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Abstract

Background: Positron emission tomography (PET) is increasingly used to guide local treatment in glioma. The
purpose of this study was a direct comparison of two potential tracers for detecting glioma infiltration, O-(2-[18F]-
fluoroethyl)-L-tyrosine ([18F] FET) and [11C] choline.

Methods: Eight consecutive patients with newly diagnosed diffuse glioma underwent dynamic [11C] choline and
[18F] FET PET scans. Preceding craniotomy, multiple stereotactic biopsies were obtained from regions inside and
outside PET abnormalities. Biopsies were assessed independently for tumour presence by two neuropathologists.
Imaging measurements were derived at the biopsy locations from 10 to 40 min [11C] choline and 20–40, 40–60 and
60–90 min [18F] FET intervals, as standardized uptake value (SUV) and tumour-to-brain ratio (TBR). Diagnostic
accuracies of both tracers were compared using receiver operating characteristic analysis and generalized linear
mixed modelling with consensus histopathological assessment as reference.

Results: Of the 74 biopsies, 54 (73%) contained tumour. [11C] choline SUV and [18F] FET SUV and TBR at all intervals
were higher in tumour than in normal samples. For [18F] FET, the diagnostic accuracy of TBR was higher than that
of SUV for intervals 40–60 min (area under the curve: 0.88 versus 0.81, p = 0.026) and 60–90 min (0.90 versus 0.81,
p = 0.047). The diagnostic accuracy of [18F] FET TBR 60–90 min was higher than that of [11C] choline SUV 20–40 min
(0.87 versus 0.67, p = 0.005).

Conclusions: [18F] FET was more accurate than [11C] choline for detecting glioma infiltration. Highest accuracy was
found for [18F] FET TBR for the interval 60–90 min post-injection.
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Background
MRI-guided resection is the first step in multimodality
treatment of diffuse gliomas [1]. The accuracy of standard
T2, fluid-attenuated inversion recovery (FLAIR), and T1
contrast-enhanced weighted MRI sequences, currently used
in clinical practice, [2] to detect glioma infiltration is low
[3–6]. In a recent meta-analysis, the diagnostic accuracy of

T1 contrast-enhanced weighted MRI sequences to identify
high-glioma infiltration was lower than [11C-methyl]-me-
thionine (11C-MET) PET [7]. This is in line with the Re-
sponse Assessment in Neuro-Oncology (RANO) working
group that recommends amino acid PET tracers to de-
lineate glioma extent, [8] based on two studies in which
11C-MET and 18F-2-fluoro-2-deoxyglucose were dir-
ectly compared [9, 10] and more indirect evidence such
as extension of PET-based tumour volumes outside MRI
abnormalities [11]. The most frequently used amino
acid tracers are 11C-MET and O-(2-[18F]-fluoroethyl)-
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L-tyrosine ([18F] FET), due to its longer half-life omit-
ting the need for an on-site cyclotron.
Choline is a well-established tracer of phospholipid

metabolism and cell membrane synthesis, [12–14] al-
though sparsely studied in untreated glioma [15–18].
Gliomas demonstrate similar uptake of the choline
tracers [11C] choline and 18F-choline, [15] which is very
low in normal brain compared with other tracers, poten-
tially providing better contrast between normal brain
and glioma [16, 19]. A dependency between choline up-
take and blood-brain barrier (BBB) integrity has been
described [20, 21]. On the other hand, similar relation-
ships for tracer uptake and BBB integrity have been de-
scribed for choline tracers and [18F] FET [22]. To the
best of our knowledge, no study has directly compared a
choline tracer with [18F] FET PET for the detection of
glioma infiltration.
Therefore, we set out to compare the diagnostic accur-

acy of [11C] choline and [18F] FET PET in quantitative
maps to detect glioma infiltration using co-registered
multi-region stereotactic biopsies as reference.

Methods
Patients
The design of this prospective single-centre study
(Amsterdam UMC, Amsterdam, the Netherlands) is
described elsewhere [23]. Eight consecutive adults with a
newly diagnosed supratentorial suspected diffuse glioma
were included between September 2014 and March 2016.
The indication for resective surgery was confirmed by the
institutional multidisciplinary neuro-oncology tumour
board. The eventual diagnoses proved to be two IDH1-
mutated astrocytomas (WHO grade II), one IDH1-
mutated 1p/19q-codeleted oligodendroglioma (grade
II), one IDH1-mutated glioblastoma (grade IV) and
three IDH1-wildtype glioblastomas (grade IV). Patient
characteristics are presented in Table 1.
The study protocol was approved by the Medical Ethics

Committee of the Amsterdam UMC, VU University Med-
ical Centre, and registered in the Dutch National Trial
Register (https://www.trialregister.nl/trial/5205, unique

identifier NTR5354). Informed consent was obtained from
all individual participants included in the study.

PET protocol
Both dynamic scan protocol and pharmacokinetic mod-
elling of [18F] FET have been described elsewhere [24].
Patients were required to fast for at least 4 h prior to
undergoing the imaging protocol. Both [11C] choline and
[18F] FET dynamic PET scans were acquired in list mode
on either a Gemini TF-64 PET/CT or an Ingenuity TF
PET/CT (Philips Healthcare, Best, the Netherlands),
using the same scanner for each patient. Each scan
started with a low-dose CT scan (30 mAs, 120 kVp) for
attenuation and scatter correction purposes. Next, a 40-
min dynamic scan was acquired after an intravenously
injected bolus of 200MBq [11C] choline. Four hours after
[11C] choline administration, a second, 90-min dynamic
scan was acquired after a bolus of 200MBq [18F] FET.
The list mode data were rebinned into 22 time frames for
[11C] choline (1 × 10, 4 × 5, 2 × 10, 2 × 20, 4 × 30, 4 × 60,
1 × 150, 2 × 300, 2 × 600 s) and 22 time frames for [18F]
FET (1 × 15, 3 × 5, 3 × 10, 4 × 60, 2 × 150, 2 × 300, 7 × 600
s). All frames were reconstructed into images with an iso-
tropic voxel size of 2 × 2 × 2 mm3 using the line-of-
response row-action maximum likelihood algorithm
which was used for the Gemini and the “BLOB-OS-TF”
algorithm for the Ingenuity. Each scan was checked and
corrected for movement, if necessary, using the method
described previously [24]. Maps of standardized uptake
value (SUV) were normalized in activity concentrations
using the injected dose per kilogram of body weight.
Tumour-to-brain ratios (TBR) were calculated with a
contralateral reference region, a spherical volume with a
radius of 14mm placed in the middle of the contralateral
brain region. SUV and TBR were summarized for [11C]
choline uptake between 10 and 40min and for [18F] FET
uptake between 20 and 40, 40–60 and 60–90min. These
intervals were chosen after visual inspection of the time-
activity curves of both tracers. The reconstructions were
based on static intervals for both tracers, because we
demonstrated that static and dynamic parameters are

Table 1 Patient characteristics

Patient no. Age (year) Sex Histology WHO grade IDH status MGMT status Lesion site PET tracers Biopsies

1 28 Female Glioblastoma IV Mutant Methylated Left Frontal 11C-choline 8

2 66 Male Glioblastoma IV Wildtype Methylated Right Frontal 18F-FET 8

3 37 Male Astrocytoma II Mutant Methylated Right Frontal Both 9

4 38 Female Glioblastoma IV Mutant Methylated Left Frontal Both 12

5 24 Male Oligodendroglioma II Mutant Methylated Right Parietal Both 8

6 21 Male Astrocytoma II Mutant Methylated Left Temporal Both 8

7 58 Male Glioblastoma IV Wildtype Unmethylated Left Parietal Both 9

8 55 Female Glioblastoma IV Wildtype Methylated Right Parietal Both 12
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quantitatively comparable in [18F] FET PET [24] and full
kinetic analysis of choline is difficult due to the fast me-
tabolism [25]. This resulted in two [11C] choline maps
(SUV and TBR at 10–40min) and six [18F] FET maps
(SUV and TBR each at three intervals).

MRI protocol
The MR-sequences were acquired on an Achieva 3.0 T
MR-scanner (Philips), equipped with the standard head
coil. Each patient was scanned with a sagittal 3D fluid
attenuated inversion recovery (FLAIR) sequence (TR/
TE/TI (inversion time) 4800/279/1650 ms acquired voxel
size 1.12 × 1.12 × 1.12 mm, reconstructed voxel size
1.04 × 1.04 × 0.56 mm) and a sagittal 3D T1-weighted
gadolinium-enhanced (T1G) sequence (TR/TE/TI/flip
angle 7/3/950 ms/12°, acquired voxel size 0.98 × 0.98 ×
1.00 mm, reconstructed voxel size 0.89 × 0.89 × 1.00 mm)
.

Stereotactic biopsy procedure
The [11C] choline SUV 10–40 min, [18F] FET SUV
20–40 min and MRI FLAIR scan were rigidly registered
to the T1G MRI (iPlan 3.0, Brainlab) and used to plan a
maximum of 12 sample locations along three biopsy tra-
jectories, avoiding vascular structures and regions related

with function. Preceding the craniotomy, samples were
obtained multiple regions using a previously described
stereotactic procedure [26]. Biopsy sample coordinates
were recorded for each imaging modality.

Histopathology
Samples were formalin-fixed paraffin-embedded and
stained using haematoxylin and eosin (HE) and Ki-67,
p53 and IDH1 R132H mutation immunohistochemistry.
Two expert neuropathologists independently and in con-
sensus classified tumour presence or absence for each
sample, while blinded for the imaging results, the pa-
tient’s diagnosis, and the correlations between samples.
All patients had a histopathological diagnosis according
to WHO 2016 criteria [27].

Statistical analysis
The index tests of the receiver operating characteristic
(ROC) analysis were the intensities in the PET maps.
The reference test was tumour presence in consensus
between neuropathologists. Image intensities were sum-
marized for a 1-cm3 region of interest (ROI), containing
125 voxels, centred at the biopsy sample coordinates
(FSL, version 5.0.9, FMRIB Software Library, Analysis
Group) using the 90th percentile. Missing data were

a

b

c

Fig. 1 Examples of [11C] choline and [18F] FET PET scans with biopsy location (green square) and corresponding histology. a 24-year-old male
patient with an IDH1-mutated 1p/19q-codeleted WHO grade II oligodendroglioma with a biopsy sample of clear histological tumour presence. b
A 55-year-old female patient with an IDH1-wildtype glioblastoma with in this biopsy sample subtle histological tumour presence in the form of
dispersed pleomorphic nuclei. c 21-year-old male patient with an IDH1-mutated grade II astrocytoma with a biopsy sample of clear histological
tumour presence without visual [11C] choline uptake. HE = haematoxylin and eosin staining, both = [11C] choline and [18F] FET PET
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omitted from analysis. Summarized intensities of each
map were compared between histologically normal and
tumour sample locations using two-sided Mann-
Whitney U tests. The area under the ROC curve (AUC)
with 95% confidence intervals (95% CI) and optimal cut-
off with sensitivity, specificity, positive (PPV), and nega-
tive predictive values (NPV) were calculated for all maps
(R package ‘pROC’, version 1.10.0). The AUCs were
compared using a nonparametric analysis of clustered
binary data, which corrects for the within-patient correl-
ation of the samples [28]. Tumour presence was mod-
elled as independent binary variable from imaging
intensities by generalized linear mixed regression with
logit link (R package ‘lme4’, version 1.1–13). Patient
identification was included as random effect to account
for within-patient correlation of the samples. Models
were compared using the Akaike Information Criterion
[29]. P values of less than 0.05 were considered signifi-
cant. Subgroup analyses of high- and low-grade glioma
were performed. All statistical analyses were performed
using R (version 3.3.2, R Foundation). R. The study
was conducted in accordance with the Standards for
Reporting of Diagnostic Accuracy Studies statement
(Additional file 1) [30].

Results
Two patients with a high-grade glioma were scanned
with only one tracer due to insufficient [11C] choline
and low-quality yield of [18F] FET. Visual inspection
showed absence of [11C] choline uptake in patients three
and six (Fig. 1c), both with an IDH1-mutated astrocy-
toma (WHO grade II). All patients displayed clear [18F]
FET uptake. Median time between PET scan and surgery
was 6.5 days (range 2–12).
A total of 74 biopsy samples were acquired, with a me-

dian of 8.5 samples (range 8–12) per patient of which 54
(73%) were classified as tumour and 20 (27%) as normal.
In the 49 samples of high-grade gliomas, 32 (65%) were
classified as tumour and 17 (35%) as normal. In the 25
samples of low-grade gliomas, 22 (88%) were classified
as tumour and 3 (12%) as normal. Of the 66 samples
with [11C] choline data, 50 (76%) were classified as
tumour and 16 (24%) as normal. In the 41 samples of
high-grade gliomas, 28 (68%) were classified as tumour
and 13 (32%) as normal. Of the 66 samples with [18F]
FET data, 49 (74%) were classified as tumour and 17

b

c

a Fig. 2 Comparison of [18F] FET PET maps: a Boxplot of [18F] FET
standardized uptake values and tumour-to-brain ratios at 20–40, 40–
60 and 60–90 min for normal (light grey) and tumour (dark grey)
samples. Receiver operating characteristics curves for b standardized
uptake values (dotted line) and c tumour-to-brain ratios (line) at 20–
40 min (blue), 40–60 min (red) and 60–90 min (yellow) to detect
tumour presence
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(26%) as normal. In the 41 samples high-grade gliomas,
27 (66%) were classified as tumour and 14 (34%) as
normal. Representative examples of the imaging and
histology are shown in Fig. 1. No biopsy-related compli-
cations occurred.

Comparison of [11C] choline PET standardized uptake
values and tumour-to-brain ratios
SUV was significantly higher in tumour samples than in
normal samples, and no difference was observed for
TBR between tumour samples and normal samples
(Fig. 2a). In high-grade gliomas, both SUV and TBR
were significantly higher in tumour samples than in nor-
mal samples (Additional file 2A). In low-grade gliomas,
no difference was observed for SUV and TBR between
tumour and normal samples (Additional file 3A). The
diagnostic accuracy for SUV and TBR for [11C] choline
PET measurements to detect tumour presence was simi-
lar (AUC (95% CI): 0.67 (0.51–0.83) versus 0.63 (0.37–
0.88), not significant) (Fig. 2b). In high-grade gliomas,
diagnostic accuracy of SUV and TBR were similar
(0.76 (0.56–0.96) versus 0.73 (0.47–1.00), not signifi-
cant) (Additional file 2B). In low-grade gliomas, diag-
nostic accuracy of SUV was higher than that of TBR
(0.77 (0.39–1.00) versus 0.61 (0.27–0.94), p < 0.001)
(Additional file 3B). Based on the significant differ-
ence in uptake between tumour and normal samples,
we used [11C] choline PET SUV for further analyses
to compare with [18F] FET.

Comparison of [18F] FET PET standardized uptake values
and tumour-to-brain ratios at 20–40, 40–60 and 60–90min
The SUV and TBR of all intervals were higher in tumour
samples compared in normal samples in all gliomas
(Fig. 3a) and high-grade gliomas (Additional file 4A). In
low-grade gliomas, there was no difference between
tumour and normal samples’ SUV and TBR of all inter-
vals (Additional file 5A). The 60–90-min TBR diagnostic
accuracy was the highest and significantly higher than all
SUVs (AUCs in Table 2 and ROC curves in Fig. 3b, c).
In high-grade gliomas, the diagnostic accuracy was high-
est in the 40–60 and 60–90 min in TBR, with a signifi-
cantly higher accuracy of 40–60min TBR than 20–40
min SUV (Additional file 4B). In low-grade gliomas, the
40–60min TBR diagnostic accuracy was the highest and
significantly higher than 40–60 min and 60–90min SUV

a

b

c

Fig. 3 Comparison of [18F] FET PET maps: a Boxplot of [18F] FET
standardized uptake values and tumour-to-brain ratios at 20–40, 40–
60 and 60–90 min for normal (light grey) and tumour (dark grey)
samples. b Receiver operating characteristics curves for standardized
uptake values (dotted line) and c tumour-to-brain ratios (line) at 20–
40min (blue), 40–60 min (red) and 60–90 min (yellow) to detect
tumour presence
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(Additional file 5B). The TBR of [18F] FET at 60–90 min
was used for further analyses to compare with [11C] cho-
line, because of the higher diagnostic accuracy.

Comparison of [11C] choline and [18F] FET PET
The diagnostic accuracy to detect tumour of the best
quantitative map using [18F] FET is higher than the best
quantitative map using [11C] choline (AUC (95% CI): 0.87
(0.75–1.0) and 0.68 (0.51–0.85), p = 0.005), as plotted in
Fig. 4. This was similar in high-grade gliomas, although
not significant, while the diagnostic accuracy in low-grade
gliomas was comparable between [18F] FET and [11C] cho-
line (Additional file 6). The TBR of [18F] FET PET at

60–90min was strongly associated with tumour presence
in multivariable models, but [11C] choline was not
(Table 3). In high-grade gliomas, both tracers were associ-
ated with tumour presence, while in low-grade gliomas
none (Additional file 7).

Discussion
Our study demonstrates that [18F] FET PET is more
accurate than [11C] choline PET to detect glioma infil-
tration. Furthermore, our results suggest that the [18F]
FET PET 60–90-min interval might have a higher diag-
nostic accuracy than the 20–40-min interval.

Table 2 Comparison of diagnostic accuracy of [18F] FET SUV and TBR intervals in 7 patients with 66 samples

SUV TBR

20–40min 40–60 min 60–90 min 20–40 min 40–60 min

AUC 0.79 0.81 0.81 0.84 0.88

95%CI 0.59–0.99 0.63–0.99 0.64–0.99 0.70–0.98 0.76–1.00

SUV 40–60min 0.81 0.63–0.99 p = 0.377

60–90min 0.81 0.64–0.99 p = 0.478 p = 0.747

TBR 20–40min 0.84 0.70–0.98 p = 0.166 p = 0.466 p = 0.595

40–60min 0.88 0.76–1.00 p = 0.026 p = 0.026 p = 0.043 p = 0.158

60–90min 0.90 0.79–1.00 p = 0.033 p = 0.043 p = 0.047 p = 0.082 p = 0.355

Fig. 4 Receiver operating characteristic curve of [11C] choline standardized uptake values at 10–40 min (yellow) and [18F] FET tumour-to-brain
ratios at 60–90 min (blue) (n = 6)
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Few studies have compared [18F] FET and [11C]
choline tracers in glioma [16, 18, 31]. These studies
did not address glioma infiltration in patients, but dif-
ferentiation of radiation necrosis and glioma recur-
rence in animals, [31] detection of metabolic hotspots
for grading in low- and high-grade glioma [16] and
the use of [11C] choline PET in [18F] FET-negative
low-grade gliomas [18]. In these studies, [18F] FET
PET was better than [11C] choline PET.
Our findings support the debate on the best interval for

[18F] FET PET favouring the longer interval of 60–90min
over the recommended 20–40-min interval [32]. Others
have found better detection of diffuse glioma at intervals
over 60min compared to shorter intervals as well [33].
On inspection of our PET maps, this can be explained by
improved contrast between tumour and normal brain due
to the mitigation of uptake in surrounding brain tissue. It
remains to be determined whether the modest in-
crease in accuracy of longer scan intervals is set off
by the longer procedure time between tracer injection
and scan completion.
Our findings of the accuracy of [18F] FET PET to dis-

cern tumour from normal confirm that of others. In a
recent meta-analysis, pooling of seven [18F] FET PET
studies resulted in an accuracy of 0.89 [6]. Combining
MRI and FET PET was more accurate than MRI alone,
[34] and [18F] FET PET accuracy was higher than intra-
operative 5-ALA fluoresence [35]. The [18F] FET tracer
seems to perform similar to the 11C-MET tracer [7]. Of
interest, the patient with a WHO grade II oligodendro-
glioma had higher uptake of both [18F] FET and [11C]
choline than the WHO grade II astrocytomas. This may
be attributable to the higher proliferation and microves-
sel counts in oligodendrogliomas [16, 36, 37]. The lower
accuracy in low-grade compared to high-grade gliomas
has been described before [38].
The profound difference in [18F] FET and [11C] choline

uptake in glioma may have several explanations. First,
the cellular transport mechanism differs between these
tracers. Uptake of [18F] FET is mediated by system L

amino acid transporters (LAT) and uptake of [11C] cho-
line correlates with choline transporter-like 1 (CTL-1)
expression [39, 40]. Second, choline metabolism is very
fast, with the parent fraction of the tracer decreasing in

15min to 27%, [41] compared to 87% in 120 min for
[18F] FET [42], resulting in a better tracer availability of
[18F] FET. Finally, the dependency of [18F] FET uptake
on breakdown of the BBB was less than that of [11C]
choline, with high [18F] FET uptake also in tumour
regions outside the area of contrast enhancement (Add-
itional file 8). This is in line with preclinical studies and
one human study comparing amino acid and choline
tracers for the differentiation of glioma recurrence and
radiation necrosis [21, 31, 43]. Other preclinical studies,
however, found similar and even higher BBB dependency
of [18F] FET compared with choline tracers [19, 22]. A
potential explanation is the use of an acute radiation in-
jury model in these studies, which has a more profound
inflammatory response and more BBB disruption than
seen in radiation necrosis.
A practical implication from our study is that glioma

resections and radiation oncology plans may consider
use of [18F] FET PET at late intervals to include glioma
infiltration in local treatment plans. Amino acid tracers
have been recommended to guide glioma resections [8].
Our study has some limitations. The number of pa-

tients for our detailed imaging protocol, which can be
demanding for patients, is necessarily limited, although
the number of samples is relatively large. The assess-
ment of tumour presence by neuropathologists as a ref-
erence test is known to be subject to interobserver
variation [44], which is partly accounted for by consen-
sus assessment.

Conclusion
The [18F] FET tracer is more accurate than [11C] choline
to detect glioma infiltration. The most accurate [18F]
FET maps are based on static TBR for the interval 60–
90-min post-injection.
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