ward 1 39 10 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 1 39 10 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 9 0 17 19 5 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 16 32 2 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 0 0 19 1 0 0 1 1 7 5 9 7
p/3 0 0 0 0 0 40 1 0 0 1 1 0 2 2 3
p/4 9 0 0 0 0 37 1 0 0 1 0 0 0 0 2
p/5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 18 10 15 5 2 0 0 0 0 0 0 0 0 0 0
Complete 0 3 47 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 0 46 4 0 0 0 0 0 0 0 0 0 0 0
Ward 0 0 0 44 6 0 0 0 0 0 0 0 0 0 0
McQuitty 0 4 45 1 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 4 45 1 0 0 0 0 0 0 0 0

BI
Single 0 8 2 0 0 3 6 5 6 5 3 3 3 2 4
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Complete 0 36 7 0 1 0 2 0 0 0 0 1 1 1 1
Average 0 42 5 0 0 0 0 0 2 0 0 0 0 0 1
Ward 0 39 0 11 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 26 2 6 2 0 1 3 1 1 0 0 0 4 4
kmeans 0 1 0 0 1 0 3 4 4 6 5 11 7 4 4
PAM 0 0 0 23 16 8 2 0 1 0 0 0 0 0 0

BIC
Model-based 0 0 0 0 45 4 0 0 1 0 0 0 0 0 0

ASW
Single 0 37 6 1 0 1 0 1 0 1 0 0 1 2 0
Complete 0 6 0 0 0 0 0 3 13 12 7 7 2 0 0
Average 0 8 0 0 0 0 0 3 9 5 7 8 4 3 3
Ward 0 10 0 0 0 0 0 1 4 4 11 6 5 7 2
McQuitty 0 10 0 0 0 0 0 1 4 4 11 6 5 7 2
kmeans 0 9 0 0 11 17 6 3 3 1 0 0 0 0 0
PAM 0 0 0 0 2 40 7 0 1 0 0 0 0 0 0
Spectral 0 6 0 0 15 20 7 1 1 0 0 0 0 0 0
Model-based 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 0 0 0 0 47 3 0 0 0 0 0 0 0 0
HOSil 0 0 0 0 1 48 0 1 0 0 0 0 0 0 0

Table B.14: Results for the estimation of number of clusters from indices and clustering
methods for Model 12.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 11 7 15 12 4 1 0 0 0 0 0 0 0 0 0
Complete 0 0 0 0 0 1 2 1 3 0 1 3 39 0 0
Average 0 6 1 2 18 5 3 3 2 0 4 2 4 0 0
Ward 0 1 2 0 3 4 1 5 4 1 5 3 21 0 0
McQuitty 0 1 2 0 3 4 1 5 4 1 5 3 21 0 0
kmeans 0 0 4 5 10 14 11 2 3 0 0 0 1 0 0
PAM 0 0 0 0 0 0 0 0 1 0 0 0 49 0 0

CH
Single 0 0 0 3 9 5 7 6 6 1 5 6 0 2 0
Complete 0 0 0 0 0 0 0 0 0 0 0 5 3 4 38
Average 0 0 0 0 1 19 0 2 0 1 1 0 4 13 9
Ward 0 0 0 0 1 2 1 2 0 3 1 5 3 11 21
McQuitty 0 0 0 0 1 2 1 2 0 3 1 5 3 11 21
kmeans 0 0 0 0 0 2 1 1 2 3 6 4 7 10 14
PAM 0 0 0 0 0 0 0 0 1 0 1 1 3 11 33

KL
Single 0 9 7 4 5 3 4 2 5 6 2 3 0 0 0
Complete 0 10 2 8 1 5 2 8 3 5 4 2 0 0 0
Average 0 9 5 1 5 4 4 7 3 4 6 2 0 0 0
Ward 0 4 3 9 8 7 2 3 1 6 4 3 0 0 0
McQuitty 0 4 3 9 8 7 2 3 1 6 4 3 0 0 0
kmeans 0 7 13 8 1 1 1 6 3 5 3 2 0 0 0
PAM 0 0 1 18 4 1 0 11 1 2 7 5 0 0 0

Gap
Single 0 13 21 12 2 2 0 0 0 0 0 0 0 0 0
Complete 0 0 25 13 5 5 2 0 0 0 0 0 0 0 0
Average 0 0 7 8 3 32 0 0 0 0 0 0 0 0 0
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Ward 0 0 19 14 4 9 3 0 1 0 0 0 0 0 0
McQuitty 0 0 18 14 8 8 2 0 0 0 0 0 0 0 0
kmeans 0 2 18 10 15 5 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 6 36 8 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 0 0 2 0 0 0 4 6 7 2 11 18
p/3 0 0 5 0 34 6 0 0 0 1 2 0 1 1 0
p/4 0 0 42 0 8 0 0 0 0 0 0 0 0 0 0
p/5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/6 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 0 39 8 2 1 0 0 0 0 0 0 0 0 0 0
Complete 0 7 43 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 0 17 21 6 6 0 0 0 0 0 0 0 0 0
Ward 0 0 1 24 10 15 0 0 0 0 0 0 0 0 0
McQuitty 0 21 29 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 3 31 16 0 0 0 0 0 0 0 0 0

BI
Single 0 48 0 0 0 2 0 0 0 0 0 0 0 0 0
Complete 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 30 17 3 0 0 0 0 0 0 0 0 0 0 0
Ward 0 36 8 6 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 0 45 0 0 0 0 0 0 0 0 0 0 1 4
PAM 0 41 0 0 9 0 0 0 0 0 0 0 0 0 0

BIC
Model-based 0 0 0 0 0 36 12 1 1 0 0 0 0 0 0

ASW
Single 0 33 2 7 4 2 2 0 0 0 0 0 0 0 0
Complete 0 27 14 3 6 0 0 0 0 0 0 0 0 0 0
Average 0 1 8 2 36 3 0 0 0 0 0 0 0 0 0
Ward 0 25 8 2 15 0 0 0 0 0 0 0 0 0 0
McQuitty 0 25 8 2 15 0 0 0 0 0 0 0 0 0 0
kmeans 0 1 7 5 33 4 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
Spectral 0 12 1 5 4 4 2 0 1 0 0 0 0 0 0
Model-based 0 1 0 0 28 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0
HOSil 0 0 0 5 45 0 0 0 0 0 0 0 0 0 0

Table B.15: Results for the estimation of number of clusters from indices and clustering
methods for Model 13.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 0 0 3 0 0 0 0 0 0 0 1 21 0 0
Complete 0 0 0 0 0 0 0 0 7 2 2 1 13 0 0
Average 0 0 0 0 0 0 0 0 2 0 0 0 23 0 0
Ward 0 0 0 0 0 0 0 0 6 0 2 0 17 0 0
McQuitty 0 0 0 0 0 0 0 0 6 0 2 0 17 0 0
kmeans 0 0 1 5 2 3 3 5 2 3 0 0 1 0 0
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PAM 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0
CH

Single 0 0 0 0 0 0 0 0 0 0 0 0 0 24 1
Complete 0 0 0 0 0 0 0 0 0 8 0 1 0 0 16
Average 0 0 0 0 0 0 0 0 0 0 0 0 0 23 2
Ward 0 0 0 0 0 0 0 0 0 0 0 0 0 6 19
McQuitty 0 0 0 0 0 0 0 0 0 0 0 0 0 6 19
kmeans 0 0 0 0 0 0 0 0 0 0 2 3 2 6 12
PAM 0 0 0 0 0 0 0 0 0 0 0 0 0 2 23

KL
Single 0 3 1 1 2 2 3 1 0 0 0 12 0 0 0
Complete 0 2 0 3 11 0 0 0 7 0 2 0 0 0 0
Average 0 2 0 6 15 0 0 0 2 0 0 0 0 0 0
Ward 0 0 1 8 0 0 0 1 0 0 2 13 0 0 0
McQuitty 0 0 1 8 0 0 0 1 0 0 2 13 0 0 0
kmeans 0 0 0 4 6 0 0 0 1 5 5 4 0 0 0
PAM 0 0 4 2 0 0 3 0 0 0 0 16 0 0 0

Gap
Single 0 3 6 7 5 4 0 0 0 0 0 0 0 0 0
Complete 5 18 1 1 0 0 0 0 0 0 0 0 0 0 0
Average 0 24 0 1 0 0 0 0 0 0 0 0 0 0 0
Ward 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 3 17 4 1 0 0 0 0 0 0 0 0 0 0 0
PAM 0 24 0 0 1 0 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 0 0 0 0 0 0 0 0 0 0 12 13
p/3 0 0 0 0 0 0 0 0 0 0 0 0 0 12 13
p/4 0 0 0 0 0 0 0 0 0 0 0 0 0 12 13
p/5 10 0 0 0 0 0 0 0 0 0 0 0 0 5 10
p/6 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p/7 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS
Single 4 21 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 7 18 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 3 22 0 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 12 13 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 13 12 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 17 0 0 0 0 0 0 0 0 0 0 0 1 7
Complete 0 8 0 4 0 0 0 0 0 0 3 1 0 1 8
Average 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 2 0 0 0 0 0 0 0 0 0 0 0 0 23
McQuitty 0 2 0 3 0 1 1 0 5 4 2 2 0 3 2
kmeans 0 0 0 0 0 0 0 0 0 0 0 0 3 1 21
PAM 0 13 0 0 0 0 0 0 0 0 0 0 0 1 11

BIC
Model-based 0 0 0 0 0 0 0 5 20 0 0 0 0 0 0

ASW
Single 0 0 0 0 0 0 0 0 0 0 0 0 0 23 2
Complete 0 0 0 0 0 0 0 0 0 10 0 3 1 2 9
Average 0 0 0 0 0 0 0 0 0 0 0 0 0 22 3
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Ward 0 0 0 0 0 0 0 0 0 0 0 0 0 11 14
McQuitty 0 0 0 0 0 0 0 0 0 0 0 0 0 11 14
kmeans 0 0 0 0 0 0 0 0 0 0 2 6 0 7 10
PAM 0 0 0 0 0 0 0 0 0 0 0 0 0 9 16
Spectral 0 0 0 19 11 13 2 5 0 0 0 0 0 0 0
Model-based 0 0 0 40 5 0 0 0 0 0 0 0 1 0 4
PAMSIL 0 0 0 0 0 0 0 0 0 0 0 0 1 1 23
HOSil 0 0 0 0 0 0 0 0 0 0 0 0 0 21 3

Table B.16: Results for the estimation of number of clusters from indices and clustering
methods for Model 14.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 26 0 0 11 0 0 8 0 0 4 1 0 0 0
Complete 0 0 0 0 0 0 0 2 0 0 4 44 0 0 0
Average 0 1 0 0 4 0 0 4 0 0 9 32 0 0 0
Ward 0 1 0 0 1 0 0 3 0 0 13 32 0 0 0
McQuitty 0 1 0 0 1 0 0 3 0 0 13 32 0 0 0
kmeans 0 0 9 13 13 10 3 1 0 0 1 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 2 1 1 46 0 0

CH
Single 0 0 19 0 0 3 0 0 6 0 0 9 0 0 13
Complete 0 0 0 0 0 0 0 0 2 0 0 6 0 0 42
Average 0 0 0 0 0 0 0 0 1 0 0 11 0 0 38
Ward 0 0 0 0 0 0 0 0 2 0 0 13 0 0 35
McQuitty 0 0 0 0 0 0 0 0 2 0 0 13 0 0 35
kmeans 0 0 0 0 0 0 0 0 1 0 1 3 10 15 20
PAM 0 0 0 0 0 0 0 0 0 0 0 5 1 0 44

KL
Single 0 4 5 8 1 2 13 0 0 17 0 0 0 0 0
Complete 0 49 0 0 1 0 0 0 0 0 0 0 0 0 0
Average 0 45 0 0 3 0 0 1 0 0 1 0 0 0 0
Ward 0 0 0 17 0 0 13 0 0 20 0 0 0 0 0
McQuitty 0 0 0 17 0 0 13 0 0 20 0 0 0 0 0
kmeans 0 0 0 2 4 5 7 8 5 6 8 5 0 0 0
PAM 0 0 0 37 0 0 10 0 0 3 0 0 0 0 0

Gap
Single 0 0 27 0 0 14 0 0 8 0 0 1 0 0 0
Complete 0 0 28 0 0 20 0 0 1 0 0 1 0 0 0
Average 0 0 41 0 0 7 0 0 2 0 0 0 0 0 0
Ward 0 0 34 0 0 12 0 0 2 0 0 1 0 1 0
McQuitty 0 0 41 0 0 7 0 0 2 0 0 0 0 0 0
kmeans 0 0 33 5 11 1 0 0 0 0 0 0 0 0 0
PAM 0 0 28 0 0 13 0 0 2 0 0 4 0 3 0

Jump
p/2 0 0 0 0 0 0 0 0 0 7 0 0 11 2 4 33
p/3 0 0 0 0 0 0 0 0 3 0 0 16 4 0 27
p/4 0 0 0 0 0 1 0 0 8 0 0 18 4 0 19
p/5 0 0 7 0 0 7 0 0 10 0 0 12 2 0 12
p/6 0 0 35 0 0 7 0 0 4 0 0 2 2 0 0
p/7 0 0 47 0 0 2 0 0 1 0 0 0 0 0 0
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PS
Single 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 49 0 0 1 0 0 0 0 0 0 0 0 0
Average 0 0 48 0 0 2 0 0 0 0 0 0 0 0 0
Ward 0 0 47 0 0 3 0 0 0 0 0 0 0 0 0
McQuitty 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 46 0 0 4 0 0 0 0 0 0 0 0 0

BI
Single 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

BIC
Model-based 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 3 39 4 4 0 0 0 0 0 0 0 0 0 0
Model-based 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

Table B.17: Results for the estimation of number of clusters from indices and clustering
methods for Model 15.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 0 0 0 0 0 0 36 10 2 2 0 0 0 0
Complete 0 0 0 0 0 0 0 0 0 4 4 18 24 0 0
Average 0 0 0 0 0 0 0 18 18 6 2 0 6 0 0
Ward 0 0 0 0 0 0 0 8 10 10 10 4 8 0 0
Mcquitty 0 0 0 0 0 0 0 8 10 10 10 4 8 0 0
k-means 0 0 4 4 14 6 14 6 2 0 0 0 0 0 0
pam 0 0 0 0 0 0 0 0 0 2 4 6 38 0 0

CH
Single 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Complete 0 0 0 0 0 0 0 0 36 12 0 2 0 0 0
Average 0 0 0 0 0 0 0 0 46 2 2 0 0 0 0
Ward 0 0 0 0 0 0 0 0 40 4 6 0 0 0 0
Mcquitty 0 0 0 0 0 0 0 0 40 4 6 0 0 0 0
k-means 0 0 0 0 0 0 0 0 2 4 10 16 4 10 4
pam 0 0 0 0 0 0 0 0 24 0 8 2 8 6 2

KL
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Single 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0
Complete 0 0 0 0 0 0 0 44 2 2 2 0 0 0 0
Average 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0
Ward 0 0 0 0 0 0 44 4 0 0 2 0 0 0 0
Mcquitty 0 0 0 0 0 0 44 2 0 0 4 0 0 0 0
k-means 0 0 0 0 0 0 2 2 16 18 8 4 0 0 0
pam 0 4 0 0 0 0 40 0 2 0 2 2 0 0 0

Gap
Single 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Complete 8 0 2 0 0 1 0 0 36 2 0 0 0 0 0
Average 26 0 0 0 0 0 0 0 24 0 0 0 0 0 0
Ward 16 0 0 0 0 0 0 0 30 4 0 0 0 0 0
Mcquitty 12 0 0 0 0 0 0 0 38 0 0 0 0 0 0
k-means 28 0 4 6 4 6 2 0 0 0 0 0 0 0 0
pam 12 0 0 30 2 0 0 0 6 0 0 0 0 0 0

Jump
p/2 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
p/3 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
p/4 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
p/5 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
p/6 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
p/7 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0

PS
Single 2 0 0 0 0 0 0 0 46 2 0 0 0 0 0
Complete 30 0 0 0 0 0 0 2 18 0 0 0 0 0 0
Average 0 0 0 0 0 0 0 2 48 0 0 0 0 0 0
Ward 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Mcquitty 2 0 0 0 0 0 0 0 48 0 0 0 0 0 0
k-means 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pam 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0

BI
Single 0 0 0 0 0 0 0 2 44 2 2 0 0 0 0
Complete 0 0 0 0 0 0 0 0 6 12 18 12 2 0 0
Average 0 0 0 0 0 0 0 0 48 2 0 0 0 0 0
Ward 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Mcquitty 0 0 0 0 0 0 0 0 30 16 2 0 2 0 0
k-means 0 0 0 0 0 0 0 0 0 0 0 4 8 14 24
pam 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0

BIC
Model-based 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0

ASW
Single 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Complete 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Average 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Ward 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Mcquitty 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
k-means 0 0 0 0 0 0 4 16 4 6 12 8 0 0 0
pam 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Spectral 0 0 0 0 0 0 0 5 13 15 13 3 0 1 0
Model-based 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
PAMSIL 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
HOSil 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
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Table B.18: Results for the estimation of number of clusters from indices and clustering
methods for Model 16.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 0 0 0 0 0 0 0 4 14 11 10 11 0 0
Complete 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0
Average 0 0 0 0 0 0 0 0 0 0 5 6 39 0 0
Ward 0 0 0 0 0 0 0 0 0 0 1 1 48 0 0
McQuitty 0 0 0 0 0 0 0 0 0 0 1 1 48 0 0
kmeans 0 5 20 12 7 3 3 0 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 0 1 0 49 0 0

CH
Single 0 0 0 0 0 0 0 0 0 20 5 7 5 6 7
Complete 0 0 0 0 0 0 0 0 0 0 0 0 1 1 48
Average 0 0 0 0 0 0 0 0 0 2 0 3 3 11 31
Ward 0 0 0 0 0 0 0 0 0 0 0 3 4 8 35
McQuitty 0 0 0 0 0 0 0 0 0 0 0 3 4 8 35
kmeans 0 0 0 0 0 0 0 0 0 2 8 5 11 10 14
PAM 0 0 0 0 0 0 0 0 0 0 0 0 0 3 47

KL
Single 0 1 0 0 0 0 0 48 1 0 0 0 0 0 0
Complete 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Average 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0
Ward 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0
McQuitty 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0
kmeans 0 0 6 7 4 3 1 2 6 2 10 9 0 0 0
PAM 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0

Gap
Single 0 0 0 0 0 0 0 0 0 0 2 1 3 44 0
Complete 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
Average 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
Ward 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
McQuitty 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
kmeans 0 0 0 15 16 9 5 5 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

Jump
p/2 0 0 0 0 0 0 0 0 0 26 13 4 4 0 3
p/3 0 0 0 0 0 0 0 0 0 1 0 1 2 6 40
p/4 0 0 0 0 0 0 0 0 0 0 0 0 0 4 46
p/5 0 0 0 0 0 0 0 0 0 0 0 0 0 4 46
p/6 0 0 0 0 0 0 0 0 0 0 0 0 0 4 46
p/7 0 0 0 0 0 0 0 0 0 0 0 0 0 5 45

PS
Single 0 0 0 0 0 0 0 0 0 46 3 1 0 0 0
Complete 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
Average 0 0 0 0 0 0 0 0 0 46 3 1 0 0 0
Ward 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
McQuitty 0 0 0 0 0 0 0 0 0 48 2 0 0 0 0
kmeans 0 47 3 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0

BI
Single 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
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Complete 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0

BIC
Model-based 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0

ASW
Single 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
Complete 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
Average 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
Ward 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
McQuitty 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
kmeans 0 0 0 0 0 1 2 4 5 9 15 7 5 2 0
PAM 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
Spectral 0 0 0 0 0 0 0 4 7 5 11 12 8 2 1
Model-based 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
PAMSIL 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0
HOSil 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0

Table B.19: Results for the estimation of number of clusters from indices and clustering
methods for Model 17.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H

Single 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 15 35 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0

CH
Single 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 24 26 0 0 0 0 0 0 0 0 0 0 0 0

KL
Single 0 5 4 3 1 4 6 6 3 6 7 5 0 0 0
Complete 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 0 4 3 5 3 4 7 3 6 6 9 0 0 0
McQuitty 0 0 4 3 5 3 4 7 3 6 6 9 0 0 0
kmeans 0 16 6 2 5 2 3 6 4 1 2 3 0 0 0
PAM 0 0 7 4 6 4 4 5 7 2 6 5 0 0 0

Gap
Single 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 4 13 19 13 1 0 0 0 0 0 0 0 0
Average 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

286



Ward 0 0 34 9 6 1 0 0 0 0 0 0 0 0 0
McQuitty 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 13 21 7 4 3 2 0 0 0 0 0 0 0 0
PAM 0 0 47 3 0 0 0 0 0 0 0 0 0 0 0

Jump
p/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
p/3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
p/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
p/5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
p/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50
p/7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50

PS
Single 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 1 27 22 0 0 0 0 0 0 0 0 0 0
Average 0 0 0 2 1 10 15 10 6 5 0 0 1 0 0
Ward 0 0 3 41 6 0 0 0 0 0 0 0 0 0 0
McQuitty 0 0 0 1 2 6 14 7 13 6 1 0 0 0 0
kmeans 8 0 39 3 0 0 0 0 0 0 0 0 0 0 0
PAM 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

BI
Single 0 11 0 0 0 0 0 0 0 0 0 0 2 11 26
Complete 0 0 48 2 0 0 0 0 0 0 0 0 0 0 0
Average 0 4 7 26 13 0 0 0 0 0 0 0 0 0 0
Ward 0 0 28 22 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 1 28 20 1 0 0 0 0 0 0 0 0 0 0
kmeans 0 0 17 17 16 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 0 0 0 0 6 44

BIC
Model-based 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

ASW
Single 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
kmeans 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAM 0 31 19 0 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Model-based 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
PAMSIL 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
HOSil 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix C

OSil simulations results

This appendix has two part that consists of the results of the Simulation I and II con-
ducted in Chapter 4. Appendix C.1 represents the histogram for the ASW value ob-
tained from all the clustering methods included in Simulation I. Appendix C.2 repre-
sents 4 kind of results from Simulation II, which are described as the below.

(i) It represents the box plots of the ASW values obtained for all the clustering meth-
ods included in the simulation.

(ii) It represents the density plot of the ASW values obtained from OSil initialized by
from the 9 initialization methods and density plot for the ASW values obtained
from PAMSIL algorithm.

(iii) It represents the numerical results in tables for the 10 DGPs used in the simula-
tion

(iv) It represents the frequency counts for the estimation of number of clusters for
the 10 DGPS from all the clustering methods and cluster estimation methods
included in the simulation.
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C.1 Simulation I: Known k case
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Figure C.1 Histogram for ASW obtained from OSi l initialized with clustering methods
for Model 1.
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Figure C.2 Histogram for ASW obtained from OSi l initializing with clustering methods
for Model 2.
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Figure C.3 Histogram for ASW obtained from OSi l initialized with clustering methods
for Model 3.
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Figure C.4 Histogram for ASW obtained from OSi l initialized with clustering methods
for Model 4.
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Figure C.5 Histogram for ASW obtained from OSi l initialized with clustering methods
for Model 5.
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Figure C.6 Histogram for ASW obtained through OSi l initializing against clustering
methods for Model 6.
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Figure C.7 Histogram for ASW obtained through OSi l initializing against clustering
methods for Model 7.
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Figure C.8 Histogram for ASW obtained through OSi l initializing against clustering
methods for Model 8.
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Figure C.9 Histogram for ASW obtained through OSi l initializing against clustering
methods for Model 9.
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Figure C.10 Histogram for ASW obtained through OSi l initializing against clustering
methods for Model 9.
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C.2 Simulation II: Estimation of k Case
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Figure C.11 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 1. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles.
(b) Density curve plots for ASW values obtained form OSil against each initialization
methods for model 1.

Table C.1 Results for Model 1 for the estimation of k case.

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.6643 0.0039 0.6657 0.0038 0.7393 0.7776 2
PAM 0.6636 0.0040 0.6659 0.0038 0.7497 0.7614 2

single 0.5591 0.0143 0.6312 0.0070 0.8270 0.7487 20
complete 0.6327 0.0061 0.6656 0.0038 0.6120 0.7622 13
average 0.6464 0.0042 0.6633 0.0038 0.7106 0.7604 6
Ward’s 0.6518 0.0046 0.6663 0.0038 0.8009 0.7693 5

McQuitty 0.6235 0.0065 0.6622 0.0041 0.6201 0.7414 13
model-based 0.6374 0.0047 0.6658 0.0038 0.9177 0.7764 7

spectral 0.6629 0.0040 0.6655 0.0038 0.9355 0.7978 6
PAMSIL - - 0.6661 0.0038 - 0.7633 3
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Figure C.12 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 2. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles. (b)
Density curve plots for ASW values obtained from OSil clustering against each initial-
ization methods for Model 2.

Table C.2 Results for Model 2 for the estimation of k case

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.7198 0.0023 0.7210 0.0021 0.8179 0.8232 2
PAM 0.7180 0.0025 0.7209 0.0022 0.8176 0.8141 4

single 0.6444 0.0147 0.7012 0.0026 0.8509 0.8361 20
complete 0.7013 0.0024 0.7202 0.0023 0.7703 0.8039 14
average 0.7114 0.0025 0.7210 0.0022 0.8300 0.8231 5
Ward’s 0.7075 0.0031 0.7205 0.0022 0.8159 0.8156 7

McQuitty 0.7005 0.0031 0.7202 0.0024 0.7682 0.8121 15
model-based 0.6890 0.0037 0.7209 0.0023 0.9148 0.8178 12

spectral 0.6765 0.0182 0.7183 0.0022 0.8666 0.8118 13
PAMSIL - - 0.7220 0.0022 - 0.8088 3
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Figure C.13 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 3. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles.
(b) Density curve plots for ASW values obtained from OSil against each initialization
methods for Model 3

Table C.3 Results for Model 3 for the estimation of k case.

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.5895 0.0776 0.5905 0.0777 0.3816 0.4090 2
PAM 0.5912 0.0778 0.5920 0.0779 0.4301 0.4317 1

single 0.5715 0.0757 0.5873 0.0773 0.3127 0.2697 10
complete 0.5858 0.0771 0.5915 0.0778 0.3559 0.4031 5
average 0.5891 0.0776 0.5914 0.0778 0.4082 0.4282 2
Ward’s 0.5880 0.0774 0.5922 0.0779 0.4400 0.4553 3

McQuitty 0.5837 0.0768 0.5916 0.0779 0.3872 0.4295 8
model-based 0.5820 0.0766 0.5922 0.0779 0.4014 0.4802 6

spectral 0.5729 0.0762 0.5910 0.0778 0.4392 0.3857 8
PAMSIL - - 0.5924 0.0780 - 0.4765 2
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Figure C.14 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 4. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles.
(b) Density curve plots for ASW values obtained from OSil against each initialization
methods for Model 4.

Table C.4 Results for Model 4 for the estimation of k case.

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.8007 0.0076 0.8081 0.0057 0.9473 0.9623 3
PAM 0.8239 0.0021 0.8240 0.0021 0.9857 0.9853 1

single 0.7571 0.0083 0.7942 0.0061 0.8822 0.9393 7
complete 0.8141 0.0038 0.8221 0.0024 0.9681 0.9827 4
average 0.8215 0.0024 0.8240 0.0021 0.9814 0.9849 3
Ward’s 0.8222 0.0023 0.8240 0.0021 0.9873 0.9857 2

McQuitty 0.8091 0.0073 0.8224 0.0026 0.9533 0.9810 5
model-based 0.8161 0.0038 0.8240 0.0021 0.9800 0.9853 3

spectral 0.7037 0.0228 0.8096 0.0050 0.9516 0.9674 6
PAMSIL - - 0.8240 0.0021 - 0.9853 2
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Figure C.15 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 5. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles.
(b) Density curve plots for ASW values obtained from OSil against each initialization
methods for Model 5.

Table C.5 Results for Model 5 for the estimation of k case.

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.7261 0.0040 0.7332 0.0037 0.7790 0.8657 6
PAM 0.7455 0.0015 0.7491 0.0014 0.9814 0.9968 3

single 0.6880 0.0060 0.6983 0.0051 0.2343 0.3344 3
complete 0.7067 0.0015 0.7104 0.0015 0.4280 0.5234 5
average 0.7072 0.0016 0.7108 0.0015 0.4810 0.5298 4
Ward’s 0.7257 0.0028 0.7279 0.0025 0.7674 0.7904 3

McQuitty 0.7052 0.0019 0.7074 0.0021 0.3354 0.3313 3
model-based 0.7347 0.0018 0.7362 0.0016 0.8191 0.8163 2

spectral 0.6613 0.0172 0.7341 0.0028 0.6734 0.8722 10
PAMSIL - - 0.7491 0.0014 - 0.9968 3
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Figure C.16 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 6. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles.
(b) Density curve plots for ASW values obtained from OSil against each initialization
methods for Model 6.

Table C.6 Results for Model 6 for the estimation of k case.

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.8298 0.0062 0.8339 0.0056 0.6000 0.6478 3
PAM 0.8575 0.0010 0.8575 0.0010 0.7798 0.7798 1

single 0.8575 0.0010 0.8575 0.0010 0.7798 0.7798 1
complete 0.8575 0.0010 0.8575 0.0010 0.7798 0.7798 1
average 0.8575 0.0010 0.8575 0.0010 0.7798 0.7798 1
Ward’s 0.8575 0.0010 0.8575 0.0010 0.7798 0.7798 1

McQuitty 0.8575 0.0010 0.8575 0.0010 0.7798 0.7798 1
model-based 0.8575 0.0010 0.8575 0.0010 0.7798 0.7798 1

spectral 0.8015 0.0156 0.8304 0.0062 0.6000 0.6000 1
PAMSIL - - 0.8575 0.0010 - 0.7798 2
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Figure C.17 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 7. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles.
(b) Density curve plots for ASW values obtained from OSil against each initialization
methods for model 7.

Table C.7 Results for Model 7 for the estimation of k case.

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.8901 0.00793 0.8901 0.0079 0.4752 0.4756 1
PAM 0.9185 0.0002 0.9185 0.0002 0.4125 0.4125 1

single 0.9185 0.000235 0.9185 0.0002 0.4125 0.4125 1
complete 0.9185 0.0002 0.9185 0.0002 0.4125 0.4125 1
average 0.9185 0.0002 0.9185 0.0002 0.4125 0.4125 1
Ward’s 0.9185 0.0002 0.9185 0.0002 0.4125 0.4125 1

McQuitty 0.9185 0.0002 0.9185 0.0002 0.4125 0.4125 1
model-based 0.913 0.0047 0.9169 0.0011 0.4227 0.4229 6

spectral 0.8007 0.0207 0.9075 0.0066 0.4191 0.4168 5
PAMSIL - - 0.9185 0.0002 - 0.4125 2
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Figure C.18 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 8. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles.
(b) Density curve plots for ASW values obtained from OSil against each initialization
methods for Model 8.

Table C.8 Results for Model 8 for the estimation of k case.

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.8349 0.0071 0.8386 0.0073 0.8886 0.8899 2
PAM 0.9244 0.0043 0.9244 0.0043 1 1 1

single 0.9244 0.0043 0.9244 0.0043 1 1 1
complete 0.9244 0.0043 0.9244 0.0043 1 1 1
average 0.9244 0.0043 0.9244 0.0043 1 1 1
Ward’s 0.9244 0.0043 0.9244 0.0043 1 1 1

McQuitty 0.9244 0.0043 0.9244 0.0043 1 1 1
model-based 0.9244 0.0043 0.9244 0.0043 1 1 1

spectral 0.7406 0.0115 0.8884 0.0118 0.9023 0.9399 11
PAMSIL - - 0.9244 0.0043 - 1 2
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Figure C.19 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 9. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles.
(b) Density curve plots for ASW values obtained from OSil against each initialization
methods for Model 9.

Table C.9 Results for Model 9 for the estimation of k case.

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.5598 0.0038 0.5619 0.0033 0.8615 0.9104 3
PAM 0.5726 0.0002 0.5726 0.0002 1 1 1

single 0.5726 0.0002 0.5726 0.0002 1 1 1
complete 0.5726 0.0002 0.5726 0.0002 1 1 1
average 0.5726 0.0002 0.5726 0.0002 1 1 1
Ward’s 0.5726 0.0002 0.5726 0.0002 1 1 1

McQuitty 0.5726 0.0002 0.5726 0.0002 1 1 1
model-based 0.5726 0.0002 0.5726 0.0002 1 1 1

spectral 0.0291 0.0022 0.5333 0.0002 0.0260 0.5673 48
PAMSIL - - 0.5726 0.0002 - 1 2
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Figure C.20 (a) Boxplots for the average silhouette width values obtained from the clus-
tering methods and OSil initialized with these methods for Model 10. The mean value
for all the methods are plotted as black diamonds and the outliers are red triangles.
(b) Density curve plots for ASW values obtained from OSil against each initialization
methods for Model 10.

Table C.10 Results for Model 10 for the estimation of k case.

Methods
ASW
(init) SE

ASW
(OSil) SE

ARI
(init)

ARI
(OSil) iter

k-means 0.6129 0.0076 0.6450 0.0006 0.9720 0.9998 95
PAM 0.6465 0.0003 0.6465 0.0003 1 1 1

single 0.6465 0.0003 0.6465 0.0003 1 1 1
complete 0.6465 0.0003 0.6465 0.0003 1 1 1
average 0.6465 0.0003 0.6465 0.0003 1 1 1
Ward’s 0.6465 0.0003 0.6465 0.0003 1 1 1

McQuitty 0.6465 0.0003 0.6465 0.0003 1 1 1
spectral 0.0879 0.0359 0.4415 0.0012 0.0001 0.4270 230

model-based 0.6177 0.0081 0.6206 0.0068 0.9416 0.9484 4
PAMSIL 0 0 0.6465 0.0003 0 1 2

308



Table C.11: Results for estimation of number of clusters k̂ from indices and clustering
methods included in the study for Model 1. The true number of clusters are made bold.

No. of clusters 1 2 3 4 5 6 7 8 9 10

CH
kmeans 0 18 1 2 1 1 1 0 0 1
PAM 0 14 0 1 1 0 1 1 5 2
Single 0 3 7 3 5 1 1 2 2 1
Complete 0 3 0 1 1 0 4 4 4 8
Average 0 6 0 1 1 2 2 1 3 9
Ward 0 6 0 0 1 1 1 0 2 14
McQuitty 0 2 0 0 3 1 2 4 6 7
Model-based 0 6 1 2 2 1 2 2 3 6
Spectral 0 19 0 3 2 0 1 0 0 0

H
kmeans 0 5 7 8 3 1 1 0 0 0
PAM 0 0 0 2 4 5 4 10 0 0
Single 5 0 0 1 0 0 0 0 0 0
Complete 0 4 0 1 0 4 1 15 0 0
Average 6 3 1 0 3 4 1 3 0 0
Ward 0 0 0 0 0 0 0 25 0 0
McQuitty 4 2 3 3 2 1 1 6 0 0
Model-based 1 8 6 3 6 1 0 0 0 0
Spectral 4 4 8 8 1 0 0 0 0 0

Gamma
kmeans 0 1 3 6 8 5 2 0 0 0
PAM 0 0 0 0 2 4 4 5 5 5
Single 0 0 0 0 0 0 2 2 6 15
Complete 0 0 0 0 0 0 0 0 0 25
Average 0 0 0 0 0 0 0 0 0 25
Ward 0 0 0 0 0 0 0 1 0 24
McQuitty 0 0 0 0 0 0 0 0 0 25
Model-based 0 0 0 0 1 0 0 2 6 16
Spectral 0 0 0 2 6 4 4 6 2 1

C
kmeans 0 1 1 6 8 5 2 0 0 2
PAM 0 0 0 0 2 4 4 5 6 4
Single 0 0 0 0 0 0 3 1 8 13
Complete 0 0 0 0 0 0 0 1 0 24
Average 0 0 0 0 0 0 0 1 0 24
Ward 0 0 0 0 0 0 0 0 1 24
McQuitty 0 0 0 0 0 0 0 0 0 25
Model-based 0 0 0 0 1 0 0 2 6 16
Spectral 0 0 0 2 6 4 4 5 2 2

KL
kmeans 0 8 7 5 3 1 1 0 0 0
PAM 0 7 5 5 2 2 4 0 0 0
Single 0 7 7 0 2 6 3 0 0 0
Complete 0 3 7 9 2 3 1 0 0 0
Average 0 5 3 2 6 7 2 0 0 0
Ward 0 6 6 4 6 3 0 0 0 0
McQuitty 0 0 1 7 6 9 2 0 0 0
Model-based 0 2 4 6 6 4 3 0 0 0
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Spectral 0 2 3 8 6 2 4 0 0 0
Gap

kmeans 0 20 2 3 0 0 0 0 0 0
PAM 0 15 7 3 0 0 0 0 0 0
Single 22 3 0 0 0 0 0 0 0 0
Complete 7 14 4 0 0 0 0 0 0 0
Average 5 18 1 1 0 0 0 0 0 0
Ward 0 13 9 2 1 0 0 0 0 0
McQuitty 11 13 1 0 0 0 0 0 0 0

Jump
p/2 0 6 0 9 10 0 0 0 0 0
p/3 1 22 0 1 1 0 0 0 0 0
p/4 23 2 0 0 0 0 0 0 0 0
p/5 25 0 0 0 0 0 0 0 0 0
p/6 25 0 0 0 0 0 0 0 0 0
p/7 25 0 0 0 0 0 0 0 0 0

PS
kmeans 0 24 1 0 0 0 0 0 0 0
PAM 4 21 0 0 0 0 0 0 0 0
Single 6 12 7 0 0 0 0 0 0 0
Complete 25 0 0 0 0 0 0 0 0 0
Average 21 4 0 0 0 0 0 0 0 0
Ward 19 5 1 0 0 0 0 0 0 0
McQuitty 23 2 0 0 0 0 0 0 0 0
Model-based 0 25 0 0 0 0 0 0 0 0
Spectral 7 18 0 0 0 0 0 0 0 0

BI
kmeans 0 25 0 0 0 0 0 0 0 0
PAM 0 6 11 3 2 0 1 0 1 10
Single 0 11 1 0 0 0 0 1 3 9
Complete 0 0 0 0 0 1 0 3 6 15
Average 0 0 0 0 1 0 0 1 7 16
Ward 0 0 3 0 0 3 6 7 3 3
McQuitty 0 0 0 0 0 0 0 2 2 21
Model-based 0 25 0 0 0 0 0 0 0 0
Spectral 0 5 12 2 1 0 0 0 0 5

CVNN
kmeans 0 9 6 8 2 0 0 0 0 0
PAM 4 11 5 3 2 0 0 0 0 0
Single 0 11 8 3 2 1 0 0 0 0
Complete 0 12 7 3 2 1 0 0 0 0
Average 21 3 1 0 0 0 0 0 0 0
Ward 1 10 6 4 2 0 2 0 0 0
McQuitty 5 17 0 2 1 0 0 0 0 0
Model-based 8 8 1 5 3 0 0 0 0 0
Spectral 0 17 3 4 1 0 0 0 0 0

BIC
Model-based 0 25 0 0 0 0 0 0 0 0
PAMSIL 0 20 1 0 2 1 0 0 1 0

ASW
kmeans 0 21 1 2 1 0 0 0 0 0
PAM 0 20 1 1 1 0 0 1 1 0
Single 0 4 8 4 6 1 0 0 1 1
Complete 0 7 2 2 2 2 4 2 1 3
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Average 0 13 1 2 2 2 1 2 1 1
Ward 0 19 0 0 1 2 1 0 1 1
McQuitty 0 7 3 0 4 3 1 4 1 2
Model-based 0 20 0 2 0 0 1 1 1 0
Spectral 0 24 0 1 0 0 0 0 0 0

OSil
kmeans 0 21 1 2 1 0 0 0 0 0
PAM 0 20 1 1 1 0 0 1 1 0
Single 0 7 7 3 3 1 3 1 0 0
Complete 0 19 2 0 2 1 0 0 1 0
Average 0 17 3 1 1 2 0 1 0 0
Ward 0 20 1 1 1 1 0 0 1 0
McQuitty 0 15 5 2 1 1 0 1 0 0
Model-based 0 21 0 0 3 0 0 1 0 0
Spectral 0 22 1 2 0 0 0 0 0 0

Table C.12: Results for estimation of number of clusters k̂ from indices and clustering
methods included in the study for Model 2. The true number of clusters are made bold.

No. of clusters 1 2 3 4 5 6 7 8 9 10

CH
kmeans 0 0 2 7 4 6 5 1 0 0
PAM 0 0 1 4 1 2 5 4 6 2
Single 0 3 6 5 4 2 1 3 1 0
Complete 0 0 0 0 0 4 5 2 3 11
Average 0 0 1 4 2 3 0 3 1 11
Ward 0 0 0 0 0 2 3 1 5 14
McQuitty 0 0 0 1 0 4 3 4 3 10
Model-based 0 0 4 2 3 6 4 1 1 4
Spectral 0 0 8 3 2 6 2 2 1 1

H
kmeans 0 1 4 6 7 6 1 0 0 0
PAM 0 0 0 0 1 1 4 19 0 0
Single 6 2 0 2 1 0 0 0 0 0
Complete 0 0 0 0 0 0 0 25 0 0
Average 1 1 2 1 3 2 3 12 0 0
Ward 0 0 0 0 0 0 0 25 0 0
McQuitty 1 1 2 2 3 2 0 13 0 0
Model-based 0 1 5 6 5 4 3 1 0 0
Spectral 5 4 5 8 3 0 0 0 0 0

Gamma
kmeans 0 0 0 3 5 10 5 2 0 0
PAM 0 0 0 0 0 0 4 7 8 6
Single 0 0 0 0 1 0 1 3 8 12
Complete 0 0 0 0 0 0 0 0 2 23
Average 0 0 0 0 0 0 0 0 0 25
Ward 0 0 0 0 0 0 0 0 0 25
McQuitty 0 0 0 0 0 0 0 1 1 23
Model-based 0 0 0 1 3 5 5 2 2 7
Spectral 0 0 1 0 3 10 4 3 2 2

C
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kmeans 0 0 0 4 4 10 5 2 0 0
PAM 0 0 0 0 0 0 4 7 8 6
Single 0 0 0 0 1 1 1 5 8 9
Complete 0 0 0 0 0 0 0 0 2 23
Average 0 0 0 0 0 0 1 0 0 24
Ward 0 0 0 0 0 0 0 0 0 25
McQuitty 0 0 0 0 0 0 0 1 0 24
Model-based 0 0 0 0 3 4 4 2 2 10
Spectral 0 1 0 0 4 10 5 3 1 1

KL
kmeans 0 16 3 4 1 1 0 0 0 0
PAM 0 6 4 6 1 4 4 0 0 0
Single 0 6 5 3 7 3 1 0 0 0
Complete 0 2 7 5 10 0 1 0 0 0
Average 0 12 2 1 2 4 4 0 0 0
Ward 0 3 2 9 5 2 4 0 0 0
McQuitty 0 9 6 1 3 3 3 0 0 0
Model-based 0 3 6 5 4 5 2 0 0 0
Spectral 0 6 2 4 5 4 4 0 0 0

Gap
kmeans 0 0 9 11 4 1 0 0 0 0
PAM 0 0 8 12 3 2 0 0 0 0
Single 14 7 3 1 0 0 0 0 0 0
Complete 0 9 5 6 3 2 0 0 0 0
Average 0 1 11 11 1 1 0 0 0 0
Ward 0 0 9 7 7 1 1 0 0 0
McQuitty 1 9 8 7 0 0 0 0 0 0

Jump
p/2 0 0 8 8 9 0 0 0 0 0
p/2 0 0 24 1 0 0 0 0 0 0
p/2 0 4 20 1 0 0 0 0 0 0
p/2 24 0 1 0 0 0 0 0 0 0
p/2 25 0 0 0 0 0 0 0 0 0
p/2 25 0 0 0 0 0 0 0 0 0

PS
kmeans 0 0 25 0 0 0 0 0 0 0
PAM 1 24 0 0 0 0 0 0 0 0
Single 13 10 2 0 0 0 0 0 0 0
Complete 25 0 0 0 0 0 0 0 0 0
Average 22 3 0 0 0 0 0 0 0 0
Ward 25 0 0 0 0 0 0 0 0 0
McQuitty 22 3 0 0 0 0 0 0 0 0
Model-based 0 0 25 0 0 0 0 0 0 0
Spectral 19 5 1 0 0 0 0 0 0 0

BI
kmeans 0 3 22 0 0 0 0 0 0 0
PAM 0 16 0 5 4 0 0 0 0 0
Single 0 9 2 1 0 0 0 0 4 9
Complete 0 0 0 0 1 0 0 11 5 8
Average 0 0 0 0 0 0 0 2 6 17
Ward 0 0 0 0 1 16 7 1 0 0
McQuitty 0 0 0 0 0 0 0 4 11 10
Model-based 0 0 25 0 0 0 0 0 0 0
Spectral 0 1 1 8 7 6 0 2 0 0
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CVNN
kmeans 0 0 21 3 1 0 0 0 0 0
PAM 0 1 21 3 0 0 0 0 0 0
Single 14 7 4 0 0 0 0 0 0 0
Complete 0 2 8 8 5 2 0 0 0 0
Average 0 1 20 4 0 0 0 0 0 0
Ward 0 0 21 4 0 0 0 0 0 0
McQuitty 1 3 8 8 4 1 0 0 0 0
Model-based 0 0 24 1 0 0 0 0 0 0
Spectral 1 13 3 3 1 3 1 0 0 0

BIC
Model-based 0 0 25 0 0 0 0 0 0 0
PAMSIL 0 0 7 12 0 1 2 1 1 1

ASW
kmeans 0 0 13 8 1 2 1 0 0 0
PAM 0 0 12 7 3 3 0 0 0 0
Single 0 3 5 5 4 1 2 3 2 0
Complete 0 1 1 3 1 12 3 2 2 0
Average 0 0 11 10 0 2 1 0 0 1
Ward 0 1 8 4 1 3 1 3 1 3
McQuitty 0 1 2 8 1 5 2 2 3 1
Model-based 0 0 13 3 2 5 1 0 0 1
Spectral 0 2 12 4 1 3 1 1 0 1

OSil
kmeans 0 0 12 9 1 2 1 0 0 0
PAM 0 0 9 9 2 2 3 0 0 0
Single 0 0 3 6 7 3 1 2 2 1
Complete 0 0 6 12 1 2 1 0 1 2
Average 0 0 9 13 0 2 1 0 0 0
Ward 0 0 10 8 1 1 2 0 1 2
McQuitty 0 0 7 14 1 1 1 1 0 0
Model-based 0 0 9 12 1 1 1 1 0 0
Spectral 0 0 7 9 2 1 3 2 1 0

Table C.13: Results for estimation of number of clusters k̂ from indices and clustering
methods included in the study for Model 3. The true number of clusters are made bold.

No. of clusters 1 2 3 4 5 6 7 8 9 10

CH
kmeans 0 0 0 0 9 5 0 0 5 6
PAM 0 0 0 0 3 10 4 1 4 2
Single 0 0 1 0 0 3 2 3 9 9
Complete 0 0 0 0 3 5 1 4 9 3
Average 0 0 0 0 1 5 2 6 4 7
Ward 0 0 0 0 1 3 3 3 1 14
McQuitty 0 0 0 0 1 2 1 9 4 8
Model-based 0 0 0 2 2 1 1 10 3 5
Spectral 0 0 0 1 9 7 8 0 0 0

H
kmeans 3 2 6 10 3 1 0 0 0 0
PAM 0 0 0 0 0 1 3 21 0 0
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Single 10 7 1 1 0 0 1 1 0 0
Complete 0 0 2 2 0 0 0 21 0 0
Average 4 4 2 1 2 2 1 9 0 0
Ward 0 0 0 0 0 0 0 25 0 0
McQuitty 1 3 4 3 0 1 0 13 0 0
Model-based 0 0 2 7 8 3 3 2 0 0
Spectral 4 8 1 6 5 1 0 0 0 0

Gamma
kmeans 0 10 1 2 9 3 0 0 0 0
PAM 0 3 0 0 4 6 9 3 0 0
Single 0 5 1 2 0 0 0 1 0 16
Complete 0 2 0 0 0 0 0 4 3 16
Average 0 2 0 0 0 0 2 3 2 16
Ward 0 2 0 0 0 2 5 5 2 9
McQuitty 0 2 0 0 0 0 0 2 3 18
Model-based 0 2 0 0 4 1 2 6 3 7
Spectral 0 4 0 0 8 4 8 1 0 0

C
kmeans 0 2 2 1 17 2 0 0 1 0
PAM 0 1 0 0 5 5 11 3 0 0
Single 0 0 0 1 0 0 1 2 2 19
Complete 0 0 0 0 0 0 0 0 3 22
Average 0 0 0 0 0 0 0 0 0 25
Ward 0 0 0 0 0 1 2 2 9 11
McQuitty 0 0 0 0 0 0 0 1 1 23
Model-based 0 1 0 0 5 1 1 7 2 8
Spectral 0 1 0 0 10 3 10 1 0 0

KL
kmeans 0 11 7 0 5 2 0 0 0 0
PAM 0 3 11 6 3 1 1 0 0 0
Single 0 1 4 5 7 2 6 0 0 0
Complete 0 1 1 9 5 9 0 0 0 0
Average 0 4 1 5 7 3 5 0 0 0
Ward 0 0 11 6 1 5 2 0 0 0
McQuitty 0 3 6 9 5 1 1 0 0 0
Model-based 0 12 5 1 1 3 3 0 0 0
Spectral 0 5 10 5 4 0 1 0 0 0

Gap
kmeans 0 2 10 4 8 1 0 0 0 0
PAM 0 0 0 0 4 15 4 2 0 0
Single 4 11 10 0 0 0 0 0 0 0
Complete 2 1 13 4 2 1 1 0 0 0
Average 0 4 19 1 1 0 0 0 0 0
Ward 0 0 0 0 5 7 9 3 1 0
McQuitty 4 9 7 5 0 0 0 0 0 0

Jump
p/2 0 0 0 1 24 0 0 0 0 0
p/3 0 0 0 3 22 0 0 0 0 0
p/4 0 0 0 10 15 0 0 0 0 0
p/5 0 2 2 15 6 0 0 0 0 0
p/6 20 0 0 2 3 0 0 0 0 0
p/7 25 0 0 0 0 0 0 0 0 0

PS
kmeans 0 22 2 1 0 0 0 0 0 0
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PAM 0 0 24 1 0 0 0 0 0 0
Single 9 5 1 9 1 0 0 0 0 0
Complete 11 1 13 0 0 0 0 0 0 0
Average 1 9 12 3 0 0 0 0 0 0
Ward 0 0 24 1 0 0 0 0 0 0
McQuitty 13 0 10 2 0 0 0 0 0 0
Model-based 0 0 5 20 0 0 0 0 0 0
Spectral 0 21 4 0 0 0 0 0 0 0

BI
kmeans 0 25 0 0 0 0 0 0 0 0
PAM 0 13 5 6 0 0 1 0 0 0
Single 0 8 2 3 7 4 1 0 0 0
Complete 0 1 7 0 2 2 5 3 3 1
Average 0 12 1 0 0 0 1 1 1 9
Ward 0 18 1 0 0 3 0 2 0 1
McQuitty 0 0 2 1 0 0 2 4 4 12
Model-based 0 13 10 2 0 0 0 0 0 0
Spectral 0 24 0 0 0 1 0 0 0 0

CVNN
kmeans 0 0 11 11 1 2 0 0 0 0
PAM 0 0 3 20 2 0 0 0 0 0
Single 4 12 9 0 0 0 0 0 0 0
Complete 0 0 12 6 7 0 0 0 0 0
Average 0 4 14 2 5 0 0 0 0 0
Ward 0 0 0 21 4 0 0 0 0 0
McQuitty 0 2 11 8 4 0 0 0 0 0
Model-based 0 0 0 25 0 0 0 0 0 0
Spectral 0 2 11 4 6 1 1 0 0 0

BIC
Model-based 0 0 0 15 1 0 0 0 0 0
PAMSIL 0 12 0 3 7 3 0 0 1 0

ASW
kmeans 0 17 0 1 7 0 0 0 0 0
PAM 0 14 0 3 6 2 0 0 0 0
Single 0 19 1 0 0 1 0 0 0 4
Complete 0 19 0 0 5 0 0 0 1 0
Average 0 15 0 1 6 0 0 0 3 0
Ward 0 13 0 3 6 3 0 0 0 0
McQuitty 0 16 0 1 5 0 2 1 0 0
Model-based 0 15 0 5 4 0 0 1 0 0
Spectral 0 14 0 2 7 2 0 0 0 0

OSil
kmeans 0 12 0 2 5 0 0 0 0 0
PAM 0 11 0 2 5 1 0 0 0 0
Single 0 17 1 0 0 0 1 0 0 0
Complete 0 12 0 0 4 1 1 0 1 0
Average 0 11 0 1 4 1 1 0 1 0
Ward 0 10 0 2 5 2 0 0 0 0
McQuitty 0 11 0 1 4 2 0 0 1 0
Model-based 0 9 0 3 4 2 0 0 1 0
Spectral 0 13 0 1 4 1 0 0 0 0
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Table C.14: Results for estimation of number of clusters k̂ from indices and clustering
methods included in the study for Model 4 . The true number of clusters are made
bold.

No. of clusters 1 2 3 4 5 6 7 8 9 10

CH
kmeans 0 0 0 0 4 5 3 4 2 7
PAM 0 0 0 0 0 0 4 1 7 13
Single 0 0 0 2 2 6 6 1 4 4
Complete 0 0 0 0 1 0 1 3 6 14
Average 0 0 0 0 11 1 4 2 2 5
Ward 0 0 0 0 0 0 1 0 4 20
McQuitty 0 0 0 0 3 0 4 3 5 10
Model-based 0 0 0 0 7 1 3 5 4 5
Spectral 0 0 0 0 9 7 5 2 2 0

H
kmeans 0 1 8 11 2 3 0 0 0 0
PAM 0 0 0 0 0 0 0 25 0 0
Single 2 0 13 3 3 4 0 0 0 0
Complete 0 0 1 0 0 0 0 24 0 0
Average 0 1 0 1 3 4 4 12 0 0
Ward 0 0 0 0 0 0 0 25 0 0
McQuitty 0 1 1 0 1 1 1 20 0 0
Model-based 0 0 0 5 3 1 5 11 0 0
Spectral 4 10 4 4 1 2 0 0 0 0

Gamma
kmeans 0 0 0 0 16 4 1 2 0 2
PAM 0 0 0 0 20 1 0 0 0 4
Single 0 0 0 0 1 3 8 3 3 7
Complete 0 0 0 0 14 5 2 1 0 3
Average 0 0 0 0 7 8 4 1 0 5
Ward 0 0 0 0 16 4 1 0 1 3
McQuitty 0 0 0 0 8 9 3 0 0 5
Model-based 0 0 0 0 13 1 2 2 3 4
Spectral 0 0 0 0 10 7 5 1 0 2

C
kmeans 0 0 0 1 17 3 1 1 0 2
PAM 0 0 0 0 18 0 1 0 0 6
Single 0 0 0 1 2 3 8 2 2 7
Complete 0 0 0 0 10 4 1 0 0 10
Average 0 0 0 0 6 8 4 0 0 7
Ward 0 0 0 0 14 1 1 0 1 8
McQuitty 0 0 0 0 7 8 3 0 0 7
Model-based 0 0 0 0 14 1 2 2 3 3
Spectral 0 0 0 0 11 7 4 1 0 2

KL
kmeans 0 0 15 8 2 0 0 0 0 0
PAM 0 0 18 0 4 1 2 0 0 0
Single 0 5 2 6 6 4 2 0 0 0
Complete 0 0 0 20 5 0 0 0 0 0
Average 0 0 0 23 1 1 0 0 0 0
Ward 0 0 24 0 1 0 0 0 0 0
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McQuitty 0 0 20 4 0 0 1 0 0 0
Model-based 0 0 17 4 2 2 0 0 0 0
Spectral 0 0 9 9 6 0 1 0 0 0

Gap
kmeans 2 2 3 7 10 1 0 0 0 0
PAM 6 0 0 0 10 2 6 0 1 0
Single 0 2 0 21 2 0 0 0 0 0
Complete 0 5 0 3 16 0 1 0 0 0
Average 0 0 1 0 22 2 0 0 0 0
Ward 0 0 0 0 21 2 2 0 0 0
McQuitty 1 3 3 0 14 2 2 0 0 0

Jump
p/2 0 0 0 0 25 0 0 0 0 0
p/3 0 0 0 0 25 0 0 0 0 0
p/4 0 0 0 0 25 0 0 0 0 0
p/5 0 0 0 0 25 0 0 0 0 0
p/6 0 0 0 0 25 0 0 0 0 0
p/7 21 0 0 0 4 0 0 0 0 0

PS
kmeans 5 19 0 0 1 0 0 0 0 0
PAM 0 0 0 0 25 0 0 0 0 0
Single 4 0 0 20 0 1 0 0 0 0
Complete 5 0 0 0 20 0 0 0 0 0
Average 0 0 0 0 22 3 0 0 0 0
Ward 0 0 0 0 25 0 0 0 0 0
McQuitty 3 0 0 0 21 1 0 0 0 0
Model-based 0 0 0 1 24 0 0 0 0 0
Spectral 25 0 0 0 0 0 0 0 0 0

BI
kmeans 0 5 0 0 5 6 3 3 2 1
PAM 0 0 0 1 24 0 0 0 0 0
Single 0 4 3 13 1 1 1 2 0 0
Complete 0 0 0 0 19 0 2 0 0 4
Average 0 0 0 3 21 1 0 0 0 0
Ward 0 0 0 2 23 0 0 0 0 0
McQuitty 0 0 0 0 17 5 1 0 1 1
Model-based 0 0 0 8 17 0 0 0 0 0
Spectral 0 0 0 0 1 4 9 8 1 2

CVNN
kmeans 0 0 0 5 17 3 0 0 0 0
PAM 0 0 0 0 25 0 0 0 0 0
Single 0 2 0 21 2 0 0 0 0 0
Complete 0 0 0 4 21 0 0 0 0 0
Average 0 0 1 1 23 0 0 0 0 0
Ward 0 0 0 2 23 0 0 0 0 0
McQuitty 0 0 1 3 20 1 0 0 0 0
Model-based 0 0 0 0 25 0 0 0 0 0
Spectral 0 0 2 14 7 2 0 0 0 0

BIC
Model-based 0 0 0 0 11 8 3 3 0 0
PAMSIL 0 0 0 0 25 0 0 0 0 0

ASW
kmeans 0 0 0 3 17 4 1 0 0 0
PAM 0 0 0 0 25 0 0 0 0 0
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Single 0 0 0 11 2 6 3 2 0 1
Complete 0 0 0 0 20 5 0 0 0 0
Average 0 0 0 0 24 1 0 0 0 0
Ward 0 0 0 0 25 0 0 0 0 0
McQuitty 0 0 0 2 20 3 0 0 0 0
Model-based 0 0 0 0 24 1 0 0 0 0
Spectral 0 0 0 1 14 7 3 0 0 0

OSil
kmeans 0 0 0 1 17 4 2 1 0 0
PAM 0 0 0 0 25 0 0 0 0 0
Single 0 0 0 2 2 6 6 4 2 3
Complete 0 0 0 0 21 4 0 0 0 0
Average 0 0 0 0 24 1 0 0 0 0
Ward 0 0 0 0 25 0 0 0 0 0
McQuitty 0 0 0 0 22 3 0 0 0 0
Model-based 0 0 0 0 25 0 0 0 0 0
Spectral 0 0 0 0 14 8 3 0 0 0

Table C.15: Results for estimation of number of clusters k̂ from indices and clustering
methods included in the study for Model 5. The true number of clusters are made bold.

No. of clusters 1 2 3 4 5 6 7 8 9 10

CH
kmeans 0 0 0 0 1 4 4 7 4 5
PAM 0 0 0 0 1 0 0 2 3 19
Single 0 3 8 3 4 3 1 1 0 2
Complete 0 0 0 2 0 0 0 3 9 11
Average 0 0 2 0 0 0 0 4 10 9
Ward 0 0 0 0 0 2 4 3 2 14
McQuitty 0 0 2 6 0 0 2 1 9 5
Model-based 0 0 0 0 1 7 2 4 4 7
Spectral 0 0 0 1 3 8 5 3 3 2

H
kmeans 0 4 7 5 4 2 3 0 0 0
PAM 0 0 0 2 0 0 0 23 0 0
Single 3 6 5 3 1 2 2 0 0 0
Complete 0 0 1 7 6 2 1 8 0 0
Average 4 0 9 5 2 2 0 3 0 0
Ward 0 0 0 0 0 0 0 25 0 0
McQuitty 1 0 2 7 6 3 2 4 0 0
Model-based 0 0 0 0 5 1 4 15 0 0
Spectral 6 4 10 1 0 3 1 0 0 0

Gamma
kmeans 0 5 3 0 0 4 3 8 2 0
PAM 0 7 14 0 0 0 0 0 0 4
Single 0 4 4 5 1 2 3 0 1 5
Complete 0 0 0 2 1 0 0 0 0 22
Average 0 0 0 1 3 1 0 0 0 20
Ward 0 0 0 0 0 0 0 3 3 19
McQuitty 0 4 0 7 3 0 0 0 0 11
Model-based 0 0 0 0 0 0 0 2 6 17
Spectral 0 3 1 0 0 4 4 5 4 4
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C
kmeans 0 0 3 1 3 5 2 6 3 2
PAM 0 0 8 0 0 0 0 0 0 17
Single 0 0 3 9 2 2 3 0 1 5
Complete 0 0 0 1 2 1 0 0 0 21
Average 0 0 0 0 1 3 1 0 0 20
Ward 0 0 0 0 0 0 0 4 8 13
McQuitty 0 0 0 3 7 3 0 0 0 12
Model-based 0 0 0 0 0 0 2 3 6 14
Spectral 0 0 3 1 0 5 4 4 4 4

KL
kmeans 0 5 4 4 5 5 2 0 0 0
PAM 0 0 0 0 16 7 2 0 0 0
Single 0 2 1 8 7 6 1 0 0 0
Complete 0 3 16 1 0 0 5 0 0 0
Average 0 2 5 2 2 7 7 0 0 0
Ward 0 0 0 10 8 5 2 0 0 0
McQuitty 0 8 2 1 4 2 8 0 0 0
Model-based 0 23 0 0 0 1 1 0 0 0
Spectral 0 7 2 4 3 5 4 0 0 0

Gap
kmeans 4 2 10 5 3 1 0 0 0 0
PAM 0 0 0 3 22 0 0 0 0 0
Single 6 7 8 3 1 0 0 0 0 0
Complete 0 15 10 0 0 0 0 0 0 0
Average 0 22 3 0 0 0 0 0 0 0
Ward 0 0 0 2 0 11 11 1 0 0
McQuitty 0 19 6 0 0 0 0 0 0 0

Jump
p/2 0 0 1 3 21 0 0 0 0 0
p/3 0 0 22 1 2 0 0 0 0 0
p/4 25 0 0 0 0 0 0 0 0 0
p/5 25 0 0 0 0 0 0 0 0 0
p/6 25 0 0 0 0 0 0 0 0 0
p/7 25 0 0 0 0 0 0 0 0 0

PS
kmeans 0 21 3 1 0 0 0 0 0 0
PAM 0 0 0 0 0 25 0 0 0 0
Single 7 2 8 6 2 0 0 0 0 0
Complete 0 1 24 0 0 0 0 0 0 0
Average 0 1 20 4 0 0 0 0 0 0
Ward 0 0 0 23 2 0 0 0 0 0
McQuitty 0 4 20 1 0 0 0 0 0 0
Model-based 0 0 0 0 25 0 0 0 0 0
Spectral 1 14 10 0 0 0 0 0 0 0

BI
kmeans 0 0 0 0 2 1 4 6 7 5
PAM 0 3 0 7 6 6 3 0 0 0
Single 0 7 3 2 1 3 2 4 0 3
Complete 0 23 0 0 0 0 1 1 0 0
Average 0 24 0 0 0 0 0 1 0 0
Ward 0 22 0 3 0 0 0 0 0 0
McQuitty 0 20 1 0 1 0 0 0 2 1
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Model-based 0 0 1 5 19 0 0 0 0 0
Spectral 0 18 0 1 0 0 0 3 2 1

CVNN
kmeans 0 0 2 10 10 3 0 0 0 0
PAM 0 0 3 9 13 0 0 0 0 0
Single 8 6 8 3 0 0 0 0 0 0
Complete 0 14 3 7 0 1 0 0 0 0
Average 0 13 9 2 1 0 0 0 0 0
Ward 0 0 0 12 8 5 0 0 0 0
McQuitty 0 8 6 11 0 0 0 0 0 0
Model-based 0 0 0 0 25 0 0 0 0 0
Spectral 0 0 8 9 4 3 1 0 0 0

BIC
Model-based 0 0 0 0 24 1 0 0 0 0
PAMSIL 0 0 0 0 0 25 0 0 0 0

ASW
kmeans 0 4 0 0 5 9 2 3 2 0
PAM 0 0 0 0 0 24 0 0 1 0
Single 0 19 2 0 0 0 0 1 1 2
Complete 0 13 0 0 0 0 0 0 5 7
Average 0 11 0 0 0 0 0 2 7 5
Ward 0 1 0 0 10 11 3 0 0 0
McQuitty 0 17 0 0 0 0 0 1 5 2
Model-based 0 0 0 0 25 0 0 0 0 0
Spectral 0 6 0 0 5 10 3 0 1 0

OSil
kmeans 0 2 0 0 3 9 4 4 2 1
PAM 0 0 0 0 0 25 0 0 0 0
Single 0 15 2 0 0 0 2 3 1 2
Complete 0 9 0 0 0 0 0 1 8 7
Average 0 9 0 0 0 0 0 4 6 6
Ward 0 0 0 0 10 12 3 0 0 0
McQuitty 0 17 0 0 0 0 0 1 6 1
Model-based 0 0 0 0 25 0 0 0 0 0
Spectral 0 1 0 0 5 6 8 3 2 0

Table C.16: Results for estimation of number of clusters k̂ from indices and clustering
methods included in the study for Model 6. The true number of clusters are made bold.

No. of clusters 1 2 3 4 5 6 7 8

CH
kmeans 0 0 0 8 7 0 10 0
PAM 0 0 0 8 25 0 0 0
Single 0 0 0 25 0 0 0 0
Complete 0 0 0 14 0 11 0 0
Average 0 0 0 14 3 4 4 0
Ward 0 0 0 0 25 0 0 0
McQuitty 0 0 0 10 0 12 3 0
Model-based 0 0 0 0 25 0 0 0
Spectral 0 0 0 6 7 12 0 0

H
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kmeans 4 7 7 7 0 0 0 0
PAM 0 0 0 0 0 0 11 14
Single 0 0 21 4 0 0 0 0
Complete 0 0 0 0 3 22 0 0
Average 0 0 7 4 7 7 0 0
Ward 0 0 0 0 0 0 0 25
McQuitty 0 0 7 0 4 0 7 7
Model-based 0 0 0 0 3 4 14 4
Spectral 6 8 7 0 4 0 0 0

Gamma
kmeans 0 25 0 0 0 0 0 0
PAM 0 25 0 0 0 0 0 0
Single 0 25 0 0 0 0 0 0
Complete 0 25 0 0 0 0 0 0
Average 0 25 0 0 0 0 0 0
Ward 0 25 0 0 0 0 0 0
McQuitty 0 25 0 0 0 0 0 0
Model-based 0 25 0 0 0 0 0 0
Spectral 0 25 0 0 0 0 0 0

C
kmeans 0 25 0 0 0 0 0 0
PAM 0 25 0 0 0 0 0 0
Single 0 25 0 0 0 0 0 0
Complete 0 25 0 0 0 0 0 0
Average 0 25 0 0 0 0 0 0
Ward 0 25 0 0 0 0 0 0
McQuitty 0 25 0 0 0 0 0 0
Model-based 0 25 0 0 0 0 0 0
Spectral 0 25 0 0 0 0 0 0

KL
kmeans 0 4 4 4 9 0 4 0
PAM 0 7 4 11 0 3 0 0
Single 0 21 0 4 0 0 0 0
Complete 0 0 13 0 0 0 0 0
Average 0 0 25 0 0 0 0 0
Ward 0 17 0 8 0 0 0 0
McQuitty 0 16 0 3 0 0 0 0
Model-based 0 0 15 7 0 3 0 0
Spectral 0 7 8 4 0 6 0 0

Gap
kmeans 0 4 11 7 3 0 0 0
PAM 0 0 0 0 4 21 0 0
Single 0 0 0 21 4 0 0 0
Complete 0 0 0 14 3 8 0 0
Average 0 0 0 22 0 3 0 0
Ward 0 0 0 0 0 15 7 0
McQuitty 0 0 0 25 0 0 0 0

Jump
p/2 0 0 0 0 25 0 0 0
p/3 0 0 0 0 25 0 0 0
p/4 0 0 0 17 8 0 0 0
p/5 0 0 0 25 0 0 0 0
p/6 0 0 0 25 0 0 0 0
p/7 0 0 0 25 0 0 0 0
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PS
kmeans 0 25 0 0 0 0 0 0
PAM 0 0 0 0 25 0 0 0
Single 0 0 0 11 14 0 0 0
Complete 0 0 0 25 0 0 0 0
Average 0 0 0 15 10 0 0 0
Ward 0 0 0 0 25 0 0 0
McQuitty 0 0 0 18 7 0 0 0
Model-based 0 0 0 0 25 0 0 0
Spectral 0 14 7 4 0 0 0 0

BI
kmeans 0 25 0 0 0 0 0 0
PAM 0 25 0 0 0 0 0 0
Single 0 25 0 0 0 0 0 0
Complete 0 25 0 0 0 0 0 0
Average 0 25 0 0 0 0 0 0
Ward 0 25 0 0 0 0 0 0
McQuitty 0 25 0 0 0 0 0 0
Model-based 0 25 0 0 0 0 0 0
Spectral 0 25 0 0 0 0 0 0

CVNN
kmeans 0 0 11 11 3 0 0 0
PAM 0 0 0 17 8 0 0 0
Single 0 0 0 25 0 0 0 0
Complete 0 0 0 25 0 0 0 0
Average 0 0 0 22 3 0 0 0
Ward 0 0 0 10 15 0 0 0
McQuitty 0 0 0 25 0 0 0 0
Model-based 0 0 0 10 15 0 0 0
Spectral 0 0 14 11 0 0 0 0

BIC
Model-based 0 0 0 0 25 0 0 0
PAMSIL 0 0 0 25 0 0 0 0

ASW
kmeans 0 11 0 14 0 0 0 0
PAM 0 0 0 25 0 0 0 0
Single 0 0 0 25 0 0 0 0
Complete 0 0 0 25 0 0 0 0
Average 0 0 0 25 0 0 0 0
Ward 0 0 0 25 0 0 0 0
McQuitty 0 0 0 25 0 0 0 0
Model-based 0 0 0 25 0 0 0 0
Spectral 0 11 0 14 0 0 0 0

OSil
kmeans 0 8 0 14 3 0 0 0
PAM 0 0 0 25 0 0 0 0
Single 0 0 0 25 0 0 0 0
Complete 0 0 0 25 0 0 0 0
Average 0 0 0 25 0 0 0 0
Ward 0 0 0 25 0 0 0 0
McQuitty 0 0 0 25 0 0 0 0
Model-based 0 0 0 25 0 0 0 0
Spectral 0 11 0 14 0 0 0 0
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Table C.17: Frequency count for estimation of number of clusters k̂ from indices and
clustering methods included in the study for Model 7. The true number of clusters are
made bold.

No. of clusters 1 2 3 4 5 6 7 8

CH
kmeans 0 0 0 0 8 3 5 3
PAM 0 0 0 0 0 0 1 10
Single 0 0 0 18 1 1 1 1
Complete 0 0 0 0 13 0 1 5
Average 0 0 0 0 21 0 0 1
Ward 0 0 0 0 6 1 1 2
McQuitty 0 0 0 0 17 0 1 3
Model-based 0 0 0 0 0 10 10 2
Spectral 0 0 0 0 3 7 3 3

H
kmeans 8 2 3 3 2 3 1 1
PAM 0 0 0 0 0 0 0 23
Single 0 0 17 6 0 0 0 0
Complete 0 0 0 0 0 0 0 23
Average 0 0 0 2 6 0 1 14
Ward 0 0 0 0 0 0 0 23
McQuitty 0 0 0 0 0 1 1 21
Model-based 0 1 9 0 3 1 3 6
Spectral 0 7 10 4 0 1 1 0

Gamma
kmeans 0 0 10 6 5 2 0 0
PAM 0 0 23 0 0 0 0 0
Single 0 0 23 0 0 0 0 0
Complete 0 0 23 0 0 0 0 0
Average 0 0 23 0 0 0 0 0
Ward 0 0 23 0 0 0 0 0
McQuitty 0 0 23 0 0 0 0 0
Model-based 0 0 20 2 0 1 0 0
Spectral 0 0 18 2 1 0 2 0

C
kmeans 0 0 10 6 5 2 0 0
PAM 0 0 23 0 0 0 0 0
Single 0 0 23 0 0 0 0 0
Complete 0 0 23 0 0 0 0 0
Average 0 0 23 0 0 0 0 0
Ward 0 0 23 0 0 0 0 0
McQuitty 0 0 23 0 0 0 0 0
Model-based 0 0 20 2 0 0 1 0
Spectral 0 0 18 2 1 0 2 0

KL
kmeans 0 14 2 4 3 0 0 0
PAM 0 0 23 0 0 0 0 0
Single 0 19 1 0 1 1 1 0
Complete 0 23 0 0 0 0 0 0
Average 0 6 1 16 0 0 0 0
Ward 0 0 23 0 0 0 0 0

323



McQuitty 0 0 20 1 1 0 1 0
Model-based 0 20 1 1 0 1 0 0
Spectral 0 3 3 10 4 2 1 0

Gap
kmeans 0 13 2 4 3 0 1 0
PAM 0 0 0 0 0 0 0 0
Single 0 0 0 16 5 2 0 0
Complete 0 0 0 0 0 1 0 1
Average 0 0 0 1 15 4 0 1
Ward 0 0 0 0 0 0 0 0
McQuitty 0 0 0 0 8 2 5 3

Jump
p/2 0 0 0 1 22 0 0 0
p/3 0 0 0 1 22 0 0 0
p/4 0 0 0 1 22 0 0 0
p/5 0 0 0 1 22 0 0 0
p/6 0 0 0 1 22 0 0 0
p/7 0 0 0 1 22 0 0 0

PS
kmeans 12 11 2 0 0 0 0 0
PAM 0 0 0 0 25 0 0 0
Single 0 0 0 4 4 8 7 2
Complete 0 17 0 3 5 0 0 0
Average 0 0 0 2 22 1 0 0
Ward 0 0 0 0 22 3 0 0
McQuitty 0 0 2 14 9 0 0 0
Model-based 6 1 1 17 0 0 0 0
Spectral 3 0 16 6 0 0 0 0

BI
kmeans 0 2 0 0 1 2 1 9
PAM 0 24 0 0 0 0 0 0
Single 0 24 0 0 0 0 0 0
Complete 0 23 0 0 1 0 0 0
Average 0 24 0 0 0 0 0 0
Ward 0 24 0 0 0 0 0 0
McQuitty 0 24 0 0 0 0 0 0
Model-based 0 1 0 6 9 4 0 0
Spectral 0 0 13 0 0 4 3 0

CVNN
kmeans 0 1 6 11 4 1 0 0
PAM 0 0 0 23 0 0 0 0
Single 0 0 0 22 1 0 0 0
Complete 0 0 0 21 1 1 0 0
Average 0 0 0 9 14 0 0 0
Ward 0 0 0 22 1 0 0 0
McQuitty 0 0 0 16 6 1 0 0
Model-based 0 1 0 22 0 0 0 0
Spectral 0 3 12 4 2 1 1 0

BIC
Model-based 25 0 0 0 0 0 0 0
PAMSIL 0 0 25 0 0 0 0 0

ASW
kmeans 0 0 11 13 1 0 0 0
PAM 0 0 25 0 0 0 0 0
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Single 0 0 25 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0
Average 0 0 25 0 0 0 0 0
Ward 0 0 25 0 0 0 0 0
McQuitty 0 0 25 0 0 0 0 0
Model-based 0 1 21 3 0 0 0 0
Spectral 0 1 21 2 1 0 0 0

OSil
kmeans 0 0 11 13 1 0 0 0
PAM 0 0 25 0 0 0 0 0
Single 0 0 25 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0
Average 0 0 25 0 0 0 0 0
Ward 0 0 25 0 0 0 0 0
McQuitty 0 0 0 0 0 0 0 0
Model-based 0 0 25 0 0 0 0 0
Spectral 0 2 20 2 1 0 0 0

Table C.18: Frequency counts for estimation of number of clusters k̂ from indices and
clustering methods included in the study for Model 8. The true number of clusters are
made bold.

No. of clusters 1 2 3 4 5 6 7 8 9 10 11 12

CH
kmeans 0 0 0 0 0 0 0 0 3 2 8 12
PAM 0 0 0 0 0 0 0 0 0 2 2 21
Single 0 0 0 0 0 0 0 0 0 18 5 2
Complete 0 0 0 0 0 0 0 0 0 0 0 25
Average 0 0 0 0 0 0 0 0 0 10 4 11
Ward 0 0 0 0 0 0 0 0 0 0 0 25
McQuitty 0 0 0 0 0 0 0 0 0 0 4 21
Model-based 0 0 0 0 0 0 0 0 0 0 0 25
Spectral 0 0 0 0 0 1 0 0 2 6 5 11

H
kmeans 0 5 0 7 1 6 6 0 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 25 0 0
Single 0 1 0 0 0 0 0 0 0 24 0 0
Complete 0 0 0 0 0 0 0 0 0 25 0 0
Average 0 0 0 0 0 0 0 0 2 23 0 0
Ward 0 0 0 0 0 0 0 0 0 25 0 0
McQuitty 0 0 0 0 0 0 0 0 0 25 0 0
Model-based 0 0 0 0 0 0 0 0 0 25 0 0
Spectral 0 6 9 6 2 2 0 0 0 0 0 0

Gamma
kmeans 0 0 0 2 1 4 0 7 1 0 4 6
PAM 0 0 0 0 0 0 0 0 0 25 0 0
Single 0 0 0 0 0 0 0 0 0 25 0 0
Complete 0 0 0 0 0 0 0 0 0 25 0 0
Average 0 0 0 0 0 0 0 0 0 25 0 0
Ward 0 0 0 0 0 0 0 0 0 25 0 0
McQuitty 0 0 0 0 0 0 0 0 0 25 0 0
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Model-based 0 0 0 0 0 0 0 0 0 25 0 0
Spectral 0 0 0 1 2 0 0 0 2 8 5 7

C
kmeans 0 0 0 0 0 4 2 7 2 0 4 6
PAM 0 0 0 0 0 0 0 0 0 25 0 0
Single 0 0 0 0 0 0 0 0 0 25 0 0
Complete 0 0 0 0 0 0 0 0 0 25 0 0
Average 0 0 0 0 0 0 0 0 0 25 0 0
Ward 0 0 0 0 0 0 0 0 0 25 0 0
McQuitty 0 0 0 0 0 0 0 0 0 25 0 0
Model-based 0 0 0 0 0 0 0 0 0 25 0 0
Spectral 0 0 0 0 0 1 2 0 2 8 5 7

KL
kmeans 0 6 9 0 4 1 1 0 4 0 0 0
PAM 0 0 0 0 0 0 0 25 0 0 0 0
Single 0 0 0 0 0 0 0 25 0 0 0 0
Complete 0 0 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 0 0 25 0 0 0
Ward 0 0 0 0 0 0 0 25 0 0 0 0
McQuitty 0 0 0 0 0 0 0 25 0 0 0 0
Model-based 0 0 0 0 0 0 0 25 0 0 0 0
Spectral 0 5 4 3 5 3 2 0 3 0 0 0

Gap
kmeans 0 0 5 0 7 0 6 4 3 0 0 0
PAM 0 0 0 0 0 0 0 0 0 0 25 0
Single 0 0 0 0 0 0 0 0 0 0 25 0
Complete 0 0 0 0 0 0 0 0 0 0 25 0
Average 0 0 0 0 0 0 0 0 0 0 25 0
Ward 0 0 0 0 0 0 0 0 0 0 25 0
McQuitty 0 0 0 0 0 0 0 0 0 0 25 0

Jump
p/2 0 0 0 0 25 0 0 0 0 0 0 0
p/3 0 0 0 0 25 0 0 0 0 0 0 0
p/4 0 0 0 0 25 0 0 0 0 0 0 0
p/5 0 0 0 0 25 0 0 0 0 0 0 0
p/6 0 0 0 0 25 0 0 0 0 0 0 0
p/7 0 0 0 0 25 0 0 0 0 0 0 0

PS
kmeans 0 25 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 0 0 0 25 0 0
Single 0 0 0 0 0 0 0 0 0 25 0 0
Complete 0 0 0 0 0 0 0 0 0 25 0 0
Average 0 0 0 0 0 0 0 0 0 25 0 0
Ward 0 0 0 0 0 0 0 0 0 25 0 0
McQuitty 0 0 0 0 0 0 0 0 0 25 0 0
Model-based 0 0 0 0 0 0 0 0 0 25 0 0
Spectral 0 7 2 1 0 0 0 0 0 0 0 0

BI
kmeans 0 25 0 0 0 0 0 0 0 0 0 0
PAM 0 25 0 0 0 0 0 0 0 0 0 0
Single 0 25 0 0 0 0 0 0 0 0 0 0
Complete 0 0 4 15 0 0 0 1 0 5 0 0
Average 0 4 0 21 0 0 0 0 0 0 0 0
Ward 0 0 0 19 0 0 0 0 0 6 0 0
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McQuitty 0 1 0 17 0 0 0 0 0 7 0 0
Model-based 0 25 0 0 0 0 0 0 0 0 0 0
Spectral 0 25 0 0 0 0 0 0 0 0 0 0

CVNN
kmeans 0 0 0 0 2 3 5 5 0 0 0 0
PAM 0 0 7 13 0 0 0 4 0 0 0 0
Single 0 0 0 0 0 0 0 0 0 0 0 0
Complete 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 0 0 0 0 0 0 0 0 0 0 0
Ward 0 0 0 0 0 0 0 0 0 0 0 0
McQuitty 0 0 0 0 0 0 0 0 0 0 0 0
Model-based 0 0 0 0 0 0 0 0 0 0 0 0
Spectral 0 0 3 6 7 9 0 0 0 0 0 0

BIC
Model-based 0 0 0 0 0 0 0 0 25 0 0 0
PAMSIL 0 0 0 0 0 0 0 0 0 25 0 0

ASW
kmeans 0 0 0 0 0 0 0 2 7 2 6 8
PAM 0 0 0 0 0 0 0 0 0 25 0 0
Single 0 0 0 0 0 0 0 0 0 25 0 0
Complete 0 0 0 0 0 0 0 0 0 25 0 0
Average 0 0 0 0 0 0 0 0 0 25 0 0
Ward 0 0 0 0 0 0 0 0 0 25 0 0
McQuitty 0 0 0 0 0 0 0 0 0 25 0 0
Model-based 0 0 0 0 0 0 0 0 0 25 0 0
Spectral 0 1 0 0 0 2 0 0 3 7 5 7

OSil
kmeans 0 0 0 0 0 0 0 0 5 2 6 12
PAM 0 0 0 0 0 0 0 0 0 25 0 0
Single 0 0 0 0 0 0 0 0 0 25 0 0
Complete 0 0 0 0 0 0 0 0 0 25 0 0
Average 0 0 0 0 0 0 0 0 0 25 0 0
Ward 0 0 0 0 0 0 0 0 0 25 0 0
McQuitty 0 0 0 0 0 0 0 0 0 25 0 0
Model-based 0 0 0 0 0 0 0 0 0 25 0 0
Spectral 0 0 0 0 0 0 0 0 4 12 5 4

Table C.19: Frequency counts for estimation of number of clusters k̂ from indices and
clustering methods included in the study for Model 9. The true number of clusters are
made bold.

No. of clusters 1 2 3 4 5 6 7 8 9 10

CH
kmeans 0 1 17 7 0 0 0 0 0 0
PAM 0 0 25 0 0 0 0 0 0 0
Single 0 0 25 0 0 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0 0 0
Average 0 0 25 0 0 0 0 0 0 0
Ward 0 0 25 0 0 0 0 0 0 0
McQuitty 0 0 25 0 0 0 0 0 0 0
Model-based 0 0 25 0 0 0 0 0 0 0
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Spectral 0 0 25 0 0 0 0 0 0 0
H

kmeans 8 17 0 0 0 0 0 0 0 0
PAM 0 25 0 0 0 0 0 0 0 0
Single 0 25 0 0 0 0 0 0 0 0
Complete 0 25 0 0 0 0 0 0 0 0
Average 0 25 0 0 0 0 0 0 0 0
Ward 0 25 0 0 0 0 0 0 0 0
McQuitty 0 25 0 0 0 0 0 0 0 0
Model-based 0 25 0 0 0 0 0 0 0 0
Spectral 0 25 0 0 0 0 0 0 0 0

Gamma
kmeans 0 0 17 7 0 1 0 0 5 20
PAM 0 0 25 0 0 0 0 0 0 0
Single 0 0 25 0 0 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0 0 0
Average 0 0 25 0 0 0 0 0 0 0
Ward 0 0 25 0 0 0 0 0 0 0
McQuitty 0 0 25 0 0 0 0 0 0 0
Model-based 0 0 25 0 0 0 0 0 0 0

C
kmeans 0 0 17 7 1 0 0 3 5 17
PAM 0 0 25 0 0 0 0 0 0 0
Single 0 0 25 0 0 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0 0 0
Average 0 0 25 0 0 0 0 0 0 0
Ward 0 0 25 0 0 0 0 0 0 0
McQuitty 0 0 25 0 0 0 0 0 0 0
Model-based 0 0 25 0 0 0 0 0 0 0
Spectral 0 0 25 0 0 0 0 0 0 0

KL
kmeans 0 8 10 5 2 0 0 0 0 0
PAM 0 7 4 7 7 0 0 0 0 0
Single 0 6 6 6 7 0 0 0 0 0
Complete 0 25 0 0 0 0 0 0 0 0
Average 0 25 0 0 0 0 0 0 0 0
Ward 0 10 4 4 7 0 0 0 0 0
McQuitty 0 4 5 6 10 0 0 0 0 0
Model-based 0 5 9 7 4 0 0 0 0 0
Spectral 0 11 8 4 2 0 0 0 0 0

Gap
kmeans 0 8 17 0 0 0 0 0 0 0
PAM 0 0 25 0 0 0 0 0 0 0
Single 0 0 25 0 0 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0 0 0
Average 0 0 24 1 0 0 0 0 0 0
Ward 0 0 25 0 0 0 0 0 0 0
McQuitty 0 0 24 1 0 0 0 0 0 0

Jump
p/2 0 0 25 0 0 0 0 0 0 0
p/3 0 0 25 0 0 0 0 0 0 0
p/4 0 0 0 0 25 0 0 0 0 0
p/5 0 0 0 0 25 0 0 0 0 0
p/6 0 0 0 0 25 0 0 0 0 0
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p/7 0 0 0 0 25 0 0 0 0 0
PS

kmeans 8 1 10 6 0 0 0 0 0 0
PAM 4 0 21 0 0 0 0 0 0 0
Single 25 0 0 0 0 0 0 0 0 0
Complete 0 0 0 13 11 1 0 0 0 0
Average 0 0 0 0 5 4 2 5 2 7
Ward 0 0 3 22 0 0 0 0 0 0
McQuitty 0 0 0 0 2 2 7 4 3 7
Model-based 0 0 0 12 12 1 0 0 0 0
Spectral 0 0 25 0 0 0 0 0 0 0

BI
kmeans 0 0 2 11 11 1 0 0 0 0
PAM 0 0 3 3 0 0 0 2 4 13
Single 0 24 0 1 0 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0 0 0
Average 0 1 9 10 5 0 0 0 0 0
Ward 0 0 17 8 0 0 0 0 0 0
McQuitty 0 0 13 12 0 0 0 0 0 0
Model-based 0 0 15 10 0 0 0 0 0 0
Spectral 0 0 20 5 0 0 0 0 0 0

CVNN
kmeans 0 8 17 0 0 0 0 0 0 0
PAM 0 0 25 0 0 0 0 0 0 0
Single 0 0 25 0 0 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0 0 0
Average 0 0 25 0 0 0 0 0 0 0
Ward 0 0 25 0 0 0 0 0 0 0
McQuitty 0 0 25 0 0 0 0 0 0 0
Model-based 0 0 25 0 0 0 0 0 0 0
Spectral 0 25 0 0 0 0 0 0 0 0

BIC
Model-based 0 0 25 0 0 0 0 0 0 0
PAMSIL 0 0 25 0 0 0 0 0 0 0

ASW
kmeans 0 8 17 0 0 0 0 0 0 0
PAM 0 0 25 0 0 0 0 0 0 0
Single 0 0 25 0 0 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0 0 0
Average 0 0 25 0 0 0 0 0 0 0
Ward 0 0 25 0 0 0 0 0 0 0
McQuitty 0 0 25 0 0 0 0 0 0 0
Model-based 0 0 25 0 0 0 0 0 0 0
Spectral 0 0 25 0 0 0 0 0 0 0

OSil
kmeans 0 5 17 3 0 0 0 0 0 0
PAM 0 0 25 0 0 0 0 0 0 0
Single 0 0 25 0 0 0 0 0 0 0
Complete 0 0 25 0 0 0 0 0 0 0
Average 0 0 25 0 0 0 0 0 0 0
Ward 0 0 25 0 0 0 0 0 0 0
McQuitty 0 0 25 0 0 0 0 0 0 0
Model-based 0 0 25 0 0 0 0 0 0 0
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Spectral 0 0 25 0 0 0 0 0 0 0

Table C.20: Frequency counts for estimation of number of clusters k̂ from indices and
clustering methods included in the study for Model 10. The true number of clusters
are made bold.

No. of clusters 1 2 3 4 5 6 7 8 9 10

CH
kmeans 0 0 0 0 0 1 12 7 5 0
PAM 0 0 0 0 0 0 25 0 0 0
Single 0 0 0 0 0 0 25 0 0 0
Complete 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 25 0 0 0
Ward 0 0 0 0 0 0 25 0 0 0
McQuitty 0 0 0 0 0 0 25 0 0 0
Model-based 0 0 0 1 0 4 14 0 4 2
Spectral 0 8 3 1 3 3 2 1 1 3

H
Kmeans 1 2 1 7 6 8 0 0 0 0
PAM 0 0 0 0 0 25 0 0 0 0
Single 0 0 0 0 0 25 0 0 0 0
Complete 0 0 0 0 0 25 0 0 0 0
Average 0 0 0 0 0 25 0 0 0 0
Ward 0 0 0 0 0 25 0 0 0 0
McQuitty 0 0 0 0 0 25 0 0 0 0
Model-based 2 3 3 1 2 9 0 0 0 0
Spectral 25 0 0 0 0 0 0 0 0 0

Gamma
kmeans 0 0 0 0 4 5 13 2 1 0
PAM 0 0 0 0 0 0 25 0 0 0
Single 0 0 0 0 0 0 25 0 0 0
Complete 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 25 0 0 0
Ward 0 0 0 0 0 0 25 0 0 0
McQuitty 0 0 0 0 0 0 25 0 0 0
Model-based 0 0 0 0 0 4 14 0 4 3
Spectral 0 0 0 0 0 0 0 0 0 0

C
kmeans 0 0 0 0 4 5 13 2 1 0
PAM 0 0 0 0 0 0 25 0 0 0
Single 0 0 0 0 0 0 25 0 0 0
Complete 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 25 0 0 0
Ward 0 0 0 0 0 0 25 0 0 0
McQuitty 0 0 0 0 0 0 25 0 0 0
Model-based 0 0 0 0 0 4 14 0 4 3
Spectral 0 0 0 0 0 0 0 0 0 25

KL
kmeans 0 0 0 1 11 6 7 0 0 0
PAM 0 0 0 0 25 0 0 0 0 0
Single 0 0 0 0 25 0 0 0 0 0
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Complete 0 0 0 0 0 25 0 0 0 0
Average 0 0 0 0 0 25 0 0 0 0
Ward 0 0 0 0 25 0 0 0 0 0
McQuitty 0 0 0 0 25 0 0 0 0 0
Model-based 0 1 0 4 15 1 4 0 0 0
Spectral 0 2 7 3 5 3 5 0 0 0

Gap
kmeans 0 1 2 1 6 6 4 3 2 0
PAM 0 0 0 0 0 0 21 4 0 0
Single 0 0 0 0 0 0 24 1 0 0
Complete 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 25 0 0 0
Ward 0 0 0 0 0 0 23 2 0 0
McQuitty 0 0 0 0 0 0 25 0 0 0

Jump
p/2 0 0 0 0 25 0 0 0 0 0
p/3 0 0 0 0 25 0 0 0 0 0
p/4 0 0 0 0 25 0 0 0 0 0
p/5 0 0 0 0 25 0 0 0 0 0
p/6 0 0 0 0 25 0 0 0 0 0
p/7 0 0 0 0 25 0 0 0 0 0

PS
kmeans 0 0 0 0 0 0 0 0 0 0
PAM 0 0 0 0 0 0 25 0 0 0
Single 0 0 0 0 0 0 0 0 0 25
Complete 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 14 10 1 0
Ward 0 0 0 0 0 0 25 0 0 0
McQuitty 0 0 0 0 0 0 15 9 1 0
Model-based 0 0 0 0 0 2 2 4 7 10
Spectral 10 15 0 0 0 0 0 0 0 0

BI
kmeans 0 0 0 0 9 15 1 0 0 0
PAM 0 0 0 0 0 0 25 0 0 0
Single 0 0 0 0 0 0 25 0 0 0
Complete 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 25 0 0 0
Ward 0 0 0 0 0 0 25 0 0 0
McQuitty 0 0 0 0 0 0 25 0 0 0
Model-based 0 14 7 3 0 1 0 0 0 0
Spectral 0 3 0 3 8 9 0 0 0 2

CVNN
Single 0 0 0 0 0 0 25 0 0 0
Complete 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 25 0 0 0
Ward 0 0 0 0 0 0 25 0 0 0
McQuitty 0 0 0 0 0 0 25 0 0 0
kmeans 0 0 0 2 5 6 12 0 0 0
PAM 0 0 0 0 0 0 25 0 0 0
Model-based 0 1 2 2 1 5 14 0 0 0
Spectral 25 0 0 0 0 0 0 0 0 0

BIC
Model-based 1 0 0 1 0 4 15 0 4 0
PAMSIL 0 0 0 0 0 0 25 0 0 0
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ASW
kmeans 0 0 0 0 4 6 13 2 0 0
PAM 0 0 0 0 0 0 25 0 0 0
Single 0 0 0 0 0 0 25 0 0 0
Complete 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 25 0 0 0
Ward 0 0 0 0 0 0 25 0 0 0
McQuitty 0 0 0 0 0 0 25 0 0 0
Model-based 0 0 0 1 0 4 14 0 4 2
Spectral 20 5 0 0 0 0 0 0 0 0

OSil
kmeans 0 0 0 0 0 0 20 4 1 0
PAM 0 0 0 0 0 0 25 0 0 0
Single 0 0 0 0 0 0 25 0 0 0
Complete 0 0 0 0 0 0 25 0 0 0
Average 0 0 0 0 0 0 25 0 0 0
Ward 0 0 0 0 0 0 25 0 0 0
McQuitty 0 0 0 0 0 0 25 0 0 0
Model-based 0 0 0 0 0 5 14 0 4 2
Spectral 0 24 1 0 0 0 0 0 0 0

Table C.21: Frequency table of indication of cluster estimation at correct level for all
the indices in combination with all the methods for Model 1-10

Models M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
No.of dims. 2 2 2 2 2 5 10 500 1000 60
No. of clusters 2 3 4 5 6 5 7 10 3 7 Overall

CH
kmeans 18 2 0 4 4 7 5 2 17 12 74
PAM 14 1 0 0 0 25 1 2 25 25 93
Single 3 6 0 2 3 0 1 18 25 25 83
Complete 3 0 0 1 0 0 1 0 25 25 55
Average 6 1 0 11 0 3 0 10 25 25 81
Ward 6 0 0 0 2 25 1 0 25 25 84
McQuitty 2 0 0 3 0 0 1 0 25 25 56
Model-based 6 4 1 7 7 25 10 0 25 14 99
Spectral 19 8 1 9 8 7 3 6 25 2 78

703
H

kmeans 5 4 7 2 2 0 1 0 0 0 21
PAM 0 0 0 0 0 0 0 25 0 0 25
Single 0 0 1 3 2 0 0 24 0 0 30
Complete 4 0 2 0 2 3 0 25 0 0 36
Average 3 2 1 3 2 7 1 23 0 0 42
Ward 0 0 0 0 0 0 0 25 0 0 25
McQuitty 2 2 2 1 3 4 1 25 0 0 40
Model-based 8 5 5 3 1 3 3 25 0 0 53
Spectral 4 5 4 1 3 4 1 0 0 0 22

294
Gamma

kmeans 1 0 1 16 4 0 0 0 17 13 52
PAM 0 0 0 20 0 0 0 25 25 25 95
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Single 0 0 1 1 2 0 0 25 25 25 79
Complete 0 0 0 14 0 0 0 25 25 25 89
Average 0 0 0 7 1 0 0 25 25 25 83
Ward 0 0 0 16 0 0 0 25 25 25 91
McQuitty 0 0 0 8 0 0 0 25 25 25 83
Model-based 0 0 0 13 0 0 0 25 25 14 77
Spectral 0 1 0 10 4 0 2 8 25 0 50

699
C

kmeans 1 0 1 17 5 0 0 0 17 13 54
PAM 0 0 0 18 0 0 0 25 25 25 93
Single 0 0 1 2 2 0 0 25 25 25 80
Complete 0 0 0 10 1 0 0 25 25 25 86
Average 0 0 0 6 3 0 0 25 25 25 84
Ward 0 0 0 14 0 0 0 25 25 25 64
McQuitty 0 0 0 7 3 0 0 25 25 25 88
Model-based 0 0 0 14 0 0 1 25 25 14 79
Spectral 0 0 0 11 5 0 2 8 25 0 51

679
KL

kmeans 8 3 0 2 5 0 0 0 10 7 35
PAM 7 4 4 4 7 0 0 0 4 0 30
Single 7 5 4 6 6 0 1 0 6 0 45
Complete 3 7 6 5 0 0 0 0 0 0 21
Average 5 2 3 1 7 0 0 0 0 0 18
Ward 6 2 5 1 5 0 0 0 4 0 23
McQuitty 0 6 6 0 2 0 1 0 5 0 20
Model-based 2 6 1 2 1 0 0 0 9 4 21
Spectral 2 2 3 6 5 0 1 0 8 5 16

229
Gap

kmeans 20 9 4 10 1 3 1 0 17 4 69
PAM 15 8 0 10 0 4 0 0 25 21 83
Single 3 3 0 2 0 4 0 0 25 24 61
Complete 14 5 3 16 0 3 0 0 25 25 92
Average 18 11 1 22 0 0 0 0 24 25 101
Ward 13 9 0 21 11 0 0 0 25 23 107
McQuitty 13 8 5 14 0 0 5 0 24 25 94

607
Jump

p/2 6 8 1 25 0 25 0 0 25 0 90
p/3 22 24 3 25 0 25 0 0 25 0 124
p/4 2 20 8 25 0 8 0 0 0 0 63
p/5 0 1 11 25 0 0 0 0 0 0 37
p/6 0 0 2 25 0 0 0 0 0 0 27
p/7 0 0 0 4 0 0 0 0 0 0 4

345
PS

kmeans 24 25 1 1 0 0 0 0 10 0 61
PAM 21 0 1 25 25 25 0 25 21 25 168
Single 12 2 9 0 0 14 7 25 0 0 69
Complete 0 0 0 20 0 0 0 25 0 25 70
Average 4 0 3 22 0 10 0 25 0 14 78
Ward 5 0 1 25 0 25 0 25 3 25 109
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McQuitty 2 0 2 21 0 7 0 25 0 15 72
Model-based 25 25 20 24 0 25 0 25 0 2 146
Spectral 18 1 0 0 0 0 0 0 25 0 44

817
BI

kmeans 25 22 0 5 1 0 1 0 2 1 47
PAM 6 0 4 24 6 0 0 0 3 25 68
Single 11 2 3 1 3 0 0 0 0 25 45
Complete 0 0 0 19 0 0 0 5 25 25 74
Average 0 0 0 21 0 0 0 0 9 25 55
Ward 0 0 0 23 0 0 0 6 17 25 71
McQuitty 0 0 1 17 0 0 0 7 13 25 63
Model-based 25 25 7 17 0 0 0 0 15 0 89
Spectral 5 1 0 1 0 0 3 0 20 0 30

542
CVNN

kmeans 9 21 7 17 3 3 0 0 17 25 102
PAM 11 21 16 25 0 8 0 0 25 25 131
Single 11 4 0 2 0 0 0 0 25 25 67
Complete 12 8 5 21 1 0 0 0 25 25 97
Average 3 20 1 23 0 3 0 0 25 25 100
Ward 10 21 16 23 5 15 0 0 25 12 127
McQuitty 17 8 5 20 0 0 0 0 25 25 100
Model-based 8 24 19 25 0 15 0 0 25 14 130
Spectral 17 3 4 7 3 0 1 0 0 0 36

890
BIC

Model-based 25 25 10 11 1 25 0 0 25 15 151
PAMSIL 20 7 2 25 25 0 0 25 25 25 154

ASW
kmeans 21 13 1 17 9 0 0 2 17 13 93
PAM 20 12 2 25 24 0 0 25 25 25 158
Single 4 5 0 2 0 0 0 25 25 25 86
Complete 7 1 0 20 0 0 0 25 25 25 103
Average 13 11 1 24 0 0 0 25 25 25 124
Ward 19 8 2 25 11 0 0 25 25 25 140
McQuitty 7 2 1 20 0 0 0 25 25 25 105
Model-based 20 13 3 24 0 0 0 25 25 14 124
Spectral 24 12 1 14 10 0 0 7 25 0 93

1026
OSil

kmeans 21 12 2 17 9 3 0 2 17 20 103
PAM 20 9 2 25 25 0 0 25 25 25 156
Single 7 3 0 2 0 0 0 25 25 25 87
Complete 19 6 0 21 0 0 0 25 25 25 121
Average 17 9 1 24 0 0 0 25 25 25 126
Ward 20 10 2 25 12 0 0 25 25 25 139
McQuitty 15 7 1 22 0 0 0 25 25 25 120
Model-based 21 9 3 25 0 0 0 25 25 14 122
Spectral 22 7 1 14 6 0 0 12 25 0 87

1061
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Appendix D

Numerical example for Richness proof
for ASW

In this appendix the richness property for the ASW index is proved using a numerical
example. Several cases were considered in numerical examples before getting the final
(two) categories that are presented as the cases in Figure 5.2. The Example 1 below is
structures into three parts. The Example 1 represents a case from Figure 5.2 defined
as: Cases for C °! Case 1: No singleton permitted °! Cases for C 0 °!
Part 1 No singleton permitted °! (a), and
Part 2 at least one singleton in C 0.
Part 3 represents a case where C 0 was constructed by making the multiple moves be-
tween points at a time to observe the affect on ASW value. Several other unique pos-
sibilities were considered (not presented here) and the cases were identified that are
most general and can cover the primary philosophy for richness proof for ASW. The
cases were developed that are generalization for all the cases and covers all the unique
arguments needed to prove richness. These cases are presented in Figure 5.2.
Example 1: As an example consider a small data set having 8 objects for clustering.
Let the indices of the objects are: {x1, x2, x3, x4, x5, x6, x7, x8}. Define the distance as
dxiªC x j (xi , x j ) = 1 and dxi⌧C x j (xi , x j ) = 2. Let say we have a 3 clusters1 clustering of 8
data points as C1 : {x1, x2}, C2 : {x3, x4, x5}, C3 : {x6, x7, x8}, where C1, C2 and C3 repre-
sents cluster 1, 2, and 3 respectively. Call this clustering by Ck . We now compute ASW
for this clustering.
Let we represent Si (Ck ,d) and S̄i (Ck ,d) by a short hand notation as S(i ) and S̄ respec-
tively for the examples only. For Ck , all a(i ) = 1, b(i ) = 2, and S̄(Ck ,d) = 0.5, such that
S̄ = 0.5

1The number of clusters can be any we assume 3 to make a simple example but big enough to capture
the general situation. Obviously data set can also be of any size.
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Table D.1 Distance of every object to all other object with regard to cluster membership
of the objects for clustering Ck . The distance d is used for calculations.

{x1 x2} {x3 x4 x5} {x6 x7 x8}
x1 0
x2 1 0
x3 2 2 0
x4 2 2 1 0
x5 2 2 1 1 0
x6 2 2 2 2 2 0
x7 2 2 2 2 2 1 0
x8 2 2 2 2 2 1 1 0

All the possibilities for C 0
k are discussed below as parts now.

Part 1: As a first possibility to C 0
k assume that object x3 is moved from C2 to C1. The

new clustering is now C 0
k = {C1,C2,C3} = {{x1, x2, x3}, {x4, x5}, {x6, x7, x8}}. We compute

its ASW as below.
a(x1) = 1+2

2 = 1.5 = a(x2),
a(x3) = 2+2

2 = 2,
a(x4) = 1

2 = 0.5 = a(x5),
a(x6) = 1+1

2 = 1 = a(G) = a(x8).

b(x1) = mi n( 2+2
2 , 2+2+2

3 ) = 2 = b(x2).
b(x3) = mi n( 1+1

2 , 2+2+2
3 ) = 1.

b(x4) = mi n( 2+2+1
3 , 2+2+2

3 ) = 1.67 = b(x5).
b(x6) = mi n( 2+2+2

3 , 2+2
2 ) = 2 = b(x7) = b(x8).

S(x1) = b(x1)°a(x1)
max(b(x1),a(x1)) =

2°1.5
2 = 0.25 = S(x2),

S(x3) = 1°2
2 = -0.5,

S(x4) = 1.67°0.5
1.67 = 0.70 = S(x5),

S(x6) = 2°1
2 = 0.5 = S(x7) = S(x8).

The ASW for C 0
k is given as:

S̄ = 2(.25)°0.5+2(0.70)+3(0.5)
8

= 0.3625.

Part 2: As a second possibility for C 0
k assume that object x2 is moved to C2 such that

there is a single point cluster C1 in the clustering say C 0
k . The clustering can be written

as: {x1}, {x2, x3, x4, x5}, {x6, x7, x8}.

a(x1) = undefined,
a(x2) = 2+2+2

3 = 2,
a(x3) = 2+1+1

3 = 1.33 = a(x4) = a(x5),
a(x6) = 1+1

2 = 1 = a(x7) = a(x8),

b(x1) = mi n( 1+2+2+2
4 , 2+2+2

3 ) = 1.75,
b(x2) = mi n( 1

2 , 2+2+2
3 ) = 0.5,

b(x3) = mi n( 2
1 , 2+2+2

3 ) = 2 = b(x4) = b(x5),
b(x6) = mi n( 2

1 , 2+2+2+2
4 ) = 2 = b(x7) = b(x8).

S(x1) = 0,
S(x2) = 0.5°2

2 = -0.75,
S(x3) = 2°1.33

2 = 0.335 = S(x4) = S(x5),
S(x5) = 2°1

2 = 0.5 = S(x7) = S(x8).

336



Such that the ASW for C 0
k is given as:

S̄ = °0.75+3(0.335)+3(0.5)
8

= 0.2194.

Note that as the single point clusters will increase ASW will further reduce. For in-
stance if we move object x2 from C1, x3 and x4 from C2 to cluster C3 from clustering Ck

we get S̄ = 0.06. The calculation for this is shown below as Part 3.
Part 3: In this part a case is developed by making multiple moves between points to
construct C 0 to observe the affect on ASW value. The moves are two observations that
forms a cluster in C are now in separate cluster in C 0 such that while separating them
one of them moves to cluster which has more points and other define singleton cluster.
More than one singleton clusters were defined. The other singleton cluster is defined
by the observations coming from a cluster in C which has more than two points. The
new clustering is now C 0

k = {{x1}, {x5}, {x2, x3, x4, x6, x7, x8}}.

a(x1) = a(x5) = undefined,
a(x2) = 2+2+2+2+2

5 = 2,
a(x3) = 2+1+2+2+2

5 = 1.8 = a(x4),
a(x6) = 2+2+2+1+1

5 = 1.6 = a(x7) = a(x8),

b(x1) = mi n( 2
1 , 1+2+2+2+2+2

6 ) = 1.83.
b(x2) = mi n( 1

2 , 2
1 ) = 0.5,

b(x3) = mi n( 2
1 , 1

1 ) = 1 = b(x4).
b(x5) = mi n( 2

1 , 2+1+1+2+2+2
6 ) = ,

b(x6) = b(x7) = b(x8) = mi n( 2
1 , 2

1 ) = 2.

S(x1) = S(x5) = 0,
S(x2) = 0.5°2

2 = 0.75,
S(x3) = 1°1.8

1.8 = -0.44 = S(x4),
S(x6) = 2°1.6

2 = 0.2 = S(x7) = S(x8).
The ASW for C 0

k is given as:

S̄ = 0.75+2(°0.44)+3(0.2)
8

= 0.0588.
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