
PHYSICAL REVIEW A 100, 012312 (2019)

Three-dimensional surface codes: Transversal gates and fault-tolerant architectures

Michael Vasmer* and Dan E. Browne
Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom

(Received 23 April 2018; published 9 July 2019)

One of the leading quantum computing architectures is based on the two-dimensional (2D) surface code.
This code has many advantageous properties such as a high error threshold and a planar layout of physical
qubits where each physical qubit need only interact with its nearest neighbors. However, the transversal logical
gates available in 2D surface codes are limited. This means that an additional (resource-intensive) procedure
known as magic state distillation is required to do universal quantum computing with 2D surface codes. Here, we
examine three-dimensional (3D) surface codes in the context of quantum computation. We introduce a picture for
visualizing 3D surface codes which is useful for analyzing stacks of three 3D surface codes. We use this picture
to prove that the CZ and CCZ gates are transversal in 3D surface codes. We also generalize the techniques of 2D
surface-code lattice surgery to 3D surface codes. We combine these results and propose two quantum computing
architectures based on 3D surface codes. Magic state distillation is not required in either of our architectures.
Finally, we show that a stack of three 3D surface codes can be transformed into a single 3D color code (another
type of quantum error-correcting code) using code concatenation.

DOI: 10.1103/PhysRevA.100.012312

I. INTRODUCTION

The family of quantum error-correcting codes known as
surface codes (also called toric codes or homological codes)
have generated a great deal of theoretical and experimental
interest since their introduction by Kitaev [1]. We can define
surface codes in any spatial dimension D � 2. The two-
dimensional (2D) surface code [2,3] is the basis of one of
the leading proposals for a fault-tolerant quantum computing
architecture [4]. The biggest advantage of the 2D surface
code is its high-error threshold which approaches 1% [5–7],
a value which has been achieved in various qubit technologies
[8,9]. The other main advantage of the 2D surface code is
that it has a simple structure consisting of a planar layout
of qubits where each qubit only needs to interact with four
neighboring qubits. Experimental groups in universities and
industry are targeting the surface code as their eventual fault-
tolerant architecture [8,10–13]. However, these groups are still
a long way off the millions of qubits required to run quantum
algorithms such as Shor’s algorithm [14] on a surface-code
quantum computer [4,15]. One of the contributing factors to
the large qubit overhead of 2D surface-code architectures is
that a procedure known as magic state distillation is needed
if we want to implement the non-Clifford T gate [16] in 2D
surface codes. Non-Clifford gates are required for universal
quantum computation but they are rarely easy to implement
in quantum error-correcting codes. Magic state distillation is
estimated to have a resource cost ∼150–300 times greater
than the resource cost of realizing the control-NOT (CNOT)
gate in 2D surface-code architectures [15]. The overhead
associated with magic state distillation has motivated research
into alternative methods for realizing non-Clifford gates in

*michael.vasmer.15@ucl.ac.uk

topological codes. For example, the 3D gauge color code has
a transversal non-Clifford gate and this code forms the basis
of a universal quantum computing architecture with attractive
properties such as single-shot error correction [17–19]. The
resource overheads of 3D gauge color codes and 2D surface
codes with magic state distillation are estimated to scale in a
similar way [15], so for different ranges of parameters either
option could be advantageous. However, it has been argued
that 2D surface-code architectures will be superior for current
experimental parameters due to the superlative error threshold
of 2D surface codes [15].

In this article, we study three-dimensional (3D) surface
codes. These codes were first introduced in [3] and their
topological entropy was studied in [20]. Most previous work
on 3D surface codes in the context of quantum computing
has concentrated on the relationship between 3D surface
codes and 3D color codes. Color codes are another family of
topological error-correcting codes which share some features
with surface codes. It turns out that we can transform any 3D
color code into three 3D surface codes using local Clifford
unitaries [21]. This relationship has implications for quantum
computing with 3D surface codes and 3D color codes. For ex-
ample, using the mapping between the two code families, we
can use 3D surface-code decoders to decode 3D color codes
[22]. This is useful because efficient 3D color-code decoders
are difficult to construct. Color codes tend to have a larger
range of transversal logical gates when compared with surface
codes [23,24]. This implies that we can use the relationship
between surface codes and color codes to realize logical gates
in 3D surface codes which are not naively available. Indeed,
we can use the mapping between the two code families to
implement a locality-preserving control-control-Z (CCZ) gate
in the 3D surface code [21]. Locality-preserving logical oper-
ators (LPLOs) are naturally fault-tolerant because the growth
of errors under a LPLO is bounded by a constant [25,26].

2469-9926/2019/100(1)/012312(20) 012312-1 ©2019 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/227336728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.012312&domain=pdf&date_stamp=2019-07-09
https://doi.org/10.1103/PhysRevA.100.012312

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

Recently, the LPLOs of 3D surface codes with different
boundary conditions were classified using a correspondence
between logical operators and domain walls [26].

Here, we introduce a way of visualizing 3D surface codes,
which we call the rectified picture. We use the rectified picture
to analyze stacks of three 3D surface codes. We show that
3D surface codes possess more transversal gates than was
previously thought, namely, that both the control-Z (CZ) and
CCZ gates are transversal for stacks of three 3D surface codes.
These results build on the results in [21] and [26], where it
was shown that CZ and CCZ are LPLOs for stacks of three
3D surface codes. We also show that the mapping between
3D surface codes and 3D color codes described in [21] can
be achieved using code concatenation. This result generalizes
the code concatenation transformations for 2D surface codes
and 2D color codes presented in [27]. The second focus of
this article is on quantum computing architectures based on
3D surface codes. We propose a hybrid 2D-3D surface-code
architecture and a purely 3D surface-code architecture. Both
of these architectures use the techniques of lattice surgery
[28], which we generalize to 3D surface codes. Our architec-
tures achieve universal quantum computation without needing
magic state distillation. It is possible that these architectures
may require fewer resources than 2D surface-code architec-
tures in certain systems. For example, one could imagine
taking advantage of the connections between qubits allowed
in a modular architecture [29–33] to build a code which is
local in three spatial dimensions. However, more research is
necessary before we can definitively assess the resource costs
of our proposed architectures.

The remainder of this article is structured as follows.
We provide background information on topological codes in
Sec. II and we introduce our rectified picture of 3D surface
codes in Sec. III. In Sec. IV, we detail a concatenation
transformation that maps three 3D surface codes to a 3D color
code. In Sec. V, we show that CZ and CCZ are transversal
for stacks of three 3D surface codes and we explain how to
implement a universal gate set. In Secs. VI and VII, we discuss
3D surface-code lattice surgery and universal quantum com-
puting architectures which utilize 3D surface codes. Finally, in
Sec. VIII, we discuss the implications of our work and outline
future research directions.

II. BACKGROUND

Surface codes are a family of topological stabilizer codes
[1–3]. A stabilizer code is a quantum error-correcting code
defined by its stabilizer group S , an Abelian subgroup of the
Pauli group where −I /∈ S [34]. Every encoded state |ψ〉 in
the code is stabilized by S , that is, ∀ S ∈ S , S |ψ〉 = |ψ〉. We
summarize the properties of a quantum error-correcting code
with the shorthand notation [[n, k, d]], where n is the number
of physical qubits, k is the number of encoded logical qubits,
and d is the code distance. The code distance of a quantum
error-correcting code is equal to the weight of the minimum
weight logical operator of the code. The weight of an operator
is simply the number of qubits it acts on nontrivially.

A topological code is a code defined on some lattice with
physical qubits placed on some of the elements of the lattice
(the edges, for example). The stabilizers of a topological code

act in geometrically local regions and the logical operators
of the code form topologically nontrivial paths or surfaces
on the lattice. We are particularly interested in two types
of logical operators in topological codes: locality-preserving
logical operators (LPLOs) and transversal logical operators.
LPLOs are operators that map errors in some region of a
code R to errors in a region R′ which is at most a con-
stant size C bigger than R [26]. A transversal logical op-
erator is a logical operator realized by a quantum circuit
of depth one which does not couple physical qubits in the
same code (block). Transversal logical operators are LPLOs
because transversal logical operators never spread errors from
one physical qubit to another physical qubit in the same
code.

In this article, we consider 2D and 3D surface codes. We
begin by defining 2D surface codes in what we call the “Kitaev
picture.” This is the formalism introduced by Kitaev in [1].
We place qubits on the edges of a 2D lattice. We associate
Z stabilizers with the faces of the lattice and X stabilizers
with the vertices of the lattice. That is, for each face f we
have a stabilizer S f = ⊗

e∈ f Z (qe) where Z (qe) denotes a Z
operator applied to the qubit on edge e. Analogously, for each
vertex v we have a stabilizer Sv = ⊗

e:v∈e X (qe). We interpret
unsatisfied stabilizers (stabilizers with −1 eigenvalues) as
quasiparticles. Following the convention in the literature [3],
we refer to unsatisfied X stabilizers as electric charges (e)
and unsatisfied Z stabilizers as magnetic fluxes (m). In the 2D
surface code, both e and m quasiparticles are zero-dimensional
(0D) objects. In the bulk of the lattice, we can only create or
destroy pairs of quasiparticles of the same type. 2D surface
codes can have two types of boundary: rough boundaries and
smooth boundaries. Single e quasiparticles can condense on
the rough boundaries and single m quasiparticles can con-
dense on the smooth boundaries. In this context, quasiparticle
condensation means that a single quasiparticle can be created
or destroyed at the relevant boundary. In the 2D surface code,
logical Z operators are strings of Z operators from one rough
boundary to another and logical X operators are strings of X
operators from one smooth boundary to another.

There is an equivalent picture of 2D surface codes which
is related to the Kitaev picture by a medial transformation
[35–37]. This picture is often called the rotated picture [38].
In the rotated picture, qubits are on vertices and stabilizers
are associated with faces. Rotated picture lattices are 2-face-
colorable, i.e., every face in the lattice can be assigned one
of two colors such that no faces which share an edge have
the same color. In this picture, we associate Z stabilizers with
c colored faces (c faces) and X stabilizers with c′ faces. For
example, the stabilizer associated with the c face fc is S fc =⊗

v∈ fc
Z (v). Figure 1 shows two distance three 2D surface

codes in the Kitaev picture and the rotated picture.
We now turn to 3D surface codes. Initially, we de-

fine 3D surface codes in the Kitaev picture [3], using the
same conventions as the 2D surface code. We place qubits
on the edges of a 3D lattice, we associate X stabilizers with
the vertices of the lattice and we associate Z stabilizers with
the faces of the lattice. We again interpret unsatisfied X (Z)
stabilizers as e (m) quasiparticles. However, in contrast to
2D surface codes, in the 3D surface code m quasiparticles
are 1D objects (e quasiparticles are still 0D). 3D surface

012312-2

THREE-DIMENSIONAL SURFACE CODES: TRANSVERSAL … PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 1. 2D surface codes in the Kitaev picture and the rotated
picture. On the left we show the [[13,1,3]] surface code in the Kitaev
picture and the rotated picture [red (hatched) and blue (solid) lattice].
We highlight a Z stabilizer and Z operator. On the right we show
the [[9,1,3]] surface code in the rotated picture. We highlight an X
operator. In both codes, the top and bottom boundaries are rough
boundaries and the left and right boundaries are smooth boundaries.

codes also have rough and smooth boundaries which are
again defined by quasiparticle condensation. As in the 2D
case, e (m) quasiparticles can condense on rough (smooth)
boundaries. Z operators in 3D surface codes are strings of
Z operators which terminate at different rough boundaries.
X operators are membranes of X operators with a boundary
which spans contiguous smooth boundaries. In this article
we only consider 3D surface codes with six boundaries (two
rough boundaries and four smooth boundaries) where the
rough boundaries are on opposite sides of the lattice.

So far, we have only discussed the primal lattice picture
of 3D surface codes. We can also analyze 3D surface codes in
the dual lattice picture. Given a 3D lattice, we can construct its
dual using a simple procedure. First, we create vertices at the
center of the cells of the original lattice. Next, we join these
vertices with edges if their corresponding cells in the original
lattice shared a face. Finally, we delete the original (primal)
lattice. This transformation maps vertices to cells, edges to
faces, faces to edges, and cells to vertices. Therefore, in the
dual lattice picture of 3D surface codes, qubits are placed
on the faces, X stabilizers are associated with cells, and Z
stabilizers are associated with edges. In the remainder of this
article, we will use both the primal lattice picture and the dual
lattice picture to analyze 3D surface codes.

III. RECTIFIED PICTURE

In this section, we describe a picture which we use to
analyze stacks of 3D surface codes. We call this picture
the “rectified picture.” This picture is a generalization of
the rotated picture of 2D surface codes and it is similar to
the primal lattice picture of 3D color codes [23]. We start
with a 3D surface-code primal lattice in the Kitaev picture.
To transform to the rectified picture, we rectify the primal
lattice. A rectification (or full truncation) is a geometric
transformation where the edges of a lattice are truncated to
points [39]. Specifically, to perform a rectification, we use the
following procedure. First, we create vertices at the midpoints
of the edges of the original lattice. Next, we join these vertices
with edges if their corresponding edges in the original lattice
were part of the same face. Finally, we delete the original
lattice to obtain the rectified lattice. Under a rectification,

FIG. 2. Polyhedra and their duals. (a) A cube [yellow (light
gray)] and its dual octahedron [red (medium gray)]. (b) A rhombic
dodecahedron [yellow (light gray)] and its dual cuboctahedron [red
(medium gray)].

edges are mapped to vertices, cells, and vertices are mapped to
cells, and faces are mapped to faces. Therefore, in the rectified
picture, qubits are on vertices, X stabilizers are associated
with cells, and Z stabilizers are associated with faces. We note
that there is an analogous transformation which maps a 3D
surface-code Kitaev picture dual lattice to a rectified picture
lattice. This transformation is called a face rectification and
is equivalent to taking the dual of every cell in the lattice.
Given a polyhedral cell, we construct its dual by creating
vertices at the center of the original polyhedron’s faces. We
then connect these vertices with edges if their corresponding
faces in the original polyhedron share an edge. Figure 2
shows a cube and a cuboctahedron along with their dual
polyhedra.

The utility of the rectified picture comes when we consider
stacks of three 3D surface codes. This is because different
lattices in the Kitaev picture correspond to the same lattice
in the rectified picture. Hence, instead of analyzing three
overlapping surface-code lattices in the Kitaev picture, we
can analyze a single lattice in the rectified picture. In this
article, we concentrate on surface codes defined on cubic
lattices and tetrahedral-octahedral lattices (primal lattices in
the Kitaev picture). In the familiar cubic lattice, eight cubes
meet at every vertex. In the tetrahedral-octahedral lattice, six
octahedra and eight tetrahedra meet at every vertex. The cubic
lattice is self-dual and the dual of a tetrahedral-octahedral
lattice is a rhombic dodecahedral lattice (a lattice where every
cell is a rhombic dodecahedron). Let us consider how the
cubic lattice is transformed under rectification: vertices are
mapped to octahedra and cubes are mapped to cuboctahedra.
Cuboctahedra are polyhedra with 12 vertices where two trian-
gle faces and two square faces meet at each vertex. Figure 2(b)
shows a cuboctahedron. The rectification of a cubic lattice
is usually called the rectified cubic lattice. In a rectified
cubic lattice, two octahedra and four cuboctahedra meet at
every vertex. Figure 3 shows a portion of a rectified cubic
lattice.

Next, we consider the rectification of a tetrahedral-
octahedral lattice. Under rectification, octahedra transform
into cuboctahedra, tetrahedra transform into octahedra, and
vertices become cuboctahedra. Therefore, rectification also
transforms the tetrahedral-octahedral lattice into a rectified
cubic lattice. In fact, we can arrange one cubic lattice and
two tetrahedral-octahedral lattices in such a way that all
three lattices are transformed into the exact same rectified

012312-3

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 3. Part of a rectified cubic lattice. Rectified cubic lattices
consist of cuboctahedra [blue (dark gray) and red (medium gray)]
and octahedra [green (light gray)]. Four cuboctahedra and two octa-
hedra meet at each vertex.

cubic lattice under rectification. To see how this works, it is
easiest to consider the dual lattices and the face-rectification
transformation. As we mentioned earlier, the dual of a
tetrahedral-octahedral lattice is a rhombic dodecahedral lat-
tice. A rhombic dodecahedron is a polyhedron with 12 rhom-
bic faces. Rhombic dodecahedra have two different types of
vertex. Acute vertices are the points where the acute angle
corners of four rhombi meet whereas obtuse vertices are the
points where the obtuse angle corners of three rhombi meet.
Figure 2(b) shows a rhombic dodecahedron. In a rhombic
dodecahedral lattice, four rhombic dodecahedra meet at every
obtuse vertex and six rhombic dodecahedra meet at every
acute vertex.

We now show how to arrange one cubic lattice and two
rhombic dodecahedral lattices such that they are mapped to
exactly the same lattice under face rectification. This fact is
the reason we can define three surface codes on the same
rectified cubic lattice. We assume the three lattices are in-
finite for simplicity. First, we note that the cubic lattice is
2-vertex-colorable, i.e., all the vertices in the cubic lattice
can be assigned a color such that no vertices which share an
edge have the same color. We give these two sets of vertices
the labels a and b. We arrange the cubic lattice and one of
the rhombic dodecahedral lattices such that the acute vertices
of the rhombic dodecahedra occupy the same positions as
the a vertices of the cubes. In this arrangement, the obtuse
vertices of the rhombic dodecahedra are at the center of cubes
and the b vertices of the cubes are at the center of rhombic
dodecahedra. This layout is shown (for a single cube and
rhombic dodecahedron) in Fig. 4(a). Next, we add a second
rhombic dodecahedral lattice and arrange it such that its acute
vertices occupy the same positions as the b vertices of the
cubes. The arrangement of all three lattices is illustrated in
Fig. 4(b).

In the arrangement of lattices we have just described,
all three lattices will be mapped to an identical rectified
cubic lattice by the face-rectification transformation. To see
why this is true we consider how the cells and vertices of
the lattices transform. The cubes and the obtuse vertices of
the rhombic dodecahedra both transform into octahedra. The
obtuse vertices of the rhombic dodecahedra lie at the center of

FIG. 4. Arranging a cubic lattice and two rhombic dodecahedral
lattices such that they are transformed to the same rectified cubic
lattice under face rectification. We show a single cell from each
lattice. (a) We arrange a rhombic dodecahedral lattice [red (medium
gray)] and a cubic lattice [green (light gray)] such that the acute
vertices of the rhombic dodecahedra occupy the same locations as the
a vertices of the cubes. In this arrangement, the b vertices of the cubes
lie at the center of the rhombic dodecahedra and the obtuse vertices
of the rhombic dodecahedra lie at the center of the cubes. (b) We add
a second rhombic dodecahedral lattice [blue (dark gray)] and arrange
it such that the acute vertices of the rhombic dodecahedra occupy the
same locations as the b vertices of the cubes. In this arrangement,
the obtuse vertices of the rhombic dodecahedra lie at the center of the
cubes and the a vertices of the cubes lie at the center of the rhombic
dodecahedra.

the cubes in our arrangement so each lattice transforms in the
same way at these positions. Similarly, the acute vertices of
one rhombic dodecahedral lattice occupy the same position as
the a vertices of the cubic lattice. Both these types of vertices
lie at the center of the cells of the other rhombic dodecahedral
lattice. Rhombic dodecahedra, acute vertices, and vertices of
cubes are all mapped to cuboctahedra under face rectification.
So the three lattices transform in the same way at these
positions. An identical argument holds for the b vertices of the
cubes.

A. A family of stacked 3D surface codes

In this section, we define a family of stacked 3D surface
codes. We call these codes rectified cubic codes. Each member
of the family consists of three 3D surface codes supported on
the same rectified cubic lattice. We first discuss the structure
of the rectified cubic lattices, then we define the surface codes.

1. Lattice structure

Rectified cubic lattices are 3-cell-colorable, and we color
the cells of our lattices with the colors {r, g, b}. We assume
that octahedra are colored g and the two sets of cuboctahedra
are colored r and b. We assign each lattice face the color of
the two cells it is part of. For example, a face shared by a
r cell and a g cell is a rg face. A face on a boundary which
is only part of one cell is assigned the combination of colors
it would have in a infinite lattice. The lattices in our family
have two types of boundary. One type of boundary slices a
layer of cuboctahedra in half and the other type of bound-
ary slices between a layer of cuboctahedra. We call these

012312-4

THREE-DIMENSIONAL SURFACE CODES: TRANSVERSAL … PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 5. The d = 3 rectified cubic lattice. The top and bottom
boundaries are half-cuboctahedra boundaries whereas the other four
boundaries are full-cuboctahedra boundaries.

boundaries half cuboctahedra boundaries and full cuboctahe-
dra boundaries, respectively. Each lattice in the family has
two half-cuboctahedra boundaries and four full-cuboctahedra
boundaries. Opposite boundaries are the same type. The two
types of boundaries are shown in Fig. 5.

We parametrize the lattices in our family by a parameter
d which will be equal to the code distance of the three codes
supported on a particular lattice. We specify the structure of a
distance d lattice by dividing it into 2D layers which are par-
allel to the half-cuboctahedra boundaries. There are two types
of layers in this division, which we call “checkerboard layers”
and “diamond layers,” due to their appearance. Figure 6 shows
the structure of the two types of layers in the d = 3 lattice
and the d = 4 lattice. In a distance d lattice, there are d
checkerboard layers and d − 1 diamond layers and the two
types of layers alternate. The half-cuboctahedra boundaries
are themselves checkerboard layers. Layers directly above and
below each other are connected by edges as can be seen in
Fig. 5.

2. Code structure

In this section, we specify the structure of the three 3D
surface codes defined on the same distance d rectified cubic
lattice. We place three qubits at each vertex of the lattice (one

FIG. 6. The two types of layers in a d = 3 rectified cubic lattice
(left) and a d = 4 rectified cubic lattice (right). Checkerboard layers
(continuous blue lines) are layers which slice cuboctahedra in half
and diamond layers (dashed red lines) are layers which slice octahe-
dra in half.

qubit per code). Each checkerboard layer in the lattice has d2

vertices each and each diamond layer has 2d (d − 1) vertices.
Therefore, for a distance d lattice, the number of physical
qubits in each code is

n = d3 + 2d (d − 1)2

= 3d3 − 4d2 + 2d. (1)

We label each code SCc with the color of its X stabilizers.
SCc has X stabilizers associated with c cells and Z stabilizers
associated with c′c′′ faces. The following Table and Fig. 7
detail the stabilizers of the three codes supported on a rectified
cubic lattice:

Code X stabilizers Z stabilizers

SCr r cuboctahedra bg faces
SCg g octahedra rb faces
SCb b cuboctahedra rg faces

We also associate colors with the boundaries of our rec-
tified cubic lattices. A c boundary corresponds to a rough
boundary in SCc and smooth boundaries in SCc′ and SCc′′ .
In Sec. II, we defined rough and smooth boundaries in terms
of quasiparticle condensation. For regular lattices like the ones
we consider, we can be more specific about the structure of the
boundaries. In a 3D surface code defined on a cubic lattice in
the Kitaev picture, each qubit in the bulk is a member of two
X stabilizers and four Z stabilizers. Similarly, in a 3D surface
code defined on a tetrahedral-octahedral lattice in the Kitaev
picture, each qubit in the bulk is a member of two X stabilizers
and four Z stabilizers. In each of these lattices, the qubits on
the rough boundaries are members of a single X stabilizer and
the qubits on the smooth boundaries are members of between
one and three Z stabilizers (i.e., fewer than four). We note that
the parts of lattices at which two boundaries meet are part of
both boundaries.

FIG. 7. The stabilizers of SCr and SCg. The SCb stabilizers are
identical to those of SCr except with red (medium gray) and blue
(dark gray) interchanged.

012312-5

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 8. The additional stabilizers required such that the codes in
our family of stacked 3D surface codes have the correct boundaries.
First, consider the full-cuboctahedra boundary facing us. We asso-
ciate additional SCr X stabilizers with the faces of the b cuboctahedra
on this boundary [blue (dark gray) faces]. In addition, we associate
additional SCb Z stabilizers with some of the edges of these blue
(dark gray) faces [red (medium gray) circular segments]. These
edges would have been part of rg faces if not for the boundaries. In
effect, we have added a multiple 2D flattenings of r cuboctahedra
to the lattice. The edges of these 2D flattenings are themselves
1D flattenings of rg faces (SCb Z stabilizers). We add analogous
stabilizers to the back boundary. With these additional stabilizers,
the front and back boundaries are valid b boundaries. Next, consider
the left and right boundaries in the figure. We associate additional
SCb X stabilizers with the faces of the r cuboctahedra [red (medium
gray) faces] on these boundaries. We also associate additional SCr Z
stabilizers with some of the edges of these faces [blue (dark gray)
circular segments]. With these additional stabilizers, the left and right
boundaries are valid r boundaries.

For our family of stacked 3D surface codes to have a
transversal CCZ gate (see Sec. V), we need to have two
boundaries of each color and we need opposite boundaries to
have the same color. The half-cuboctahedra boundaries of the
distance d rectified cubic lattices we detailed in the previous
section are valid g boundaries. However, the full cuboctahedra
boundaries are neither r boundaries nor b boundaries. The
problem is that the four full-cuboctahedra boundaries are
identical. We need to break the symmetry between the four
full-cuboctahedra boundaries to turn them into valid r bound-
aries and b boundaries. We break the symmetry by adding
additional low-weight stabilizers to the full-cuboctahedra
boundaries. These stabilizers are analogous to the weight-two
stabilizers on the boundaries of the [[9,1,3]] 2D surface code
shown in Fig. 1. In Fig. 8 we show the additional stabilizers we
add to SCr and SCb to turn the full-cuboctahedra boundaries
into r boundaries and b boundaries.

With the additional stabilizers shown in Fig. 8, we claim
that the three codes have the correct structure on the bound-
aries of the lattice. That is, the c boundaries are rough
boundaries in SCc and smooth boundaries in SCc′ and SCc′′ .
First consider the g boundaries (top and bottom boundaries
in Fig. 8). Each vertex on the g boundaries is a member
of a single g octahedron (SCg X stabilizer). Each vertex is
also a member of four rb faces (SCg Z stabilizers), except
where the g boundary meets the r boundaries and b bound-
aries. The g boundary is, therefore, a rough boundary in
SCg. Each vertex on the g boundaries is a member of two

r cuboctahedra (including 2D flattenings shown in Fig. 8)
and two b cuboctahedra (including 2D flattenings), except
where the g boundaries meet an r boundary or a b boundary,
respectively. The vertices on the g boundaries are all members
of fewer than four rg faces (including 1D flattenings shown in
Fig. 8) and fewer than four bg faces (including 1D flattenings).
Therefore, the g boundaries are smooth boundaries in SCb and
SCr .

The next pair of boundaries we consider are the b bound-
aries. Due to the additional stabilizers shown in Fig. 8, each
vertex on the b boundaries is a member of two r cuboctahedra
(including 2D flattenings) and two g octahedra, except where
the b boundaries meet the r boundaries and g boundaries,
respectively. However, each vertex on the b boundaries is a
member of a single b cuboctahedron. Every vertex on the
b boundaries is a member of fewer than four rb faces and
fewer than four bg faces (including 1D flattenings). But, each
vertex is a member of four rg faces (including 1D flattenings)
except for the vertices which are also on r boundaries or
g boundaries. Therefore, the b boundaries are rough bound-
aries in SCb and smooth boundaries in SCr and SCg, as
required. The argument for r boundaries is identical to the
argument for b boundaries, except with r and b exchanged.
In Appendix B, we describe an alternative family of stacked
3D surface codes which are supported on rectified cubic
lattices with different boundaries to the ones we have just
described.

Next, we show that each of the three codes has one encoded
logical qubit. The number of encoded qubits in a stabilizer
code is equal to the number of physical qubits minus the
number of stabilizer generators. So, we need to count the
number of stabilizer generators in each of the three codes.
We begin with SCg. In this code, X stabilizers are associated
with g cells (octahedra) and Z stabilizers are associated with
rb faces. Consider the top g boundary of a distance d lattice
oriented the same way as the d = 3 lattice in Fig. 8. This
boundary has the structure of a checkerboard layer and each
vertex on this boundary is a member of a single (complete or
incomplete) octahedron. Checkerboard layers have d2 vertices
so we have d2 octahedra which are situated directly below
the top boundary. Every other checkerboard layer (except the
bottom layer) also has d2 octahedra situated below it. There
are d checkerboard layers so there are d2(d − 1) octahedra
in a distance d lattice. The X stabilizers we associate with
these octahedra are all independent. Therefore, the number of
X stabilizer generators in SCg is

∣∣S(g)
X

∣∣ = d2(d − 1). (2)

We now count the Z stabilizer generators of SCg. As we
stated previously, these stabilizers are associated with the rb
faces of the lattice. We split these faces into two groups:
faces which are parallel to g boundaries, and faces which are
parallel to the r boundaries or the b boundaries. In a distance d
lattice, we have (d − 1)2 rb faces parallel to the g boundaries
in each diamond layer. There are d − 1 diamond layers, so
there are (d − 1)3 rb faces parallel to the g boundaries. Each
checkerboard layer cuts through 2d (d − 1) rb faces which are

012312-6

THREE-DIMENSIONAL SURFACE CODES: TRANSVERSAL … PHYSICAL REVIEW A 100, 012312 (2019)

parallel to the r boundaries or the b boundaries. There are d
checkerboard layers, so there are 2d2(d − 1) of these rb faces.
Therefore, the total number of rb faces in a distance d lattice is
(d − 1)(3d2 − 2d + 1). However, these stabilizers are not all
independent. We can multiply the Z stabilizers associated with
the rb faces of any cuboctahedron (both full cuboctahedra
and half cuboctahedra) to get the identity. Consequently,
we must remove one Z stabilizer from the list of stabilizer
generators for every cuboctahedron in the lattice to get a set
of independent Z generators. Each checkerboard layer has
(d − 1)2 cuboctahedra and there are d checkerboard layers,
so in total we have d (d − 1)2 cuboctahedra in a distance d
lattice. Therefore, the total number of Z stabilizer generators
in SCg is

∣∣S(g)
Z

∣∣ = (d − 1)(2d2 − d + 1). (3)

The total number of stabilizer generators in SCg is there-
fore ∣∣S(g)

X

∣∣ + ∣∣S(g)
Z

∣∣ = (d − 1)(3d2 − d + 1)

= 3d3 − 4d2 + 2d − 1. (4)

By comparing Eqs. (4) and (1), we see that SCg has n − 1
stabilizer generators, where n is the number of physical qubits
in the code. Therefore, SCg encodes a single logical qubit.

Next, we count the stabilizer generators of SCb. The X
stabilizers of this code are associated with b cells (including
the 2D flattenings) and the Z stabilizers are associated with
rg faces (including the 1D flattenings). First, we count the X
stabilizers of SCb. Consider the checkerboard layers parallel
to the g boundaries. Each checkerboard layer has (d − 1)2

cuboctahedra (half of which are r and half of which are
b). There are d checkerboard layers, so there are d (d −
1)2/2 SCb X stabilizers associated with b cuboctahedra (either
full cuboctahedra or half cuboctahedra). Now, consider the
r boundaries of the lattice. On each r boundary we have
additional SCb X stabilizers associated with the faces of r
cuboctahedra (as explained in Fig. 8). There are d (d − 1)
of these faces in a distance d lattice so we have d (d − 1)
additional SCb X stabilizers. The stabilizers we have just
detailed are all independent. Hence, the total number of X -
stabilizer generators in SCb is

∣∣S(b)
X

∣∣ = (d − 1)

2
(d2 + d). (5)

Next, we count the Z-stabilizer generators of SCb. The Z
stabilizers of SCb are associated with rg faces (and their 1D
flattenings). The rg faces are part of r cuboctahedra, which
we counted in the previous paragraph. The (d − 1)2/2 half
r cuboctahedra on the g boundaries have four rg faces. The
checkerboard layers which are parallel to the g boundaries
but are not the g boundaries each have (d − 1)2/2 full r
cuboctahedra with eight rg faces. There are d checkerboard
layers in a distance d lattice and two of these layers are the g
boundaries. Therefore, the total number of SCb Z stabilizers
associated with rg faces is 4(d − 1)3. As shown in Fig. 8,
we also have SCb Z stabilizers which are associated with the
edges of the faces which belong to b cuboctahedra on the b
boundaries. These faces are either square or triangular. Each

FIG. 9. Redundant Z stabilizers in SCb. We can construct the
identity by multiplying the Z stabilizers associated with the rg faces
and edges of half octahedra on the b boundaries. We have highlighted
one such collection of faces (hatched green triangles) and circular
segments (red faces with white edges).

square face has three independent Z stabilizers associated
with its edges and each triangular face has two independent
Z stabilizers associated with its edges. There are 2(d − 1)
triangular faces and (d − 1)(d − 2) square faces on the b
boundaries which belong to b cuboctahedra in a distance d
lattice. Therefore, the total number of independent weight-two
Z stabilizers in SCb is (d − 1)(3d − 2).

Some of the Z stabilizers we have counted so far are
not independent. Consider a complete octahedron. Half of
its faces are rg faces and half are bg faces. The product of
the Z stabilizers associated with the rg faces is the identity,
as each vertex is part of exactly two rg faces. The product
of all the Z stabilizers associated with the rg faces of each
complete r cuboctahedron is also the identity for the same
reason. Therefore, we must lose a single Z stabilizer from the
list of stabilizer generators for each complete octahedron and
r cuboctahedron. Every checkerboard layer parallel to the g
boundaries (except the bottom g boundary) has a complete
octahedron below all the vertices in the bulk of the layer.
There are therefore (d − 1)(d − 2)2 complete octahedra in a
distance d lattice. We have already counted the (d − 1)2(d −
2)/2 complete r cuboctahedra. There is also one other redun-
dancy we have not taken into account. We can construct the
identity by multiplying the Z stabilizers associated with the
rg faces and edges of the half octahedra on the b boundaries,
as illustrated in Fig. 9. There are 2(d − 1)(d − 2) of these
half octahedra. In total we need to remove (d − 1)(3d2 −
7d + 2)/2 redundant Z stabilizers from the list of stabilizer
generators. The total number of Z-stabilizer generators in SCb

is therefore

∣∣S(b)
Z

∣∣ = (d − 1)

2
[8(d − 1)2 + 6d − 4 − 3d2 + 7d − 2]

= d − 1

2
(5d2 − 3d + 2). (6)

The total number of stabilizer generators in SCb is

∣∣S(b)
X

∣∣ + ∣∣S(b)
Z

∣∣ = (d − 1)(3d2 − d + 1)

= 3d3 − 4d2 + 2d − 1. (7)

012312-7

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 10. Canonical Zr (dashed white line), Zg [continuous green
(dark gray) line], and Zb [continuous blue (light gray) line] operators.
The canonical X c operators act on every qubit on one of the c
boundaries.

By comparing Eqs. (7) and (1), we see that SCb has has n − 1
stabilizer generators, where n is the number of physical qubits
in the code. Therefore, SCb encodes a single logical qubit. SCr

also encodes a single logical qubit. The argument showing
this is identical to the argument for SCb, except with r and
b swapped everywhere. In Appendix A, we list the stabilizer
generators of the three codes supported on a d = 2 rectified
cubic lattice.

3. Logical operators

To finish our discussion of rectified cubic codes, we detail
the logical operators of the three surface codes supported on a
distance d rectified cubic lattice. Zc operators are strings of Z
operators from one c boundary to the other and X c operators
are membranes of X operators with a boundary that spans the
c′ and c′′ boundaries. It is useful to define a canonical set of
logical operators for each code. The canonical Zc operators lie
along the lines where c′ boundaries meet c′′ boundaries. That
is, given a c′ boundary and a c′′ boundary that share vertices,
a canonical Zc operator acts on all qubits which are members
of both boundaries. Figure 10 shows example canonical Zc

operators for the three codes in a single stack. These canonical
Zc operators are weight d , where d is the code distance that
parametrizes the lattice. We define the canonical X c operators
as membranes of X operators which act on every qubit on
one of the c boundaries. The canonical X g operators are
weight d2 and the canonical X r and X b operators are weight
d2 + (d − 1)2.

B. Other rectified picture lattices

It is natural to wonder whether the rectified cubic lattice
is the only lattice which supports three 3D surface codes
in the rectified picture. We say a lattice supports three 3D
surface codes in the rectified picture if we can partition the
cells and faces of the lattice into three sets such that we can
define a valid 3D surface code for each set (with X stabilizers
associated with cells and Z stabilizers associated with faces).
In the 2D case, there are many lattices which support two
surface codes in the rotated picture. Indeed, any four-valent
lattice will work [37].

For 3D lattices, the situation is more complex. To make the
analysis easier, we consider rectified lattices without bound-
aries. To support three 3D surface codes, a rectified picture
lattice must satisfy the following conditions:

(1) The cells must be 3-colorable.
(2) Each vertex must be part of exactly two cells of each

color.
(3) Each vertex must be part of three or more faces of each

color.
(4) All c cells and faces which are not part of c cells must

have an even number of vertices in common.
Condition 1 allows us to assign colors to the cells and faces

in a consistent way. We assign each face the colors of the two
cells of which it is a member. As with rectified cubic codes,
we assign each surface code SCc a color. In SCc, we associate
X stabilizers with c cells and Z stabilizers with c′c′′ faces.
Condition 2 ensures that each qubit is acted upon nontrivially
by exactly two X stabilizers in each code. This is necessary
because in the Kitaev picture (primal lattice) qubits are asso-
ciated with edges and X stabilizers with vertices. Condition 3
ensures that each qubit is acted upon nontrivially by three or
more Z stabilizers in each code. This condition is necessary to
ensure that the m quasiparticles are 1D objects, as required in
3D surface codes. Finally, condition 4 ensures that the X and
Z stabilizers in each code commute. In addition, we note that
condition 4 implies Lemma 1. This means that as long as the
three 3D surface codes have canonical logical operators which
overlap as described in Fig. 16, they will have a transversal
CCZ gate. The only semiregular (vertex-transitive) 3D lattice
we have found which satisfies the above conditions is the
rectified cubic lattice. However, it is likely that other less
regular lattices exist which satisfy the conditions.

If we relax condition 1, we can find regular rectified picture
lattices which support more than three 3D surface codes.
Instead of insisting on 3-colorability, we allow the cells of
the lattice to be 4-colorable. For example, consider the cubic
lattice. We can color the cells of this lattice with four colors
such that each cube has the same color as the cubes with which
it shares exactly one vertex (see Fig. 11). With this coloring,
the cubic lattice supports four 3D surface codes. We choose
the four colors {r, g, b, y}. The four codes have the following
stabilizer groups:

Code X stabilizers Z stabilizers

SCr r cubes bg faces, by faces and gy faces
SCg g cubes rb faces, ry faces and by faces
SCb b cubes rg faces, ry faces and gy faces
SCy y cubes rb faces, rg faces and bg faces

The idea of defining a 3D surface code on the cubic lattice in
this way is due to Kubica [40]. However, he did not consider
multiple surface codes defined on the same lattice. We have
not constructed a family of codes supported on cubic lattices
with boundaries, but this may be possible.

Remarkably, the cubic lattice surface codes we defined
above are a gauge choice of the 3D Bacon-Shor code [41], a

012312-8

THREE-DIMENSIONAL SURFACE CODES: TRANSVERSAL … PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 11. A cubic lattice colored with four colors [blue (dark
gray), red (medium gray), green (light gray), and yellow (hatched)].
Cubes which share exactly one vertex have the same color.

well-known subsystem code [42]. A similar result is widely
known in the 2D case (see, e.g., [43]). Subsystem codes
are quantum error-correcting codes where the encoded qubits
separate into two sets: gauge qubits and logical qubits. We
only use the logical qubits to encode information, but the
gauge qubits give subsystem codes additional structure which
is not present in stabilizer codes. A subsystem code is defined
by its gauge group G, a subgroup of the Pauli group. The
stabilizer group of the subsystem code is the center of the
gauge group S = Z (G). The nontrivial logical operators of
a subsystem code are the elements of the Pauli group which
commute with all the stabilizers but are not in the gauge group.
In the 3D Bacon-Shor code, we place qubits on the vertices
of a cubic lattice. The gauge group G is generated by XX
and ZZ operators associated with the edges of the lattice. The
X -type gauge generators are associated with edges in the i
and j directions. Similarly, the Z-type gauge generators are
associated with edges in the j and k directions. The stabilizer
group contains “nearest-plane” operators. That is, the X -type
stabilizers consist of X operators acting on all the qubits in
two jk planes which are next to each other in the i direction.
Similarly, the Z-type stabilizers consist of Z operators acting
on all the qubits in two i j planes which are next to each other
in the k direction.

A stabilizer code defined by the stabilizer group S is a
gauge choice of a subsystem code defined by the gauge group
G1 and stabilizer group S1 if the following inclusions hold
[17,44]:

S1 ⊆ S ⊆ G1. (8)

Consider SCr as defined above. The X stabilizers of SCr

are associated with r cubes. Clearly, we can construct these
cube operators from X gauge operators associated with the
edges in the i and j directions. Similarly, we can construct
the Z stabilizers of SCr (bg, by, and gy faces) from Z gauge
operators associated with the edges in the j and k directions.
In addition, the stabilizer generators of the 3D Bacon-Shor
code can be constructed from the stabilizer generators of
SCr . We can construct any X “nearest-plane” operator from
X r-cube operators and we can construct any Z “nearest-plane

operator” from Z bg, by, and gy face operators. The same
is true for all the other 3D surface codes defined above by
symmetry. Therefore, 3D surface codes defined on the cubic
lattice (in the rectified picture) are particular gauge choices of
the 3D Bacon-Shor code.

IV. CONCATENATION TRANSFORMATION

In this section, we show how to transform three 3D surface
codes into a 3D color code using code concatenation. Color
codes are a family of topological codes introduced by Bombín
and Martin-Delgado [23,45]. 3D color codes are defined on
weakly four-valent, 4-colorable lattices. In a weakly four-
valent lattice, all vertices are four-valent except for vertices
on the boundaries. In a 3D color code, we place qubits on
the vertices of the lattice, we associate X stabilizers with the
cells of the lattice, and we associate Z stabilizers with the
faces of the lattice. This makes 3D color codes very similar
to 3D surface codes in the rectified picture. In fact, 3D color
codes and stacks of three 3D surface codes are equivalent
up to local Clifford unitaries, as shown by Kubica et al.
[21]. This result is a special case of their more general result
which states that D copies of a D-dimensional surface code
are local Clifford equivalent to a single D-dimensional color
code. The surprisingly close relationship between color codes
and surface code has also been explored in a number of other
works [22,46–49].

Criger and Terhal gave an explicit construction of the
local Clifford unitaries required to transform two 2D surface
codes into a single 2D color code [27]. Their construction is
remarkably simple: it consists of encoding pairs of qubits (one
from each 2D surface code) in the [[4,2,2]] error-detecting
code. This code can be viewed as a 2D color code defined on a
single square. It has two stabilizers X ⊗4 and Z⊗4 and weight-
two logical operators supported on the sides of the square. The
[[4,2,2]] code has a transversal CZ gate implemented using
S = diag(1, i) and S† gates. We can generalize this code-
concatenation transformation to 3D. Instead of a [[4,2,2]] code
we use an [[8,3,2]] code. We can view this code as a small 3D
color code defined on a cube [as shown in Fig. 12(a)]. It has
an X stabilizer acting on all of the qubits and Z stabilizers
associated with the faces of the cube. Only four of the Z face
stabilizers are independent, so this code has three encoded
qubits. Logical X operators are membranes of X operators
which act on four qubits on the same face (opposite faces
support X operators which act on the same encoded qubit).
Z operators are strings of Z operators that act on the qubits
at the end points of edges linking the faces which support
the corresponding X operators. The vertices of a cube are
2-colorable, i.e., we can assign each vertex a color such that
no vertices which share an edge have the same color. We can
implement a transversal CCZ in the [[8,3,2]] code by applying
T = diag(1, eiπ/4) gates to qubits on vertices of one color and
T † gates to the qubits on the vertices of the other color. This
fact can be verified by computing the action of T and T † on
the codeword kets.

In a 3D color code, we assign faces the colors of the
cells they are members of. For example, a face which is a
member of a c cell and a c′ cell is a cc′ face. Due to the
4-colorability of the color-code lattice, each cell’s faces are

012312-9

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

(a) (b)

(c)

FIG. 12. The [[8,3,2]] color code. (a) Our labeling of the qubits.
The X stabilizer acts on all the qubits (it is a cell operator) and the Z
stabilizers act on qubits which are members of the same face. (b) In
a larger 3D color code, the [[8,3,2]] cube would have an assigned
color (say y) and its faces would be 3-colorable (c ∈ {ry, by, gy}).
X cy is supported either of the cy faces (opposite faces have the same
color) and Zcy is supported on an edge that links the cy faces. (c) The
encoding circuit for the [[8,3,2]] code. Encoded X cy operators [shown
in (b)] act on the encoded qubit |ψ cy〉. We derived this circuit using
the method given in [34].

3-colorable. Consider a color code lattice where cells assigned
colors from the set {r, g, b, y}. We can view the [[8,3,2]] code
as a cell of this lattice. Assume that it is a y cell. Then,
its faces are colored ry, by, and gy. We use these colors to
index the logical operators of the [[8,3,2]] code. That is, the
logical X operators which act on the cy faces are denoted by
X cy. These operators are shown in Fig. 12(b). We denote the
corresponding Z operators as Zcy.

We can now detail the concatenation transformation which
maps a stack of three 3D surface codes to a single 3D color
code. Consider a rectified cubic code stack with code distance
d . To transform the three codes in the stack, we encode the
three qubits at every vertex in [[8,3,2]] codes. An encoding
circuit for the [[8,3,2]] code is shown in Fig. 12(c). Figure 13

(a) (b)

FIG. 13. An [[8,3,2]] concatenation transformation of a single
vertex in a stack of 3D surface codes. (a) The initial rectified cubic
lattice. (b) We encode the three qubits at the vertex where the three
different cells meet in an [[8,3,2]] color code. This corresponds to
replacing the vertex with a cube [yellow (hatched) cell].

(a) (b)

FIG. 14. Transforming a stack of three 3D surface codes into a
single 3D color code by concatenating with the [[8,3,2]] color code.
Each vertex the d = 2 rectified cubic lattice (a) is transformed as
shown in Fig. 13. This transforms the rectified cubic lattice into a
cantitruncated cubic lattice (b). This lattice supports a d = 4 color
code with three encoded qubits. The top and bottom boundaries of
the surface-code stack are g boundaries, the left and right boundaries
are r boundaries, and the front and back boundaries are b boundaries.
In a color code, a c boundary is a boundary which has no c cells
adjacent to it. By inspecting (b), we see that c boundaries in the
surface-code stack become c boundaries in the color code.

shows the [[8,3,2]] concatenation transformation applied to
a single vertex. Applied to a whole lattice, concatenation
with the [[8,3,2]] code transforms cuboctahedra into truncated
cuboctahedra, octahedra into truncated octahedra, and vertices
into cubes. Globally, this transforms the rectified cubic lattice
into a cantitruncated cubic lattice. Two truncated cuboctahe-
dra, one truncated octahedron, and one cube meet at each
vertex of a cantitruncated cubic lattice. Figure 14 shows how
a d = 2 rectified cubic lattice transforms under the [[8,3,2]]
concatenation transformation.

The colors we assigned to the encoded qubits of the
[[8,3,2]] codes tell us how to encode the three qubits at every
vertex of the rectified cubic lattice. We encode the physical
qubits from SCc as the cy qubits of the [[8,3,2]] codes [see
Fig. 12(c)]. This ensures that SCc X (Z) stabilizers associated
with c cells (cc′ faces) are mapped to X (Z) stabilizers
associated with c cells (cc′ faces) in the color code. In each
3D surface code we have n qubits and n − 1 independent
stabilizer generators. In the color code we have 8n qubits
and we inherit 3(n − 1) stabilizer generators. We also have
five independent stabilizer generators for each cube (one X
stabilizer and four Z stabilizers). So, in total we have 5n +
3n − 3 = 8n − 3 independent stabilizer generators in the 3D
color code. The 3D color code therefore encodes three logical
qubits. The color code inherits the boundary structure of the
stack of 3D surface codes. In a color code, a boundary has
the color c, if no c cells are present on it. As shown in
Fig. 14, the c boundaries of the rectified cubic lattice become
c boundaries in the color code.

As with surface codes, we interpret unsatisfied color code
stabilizers as quasiparticles. For each color c in a 3D color
code, we have quasiparticles ec and mc. In the stack of
surface codes, each code SCc has quasiparticles ec and mc.
The quasiparticles of the three surface codes are mapped
directly to quasiparticles in the color code. For any color
c ∈ {r, g, b}, the ec (mc) quasiparticles in our three 3D surface
codes are mapped to ec (mc) quasiparticles in the color code
because c-cell (cc′-face) stabilizers in the surface codes are

012312-10

THREE-DIMENSIONAL SURFACE CODES: TRANSVERSAL … PHYSICAL REVIEW A 100, 012312 (2019)

mapped to c-cell (cc′-face) stabilizers in the color code. This
leaves the y quasiparticles in the color code unaccounted for.
However, this is not important as the y quasiparticles are not
independent. We can always construct y quasiparticles from
combinations of r, g, and b quasiparticles [23].

The logical operators of the color code have the same struc-
ture as the logical operators of the three surface codes. In the
color code, Zc operators are strings of Z operators from one c
boundary to the other and X c operators are membranes of X
operators with boundaries that span the c′ and c′′ boundaries.
As the concatenation transformation maps the c boundaries
of the rectified cubic codes to c boundaries in the color
code, the structure of the logical operators is preserved by
the mapping.

V. A UNIVERSAL GATE SET IN 3D SURFACE CODES

In this section, we prove that CCZ and CZ are transversal in
rectified cubic codes and we show how to implement a univer-
sal gate set in these codes. We note that CZ is also transversal
in 2D surface codes. This fact can be easily understood in the
rotated picture, as we explain in Appendix D.

An important concept in our proofs is the overlap of
logical operators (including stabilizers). Given two or three
logical operators, each of which acts on a different code in a
rectified cubic stack, we define the overlap of these operators
as the vertices where all the operators act nontrivially. Before
proceeding to the main proofs, we need the following lemma
about rectified cubic codes.

Lemma 1. The overlap of any two X stabilizers from two
different codes in a rectified cubic code stack is equal to the
nontrivial support of a Z stabilizer from the third code.

In other words, the set of vertices at which both X sta-
bilizers act nontrivially are equal to the support of some Z
stabilizer in the third code.

Proof. We initially restrict our attention to the bulk of the
lattice. Let us consider X stabilizer generators from SCr (r
cells) and SCg (g cells). We denote the X and Z stabilizers of
SCc as Sx

c and Sz
c, respectively. Clearly, Sx

r generators and Sx
g

generators overlap on rg faces (Sz
b operators) in the bulk. This

is also true for the other two color combinations.
On the boundaries, Sx

r generators and Sx
b operators overlap

on rb faces. This can be seen by inspecting, e.g., Fig. 8. Some
Sx

r generators and Sx
g generators overlap on edges. However, in

all these cases, a Sz
b operator is supported on the overlap edge.

An example of this is highlighted in Fig. 15. Similarly, Sx
b and

Sx
g generators on the boundaries can overlap on edges. But, all

these edges have an associated Sz
r operator.

We have shown that all pairs of X stabilizer generators
from two different codes in the stack overlap on faces or edges
which support Z stabilizers in the third code. As every X
stabilizer is a product of stabilizer generators, any pair of X
stabilizers from two different codes have overlap equal to the
support of a Z stabilizer from the third code. �

A. Transversal CCZ

We now prove that CCZ is transversal for stacks of rectified
cubic codes. We first write the surface-code kets in a form
inspired by a proof in [44]. Let Hx

c be the (classical) parity

FIG. 15. The overlap of a Sx
g generator [green (light gray) octahe-

dron with white edges] and a Sx
r generator (hatched blue face) is equal

to an edge [red (medium gray) circular segment with white edges].
This edge has an associated Sz

b operator, as explained in Fig. 8.

check matrix of the X stabilizers of SCc. That is, Hx
c is an m ×

n binary matrix with m equal to the number of X -stabilizer
generators in SCc and n equal to the number of physical qubits
in the code. Each row of Hx

c has a 1 at column j if the stabilizer
generator corresponding to that row acts nontrivially on qubit
q j . If the stabilizer generator acts trivially, then the entry is
equal to zero. Now, let G0

c be the linear span the rows of Hx
c .

For each code, we choose a canonical X c operator which acts
on one of the c boundaries of the lattice. Let Xc be an n-bit
binary vector describing the support of X c. That is, Xc has a
one at position j if X c acts nontrivially on qubit q j , with all
other entries in Xc equal to zero. Let G1

c be the coset {Xc + g :
g ∈ G0

c}. With these definitions we can write the encoded state
of SCc as follows:

|α〉c = 1√∣∣Gα
c

∣∣
∑
g∈Gα

c

|g〉c , (9)

where |Gα
c | is the number of elements in Gα

c and α ∈ {0, 1}.
To show that CCZ is transversal for stacked 3D surface

codes, we need the following lemma.
Lemma 2. Given a finite set of k binary vectors {aj} with

the same length, the parity of their sum is equal to the sum of
their parities.

This lemma is easy to prove. For completeness, we include
a proof in Appendix C.

Theorem 3. CCZ is transversal in rectified cubic codes.
Proof. Define CCZ = CCZ⊗n, where each CCZ gate acts

on the three qubits (one per code) at one of the n vertices of
the lattice. We consider the initial state

|αβγ 〉rgb =
∑

t∈Gα
r u∈Gβ

g v∈Gγ

b

|t〉r |u〉g |v〉b , (10)

where α, β, γ ∈ {0, 1}. We have omitted the global normal-
ization factor. Now, we apply CCZ to |αβγ 〉rgb:

CCZ |αβγ 〉rgb =
∑

t∈Gα
r u∈Gβ

g v∈Gγ

b

CCZ⊗n |t〉r |u〉g |v〉b

=
∑

t∈Gα
r u∈Gβ

g v∈Gγ

b

(−1)|t◦u◦v| |t〉r |u〉g |v〉b , (11)

where u ◦ v denotes the bitwise binary product between u and
v and |t | denotes the Hamming weight of t .

012312-11

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

We now calculate (−1)|t◦u◦v| for each encoded computa-
tional basis state. We can expand t ◦ u ◦ v as follows

t ◦ u ◦ v = (αXr + t ′) ◦ (βXg + u′) ◦ (γ Xb + v′)

= αβγ (Xr ◦ Xg ◦ Xb) + αβ(Xr ◦ Xg ◦ v′)

+ αγ (Xr ◦ Xb ◦ u′) + βγ (Xg ◦ Xb ◦ t ′)

+ α(Xr ◦ u′ ◦ v′) + β(Xg ◦ t ′ ◦ v′)

+ γ (Xb ◦ t ′ ◦ u′) + (t ′ ◦ u′ ◦ v′), (12)

where t ′ ∈ Gr
0, u′ ∈ Gg

0, and v′ ∈ Gb
0.

First, we consider the term (t ′ ◦ u′ ◦ v′), which corresponds
to the state |000〉. We can find the Hamming weight of
this term by considering the support of the stabilizers which
correspond to t ′, u′, and v′. The t ′ vectors correspond to the
X stabilizers of SCr (Sx

r), the u′ vectors correspond to the X
stabilizers of SCg (Sx

g), and the v′ vectors correspond to the X
stabilizers of SCb (Sx

b). The Hamming weight of the product
t ′ ◦ u′ ◦ v′ will be equal to the number of vertices in the lattice
where the three X stabilizers act nontrivially on the physical
qubits of their respective codes. In other words, it will be equal
to the overlap of the three operators.

By Lemma 1, any Sx
r operator and any Sx

g operator have
overlap equal to the support of a Sz

b operator (SCb Z stabilizer).
As the stabilizers of SCb commute, the overlap of any Sx

r , Sx
g,

and Sx
b is always even. Hence, |t ′ ◦ u′ ◦ v′| = 0 mod 2 for all

t ′, u′, and v′ and (−1)|t◦u◦v| = 1 for |000〉.
Next, we consider the exponent for |001〉 which is equal

to (Xb ◦ t ′ ◦ u′) + (t ′ ◦ u′ ◦ v′). Thanks to Lemma 2 we only
need to show that (Xb ◦ t ′ ◦ u′) has even Hamming weight to
show that the sum has even Hamming weight. We need to
calculate the overlap of the X b operator on the b boundary
(corresponding to the Xb vector) with any Sx

r and Sx
g. By

Lemma 1, any Sx
r and Sx

g overlap on a collection of vertices
which has the same support (in terms of vertices) as a Sz

b
operator. Logical operators and stabilizers commute, so the
overlap of X b with any Sx

r and Sx
g is even. This implies that

|(Xb ◦ t ′ ◦ u′)| = 0 mod 2 for every t ′ and u′. All the other
terms in Eq. (12) with one Xc term have even Hamming weight
by the same argument. Therefore, (−1)|t◦u◦v| = 1 for |100〉,
|010〉, and |001〉.

The next computational basis state we consider is |110〉.
The exponent for this state is (Xr ◦ Xg ◦ v′) + (Xr ◦ u′ ◦ v′) +
(Xg ◦ t ′ ◦ v′) + (t ′ ◦ u′ ◦ v′). To show that this expression has
even Hamming weight, we only need to show that (Xr ◦ Xg ◦
v′) has even Hamming weight due to Lemma 2. To find the
Hamming weight of this term, we need to find the overlap of
X r , X g, and any Sx

b operator. X r has nontrivial support on an
r boundary and X g has nontrivial support on a g boundary.
These two operators overlap on a line where the r boundary
and the g boundary meet (shown in Fig. 16). This line is a
string from one b boundary to the other b boundary, i.e., it
has the same support as a Zb operator. Logical operators and
stabilizers commute so X r , X g, and any Sx

b have even overlap.
This proves that |(Xr ◦ Xg ◦ v′)| = 0 mod 2 for all v′. All
the other terms in the Eq. (12) expansion with two Xc terms
have even Hamming weight by the same argument. Hence,
(−1)|t◦u◦v| = 1 for |110〉, |101〉, and |011〉.

FIG. 16. The overlap of the X c operators which lie on the bound-
aries. We see that any X c and X c′ overlap on a Zc′′ path (a string from
one c′′ boundary to the other). The three X c operators overlap at a
single vertex (denoted by a star).

Finally, for the state |111〉 we must consider the entire
expansion in Eq. (12). Due to the previous calculations in this
proof and Lemma 2, the parity of this exponent is determined
by (Xr ◦ Xg ◦ Xb). This term has Hamming weight equal to
the number of lattice collisions between X r , X g, and X b. As
these three operators are defined on r, g, and b boundaries,
respectively, they have a single lattice collision on one corner
of the lattice (shown in Fig. 16). Therefore, |(Xr ◦ Xg ◦ Xb)| =
1 which implies that (−1)|t◦u◦v| = −1 for |111〉.

We have shown that CCZ has has the correct action on the
computational basis states, namely,

CCZ |αβγ 〉 =
{

− |αβγ 〉 α = β = γ = 1,

|αβγ 〉 else.
(13)

�

B. Transversal CZ

The transversality of CZ in stacked 3D surface codes
follows from the structure of the CCZ and X operators.
Consider three codes, each encoding one logical qubit, labeled
with the labels i, j, and k. We assume that CCZi jk is a
transversal gate acting as a tensor product of CCZ gates
at the level of the physical qubits. In addition, we assume
that each X gate acts as a tensor product of X gates at the
level of the physical qubits. The group commutator of two
operators A and B is defined as K[A, B] = ABA†B†. One can
easily verify that K[CCZi jk, Xk] = CZi j . Therefore, we can
implement a transversal CZi j gate by applying the sequence of
logical operators K[CCZi jk, X k]. If we think at the level of the
physical qubits, this operator simplifies. All triples of qubits
outside the support of X k are acted upon by CCZi jkCCZ†

i jk =
I and triples of qubits in the support of X k are acted upon
by K[CCZi jk, Xk] = CZi j . Therefore, we can implement a
transversal logical CZi j by applying CZ gates at the level of
the physical qubits.

In the context of our stacked 3D surface codes, the above
argument implies that we can implement a logical CZcc′ gate
by applying CZ gates to the pairs of physical qubits in SCc and
SCc′ at the vertices of one of the c′′ boundaries (our canonical
Xc′′ operators are supported on the c′′ boundaries).

012312-12

THREE-DIMENSIONAL SURFACE CODES: TRANSVERSAL … PHYSICAL REVIEW A 100, 012312 (2019)

|ψ • X •
|+ • H |ψ

FIG. 17. A circuit which implements a H gate using state prepa-
ration, measurement, and CZ [51].

C. Completing a universal set of gates

To achieve universal quantum computing with a CCZ gate
we only need a Hadamard gate [H = (X + Z)/

√
2] [50]. The

H gate is not transversal in 3D surface codes, but we can
still implement it using the teleportation circuit [51] shown
in Fig. 17. Therefore, CCZ is universal if we have access to
measurement and state preparation in the X and Z bases [52].
As long as we have access to a decoder with a threshold,
we can prepare states in the X basis or the Z basis and
we can measure qubits in the X basis or the Z basis. We
delay discussing decoding strategies for 3D surface codes
until Sec. VII. We can generalize the state preparation and
measurement methods used in 2D surface codes [3] to 3D
surface codes. We quickly review these methods here for
completeness. To measure a qubit encoded in a 3D surface
code in the Z basis, we simply measure all of the qubits in
the code in the Z basis and compute the eigenvalues of all the
Z stabilizers. We then correct any X errors implied by this
syndrome using a decoder. Finally, we compute the parity of a
Z operator using the corrected qubit values. To measure in the
X basis we replace X with Z (and vice versa) in the procedure
we have just described. To fault tolerantly prepare a |0〉
state we prepare each of the physical qubits in the |0〉 state.
We then perform d rounds of error correction (where d is the
code distance). To fault tolerantly prepare |+〉 we just replace
|0〉 with |+〉 in the above procedure.

We can use the circuit in Fig. 17 to implement a single-
qubit H gate in a stack of three 3D surface codes and to trans-
fer a logical qubit between different codes in the same stack.
We denote the circuit in Fig. 17 as Hcc′ . This circuit takes the
state |ψ〉c to H |ψ〉c′ . Consider the initial state |ψ〉r |+〉g |+〉b.
We can use sequences of Hcc′ circuits to transfer the state from
one code to another or to perform a single-qubit H gate as
follows:

|ψ〉r

Hrg−→ H |ψ〉g

Hgb−→ |ψ〉b ,

|ψ〉r

Hrg−→ H |ψ〉g

Hgb−→ |ψ〉b
Hbr−→ H |ψ〉r . (14)

VI. 3D SURFACE-CODE LATTICE SURGERY

We have shown how to implement a universal gate set
in a single stack of three 3D surface codes. However, in a
feasible architecture we also need to be able to transfer qubits
between surface codes in different stacks. To accomplish this
task we generalize the techniques of 2D surface-code lattice
surgery [28,53–55] to 3D surface codes. We note that we will
reproduce some material from [28] to make our exposition
clearer. Lattice surgery is a code deformation technique which
allows us to merge two surface codes into a larger surface
code or to split a surface code into two smaller surface codes.
Lattice surgery merges and splits can be used for to transfer

qubits between codes or to implement CNOT gates. In related
recent work, lattice surgery techniques have been extended
to the Raussendorf lattice [56], a lattice used in fault-tolerant
measurement-based quantum computing [57].

There are two types of lattice surgery we can do in 3D
surface codes: X type and Z type (corresponding to rough and
smooth lattice surgery in the language of [28]). We start by
presenting lattice surgery techniques for pairs of 3D surface
codes before presenting a method for doing lattice surgery on
a 3D surface code and a 2D surface code.

A. 3D-3D lattice surgery

We start with X -type lattice surgery. Consider two distance
d rectified cubic lattices. Each lattice supports three surface
codes SC (i)

c , where c ∈ {r, g, b} and i ∈ {1, 2} indexes the two
stacks. We can do an X -type lattice surgery merge between
SC (1)

c and SC (2)
c by aligning c boundaries of the two stacks

(the rough boundaries of the two codes), preparing a layer of
ancillas in the |0〉 state between the stacks and then measuring
new X stabilizers which join the two lattices. The product
of these X stabilizers is X

(1)
c ⊗ X

(2)
c so we learn this value

when we perform the merge operation. There may also be
new Z stabilizers which we add to the stabilizer group and
measure in subsequent rounds. In addition, some Z stabilizers
on the boundaries where the merge took place may need to
be modified in the new stabilizer group. The merge operation
maps |ψ〉c ⊗ |φ〉c → α |ψ〉c + (−1)mβX |ψ〉c, where m is the

outcome of the X
(1)
c ⊗ X

(2)
c measurement and |φ〉c = α |0〉 +

β |1〉 [28]. Any X operator for either of the two initial codes
is a valid X operator for the merged code. However, to form
a logical Z operator in the new code we must join logical Z
operators from each of the initial codes into a single string
of Z operators which starts and ends at opposite c boundaries.
We implement an X -type lattice surgery split by measuring all
the qubits in a layer where we want to split the lattice in the Z
basis. This splits the single surface code into two smaller sur-
face codes. An X -type split performed on SCc implements the
following mapping: α |+〉c + β |−〉c → α |++〉c + β |−−〉c
[28]. Figure 18 shows an example of X -type lattice surgery
performed on two 3D surface codes.

Z-type lattice surgery is analogous to X -type lattice
surgery. To perform a Z-type merge on SC (2)

c and SC (2)
c , we

first align a c′ boundary of one stack with a c′ boundary of
the other (this aligns the smooth boundaries of the codes). We
then add a layer of ancilla qubits (all in the |+〉 state) and
measure new Z stabilizers which join the two lattices. There
may also be new X stabilizers and modified X stabilizers at
the join. The new Z stabilizers (redundantly) tell us the value
of Z

(1)
c ⊗ Z

(2)
c . The merge implements the mapping |ψ〉c ⊗

|ϕ〉c → a |ψ〉c + (−1)mbX |ψ〉c, where m is the outcome of

the Z
(1)
c ⊗ Z

(2)
c measurement and |ϕ〉c = a |+〉 + b |−〉 [28].

Any Z operator of either original code is a valid Z operator
of the merged code. However, the valid X operators of the
merged code are membranes of X operators with boundaries
which span the c′ and c′′ boundaries of the merged lattice.
We can implement a Z-type split by measuring a layer of
SCc qubits in the X basis. These measurements implement the
following mapping: α |0〉c + β |1〉c → α |00〉c + β |11〉c [28].

012312-13

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 18. Lattice surgery in 3D surface codes. Both initial lattices
(sublattices with continuous edges) support three surface codes. We
prepare a layer of ancilla qubits (vertices of the sublattice with
dashed edges) and measure new stabilizers (faces and cells of the
sublattice with dashed edges) to merge codes of the same color in
separate stacks. To undo a merge, we simply measure the layer of
ancilla qubits (vertices of the sublattice with dashed edges). In this
configuration, we can do X -type lattice surgery on SC (1)

g and SC (2)
g ,

Z-type lattice surgery on SC (1)
b and SC (2)

b , and Z-type lattice surgery
on SC (1)

r and SC (2)
r .

Figure 18 shows an example of Z-type lattice surgery on two
3D surface codes.

We note that we can simultaneously implement an X -type
merge on the SCc codes in different stacks, a Z-type merge
on the SCc′ codes in different stacks, and a Z-type merge on
the SCc′′ codes in different stacks. To do this, we prepare a
layer of qubits between c boundaries of the two stacks we
want to merge. At every vertex in the new layer we place
three qubits (one for each pair of codes), prepared in the
state |0〉c |+〉c′ |+〉c′′ . We then modify the stabilizer groups of
all three pairs of codes at once as discussed in the previous
paragraphs to merge the three pairs of codes simultaneously.
We can also invert this process to do a simultaneous split on
all three pairs of codes.

We illustrate 3D surface-code lattice surgery with an ex-
ample. Consider two d = 3 rectified cubic lattices placed one
above the other as shown in Fig. 18. We add a diamond layer
(see Sec. III A 1) of qubits between the two lattices (vertices
of the sublattice with dashed edges in Fig. 18). At each vertex
we add three qubits (one per code) in the state |+〉r |0〉g |+〉b.
Next, we merge the stabilizer groups of SC (1)

c and SC (2)
c , for

c ∈ {r, g, b}. This implements a Z-type merge on SC (1)
r and

SC (2)
r , an X -type merge on SC (1)

g and SC (2)
g , and a Z-type

merge on SC (1)
b and SC (2)

b . We now consider each pair of codes
with the same color separately and detail how their stabilizer
groups transform.

First of all, consider SC (1)
g and SC (2)

g . The code formed
by merging these two codes has nine additional X stabilizers
(the complete and incomplete octahedra with dashed edges
in Fig. 18). The merged code also has four additional Z
stabilizers (the rb faces parallel to the g boundaries in the
sublattice with dashed edges in Fig. 18). Some of the Z stabi-
lizers on the boundary are also modified (rb faces in Fig. 18
with dashed and continuous edges). In total, the merged code
has 12 additional physical qubits and 13 additional stabilizer
generators. The two original codes each had n = 51 physical
qubits and n − 1 stabilizer generators so the merged code has
2n + 12 physical qubits and 2(n − 1) + 13 stabilizer gener-
ators. Hence, the merged code has a single logical qubit, as
required. One can also verify that the product of the new X

stabilizers is X
(1)
g ⊗ X

(2)
g .

Next, we consider SC (1)
r and SC (2)

r . The code formed by
merging these two codes has no additional X stabilizers, but
some X stabilizers which were present before the merge are
modified (r cuboctahedra and rb faces on the b boundaries
with dashed and continuous edges in Fig. 18). The merged
code has 16 new Z stabilizers associated with the gb faces of
the new cuboctahedra (gb faces in the sublattice with dashed
edges in Fig. 18). In addition, there are eight new Z stabilizers
associated with edges on the r boundaries [blue (dark gray)
circular segments with dashed edges in Fig. 18]. However,
these new Z stabilizers are not all independent. In the merged
lattice, we have four additional complete cuboctahedra and a
single additional complete octahedron when compared with
the initial lattices. The stabilizers associated with the rg faces
of these polyhedra multiply to the identity, so we must remove
a stabilizer from the list of new stabilizer generators for each
new complete polyhedron. We also have two additional half
octahedra whose edges and faces have associated stabilizers
which multiply to the identity (see Fig. 9 for an example
of such a half octahedron). Therefore, we remove two more
stabilizers from the list of new stabilizer generators. Finally,
the stabilizers associated with the four edges of rb faces on
the r boundaries multiply to the identity, so we must remove
half of the new weight-two Z stabilizers from the list of
new stabilizer generators. The merged code, therefore, has 13
new stabilizer generators and 12 additional qubits. Hence, the
merged code encodes a single logical qubit, as required.

The details the Z-type lattice surgery on SC (1)
b and SC (2)

b

are the same as the details of Z-type lattice surgery on SC (1)
r

and SC (2)
r (just exchange r and b in the previous paragraph).

To verify that the lattice surgery procedures we have described
transform two surface codes into a single surface code for
any code distance, all we need to do repeat the analysis of
Sec. III A 1 for a slightly different lattice structure. We omit
this analysis here as the extension is simple. In Appendix E,
we show another possible arrangement of 3D stacks which
allows us to do X -type lattice surgery on SC (1)

r and SC (2)
r ,

Z-type lattice surgery on SC (1)
g and SC (2)

g , and Z-type lattice

surgery on SC (1)
b and SC (2)

b .

B. 2D-3D lattice surgery

We can do Z-type lattice surgery on a 2D surface code and
a 3D surface code using procedures which are very similar

012312-14

THREE-DIMENSIONAL SURFACE CODES: TRANSVERSAL … PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 19. Z-type lattice surgery on 3D and 2D surface codes
(sublattices with continuous edges). We associate X stabilizers with
b faces (dark gray) and Z stabilizers with r faces (medium gray) in
the 2D surface code. In the 3D stack we consider SCb [X stabilizers
associated with b cells (dark gray)]. The left and right boundaries
of the 2D surface code are smooth boundaries and the left and right
boundaries of the stack are r boundaries (smooth boundaries in SCb).
To implement a lattice surgery merge between the two codes we
measure two new Z stabilizers [r faces (medium gray) with dashed
edges], whose product is Z2D ⊗ Z3D. We also merge the weight-two
X stabilizer on the left boundary of the 2D code with the weight-three
X stabilizer associated with the bottom rb face (medium gray) on the
right boundary of the 3D code. This stabilizer is represented by the b
face (dark gray) with dashed edges in the figure. To undo the merge
operation, we return to measuring the premerge stabilizers.

to 2D surface-code lattice surgery. However, performing X -
type lattice surgery on a 2D surface code and a 3D surface
code is more complex. This is because the dimension of
the Z operators in 2D surface codes and 3D surface codes
is the same, whereas the dimension of the X operators is
not. Therefore, we only discuss Z-type lattice surgery in this
section. We start with a 3D surface-code stack and a 2D
surface-code sheet aligned such that the 2D sheet is in the
same plane as the bottom layer of the 3D stack (see Fig. 19).
To do a lattice surgery merge, we simply measure new Z
stabilizers whose product is Z2D ⊗ Z3D. The X stabilizers of
both codes at the join will also be modified. Figure 19 shows
an example Z-type merge of a 3D code and a 2D code. The
effect of the Z-type merge on the logical operators is more
interesting in the 2D-3D case than the 3D-3D case. The Z
operators of the original codes are valid Z operators of the
merged code. However, X operators of the merged code are
products of membrane operators in the 3D lattice and string
operators in the 2D lattice. The merged code is therefore an
example of a code with a logical operator which has 2D and
1D parts. We can implement a Z-type split by returning to
measuring the premerge stabilizers.

As we previously stated, we can use lattice surgery to
implement CNOT gates and to transfer qubits between dif-
ferent surface codes. Consider the initial state |ψ〉 |+〉, where
|ψ〉 = α |0〉 + β |1〉. Implementing a Z-type merge between
the two qubits followed by a Z-type split produces the state
α |00〉 + β |11〉. If we measure the first qubit in the X basis,
|ψ〉 is transferred to the second qubit (up to a Z correction).
The lattice surgery CNOT procedure is similar to the proce-
dure we have just described. Consider the state |ψ〉 |+〉 |φ〉.
To perform a CNOT with |ψ〉 as the control and |φ〉 as the
target we first do a Z-type merge of |ψ〉 and |+〉 followed
by a Z-type split. The second step is to do an X -type merge
of |φ〉 and |+〉 followed by an X -type split. There are also

some single-qubit corrections that may be necessary which
we have omitted. For the full details of this CNOT procedure,
see [28]. We can also use a chain of lattice surgery operations
to perform a multitarget CNOT gate as shown in [58].

We emphasize that the lattice surgery procedure we have
explained in this section is one of many code-deformation
procedures which we could use to transfer information from
a 3D surface code to a 2D surface code. For example, in
Appendix E, we give a different implementation of 2D-3D
surface-code lattice surgery. It is also possible to transfer
information using a “code-switching” deformation (in the
spirit of [59]), where we transform a 3D surface code into
a 2D surface code by measuring all but one layer of physical
qubits in the X basis. Finally, we note that the Z-type lattice
surgery operations we have described can also be used to do
Z-type lattice surgery between two 3D surface codes.

VII. 3D SURFACE-CODE ARCHITECTURES

In this section, we propose two universal quantum com-
puting architectures which use 3D surface codes. But first we
discuss decoding 3D surface codes.

A. Decoding 3D surface codes

Estimating the error thresholds of 3D surface codes is
beyond the scope of this article. Instead, we discuss possible
decoding strategies for 3D surface codes and reason about
the error thresholds we might expect. The 3D surface code
is interesting from a decoding point of view because of the
asymmetry between membranelike X errors and stringlike Z
errors. This asymmetry means that different decoding strate-
gies may be needed for X and Z errors.

We can upper bound the error thresholds of topological
codes by relating the codes to condensed-matter models [3].
The phase diagram of the condensed-matter model will then
give us an estimate of the optimal error threshold of the code.
Using this technique, the optimal error threshold of 2D surface
codes has been estimated to be ≈11% [60], for a stochastic
noise model where X and Z errors happen independently
with probability p and measurements are perfect. For the
3D surface code, the optimal error threshold for the same
noise model is ≈3.3%. We can break this error threshold
down further: for a noise model where Z (X) errors happen
with probability p and measurements are perfect, the error
threshold is pZ

th ≈ 3.3% [61] (pX
th ≈ 23.5% [62,63]).

The above error thresholds will not be achievable in prac-
tice due to measurement errors. For the 2D surface code,
simulations of the full syndrome extraction circuits indicate
an error threshold between 0.5% and 1.1% (see [7] and
references therein). To the best of our knowledge, no similar
simulation has been performed for 3D surface codes. How-
ever, we anticipate that the 3D surface-code error threshold
will be lower than the corresponding 2D surface-code error
threshold because of the higher dimensionality of the lattice
and the larger weight stabilizers in 3D surface codes.

The most popular 2D surface-code decoder is a minimum-
weight perfect-matching (MWPM) algorithm [4,64,65]. We
could use MWPM to decode Z errors in cubic surface codes
and tetrahedral-octahedral surface codes. Alternatively, we

012312-15

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

could use the recently proposed Union-Find decoder [66],
which has slightly worse performance than MWPM, but a
much faster runtime. There are a number of approaches we
could take to decoding membranelike X errors in 3D surface
codes. Duivenvoorden et al. estimated the X -error threshold of
3D cubic surface codes using an efficient renormalization de-
coder [67]. They found an X -error threshold of pX

th = (17.2 ±
1)% for an error model with perfect measurements. It would
be interesting to generalize the decoder of Duivenvoorden
et al. to noncubic surface codes such as tetrahedral-octahedral
surface codes. Another option for decoding membranelike X
errors in 3D surface codes is to use a generalization of Toom’s
rule as the decoding algorithm [3,68–70]. For such a decoder,
Kubica estimated an X -error threshold of pX

th ≈ 2% for 3D
surface codes with periodic boundaries (3D toric codes) [70].
This error threshold is for a noise model where X errors and
measurement errors both occur with probability p. In future
work, we intend to extend this result to 3D surface codes with
boundaries.

B. Hybrid 2D-3D surface-code architecture

In this section, we present a hybrid 2D-3D surface-code
architecture based on [28]. In our hybrid architecture, the
main component is a sheet of 2D surface-code patches. Lat-
tice surgery allows us to do CNOT gates between different
patches. We can also do Hadamard gates easily as explained
in [28]. We use 3D surface codes as CCZ state (|CCZ〉 =
CCZ |+ + +〉) factories in our hybrid architecture, replacing
the magic state distillation used in the original architecture.
We can fault tolerantly create CCZ states in a 3D surface-code
stack as long as we have a decoder with an error threshold. We
use Z-type lattice surgery to transfer CCZ states from a stack
of 3D surface codes into the sheet of 2D surface codes. There
is some subtlety involved in transferring three logical qubits
from a single 3D surface-code stack to a 2D surface-code
sheet, so we describe this procedure now. We consider a
3D surface-code stack which can interface with a single 2D
surface code. This means that we can only transfer encoded
states from one of the three 3D surface codes (say SCr) to
the 2D surface code. Other configurations are possible, but
we will concentrate on this most basic configuration. We refer
to the logical qubit encoded in SCc as the c qubit. Assume
that we have prepared CCZ state in the 3D surface-code stack.
We can transfer the r qubit to the 2D surface code easily
using Z-type lattice surgery (see Sec. VI B). Next, we want
to transfer the g qubit. We must transfer the state of the g qubit
in the stack to the r qubit first. However, we need two qubits
in the stack to be ancillas in order to do this [see Eq. (14)],
and only one is available. Instead, we transfer the state of the
g qubit to the r qubit, with a H gate applied [see Eq. (14)].
Next, we transfer this state to the 2D surface code where we
can undo the H gate. Finally, we transfer the state of the b
qubit to the r qubit (we now have enough ancillas) and transfer
this state to the 2D surface code.

Once we have an encoded CCZ state in our sheet of 2D
surface codes, we can implement a CCZ gate on any three
qubits using a state injection circuit and some SWAP gates.
Figure 20 shows a state injection circuit containing Pauli, H ,
and CNOT gates that uses one CCZ state to implement a

|0〉 H • • • • X |x〉
|0〉 H • • • X • |y〉
|0〉 H • • X • • (−1)xyz |z〉
|x〉 •
|y〉 •
|z〉 •

FIG. 20. A circuit that consumes one CCZ state (dashed box) to
implement a CCZ gate on the bottom three qubits. We note that Ht ×
CNOTct × Ht = CZ, where c and t refer to the control and target
qubits.

CCZ gate. We constructed this circuit using the methodology
described in [51]. To summarize, we have explained how to
implement the universal gate set {X, Z, H, CNOT, CCZ} in
our hybrid 2D-3D surface-code architecture.

C. 3D surface-code architecture

In this section, we present a quantum computing archi-
tecture where every qubit is encoded in a 3D surface code.
We consider a large rectified cubic lattice with 3D “patches,”
each containing three logical qubits. Each patch is a distance
d rectified cubic lattice adjacent to six identical patches.
We can do lattice surgery on adjacent patches as described
in Sec. VI A. We adopt a Euclidean coordinate system and
associate each of the axes with a particular color. For example,
we associate the x direction with r which implies that we
can do X -type lattice surgery on r qubits (qubits encoded in
SCr codes) in patches which are adjacent in the x direction.
Similarly, we can do X -type lattice surgery on g qubits (b
qubits) which are adjacent in the y direction (z direction). This
means that we can transfer a qubit from one patch to any of its
adjacent patches using X -type or Z-type lattice surgery.

In our architecture we use half of the patches in the lattice
as “data patches” and half as “ancilla patches.” Data patches
contain three logical data qubits and ancilla patches contain
three logical ancilla qubits. We can do CNOT gates between
any two qubits in data patches which are adjacent to the same
ancilla patch using lattice surgery. If the two data qubits have
different colors, then we need to use two logical qubits in the
ancilla patch during the procedure. For example, imagine we
want to do a CNOT between the r qubit (control) and g qubit
(target) in the same data patch. First of all, we do a Z-type
merge of the r qubit in the data patch and the r qubit in
an adjacent ancilla patch. We then undo this merge with a
Z-type split. Next, we transfer the state of the r qubit in the
ancilla patch to the g qubit in the same ancilla patch, using the
procedure in Eq. (14). The next step is to do an X -type merge
of the g qubits in the data patch and the ancilla patch. Finally,
we undo this merge with an X -type split and apply some Pauli
corrections. The procedure we have just described implements
a CNOT gate between the r qubit and g qubit in the same data
patch.

CNOT gates allow us to swap any two data qubits in data
patches which are adjacent to the same ancilla patch. As
we have previously shown, we can transversally implement

012312-16

THREE-DIMENSIONAL SURFACE CODES: TRANSVERSAL … PHYSICAL REVIEW A 100, 012312 (2019)

CZ and CCZ in a single data patch. Finally, we can do a
H gate on a single qubit in a data patch by the following
method. We first transfer the qubit to an adjacent ancilla patch
using lattice surgery. Next, we do a single qubit H using
the procedure in Eq. (14) before transferring the qubit back
to its original data patch. In the architecture we have just
described we can swap arbitrary data qubits and implement
a universal gate set in each data patch. CCZ gates can be
performed in parallel on all data qubits, CZ gates can be
performed in parallel on two thirds of the data qubits, and H
gates can be performed in parallel on a third of the data qubits.
This architecture requires no magic state distillation or state
injection.

VIII. DISCUSSION

In this article, we introduced the rectified picture of 3D
surface codes. We used the rectified picture to analyze stacks
of three 3D surface codes, showing that CCZ is transversal in
these codes. In addition, we detailed 3D surface-code archi-
tectures which allow us to do universal quantum computing
without magic state distillation.

As we mentioned in Sec. I, the large resource cost of
magic state distillation has motivated research into alternative
implementations of non-Clifford gates in topological codes.
To reason about the resource scaling of different architectures,
we use a space-time overhead metric. Roughly speaking, an
architecture which requires n physical qubits and d rounds of
syndrome extraction per operation has a space-time overhead
of nd . 2D surface-code architectures and 3D gauge color-
code architectures have a similar space-time overhead scaling.
Distance d 2D surface codes have O(d2) physical qubits and
require O(d) rounds of syndrome extraction to cope with
measurement errors. Distance d 3D gauge color codes have
O(d3) physical qubits but only require O(1) rounds of syn-
drome extraction. The structure of the error syndrome gives us
information which we can use to diagnose measurement errors
immediately. That is, 3D gauge color codes can be decoded in
a single-shot fashion [17,18]. If we want to assess the resource
scaling of our 3D surface-code architectures compared with
magic state distillation architectures, we need to understand
3D surface-code decoding in more detail. A distance d 3D
surface code requires O(d3) physical qubits but an unknown
number of rounds of syndrome extraction. Membranelike X
errors in 3D surface codes without boundaries can be decoded
using a single-shot cellular automaton decoder [70,70]. How-
ever, it seems unlikely that we will be able to use a single-shot
decoder to decode stringlike Z errors in 3D surface codes.
Nevertheless, due to the links between surface codes and color
codes, it may be possible to construct a “3D gauge surface
code” where single-shot error correction is possible for both
X and Z errors.

It will also be important to estimate the numerical value
of the error threshold for both cubic surface codes and
tetrahedral-octahedral surface codes. This is because the re-
sources required in a particular architecture depend strongly
on the value of the error threshold. The error threshold of
the gauge color code has been estimated to be ≈0.31% [19],
for an error model where qubit errors and measurement errors
occur with the same probability. We would expect to observe

a smaller error threshold if we were to simulate the full
syndrome extraction circuits. Therefore, even with the similar
resource scaling, we anticipate that 3D gauge color-code
architectures would require more physical qubits than 2D
surface-code architectures which use magic state distillation
(with current qubit technologies). However, we should note
that much more work has gone into optimizing 2D surface-
code architectures than gauge color-code architectures, so an
error threshold of pth ≈ 0.31% for gauge color codes may be
pessimistic. In future work, we plan to investigate decoding
3D surface codes on both cubic and tetrahedral-octahedral
lattices. Once we have estimates of the error thresholds we
will be able to definitively compare the resources required
by 3D surface-code architectures and magic state distillation
architectures. It is also interesting to consider an alternative ar-
chitecture where 3D surface codes and magic state distillation
are combined. For example, we could use 3D surface codes to
prepare reasonably high-fidelity CCZ states which we would
then feed in to a magic state distillation protocol (e.g., [44]).
This would remove the need for multiple rounds of magic
state distillation and could therefore lead to reduced resource
overheads in some scenarios. There are also alternative 3D
surface-code architectures we could consider. One of the most
popular approaches to 2D surface-code quantum computing is
to encode logical qubits as pairs of defects (stabilizers which
have been turned off) and braid defects to perform logical
gates [4]. It should be possible to generalize this approach to
3D surface codes.

It seems likely that both the rectified picture and code
concatenation transformations could be generalized to higher-
dimensional (D � 4) surface codes. These generalizations
could give us some insight into the structure and transversal
gates of higher-dimensional surface codes. Most importantly,
the question of whether magic state distillation or transversal
gates in 3D topological codes is the best method for promoting
2D topological code architectures to universality remains
open. We hope that our work contributes toward answering
this question.

ACKNOWLEDGMENTS

The authors would like to thank H. Anwar, E. Campbell, A.
Kubica, and P. Webster for helpful discussions. We thank the
anonymous referees for helpful comments, and for pointing
out a simpler proof of the transversality of CZ in stacked
3D surface codes. M.V. is supported by the Engineering and
Physical Sciences Research Council (EPSRC) (Grant No.
EP/L015242/1).

APPENDIX A: EXPLICIT CONSTRUCTION OF THE d = 2
3D SURFACE-CODE STACK

Here, we detail list the stabilizer generators and logical
operators of three surface codes in the d = 2 rectified cubic
stack. Figure 21 shows the d = 2 rectified cubic lattice. Each
code in the stack is a [[12,1,2]] 3D surface code. We label the
physical qubits in each code as shown in Fig. 21. Pi denotes a
Pauli operator acting on qubit i.

012312-17

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 21. The d = 2 rectified cubic lattice (left) and the SCg

primal lattice in the Kitaev picture (right), with qubit labels. In the
Kitaev picture, qubits are placed on primal lattice edges, X stabilizers
are associated with primal lattice vertices, and Z stabilizers are
associated with primal lattice faces. SCr and SCb also have physical
qubits at the same locations as the labeled SCg physical qubits.
Therefore, we use the same label to refer to qubits in different codes
that occupy the same position.

The stabilizer generators of SCr are

X5X6X7X8X9X10X11X12,

X1X3X5, X2X4X7,

Z6Z9, Z6Z10,

Z8Z11, Z8Z12,

Z1Z5Z6, Z2Z6Z7,

Z4Z7Z8, Z3Z5Z8.

(A1)

Example SCr logical operators are Zr = Z1Z3 and X r =
X3X4X8X11X12.

The stabilizer generators of SCg are

X1X5X6X9, X2X6X7X10,

X3X5X8X11, X4X7X8X12,

Z1Z3Z5, Z1Z2Z6,

Z2Z4Z7, Z3Z4Z8,

Z5Z9Z11, Z6Z9Z10,

Z7Z10Z12.

(A2)

Example SCg logical operators are Zg = Z1Z9 and X g =
X1X2X3X4.

The stabilizer generators of SCb are

X1X2X3X4X5X6X7X8,

X6X9X10, X8X11X12,

Z1Z5, Z3Z5,

Z2Z7, Z4Z7,

Z5Z8Z11, Z5Z6Z9,

Z6Z7Z10, Z7Z8Z12.

(A3)

Example SCb logical operators are Zb = Z1Z2 and X b =
X1X3X5X9X11.

APPENDIX B: ALTERNATIVE RECTIFIED
CUBIC LATTICE

We can construct an alternative family of stacked 3D
surface codes by choosing lattices with different boundaries.
The lattices in this family have the global structure of paral-
lelepipeds so we refer to them as parallelepiped lattices. Par-
allelepiped lattices have two boundaries which slice layers of
cuboctahedra in half, like the lattices we discussed in the main
text. However, parallelepiped lattices do not have boundaries

FIG. 22. A lattice from an alternative family of rectified cubic
lattices which can support three 3D surface codes. The top and bot-
tom boundaries are the same type as the top and bottom boundaries
in Fig. 8. The right boundary slices r cuboctahedra (medium gray) in
half and leaves b cuboctahedra (dark gray) intact. The left boundary
slices b cuboctahedra (dark gray) in half and leaves r cuboctahedra
(medium gray) intact.

which slice between layers of cuboctahedra. Instead, they
have boundaries which slice one color of cuboctahedra in half
and leave the other color of cuboctahedra intact. Figure 22
shows a d = 3 parallelepiped lattice. We define three surface
codes on parallelepiped lattices by associating X stabilizers
with c cells and Z stabilizers with c′c′′ faces. We must also
add some stabilizers on the boundaries to ensure that the
boundaries have the correct properties [red (medium gray) and
blue (dark gray) circular segments in Fig. 22]. The family of
surface codes defined on parallelepiped lattices has the same
distance as the family of codes we discussed in the main text.
However, the parallelepiped lattices have more physical qubits
per logical qubit and are more complex to tessellate.

APPENDIX C: PROOF OF LEMMA 2

Lemma 2 was required in the proof of the transversality of
CCZ for stacked 3D surface codes. We restate it here:

Lemma 2. Given a finite set of k binary vectors {aj} with
the same length, the parity of their sum is equal to the sum of
their parities.

Proof. An equivalent statement of Lemma 2 is

k∑
j=1

|a j | −
∣∣∣∣∣∣

k∑
j=1

a j

∣∣∣∣∣∣ = 2t, (C1)

where t is a positive integer and |aj | denotes the Hamming
weight of a j . We prove Lemma 2 by induction. Consider the
k = 2 case. We have

|a1 + a2| = |a1| + |a2| − 2O(a1, a2), (C2)

where O(a, b) is the overlap of a and b, i.e., the number of
positions where both a and b are equal to one. Rearranging,
we have

|a1| + |a2| − |a1 + a2| = 2O(a1, a2). (C3)

Now assume Eq. (C1) is valid for the k = n case. Consider the

012312-18

THREE-DIMENSIONAL SURFACE CODES: TRANSVERSAL … PHYSICAL REVIEW A 100, 012312 (2019)

FIG. 23. This configuration of lattices allows us to do X -type
lattice surgery on SC (1)

r and SC (2)
r , Z-type lattice surgery on SC (1)

g

and SC (2)
g , and Z-type lattice surgery on SC (1)

b and SC (2)
b . Six ancilla

qubits are required to do the lattice surgery merges for each pair
of codes. The additional (and modified) stabilizers present in the
merged codes are associated with the elements of the sublattice with
dashed edges.

k = n + 1 case:∣∣∣∣∣∣
n+1∑
j=1

a j

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

a j

∣∣∣∣∣∣ + |an+1| − 2O

⎛
⎝ n∑

j=1

a j, an+1

⎞
⎠

=
n∑

j=1

|a j | − 2t + |an+1| − 2O

⎛
⎝ n∑

j=1

a j, an+1

⎞
⎠

=
n+1∑
j=1

|a j | − 2

⎡
⎣t + O

⎛
⎝ n∑

j=1

a j, an+1

⎞
⎠

⎤
⎦. (C4)

�

APPENDIX D: TRANSVERSAL CZ IN 2D SURFACE CODES

In this Appendix we show that CZ is transversal for 2D
surface codes. Consider a 2D surface code lattice in the rotated
picture with faces colored r and b (e.g., Fig. 1). We define a
stack of two 2D surface codes on the same lattice. Similarly
to the rectified picture of 3D surface codes, we place two
physical qubits at each vertex of the lattice (one per code).
In the first surface code SC1, we associate X stabilizers with r
faces and Z stabilizers with b faces. In the second surface code
SC2, we associate X stabilizers with b faces and Z stabilizers
with r faces. To show that CZ is transversal for this stack of
codes, we need to find a transversal operator that implements
the following mapping at the logical level:

I1I2
CZ−→ I1I2,

Zj
CZ−→ Zj,

Xj
CZ−→ XjZk j = k

(D1)

where j, k ∈ {1, 2}.

FIG. 24. Z-type lattice surgery on a 3D surface code and a 2D
surface code (sublattices with continuous edges). We consider SCb

in the stack and we associate X stabilizers with b faces (dark gray)
and Z stabilizers with r faces (medium gray) in the 2D surface code.
Three ancilla qubits are required to do the lattice surgery merge.
Four additional Z stabilizers are present in the merged code [r faces
(medium gray) with dashed edges] and two X stabilizers from the
original codes are modified in the merged code [b faces (dark gray)
with dashed edges].

Consider the action of the transversal operator CZ =
CZ⊗n, where n is the number of vertices in the lattice and
the CZ gates act on the pairs of qubits at each vertex. Our
CZ operator will leave logical Z j operators invariant as these
operators consist entirely of Z operators. CZ will map logical
X j operators to X jZk because X j operators consist entirely
of X operators and X j operators in one code have the same
support as Zk operators in the other code. CZ has no effect
on the Z stabilizers of either code but it maps X stabilizers
in one code to a tensor product of the original X stabilizer
and a Z stabilizer in the other code. To see this, consider
an X stabilizer associated with a r face fr in SC1. Under
the action of CZ, this operator is mapped the tensor product
of itself and a product of Z operators acting on the SC2

qubits at the vertices of fr . This is nothing more than a
SC2 Z stabilizer. Therefore, CZ maps the logical identity to
the logical identity. We have shown that CZ = CZ⊗n acts as a
logical CZ, implementing the mapping described in Eq. (D1)
at the logical level.

APPENDIX E: ADDITIONAL LATTICE
SURGERY EXAMPLES

In this Appendix, we give further examples of 3D surface-
code lattice surgery. First, we consider two 3D surface-code
stacks, which we denote as SC (i)

c , where c ∈ {r, g, b} denotes
the color of the X stabilizers and i ∈ {1, 2} indexes the stack.
Figure 23 shows a configuration which allows us to do X -
type lattice surgery on SC (1)

r and SC (2)
r . With this lattice

configuration we can also do Z-type lattice surgery on SC (1)
b

and SC (2)
b , and Z-type lattice surgery on SC (1)

g and SC (2)
g .

Figure 24 shows a configuration of lattices which allows us to
do lattice surgery on a 3D surface code and a 2D surface code.
Unlike the lattice surgery example shown in Fig. 19, this con-
figuration requires ancilla qubits and hence is less efficient.

[1] A. Y. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
[2] S. B. Bravyi and A. Y. Kitaev, arXiv:quant-ph/9811052.
[3] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys.

43, 4452 (2002).

[4] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Phys. Rev. A 86, 032324 (2012).

[5] A. G. Fowler, A. M. Stephens, and P. Groszkowski, Phys. Rev.
A 80, 052312 (2009).

012312-19

https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
http://arxiv.org/abs/arXiv:quant-ph/9811052
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.80.052312

MICHAEL VASMER AND DAN E. BROWNE PHYSICAL REVIEW A 100, 012312 (2019)

[6] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504
(2007).

[7] A. M. Stephens, Phys. Rev. A 89, 022321 (2014).
[8] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey,

T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P.
Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov et al.,
Nature (London) 508, 500 (2014).

[9] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni,
H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas,
Phys. Rev. Lett. 113, 220501 (2014).

[10] S. Vijay, T. H. Hsieh, and L. Fu, Phys. Rev. X 5, 041038 (2015).
[11] C. D. Hill, E. Peretz, S. J. Hile, M. G. House, M. Fuechsle,

S. Rogge, M. Y. Simmons, and L. C. Hollenberg, Sci. Adv. 1,
e1500707 (2015).

[12] J. O’Gorman, N. H. Nickerson, P. Ross, J. J. Morton, and S. C.
Benjamin, npj Quantum Inf. 2, 15019 (2016).

[13] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt,
C. Wunderlich, and W. K. Hensinger, Sci. Adv. 3, e1601540
(2017).

[14] P. W. Shor, SIAM J. Comput. 26, 1484 (1997).
[15] J. O’Gorman and E. T. Campbell, Phys. Rev. A 95, 032338

(2017).
[16] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
[17] H. Bombín, New J. Phys. 17, 083002 (2015).
[18] H. Bombín, Phys. Rev. X 5, 031043 (2015).
[19] B. J. Brown, N. H. Nickerson, and D. E. Browne, Nat. Commun.

7, 12302 (2016).
[20] C. Castelnovo and C. Chamon, Phys. Rev. B 78, 155120 (2008).
[21] A. Kubica, F. Pastawski, and B. Yoshida, New J. Phys. 17,

083026 (2015).
[22] A. B. Aloshious and P. K. Sarvepalli, Phys. Rev. A 98, 012302

(2018).
[23] H. Bombín and M. A. Martin-Delgado, Phys. Rev. Lett. 98,

160502 (2007).
[24] A. Kubica and M. E. Beverland, Phys. Rev. A 91, 032330

(2015).
[25] S. Bravyi and R. König, Phys. Rev. Lett. 110, 170503 (2013).
[26] P. Webster and S. D. Bartlett, Phys. Rev. A 97, 012330 (2018).
[27] B. Criger and B. Terhal, Quantum Inf. Comput. 16, 1261

(2016).
[28] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, New J.

Phys. 14, 123011 (2012).
[29] S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310(R) (2005).
[30] K. Fujii, T. Yamamoto, M. Koashi, and N. Imoto,

arXiv:1202.6588.
[31] N. H. Nickerson, Y. Li, and S. C. Benjamin, Nat. Commun. 4,

1756 (2013).
[32] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P.

Maunz, L.-M. Duan, and J. Kim, Phys. Rev. A 89, 022317
(2014).

[33] N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, Phys.
Rev. X 4, 041041 (2014).

[34] D. Gottesman, Stabilizer codes and quantum error correction,
Ph.D. thesis, Caltech, 1997.

[35] X.-G. Wen, Phys. Rev. Lett. 90, 016803 (2003).

[36] H. Bombín and M. A. Martin-Delgado, Phys. Rev. A 76, 012305
(2007).

[37] J. T. Anderson, Ann. Phys. (NY) 330, 1 (2013).
[38] Y. Tomita and K. M. Svore, Phys. Rev. A 90, 062320

(2014).
[39] H. S. M. Coxeter, Regular Polytopes, 3rd ed. (Dover, New York,

1973).
[40] A. Kubica (private communication).
[41] D. Bacon, Phys. Rev. A 73, 012340 (2006).
[42] D. Poulin, Phys. Rev. Lett. 95, 230504 (2005).
[43] M. Li, D. Miller, M. Newman, Y. Wu, and K. R. Brown, Phys.

Rev. X 9, 021041 (2019).
[44] A. Paetznick and B. W. Reichardt, Phys. Rev. Lett. 111, 090505

(2013).
[45] H. Bombín and M. A. Martin-Delgado, Phys. Rev. Lett. 97,

180501 (2006).
[46] H. Bombín, G. Duclos-Cianci, and D. Poulin, New J. Phys. 14,

073048 (2012).
[47] N. Delfosse, Phys. Rev. A 89, 012317 (2014).
[48] H. Bombín, Commun. Math. Phys. 327, 387 (2014).
[49] A. B. Aloshious, A. N. Bhagoji, and P. K. Sarvepalli,

arXiv:1804.00866.
[50] Y. Shi, Quantum Inf. Comput. 3, 84 (2003).
[51] X. Zhou, D. W. Leung, and I. L. Chuang, Phys. Rev. A 62,

052316 (2000).
[52] T. J. Yoder, R. Takagi, and I. L. Chuang, Phys. Rev. X 6, 031039

(2016).
[53] D. Litinski and F. v. Oppen, Quantum 2, 62 (2018).
[54] A. G. Fowler and C. Gidney, arXiv:1808.06709.
[55] D. Litinski, Quantum 3, 128 (2019).
[56] D. Herr, A. Paler, S. J. Devitt, and F. Nori, Quantum Sci.

Technol. 3, 035011 (2018).
[57] R. Raussendorf, J. Harrington, and K. Goyal, Ann. Phys. (NY)

321, 2242 (2006).
[58] D. Herr, F. Nori, and S. J. Devitt, New J. Phys. 19, 013034

(2017).
[59] H. Bombín, New J. Phys. 18, 043038 (2016).
[60] A. Honecker, M. Picco, and P. Pujol, Phys. Rev. Lett. 87,

047201 (2001).
[61] T. Ohno, G. Arakawa, I. Ichinose, and T. Matsui, Nucl. Phys. B

697, 462 (2004).
[62] Y. Ozeki and N. Ito, J. Phys. A: Math. Gen. 31, 5451

(1998).
[63] M. Hasenbusch, F. Parisen Toldin, A. Pelissetto, and E. Vicari,

Phys. Rev. B 76, 184202 (2007).
[64] J. Edmonds, Can. J. Math. 17, 449 (1965).
[65] V. Kolmogorov, Math. Program. Compuation 1, 43 (2009).
[66] N. Delfosse and N. H. Nickerson, arXiv:1709.06218.
[67] K. Duivenvoorden, N. P. Breuckmann, and B. M. Terhal,

IEEE Trans Inf. Theory 65, 2545 (2018).
[68] A. L. Toom, Adv. Prob. 6, 549 (1980).
[69] A. Kubica and J. Preskill, arXiv:1809.10145.
[70] A. Kubica, The ABCs of the color code: A study of topological

quantum codes as toy models for fault-tolerant quantum com-
putation and quantum phases of matter, Ph.D. thesis, Caltech,
2018.

012312-20

https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevA.89.022321
https://doi.org/10.1103/PhysRevA.89.022321
https://doi.org/10.1103/PhysRevA.89.022321
https://doi.org/10.1103/PhysRevA.89.022321
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevLett.113.220501
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1126/sciadv.1500707
https://doi.org/10.1126/sciadv.1500707
https://doi.org/10.1126/sciadv.1500707
https://doi.org/10.1126/sciadv.1500707
https://doi.org/10.1038/npjqi.2015.19
https://doi.org/10.1038/npjqi.2015.19
https://doi.org/10.1038/npjqi.2015.19
https://doi.org/10.1038/npjqi.2015.19
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1103/PhysRevA.95.032338
https://doi.org/10.1103/PhysRevA.95.032338
https://doi.org/10.1103/PhysRevA.95.032338
https://doi.org/10.1103/PhysRevA.95.032338
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1038/ncomms12302
https://doi.org/10.1038/ncomms12302
https://doi.org/10.1038/ncomms12302
https://doi.org/10.1038/ncomms12302
https://doi.org/10.1103/PhysRevB.78.155120
https://doi.org/10.1103/PhysRevB.78.155120
https://doi.org/10.1103/PhysRevB.78.155120
https://doi.org/10.1103/PhysRevB.78.155120
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1103/PhysRevA.98.012302
https://doi.org/10.1103/PhysRevA.98.012302
https://doi.org/10.1103/PhysRevA.98.012302
https://doi.org/10.1103/PhysRevA.98.012302
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevA.97.012330
https://doi.org/10.1103/PhysRevA.97.012330
https://doi.org/10.1103/PhysRevA.97.012330
https://doi.org/10.1103/PhysRevA.97.012330
https://doi.org/10.26421/QIC16.15-16
https://doi.org/10.26421/QIC16.15-16
https://doi.org/10.26421/QIC16.15-16
https://doi.org/10.26421/QIC16.15-16
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/PhysRevA.71.060310
https://doi.org/10.1103/PhysRevA.71.060310
https://doi.org/10.1103/PhysRevA.71.060310
https://doi.org/10.1103/PhysRevA.71.060310
http://arxiv.org/abs/arXiv:1202.6588
https://doi.org/10.1038/ncomms2773
https://doi.org/10.1038/ncomms2773
https://doi.org/10.1038/ncomms2773
https://doi.org/10.1038/ncomms2773
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevX.4.041041
https://doi.org/10.1103/PhysRevX.4.041041
https://doi.org/10.1103/PhysRevX.4.041041
https://doi.org/10.1103/PhysRevX.4.041041
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1103/PhysRevA.76.012305
https://doi.org/10.1016/j.aop.2012.11.007
https://doi.org/10.1016/j.aop.2012.11.007
https://doi.org/10.1016/j.aop.2012.11.007
https://doi.org/10.1016/j.aop.2012.11.007
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevX.9.021041
https://doi.org/10.1103/PhysRevX.9.021041
https://doi.org/10.1103/PhysRevX.9.021041
https://doi.org/10.1103/PhysRevX.9.021041
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1088/1367-2630/14/7/073048
https://doi.org/10.1088/1367-2630/14/7/073048
https://doi.org/10.1088/1367-2630/14/7/073048
https://doi.org/10.1088/1367-2630/14/7/073048
https://doi.org/10.1103/PhysRevA.89.012317
https://doi.org/10.1103/PhysRevA.89.012317
https://doi.org/10.1103/PhysRevA.89.012317
https://doi.org/10.1103/PhysRevA.89.012317
https://doi.org/10.1007/s00220-014-1893-4
https://doi.org/10.1007/s00220-014-1893-4
https://doi.org/10.1007/s00220-014-1893-4
https://doi.org/10.1007/s00220-014-1893-4
http://arxiv.org/abs/arXiv:1804.00866
https://doi.org/http://dl.acm.org/citation.cfm?id=2011508.2011515
https://doi.org/http://dl.acm.org/citation.cfm?id=2011508.2011515
https://doi.org/http://dl.acm.org/citation.cfm?id=2011508.2011515
https://doi.org/http://dl.acm.org/citation.cfm?id=2011508.2011515
https://doi.org/10.1103/PhysRevA.62.052316
https://doi.org/10.1103/PhysRevA.62.052316
https://doi.org/10.1103/PhysRevA.62.052316
https://doi.org/10.1103/PhysRevA.62.052316
https://doi.org/10.1103/PhysRevX.6.031039
https://doi.org/10.1103/PhysRevX.6.031039
https://doi.org/10.1103/PhysRevX.6.031039
https://doi.org/10.1103/PhysRevX.6.031039
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.22331/q-2018-05-04-62
http://arxiv.org/abs/arXiv:1808.06709
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.1088/2058-9565/aac450
https://doi.org/10.1088/2058-9565/aac450
https://doi.org/10.1088/2058-9565/aac450
https://doi.org/10.1088/2058-9565/aac450
https://doi.org/10.1016/j.aop.2006.01.012
https://doi.org/10.1016/j.aop.2006.01.012
https://doi.org/10.1016/j.aop.2006.01.012
https://doi.org/10.1016/j.aop.2006.01.012
https://doi.org/10.1088/1367-2630/aa5709
https://doi.org/10.1088/1367-2630/aa5709
https://doi.org/10.1088/1367-2630/aa5709
https://doi.org/10.1088/1367-2630/aa5709
https://doi.org/10.1088/1367-2630/18/4/043038
https://doi.org/10.1088/1367-2630/18/4/043038
https://doi.org/10.1088/1367-2630/18/4/043038
https://doi.org/10.1088/1367-2630/18/4/043038
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1103/PhysRevLett.87.047201
https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1088/0305-4470/31/24/007
https://doi.org/10.1088/0305-4470/31/24/007
https://doi.org/10.1088/0305-4470/31/24/007
https://doi.org/10.1088/0305-4470/31/24/007
https://doi.org/10.1103/PhysRevB.76.184202
https://doi.org/10.1103/PhysRevB.76.184202
https://doi.org/10.1103/PhysRevB.76.184202
https://doi.org/10.1103/PhysRevB.76.184202
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1007/s12532-009-0002-8
http://arxiv.org/abs/arXiv:1709.06218
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.1109/TIT.2018.2879937
http://arxiv.org/abs/arXiv:1809.10145

