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ABSTRACT 

 
Soil liquefaction has caused substantial infrastructure damage in recent earthquakes. During the 2010-2011 Canterbury 

Earthquake Sequence (CES), in New Zealand, liquefaction-induced damage to buried cables resulted in service 

interruption of the telecommunication network. This paper is part of a broader study on the seismic risk of buried 

infrastructure. It aims to compare numerical and empirical prediction methodologies with the observation maps produced 

in the aftermath of the Christchurch event. Starting from a description of the New Zealand telecommunication 

infrastructure and pipelines, the research first explores the vast amount of data and in-situ geotechnical inspections 

collected after the CES. These data are employed to test several liquefaction-triggering models available in the literature 

and results are provided through an exploratory spatial analysis. Then, a numerical simulation of a soil profile with and 

without pipelines from the suburb of Avondale, which was one of the locations most impacted by liquefaction damages, 

is carried out adopting the Byrne’s formulation for the classic Martin and Finn’s constitutive model in a full dynamic 

analysis in FLAC-2D. The obtained results from the numerical model are finally cross-checked with the empirical 

analyses, the existing liquefaction investigation maps, and field observations collected in the aftermath of the event.  

Keywords: telecommunications, liquefaction, numerical analyses, buried cables.  

 

 

1. INTRODUCTION 

 

Telecommunications are one of the essential services provided within the utility systems. When an issue arises, 

or in the event of a full-blown outage, they can cause much disruption. Their operational robustness becomes 

even more critical in a post-disaster scenario when these services are adopted for civil protection and 

emergency plans, as well as the restoration of other critical infrastructures.  

 

Despite the relevance of loss of functionality of telecommunication networks, few attempts of risk assessment 

exist in the earthquake engineering community (e.g., Leelardcharoen et al., 2011; Esposito et al., 2018) 

compared to other utility distribution systems such as the electricity, water, and gas (i.e. Kongar et al., 2017; 
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Liu et al., 2015; Esposito et al., 2015). These studies aim to broaden the methodology initially developed for 

buildings, or point-like structures, to spatially distributed networks. In this regard, several steps are necessary 

ranging from a classification of the ‘system’- stock, description of damages and performances, a definition of 

appropriate hazard parameters to the generation of hazard scenarios and estimation of functional impacts with 

correlated direct economic losses (Giovinazzi et al., 2014). Nonetheless, each of these steps presents scientific 

and practical challenges when dealing with distributed infrastructures systems.     

 

In particular, a critical issue in the seismic risk assessment for spatially distributed networks is the definition 

of hazard parameters to evaluate the damage on each element. Since the telecom infrastructure is based mainly 

on buried cables, this system is exposed to a high likelihood of sustaining physical damage caused by both 

seismic wave propagations and permanent ground deformations (PGD). Indeed, as the network covers a large 

geographical area, telecommunication cables and pipelines can be subjected to a variety of geotechnical 

hazards; irreversible ground surface settlements, landslides, liquefaction and associated lateral spreading could 

permanently buckle pipes, and thus endanger the functionality of the entire system (O'Rourke et al., 1999).  

 

The current paper is part of a broader research project which attempts to analyse the seismic hazard on 

telecommunication networks. Specifically, this study seeks to investigate a well-known state-of-the-art 

numerical approach to assess the liquefaction-induced damage on telecommunication piping which could 

potentially be applied for urban scale analysis. The results are then compared with state-of-practice liquefaction 

triggering models and observations. Both empirical and numerical methods are adopted, with geotechnical 

data gathered from the New Zealand Geotechnical Database (NZGD), an online repository of information 

developed after the 2010-2011 Canterbury Earthquake Sequence (CES). 

 

In the following, Christchurch and its Mw=6.2 earthquake, the event within the CES which caused the most 

severe and widespread damage to the telecommunication system, are taken as key-study. In particular, the 

study focusses on the suburb of Avondale which was deeply damaged and declared by the Government as 

residential ‘red zone’ due to soil liquefaction. The remaining part of the paper illustrates the data and 

methodology adopted for the analyses, including a brief description of the New Zealand telecommunication 

network and liquefaction observations collected after the event. The paper concludes with a summary of the 

results obtained from several empirical prediction models and comparison with numerical simulations carried 

out using the Bryne’s formulation fo the Martin and Finn’s constitutive model implemented in FLAC-2D 

(Itasca Consulting Group, 2011) of an Avondale’s soil profile with and without a telecommunication pipe.  

 

2. DATA  

 

This section gives a brief overview of the data used for the subsequent analyses. First, a concise explanation 

of the structure of a telecommunication network and technical specification of its pipelines are provided. This 

is followed by a report about the 2011 Christchurch event with an indication of where ground motion data are 

gathered. Then, it continues with a review of the liquefaction susceptibility of the area, and observations’ data 

collected after the event. The section concludes with a description of geotechnical investigations available and 

specifications about the chosen Avondale site.    

 

2.1 Telecom infrastructure and pipeline details 
 

As far as the telecommunication infrastructure is concerned, networks can be classified into wireless service 

or landline and broadband data service (Giovinazzi et al., 2017). These two networks are interconnected by a 

complex hierarchical structure, which can be schematised as point-like components (e.g. major and local 

exchanges, roadside cabinets, access pits, poles, and cellular towers) joined together by distributed links (i.e. 

buried or overhead lines of either fibre optics or copper cables – Esposito et al., 2018). 

 

In the particular case of New Zealand, the distributed elements are generally buried fibre optics. The copper 

cables are still in place but have been progressively replaced due to the “New Zealand government ultra-fast 

fibre broadband network programme” (Giovinazzi et al., 2017). However, as the system covers a large 

geographical area and cables tend to be buried, this network is more sensitive to permanent ground 

deformations induced by liquefaction and lateral spreading (Esposito et al., 2018). 

 



 

 

Regarding the distributed networks installation, several construction techniques and piping materials have been 

employed over the years. Cables are usually pulled into mini-ducts which are in turn wrapped by another 

protective tube. Successively, this pipe can be organised into formations of multiple pipes running together 

(i.e. groups of 4, 6, 8 or even more), which are laid into trenches and covered with backfill material or directly 

placed into the ground with a no-dig procedure. Material and size of the pipes may vary as well, ranging from 

earthenware, asbestos through the newer (1970’s and later) plastic ducts. In addition to the pipe material, 

several other design factors may have a repercussion on pipe damage during earthquakes, pipe diameter, year 

laid, pipe type (e.g., primary or trunk), depth laid, and trench backfill type. Thus, for the current case-study, a 

single High-Density Polythylene (HDPE) pipe is assumed with a diameter of either of 10 cm or 15 cm, which 

are explicitly designed for wrapping mini-ducts of fibre-optic cables and adopted for no-dig excavations (see 

Table 1 for technical specifications).   

 

Table 1. Telecommunication ducts: HDPE pipe material properties and dimensions. 

Pipe Properties HDPE -10 cm HDPE -15 cm 

Geometrical 

Configuration 

Diameter 𝑚𝑚 100 150 

Area 𝑚2 9.142-4 1.385e-3 

Moment of Inertia 𝑚4 1.076e-6 3.744e-6 

Thickness 𝑚𝑚 3 3 

Length 𝑚 300 300 

Material 

properties 

Density 𝐾𝑔/𝑚3 950- 965 950-965 

Tensile Modulus  

(short term) 𝐸𝑠 
𝑀𝑃𝑎 1000 1000 

Tensile Modulus 

 (long term) 𝐸𝑙  
𝑀𝑃𝑎 160 160 

Tensile stress at yield 𝑁/𝑚𝑚2 21 21 

Tensile strain at yield 𝑁/𝑚𝑚2 12 12 

Poisson’s Ratio υ - 0.39 0.39 

 

2.2 The Christchurch event and ground motion information 
 

Among the CES, the 22nd February Christchurch Event had the most significant impact on the performance of 

the telecommunication infrastructure due to liquefaction manifestations and associated ground deformations 

(Giovinazzi et al., 2011, Fenwick et al., 2012). The network performed relatively well compared to other 

infrastructure lifelines, but there were lots of cable faults especially in the liquefied areas (Tang et al., 2014). 

For instance, the Telecom NZ investigations report (2011) describes utility holes partially floated out of the 

ground or filled with water in areas where there was severe liquefaction.  

 

The Mw=6.2 earthquake itself was induced by a strike-slip rupture on a formerly unrecognised fault and was 

centred 10 km to southeast from the city centre at 5-6 km depth. Due to its shallow depth and proximity to the 

city centre, very high ground motions were registered by the 33 strong motion stations placed around 

Christchurch City Council area. As indicated by the recordings obtained from PEER Ground motion Database 

(Ancheta et al. , 2013), the highest PGA recorded was 1.41g at Heathcote Valley Primary School and 0.22g at 

Hulverstone Drive Pumping Station (-43.5015, 172.021), the closest recording station from Avondale. 

 

Besides the recording stations' data (Ancheta et al., 2013), an observed maximum horizontal PGA isoseismal 

map is available on the NZGD (2015). This map has been developed by combining the prediction from an 

empirical ground motion model of the fault rupture with the PGA recorded at any adjacent strong motion 

stations, following the Bradley (2013) procedure. In particular, it shows isoseismal of median PGA at 0.01g 

interval and corresponding standard deviation bands for the entire city council area. Thus, it can be adopted to 

simplify the estimation of the liquefaction potential at each site.  

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/earthquake
https://www.sciencedirect.com/topics/engineering/pipe-diameter
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/trench
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/backfill


 

 

2.3 Liquefaction susceptibility and observations 

Liquefaction is a long-established risk for Christchurch due to its geomorphological setting (Brackley, 2012).  

Being placed on the Pacific coast and among three rivers, the city is characterised by a shallow GWT (0-2 m 

in the eastern suburbs and 2-3 m in the western suburbs) and loose, poorly consolidated, alluvial deposit 

ground, which results in very high liquefaction susceptibilities (Maurer et al., 2014). Before the CES, localised 

liquefaction had been observed at the estuary of the Avon and Heathcote rivers in 1869 and coastal areas from 

Kaiapoi northwards during the Cheviot earthquake in 1901 and Motunau earthquake in 1922 (Brackley, 2012). 

 

Since the 1990s, soil profile characterisation studies have been carried out to assess the liquefaction 

susceptibility of the council area. Several maps have been produced based on a combination of geology, 

topology, hydrology and geotechnical investigation data (e.g. Elder et al., 1991; Brown and Weeber, 1992, 

Beca, 2002-2005, Beca, 2012 in Brackley, 2012). The most up-to-date map (Brackley, 2012), which adopts a 

“high”, “moderate”, “low”, and “none” liquefaction risk classification, clearly delineates how all the 

Canterbury plain underlies potentially liquefiable geological materials.  

 

After the Christchurch Earthquake, unprecedented levels of liquefaction were surveyed across a wide area in 

the suburbs north to south of the city, and northeast along the River Avon as shown in NZGD (2012, 2013). 

The observed lateral spreading, sand boils, settlements, silt mud ejections and water ponding on the ground 

surface are consistent with the geology of the area as mentioned earlier (Giovinazzi et al., 2011).  

  

For the current research, two primary sources of liquefaction observations data are available: a regional-scale 

map displaying the extent of ejected liquefied material interpreted from aerial photography (NZGD, 2012); 

and property and road observation severity maps developed through on-foot surveys (NZGD, 2013). This 

second source provides more reliable information, as it classified the observations as none, minor, moderate, 

severe, moderate-to-severe, very severe based on the evidence and quantity of ejected material as well as the 

lateral displacement which was visible at the surface. Thus, given the accuracy of site inspections, the NZGD 

(2013) maps are taken as reference.  

 

2.4 Geotechnical information for model development 
 

The primary method of geotechnical subsurface investigation in Christchurch is the CPT. The NZGD makes 

publically available more than 30,000 CPT tests performed in the aftermath of the CES for insurance, research 

and new developments purposes. Through this dataset, 58 high-quality records located across the entire 

municipal territory are selected for comparison of different liquefaction potential methodologies. These CPT 

soundings are chosen based on the assessment of their location as susceptible to liquefaction, termination depth 

over 10 m, proximity to ground motions recording stations, and availability of piezometer readings.  

 

Laboratory tests can provide further insights into the selected sites. For six of these locations, experimental 

tests have been carried out and reported by Beyzaei et al. (2018). Amongst them, a soil column corresponding 

to the Avondale EQC-4 Site (-43.5014, 172.6857) is chosen for investigating the telecommunications’ pipe 

performance through additional numerical analyses. Before the CES, this site was occupied by a single-family 

residential building, and so it can be assumed as a level-ground free-field ground. This location has the 

potential for both liquefaction and lateral spreading, being placed roughly 80 m from the Avon River. In the 

10 m below ground surface, the column consists of a silty sand layer extending from 0-3 meters underlain by 

cleaner sands (Beyzaei et al., 2018). After the Christchurch event, it was subject to moderate to severe 

liquefaction manifestations including lateral spreading and ejecta (NZGD, 2013).  

 

3 LIQUEFACTION EVALUATION METHODOLOGY   

The next sections describe the procedures and methods used in this investigation. In particular, the first one 

summarises the state-of-practice semi-empirical approach adopted for assessing the potential of liquefaction 

manifestations in Christchurch, extending the work presented in Bertelli et al. (2019). The second and last 

paragraph illustrates the numerical simulations’ methodology carried out with FLAC-2D (Itasca Consulting 

Group, 2011), in which the sandy soil is modelled with Byrne (1991) formulation on a soil profile from the 

suburb of Avondale.   

 



 

 

3.1  Semi-empirical models for the liquefaction triggering assessment 

Advancement of the simplified procedure initially proposed by Seed & Idriss (1971) is herein considered to 

estimate the correspondent Factor of Safety (FS) against liquefaction for all the selected CPT soundings as 

described in Bertelli et al. (2019). Table 2 reports the seven different liquefaction prediction models adopted, 

based on the selected relationships reported by Youd & Idriss (2001), Moss et al. (2006), Idriss & Boulanger 

(2008),  Boulanger & Idriss (2014). For the application of these relationships, soil unit weights are presumed 

to be 17 kN/m3 above the GWT, and 19.5 kN/m3 below the GWT as suggested by Wotherspoon et al. (2014). 

The PGA at each CPT site is extrapolated from the PGA isoseismal map (NZGD, 2015). For the estimation of 

Liquefaction Potential Index (LPI) values, layers are considered to be potentially liquefiable if the soil 

behaviour type index (𝐼𝑐) is less than 2.6 (Robertson & Wride, 1998). 

 
Table 2. Liquefaction prediction model tested, with the reduction coefficients (𝑟𝑑) and magnitude scaling factors (MSF) 

combination adopted (Youd & Idriss, 2001; Moss et al., 2006, Idriss & Boulanger, 2008, Boulanger & Idriss, 2014). 

Model ID Model 𝒓𝒅 MSF 

YEA01a Youd & Idriss (2001)  
Blake (1996, cited in 

Youd & Idriss, 2001) 

Idriss (1995, cited in Youd & 

Idriss, 2001) 

YEA01b Youd & Idriss (2001)  
Blake (1996, cited in 

Youd & Idriss, 2001) 

Andrus & Stokoe (1997, 

cited in Youd & Idriss, 2001) 

YEA01c Youd & Idriss (2001)  
Idriss (1999, cited in 

Youd & Idriss, 2001) 

Idriss (1995 cited in Youd & 

Idriss, 2001)) 

YEA01d Youd & Idriss (2001)  
Idriss (1999, cited in 

Youd & Idriss, 2001) 

Andrus & Stokoe (1997 cited 

in Youd & Idriss, 2001) 

MEA06 Moss et al. (2006) - - 

I&B08 Idriss & Boulanger (2008) - - 

B&I14 Boulanger & Idriss (2014)  - - 

 

To assess the efficacy of the selected liquefaction prediction models, LPI values are estimated at each CPT site 

location according to the Iwasaki et al. (1978) methodology. A correlation is then established between the 

calculated 𝐿𝑃𝐼 values and the observed liquefaction manifestations reported in the observation maps 

previously mentioned. In particular, the prediction of liquefaction occurrence is reduce to a binary system 

according to the Iwasaki Criterion (i.e. if 𝐿𝑃𝐼 ≥ 5, liquefaction manifestations are expected at the investigated 

site). Likewise, the observations maps are reinterpreted by classifying each site as “No Liquefaction” or 

“Liquefaction”; “none” and “marginal” classes are mapped as negative results of occurrence, whereas the other 

classes as positive. Thus, each observation-calculated combination case is arranged according to a confusion 

matrix approach as True-Positive (TP), True-Negatives (TN), False-Positive (FP), and False-Negative (FN), 

as represented in Table 3. 

 
Table 3. Confusion Matrix: comparison between liquefaction observations and liquefaction predictions 

  Liquefaction predictions 

  NO YES 

Liquefaction 

observations 

NO 
True-Negative 

(TN) 

False-Positive 

(FP) 

YES 
False-Negative 

(FN) 

True-Positive 

(TP) 
 
 

Based on the confusion matrix classification, exploratory spatial analysis is carried out to evaluate the overall 

LPI performance of the tested methods, and several statistical performance parameters are examined to assess 

the quality of each semi-empirical method as described in Bertelli et al. (2019). 

3.2 Numerical simulation  

To further assess the implication of liquefaction on the performance of the telecommunication networks, a 

numerical simulation of a soil column representing Avondale EQC-4 location is carried out utilising the 



 

 

commercial platform FLAC-2D (Itasca Consulting Group, 2011). This program is chosen as it is a widely 

popular numerical analysis tool for modelling soil liquefaction as well as for its simplicity for performing full 

non-linear dynamic analysis. Indeed, the software has built-in the FINN model-Byrne (1991) formulation, 

which has been implemented by Itasca as described in FLAC User’s Manual (Itasca Consulting Group, 2011b). 

This model includes the relationship between irrecoverable volume change and the cyclic shear-strain 

amplitude into the Mohr-Coulomb model and takes into account the buildup of the pore water pressure. It has 

been extensively applied in recent researches as for example those reported by Tang & Orense (2014), Vargas 

et al. (2015), and Beaty & Perlea (2011). As illustrated in the aforementioned literature, the strength of this 

model is the relatively restricted parameters needed for its calibration in comparison to more advanced 

constitutive models, which makes it potentially suitable for regional-scale analysis. 

 

For the current research, three different models are designed; a first model represents just the 7 m deep and 1 

m width soil column, whereas the second and third models integrate into the soil column a single 100 mm 

HDPE or 150 mm HDPE pipe, respectively. Based on the experimental information provided by Beyzaei et 

al. (2018), all the soil column is assumed to be liquefiable sandy material, and the GWT is presumed to be 

immediately above the pipe (0.95 m). Free field boundary conditions are also implemented in the models. 

Regarding the geometry of the problem, the 7 m soil column is modelled as a 20 x160 mesh composed by 3200 

rectangular elements, and with an additional meter at the bottom to avoid localised instabilities of the software 

where the ground motion is applied. The HDPE pipe itself is configured creating a circular cross-section of 

‘liners’ as structural elements ‘glued’ to the surrounding soil at 1 m depth and 0.5 m width, considering the 

technical specifications in Table 1. Control points are added at depth intervals of 0.7m as reported in Figure 1.  

 
 

 

 

 

Figure 1. a) FLAC-2D model of the entire soil column profile with control points; b) Detail of the soil column model 

at 1m depth and 0.50 m width from the boundary to capture the geometry of the HDPE pipe. The symbol ‘P’ at the 

upper nodes indicates that these nodes have been prescribed to have null water pressure. 

 

D
ep

th
 [

m
] 

D
ep

th
 [

m
] 

Width [m] 

Width [m] 

 

 

Diameter

r 

1
.0

 m
 d

ep
th

 

Thickness 

(b) (a) 

0.50 m from the boundary 0.50 m from the boundary 

Figure 1.b 



 

 

After creating the geometry, a two-steps calculation is considered. Firstly, a static equilibrium calculation for 

the site which includes the steady-state groundwater conditions. Then, the dynamic analyses applying as input 

loading at the base of the model the history of  Peak Ground Velocities (PGV) recorded at the at Hulverstone 

Drive Pumping Station, the closer recording station from the Avondale EQC-4 site according to PEER database 

(Ancheta et al., 2013). As previously mentioned, the nonlinear stress-strain behaviour at the first stage of the 

calculation is represented by an elasto-plastic Mohr-Coulomb model, whereas the liquefiable material is 

simulated according to the formulation proposed by Byrne (1991). In particular, the FINN model-Byrne 

formulation in FLAC-2D (Itasca Consulting Group, 2011) involves the setting up of two constant 𝐶1 and 𝐶2 

following the expressions:  

𝐶1 = 8.7(𝑁1)60
−1.25 

and: 

𝐶2 = 0.4 𝐶1⁄  

where (𝑁1)60 is the normalised standard penetration test value which is set to correspond to SPT 

measurements. Therefore, the main parameters adopted for this sandy material are E=31MPa, υ=0.2 a 

ϕ'=37degree, and 𝐶1=0.30, 𝐶2=1.36, which are estimating assuming a (𝑁1)60 = 8.5 trough an evaluation of an 

SPT sounding effettuated before the CES in the proximity of the EQC-4 site and reported in the NZGD.  

 

4. RESULTS AND DISCUSSION 

 

The section delineates the results of both the semi-empirical methods and numerical analyses. A comparison 

of the previously mentioned methodologies is presented from a geographical point of view and discussed, with 

considerations on the adequacy of these models for assessing the potential of liquefaction manifestations in 

Christchurch. Then, the numerical simulation of the simplified soil profiles from Avondale subjected to the 

Christchurch earthquake, with and without a telecommunication pipe, are compared to the semi-empirical 

analyses and site observations. 

 

4.1 Spatial analysis and test diagnosis results of the liquefaction prediction models 

 

As can be seen in Figure 2, the exploratory spatial analysis results in a general over-prediction of the semi-

empirical models. The pie-charts adopted for symbolising the cumulative results from the seven different 

methodologies at each CPT-location are predominantly “yellow” ( False-positive) in the westerns suburbs of 

Christchurch. This inconsistency between the predictions and observations is might due to the 

geomorphological features of this area. The increasing mix of sand, silt and gravel in these soil profiles would 

have misled the calculation of 𝐼𝑐 factors, which resulted in higher LPI values and lead to an overprediction of 

liquefaction manifestations.  
 

 
Figure 2. Comparison of observation liquefaction data with 7 LPI prediction models: True-Positive (TP), True-

Negative (TN), False-Positive (FP), False-Negative (FN). 

 



 

 

The model which seems to perform better in this particular case is the Idriss & Boulanger (2008) as it is the 

one with the highest accuracy rate. By way of illustration, the LPI forecast for Avondale EQC-4 site is a severe 

liquefaction prediction which corresponds to the manifestation observed in the aftermath of the Christchurch 

event. However, the MCC (Matthews Correlation Coefficient) calculated from the Idriss & Boulanger (2008) 

method’s LPI values is close to zero, indicating that the model cannot adequately predict the non-liquefaction 

occurrence and the correlation is rather casual. Similar parameters are indeed observed among all the selected 

methodologies, confirming the overall trend of the semi-empirical models to overpredict liquefaction 

manifestations. 

 

4.2 Results of the numerical simulation of the column profile 

 

The numerical simulations yield evident liquefaction in Avondale EQC-4 site, in agreement with the 

observations reported after the Christchurch event. The liquefaction occurs mainly between 1-3.5 m depth as 

shown in the isochrone plots reported in Figure 3.a, 3.b and 3.c, respectively, for the soil column without, with 

the 10 cm, and 15 cm HDPE pipe. In these figures, liquefaction is predicted when the increment of pore water 

pressure touches the line representing the initial effective stress. Interestingly, liquefaction is predicted in a 

broader range of depths in the profile without the pipeline as the pore pressure reaches the initial effective 

stress. The presence of the pipe results in lower pore pressure values for all the different periods, as if pipelines 

work as a reinforcement of the soil, making it stronger against liquefaction.  

 

   
Figure 3. Isochrone Plots: a) Soil column b) soil column with the 10 cm pipe c) soil column with the 15 cm pipe. 

 

A comparison between the isochrone plots indicates that liquefaction manifestations occur almost immediately 

in the soil column without pipes. In particular, it happens up to a roughly 3.5 m depth in the first second of the 

event, and it broadens to the entire profile for the following periods. Instead, liquefaction is predicted starting 

from 6 seconds and between 1.5-3 m depth for the 10cm pipe, and it is almost null for the 15 cm pipe whose 

isochrones of 6.00s and 7,00s just touch the effective stress at 1.4 m depth. This effect would be somewhat 

different for smaller cross-sections of pipelines and with different backfill materials. The correspondent 

representations of PGD are not reported as they cannot be considered a good approximation. The maximum 

value reached is roughly 0.3 mm and is in contrast with the observations of lateral spreading at the site after 

the event. This inconsistency might be due to inaccuracy in the numerical simulation once liquefaction has 

taken place, due to high strain level which causes numerical instabilities. Hence, these results need to be instead 

interpreted qualitatively.   
 
Therefore, the results of these numerical simulations have significant implications for the development of 
seismic risk assessment of buried pipelines. Comparing with the semi-empirical methods, the numerical 
models offer more reliable predictions of liquefaction as demonstrated by these findings which estimate 
correctly both where and when liquefaction might have happened. However, models like the one employed in 
this research do not offer an accurate prediction of PGD which is one of the leading cause of damage to buried 
pipelines. Lagrangian meshfree models seem to be a more suitable option for this kind of problems. In addition, 



 

 

these numerical tools require more detailed site-specific geotechnical data and laboratory tests to be calibrated 
and as such are less appropriate for regional-scale analysis (López-Querol & Blázquez, 2006). Nonetheless, 
the present research also raises the possibility of modelling the interaction of the soil around the buried 
pipeline. Much research is still needed to understand the effect of liquefaction on buried pipelines, but this 
numerical model might offer a simple solution. 

5. CONCLUSIONS 

 
As a first step into the seismic risk assessment of the telecommunication networks, this paper has tried to 
investigate a numerical approach for examining the liquefaction-induced damage on buried telecommunication 
piping. Firstly, adopting in-situ geotechnical tests and liquefaction observation data collected in the aftermath 
of the 2011 Christchurch earthquake, seven different semi-empirical methodologies which constitute the state-
of-practice for assessing liquefaction manifestations have been applied to several locations spread around the 
council area. Generally, outcomes show an over-prediction of liquefaction occurrence one among the selected 
approaches as the results they provide are non-dissimilar. Even though their ability to predict liquefaction 
occurrence is quite poor, the LPI method proposed by Idriss & Boulanger (2008) is the best performing one, 
especially in the case of Avondale EQC-4. Regarding the numerical simulations, the findings show more 
precise estimations of the occurrence of liquefaction and the possibility to model the soil interaction with the 
buried pipeline.  
 
Taken together, the semi-empirical models are fast and straightforward to apply, but the provided liquefaction 
occurrence predictions are rather casual and, hence, they would not be taken for granted for carrying out further 
vulnerability assessment studies. Instead, the numerical simulations like the ones presented in this research 
provide results in agreement with liquefaction observations but require more accurate site-specific 
geotechnical data, and they do not offer much more information regarding PGD measures. In addition, these 
analyses might result in being excessively time-consuming if the telecommunication network is modelled 
assuming a smaller mesh for the soil column characterisation, and, hence, less appropriate for regional-scale 
studies. Nonetheless, in future investigations, it might be worthwhile applying this the numerical approach for 
analysing different telecommunication pipeline’s materials, sizes, depths and their interdependencies with 
electricity, water, gas infrastructure systems as well as exploring more advanced constitutive models available 
in the literature..  
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