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15 Summary 

16 This paper aims to improve the robustness of interpretation in the S receiver function 

17 (SRF), a technique commonly used to retrieve forward scattering of S-to-P converted waves 

18 (Sdp) originated from the lithosphere-asthenosphere system (LAS) beneath the stations. 

19 Although the SRF does not suffer interferences from backward scattering waves such as the 

20 first multiples from the Moho, one major drawback in the method is that Sdp phases can 

21 interfere with P coda waves and it is conceivable that these signal-generated noise may be 

22 misinterpreted as Sdp phase from the LAS beneath seismic stations. Through systematic 

23 analysis of full-waveform synthetics and SRFs from catalogued source parameters, we find 

24 that the strong P coda waves before the S wave in the longitudinal-component waveforms 

25 result in unwanted signal-generated noise before the S wave in the synthetic SRFs. If the 

26 mean amplitude of SRFs after the S wave is large, dubious signal-generated noise before the 

27 S arrival are strong as well. In this study, we honor the level of these unwanted signal-

28 generated noise and devise data-oriented screening criteria to minimize the interference 

29 between P coda waves and genuine S-to-P converted waves. The first criterion is LQR, a 

30 direct measure of the amplitude ratio between longitudinal P coda waves and radial S wave in 

31 the waveform data. The second criterion is AMP, the amplitude of SRFs after the S arrival. 

32 We illustrate that these criteria effectively measure the energy level of mantle waves such as 

33 the SP wave. With synthetics and real data, we demonstrate the effectiveness of LQR and 

34 AMP criteria in minimizing these unwanted signal-generated noise in the stacked SRFs down 

35 to 1–2%, improving detection threshold and interpretation of Sdp phases from seismic 

36 discontinuities in the LAS. 

37

38 Key words: Body waves; Structure of the Earth; Wave propagation, Wave scattering and 

39 diffraction; Coda waves
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41 1 Introduction

42 Oceanic lithosphere is typically thought to be the outcome of melting of undepleted 

43 mantle and subsequent cooling, whereas continental lithosphere, especially beneath the 

44 cratons, is often considered as the result of large-scale plume melting, stacking oceanic 

45 lithospheres or/and arc collision (e.g. Lee et al. 2010). Small-scale convective instability, 

46 episodes of metasomatism and hydration, among other mechanisms, potentially facilitate the 

47 modification and disruption of oceanic and continental lithosphere. Unraveling robust seismic 

48 signature with the lithosphere-asthenosphere system (LAS) is crucial to understanding of the 

49 formation, modification and destruction of the plates and the formation of continents. For 

50 instance, the lithosphere-asthenosphere boundary (LAB), a mechanical boundary separating 

51 the rigid lithosphere and underlying viscous asthenosphere is thought to be the result of a 

52 simple thermal boundary due to long-term cooling. Seismic LAB from such a thermal 

53 boundary is considered smooth and gradual, where the velocity reduction with depth takes 

54 place over a transition thickness on the order of 50 km (Fischer et al. 2010). However, recent 

55 efforts have demonstrated that seismic LAB can be much sharper (e.g. Rychert et al. 2007; 

56 Kawakatsu et al. 2009; Tharimena et al. 2017). Beneath the continents and many localities in 

57 the oceans, seismic discontinuities have also been observed at depth ranges much shallower 

58 than expected, and the nature of such mid-lithospheric discontinuities (MLDs) remains 

59 elusive (e.g. Karato 2012; Schmerr 2012; Selway et al. 2015).

60 Therefore, it is clear that a robust and high-resolution seismic detection and 

61 characterization of LAB or/and MLDs can revolutionize our understandings of plate tectonics 

62 (e.g. Eaton et al. 2009; Fischer et al. 2010; Kawakatsu & Utada 2017). In the last decade, the 

63 depth and spatial resolution of the seismic discontinuities are greatly improved, thanks to the 

64 explosion of seismic data and progression of varieties of seismic techniques, including 

65 teleseismic P-to-S receiver function (PRF) (e.g. Langston 1977; Rondenay 2009) and S-to-P 
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66 receiver function (SRF) (e.g. Farra & Vinnik 2000), ScS reverberations (e.g. Bagley & 

67 Revenaugh 2008), and multiple S-wave triplications (e.g. Tan & Helmberger 2007) and 

68 underside SS precursors (e.g. Rychert & Shearer 2011; Schmerr 2012). Among these 

69 methods, PRF and SRF provide the highest resolution of seismic discontinuities in the LAS 

70 because of the use of relatively high-frequency waves (e.g. 0.1–1.0 Hz) in the analysis. 

71  While the PRF and SRF methods can effectively detect converted phases (Pds or Sdp, 

72 where ‘d’ marks the depth or location of the conversion) through source normalization (or 

73 deconvolution) and stacking, they are not without issues. For example, the PRF suffers 

74 interferences from backward scattering waves such as the first multiples from the Moho, 

75 making it difficult to identify converted-phase arrivals within the LAS. On the other hand, the 

76 SRF, by construction, separates the converted phases from the multiples (e.g. Ferra & Vinnik 

77 2000), and it is preferable to identify robust signal from the LAS. However, one major 

78 drawback is that Sdp converted waves can be interfered by P coda waves, which consist of 

79 multiple mantle P waves (e.g. Wilson et al. 2006), multiples of reflections between the 

80 surface and the transition zone (e.g. Bock 1994) or/and S-to-P scattering waves within the 

81 crust and lithosphere between the source and the receiver (e.g. Vinnik & Romanowicz 1991). 

82 Depending on the strength of scatters as well as epicentral distance, azimuth, earthquake 

83 source depth, and source mechanisms, the amplitudes and timings of these P coda waves may 

84 vary and a significant level of wave energy preceding the S-wave arrival can be erroneously 

85 taken as S-to-P phases converted beneath the stations. Therefore, a robust identification and 

86 interpretation of S-to-P converted waves in the SRF are not necessarily trivial, and data 

87 selection criteria can become the key to provide a more robust determination of sharp 

88 features in the LAS.

89 The purpose of this paper is thus to introduce simple but effective screening criteria for 

90 the data selection and therefore removal of data or SRFs with strong unwanted signal-
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91 generated noise. We will first briefly review data selection criteria established in the 

92 literatures (e.g. Kumar et al. 2005; Yuan et al. 2006; Wilson et al. 2006; Abt et al. 2010; 

93 Kind et al. 2015; Shen et al. 2017). To devise an objective criterion to minimize the 

94 interference from P coda waves, as a proof of concept, we first examine scenario of SRFs 

95 recorded in South Korea seismic network, sitting on a geologically stable continental 

96 platform (Fig. 1). Through systematic analysis of full-waveform synthetics and SRFs from 

97 catalogued teleseismic earthquakes in 2005–2015 (Takeuchi et al. 1996; Kawai et al. 2006), 

98 we demonstrate the usage and effectiveness of the new data screening and selection criteria 

99 against previous efforts (e.g. Wilson et al. 2006) with synthetics as well as observed SRFs in 

100 South Korea. 

101

102 2 Construction of SRF and previous efforts in the data selection criteria

103 The calculation of SRF involves two important steps, that are (1) coordinate rotation, 

104 which isolates Sdp phase from the incident S wave, and (2) deconvolution, which removes 

105 source and propagation path effects (e.g. Farra & Vinnik 2000). Three-component north-east-

106 vertical (N–E–Z) data are rotated to L–Q–T (or P–SV–SH) ray coordinate system (see also 

107 Rondenay 2009). While both of these coordinate systems are frequently implemented in past 

108 SRF studies (see review by Rondenay 2009; Kind et al. 2012), as demonstrated by 

109 Svenningsen & Jacobsen (2004) and discussed by Rondenay (2009), the difference of SRFs 

110 constructed in these two coordinate systems is minimum and much less than 1% (see Fig. 3 in 

111 Svenningsen & Jacobsen (2004)). Since the aim of this paper is to design the metrics to 

112 indicate the level of unwanted signal-generated noise prior to the S wave, we choose to 

113 discuss and illustrate the usage of our designed metrics in the L–Q–T system throughout this 

114 paper.
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115  As the L component is dominated by the P wave, Q and T components mostly contain 

116 energies from SV and SH waves, respectively. SRFs are then computed by deconvolving the 

117 S waveform in the Q component from the corresponding L component, in either time domain 

118 or frequency domain. To improve the signal-to-noise ratio (SNR), SRFs are binned and 

119 stacked. Throughout the paper, we will illustrate the usage and performance of our data-

120 oriented screening criteria with the time-domain Wiener deconvolution method (Robinson & 

121 Treitel 1967), whereas examples with the frequency-domain deconvolution of various water 

122 levels can be referred to the Supplementary Information.

123 Earlier works put emphasis on the selection of earthquakes in restricted epicentral 

124 distances or/and source depths (e.g. Wilson et al. 2006; Yuan et al. 2006). In an attempt to 

125 evaluate the robustness of the observed Sdp phases, Yuan et al. (2006) performed full 

126 waveform synthetics (Wang 1999) and suggested optimal epicentral distances of 55°−85° for 

127 the construction of SRF, which avoid post-critical incoming S wave. However, the synthetic 

128 waveforms only include downgoing waves and upgoing waves were excluded. Consequently, 

129 the influence of surface-reflected P waves on the Sdp detection cannot be evaluated. On the 

130 other hand, Wilson et al. (2006) conducted full waveform synthetics (Fuchs & Müeller 1971) 

131 and quantitatively measured the energy level before the S wave in the SRFs. They suggested 

132 a data selection criterion for the SRF at restricted epicentral distances of 60°–75° and source 

133 depths of 300 km or less. 

134 The criterion by Wilson et al. (2006) was however based on synthetics from a single 

135 thrust-fault source mechanism and an one-dimensional (1-D) velocity model with a relatively 

136 thick crust of 70 km. Therefore, the established criterion needs not necessarily be the most 

137 general choice. As P coda waves can consist of multiple mantle P waves or/and S-to-P 

138 scattering waves within the crust and lithosphere between the source and the receiver, the 

139 amplitude and timing of these P coda waves not only depend on source depth (Wilson et al. 
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140 2006), but it may also depend on the strength of scatters and source-receiver geometry and 

141 source mechanisms, or effectively the radiation pattern. Nevertheless, these data selection 

142 criteria have been commonly used in the SRF analysis, sometimes with a minor adjustment 

143 on either the range of epicentral distance or/and source depth (e.g. Hansen et al. 2009; Abt et 

144 al. 2010; Ford et al. 2010; Lekic & Fischer 2014; Hopper & Fischer 2015). 

145 To improve the robustness and interpretation of the SRF and establish a more general 

146 data selection scheme, our focus is to expand the work by Wilson et al. (2006) and establish 

147 data-oriented selection criteria. In particular, by either contrasting the energy level between 

148 the S-wave arrival in the Q-component waveform and P coda waves in the L-component 

149 waveform, or measuring the amplitude of the SRF after the S wave, we introduce more direct 

150 and general selection and screening criteria that do not necessarily rely on a specific choice of 

151 the epicentral distance or source parameters, but honor the level of unwanted signal-

152 generated noise before the S wave.

153

154 3 Design and construction of new data selection criteria for the SRF

155 As discussed in previous sections, multiple mantle P waves or S-to-P scattering within 

156 the crust and mantle between the source and receiver (Vinnik & Romonowicz 1991; Bock 

157 1994; Wilson et al. 2006) can form the P coda waves. Depending on the amplitude of these P 

158 coda waves preceding the S-wave arrival, they can interfere with converted waves, Sdp, from 

159 the LAS beneath seismic stations, or even being erroneously identified as Sdp. Depending 

160 upon the epicentral distance, source depth and mechanism, the level of interference can vary. 

161 In other words, the energy level of P coda waves can be large even for a shallow event. Since 

162 the effect of diverse source mechanism or radiation pattern on the excitation of these P coda 

163 waves was not explored by Wilson et al. (2006), we conduct a systematic investigation 

Page 7 of 138 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

164 through full waveform synthetics and examine the impact of realistic source mechanisms, or 

165 more importantly, the radiation pattern on the excitation and amplitude of P coda waves. 

166 As a proof of concept, we consider observations of one station from the South Korea 

167 seismic network (Lim et al. 2018) and examine full waveform synthetics from earthquakes 

168 with magnitude larger than 5.5 between 2004 and 2013 from the global CMT catalogue 

169 (Dziewonski et al. 1981; Ekström et al. 2012), located at the distances of 60°–85° from the 

170 seismic network (Fig. 1). The event magnitude threshold of 5.5 allows detection of clear S-

171 wave arrivals and identification of SMp arrivals from the Moho beneath the continental 

172 platform in South Korea. Since most stations generally contain quality waveform data from 

173 200–400 earthquakes after data quality control and screening, we randomly select 300 

174 earthquakes in our synthetic test. As expected in most realistic scenarios, synthetics data are 

175 predominantly from shallow events. Synthetic waveforms are computed with the Direct 

176 Solution Method (Takeuchi et al. 1996; Kawai et al. 2006) using the 1-D IASP91 model 

177 (Kennett & Engdahl 1991) as well as a modified IASP91 model (denoted as ‘L70’), which 

178 includes a 35 km thick high-velocity mantle lid with a 7.5% shear velocity increase below 

179 Moho, a low velocity zone with a 9% shear velocity reduction beneath 70 km depth, and a 

180 small 1.5% shear velocity increase beneath 120 km depth (Fig. S1; Table S1).

181 To calculate synthetic SRFs, we first rotate synthetic waveforms with a time window of 

182 100 s prior to and 100 s after the S wave to the radial-tangential-vertical (R–T–Z) system 

183 using the theoretical event back-azimuth. Theoretical incidence angle of the S wave 

184 computed from the IASP91 model is used to rotate waveforms into the ray coordinate system 

185 in the L–Q–T components (e.g. Rondenay 2009) before deconvolution (e.g. Kind et al. 2012; 

186 Shen et al. 2017). The waveforms in the Q component (e.g. the parent waveform) are 

187 windowed 10 s before and 35 s after the S-wave arrival and tapered with a 15% Hanning 
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188 taper at both ends of the signal window. The L- and Q-component waveforms are then 

189 deconvolved by the parent waveform through the time-domain Wiener deconvolution method, 

190 which involves spiking of the output time series with the parent waveform and construction 

191 of Wiener-filter time series (Robinson & Treitel 1967). Minimum regularization with a white 

192 noise of 0.01% is applied in the calculation. Such a time series is then convolved with L- and 

193 Q-component waveforms to obtain L- and Q-component SRFs, respectively. The resulting 

194 SRFs are bandpass filtered at 3–50 s and normalized by the spike in the Q-component at zero 

195 time. Hereafter, we will refer our discussion in the L-component SRFs.

196 3.1 Inspections of synthetic SRFs

197 Figs 2a and b display stacked synthetic SRF record sections, which consist of 300 

198 individual SRFs, stacked with a 1°-distance bin and aligned along the S arrival at zero time. 

199 Synthetics are computed with the IASP91 model (Fig. 2a) and the L70 model (Fig. 2b). The 

200 converted waves from the Conrad (SCp) and the Moho (SMp) have a negative polarity and 

201 they arrive at about 4–5 s before the S wave (Fig. 2). Crustal multiples (e.g. SCpPCP and 

202 SMpPMP) and other mantle waves such as SP, sSP, pSPPP, sSPPPP and pSPPPPP arrive at 

203 about 5–60 s after the S wave (Fig. 2). Converted waves at the upper mantle seismic 

204 discontinuities from incident ScS and SKS waves (e.g. ScS410p, ScS660p, SKS410p and 

205 SKS660p) have a very different moveout from the SMp and they are less visible than those 

206 shown in Yuan et al. (2006). On the other hand, as pointed out by Wilson et al. (2006), we 

207 can observe spurious but consistent energies before the SMp arrival that are not associated 

208 with converted waves from local structure beneath the receivers. Therefore, it is important to 

209 set up a general data selection scheme to minimize these spurious arrivals. 

210 After systematically inspecting synthetic waveforms and the resulting SRFs, we use 

211 Fig. 3 to illustrate the motivation of our designated data selection criteria. We consider two 
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212 earthquakes (events 1 and 2) such that their epicentral distances are comparable at ~67° and 

213 the SNR of the S waves in the Q component are also similar (Fig. 1a, red beachballs). 

214 However, regardless of the choice of IASP91 model or L70 model (Fig. S1), the P coda 

215 waves in the L-component waveforms are comparably stronger in event 2 than those in event 

216 1, arguing the effect of radiation pattern on the amplitude of these P coda waves. When 

217 examining their SRFs, those from event 1 display clear SMp or/and SLp with otherwise weak 

218 energy prior to the S wave (Figs 3a and b). On the other hand, SRFs from event 2 display 

219 strong and spurious energy before and after the S wave (e.g. Figs 3c and d). It is noteworthy 

220 to emphasize that, as the deconvolution scheme, data windowing and tapering procedures are 

221 exactly the same between event 1 and event 2, strong spurious energy before the S wave in 

222 the SRF directly corroborates with strong P coda waves in the L-component waveform of 

223 event 2 (see also Figs S2 and S3 for the results with different windowing schemes). As noted 

224 earlier, it is conceivable that these dubious signals may be mistakenly interpreted as Sdp 

225 waves beneath seismic stations. 

226 3.2 Measurement of LQR and AMP and construction of stacked SRFs

227 Motivated by observation, we devise measures of LQR, the amplitude ratio between L-

228 component P coda waves and Q-component S waves, and AMP, the amplitude of SRFs after 

229 the S-wave arrival. We then systematically test how the LQR and AMP thresholds may be 

230 used to detect and retain robust Sdp waves while minimizing dubious energies in the SRFs 

231 (Fig. 3). Here, we define LQR as 

232 LQR = RMS(L[t3 t4]) / Max(Q[t1 t2]),        (1)
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11

233 where Max(Q[t1 t2]) measures the peak amplitude of the S wave in the Q-component data 

234 window defined by t1 and t2, and RMS(L[t3 t4]) measures the RMS amplitude of the P coda in 

235 the L-component time window defined by t3 and t4. On the other hand, the AMP is defined as 

236 AMP = RMS(SRF[t5 t6]), (2)

237 where RMS(SRF[t5 t6]) measures the RMS amplitude of the SRF in the time window defined 

238 by t5 and t6 with respect to the S arrival. In the subsequent analysis and demonstration, we set 

239 t1 = -5 s, t2 = 10 s, t3 = -60 s, t4 = -20 s, t5 = 20 s, and t6 = 100 s. Note that the choice of t3 and 

240 t4 is such that they do not include potential Sdp arrivals in the LAS.

241 After measuring the LQR and AMP against all synthetic SRFs, we observe that SRFs 

242 with the lowest LQR typically fall in the distance range of 60°–66° and those with the lowest 

243 AMP are typically in the distance range of 70°–77°. However, to fully take advantage of the 

244 slant stack technique, it is important to ensure effective noise removal and to minimise data 

245 selection bias in epicentral distance. Therefore, it is more desirable that selected SRFs are 

246 evenly distributed within the entire distance range of 60°–85° and are not falling in a narrow 

247 distance range. Consequently, synthetic SRFs in each 1°-distance bin are first selected 

248 according to a designated data selection threshold and subsequently stacked. The error is then 

249 estimated by the bootstrap method (Efron & Tibshiran 1998).

250 In the following tests, we systematically examine how different LQR and AMP 

251 thresholds determine the quality of the stacked SRFs. To determine the effectiveness of each 

252 data selection criteria in mitigating signal-generated noise, we sum stacked SRFs of each 1°-

253 distance bin and measure the RMS amplitude of the summed SRF before the SMp arrival 

254 (denoted as AMP1). The AMP1 is defined as

255 AMP1 = RMS(SRF[t7 t8]), (3)
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256 where RMS(SRF[t7 t8]) measures the RMS amplitude of the SRF in the time window defined 

257 by t7 and t8 with respect to the S arrival. Here, we set t7 = -60 s and t8 = -20 s. 

258 3.3 Evaluating the efficacy of the LQR and AMP criteria

259 In order to investigate the efficacy of LQR and AMP criteria for the SRFs, we consider 

260 two principles to judge the quality of stacked SRFs. First, if the data selection criterion is 

261 effective, we expect that the signal-generated noise before the S arrival shall be minimized. 

262 This can be visually inspected and quantitatively examined through the measurement of 

263 AMP1. Second, if the data selection criterion is effective, the amplitude of stacked SRFs 

264 against epicentral distance should follow closely the theoretical S-to-P transmission 

265 coefficient (Aki & Richards 2002) with minimum perturbation.  

266 3.3.1 Presence/absence of signal-generated noise before S-wave arrival

267 To highlight how the data selection criteria influence signal-generated noise, synthetic 

268 SRFs with 25% lowest and 25% highest LQR (or AMP) in each distance bin are selected and 

269 subsequently stacked. For comparison, we also present stacked SRFs with the criterion by 

270 Wilson et al. (2006) and those with 25% randomly selected SRFs. Stacked SRF images at 

271 60°–85° from the IASP91 model (Kennett & Engdahl 1991) and L70 model (Fig. S1) are 

272 shown in Fig. 4, whereas the sum of stacked SRFs and their 95% confidence interval are 

273 displayed in Figs 5a and 5b, respectively. For comparisons, stacked SRF waveforms (Figs 

274 5c–f) and stacked SRF images (Figs S4–7) with different parent window length (case 1; -10 s 

275 before and 15 s after the S wave), tapering (case 2; 5% Hanning taper), deconvolution scheme 

276 and regularization (cases 3 and 4; frequency-domain deconvolution with water level of 0.05% 

277 and 0.2%, respectively) are also presented for comparisons. 
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278 For the IASP91 model, the first signal before the S arrival is a negative SMp phase 

279 arriving at about 4 s before the S arrival (Figs 4a–f and 5a). While the SMp signal can be 

280 consistently detected with different data selection criteria (Figs 4a–f and 5a), the amplitudes 

281 of SMp with the highest LQR and AMP criteria are much stronger and more variable than 

282 those with the lowest LQR or AMP criteria (Fig. 5a). In particular, signals up to 6–8% with 

283 positive amplitude can be detected before the SMp at the 95% confidence level (Fig. 5a). 

284 However, these signals are dubious as they do not corroborate with the absence of any sharp 

285 velocity gradient below the Moho (Fig. S1). While the criterion by Wilson et al. (2006) does 

286 a better job in reducing the amplitude of these dubious signals down to 3–4% (Fig. 5a), the 

287 lowest LQR and AMP criteria appear to be the most effective, minimizing dubious arrivals at 

288 the amplitude level of 1–2%, typically insignificant at the 95% confidence level (Fig. 5a).

289 For the L70 model, we can observe a consistent, but positive signal arriving at about 9 s 

290 before the S arrival (Figs 4g–l and 5b). As expected, it is the S-to-P converted arrival (SLp) 

291 from the negative velocity discontinuity at the depth of 70 km (Fig. S1), Such a SLp signal 

292 has the same polarity and comparable strength as those used in previous studies to infer LAB 

293 or MLDs in the LAS (e.g., Eaton et al., 2009; Abt et al., 2010; Kumar et al., 2012; Shen et al., 

294 2015; Shen et al., 2017). However, except the lowest LQR or AMP criteria, all other data 

295 selection criteria produce strong oscillations throughout the entire SRF stacks (Figs 4g–l), 

296 following slowness very similar to the SP wave. Even the SLp appears to be detected in this 

297 circumstance, the quality of the detection is low with incorrect amplitude and very large 

298 uncertainties (Fig. 5b). With the lowest LQR or AMP criteria, the SLp signal appears more 

299 robust with the smallest bootstrap uncertainties (Fig. 5b). It is evident that the signal-

300 generated noise before the S arrival are much weaker in the stacked SRFs produced with the 

301 criteria of the lowest LQR (Figs 4g and 5b) or AMP (Figs 4i and 5b) than those produced 
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302 with the highest LQR (Figs 4h and 5b), the highest AMP (Figs 4j and 5b), the criterion by 

303 Wilson et al. (2006) (Figs 4k and 5b) or with random data selection (Figs 4l and 5b). 

304 These observations can be concluded with alternative window length of the parent 

305 waveform (case 1; Figs 5c and S4), tapering (case 2; Figs 5d and S5) or deconvolution 

306 scheme (e.g. frequency-domain water-level deconvolution) with different regularization 

307 (cases 3 and 4; Figs. 5e, 5f, S6, and S7). Stacked SRFs produced with the criteria of the 

308 lowest LQR or AMP are stable, regardless specific choices of these data processing 

309 procedures. Evidently, stacked SRFs with other criteria vary more substantially with the 

310 choice of data processing routines. More critically, while a stronger regularization does 

311 minimize amplitude oscillation (e.g. case 4; Fig. 5f), strong signal-generated noise arriving 

312 before the SLp arrival remains.  

313 To quantitatively assess the quality of stacked SRF and the effectiveness of data 

314 selection criteria in mitigating the signal-generated noise, we compute AMP1 to measure the 

315 RMS amplitude in the designated time window before the S arrival. We systematically select 

316 a subset of all synthetic SRFs by varying the percentage threshold (10–50%) of the lowest 

317 and highest LQR or AMP, generate the summed SRF and calculate AMP1. As shown in Fig. 

318 6, the value of AMP1 generally decreases with increasing percentage threshold of six 

319 different criteria. At 25% threshold, AMP1 of the lowest LQR or AMP is lower than that of 

320 the highest LQR or AMP by more than a factor of 4 (Fig. 6). Also, at 25% threshold and 

321 higher, AMP1 of the lowest LQR or AMP is less than AMP1 of all SRFs (Fig. 6a). In 

322 particular, we find that the SRFs constructed with the lowest AMP generally display a lower 

323 level of AMP1, and the improvement is even more substantial for the synthetic SRFs from 

324 the L70 model (Fig. 6b). AMP1 of the lowest AMP for the L70 model is lower by a factor of 

325 2 or less than that measured against the summed SRF of the entire SRF dataset (Fig. 6b). 
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326 In the case of random data selection, the value of AMP1 does not show appreciable 

327 difference with respect to the percentage threshold (Fig. 6), whereas the criterion of Wilson et 

328 al. (2006) does not seem to improve AMP1 upon those from random data selection (Fig. 6), 

329 which is not unexpected as synthetic data are predominantly from shallow events. In a way, 

330 even with a smaller volume of the entire synthetic SRFs (e.g., 25% or less), the lowest LQR 

331 or AMP criterion achieves a much lower AMP1 than that of Wilson et al. (2006)’s using 50% 

332 of the entire synthetic SRFs. Notably, depending on the exact data selection threshold, AMP1 

333 with lowest LQR or lowest AMP criteria can be 20–50% lower than AMP1 of all events (Fig. 

334 6).

335 3.3.2 Validating the amplitude of the S-to-P converted waves 

336 To further verify the robustness of the converted phases beneath the receiver and assess 

337 the stability of the signal, we measure the amplitudes of Sdp (e.g. SMp and SLp) and compare 

338 them against the theoretical S-to-P transmission coefficient (Aki & Richards 2002). If the 

339 amplitudes of Sdp from the stacked SRFs follow closely to the theoretical transmission 

340 coefficients, we consider that the data selection criteria are effective in removing signal-

341 generated noise and recovering a truthful detection. Fig. 7a shows distance-dependent 

342 amplitudes of SMp measured against stacked SRFs of six different criteria for the IASP91 

343 model. On the other hand, Figs 7c and 7d show distance-dependent amplitudes of SMp and 

344 SLp measured against stacked SRFs of different criteria for the L70 model, respectively. Fig. 

345 7b shows the amplitudes of the SRFs measured in the same time window as that used in Fig. 

346 7d for comparison. Since we do not expect a truthful detection of SLp for the IASP91 model, 

347 the measurements are indicative of the level of signal-generated noise. 

348 Typically, the highest LQR or AMP criterion results in unstable estimate of SMp 

349 amplitudes (e.g. Figs 4 and 5), and their amplitudes strongly deviate from the theoretical 
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350 predictions (Figs 7a and c). Stacked SRFs from the random data selection or from the 

351 criterion of Wilson et al. (2006) also suffer similar distortion, but to a less degree (Fig. 7). On 

352 the other hand, given the selection criteria of 25% lowest LQR or AMP, the amplitude of 

353 SMp follows closely to theoretical calculation against distance (Figs 7a and c). Similarly, the 

354 amplitude of SLp against distance generally follows theoretical prediction when the data 

355 selection criteria of 25% lowest LQR or AMP are implemented (Fig. 7d). Our results indicate 

356 that the lowest LQR or AMP is useful for detecting SLp phases and retaining their amplitudes 

357 by reducing the dubious signals before the S wave. We note that the average amplitude within 

358 the time window for expected SLp arrivals is typically on the order of 2% for the lowest 

359 LQR, and of ~1% for the lowest AMP (Fig. 7b). Therefore, we suggest 2% as the minimum 

360 amplitude threshold above which the robust identification of local Sdp converted waves 

361 within the LAS can be made and interpreted. 

362 In summary, we find that the SRFs constructed with the lowest LQR or AMP generally 

363 display a lower level of spurious energy before the S wave while the SRFs with the highest 

364 LQR or AMP, as expected, displays a higher level of signal generated noise (Figs 4–7). The 

365 improvement appears more substantial in the case where synthetic SRFs are computed from 

366 the L70 model (Fig. 6b). While the calculation of SRF can be influenced by the choice of 

367 time window and tapering in the parent waveform as well as the deconvolution scheme (e.g. 

368 Lekic & Fischer 2017), the performance of LQR and AMP data selection criteria does not 

369 depend on such specific choices. This characteristic makes the LQR and AMP very desirable 

370 since stacked SRFs with low LQR and low AMP are always very stable.

371 3.3.3 The sources of P coda waves?

372 To investigate the source of these P coda waves, we first examine if the attributes 

373 such as LQR or AMP depend on epicentral distance, event back azimuth or source 
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374 parameters. However, we do not observe any obvious selection bias in event epicentral 

375 distance or back azimuth against the criteria such as LQR and AMP (Fig. S8), nor do we find 

376 dependence of LQR or AMP on earthquake source mechanism (Fig. S9), suggesting that 

377 LQR and AMP, or the level of P coda waves, are predominantly dictated by the radiation 

378 pattern. In this regard, while we do not specifically include SV/SH amplitude ratio in the data 

379 selection criteria, high LQR or AMP criterion more often corresponds to data with a low 

380 SV/SH ratio (< 1) and low LQR or AMP typically corresponds to data with a high SV/SH 

381 ratio (> 1) (Fig. 8).

382 It has been argued by Wilson et al. (2006) that P-coda waves can come from 

383 multiples such as pPPP, pPPPP or/and sPPPP from deep events (> 300 km) and they may 

384 interfere with Sdp phases. However, for most practical analysis on the LAS, only those from 

385 really deep events of 450 km or deeper may directly interfere with Sdp from the LAS since 

386 these multiples, in most instances, arrive at least 1–2 minutes before the S arrival. Similar 

387 lines of arguments have been also pointed out by Vinnik & Romanowicz (1991). This 

388 assertion can be supported by the fact that P radiation patterns computed with the slowness 

389 such as pPPPP wave do not distinguish against LQR or AMP (Fig. 9). This is also consistent 

390 with our observation that, when shallow events dominate the synthetic dataset, Wilson et al. 

391 (2006)’s criterion does not necessarily outperform data selection scheme of random choice 

392 (Figs 5b–f; see also Figs S4–7).

393 As shown in Figs 4g–l, signal-generated noise before the S arrival appear to follow very 

394 similar slowness as those mantle waves such as SP, sSP, sSPPP, and sSPPPP, apparently 

395 forming precursors of these mantle waves and interfering with Sdp phases in the LAS. It is 

396 conceivable that energies prior to the S wave in the stacked SRF are likely to be scattering 

397 waves such as S�P and SP�P, where S�P denotes S-to-P scattering wave from the free surface 
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398 and SP�P denotes SP-to-P scattering wave from the scatter in the crust (Vinnik 1981; Vinnik 

399 & Romanowicz 1991). Depending on the lead time of scattering waves with respect to the S 

400 wave, the area of scattering is expected to be at least 25° from the receiver, and typically in 

401 the range of 30°–40° from the receiver (see Fig. 8a of Vinnik & Romanowicz (1991)), with 

402 the raypaths of S and P waves in the S�P (or SP�P) arriving in different vertical planes. As 

403 our wave propagation simulation is done with a laterally homogeneous and spherically 

404 symmetric earth model (Kawai et al. 2006) with a finite duration S wave, spherical waves 

405 propagating off the vertical plane defined by the source and receiver likely result in scattering 

406 waves such as S�P.

407 If S�P or/and SP�P scattering waves are indeed the cause of these signal-generated 

408 noise observed in SRFs, the SV radiation pattern in the area of scattering will directly control 

409 the amplitude of S�P and SP�P scattering waves (Vinnik & Romanowicz 1991). To validate 

410 this, we assume that the scattering area is near the surface reflection point of SP wave and 

411 compute SV radiation pattern with the slowness of SP wave in our synthetic dataset. As 

412 shown in Fig. 10, the SV radiation patterns against the lowest LQR and AMP criteria are 

413 generally much weaker than those against the highest LQR and AMP criteria. Effectively, 

414 LQR and AMP criteria help select data with weakest SV radiation pattern in the scattering 

415 area. Following the same line of reasoning, it is conceivable that S�P scattering waves can 

416 come from internal boundaries such as the Moho. While a more elaborated investigation 

417 should be done in the future, this is consistent with our simulation that signal-generated noise 

418 in SRF are much stronger in the L70 model, which includes a larger velocity contrast across 

419 the Moho than the IASP91 model as well as an additional velocity reduction at 70 km depth 

420 (Fig. S1). 
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421 Evidently, there is no lateral variation in surface topography, internal boundary or 

422 velocity in our simulation, and it is difficult to precisely estimate the scattering potential 

423 without invoking 2-D or 3-D full waveform modelling. It is also possible that signal-

424 generated noise in 2-D or 3-D models are less coherent and do not add constructively. 

425 However, our data-oriented screening criteria such as LQR or AMP are designed to honor the 

426 data and provide direct and straightforward attributes to measure the level of these spurious 

427 energies. With lowest LQR or/and AMP, SRFs with strong signal-generated noise are 

428 effectively removed, improving the quality of stacked SRF and the detection of true Sdp 

429 arrivals in the LAS beneath seismic stations.

430

431 4 Application to South Korea seismic data: detection and characterization of seismic 

432 discontinuities in the LAS

433 Our synthetic tests have demonstrated that the effectiveness of LQR and AMP could 

434 serve as general data selection criteria for the construction of SRF. Here we apply these new 

435 data selection criteria to the dataset recorded by South Korea seismic network (Fig. 1) (Lim 

436 et al. 2018) and illustrate its effectiveness in real datasets. We select earthquake magnitudes 

437 greater than 5.5 within the epicentral distance range of 60°–85° from the seismic network. To 

438 construct the SRF, we follow exactly the same scheme detailed in the synthetic test in Section 

439 3, but highlight a few key additional steps here to screen noisy data. First, when rotating 

440 three-component waveforms into L-Q-T coordinate system, the incidence angle of the 

441 incoming S wave is determined by maximizing the SV-wave energy on the Q component 

442 within the time window spanning ±2 s on either side of the theoretical S-wave onset. If the 

443 difference between the observed incidence angle and the predicted one (from IASP91) 

444 exceeds 25°, the waveforms are rejected. Secondly, data are also removed if the SNR of the S 
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445 wave in the Q component is less than 5. Thirdly, if the peak SRF amplitude in the L 

446 component is larger than 0.5 or if the mean amplitude of the SRF in the L component is 

447 larger than 50% of its peak amplitude, such SRFs are apparently oscillatory throughout the 

448 entire time window and they are also rejected.  

449 As an example, we examine stacked SRFs at station TJN in South Korea seismic 

450 network (Fig. 1b) in detail. We process waveform data from 917 events in January 2005–

451 January 2015 (Lim et al. 2018) and, after preliminary data quality control detailed earlier, 

452 316 SRFs are retained and they are filtered at 3–50 s before subsequent data selection 

453 analysis. Here we measure LQR and AMP against the observed SRFs exactly the same way 

454 as discussed in Section 3. In general, the lowest LQR and AMP against the observed SRFs 

455 are typically higher than that against synthetics SRFs because of noise. With the nominal 

456 percentage threshold of 25%, we finally retain about 80 SRFs.    

457 To illustrate how the stability of the SRF and detection of SMp and SLp depend on the 

458 data selection criteria, Fig. 11 (and Fig. S10) displays stacked SRF images constructed with 

459 the same six different data-selection criteria as discussed in the synthetic test in Section 3 

460 (e.g. Fig. 4), With the lowest LQR or AMP criterion (Figs 11a and c), we can reasonably 

461 track a consistent signal with negative amplitude with respect to epicentral distance, arriving 

462 about 4 s before the S arrival, presumably Sdp from the Moho (SMp). However, it is less 

463 trivial to track SMp in stacked SRF image with the Wilson et al. (2006)’s criterion (Fig. 11e) 

464 or random selection criterion (Fig. 11f), and very difficult to do so against those constructed 

465 with the highest LQR or AMP criterion (Figs 11b and d). These observations can also be 

466 made against stacked SRF images using a stronger regularization of 1% white noise (Figs 

467 S13 and S14).
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468 Stacking the SRFs shown in Fig. 11, Figs 12a and b displays summed SRF waveforms 

469 and their bootstrapped uncertainties against the six different data-selection criteria and data 

470 selection threshold of 25% and 50%, respectively. Again, using the lowest LQR, AMP or 

471 Wilson et al. (2006)’s criterion, detection of SMp can be made at the 95% confidence level 

472 (Fig. 12). With the highest LQR or AMP criterion, the SMp can be barely detected at the 95% 

473 confidence level with large uncertainties (Fig. 12a and b). Even with a stronger regularisation 

474 (1% white noise), SMp still possesses large uncertainties (Fig. 12c). It is important to note 

475 that the uncertainties of SRF with low LQR and AMP are much smaller than those with high 

476 LQR or AMP or random selection (Fig. 12). In principle, a consistent detection of SMp with 

477 small amplitude uncertainties serves as a very good indication on the quality of stacked SRF. 

478 Furthermore, with the lowest LQR or AMP criterion, a positive signal arriving at about 8 s 

479 before the S arrival, possibly SLp from the LAS, can be detected at 95% confidence level 

480 (Fig. 12), whereas such a SLp arrival cannot be detected otherwise with statistical 

481 significance (Fig. 12). We note that the amplitude of detected SLp is about 5–7%, 

482 considerably exceeding the 1–2% amplitude threshold for robust SLp detection with the 

483 lowest LQR or AMP criterion (e.g. Figs 4 and 5b). 

484 Considering three data-selection criteria such as the lowest LQR, AMP and Wilson et 

485 al. (2006), Fig. 13 further examines distance-dependent amplitudes of detected SMp and SLp 

486 and they are compared against theoretical S-to-P transmission coefficient (Aki & Richards 

487 2002) from the L70 model (Fig. S1). Here we do not seek an optimal fit to the data, but 

488 simply show if the amplitude measurements in general follow the theoretical trend against 

489 epicentral distance. While there are still substantial amplitude fluctuations with respect to 

490 theoretical prediction against epicentral distance, in this particular example at station TJN, 

491 measurements from the lowest AMP criterion follows closest to the theoretical trend, 
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492 regardless the degree of regularization (Figs 13a and b vs. Figs 13c and d). As expected, the 

493 amplitude of SMp and SLp is notably modulated by the degree of regularization. 

494 At least locally beneath the station TJN, a relatively sharp boundary with a negative 

495 velocity gradient is robustly identified in the LAS beneath the old Korea craton (Lee et al. 

496 1998). While the exact nature and spatial extent of such a boundary deserves further analysis 

497 and discussion, it is beyond the scope of this paper and we will detail the findings beneath the 

498 entire Korea network in a subsequent paper. Also, another key potential source of 

499 contamination on SRFs is scattering from laterally-varying structure (Lekic & Fischer 2017).

500 Lastly, Fig. 14 displays AMP1 against data-selection percentage threshold for six 

501 different criteria. Similar to what we observe in the synthetics (Fig. 6), the results from real 

502 data analysis at station TJN also show that not only AMP1 decreases with increasing 

503 percentage threshold, but the lowest LQR or AMP criterion gives the lowest AMP1 than 

504 Wilson et al. (2006) or the random data selection does (Fig. 14), compatible with synthetic 

505 test in Section 3 (Fig. 6). Despite the criterion of Wilson et al. (2006) restrains SRFs within 

506 60°–75° from shallow events, the lowest LQR or AMP criterion does concern SRFs across 

507 the entire distance range of 60°–85°, including a few SRFs from deep earthquakes as well. 

508 Furthermore, since the level of random noise reduction is proportional to the square-root of 

509 SRF number in the stacks, there is a trade-off between eliminating random noise and signal-

510 generated noise. While random noise can be reduced by stacking, it is not the case for signal-

511 generated noise. In comparison to the cases shown in Figs 11 and 12, while we can still detect 

512 SMp and SLp at 95% confidence level with a higher percentage threshold of 50%, the 

513 uncertainty of SRF amplitude does not decrease as expected for random noise (Figs S11 and 

514 S12). By inspection, if N is the data selection percentage threshold, multiplying AMP1 in Fig. 

515 6 (noise free) with the square root of 100/N generally reproduces the pattern of AMP1 shown 
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516 in Fig. 14. This can be useful in the discussion on how to properly select N against random 

517 noise with respect to data quality and noise level. 

518 In the case of our test, permanent station TJN provides about 300 quality data over 10 

519 years after data prescreening. As we present the result with 25% selection threshold (or ~75 

520 traces) for the detection of the SLp phase (Figs 11–13), we find a 15% selection threshold (or 

521 ~45 traces) with the low AMP criteria can still provide consistent SRF and SLp detection. 

522 Concerning typical PASSCAL experiments or temporal arrays over a 2-year period, 

523 depending on the aperture of the array, the number of stations, background noise level and 

524 the scale of lateral heterogeneity in the LAS, it is conceivable that a network of 5 stations can 

525 record 45 traces with low LQR and produce reasonably robust SRF stacks.

526 As evident in the synthetic test and real data analysis, high SNR of the S wave in the Q-

527 component seismogram by itself does not necessarily warrant the quality of stacked SRFs. 

528 The data selection criterion proposed by Wilson et al. (2006) is favorable for a specific focal 

529 mechanism, but it is not necessarily a general scheme that takes into account the effect of 

530 radiation pattern on the excitation of mantle P coda waves or/and scattering waves between 

531 the source and receiver in the L-component seismogram. In this study, the LQR criterion, by 

532 design, makes a direct amplitude measurement of the scattering wave in the L component and 

533 contrasts it against the amplitude of the S wave in the Q component. Obviously, the 

534 application of LQR criteria in real data analysis slightly depends on the choice of 

535 measurement time window, which may be adapted. Alternatively, the AMP data selection 

536 criterion makes a direct assessment on the amplitude of SP, sSP and other related multiples in 

537 the SRF, making it an ideal proxy to indicate the strength of scattering waves away from the 

538 receiver side (e.g., Vinnik & Romonowicz 1991). Finally, these data selection criteria can be 

539 easily adapted to a different coordinate system (e.g., P-SV-SH) when desired.
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540

541 5 Conclusions

542 Teleseismic scattered waves such as S-to-P converted phases (Sdp) provide enhanced 

543 sensitivity to localized velocity gradients across the lithospheric discontinuities. In this study, 

544 through systematic analysis of full-waveform synthetic waveforms and SRFs from 

545 catalogued earthquake focal mechanism and depth, we find that the strong P coda waves 

546 before the S wave recorded in the L component could result in the dubious Sdp phases in the 

547 synthetic SRFs before the S arrival. Furthermore, if the mean amplitude of SRFs after the S 

548 wave is large, dubious signals of SRFs before the S arrival become strong as well. Such 

549 signal-generated noise before the S arrival can be mistakenly interpreted as Sdp phase derived 

550 from lithosphere-asthenosphere system (LAS) beneath seismic stations. 

551 To minimize the interference of P coda waves on Sdp phases in the LAS, we devise 

552 data-oriented criteria such as LQR, the amplitude ratio between P coda waves of the L-

553 component waveform and the S wave of the Q-component waveform, and AMP, the 

554 amplitude of SRFs after the S arrival. These screening criteria provide a direct and 

555 straightforward attribute to measure and indicate the level of spurious energies before the S 

556 arrival in the SRF. With low LQR or AMP, regardless of the choice of deconvolution scheme, 

557 tapering or/and data windowing, unwanted signal-generated noise are largely removed, which 

558 improves the detection and quality of locally converted Sdp in the LAS. With the criteria 

559 such as the lowest LQR or AMP, the minimum amplitude threshold above which robust SLp 

560 can be detected is reduced down to about 1–2%, smaller than the amplitude threshold of 3–4% 

561 by the criterion of Wilson et al. (2006). The effectiveness of these criteria largely manifests 

562 the amplitude of SP wave as well as the control of SV radiation pattern in the scattering area 

563 on the amplitude of signal-generated noise due to S-to-P scattering (Vinnik & Romanowicz 

564 1991). Applying the newly designed selection criteria to real data in the South Korea seismic 
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565 network, we demonstrate that the lowest LQR or AMP criterion provides robust detection of 

566 SLp beneath the test station TJN, offering a great potential to better characterize seismic 

567 discontinuities in the LAS. 
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727 Figures 

728

729 Figure 1. Distribution of earthquakes with magnitude greater than 5.5 and South Korea 

730 seismic network. (a) Distribution of earthquakes within the epicentral distances of 60°–85° 

731 from the center of the Korean seismic network (black triangle). The Centroid Moment Tensor 

732 (CMT) solutions of the events are from Dziewonski et al. (1981) and Ekstrom et al. (2012). 

733 Two earthquakes for synthetics in Fig. 3 are highlighted in red. (b) South Korea seismic 

734 network. Broadband seismic stations are shown in black squares, and the only station is 

735 labelled with the station ID (TJN). 
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35

736

737 Figure 2. Stacks of 300 synthetic SRFs as a function of the epicentral distance of 60°–85°. 

738 The SRFs are binned with a distance of a 1° window and stacked, and their amplitudes are 

739 displayed in blue-to-red color. Theoretical phase arrival times from the IASP91 model 

740 (Kennett & Engdahl 1991) are marked as dashed lines with phase names labeled. (a) 

741 Synthetic SRFs calculated from the IASP91 model (Kennett & Engdahl 1991). (b) Synthetic 

742 SRFs from L70 model (Fig. S1).
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743

744 Figure 3. Examples showing P coda waves and their influence on signal-generated noise in 

745 the SRF. Gray dashed boxes in panel (a) indicate how LQR is measured from the L- and Q-

746 component synthetic seismograms and how AMP is measured from synthetic SRF.  Synthetic 

747 waveforms are computed from two earthquake sources (Fig. 1a, red beachballs) using the 

748 IASP91 (Kennett & Engdahl 1991) (a and c) and the L70 model (Fig. S1) (b and d). S-wave 

749 arrivals are aligned at zero time in the Q-component waveforms (dashed lines), and a time 

750 window for P coda waves are marked in a panel b (double arrow). Time-domain Wiener 

751 deconvolution method with minimum regularization (0.01% white noise) is performed within 

752 the parent waveform time window of 10 s before and 35 s after the S arrival (black bar in a 

753 panel a). Note the amplitude scale of SRF in case 2 is higher than that in case 1. See Figs S2 

754 and S3 for cases for the time window of [-10 s 15 s] and [-10 s 10 s] with respect to S arrival, 

755 respectively. 

756
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759

760

761 Figure 4. Images of synthetic SRFs for the IASP91 model (a–f) and L70 model (g–l) against 

762 epicentral distance and six data selection criteria. The SRFs are plotted in the same way as 
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763 Fig. 2. (a, g) Stacked SRFs with the 25% lowest LQR. (b, h) Stacked SRFs with the 25% 

764 highest LQR. (c, i) Stacked SRFs with the 25% lowest AMP. (d, j) Stacked SRFs with the 

765 25% highest AMP. (e, k) Stacked SRFs with the criterion by Wilson et al. (2006). Note that 

766 Wilson et al. (2006) used restricted epicentral distances of 60°–75° for earthquakes with focal 

767 depths shallower than 300 km. (f, l) Stacked SRFs with 25% random data selection. Dashed 

768 lines indicate phase arrival times predicted by the IASP91 model.

769
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770

771 Figure 5. Stacked SRFs for various cases against six data selection criteria: 25% lowest LQR, 

772 25% lowest AMP, the criterion by Wilson et al. (2006), 25% highest LQR, and 25% highest 

773 AMP, and 25% random data selection, from the top to bottom rows, respectively. Gray 

774 region indicates bootstrap error estimates of the SRFs. (a) Stacked SRFs for IASP91 model. 

775 (b) Stacked SRFs for L70 model. (c) Stacked SRFs for the case 1; same as (b) but with the 

776 window of parent waveform -10 s before and 15 s after the S wave. (d) Stacked SRFs for the 

777 case 2; same as (b) but with the Hanning tapering window of 5%. (e) Stacked SRFs for the 

778 case 3; same as (b), but with frequency-domain water-level deconvolution and water level of 

779 0.05%. (f) Stacked SRFs for the case 4; same as (b), but with frequency-domain water-level 

780 deconvolution and water level of 0.2%. Note stacked SRFs without any selection criteria are 

781 shown in red lines for comparisons. The stack of all traces is shown in red in the bottom 

782 panel.

783
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784

785 Figure 6. Root-mean-square (RMS) amplitudes of the synthetic SRFs at -60 to -20 s with 

786 respect to the S arrival (AMP1 in %), plotted against data-selection ratios (10–50%). (a) 

787 AMP1 for IASP91 model (Kennett & Engdahl 1991) with six criteria, which are lowest LQR 

788 (blue circle), highest LQR (red circle), lowest AMP (blue square), highest AMP (red square), 

789 random data selection (green square) and the criterion by Wilson et al. (2006) (black 

790 diamond), in addition to all SRFs (black dashed line). (b) AMP1 for L70 model (Fig. S1) 

791 with the same criteria as (a).  

792
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793

794 Figure 7. Amplitudes of SMp and SLp phases from the synthetic SRFs, plotted against the 

795 epicentral distance for the six different data selection criteria. The measured amplitudes are 

796 compared with the theoretical transmission coefficients (Aki & Richards 2002), shown in 

797 black dashed line. (a) Distance-dependent amplitude of SMp from IASP91 model (Kennett & 

798 Engdahl 1991). (b) Distance-dependent amplitude of SLp from IASP91 model. (c) Distance-

799 dependent amplitude of SMp from L70 model (Fig. S1). (d) Distance-dependent amplitude of 

800 SLp from L70 model. Note that the theoretical calculation of SLp transmission coefficient 

801 from the L70 model is reproduced in Fig. 7b for comparison. In the absence of a negative 

802 velocity contrast in the IASP91 model, notable amplitude peak, especially with the highest 

803 LQR or AMP criteria, can still be identified and potentially misinterpreted as SLp signal in 

804 the LAS. Lowest LQR or AMP criteria substantially minimize these dubious signals.
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805

806 Figure 8. Histograms of SV/SH ratio against four data selection criteria; (a) 25% lowest LQR, 

807 (b) 25% highest LQR, (c) 25% lowest AMP, and (d) 25% highest AMP. 

808
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810 Figure 9. Histograms of P radiation pattern against four data selection criteria; (a) 25% 

811 lowest LQR, (b) 25% highest LQR, (c) 25% lowest AMP, and (d) 25% highest AMP. The P 

812 radiation pattern is computed with the slowness of pPPPP against focal mechanisms of 

813 selected events.

814
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816 Figure 10. Histograms of SV radiation pattern against four data selection criteria; (a) 25% 

817 lowest LQR, (b) 25% highest LQR, (c) 25% lowest AMP, and (d) 25% highest AMP. The SV 

818 radiation pattern is computed with the slowness of SP wave against focal mechanisms of 

819 selected events.

820
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821

822 Figure 11. Images of SRFs for station TJN as a function of the distance of 60°–85° with six 

823 different data selection criteria. The SRFs are plotted in the same way as Fig. 2. (a) Stacked 

824 SRFs with the 25% lowest LQR. (b) Stacked SRFs with the 25% highest LQR. (c) Stacked 
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825 SRFs with the 25% lowest AMP. (d) Stacked SRFs with the 25% highest AMP.  (e) Stacked 

826 SRFs with the criterion by Wilson et al. (2006). (f) Stacked SRFs with 25% random data 

827 selection. Dashed lines indicate phase arrival times predicted by the IASP91 model. See Fig. 

828 S10 for the images of -30–30 s time window.   
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829

830 Figure 12. Stacked SRFs for station TJN with six data selection criteria with (a) a percentage 

831 threshold of 25%, (b) 50 %, and (b) 25% with a stronger regularization (1% white noise). 
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832 Gray region indicates bootstrap error estimates of the SRFs. The six data selection criteria are 

833 as follows: 25% lowest LQR, 25% lowest AMP, the criterion by Wilson et al. (2006), 25% 

834 highest LQR, and 25% highest AMP, and 25% random data selection, from the top to bottom 

835 rows, respectively.

836
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837

838 Figure 13. Amplitudes of SMp and SLp phases from the SRFs for station TJN, plotted against 

839 the distance of 60°–85° for three different data selection criteria (25% lowest LQR, 25% 

840 lowest AMP, and the criterion by Wilson et al. (2006)). The measured amplitudes are 

841 compared with the theoretical transmission coefficients (Aki & Richards 2002), shown in 

842 black dashed line. (a) Distance-dependent amplitude of SMp. (b) Distance-dependent 

843 amplitude of SLp. (c) Distance-dependent amplitude of SMp with a strong regularization (1% 

844 white noise). (d) Distance-dependent amplitude of SLp with a strong regularization (1% white 

845 noise). 

846
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847

848 Figure 14. Root-mean-square (RMS) amplitudes of the SRFs at -60 to -20 s with respect to 

849 the S arrival (AMP1 in %) for station TJN, plotted against data-selection ratios (10–50%). 

850 The six data selection criteria are as follows: lowest LQR (blue circle), highest LQR (red 

851 circle), lowest AMP (blue square), highest AMP (red square), random data selection (green 

852 square) and the criterion by Wilson et al. (2006) (black diamond), in addition to all SRFs 

853 (black dashed line). 
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854 Supporting Information 

855

856 Additional Supporting Information may be found in the online version of this article:

857

858 Supporting Information file includes one table and 14 figures providing velocity models for 

859 synthetic tests (Fig. S1), illustrations showing how the synthetic SRFs are constructed with 

860 our proposed data selection criteria for shorter time windows for the time-domain Wiener 

861 deconvolution (Figs S2 and S3), effect of using different data windowing and tapering length 

862 (Figs S4 and S5, respectively), effect of using various water levels in the alternative 

863 frequency-domain deconvolution (Figs S6 and S7), histograms of epicentral distance and 

864 event back-azimuth (Fig. S8) as well as source parameters (Fig. S9) against data selection 

865 criteria, and an alternative 50% threshold for six data selection criteria for the SRFs from 

866 station TJN (Figs S11 and S12) in addition to 25% threshold (Fig. S10). SRFs images with 

867 25% threshold and a strong regularization (1% white noise) are shown in Figs S13 and S14.

868

869 Table S1. Velocity models.

870

871 Figure S1. Velocity models. The 1-D IASP91 model (Kennett & Engdahl 1991) is shown in 

872 black, and the L70 model is shown in red. The L70 model includes a 35 km thick high-

873 velocity mantle lid with a 7.5% shear velocity increase below Moho, a low velocity zone with 

874 a 9% shear velocity reduction beneath 70 km depth, and a small 1.5% shear velocity increase 

875 beneath 120 km depth. See also Table S1. 

876

877 Figure S2. Examples showing P coda waves and their influence on signal-generated noise in 

878 the SRF. Gray dashed boxes in panel (a) indicate how LQR is measured from the L- and Q-
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2

879 component synthetic seismograms and how AMP is measured from synthetic SRF. Synthetic 

880 waveforms are computed from catalogued earthquake sources using the IASP91 (Kennett & 

881 Engdahl 1991) (a and c) and the L70 model (b and d). Time-domain Wiener deconvolution 

882 method is performed with the parent waveform time window of 10 s before and 15 s after the 

883 S arrival (black bar in a panel a). Note the amplitude scale of SRF in event 2 is higher than 

884 that in event 1.

885

886 Figure S3. Examples showing P coda waves and their influence on signal-generated noise in 

887 the SRF. Gray dashed boxes in panel (a) indicate how LQR is measured from the L- and Q-

888 component synthetic seismograms and how AMP is measured from synthetic SRF. Synthetic 

889 waveforms are computed from catalogued earthquake sources using the IASP91 (Kennett & 

890 Engdahl 1991) (a and c) and the L70 model (b and d). Time-domain Wiener deconvolution 

891 method is performed with the parent waveform time window of 10 s before and 10 s after the 

892 S arrival (black bar in a panel a). Note the amplitude scale of SRF in event 2 is higher than 

893 that in event 1.

894

895 Figure S4. Images of synthetic SRFs for the case 1 from the L70 model as a function of the 

896 distance of 60°–85° with following six data selection criteria; (a) 25% lowest LQR, (b) 25% 

897 highest LQR, (c) 25% lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. 

898 (2006), and (f) 25% random data selection. The parent waveforms are windowed 10 s before 

899 and 15 s after the S-wave arrival and tapered with a 15% Hanning taper at both ends of the 

900 signal window. Dashed lines indicate phase arrival times predicted by the IASP91 model 

901 (Kennett & Engdahl 1991). The SRFs are plotted in the same way as Fig. 2. 

902
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3

903 Figure S5. Images of synthetic SRFs for the case 2 from the L70 model as a function of the 

904 epicentral distance of 60°–85° with six different data selection criteria. The parent waveforms 

905 are windowed 10 s before and 35 s after the S-wave arrival and tapered with a 5% Hanning 

906 taper at both ends of the signal window. See a caption of Fig. S4 for more detail. 

907

908 Figure S6. Images of synthetic SRFs for the case 3 from the L70 model as a function of the 

909 epicentral distance of 60°–85° with six different data selection criteria. The parent waveforms 

910 are windowed 10 s before and 35 s after the S-wave arrival and tapered with a 15% Hanning 

911 taper at both ends of the signal window. The frequency-domain deconvolution is done with a 

912 water level of 0.05%. See a caption of Fig. S4 for more detail. 

913

914 Figure S7. Images of synthetic SRFs for the case 4 from the L70 model as a function of the 

915 distance of 60°–85° with six different data selection criteria. The parent waveforms are 

916 windowed 10 s before and 35 s after the S-wave arrival and tapered with a 15% Hanning 

917 taper at both ends of the signal window. The frequency-domain deconvolution is done with a 

918 water level of 0.2%. See a caption of Fig. S4 for more detail.

919

920 Figure S8. Histograms of epicentral distance and back azimuth against six data selection 

921 criteria. LQR and AMP data selection criteria with a percentage threshold of 25% result in 

922 negligible data selection bias in back azimuthal and epicentral distance.

923

924 Figure S9. Histograms of earthquake source parameters (dip, strike and rake) against four 

925 data selection criteria; (a, e, f) 25% lowest LQR, (b, f, j) 25% highest LQR, (c, g, k) 25% 

926 lowest AMP, and (d, h, l) 25% highest AMP. LQR and AMP data selection criteria result in 

927 negligible data selection preference in source parameters.
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4

928

929 Figure S10. Images of SRFs for station TJN as a function of the epicentral distance of 60°–

930 85° with following six data selection criteria; (a) 25% lowest LQR, (b) 25% highest LQR, (c) 

931 25% lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 25% 

932 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

933 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. See a 

934 caption of Fig. S4 for more detail. See also Fig. 10 for the images of -80–80 s window.   

935

936 Figure S11. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

937 following six data selection criteria; (a) 50% lowest LQR, (b) 50% highest LQR, (c) 50% 

938 lowest AMP, (d) 50% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 50% 

939 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

940 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. See a 

941 caption of Fig. S4 for more detail. See Fig. S12 for the images plotted for -30–30 s window.

942

943 Figure S12. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

944 following six data selection criteria; (a) 50% lowest LQR, (b) 50% highest LQR, (c) 50% 

945 lowest AMP, (d) 50% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 50% 

946 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

947 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. See a 

948 caption of Fig. S4 for more detail. 

949

950 Figure S13. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

951 following six data selection criteria; (a) 25% lowest LQR, (b) 25% highest LQR, (c) 25% 

952 lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 25% 
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5

953 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

954 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. Time 

955 domain wiener deconvolution is done with a strong regularization of 1% white noise. See 

956 Fig. S14 for the images plotted for -30–30 s window.

957

958 Figure S14. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

959 following six data selection criteria; (a) 25% lowest LQR, (b) 25% highest LQR, (c) 25% 

960 lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 25% 

961 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

962 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. Time 

963 domain wiener deconvolution is done with a strong regularization of 1% white noise. 

964
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2

15 Summary 

16 This paper aims to improve the robustness of interpretation in the S receiver function 

17 (SRF), a technique commonly used to retrieve forward scattering of S-to-P converted waves 

18 (Sdp) originated from the lithosphere-asthenosphere system (LAS) beneath the stations. 

19 Although the SRF does not suffer interferences from backward scattering waves such as the 

20 first multiples from the Moho, one major drawback in the method is that Sdp phases can 

21 interfere with P coda waves and it is conceivable that these signal-generated noise may be 

22 misinterpreted as Sdp phase from the LAS beneath seismic stations. Through systematic 

23 analysis of full-waveform synthetics and SRFs from catalogued source parameters, we find 

24 that the strong P coda waves before the S wave in the longitudinal-component waveforms 

25 result in unwanted signal-generated noise before the S wave in the synthetic SRFs. If the 

26 mean amplitude of SRFs after the S wave is large, dubious signal-generated noise before the 

27 S arrival are strong as well. In this study, we honor the level of these unwanted signal-

28 generated noise and devise data-oriented screening criteria to minimize the interference 

29 between P coda waves and genuine S-to-P converted waves. The first criterion is LQR, a 

30 direct measure of the amplitude ratio between longitudinal P coda waves and radial S wave in 

31 the waveform data. The second criterion is AMP, the amplitude of SRFs after the S arrival. 

32 We illustrate that these criteria effectively measure the energy level of mantle waves such as 

33 the SP wave. With synthetics and real data, we demonstrate the effectiveness of LQR and 

34 AMP criteria in minimizing these unwanted signal-generated noise in the stacked SRFs down 

35 to 1–2%, improving detection threshold and interpretation of Sdp phases from seismic 

36 discontinuities in the LAS. 

37

38 Key words: Body waves; Structure of the Earth; Wave propagation, Wave scattering and 

39 diffraction; Coda waves
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3

41 1 Introduction

42 Oceanic lithosphere is typically thought to be the outcome of melting of undepleted 

43 mantle and subsequent cooling, whereas continental lithosphere, especially beneath the 

44 cratons, is often considered as the result of large-scale plume melting, stacking oceanic 

45 lithospheres or/and arc collision (e.g. Lee et al. 2010). Small-scale convective instability, 

46 episodes of metasomatism and hydration, among other mechanisms, potentially facilitate the 

47 modification and disruption of oceanic and continental lithosphere. Unraveling robust seismic 

48 signature with the lithosphere-asthenosphere system (LAS) is crucial to understanding of the 

49 formation, modification and destruction of the plates and the formation of continents. For 

50 instance, the lithosphere-asthenosphere boundary (LAB), a mechanical boundary separating 

51 the rigid lithosphere and underlying viscous asthenosphere is thought to be the result of a 

52 simple thermal boundary due to long-term cooling. Seismic LAB from such a thermal 

53 boundary is considered smooth and gradual, where the velocity reduction with depth takes 

54 place over a transition thickness on the order of 50 km (Fischer et al. 2010). However, recent 

55 efforts have demonstrated that seismic LAB can be much sharper (e.g. Rychert et al. 2007; 

56 Kawakatsu et al. 2009; Tharimena et al. 2017). Beneath the continents and many localities in 

57 the oceans, seismic discontinuities have also been observed at depth ranges much shallower 

58 than expected, and the nature of such mid-lithospheric discontinuities (MLDs) remains 

59 elusive (e.g. Karato 2012; Schmerr 2012; Selway et al. 2015).

60 Therefore, it is clear that a robust and high-resolution seismic detection and 

61 characterization of LAB or/and MLDs can revolutionize our understandings of plate tectonics 

62 (e.g. Eaton et al. 2009; Fischer et al. 2010; Kawakatsu & Utada 2017). In the last decade, the 

63 depth and spatial resolution of the seismic discontinuities are greatly improved, thanks to the 

64 explosion of seismic data and progression of varieties of seismic techniques, including 

65 teleseismic P-to-S receiver function (PRF) (e.g. Langston 1977; Rondenay 2009) and S-to-P 
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4

66 receiver function (SRF) (e.g. Farra & Vinnik 2000), ScS reverberations (e.g. Bagley & 

67 Revenaugh 2008), and multiple S-wave triplications (e.g. Tan & Helmberger 2007) and 

68 underside SS precursors (e.g. Rychert & Shearer 2011; Schmerr 2012). Among these 

69 methods, PRF and SRF provide the highest resolution of seismic discontinuities in the LAS 

70 because of the use of relatively high-frequency waves (e.g. 0.1–1.0 Hz) in the analysis. 

71  While the PRF and SRF methods can effectively detect converted phases (Pds or Sdp, 

72 where ‘d’ marks the depth or location of the conversion) through source normalization (or 

73 deconvolution) and stacking, they are not without issues. For example, the PRF suffers 

74 interferences from backward scattering waves such as the first multiples from the Moho, 

75 making it difficult to identify converted-phase arrivals within the LAS. On the other hand, the 

76 SRF, by construction, separates the converted phases from the multiples (e.g. Ferra & Vinnik 

77 2000), and it is preferable to identify robust signal from the LAS. However, one major 

78 drawback is that Sdp converted waves can be interfered by P coda waves, which consist of 

79 multiple mantle P waves (e.g. Wilson et al. 2006), multiples of reflections between the 

80 surface and the transition zone (e.g. Bock 1994) or/and S-to-P scattering waves within the 

81 crust and lithosphere between the source and the receiver (e.g. Vinnik & Romanowicz 1991). 

82 Depending on the strength of scatters as well as epicentral distance, azimuth, earthquake 

83 source depth, and source mechanisms, the amplitudes and timings of these P coda waves may 

84 vary and a significant level of wave energy preceding the S-wave arrival can be erroneously 

85 taken as S-to-P phases converted beneath the stations. Therefore, a robust identification and 

86 interpretation of S-to-P converted waves in the SRF are not necessarily trivial, and data 

87 selection criteria can become the key to provide a more robust determination of sharp 

88 features in the LAS.

89 The purpose of this paper is thus to introduce simple but effective screening criteria for 

90 the data selection and therefore removal of data or SRFs with strong unwanted signal-
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5

91 generated noise. We will first briefly review data selection criteria established in the 

92 literatures (e.g. Kumar et al. 2005; Yuan et al. 2006; Wilson et al. 2006; Abt et al. 2010; 

93 Kind et al. 2015; Shen et al. 2017). To devise an objective criterion to minimize the 

94 interference from P coda waves, as a proof of concept, we first examine scenario of SRFs 

95 recorded in South Korea seismic network, sitting on a geologically stable continental 

96 platform (Fig. 1). Through systematic analysis of full-waveform synthetics and SRFs from 

97 catalogued teleseismic earthquakes in 2005–2015 (Takeuchi et al. 1996; Kawai et al. 2006), 

98 we demonstrate the usage and effectiveness of the new data screening and selection criteria 

99 against previous efforts (e.g. Wilson et al. 2006) with synthetics as well as observed SRFs in 

100 South Korea. 

101

102 2 Construction of SRF and previous efforts in the data selection criteria

103 The calculation of SRF involves two important steps, that are (1) coordinate rotation, 

104 which isolates Sdp phase from the incident S wave, and (2) deconvolution, which removes 

105 source and propagation path effects (e.g. Farra & Vinnik 2000). Three-component north-east-

106 vertical (N–E–Z) data are rotated to L–Q–T (or P–SV–SH) ray coordinate system (see also 

107 Rondenay 2009). While both of these coordinate systems are frequently implemented in past 

108 SRF studies (see review by Rondenay 2009; Kind et al. 2012), as demonstrated by 

109 Svenningsen & Jacobsen (2004) and discussed by Rondenay (2009), the difference of SRFs 

110 constructed in these two coordinate systems is minimum and much less than 1% (see Fig. 3 in 

111 Svenningsen & Jacobsen (2004)). Since the aim of this paper is to design the metrics to 

112 indicate the level of unwanted signal-generated noise prior to the S wave, we choose to 

113 discuss and illustrate the usage of our designed metrics in the L–Q–T system throughout this 

114 paper.
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6

115  As the L component is dominated by the P wave, Q and T components mostly contain 

116 energies from SV and SH waves, respectively. SRFs are then computed by deconvolving the 

117 S waveform in the Q component from the corresponding L component, in either time domain 

118 or frequency domain. To improve the signal-to-noise ratio (SNR), SRFs are binned and 

119 stacked. Throughout the paper, we will illustrate the usage and performance of our data-

120 oriented screening criteria with the time-domain Wiener deconvolution method (Robinson & 

121 Treitel 1967), whereas examples with the frequency-domain deconvolution of various water 

122 levels can be referred to the Supplementary Information.

123 Earlier works put emphasis on the selection of earthquakes in restricted epicentral 

124 distances or/and source depths (e.g. Wilson et al. 2006; Yuan et al. 2006). In an attempt to 

125 evaluate the robustness of the observed Sdp phases, Yuan et al. (2006) performed full 

126 waveform synthetics (Wang 1999) and suggested optimal epicentral distances of 55°−85° for 

127 the construction of SRF, which avoid post-critical incoming S wave. However, the synthetic 

128 waveforms only include downgoing waves and upgoing waves were excluded. Consequently, 

129 the influence of surface-reflected P waves on the Sdp detection cannot be evaluated. On the 

130 other hand, Wilson et al. (2006) conducted full waveform synthetics (Fuchs & Müeller 1971) 

131 and quantitatively measured the energy level before the S wave in the SRFs. They suggested 

132 a data selection criterion for the SRF at restricted epicentral distances of 60°–75° and source 

133 depths of 300 km or less. 

134 The criterion by Wilson et al. (2006) was however based on synthetics from a single 

135 thrust-fault source mechanism and an one-dimensional (1-D) velocity model with a relatively 

136 thick crust of 70 km. Therefore, the established criterion needs not necessarily be the most 

137 general choice. As P coda waves can consist of multiple mantle P waves or/and S-to-P 

138 scattering waves within the crust and lithosphere between the source and the receiver, the 

139 amplitude and timing of these P coda waves not only depend on source depth (Wilson et al. 
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7

140 2006), but it may also depend on the strength of scatters and source-receiver geometry and 

141 source mechanisms, or effectively the radiation pattern. Nevertheless, these data selection 

142 criteria have been commonly used in the SRF analysis, sometimes with a minor adjustment 

143 on either the range of epicentral distance or/and source depth (e.g. Hansen et al. 2009; Abt et 

144 al. 2010; Ford et al. 2010; Lekic & Fischer 2014; Hopper & Fischer 2015). 

145 To improve the robustness and interpretation of the SRF and establish a more general 

146 data selection scheme, our focus is to expand the work by Wilson et al. (2006) and establish 

147 data-oriented selection criteria. In particular, by either contrasting the energy level between 

148 the S-wave arrival in the Q-component waveform and P coda waves in the L-component 

149 waveform, or measuring the amplitude of the SRF after the S wave, we introduce more direct 

150 and general selection and screening criteria that do not necessarily rely on a specific choice of 

151 the epicentral distance or source parameters, but honor the level of unwanted signal-

152 generated noise before the S wave.

153

154 3 Design and construction of new data selection criteria for the SRF

155 As discussed in previous sections, multiple mantle P waves or S-to-P scattering within 

156 the crust and mantle between the source and receiver (Vinnik & Romonowicz 1991; Bock 

157 1994; Wilson et al. 2006) can form the P coda waves. Depending on the amplitude of these P 

158 coda waves preceding the S-wave arrival, they can interfere with converted waves, Sdp, from 

159 the LAS beneath seismic stations, or even being erroneously identified as Sdp. Depending 

160 upon the epicentral distance, source depth and mechanism, the level of interference can vary. 

161 In other words, the energy level of P coda waves can be large even for a shallow event. Since 

162 the effect of diverse source mechanism or radiation pattern on the excitation of these P coda 

163 waves was not explored by Wilson et al. (2006), we conduct a systematic investigation 
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8

164 through full waveform synthetics and examine the impact of realistic source mechanisms, or 

165 more importantly, the radiation pattern on the excitation and amplitude of P coda waves. 

166 As a proof of concept, we consider observations of one station from the South Korea 

167 seismic network (Lim et al. 2018) and examine full waveform synthetics from earthquakes 

168 with magnitude larger than 5.5 between 2004 and 2013 from the global CMT catalogue 

169 (Dziewonski et al. 1981; Ekström et al. 2012), located at the distances of 60°–85° from the 

170 seismic network (Fig. 1). The event magnitude threshold of 5.5 allows detection of clear S-

171 wave arrivals and identification of SMp arrivals from the Moho beneath the continental 

172 platform in South Korea. Since most stations generally contain quality waveform data from 

173 200–400 earthquakes after data quality control and screening, we randomly select 300 

174 earthquakes in our synthetic test. As expected in most realistic scenarios, synthetics data are 

175 predominantly from shallow events. Synthetic waveforms are computed with the Direct 

176 Solution Method (Takeuchi et al. 1996; Kawai et al. 2006) using the 1-D IASP91 model 

177 (Kennett & Engdahl 1991) as well as a modified IASP91 model (denoted as ‘L70’), which 

178 includes a 35 km thick high-velocity mantle lid with a 7.5% shear velocity increase below 

179 Moho, a low velocity zone with a 9% shear velocity reduction beneath 70 km depth, and a 

180 small 1.5% shear velocity increase beneath 120 km depth (Fig. S1; Table S1).

181 To calculate synthetic SRFs, we first rotate synthetic waveforms with a time window of 

182 100 s prior to and 100 s after the S wave to the radial-tangential-vertical (R–T–Z) system 

183 using the theoretical event back-azimuth. Theoretical incidence angle of the S wave 

184 computed from the IASP91 model is used to rotate waveforms into the ray coordinate system 

185 in the L–Q–T components (e.g. Rondenay 2009) before deconvolution (e.g. Kind et al. 2012; 

186 Shen et al. 2017). The waveforms in the Q component (e.g. the parent waveform) are 

187 windowed 10 s before and 35 s after the S-wave arrival and tapered with a 15% Hanning 
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9

188 taper at both ends of the signal window. The L- and Q-component waveforms are then 

189 deconvolved by the parent waveform through the time-domain Wiener deconvolution method, 

190 which involves spiking of the output time series with the parent waveform and construction 

191 of Wiener-filter time series (Robinson & Treitel 1967). Minimum regularization with a white 

192 noise of 0.01% is applied in the calculation. Such a time series is then convolved with L- and 

193 Q-component waveforms to obtain L- and Q-component SRFs, respectively. The resulting 

194 SRFs are bandpass filtered at 3–50 s and normalized by the spike in the Q-component at zero 

195 time. Hereafter, we will refer our discussion in the L-component SRFs.

196 3.1 Inspections of synthetic SRFs

197 Figs 2a and b display stacked synthetic SRF record sections, which consist of 300 

198 individual SRFs, stacked with a 1°-distance bin and aligned along the S arrival at zero time. 

199 Synthetics are computed with the IASP91 model (Fig. 2a) and the L70 model (Fig. 2b). The 

200 converted waves from the Conrad (SCp) and the Moho (SMp) have a negative polarity and 

201 they arrive at about 4–5 s before the S wave (Fig. 2). Crustal multiples (e.g. SCpPCP and 

202 SMpPMP) and other mantle waves such as SP, sSP, pSPPP, sSPPPP and pSPPPPP arrive at 

203 about 5–60 s after the S wave (Fig. 2). Converted waves at the upper mantle seismic 

204 discontinuities from incident ScS and SKS waves (e.g. ScS410p, ScS660p, SKS410p and 

205 SKS660p) have a very different moveout from the SMp and they are less visible than those 

206 shown in Yuan et al. (2006). On the other hand, as pointed out by Wilson et al. (2006), we 

207 can observe spurious but consistent energies before the SMp arrival that are not associated 

208 with converted waves from local structure beneath the receivers. Therefore, it is important to 

209 set up a general data selection scheme to minimize these spurious arrivals. 

210 After systematically inspecting synthetic waveforms and the resulting SRFs, we use 

211 Fig. 3 to illustrate the motivation of our designated data selection criteria. We consider two 
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10

212 earthquakes (events 1 and 2) such that their epicentral distances are comparable at ~67° and 

213 the SNR of the S waves in the Q component are also similar (Fig. 1a, red beachballs). 

214 However, regardless of the choice of IASP91 model or L70 model (Fig. S1), the P coda 

215 waves in the L-component waveforms are comparably stronger in event 2 than those in event 

216 1, arguing the effect of radiation pattern on the amplitude of these P coda waves. When 

217 examining their SRFs, those from event 1 display clear SMp or/and SLp with otherwise weak 

218 energy prior to the S wave (Figs 3a and b). On the other hand, SRFs from event 2 display 

219 strong and spurious energy before and after the S wave (e.g. Figs 3c and d). It is noteworthy 

220 to emphasize that, as the deconvolution scheme, data windowing and tapering procedures are 

221 exactly the same between event 1 and event 2, strong spurious energy before the S wave in 

222 the SRF directly corroborates with strong P coda waves in the L-component waveform of 

223 event 2 (see also Figs S2 and S3 for the results with different windowing schemes). As noted 

224 earlier, it is conceivable that these dubious signals may be mistakenly interpreted as Sdp 

225 waves beneath seismic stations. 

226 3.2 Measurement of LQR and AMP and construction of stacked SRFs

227 Motivated by observation, we devise measures of LQR, the amplitude ratio between L-

228 component P coda waves and Q-component S waves, and AMP, the amplitude of SRFs after 

229 the S-wave arrival. We then systematically test how the LQR and AMP thresholds may be 

230 used to detect and retain robust Sdp waves while minimizing dubious energies in the SRFs 

231 (Fig. 3). Here, we define LQR as 

232 LQR = RMS(L[t3 t4]) / Max(Q[t1 t2]),        (1)

Page 66 of 138Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

233 where Max(Q[t1 t2]) measures the peak amplitude of the S wave in the Q-component data 

234 window defined by t1 and t2, and RMS(L[t3 t4]) measures the RMS amplitude of the P coda in 

235 the L-component time window defined by t3 and t4. On the other hand, the AMP is defined as 

236 AMP = RMS(SRF[t5 t6]), (2)

237 where RMS(SRF[t5 t6]) measures the RMS amplitude of the SRF in the time window defined 

238 by t5 and t6 with respect to the S arrival. In the subsequent analysis and demonstration, we set 

239 t1 = -5 s, t2 = 10 s, t3 = -60 s, t4 = -20 s, t5 = 20 s, and t6 = 100 s. Note that the choice of t3 and 

240 t4 is such that they do not include potential Sdp arrivals in the LAS.

241 After measuring the LQR and AMP against all synthetic SRFs, we observe that SRFs 

242 with the lowest LQR typically fall in the distance range of 60°–66° and those with the lowest 

243 AMP are typically in the distance range of 70°–77°. However, to fully take advantage of the 

244 slant stack technique, it is important to ensure effective noise removal and to minimise data 

245 selection bias in epicentral distance. Therefore, it is more desirable that selected SRFs are 

246 evenly distributed within the entire distance range of 60°–85° and are not falling in a narrow 

247 distance range. Consequently, synthetic SRFs in each 1°-distance bin are first selected 

248 according to a designated data selection threshold and subsequently stacked. The error is then 

249 estimated by the bootstrap method (Efron & Tibshiran 1998).

250 In the following tests, we systematically examine how different LQR and AMP 

251 thresholds determine the quality of the stacked SRFs. To determine the effectiveness of each 

252 data selection criteria in mitigating signal-generated noise, we sum stacked SRFs of each 1°-

253 distance bin and measure the RMS amplitude of the summed SRF before the SMp arrival 

254 (denoted as AMP1). The AMP1 is defined as

255 AMP1 = RMS(SRF[t7 t8]), (3)
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12

256 where RMS(SRF[t7 t8]) measures the RMS amplitude of the SRF in the time window defined 

257 by t7 and t8 with respect to the S arrival. Here, we set t7 = -60 s and t8 = -20 s. 

258 3.3 Evaluating the efficacy of the LQR and AMP criteria

259 In order to investigate the efficacy of LQR and AMP criteria for the SRFs, we consider 

260 two principles to judge the quality of stacked SRFs. First, if the data selection criterion is 

261 effective, we expect that the signal-generated noise before the S arrival shall be minimized. 

262 This can be visually inspected and quantitatively examined through the measurement of 

263 AMP1. Second, if the data selection criterion is effective, the amplitude of stacked SRFs 

264 against epicentral distance should follow closely the theoretical S-to-P transmission 

265 coefficient (Aki & Richards 2002) with minimum perturbation.  

266 3.3.1 Presence/absence of signal-generated noise before S-wave arrival

267 To highlight how the data selection criteria influence signal-generated noise, synthetic 

268 SRFs with 25% lowest and 25% highest LQR (or AMP) in each distance bin are selected and 

269 subsequently stacked. For comparison, we also present stacked SRFs with the criterion by 

270 Wilson et al. (2006) and those with 25% randomly selected SRFs. Stacked SRF images at 

271 60°–85° from the IASP91 model (Kennett & Engdahl 1991) and L70 model (Fig. S1) are 

272 shown in Fig. 4, whereas the sum of stacked SRFs and their 95% confidence interval are 

273 displayed in Figs 5a and 5b, respectively. For comparisons, stacked SRF waveforms (Figs 

274 5c–f) and stacked SRF images (Figs S4–7) with different parent window length (case 1; -10 s 

275 before and 15 s after the S wave), tapering (case 2; 5% Hanning taper), deconvolution scheme 

276 and regularization (cases 3 and 4; frequency-domain deconvolution with water level of 0.05% 

277 and 0.2%, respectively) are also presented for comparisons. 
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13

278 For the IASP91 model, the first signal before the S arrival is a negative SMp phase 

279 arriving at about 4 s before the S arrival (Figs 4a–f and 5a). While the SMp signal can be 

280 consistently detected with different data selection criteria (Figs 4a–f and 5a), the amplitudes 

281 of SMp with the highest LQR and AMP criteria are much stronger and more variable than 

282 those with the lowest LQR or AMP criteria (Fig. 5a). In particular, signals up to 6–8% with 

283 positive amplitude can be detected before the SMp at the 95% confidence level (Fig. 5a). 

284 However, these signals are dubious as they do not corroborate with the absence of any sharp 

285 velocity gradient below the Moho (Fig. S1). While the criterion by Wilson et al. (2006) does 

286 a better job in reducing the amplitude of these dubious signals down to 3–4% (Fig. 5a), the 

287 lowest LQR and AMP criteria appear to be the most effective, minimizing dubious arrivals at 

288 the amplitude level of 1–2%, typically insignificant at the 95% confidence level (Fig. 5a).

289 For the L70 model, we can observe a consistent, but positive signal arriving at about 9 s 

290 before the S arrival (Figs 4g–l and 5b). As expected, it is the S-to-P converted arrival (SLp) 

291 from the negative velocity discontinuity at the depth of 70 km (Fig. S1), Such a SLp signal 

292 has the same polarity and comparable strength as those used in previous studies to infer LAB 

293 or MLDs in the LAS (e.g., Eaton et al., 2009; Abt et al., 2010; Kumar et al., 2012; Shen et al., 

294 2015; Shen et al., 2017). However, except the lowest LQR or AMP criteria, all other data 

295 selection criteria produce strong oscillations throughout the entire SRF stacks (Figs 4g–l), 

296 following slowness very similar to the SP wave. Even the SLp appears to be detected in this 

297 circumstance, the quality of the detection is low with incorrect amplitude and very large 

298 uncertainties (Fig. 5b). With the lowest LQR or AMP criteria, the SLp signal appears more 

299 robust with the smallest bootstrap uncertainties (Fig. 5b). It is evident that the signal-

300 generated noise before the S arrival are much weaker in the stacked SRFs produced with the 

301 criteria of the lowest LQR (Figs 4g and 5b) or AMP (Figs 4i and 5b) than those produced 
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302 with the highest LQR (Figs 4h and 5b), the highest AMP (Figs 4j and 5b), the criterion by 

303 Wilson et al. (2006) (Figs 4k and 5b) or with random data selection (Figs 4l and 5b). 

304 These observations can be concluded with alternative window length of the parent 

305 waveform (case 1; Figs 5c and S4), tapering (case 2; Figs 5d and S5) or deconvolution 

306 scheme (e.g. frequency-domain water-level deconvolution) with different regularization 

307 (cases 3 and 4; Figs. 5e, 5f, S6, and S7). Stacked SRFs produced with the criteria of the 

308 lowest LQR or AMP are stable, regardless specific choices of these data processing 

309 procedures. Evidently, stacked SRFs with other criteria vary more substantially with the 

310 choice of data processing routines. More critically, while a stronger regularization does 

311 minimize amplitude oscillation (e.g. case 4; Fig. 5f), strong signal-generated noise arriving 

312 before the SLp arrival remains.  

313 To quantitatively assess the quality of stacked SRF and the effectiveness of data 

314 selection criteria in mitigating the signal-generated noise, we compute AMP1 to measure the 

315 RMS amplitude in the designated time window before the S arrival. We systematically select 

316 a subset of all synthetic SRFs by varying the percentage threshold (10–50%) of the lowest 

317 and highest LQR or AMP, generate the summed SRF and calculate AMP1. As shown in Fig. 

318 6, the value of AMP1 generally decreases with increasing percentage threshold of six 

319 different criteria. At 25% threshold, AMP1 of the lowest LQR or AMP is lower than that of 

320 the highest LQR or AMP by more than a factor of 4 (Fig. 6). Also, at 25% threshold and 

321 higher, AMP1 of the lowest LQR or AMP is less than AMP1 of all SRFs (Fig. 6a). In 

322 particular, we find that the SRFs constructed with the lowest AMP generally display a lower 

323 level of AMP1, and the improvement is even more substantial for the synthetic SRFs from 

324 the L70 model (Fig. 6b). AMP1 of the lowest AMP for the L70 model is lower by a factor of 

325 2 or less than that measured against the summed SRF of the entire SRF dataset (Fig. 6b). 
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326 In the case of random data selection, the value of AMP1 does not show appreciable 

327 difference with respect to the percentage threshold (Fig. 6), whereas the criterion of Wilson et 

328 al. (2006) does not seem to improve AMP1 upon those from random data selection (Fig. 6), 

329 which is not unexpected as synthetic data are predominantly from shallow events. In a way, 

330 even with a smaller volume of the entire synthetic SRFs (e.g., 25% or less), the lowest LQR 

331 or AMP criterion achieves a much lower AMP1 than that of Wilson et al. (2006)’s using 50% 

332 of the entire synthetic SRFs. Notably, depending on the exact data selection threshold, AMP1 

333 with lowest LQR or lowest AMP criteria can be 20–50% lower than AMP1 of all events (Fig. 

334 6).

335 3.3.2 Validating the amplitude of the S-to-P converted waves 

336 To further verify the robustness of the converted phases beneath the receiver and assess 

337 the stability of the signal, we measure the amplitudes of Sdp (e.g. SMp and SLp) and compare 

338 them against the theoretical S-to-P transmission coefficient (Aki & Richards 2002). If the 

339 amplitudes of Sdp from the stacked SRFs follow closely to the theoretical transmission 

340 coefficients, we consider that the data selection criteria are effective in removing signal-

341 generated noise and recovering a truthful detection. Fig. 7a shows distance-dependent 

342 amplitudes of SMp measured against stacked SRFs of six different criteria for the IASP91 

343 model. On the other hand, Figs 7c and 7d show distance-dependent amplitudes of SMp and 

344 SLp measured against stacked SRFs of different criteria for the L70 model, respectively. Fig. 

345 7b shows the amplitudes of the SRFs measured in the same time window as that used in Fig. 

346 7d for comparison. Since we do not expect a truthful detection of SLp for the IASP91 model, 

347 the measurements are indicative of the level of signal-generated noise. 

348 Typically, the highest LQR or AMP criterion results in unstable estimate of SMp 

349 amplitudes (e.g. Figs 4 and 5), and their amplitudes strongly deviate from the theoretical 
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350 predictions (Figs 7a and c). Stacked SRFs from the random data selection or from the 

351 criterion of Wilson et al. (2006) also suffer similar distortion, but to a less degree (Fig. 7). On 

352 the other hand, given the selection criteria of 25% lowest LQR or AMP, the amplitude of 

353 SMp follows closely to theoretical calculation against distance (Figs 7a and c). Similarly, the 

354 amplitude of SLp against distance generally follows theoretical prediction when the data 

355 selection criteria of 25% lowest LQR or AMP are implemented (Fig. 7d). Our results indicate 

356 that the lowest LQR or AMP is useful for detecting SLp phases and retaining their amplitudes 

357 by reducing the dubious signals before the S wave. We note that the average amplitude within 

358 the time window for expected SLp arrivals is typically on the order of 2% for the lowest 

359 LQR, and of ~1% for the lowest AMP (Fig. 7b). Therefore, we suggest 2% as the minimum 

360 amplitude threshold above which the robust identification of local Sdp converted waves 

361 within the LAS can be made and interpreted. 

362 In summary, we find that the SRFs constructed with the lowest LQR or AMP generally 

363 display a lower level of spurious energy before the S wave while the SRFs with the highest 

364 LQR or AMP, as expected, displays a higher level of signal generated noise (Figs 4–7). The 

365 improvement appears more substantial in the case where synthetic SRFs are computed from 

366 the L70 model (Fig. 6b). While the calculation of SRF can be influenced by the choice of 

367 time window and tapering in the parent waveform as well as the deconvolution scheme (e.g. 

368 Lekic & Fischer 2017), the performance of LQR and AMP data selection criteria does not 

369 depend on such specific choices. This characteristic makes the LQR and AMP very desirable 

370 since stacked SRFs with low LQR and low AMP are always very stable.

371 3.3.3 The sources of P coda waves?

372 To investigate the source of these P coda waves, we first examine if the attributes 

373 such as LQR or AMP depend on epicentral distance, event back azimuth or source 
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374 parameters. However, we do not observe any obvious selection bias in event epicentral 

375 distance or back azimuth against the criteria such as LQR and AMP (Fig. S8), nor do we find 

376 dependence of LQR or AMP on earthquake source mechanism (Fig. S9), suggesting that 

377 LQR and AMP, or the level of P coda waves, are predominantly dictated by the radiation 

378 pattern. In this regard, while we do not specifically include SV/SH amplitude ratio in the data 

379 selection criteria, high LQR or AMP criterion more often corresponds to data with a low 

380 SV/SH ratio (< 1) and low LQR or AMP typically corresponds to data with a high SV/SH 

381 ratio (> 1) (Fig. 8).

382 It has been argued by Wilson et al. (2006) that P-coda waves can come from 

383 multiples such as pPPP, pPPPP or/and sPPPP from deep events (> 300 km) and they may 

384 interfere with Sdp phases. However, for most practical analysis on the LAS, only those from 

385 really deep events of 450 km or deeper may directly interfere with Sdp from the LAS since 

386 these multiples, in most instances, arrive at least 1–2 minutes before the S arrival. Similar 

387 lines of arguments have been also pointed out by Vinnik & Romanowicz (1991). This 

388 assertion can be supported by the fact that P radiation patterns computed with the slowness 

389 such as pPPPP wave do not distinguish against LQR or AMP (Fig. 9). This is also consistent 

390 with our observation that, when shallow events dominate the synthetic dataset, Wilson et al. 

391 (2006)’s criterion does not necessarily outperform data selection scheme of random choice 

392 (Figs 5b–f; see also Figs S4–7).

393 As shown in Figs 4g–l, signal-generated noise before the S arrival appear to follow very 

394 similar slowness as those mantle waves such as SP, sSP, sSPPP, and sSPPPP, apparently 

395 forming precursors of these mantle waves and interfering with Sdp phases in the LAS. It is 

396 conceivable that energies prior to the S wave in the stacked SRF are likely to be scattering 

397 waves such as S�P and SP�P, where S�P denotes S-to-P scattering wave from the free surface 
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398 and SP�P denotes SP-to-P scattering wave from the scatter in the crust (Vinnik 1981; Vinnik 

399 & Romanowicz 1991). Depending on the lead time of scattering waves with respect to the S 

400 wave, the area of scattering is expected to be at least 25° from the receiver, and typically in 

401 the range of 30°–40° from the receiver (see Fig. 8a of Vinnik & Romanowicz (1991)), with 

402 the raypaths of S and P waves in the S�P (or SP�P) arriving in different vertical planes. As 

403 our wave propagation simulation is done with a laterally homogeneous and spherically 

404 symmetric earth model (Kawai et al. 2006) with a finite duration S wave, spherical waves 

405 propagating off the vertical plane defined by the source and receiver likely result in scattering 

406 waves such as S�P.

407 If S�P or/and SP�P scattering waves are indeed the cause of these signal-generated 

408 noise observed in SRFs, the SV radiation pattern in the area of scattering will directly control 

409 the amplitude of S�P and SP�P scattering waves (Vinnik & Romanowicz 1991). To validate 

410 this, we assume that the scattering area is near the surface reflection point of SP wave and 

411 compute SV radiation pattern with the slowness of SP wave in our synthetic dataset. As 

412 shown in Fig. 10, the SV radiation patterns against the lowest LQR and AMP criteria are 

413 generally much weaker than those against the highest LQR and AMP criteria. Effectively, 

414 LQR and AMP criteria help select data with weakest SV radiation pattern in the scattering 

415 area. Following the same line of reasoning, it is conceivable that S�P scattering waves can 

416 come from internal boundaries such as the Moho. While a more elaborated investigation 

417 should be done in the future, this is consistent with our simulation that signal-generated noise 

418 in SRF are much stronger in the L70 model, which includes a larger velocity contrast across 

419 the Moho than the IASP91 model as well as an additional velocity reduction at 70 km depth 

420 (Fig. S1). 
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421 Evidently, there is no lateral variation in surface topography, internal boundary or 

422 velocity in our simulation, and it is difficult to precisely estimate the scattering potential 

423 without invoking 2-D or 3-D full waveform modelling. It is also possible that signal-

424 generated noise in 2-D or 3-D models are less coherent and do not add constructively. 

425 However, our data-oriented screening criteria such as LQR or AMP are designed to honor the 

426 data and provide direct and straightforward attributes to measure the level of these spurious 

427 energies. With lowest LQR or/and AMP, SRFs with strong signal-generated noise are 

428 effectively removed, improving the quality of stacked SRF and the detection of true Sdp 

429 arrivals in the LAS beneath seismic stations.

430

431 4 Application to South Korea seismic data: detection and characterization of seismic 

432 discontinuities in the LAS

433 Our synthetic tests have demonstrated that the effectiveness of LQR and AMP could 

434 serve as general data selection criteria for the construction of SRF. Here we apply these new 

435 data selection criteria to the dataset recorded by South Korea seismic network (Fig. 1) (Lim 

436 et al. 2018) and illustrate its effectiveness in real datasets. We select earthquake magnitudes 

437 greater than 5.5 within the epicentral distance range of 60°–85° from the seismic network. To 

438 construct the SRF, we follow exactly the same scheme detailed in the synthetic test in Section 

439 3, but highlight a few key additional steps here to screen noisy data. First, when rotating 

440 three-component waveforms into L-Q-T coordinate system, the incidence angle of the 

441 incoming S wave is determined by maximizing the SV-wave energy on the Q component 

442 within the time window spanning ±2 s on either side of the theoretical S-wave onset. If the 

443 difference between the observed incidence angle and the predicted one (from IASP91) 

444 exceeds 25°, the waveforms are rejected. Secondly, data are also removed if the SNR of the S 
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445 wave in the Q component is less than 5. Thirdly, if the peak SRF amplitude in the L 

446 component is larger than 0.5 or if the mean amplitude of the SRF in the L component is 

447 larger than 50% of its peak amplitude, such SRFs are apparently oscillatory throughout the 

448 entire time window and they are also rejected.  

449 As an example, we examine stacked SRFs at station TJN in South Korea seismic 

450 network (Fig. 1b) in detail. We process waveform data from 917 events in January 2005–

451 January 2015 (Lim et al. 2018) and, after preliminary data quality control detailed earlier, 

452 316 SRFs are retained and they are filtered at 3–50 s before subsequent data selection 

453 analysis. Here we measure LQR and AMP against the observed SRFs exactly the same way 

454 as discussed in Section 3. In general, the lowest LQR and AMP against the observed SRFs 

455 are typically higher than that against synthetics SRFs because of noise. With the nominal 

456 percentage threshold of 25%, we finally retain about 80 SRFs.    

457 To illustrate how the stability of the SRF and detection of SMp and SLp depend on the 

458 data selection criteria, Fig. 11 (and Fig. S10) displays stacked SRF images constructed with 

459 the same six different data-selection criteria as discussed in the synthetic test in Section 3 

460 (e.g. Fig. 4), With the lowest LQR or AMP criterion (Figs 11a and c), we can reasonably 

461 track a consistent signal with negative amplitude with respect to epicentral distance, arriving 

462 about 4 s before the S arrival, presumably Sdp from the Moho (SMp). However, it is less 

463 trivial to track SMp in stacked SRF image with the Wilson et al. (2006)’s criterion (Fig. 11e) 

464 or random selection criterion (Fig. 11f), and very difficult to do so against those constructed 

465 with the highest LQR or AMP criterion (Figs 11b and d). These observations can also be 

466 made against stacked SRF images using a stronger regularization of 1% white noise (Figs 

467 S13 and S14).
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468 Stacking the SRFs shown in Fig. 11, Figs 12a and b displays summed SRF waveforms 

469 and their bootstrapped uncertainties against the six different data-selection criteria and data 

470 selection threshold of 25% and 50%, respectively. Again, using the lowest LQR, AMP or 

471 Wilson et al. (2006)’s criterion, detection of SMp can be made at the 95% confidence level 

472 (Fig. 12). With the highest LQR or AMP criterion, the SMp can be barely detected at the 95% 

473 confidence level with large uncertainties (Fig. 12a and b). Even with a stronger regularisation 

474 (1% white noise), SMp still possesses large uncertainties (Fig. 12c). It is important to note 

475 that the uncertainties of SRF with low LQR and AMP are much smaller than those with high 

476 LQR or AMP or random selection (Fig. 12). In principle, a consistent detection of SMp with 

477 small amplitude uncertainties serves as a very good indication on the quality of stacked SRF. 

478 Furthermore, with the lowest LQR or AMP criterion, a positive signal arriving at about 8 s 

479 before the S arrival, possibly SLp from the LAS, can be detected at 95% confidence level 

480 (Fig. 12), whereas such a SLp arrival cannot be detected otherwise with statistical 

481 significance (Fig. 12). We note that the amplitude of detected SLp is about 5–7%, 

482 considerably exceeding the 1–2% amplitude threshold for robust SLp detection with the 

483 lowest LQR or AMP criterion (e.g. Figs 4 and 5b). 

484 Considering three data-selection criteria such as the lowest LQR, AMP and Wilson et 

485 al. (2006), Fig. 13 further examines distance-dependent amplitudes of detected SMp and SLp 

486 and they are compared against theoretical S-to-P transmission coefficient (Aki & Richards 

487 2002) from the L70 model (Fig. S1). Here we do not seek an optimal fit to the data, but 

488 simply show if the amplitude measurements in general follow the theoretical trend against 

489 epicentral distance. While there are still substantial amplitude fluctuations with respect to 

490 theoretical prediction against epicentral distance, in this particular example at station TJN, 

491 measurements from the lowest AMP criterion follows closest to the theoretical trend, 
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492 regardless the degree of regularization (Figs 13a and b vs. Figs 13c and d). As expected, the 

493 amplitude of SMp and SLp is notably modulated by the degree of regularization. 

494 At least locally beneath the station TJN, a relatively sharp boundary with a negative 

495 velocity gradient is robustly identified in the LAS beneath the old Korea craton (Lee et al. 

496 1998). While the exact nature and spatial extent of such a boundary deserves further analysis 

497 and discussion, it is beyond the scope of this paper and we will detail the findings beneath the 

498 entire Korea network in a subsequent paper. Also, another key potential source of 

499 contamination on SRFs is scattering from laterally-varying structure (Lekic & Fischer 2017).

500 Lastly, Fig. 14 displays AMP1 against data-selection percentage threshold for six 

501 different criteria. Similar to what we observe in the synthetics (Fig. 6), the results from real 

502 data analysis at station TJN also show that not only AMP1 decreases with increasing 

503 percentage threshold, but the lowest LQR or AMP criterion gives the lowest AMP1 than 

504 Wilson et al. (2006) or the random data selection does (Fig. 14), compatible with synthetic 

505 test in Section 3 (Fig. 6). Despite the criterion of Wilson et al. (2006) restrains SRFs within 

506 60°–75° from shallow events, the lowest LQR or AMP criterion does concern SRFs across 

507 the entire distance range of 60°–85°, including a few SRFs from deep earthquakes as well. 

508 Furthermore, since the level of random noise reduction is proportional to the square-root of 

509 SRF number in the stacks, there is a trade-off between eliminating random noise and signal-

510 generated noise. While random noise can be reduced by stacking, it is not the case for signal-

511 generated noise. In comparison to the cases shown in Figs 11 and 12, while we can still detect 

512 SMp and SLp at 95% confidence level with a higher percentage threshold of 50%, the 

513 uncertainty of SRF amplitude does not decrease as expected for random noise (Figs S11 and 

514 S12). By inspection, if N is the data selection percentage threshold, multiplying AMP1 in Fig. 

515 6 (noise free) with the square root of 100/N generally reproduces the pattern of AMP1 shown 
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516 in Fig. 14. This can be useful in the discussion on how to properly select N against random 

517 noise with respect to data quality and noise level. 

518 In the case of our test, permanent station TJN provides about 300 quality data over 10 

519 years after data prescreening. As we present the result with 25% selection threshold (or ~75 

520 traces) for the detection of the SLp phase (Figs 11–13), we find a 15% selection threshold (or 

521 ~45 traces) with the low AMP criteria can still provide consistent SRF and SLp detection. 

522 Concerning typical PASSCAL experiments or temporal arrays over a 2-year period, 

523 depending on the aperture of the array, the number of stations, background noise level and 

524 the scale of lateral heterogeneity in the LAS, it is conceivable that a network of 5 stations can 

525 record 45 traces with low LQR and produce reasonably robust SRF stacks.

526 As evident in the synthetic test and real data analysis, high SNR of the S wave in the Q-

527 component seismogram by itself does not necessarily warrant the quality of stacked SRFs. 

528 The data selection criterion proposed by Wilson et al. (2006) is favorable for a specific focal 

529 mechanism, but it is not necessarily a general scheme that takes into account the effect of 

530 radiation pattern on the excitation of mantle P coda waves or/and scattering waves between 

531 the source and receiver in the L-component seismogram. In this study, the LQR criterion, by 

532 design, makes a direct amplitude measurement of the scattering wave in the L component and 

533 contrasts it against the amplitude of the S wave in the Q component. Obviously, the 

534 application of LQR criteria in real data analysis slightly depends on the choice of 

535 measurement time window, which may be adapted. Alternatively, the AMP data selection 

536 criterion makes a direct assessment on the amplitude of SP, sSP and other related multiples in 

537 the SRF, making it an ideal proxy to indicate the strength of scattering waves away from the 

538 receiver side (e.g., Vinnik & Romonowicz 1991). Finally, these data selection criteria can be 

539 easily adapted to a different coordinate system (e.g., P-SV-SH) when desired.
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540

541 5 Conclusions

542 Teleseismic scattered waves such as S-to-P converted phases (Sdp) provide enhanced 

543 sensitivity to localized velocity gradients across the lithospheric discontinuities. In this study, 

544 through systematic analysis of full-waveform synthetic waveforms and SRFs from 

545 catalogued earthquake focal mechanism and depth, we find that the strong P coda waves 

546 before the S wave recorded in the L component could result in the dubious Sdp phases in the 

547 synthetic SRFs before the S arrival. Furthermore, if the mean amplitude of SRFs after the S 

548 wave is large, dubious signals of SRFs before the S arrival become strong as well. Such 

549 signal-generated noise before the S arrival can be mistakenly interpreted as Sdp phase derived 

550 from lithosphere-asthenosphere system (LAS) beneath seismic stations. 

551 To minimize the interference of P coda waves on Sdp phases in the LAS, we devise 

552 data-oriented criteria such as LQR, the amplitude ratio between P coda waves of the L-

553 component waveform and the S wave of the Q-component waveform, and AMP, the 

554 amplitude of SRFs after the S arrival. These screening criteria provide a direct and 

555 straightforward attribute to measure and indicate the level of spurious energies before the S 

556 arrival in the SRF. With low LQR or AMP, regardless of the choice of deconvolution scheme, 

557 tapering or/and data windowing, unwanted signal-generated noise are largely removed, which 

558 improves the detection and quality of locally converted Sdp in the LAS. With the criteria 

559 such as the lowest LQR or AMP, the minimum amplitude threshold above which robust SLp 

560 can be detected is reduced down to about 1–2%, smaller than the amplitude threshold of 3–4% 

561 by the criterion of Wilson et al. (2006). The effectiveness of these criteria largely manifests 

562 the amplitude of SP wave as well as the control of SV radiation pattern in the scattering area 

563 on the amplitude of signal-generated noise due to S-to-P scattering (Vinnik & Romanowicz 

564 1991). Applying the newly designed selection criteria to real data in the South Korea seismic 
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565 network, we demonstrate that the lowest LQR or AMP criterion provides robust detection of 

566 SLp beneath the test station TJN, offering a great potential to better characterize seismic 

567 discontinuities in the LAS. 
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727 Figures 

728

729 Figure 1. Distribution of earthquakes with magnitude greater than 5.5 and South Korea 

730 seismic network. (a) Distribution of earthquakes within the epicentral distances of 60°–85° 

731 from the center of the Korean seismic network (black triangle). The Centroid Moment Tensor 

732 (CMT) solutions of the events are from Dziewonski et al. (1981) and Ekstrom et al. (2012). 

733 Two earthquakes for synthetics in Fig. 3 are highlighted in red. (b) South Korea seismic 

734 network. Broadband seismic stations are shown in black squares, and the only station is 

735 labelled with the station ID (TJN). 
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736

737 Figure 2. Stacks of 300 synthetic SRFs as a function of the epicentral distance of 60°–85°. 

738 The SRFs are binned with a distance of a 1° window and stacked, and their amplitudes are 

739 displayed in blue-to-red color. Theoretical phase arrival times from the IASP91 model 

740 (Kennett & Engdahl 1991) are marked as dashed lines with phase names labeled. (a) 

741 Synthetic SRFs calculated from the IASP91 model (Kennett & Engdahl 1991). (b) Synthetic 

742 SRFs from L70 model (Fig. S1).
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743

744 Figure 3. Examples showing P coda waves and their influence on signal-generated noise in 

745 the SRF. Gray dashed boxes in panel (a) indicate how LQR is measured from the L- and Q-

746 component synthetic seismograms and how AMP is measured from synthetic SRF.  Synthetic 

747 waveforms are computed from two earthquake sources (Fig. 1a, red beachballs) using the 

748 IASP91 (Kennett & Engdahl 1991) (a and c) and the L70 model (Fig. S1) (b and d). S-wave 

749 arrivals are aligned at zero time in the Q-component waveforms (dashed lines), and a time 

750 window for P coda waves are marked in a panel b (double arrow). Time-domain Wiener 

751 deconvolution method with minimum regularization (0.01% white noise) is performed within 

752 the parent waveform time window of 10 s before and 35 s after the S arrival (black bar in a 

753 panel a). Note the amplitude scale of SRF in case 2 is higher than that in case 1. See Figs S2 

754 and S3 for cases for the time window of [-10 s 15 s] and [-10 s 10 s] with respect to S arrival, 

755 respectively. 

756
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759

760

761 Figure 4. Images of synthetic SRFs for the IASP91 model (a–f) and L70 model (g–l) against 

762 epicentral distance and six data selection criteria. The SRFs are plotted in the same way as 
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39

763 Fig. 2. (a, g) Stacked SRFs with the 25% lowest LQR. (b, h) Stacked SRFs with the 25% 

764 highest LQR. (c, i) Stacked SRFs with the 25% lowest AMP. (d, j) Stacked SRFs with the 

765 25% highest AMP. (e, k) Stacked SRFs with the criterion by Wilson et al. (2006). Note that 

766 Wilson et al. (2006) used restricted epicentral distances of 60°–75° for earthquakes with focal 

767 depths shallower than 300 km. (f, l) Stacked SRFs with 25% random data selection. Dashed 

768 lines indicate phase arrival times predicted by the IASP91 model.

769
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770

771 Figure 5. Stacked SRFs for various cases against six data selection criteria: 25% lowest LQR, 

772 25% lowest AMP, the criterion by Wilson et al. (2006), 25% highest LQR, and 25% highest 

773 AMP, and 25% random data selection, from the top to bottom rows, respectively. Gray 

774 region indicates bootstrap error estimates of the SRFs. (a) Stacked SRFs for IASP91 model. 

775 (b) Stacked SRFs for L70 model. (c) Stacked SRFs for the case 1; same as (b) but with the 

776 window of parent waveform -10 s before and 15 s after the S wave. (d) Stacked SRFs for the 

777 case 2; same as (b) but with the Hanning tapering window of 5%. (e) Stacked SRFs for the 

778 case 3; same as (b), but with frequency-domain water-level deconvolution and water level of 

779 0.05%. (f) Stacked SRFs for the case 4; same as (b), but with frequency-domain water-level 

780 deconvolution and water level of 0.2%. Note stacked SRFs without any selection criteria are 

781 shown in red lines for comparisons. The stack of all traces is shown in red in the bottom 

782 panel.

783
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784

785 Figure 6. Root-mean-square (RMS) amplitudes of the synthetic SRFs at -60 to -20 s with 

786 respect to the S arrival (AMP1 in %), plotted against data-selection ratios (10–50%). (a) 

787 AMP1 for IASP91 model (Kennett & Engdahl 1991) with six criteria, which are lowest LQR 

788 (blue circle), highest LQR (red circle), lowest AMP (blue square), highest AMP (red square), 

789 random data selection (green square) and the criterion by Wilson et al. (2006) (black 

790 diamond), in addition to all SRFs (black dashed line). (b) AMP1 for L70 model (Fig. S1) 

791 with the same criteria as (a).  

792
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793

794 Figure 7. Amplitudes of SMp and SLp phases from the synthetic SRFs, plotted against the 

795 epicentral distance for the six different data selection criteria. The measured amplitudes are 

796 compared with the theoretical transmission coefficients (Aki & Richards 2002), shown in 

797 black dashed line. (a) Distance-dependent amplitude of SMp from IASP91 model (Kennett & 

798 Engdahl 1991). (b) Distance-dependent amplitude of SLp from IASP91 model. (c) Distance-

799 dependent amplitude of SMp from L70 model (Fig. S1). (d) Distance-dependent amplitude of 

800 SLp from L70 model. Note that the theoretical calculation of SLp transmission coefficient 

801 from the L70 model is reproduced in Fig. 7b for comparison. In the absence of a negative 

802 velocity contrast in the IASP91 model, notable amplitude peak, especially with the highest 

803 LQR or AMP criteria, can still be identified and potentially misinterpreted as SLp signal in 

804 the LAS. Lowest LQR or AMP criteria substantially minimize these dubious signals.
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805

806 Figure 8. Histograms of SV/SH ratio against four data selection criteria; (a) 25% lowest LQR, 

807 (b) 25% highest LQR, (c) 25% lowest AMP, and (d) 25% highest AMP. 

808
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810 Figure 9. Histograms of P radiation pattern against four data selection criteria; (a) 25% 

811 lowest LQR, (b) 25% highest LQR, (c) 25% lowest AMP, and (d) 25% highest AMP. The P 

812 radiation pattern is computed with the slowness of pPPPP against focal mechanisms of 

813 selected events.

814
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816 Figure 10. Histograms of SV radiation pattern against four data selection criteria; (a) 25% 

817 lowest LQR, (b) 25% highest LQR, (c) 25% lowest AMP, and (d) 25% highest AMP. The SV 

818 radiation pattern is computed with the slowness of SP wave against focal mechanisms of 

819 selected events.

820
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821

822 Figure 11. Images of SRFs for station TJN as a function of the distance of 60°–85° with six 

823 different data selection criteria. The SRFs are plotted in the same way as Fig. 2. (a) Stacked 

824 SRFs with the 25% lowest LQR. (b) Stacked SRFs with the 25% highest LQR. (c) Stacked 
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825 SRFs with the 25% lowest AMP. (d) Stacked SRFs with the 25% highest AMP.  (e) Stacked 

826 SRFs with the criterion by Wilson et al. (2006). (f) Stacked SRFs with 25% random data 

827 selection. Dashed lines indicate phase arrival times predicted by the IASP91 model. See Fig. 

828 S10 for the images of -30–30 s time window.   
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829

830 Figure 12. Stacked SRFs for station TJN with six data selection criteria with (a) a percentage 

831 threshold of 25%, (b) 50 %, and (b) 25% with a stronger regularization (1% white noise). 
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832 Gray region indicates bootstrap error estimates of the SRFs. The six data selection criteria are 

833 as follows: 25% lowest LQR, 25% lowest AMP, the criterion by Wilson et al. (2006), 25% 

834 highest LQR, and 25% highest AMP, and 25% random data selection, from the top to bottom 

835 rows, respectively.

836
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837

838 Figure 13. Amplitudes of SMp and SLp phases from the SRFs for station TJN, plotted against 

839 the distance of 60°–85° for three different data selection criteria (25% lowest LQR, 25% 

840 lowest AMP, and the criterion by Wilson et al. (2006)). The measured amplitudes are 

841 compared with the theoretical transmission coefficients (Aki & Richards 2002), shown in 

842 black dashed line. (a) Distance-dependent amplitude of SMp. (b) Distance-dependent 

843 amplitude of SLp. (c) Distance-dependent amplitude of SMp with a strong regularization (1% 

844 white noise). (d) Distance-dependent amplitude of SLp with a strong regularization (1% white 

845 noise). 

846
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847

848 Figure 14. Root-mean-square (RMS) amplitudes of the SRFs at -60 to -20 s with respect to 

849 the S arrival (AMP1 in %) for station TJN, plotted against data-selection ratios (10–50%). 

850 The six data selection criteria are as follows: lowest LQR (blue circle), highest LQR (red 

851 circle), lowest AMP (blue square), highest AMP (red square), random data selection (green 

852 square) and the criterion by Wilson et al. (2006) (black diamond), in addition to all SRFs 

853 (black dashed line). 
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854 Supporting Information 

855

856 Additional Supporting Information may be found in the online version of this article:

857

858 Supporting Information file includes one table and 14 figures providing velocity models for 

859 synthetic tests (Fig. S1), illustrations showing how the synthetic SRFs are constructed with 

860 our proposed data selection criteria for shorter time windows for the time-domain Wiener 

861 deconvolution (Figs S2 and S3), effect of using different data windowing and tapering length 

862 (Figs S4 and S5, respectively), effect of using various water levels in the alternative 

863 frequency-domain deconvolution (Figs S6 and S7), histograms of epicentral distance and 

864 event back-azimuth (Fig. S8) as well as source parameters (Fig. S9) against data selection 

865 criteria, and an alternative 50% threshold for six data selection criteria for the SRFs from 

866 station TJN (Figs S11 and S12) in addition to 25% threshold (Fig. S10). SRFs images with 

867 25% threshold and a strong regularization (1% white noise) are shown in Figs S13 and S14.

868

869 Table S1. Velocity models.

870

871 Figure S1. Velocity models. The 1-D IASP91 model (Kennett & Engdahl 1991) is shown in 

872 black, and the L70 model is shown in red. The L70 model includes a 35 km thick high-

873 velocity mantle lid with a 7.5% shear velocity increase below Moho, a low velocity zone with 

874 a 9% shear velocity reduction beneath 70 km depth, and a small 1.5% shear velocity increase 

875 beneath 120 km depth. See also Table S1. 

876

877 Figure S2. Examples showing P coda waves and their influence on signal-generated noise in 

878 the SRF. Gray dashed boxes in panel (a) indicate how LQR is measured from the L- and Q-
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2

879 component synthetic seismograms and how AMP is measured from synthetic SRF. Synthetic 

880 waveforms are computed from catalogued earthquake sources using the IASP91 (Kennett & 

881 Engdahl 1991) (a and c) and the L70 model (b and d). Time-domain Wiener deconvolution 

882 method is performed with the parent waveform time window of 10 s before and 15 s after the 

883 S arrival (black bar in a panel a). Note the amplitude scale of SRF in event 2 is higher than 

884 that in event 1.

885

886 Figure S3. Examples showing P coda waves and their influence on signal-generated noise in 

887 the SRF. Gray dashed boxes in panel (a) indicate how LQR is measured from the L- and Q-

888 component synthetic seismograms and how AMP is measured from synthetic SRF. Synthetic 

889 waveforms are computed from catalogued earthquake sources using the IASP91 (Kennett & 

890 Engdahl 1991) (a and c) and the L70 model (b and d). Time-domain Wiener deconvolution 

891 method is performed with the parent waveform time window of 10 s before and 10 s after the 

892 S arrival (black bar in a panel a). Note the amplitude scale of SRF in event 2 is higher than 

893 that in event 1.

894

895 Figure S4. Images of synthetic SRFs for the case 1 from the L70 model as a function of the 

896 distance of 60°–85° with following six data selection criteria; (a) 25% lowest LQR, (b) 25% 

897 highest LQR, (c) 25% lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. 

898 (2006), and (f) 25% random data selection. The parent waveforms are windowed 10 s before 

899 and 15 s after the S-wave arrival and tapered with a 15% Hanning taper at both ends of the 

900 signal window. Dashed lines indicate phase arrival times predicted by the IASP91 model 

901 (Kennett & Engdahl 1991). The SRFs are plotted in the same way as Fig. 2. 

902
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3

903 Figure S5. Images of synthetic SRFs for the case 2 from the L70 model as a function of the 

904 epicentral distance of 60°–85° with six different data selection criteria. The parent waveforms 

905 are windowed 10 s before and 35 s after the S-wave arrival and tapered with a 5% Hanning 

906 taper at both ends of the signal window. See a caption of Fig. S4 for more detail. 

907

908 Figure S6. Images of synthetic SRFs for the case 3 from the L70 model as a function of the 

909 epicentral distance of 60°–85° with six different data selection criteria. The parent waveforms 

910 are windowed 10 s before and 35 s after the S-wave arrival and tapered with a 15% Hanning 

911 taper at both ends of the signal window. The frequency-domain deconvolution is done with a 

912 water level of 0.05%. See a caption of Fig. S4 for more detail. 

913

914 Figure S7. Images of synthetic SRFs for the case 4 from the L70 model as a function of the 

915 distance of 60°–85° with six different data selection criteria. The parent waveforms are 

916 windowed 10 s before and 35 s after the S-wave arrival and tapered with a 15% Hanning 

917 taper at both ends of the signal window. The frequency-domain deconvolution is done with a 

918 water level of 0.2%. See a caption of Fig. S4 for more detail.

919

920 Figure S8. Histograms of epicentral distance and back azimuth against six data selection 

921 criteria. LQR and AMP data selection criteria with a percentage threshold of 25% result in 

922 negligible data selection bias in back azimuthal and epicentral distance.

923

924 Figure S9. Histograms of earthquake source parameters (dip, strike and rake) against four 

925 data selection criteria; (a, e, f) 25% lowest LQR, (b, f, j) 25% highest LQR, (c, g, k) 25% 

926 lowest AMP, and (d, h, l) 25% highest AMP. LQR and AMP data selection criteria result in 

927 negligible data selection preference in source parameters.
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4

928

929 Figure S10. Images of SRFs for station TJN as a function of the epicentral distance of 60°–

930 85° with following six data selection criteria; (a) 25% lowest LQR, (b) 25% highest LQR, (c) 

931 25% lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 25% 

932 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

933 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. See a 

934 caption of Fig. S4 for more detail. See also Fig. 10 for the images of -80–80 s window.   

935

936 Figure S11. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

937 following six data selection criteria; (a) 50% lowest LQR, (b) 50% highest LQR, (c) 50% 

938 lowest AMP, (d) 50% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 50% 

939 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

940 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. See a 

941 caption of Fig. S4 for more detail. See Fig. S12 for the images plotted for -30–30 s window.

942

943 Figure S12. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

944 following six data selection criteria; (a) 50% lowest LQR, (b) 50% highest LQR, (c) 50% 

945 lowest AMP, (d) 50% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 50% 

946 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

947 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. See a 

948 caption of Fig. S4 for more detail. 

949

950 Figure S13. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

951 following six data selection criteria; (a) 25% lowest LQR, (b) 25% highest LQR, (c) 25% 

952 lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 25% 
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5

953 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

954 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. Time 

955 domain wiener deconvolution is done with a strong regularization of 1% white noise. See 

956 Fig. S14 for the images plotted for -30–30 s window.

957

958 Figure S14. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

959 following six data selection criteria; (a) 25% lowest LQR, (b) 25% highest LQR, (c) 25% 

960 lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 25% 

961 random data selection. The parent waveforms are windowed 10 s before and 35 s after the S-

962 wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. Time 

963 domain wiener deconvolution is done with a strong regularization of 1% white noise. 

964
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2

20 Supporting Information file includes one table and 14 figures providing velocity models for 

21 synthetic tests (Fig. S1), illustrations showing how the synthetic SRFs are constructed with our 

22 proposed data selection criteria for shorter time windows for the time-domain Wiener 

23 deconvolution (Figs S2 and S3), effect of using different data windowing and tapering length 

24 (Figs S4 and S5, respectively), effect of using various water levels in the alternative frequency-

25 domain deconvolution (Figs S6 and S7), histograms of epicentral distance, event back-azimuth 

26 (Fig. S8) as well as source parameters (Fig. S9) against data selection criteria, and an alternative 

27 50% threshold for six data selection criteria for the SRFs from station TJN (Figs S11 and S12) in 

28 addition to 25% threshold (Fig. S10). SRFs images with 25% threshold and a strong 

29 regularization (1% white noise) are shown in Figs S13 and S14.

30
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3

31 Table S1. Velocity models.

IASP91 modela L70 model

Depth 

(km)

Vp 

(km/s)

Vs 

(km /s)

Density 

(g/cm3)

Depth 

(km)

Vp 

(km/s)

Vs 

(km /s)

Density 

(g/cm3)

0 5.800 3.360 2.7200 0 5.8000 3.3600 2.7200

20 5.800 3.360 2.7200 20 5.8000 3.3600 2.7200

20 6.500 3.750 2.9200 20 6.5000 3.7500 2.9200

35 6.500 3.750 2.9200 35 6.5000 3.7500 2.9200

35 8.040 4.470 3.3198 35 8.2596 4.8053 3.3797

77.5 8.045 4.485 3.3455 70 8.2637 4.8141 3.3758

120 8.050 4.500 3.3713 70 8.0020 4.4187 3.3758

165 8.175 4.509 3.3985 120 8.0500 4.5000 3.3713

210 8.300 4.518 3.4258 165 8.1750 4.5090 3.3985

210 8.3000 4.5180 3.4258

32 a Kennett & Engdahl (1991)

33
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4

34

35 Figure S1. Velocity models. The 1-D IASP91 model (Kennett & Engdahl 1991) is shown in 

36 black, and the L70 model is shown in red. The L70 model includes a 35 km thick high-velocity 

37 mantle lid with a 7.5% shear velocity increase below Moho, a low velocity zone with a 9% shear 

38 velocity reduction beneath 70 km depth, and a small 1.5% shear velocity increase beneath 120 

39 km depth. See also Table S1. 
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5

40

41 Figure S2. Examples showing P coda waves and their influence on signal-generated noise in the 

42 SRF. Gray dashed boxes in panel (a) indicate how LQR is measured from the L- and Q-

43 component synthetic seismograms and how AMP is measured from synthetic SRF. Synthetic 

44 waveforms are computed from catalogued earthquake sources using the IASP91 (Kennett & 

45 Engdahl 1991) (a and c) and the L70 model (b and d). Time-domain Wiener deconvolution 

46 method is performed with the parent waveform time window of 10 s before and 15 s after the S 

47 arrival (black bar in a panel a). Note the amplitude scale of SRF in event 2 is higher than that in 

48 event 1.
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6

49

50 Figure S3. Examples showing P coda waves and their influence on signal-generated noise in the 

51 SRF. Gray dashed boxes in panel (a) indicate how LQR is measured from the L- and Q-

52 component synthetic seismograms and how AMP is measured from synthetic SRF. Synthetic 

53 waveforms are computed from catalogued earthquake sources using the IASP91 (Kennett & 

54 Engdahl 1991) (a and c) and the L70 model (b and d). Time-domain Wiener deconvolution 

55 method is performed with the parent waveform time window of 10 s before and 10 s after the S 

56 arrival (black bar in a panel a). Note the amplitude scale of SRF in event 2 is higher than that in 

57 event 1.
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8

59 Figure S4. Images of synthetic SRFs for the case 1 from the L70 model as a function of the 

60 distance of 60°–85° with following six data selection criteria; (a) 25% lowest LQR, (b) 25% 

61 highest LQR, (c) 25% lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), 

62 and (f) 25% random data selection. The parent waveforms are windowed 10 s before and 15 s 

63 after the S-wave arrival and tapered with a 15% Hanning taper at both ends of the signal window. 

64 Dashed lines indicate phase arrival times predicted by the IASP91 model (Kennett & Engdahl 

65 1991). The SRFs are plotted in the same way as Fig. 2. 

66
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10

68 Figure S5. Images of synthetic SRFs for the case 2 from the L70 model as a function of the 

69 epicentral distance of 60°–85° with six different data selection criteria. The parent waveforms 

70 are windowed 10 s before and 35 s after the S-wave arrival and tapered with a 5% Hanning taper 

71 at both ends of the signal window. See a caption of Fig. S4 for more detail. 

72

Page 122 of 138Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

73

Page 123 of 138 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

74 Figure S6. Images of synthetic SRFs for the case 3 from the L70 model as a function of the 

75 epicentral distance of 60°–85° with six different data selection criteria. The parent waveforms 

76 are windowed 10 s before and 35 s after the S-wave arrival and tapered with a 15% Hanning 

77 taper at both ends of the signal window. The frequency-domain deconvolution is done with a 

78 water level of 0.05%. See a caption of Fig. S4 for more detail. 

79
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14

81 Figure S7. Images of synthetic SRFs for the case 4 from the L70 model as a function of the 

82 distance of 60°–85° with six different data selection criteria. The parent waveforms are 

83 windowed 10 s before and 35 s after the S-wave arrival and tapered with a 15% Hanning taper at 

84 both ends of the signal window. The frequency-domain deconvolution is done with a water level 

85 of 0.2%. See a caption of Fig. S4 for more detail. 

86
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88 Figure S8. Histograms of epicentral distance and back azimuth against six data selection criteria. 

89 LQR and AMP data selection criteria with a percentage threshold of 25% result in negligible 

90 data selection bias in back azimuthal and epicentral distance.
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92 Figure S9. Histograms of earthquake source parameters (dip, strike and rake) against four data 

93 selection criteria; (a, e, i) 25% lowest LQR, (b, f, j) 25% highest LQR, (c, g, k) 25% lowest 

94 AMP, and (d, h, l) 25% highest AMP. LQR and AMP data selection criteria result in negligible 

95 data selection preference in source parameters.
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97 Figure S10. Images of SRFs for station TJN as a function of the epicentral distance of 60°–85° 

98 with following six data selection criteria; (a) 25% lowest LQR, (b) 25% highest LQR, (c) 25% 

99 lowest AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 25% random 

100 data selection. The parent waveforms are windowed 10 s before and 35 s after the S-wave arrival 

101 and tapered with a 15% Hanning taper at both ends of the signal window. Time domain wiener 

102 deconvolution is done with minimum regularization of 0.01% white noise. See a caption of Fig. 

103 S4 for more detail. See also Fig. 10 for the images of -80–80 s window.   
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105 Figure S11. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

106 following six data selection criteria; (a) 50% lowest LQR, (b) 50% highest LQR, (c) 50% lowest 

107 AMP, (d) 50% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 50% random data 

108 selection. The parent waveforms are windowed 10 s before and 35 s after the S-wave arrival and 

109 tapered with a 15% Hanning taper at both ends of the signal window. Time domain wiener 

110 deconvolution is done with minimum regularization of 0.01% white noise. See a caption of Fig. 

111 S4 for more detail. See Fig. S12 for the images plotted for -30–30 s window.
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113 Figure S12. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

114 following six data selection criteria; (a) 50% lowest LQR, (b) 50% highest LQR, (c) 50% lowest 

115 AMP, (d) 50% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 50% random data 

116 selection. The parent waveforms are windowed 10 s before and 35 s after the S-wave arrival and 

117 tapered with a 15% Hanning taper at both ends of the signal window. Time domain wiener 

118 deconvolution is done with minimum regularization of 0.01% white noise. See a caption of Fig. 

119 S4 for more detail. 
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121 Figure S13. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

122 following six data selection criteria; (a) 25% lowest LQR, (b) 25% highest LQR, (c) 25% lowest 

123 AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 25% random data 

124 selection. The parent waveforms are windowed 10 s before and 35 s after the S-wave arrival and 

125 tapered with a 15% Hanning taper at both ends of the signal window. Time domain wiener 

126 deconvolution is done with a strong regularization of 1% white noise. See Fig. S14 for the 

127 images plotted for -30–30 s window.
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129 Figure S14. Images of SRFs for station TJN as a function of the distance of 60°–85° with 

130 following six data selection criteria; (a) 25% lowest LQR, (b) 25% highest LQR, (c) 25% lowest 

131 AMP, (d) 25% highest AMP, (e) criterion by Wilson et al. (2006), and (f) 25% random data 

132 selection. The parent waveforms are windowed 10 s before and 35 s after the S-wave arrival and 

133 tapered with a 15% Hanning taper at both ends of the signal window. Time domain wiener 

134 deconvolution is done with a strong regularization of 1% white noise. 
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