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We demonstrate a measure for the effective number of parameters constrained by a posterior distribution
in the context of cosmology. In the same way that the mean of the Shannon information (i.e., the Kullback-
Leibler divergence) provides a measure of the strength of constraint between prior and posterior, we show
that the variance of the Shannon information gives a measure of dimensionality of constraint. We examine
this quantity in a cosmological context, applying it to likelihoods derived from the cosmic microwave
background, large-scale structure and supernovae data. We show that this measure of Bayesian model
dimensionality compares favorably both analytically and numerically in a cosmological context with the
existing measure of model complexity used in the literature.

DOI: 10.1103/PhysRevD.100.023512

I. INTRODUCTION

With the development of increasingly complex cosmo-
logical experiments, there has been a pressing need to
understand model complexity in cosmology over the last
few decades. The ΛCDM model of cosmology is surpris-
ingly efficient in its parameterization of the background
Universe and its fluctuations, needing only six parameters
to successfully describe individual observations from all
cosmological datasets [1]. However, different observational
techniques constrain distinct combinations of these param-
eters. In addition, the systematic effects that affect various
observations introduce a large number of additional nui-
sance parameters, around 20 in both the analyses of the
Dark Energy Survey [2] and Planck Collaborations [3].
These nuisance parameters are not always chosen in an

optimal way from the point of view of sampling, with
known degeneracies between each other and with the
cosmological parameters. This complicates quantifying
the effective number of parameters constrained by the
data. Examples of these parameter degeneracies are the
degeneracy between the amplitude of the primordial power
spectrum As and the optical depth to reionization τ in the
combination Ase−2τ in temperature anisotropies of the
cosmic microwave background (CMB) or the degeneracy
between the intrinsic alignment amplitude and the para-
meter combination S8 ≡ σ8ðΩm=0.3Þ0.5 in cosmic shear

measurements, where Ωm is the present-day matter density
and σ8 is the present-day linear root-mean-square ampli-
tude of the matter power spectrum [4–6].
Quantifying model complexity is important beyond

increasing our understanding of the data. It is necessary
to measure the effective number of constrained parameters
to quantify tension between datasets. The authors found
this in Handley and Lemos [7]. The preprint version of [7]
used the Bayesian model complexity (BMC) introduced in
Spiegelhalter et al. [8], which the authors found unsatis-
factory. Motivated by this, in this work we examine an
improved Bayesian model dimensionality (BMD) to quan-
tify the effective number of dimensions constrained by the
data. While the BMD measure has been introduced in the
past by numerous authors [9–15], in this work we provide
novel interpretations in terms of information theory and
compare its performance with the BMC in a modern
numerical cosmological context.
In Sec. II we introduce the notation and mathematical

formalism and some of the relevant quantities such as the
Bayesian evidence, the Shannon information and the
Kullback-Leibler divergence. We also discuss some of
the problems associated with principle component analyses
(PCA), that have been used to quantify model complexity
in cosmology in the past.
In Sec. III we discuss dimensionality in a Bayesian

framework, describing the Bayesian model complexity of
Spiegelhalter et al. [8] and introducing the Bayesian model
dimensionality. We explain the usage of model dimension-
ality in the context of some analytical examples. Finally, in
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Sec. IV, we apply Bayesian model dimensionality to real
data, using four different cosmological datasets. We sum-
marize our conclusions in Sec. V.

II. BACKGROUND

In this section we establish notation and introduce the
key inference quantities used throughout this paper. For a
more detailed account of Bayesian statistics, the reader is
recommended the paper by Trotta [16] or the textbooks by
MacKay [17] and Sivia and Skilling [18].

A. Bayes theorem

In the context of Bayesian inference, a predictive model
M with free parameters θ can use data D to both provide
constraints on the model parameters and infer the relative
probability of the model via the Bayes theorem:

PðDjθÞ × PðθÞ ¼ PðθjDÞ × PðDÞ; ð1Þ

L × π ¼ P × Z; ð2Þ

which should be read as “likelihood times prior is posterior
times evidence.” While traditionally Bayes’ theorem is
rearranged in terms of the posterior P ¼ Lπ=Z, Eq. (2) is
the form preferred by Skilling [11] and has since been used
by other cosmologists [19]. In Skilling’s form it emphasizes
that the inputs to inference are the model, defined by the
likelihood and the prior, while the outputs are the posterior
and evidence, used for parameter estimation and model
comparison, respectively.

B. Shannon information

The Shannon information [20] is defined as

IðθÞ ¼ log
PðθÞ
πðθÞ ð3Þ

and is also known as the information content, self-
information or surprisal of θ. The Shannon information
represents the amount of information gained in nats (natural
bits) about θ when moving from the prior to the posterior.
The Shannon information has the fundamental property

that for independent parameters the information is additive:

Pðθ1; θ2Þ ¼ P1ðθ1ÞP2ðθ2Þ;
πðθ1; θ2Þ ¼ π1ðθ1Þπ2ðθ2Þ;

⇒ Iðθ1; θ2Þ ¼ I1ðθ1Þ þ I2ðθ2Þ: ð4Þ

Indeed it can be easily shown that the property of additivity
defines Eq. (3) up to the base of the logarithm: i.e., if one
wishes to define a measure of information provided by a
posterior that is additive for independent parameters, then
one is forced to use Eq. (3). Additivity is an important

concept used throughout this paper, as it forms the under-
pinning of a measurable quantity. For more detail, see
Skilling’s chapter in [21].

C. Kullback-Leibler divergence

The Kullback-Leibler divergence [22] is defined as the
average Shannon information over the posterior

D ¼
Z

PðθÞ logPðθÞ
πðθÞ dθ ¼

�
log

P
π

�
P
¼ hIiP ð5Þ

and therefore quantifies in a Bayesian sense how much
information is provided by the data D. Since the Shannon
information is defined relative to the prior, the Kullback-
Leibler divergence naturally has a strong prior dependency
[7]. It has been widely utilised in cosmology [12,23–32] for
a variety of analyses.
Since the Kullback-Leibler divergence is a linear func-

tion of the Shannon information,D is also measured in nats
and is an additive quantity for independent parameters.
Posterior averages such as Eq. (5) in some cases can be

numerically computed using samples generated by tech-
niques such as Metropolis-Hastings [33], Gibbs sampling
[34] or Hamiltonian Monte Carlo [35]. However, compu-
tation of the Kullback-Leibler divergence is numerically
more challenging, since it requires knowledge of normal-
ized posterior densities P, or equivalently a computation of
the evidence Z, which requires more intensive techniques
such as nested sampling [11].

D. Bayesian model complexity

While the Kullback-Leibler divergence provides a well-
defined measure of the overall compression from posterior
to prior, it marginalizes out any individual parameter
information. As such, D tells us nothing of which param-
eters are providing us with information or, equally, how
many parameters are being constrained by the data.
As a concrete example, consider the two posteriors

illustrated in Fig. 1. In this case, both distributions have
the same Kullback-Leibler divergence but give very differ-
ent parameter constraints. For the first distribution, both
parameters are well constrained. In the second distribution,
the one-dimensional marginal distributions show that the
first parameter is slightly constrained, while the second
parameter is completely unconstrained and identical to the
prior. The full two-dimensional distribution tells a different
story, showing that both parameters are heavily correlated
and that there is a strong constraint on a specific combi-
nation of parameters. In reality this is therefore a one-
dimensional constraint that has been garbled across two
parameters.
For the two-dimensional case in Fig. 1 we can by eye

determine the number of constrained parameters, but
in practical cosmological situations this is not possible. The
cosmological parameter space of ΛCDM is six- (arguably
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seven-) dimensional [1], and modern likelihoods introduce
a host of nuisance parameters to combat the influence of
foregrounds and systematics. For example the Planck
likelihood [36] is in total 21-dimensional, the DES like-
lihood [2] is 26-dimensional, and their combination
41-dimensional (Table I). While samples from the posterior
distribution represent a near lossless compression
of the information present in this distribution, it goes
without saying that visualizing a 40-dimensional object is
challenging. Triangle and corner plots [37] represent
marginalized views of this information and can hide
hidden correlations and constraints between three or more
parameters. The fear is that one could misdiagnose a dataset
that has powerful constraints if Fig. 1 occurred in higher
dimensions. It would be helpful if there were a number d
similar to the Kullback-Leibler divergence D which quan-
tifies the effective number of constrained parameters.

To this end, Spiegelhalter et al. [8,10] introduced the
Bayesian model complexity, defined as

d̂
2
¼ log

Pðθ̂Þ
πðθ̂Þ −

�
log

P
π

�
P

¼ Iðθ̂Þ − hIiP: ð6Þ

In this case, the model complexity measures the difference
between the information at some point θ̂ and the average
amount of information. It thus quantifies how much over-
constraint there is at θ̂ or, equivalently, the degree of model
complexity. This quantity been historically used in several
cosmological analyses [7,13,14,38].
There is a degree of arbitrariness in Eq. (6) via the choice

of point estimator θ̂. Typical recommended choices include
the posterior mean

θ̂m ¼
Z

θPðθÞdθ ¼ hθiP; ð7Þ

the posterior mode

θ̂mp ¼ max
θ

PðθÞ; ð8Þ

or the maximum likelihood point

θ̂ml ¼ max
θ

LðθÞ ¼ max
θ

IðθÞ: ð9Þ

For the multivariate Gaussian case, d̂ coincides with the
actual dimensionality d for all three of these estimators.

FIG. 1. Distributions with the same Kullback-Leibler divergence but differing dimensionalities. Both the right- and left-hand plots
indicate two-dimensional probability distributions. In each plot, the lower left panel is a two-dimensional contour plot indicating the
isoprobability contours enclosing 66% and 95% of the probability mass. The upper and lower right panels indicate the one-dimensional
marginal probability distributions. There is an implicit uniform prior over the ranges indicated by the axis ticks.

TABLE I. Number of parameters sampled over in cosmological
likelihoods. dCosmo is the number of cosmological parameters,
dNuis is the number of nuisance parameters, and dTotal ¼
dCosmo þ dNuis is the total number. Note that we sample over
the same six cosmological parameters for all likelihoods, even
though we know that some likelihoods cannot constrain certain
parameters. For the combinations of two likelihoods, the total
number is dA;BTotal ¼ dCosmo þ dANuis þ dBNuis.

Likelihood dCosmo dNuis dTotal

SH0ES 6 0 6
BOSS 6 0 6
DES 6 20 26
Planck 6 15 21
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Unlike the Kullback-Leibler divergence, the BMC is
only weakly prior dependent, since the evidence contribu-
tions in Eq. (6) cancel:

d̂ ¼ 2 logLðθ̂Þ − h2 logLiP : ð10Þ

The model dimensionality thus only changes with prior π if
the posterior bulk is significantly altered by changing the
prior. For example d̂ does not change if one merely expands
the widths of a uniform prior that encompasses the posterior
(in contrast to the evidence andKullback-Leibler divergence).
Finally, the model complexity in Eq. (6) has the ad-

vantage of an information-theoretic backing and, like the
Shannon information and Kullback-Leibler divergence, is
additive for independent parameters.

E. The problem with principle component analysis

Intuitively from Fig. 1 one might describe the distribu-
tion as having one “component” that is well constrained
and another component for which the posterior provides no
information.
The approach that is then followed by many researchers

is to perform a PCA, which proceeds thus.
(1) Compute the posterior covariance matrix:

Σ ¼ hðθ − θ̄Þðθ − θ̄ÞTiP ; θ̄ ¼ hθiP: ð11Þ

(2) Compute the real eigenvalues λðiÞ and eigenvectors
ΘðiÞ of Σ, defined via the equation

ΣΘðiÞ ¼ λðiÞΘðiÞ: ð12Þ

(3) The eigenvectors with the smallest eigenvalues are
the best constrained components, while the eigen-
vectorswith large eigenvalues are poorly constrained.

One could therefore define an alternative to Eq. (6) based
on the number of small eigenvalues, although this itself
would depend on the eigenvalue cutoff used to define
“unconstrained.”
Principle component analysis has intuitive appeal due in

large part to the weight given to eigenvectors and eigen-
values early in a physicist’s undergraduate mathematical
education. However, in many contexts that PCA is applied,
the procedure is invalid almost to the point of nonsense.
The issue arises from the fact that the PCA procedure is

not invariant under linear transformations. Typically the
vectors θ have components with differing dimensionalities,
in which case (12) is dimensionally invalid.1 Equivalently,
changing the units that the axes are measured in changes
both the eigenvalues and eigenvectors.

For example, for COSMOMC the default cosmological
parameter vector is

θcosmo ¼ ðΩch2;Ωbh2; 100θMC; τ; log 1010As; nsÞ; ð13Þ

the first and second components have dimensions of
10−4 km2 s−2 Mpc−2, and the third is measured in units
of 10−2 rad, while the final three are dimensionless. If one
were to choose a different unit or scale for any one of these
(somewhat arbitrary) dimensionalities, the eigenvalues and
eigenvectors would change. To be clear, if all parameters
are measured in the same units (as is the case for a
traditional normal mode analysis), then PCA is a valid
procedure.
Given these observations, the real question is not “is

PCA the best procedure?”, but in fact “why does PCA
usually work at all?” The answer to this question, and an
information-theoretically valid PCA, will be developed in
an upcoming paper.
There are two ways in which one could adjust the naive

PCA procedure to be dimensionally valid. The first is
simply to normalize all inputs by the prior, say by
computing the prior covariance matrix:

Σ0 ¼ hðθ − θ̄Þðθ − θ̄ÞTiπ; θ̄ ¼ hθiπ; ð14Þ

and then performing posterior PCA in a space normalized
in some sense by this prior.
The second dimensionally valid approach would be to

apply the PCA procedure to log θ. There is an implicit scale
that one has to divide each component by in order to apply a
logarithm, but this choice only alters the transformation by
an additive constant, which PCA is in fact insensitive to.
This amounts to finding components that are multiplicative
combinations of parameters. A good example of such a
combination is Ωbh2, or S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, indicating that

physicists are used to thinking in these terms.

F. The anatomy of a Gaussian

As a concrete example of all of the above ideas, we will
consider them in the context of a d-dimensional multivari-
ate Gaussian. Consider a posterior P, with parameter
covariance matrix Σ and mean μ, arising from a uniform
prior π with volume V which fully encompasses the
posterior. It is easy to show that the Kullback-Leibler
divergence for such a distribution is

D ¼ log
Vffiffiffiffiffiffiffiffiffiffiffiffiffij2πeΣjp : ð15Þ

Each isoposterior ellipsoidal contour PðθÞ ¼ P defines a
Shannon information I ¼ logP=π. The posterior distribu-
tion PðθÞ induces an offset, rescaled, χ2d distribution on the
Shannon information:

1Those that believe it is should try to answer the question:
What is the dimensionality of each eigenvalue λðiÞ?
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PðIÞ ¼ 1

Γðd=2Þ e
I−ImaxðImax − IÞðd=2Þ−1; ð16Þ

Imax ¼ log
Vffiffiffiffiffiffiffiffiffiffiffij2πΣjp ¼ Dþ d

2
; ð17Þ

I ∈ ð−∞; Imax�; I ≈D�
ffiffiffiffiffiffiffiffi
d=2

p
; ð18Þ

which may be seen graphically in Fig. 2.2 This distribution
has mean D by the definition of the Kullback-Leibler
divergence and standard deviation

ffiffiffiffiffiffiffiffi
d=2

p
. The region for

which the distributionPðIÞ is significantly nonzero defines
the typical set of the posterior, indicating the Shannon
information of points that would be typically drawn from
the distribution P. For this Gaussian case, the maximum
posterior θ̂mp, likelihood θ̂ml and mean θ̂m parameter points
coincide and have Shannon information Imax ¼ Dþ d

2
.

III. BAYESIAN MODEL DIMENSIONALITY

A. The problem with Bayesian model complexity d̂

While the BMC is widely used in the statistical literature
and recovers the correct answer in the case that the posterior
distribution is Gaussian, there are three key problems that
should be noted.
First, it is clear that the arbitrariness regarding the choice

of estimator is far from ideal, and as we shall show in
Sec. IV differing choices yield distinct and contradictory
answers. A proper information theoretic quantity should be
unambiguous.

Second, and most importantly in our view, estimators are
not typical posterior points. In general, point estimators
such as the maximum likelihood, posterior mode or mean
have little statistical meaning in a Bayesian sense, since
they occupy a region of vanishing posterior mass. This can
be seen in Fig. 2, which shows that while an estimator may
represent a point of high information, it lies in a zero
posterior mass region—if d > 2, one can see from Eq. (16)
that PðImaxÞ ¼ 0. A physical example familiar to under-
graduate quantum physicists is that of the probability
distribution of an electron in a 1s orbital: The most likely
location to find an electron is the origin, while the radial
distribution function shows that the most likely region to
find an electron is at the Bohr radius a0.
A practical consequence of these observations is that if

you choose the highest likelihood point from a Markov
chain Monte Carlo (MCMC) chain, it will lie at a likelihood
some way below the true maximum, and in general one
should not expect points in the MCMC chain to lie close to
the mean, mode or maximum likelihood point in likelihood
space. In general, to compute these point estimators an
additional calculation must be performed such as an
explicit posterior and likelihood maximization routine or
a mean and likelihood computation.
Third, most estimators are parameterization dependent.

Namely, if one were to transform the variables and
distribution to a different coordinate system via

θ → θ̃ ¼ fðθÞ; ð19Þ

PðθÞ → P̃ðθ̃Þ ¼ Pðf−1ðθ̃ÞÞj∂θ=∂θ̃j; ð20Þ

πðθÞ → π̃ðθ̃Þ ¼ πðf−1ðθ̃ÞÞj∂θ=∂θ̃j; ð21Þ

then neither the posterior mean from Eq. (7) nor the
posterior mode from Eq. (8) transform under Eq. (19) if
the transformation f is nonlinear (i.e., the Jacobian j∂θ=∂θ̃j
depends on θ̃). It should be noted that this parameterization
variance is not quite as bad as it is for the PCA case, which
is dependent on even linear transformations of the param-
eter vector. The maximum likelihood point from Eq. (9)
does correctly transform, since the Jacobian terms in
Eqs. (20) and (21) cancel in the Shannon information.
Parameterization dependency is a highly undesirable ambi-
guity, particularly in the context of cosmology where in
general the preferred choice of parameterization varies
between likelihoods and sampling codes [39–41].
Finally, specifically to the mean estimator, for some

cosmological likelihoods there may be no guarantee that
the mean even lies in the posterior mass, for example in the
σ8 −Ωm banana distribution visualized by kilo-degree
survey [42]. In cosmology, we do not necessarily have
the luxury of Gaussianity or convexity.

FIG. 2. The typical set of a d-dimensional Gaussian distribution
can be visualized by plotting the posterior probability distribution
of the Shannon information I . The posterior has mean D and
variance d

2
. The posterior maximum occurs at I ¼ Dþ 1, and the

domain is ð−∞; Imax�. The above plot is shown for d ¼ 16 in
analogy with the Planck likelihood from Fig. 8 and Table III.

2Note that in the manipulation for Eq. (17) we have used the
fact that log

ffiffiffiffiffiffiffiffiffiffiffiffiffij2πeΣjp ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
edj2πΣj

p
¼ d

2
þ log

ffiffiffiffiffiffiffiffiffiffiffij2πΣjp
.
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B. The Bayesian model dimensionality d̃

Considering Fig. 2, the fundamental concept to draw is
that the BMC leverages the fact that the difference between
the Shannon information I at the posterior peak and the
mean of the posterior bulk is d=2 for the Gaussian case.
However, there is a second way of bringing the dimen-

sionality out of Fig. 2 via the variance of the posterior bulk.
With this in mind, we define the Bayesian model dimen-
sionality as

d̃
2
¼

Z
PðθÞ

�
log

PðθÞ
πðθÞ −D

�
2

dθ ð22Þ

¼ hI2iP − hIi2P ð23Þ

or equivalently as

d̃=2 ¼ hðlogLÞ2iP − hlogLi2P: ð24Þ

We note that this form for quantifying model dimension-
ality is discussed in passing by Gelman et al. [9] (p. 173)
and Spiegelhalter et al. [10], who conclude that d̃ is less
numerically stable than d̂. As we shall discuss in Sec. IV we
find that when applied to cosmological likelihoods the
opposite is in fact true. This measure of model dimension-
ality is also discussed briefly in the landmark nested
sampling paper by Skilling [11], by Raveri and Hu [13],
in a cosmological context in terms of χ2 in Kunz, Trotta,
and Parkinson [14] and Liddle [15], and was used as part of
the Planck analysis [3].
The definition of d̃ shares all of the desiderata that d̂

provides; namely both d̃ and d̂ are weakly prior dependent,
additive for independent parameters and recover the correct
answer in the Gaussian case. We believe that there are
several attractive theoretical characteristics of d̃ that we
view as advantages over d̂.
First, d̃ relies only on points drawn from the typical set,

which is highly attractive from a Bayesian and information
theoretic point of view and more consistent when used
alongside a traditional MCMC analysis of cosmological
posteriors.
Second, there is a satisfying progression in the fact that

while the mean of the Shannon information D gives one an
overall constraint, the next order statistic (the variance)
yields a measure of the dimensionality of the constraint.
Finally, in eschewing estimators this measure is com-

pletely unambiguous, as it removes all arbitrariness asso-
ciated with both estimator and underlying parameterization
choice.
It should be noted that the computation of D requires

nested sampling to provide an estimate of logZ. The
dimensionality d̃ on the other hand can be computed from a
more traditional MCMC chain via Eq. (24).

C. Thermodynamic interpretation

There is a second motivation for the BMD arising from a
thermodynamic viewpoint.3 The thermodynamic general-
isation of Bayes theorem is

LβðθÞ × πðθÞ ¼ PβðθÞ × ZðβÞ; ð25Þ

ZðβÞ ¼
Z

LβðθÞπðθÞdθ; ð26Þ

where on the left-hand side of Eq. (25), the inverse
temperature β ¼ 1

T raises the likelihood L to the power
of β and on the right-hand side the posterior has a nontrivial
dependency on temperature, denoted by a subscript β.
When the evidence in Eqs. (25) and (26) is a function of β it
is usually called the partition function.
The link to thermodynamics comes by considering θ to

be a continuous index i over microstates, the negative log-
likelihood to be the energy E of a microstate, and the prior
to be the degeneracy of microstates g:

i ↔ θ; Ei ↔ − logLðθÞ; gi ↔ πðθÞ;
gie−βEi ↔ LðθÞβπðθÞ: ð27Þ
It should be noted that one of the principal advantages of
nested sampling is that (other than the stopping criterion) it
is blind to β, and therefore samples at all temperatures
simultaneously. Nested samplers are best described as
partition function calculators rather than as posterior
samplers. This will be explored in further detail in an
upcoming paper [43].
In its thermodynamic form, the evidence becomes a

generating function [44]:

d2

dβ2
logZðβÞ ¼ d

dβ
hlogLiPβ

¼ d̃
2
; ð28Þ

and we may identify the BMD as being related to the rate of
change of average log-likelihood (energy) with inverse
temperature. The BMD is therefore proportional to the
Bayesian analogue of a heat capacity, C ¼ d

dT hEi ¼
β2 d

dβ h−Ei, and, like all heat capacities, is proportional to
system size or, equivalently, to the number of active degrees
of freedom (i.e., dimensions).

D. Analytical examples

We apply the BMD from Eq. (23) and the BMC from
Eq. (6) to six additional univariate analytical examples: top
hat, triangular, cosine, logistic, Laplace and Cauchy. The
analytical forms for the probability distribution, Kullback-
Leibler divergence, BMD and BMC are listed in Table II

3Historically, it was this viewpoint that drew our attention to
BMD.
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and plotted in Fig. 3. In all cases, we assume a uniform
prior of volume V which fully encompasses the posterior.
We find that while the Gaussian distribution gives d̃ ¼ 1,

distributions that are shorter and fatter give d̃ < 1, while

distributions that are narrower and taller give d̃ > 1. Both
measures of d̃ and d̂ are in broad agreement. The top-hat
(dimensionality 0) and Cauchy distributions (dimension-
ality ≫ 1) represent pathological cases at either end of the

FIG. 3. Bayesian dimensionality for the common one-dimensional distributions in Table II. Widths are normalized so that the
distributions all have the same Kullback-Leibler divergence D. The dashed curve in all plots is a Gaussian distribution.

TABLE II. Dimensionalities for one-dimensional analytic dis-
tributions. The first column indicates the unnormalized proba-
bility density P�ðxÞ. An arbitrary width σ can be added by
remapping P�ðxÞ → 1

σP
�ðx=σÞ. The second column indicates the

unnormalized Kullback-Leibler divergence D� ¼ D − logV=σ
where the implicit prior is taken to encompass the posterior
mass with width V ≫ σ. The final two columns show the BMDs
and BMCs, respectively, which are independent of both V and σ.
As expected, the Gaussian has dimensionality d̃ ¼ d̂ ¼ 1, and
shorter and fatter distributions have lower dimensionalities, while
narrower and taller dimensionalities have dimensions greater than
one. This effect can be seen graphically in Fig. 3.

P� expðD�Þ d̃ d̂

Gaussian e−x
2=2 1=

ffiffiffiffiffiffiffiffi
2πe

p
1 1

Top hat x ∈ ½−1; 1� 1 0 0
Triangle 1 − jxj 1=

ffiffiffi
e

p
1=2 1

Cosine cos2 x e=2π 2ðπ2−9Þ
3

≈ 0.58 log 24

e2 ≈ 0.77
Logistic e−x

ð1þe−xÞ2 1=e2 24−2π2
3

≈ 1.42 log e4

24
≈ 1.33

Laplace e−jxj 1=2e 2 2
Cauchy ð1þ x2Þ−1 1=4π 2π2

3
≈ 6.58 log 24 ≈ 2.77

FIG. 4. Dependency of dimensionality and Kullback-Leibler
divergence on prior volume for a Cauchy distribution
PðxÞ ∝ ð1þ x2Þ−1. While the BMD and BMC are pathologically
large ð≫1Þ if the full domain of the Cauchy distribution is
included, truncating the range to a lower prior volume x ∈
½−V=2; V=2� reduces the dimensionality to more sensible values.
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scale, while the remainder all give dimensionalities of
order 1. In general, d̂ is closer to unity than d̃, on account of
the “numerical stability” quoted by Gelman et al. [9].
However, accurate computation of d̂ is predicated on an
exact computation of the maximum, which (as shown in
Sec. IV) becomes increasingly unstable in higher dimen-
sions and in cosmological applications.
It should also be noted that while the Cauchy distribution

gives a very high dimensionality when integrated over its
full infinite domain, if the domain is restricted by the prior,
then the dimensionality drops to more sensible values
(Fig. 4).

E. Applications

BMDs can be used in a variety of statistical analyses. In
this subsection we review a few of the possibilities.

1. The number of constrained
cosmological parameters

As detailed in Table I, cosmological likelihoods typically
introduce a large number of nuisance parameters in
addition to cosmological ones, and they typically constrain
a nontrivial combination of parameters. If one has datasets
A and B, one can compute the individual model dimen-
sionalities d̃A and d̃B, as well as the model dimensionality
of using both datasets together d̃AB. Computing the cross-
over of these dimensionalities for any choice of d, d̃ or d̂:

d̃A∩B ¼ d̃A þ d̃B − d̃AB ð29Þ

will give the (effective) number of constrained cosmologi-
cal parameters shared between the datasets, since any
parameters constrained by just one of the datasets subtract
out of the above expression. This quantity forms a
cornerstone of part of the tension analysis in Handley
and Lemos [7], and cosmological examples can be seen in
the lower section of Table III.

2. Penalizing the number of model parameters

Bayesian evidences are traditionally used in model
comparison via the Bayes theorem for models:

PðMiÞ ¼
PðDjMiÞPðMiÞP
jPðDjMiÞPðMjÞ

¼ ZiΠiP
jZjΠj

; ð30Þ

where Πi ¼ PðMiÞ are the model priors, which are
typically taken to be uniform. Often the data may not be
discriminative enough to pick an unambiguously best
model via the model posteriors. The correct Bayesian
approach in this case is to perform model marginalization
over any future predictions [45]. However, in other works
[46,47] the Kullback-Leibler divergence has been used to
split this degeneracy. The strong prior dependency of the
KL divergence can make this a somewhat unfair choice for

splitting this degeneracy, and users may find that the model
dimensionality is a fairer choice.
One implementation of this approach would be to apply

a post hoc model prior of

ΠiðλÞ ¼ λe−λd̃i ð31Þ
using for example λ ¼ 1. This amounts to a logarithmic
Bayes factor between models of

logBi
j ¼ ðlogZi − λd̃iÞ − ðlogZj − λd̃jÞ: ð32Þ

This approach is not strictly Bayesian, since d̃i is computed
from the data and ΠiðλÞ is therefore not a true prior.
However readers familiar with the concepts of sparse
reconstructions [48] will recognize the parallels between
sparsity and this approach, as one is effectively imposing a
penalty factor that promotes models that use as few
parameters as necessary to constrain the data.

3. Information criteria

While the authors’ preferred method of model compari-
son is via the Bayesian evidence, other criteria have been
used in the context of cosmology [15,49]: The Akaike
information criterion (AIC) [50] and Bayesian information
criterion (BIC) [51] are defined, respectively, via

AIC ¼ −2 logLmax þ 2k; ð33Þ
BIC ¼ −2 logLmax þ k lnN; ð34Þ

where k is the number of parameters in the model and N is
the number of data points used in the fit. These criteria
could be modified in a Bayesian sense by replacing k with
the BMD d̃. A similar modification has been discussed in
the context of the deviance information criterion [14,15].

IV. NUMERICAL EXAMPLES

A. Cosmological likelihoods

We test our method on real data by quantifying the
effective number of constrained parameters in four publicly
available cosmological datasets, assuming a six-parameter
ΛCDM cosmological model. We use the following six
sampling parameters to describe this model: the density of
baryonic matterΩbh2, the density of cold dark matterΩch2,
θMC an approximation of the ratio of the sound horizon to
the angular diameter distance at recombination, the optical
depth to reionization τ and the amplitude and tilt of the
primordial power spectrum As and ns, respectively. This is
the default parameterisation for COSMOMC [40] and is
chosen to maximize the efficiency of Metropolis-Hastings
sampling codes for CMB data. The possible effects of this
parameterization choice in non-CMB constraints will be
explored in future work.
We use four key datasets in our analysis. First, we use

measurements of temperature and polarization anisotropies
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in the CMB measured by Planck in the form of the publicly
available Planck 2015 data [36,52]. Second, we use local
cosmic distance ladder measurements of the expansion rate,
using type Ia SNe calibrated by variable Cepheid stars and
implemented as a Gaussian likelihood with the mean and
standard deviation given by the latest results obtained by
the SH0ES

4 Collaboration [53]. Third, we use the Dark
Energy Survey (DES) year 1 combined analysis of cosmic
shear, galaxy clustering and galaxy-galaxy lensing
(a combination commonly referred to as “3 × 2”) [2].
Finally, we use baryon acoustic oscillation measurements
from the Baryon Oscillation Spectroscopic Survey (BOSS)
[54] DR12 [55–57]. The number of parameters that we
sample over for each likelihood is described in Table I.

B. Nested sampling

To compute the log-evidence logZ, Kullback-Leibler
divergenceD and Bayesian model dimensionality d̃, we use
the outputs of a nested sampling run produced by
COSMOCHORD [40,58–61] and the equations

Z ≈
XN
i¼1

Li ×
1

2
ðXi−1 − Xiþ1Þ;

D ≈
XN
i¼1

Li

Z
log

Li

Z
×
1

2
ðXi−1 − Xiþ1Þ;

d̃
2
≈
XN
i¼1

�
Li

Z
log

Li

Z
−D

�
2

×
1

2
ðXi−1 − Xiþ1Þ;

Xi ¼ tiXi−1; X0 ¼ 1; XNþ1 ¼ 0;

PðtiÞ ¼ nit
ni−1
i ½0 < ti < 1�; ð35Þ

where Li are the N likelihood contours of the discarded
points,Xi are the prior volumes, andni are the number of live

points ti are real random variables. We compute 1000
batches of the samples fti∶i ¼ 1…Ng. Code for performing
the above calculation is provided by the Python package
anesthetic [62]. For our final runs, we used the
COSMOCHORD settings nlive ¼ 1000, nprior ¼ 10 000, with
all other settings left at their defaults for COSMOCHORD

version 1.15. For more detail, see Skilling [11] or Handley
and Lemos [7].
In order to compute the maximum likelihood and

posterior points, we found that the most reliable procedure
was to use a Nelder-Mead simplex method [63] with the
initial simplex defined by the highest likelihood live points
found before termination.

C. Results

Our main results are detailed in Table III, where we
report the Bayesian model dimensionality d̃ obtained from
Eq. (23), comparedwith thevalues obtained for theBayesian
model complexity using Eq. (6) using three different
estimators from Eqs. (7)–(9): the posterior mean, posterior
mode and maximum likelihood. We use the four individual
datasets described in Sec. IVA, as well as in combination
with Planck. We also report the shared dimensionalities
from Eq. (29) using Planck as the common baseline in the
bottom three rows of the table.
The BMDs produce sensible values in all cases. It should

be noted that in general the BMDs are lower than the
number of dimensions that are sampled over (Table III):
SH0ES constrains only one parameter (H0), BOSS con-
strains three (Ωbh2, Ωch2 and a degenerate H0 − As
constraint), and DES and Planck constrain only some
combinations of cosmological and nuisance parameters
as shown by Figs. 5, 6 and 7.
The shared dimensionalities also match cosmological

intuition. For example, d̃DES∩Planck shows that DES only
constrains four cosmological parameters, as it provides no
constraint on τ and only constrains a combination of ns and

TABLE III. Bayesian model dimensionalities for cosmological datasets. The first column indicates the Kullback-Leibler divergenceD
from Eq. (5), and the second column shows the Bayesian model dimensionality d̃ from Eq. (23). The remaining three columns show the
Bayesian model complexity d̂ from Eq. (6) with the estimator chosen as the posterior mean, posterior mode and maximum likelihood
point, respectively. The final three rows show the intersection statistics, computed using the equivalents of Eq. (29).

Dataset D d̃ d̂m d̂mp d̂ml d

SH0ES 2.52� 0.03 0.93� 0.03 −40.12� 0.02 0.96� 0.02 0.96� 0.02 6
BOSS 5.06� 0.05 2.95� 0.07 −9.55� 0.05 2.93� 0.05 2.93� 0.05 6
DES 22.82� 0.15 14.03� 0.30 10.79� 0.14 14.45� 0.14 17.85� 0.14 26
Planck 44.48� 0.20 15.84� 0.38 14.91� 0.16 15.68� 0.16 18.91� 0.16 21
SH0ESþ Planck 45.02� 0.20 15.97� 0.36 14.64� 0.15 15.39� 0.15 18.40� 0.15 21
BOSSþ Planck 43.36� 0.20 15.89� 0.38 15.11� 0.17 15.57� 0.17 18.89� 0.17 21
DESþ Planck 61.13� 0.25 25.88� 0.62 20.79� 0.25 23.54� 0.25 29.30� 0.25 41

SH0ES ∩ Planck 1.99� 0.29 0.80� 0.52 −39.84� 0.23 1.25� 0.23 1.48� 0.23 6
BOSS ∩ Planck 6.18� 0.30 2.91� 0.54 −9.75� 0.23 3.04� 0.23 2.96� 0.23 6
DES ∩ Planck 6.17� 0.36 3.98� 0.77 4.91� 0.32 6.59� 0.32 7.46� 0.32 6

4Supernovae and H0 for the equation of state.
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log 1010 As. This is shown graphically in Fig. 5, which
should be compared with Fig. 1.
All error bars on the dimensionalities arise from nested

sampling’s imperfect knowledge of prior volumes used to
compute the posteriorweights. It is likely that the error could
be lowered by using a more traditional MCMC run [39–41],
although care must be taken with the MCMC error estima-
tion since marginalizing over the likelihood is numerically
more unstable than that of traditional expectation values.

The process of computing the Bayesian model dimension-
alities and their errors is visualized in Fig. 8,which should be
compared with Fig. 2.
The results for Bayesian model complexities on the other

hand are nowhere near as satisfactory. The arbitrariness in
the choice of estimator can be seen clearly, and in general
we find d̂m < d̂mp < d̂ml. This variation in the choice of
estimator is demonstrated graphically in Fig. 9. The two
maximization estimators come out a little high, with the
most extreme example being that the maximum likelihood
estimator claims that there are 7.5 shared dimensions
between DES and Planck, which is concerning given that
there are only six parameters that are shared between them.
The fact that the maximum likelihood estimator consis-
tently produces dimensionalities that are too large is
unfortunate, given that it is the best motivated of all three
estimators.
The mean estimator on the other hand is generally a little

lower than expected and produces nonsensical results
for SH0ES and BOSS alone, where as mentioned in
Sec. III A the parameterization variance of the estimator
makes the mean extremely unreliable. In the case of
SH0ES, we are sampling over six cosmological parameters
but only constrain H0, which is only one combination of
those six. As a consequence, the value of H0 derived from
the means of the mostly unconstrained cosmological
parameters is completely prior dominated.
The fact that Fig. 9 shows that the estimators are most

consistent for Planck data is also very telling. This is not
caused by any properties of the Planck data; instead it
is a consequence of the parameterization choice: All of
these posteriors are obtained using the COSMOMC parameter-
ization, which is chosen to be optimal for CMB analyses.

FIG. 5. Cosmological parameters unconstrained by DES. While
DES provides constraints on four of the cosmological parameters,
it tells us nothing of τ and little of a correlated combination of
ln 1010As and ns. This figure should be compared with Fig. 1.

FIG. 6. One-dimensional marginalized default prior (black) and Planck posterior (red). The Bayesian model dimensionality of
d̃Planck ≈ 16 is reflected by the fact that only a subset of the nuisance parameters are constrained by the data.
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FIG. 7. One-dimensional marginalized default prior (black) and DES Y1 posterior (red). The Bayesian model dimensionality of
d̃DES ≈ 14 is reflected by the fact that only a combination of the cosmological parameters and a subset of the nuisance parameters are
constrained by the data.

FIG. 8. Shannon information for the numerical examples considered in this paper. These plots are laid out in the same manner as
Fig. 2, with the mean of each distribution representing the Kullback-Leibler divergence and the variance the Bayesian model
dimensionality. The main difference between these plots and Fig. 2 is that the posterior mean Im, mode Imp and maximum likelihood
Iml points no longer coincide on account of the nonuniform priors and nontrivial parameterization involved in cosmological modeling.
The multiple curves forPðIÞ represent independent samples from the distribution of nested sampling prior volumes used to compute the
Shannon information, and the spread in these curves accounts for the errors in estimating the quantities detailed in Table III.
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The parameters that other surveys like DES and SH0ES
constrain are obtained as derived parameters, which changes
both the mean and the maximum posterior.

V. CONCLUSION

In this paper we interpret the variance in the
Shannon information as a measure of Bayesian model
dimensionality and present it as an alternative to Bayesian
model complexity currently used in the literature. We
compared these two measures of dimensionality theoreti-
cally and in the context of cosmological parameter esti-
mation and found that the Bayesian model dimensionality
proves more accurate in reproducing results consistent with
intuition.
While the Bayesian model dimensionality has been

acknowledged in the literature in different forms, it
has yet not been widely used in cosmology. Given the
ease with which the Bayesian model dimensionality can
be computed from MCMC chains, we hope that this
work persuades cosmologists to use this crucial statistic
as a part of their analyses. For those using nested
sampling, we hope that in the future the reporting of the
triple of evidence, Kullback-Leibler divergence and

Bayesian model dimensionality ðZ;D; d̃Þ becomes a
scientific standard.
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FIG. 9. Marginalized posterior likelihoods (in black), maximum likelihood points (ML, in blue), maximum posterior points (MP, in
red) and means (in green), for some of the numerical examples used in this paper. The top plots detail the one-dimensional marginalized
posterior on the Hubble parameter, while the lower plots show the two-dimensional marginalized posterior on σ8 and Ωm. The top left
shows the SH0ES likelihood, the top center Planck, and the top right the combination of both. The bottom left shows the DES posterior,
the bottom center Planck, and the bottom right their combination.
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